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superfields is also found.

Keywords: Superspaces, Higher Spin Gravity, Space-Time Symmetries

ArXiv ePrint: 1905.11357

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2019)130

mailto:metsaev@lpi.ru
https://arxiv.org/abs/1905.11357
https://doi.org/10.1007/JHEP08(2019)130


J
H
E
P
0
8
(
2
0
1
9
)
1
3
0

Contents

1 Introduction 1

2 Light-cone gauge formulation of free massless N = 1 supermultiplets 3

3 Superfield formulation of free massless N = 1 supermultiplets 7

4 General structure of n-point dynamical generators of the Poincaré su-
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1 Introduction

The light-cone gauge approach [1] offers considerable simplifications of approaches to many

problems of quantum field theory and superstring. This approach hides Lorentz symme-

tries but eventually turns out to be effective. Exploring this approach for the analysis of

ultraviolet finiteness of N = 4 Yang-Mills theory may be found in refs. [2, 3]. Light-cone

gauge superstring field theories are studied in refs. [4–6], while string bit models for super-

string and super p-branes in the framework of light-cone gauge formulation are considered

in ref. [7] and [8, 9] respectively. Application of light-cone gauge formalism for studying

the interacting continuous-spin fields in flat space may be found in refs. [10, 11]. Various

applications of light-cone gauge approach to field theory like QCD are discussed in [12, 13].

Methods for building Lorentz covariant formulation by using light-cone gauge formulation

are investigated in ref. [14]. In the framework of light-cone gauge approach, study of free

continuous-spin field in AdS space may be found in refs. [15, 16].

One interesting application of light-cone gauge approach is a higher-spin massless field

theory. In refs. [17, 18], a wide class of cubic interaction vertices for higher-spin massless
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fields in 4d flat space was constructed, while the full list of cubic interaction vertices for ar-

bitrary spin massless fields in 4d flat space was obtained in ref. [19].1 Our aim in this paper

is to provide the full list of cubic interaction vertices for N = 1 arbitrary integer and half-

integer spin supermultiplets in the flat 4d space. Doing so, we provide, among other things,

the supersymmetric extension for all cubic interaction vertices for massless bosonic fields in

the 4d flat space presented in ref. [19].2 To this end we use superfields defined in light-cone

momentum superspace. The light-cone momentum superspace has successfully been used

in many interesting studies of superstring and supergravity theories. For example, we men-

tion the use of the momentum superspace in superstring field theories in refs. [4–6] and 10d

extended supergravity in ref. [22].3 The momentum superspace was also adapted for the

studying light-cone gauge 11d supergravity in ref. [24]. Using the momentum superspace,

we collect the N = 1 integer and half-integer spin massless supermultiplets into a suitable

unconstrained superfields and use such superfields for building cubic interaction vertices. It

is the use of the light-cone gauge unconstrained superfields that allows us to build a simple

representation for all cubic interaction vertices of the N = 1 integer and half-integer spin

massless supermultiplets and to provide the full classification of such cubic vertices.

This paper is organized as follows.

In section 2, we review the well known description of N = 1 integer spin and half-

integer spin supermultiplets in terms of light-cone gauge components fields. We introduce

the field content and describe a realization of the Poincaré superalgebra on space of the

component fields.

In section 3, we introduce a momentum superspace and describe light-cone gauge

unconstrained superfields defined in such superspace. Also we describe a realization of the

Poincaré superalgebra on space of our light-cone gauge unconstrained superfields.

In section 4, we describe a general structure of n-point interaction vertices. Namely,

we present restrictions imposed by kinematical symmetries of the Poincaré superalgebra

on n-point interaction vertices.

In section 5, we study cubic vertices. First, we present restrictions imposed by kinemat-

ical and dynamical symmetries of the Poincaré superalgebra on cubic vertices. Second, we

formulate light-cone gauge dynamical principle and present complete system of equations

required to determine the cubic vertices uniquely.

In section 6, we present our general solution for all cubic vertices which describe

interactions of arbitrary spin massless supermultiplets. First, we present superfield form

of the cubic vertices. After that, we discuss the cubic vertices in terms of the component

fields and provide the full classification of the cubic vertices for integer and half-integer

arbitrary spin supermultiplets.

Section 7 is devoted to our conclusions.

1Generalization of results in ref. [19] to the case of massless and massive arbitrary spin bosonic and

fermionic fields in Rd−1,1, d-arbitrary, may be found in refs. [20, 21].
2In the framework of light-cone superspace formalism, a scalar superfield that describes arbitrary N -

extended supermultiplets and involves fields with helicities − 1
4
N ≤ λ ≤ 1

4
N ( 1

4
N -integer) was studied in

ref. [18]. For such scalar superfield, a cubic vertex that involves 1
4
N derivatives was obtained in ref. [18].

3Recent interesting discussion of 10d Yang-Mills theory in light-cone superspace may be found in ref. [23].
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In appendix A, we describe our basic notation and conventions for Grassmann algebra

we use in this paper. In appendix B, we discuss properties of our unconstrained superfields.

In appendix C, we present some details of the derivation of the cubic vertices.

2 Light-cone gauge formulation of free massless N = 1 supermultiplets

Poincaré superalgebra in light-cone frame. A method suggested in ref. [1] tells us

that the problem of finding a light-cone gauge dynamical system amounts to a problem of

finding a light cone gauge solution for commutation relations of a symmetry algebra. For

supersymmetric theories in the flat space R3,1, basic symmetries are associated with the

Poincaré superalgebra. Therefore, in this section, we review a realization of the Poincaré

superalgebra on a space of massless supermultiplets and present well known formulation of

free N = 1 supersymmetric multiplets in terms of the light-cone gauge component fields.

For the flat space R3,1, the Poincaré superalgebra is spanned by the four translation

generators Pµ, the six generators of the so(3, 1) Lorentz algebra Jµν , and four Majorana

supercharges Qα. We assume the following (anti)commutators:

[Pµ, Jνρ] = ηµνP ρ − ηµρP ν , [Jµν , Jρσ] = ηνρJµσ + 3 terms , (2.1)

[Q, Jµν ] =
1

2
γµνQ , {Qα, Qβ} = −(γµC−1)αβPµ , (2.2)

where ηµν ia the mostly positive Minkowski metric. We do not present an explicit form of

γµ-matrices and charge conjugation C-matrix because throughout this paper we use only

light-cone form of (anti)commutators (2.1), (2.2).

In place of the Lorentz basis coordinates xµ, µ = 0, 1, 2, 3, we introduce the light-cone

basis coordinates x±, xR, xL defined as

x± ≡ 1√
2
(x3 ± x0) , xR ≡ 1√

2
(x1 + ix2) , xL ≡ 1√

2
(x1 − ix2) , (2.3)

where the coordinate x+ is considered as an evolution parameter. In the light-cone ba-

sis (2.3), the so(3, 1) Lorentz algebra vector Xµ is decomposed as X+, X−, XR, XL, while

a scalar product of the so(3, 1) Lorentz algebra vectors Xµ and Y µ is decomposed as

ηµνX
µY ν = X+Y − +X−Y + +XRY L +XLY R . (2.4)

From (2.4), we learn that, in the light-cone basis, non-vanishing elements of the flat metric

are given by η+− = η−+ = 1, ηRL = ηLR = 1. This implies that the covariant and

contravariant components of vector Xµ are related as X+ = X−, X
− = X+, X

R = XL,

XL = XR.

In light-cone basis (2.3), generators of the Poincaré superalgebra are separated into

two groups:

P+, PR, PL, J+R, J+L, J+−, JRL, Q+R, Q+L, kinematical generators; (2.5)

P−, J−R, J−L, Q−R, Q−L, dynamical generators. (2.6)
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We recall that, for x+ = 0, in a field realization, generators (2.5) are quadratic in fields,4

while, generators (2.6) involve quadratic and higher order terms in fields.

In the light-cone basis, commutators of the Poincaré algebra are obtained from (2.1)

simply by using the flat metric ηµν which has non-vanishing elements η+− = η−+ = 1,

ηRL = ηLR = 1. We now present the light-cone form of the (anti)commutators given in (2.2),

[J+−, Q±R] = ±1

2
Q±R , [J+−, Q±L] = ±1

2
Q±L , (2.7)

[JRL, Q±R] =
1

2
Q±R , [JRL, Q±L] = −1

2
Q±L , (2.8)

[Q−R, J+L] = −Q+L , [Q−L, J+R] = −Q+R , (2.9)

[Q+R, J−L] = Q−L , [Q+L, J−R] = Q−R , (2.10)

{Q+R, Q+L} = P+ , {Q−R, Q−L} = −P− , (2.11)

{Q+R, Q−R} = PR , {Q+L, Q−L} = PL . (2.12)

Hermitian conjugation rules for the generators are assumed to be as follows

P±† = P±, PR† = PL, JRL† = JRL , J+−† = −J+−, J±R† = −J±L ,

Q+R† = Q+L , Q−R† = Q−L . (2.13)

In order to provide a field theoretical realization of generators of the Poincaré superalgebra

on massless fields, we use a light-cone gauge formulation. To this end we start with a

description of field content we use in this paper and review the well known light-cone

gauge formulation of arbitrary spin massless fields.

Field content. To discuss supersymmetric field theories we use light-cone gauge massless

fields considered in helicity basis. First, using a label λ to denote a helicity of a massless

field, we introduce the following set of complex-valued massless fields:

bosonic fields: φλ , λ = ±1 ,±2, . . . ,±∞, ψλ , λ = ±1 ,±2, . . . ,±∞; (2.14)

fermionic fields: φλ , λ = ± 1
2 , ± 3

2 , . . . ,±∞, ψλ , λ = ± 3
2 ,±5

2 , . . . ,±∞, (2.15)

where fields (2.14), (2.15) depend on space time-coordinates x±, xR,L (2.3).

Fields (2.14), (2.15) satisfy the following hermitian conjugation rules

φ†
λ(x) = φ−λ(x) , ψ†

λ(x) = ψ−λ(x) . (2.16)

We collect fields (2.14), (2.15) into integer and half-integer spin supermultiplets given by

(φs , φs− 1
2
) (φ−s , φ−s+ 1

2
) spin-s supermultiplets, s = 1, 2, . . . ,∞; (2.17)

(ψs+ 1
2
, ψs) (ψ−s− 1

2
, ψ−s) spin-

(

s+
1

2

)

supermultiplets, s = 1, 2, . . . ,∞; (2.18)

4With exception of J+−, generators (2.5) are also quadratic in fields when x+ 6= 0. The J+− takes the

form J+− = G0 + ix+P−, where G0 is quadratic in fields, while P− involves quadratic and higher order

terms in fields.
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Second, by analogy with (2.18), we introduce the spin-12 massless supermultiplets

(ψ 1
2
, ψ0) (ψ− 1

2
, ψ−0) spin-

1

2
supermultiplets, (2.19)

ψ†
0(x) = ψ−0(x) , ψ†

1
2

(x) = ψ− 1
2
(x) , (2.20)

where, in (2.20), we fix the hermitian conjugation rules for two complex-valued scalar fields

ψ0, ψ−0 and two complex-valued spin-12 fermionic fields ψ1/2, ψ−1/2.

From (2.16)–(2.20), we see that the supermultiplet φs, φs− 1
2
is hermitian conjugated to

the supermultiplet φ−s, φ−s+ 1
2
, while the supermultiplet ψs+ 1

2
, ψs is hermitian conjugated

to the supermultiplet ψ−s− 1
2
, ψ−s. For supermultiplets φs, φs− 1

2
and φ−s, φ−s+ 1

2
(2.17),

we use the shortcut (s, s − 1

2
), s = 1, 2, . . . ,∞, while, for supermultiplets ψs+ 1

2
, ψs and

ψ−s− 1
2
, ψ−s (2.18), (2.19), we use the shortcut (s+ 1

2
, s), s = 0, 1, . . . ,∞.

Fields in (2.17)–(2.19) constitute the field content in our approach. In our field content,

each helicity occurs twice. Our motivation for the use of such field content is discussed in

section 6.

In what follows, we prefer to use fields which obtained from the ones in (2.14)–(2.19)

by using the Fourier transform with respect to the coordinates x−, xR, and xL,

φλ(x) =

∫

d3p

(2π)3/2
ei(βx

−+pRxL+pLxR)φλ(x
+, p) ,

ψλ(x) =

∫

d3p

(2π)3/2
ei(βx

−+pRxL+pLxR)ψλ(x
+, p) , d3p ≡ dβdpRdpL , (2.21)

where the argument p of fields φλ(x
+, p), ψλ(x

+, p) stands for the momenta β, pR, pL. In

terms of the fields φλ(x
+, p), ψλ(x

+, p) , the hermicity conditions (2.16), (2.20) take the

form

φ†
λ(p) = φ−λ(−p) , ψ†

λ(p) = ψ−λ(−p) , (2.22)

where in (2.22) and below dependence of the fields on the light-cone time x+ is implicit.

Field-theoretical realization of the Poincaré superalgebra. We now review a field

theoretical realization of the Poincaré superalgebra on the space of massless supermulti-

plets. First, we consider even elements of the Poincaré superalgebra (2.1). Realizations of

the Poincaré algebra (2.1) in terms of differential operators acting on the fields φλ(p) and

ψλ(p) (2.14)–(2.19) is given by the well known expressions.

Realizations on space of φλ(p) and ψλ(p):

PR= pR , PL= pL , P+=β , P−= p− , p−≡−pRpL

β
, (2.23)

J+R= ix+PR+∂pLβ , J+L= ix+PL+∂pRβ , (2.24)

J+−= ix+P−+∂ββ−
1

2
eλ , JRL= pR∂pR−pL∂pL+λ, (2.25)

J−R=−∂βp
R+∂pLp

−+λ
pR

β
+

pR

2β
eλ , (2.26)

J−L=−∂βp
L+∂pRp

−−λ
pL

β
+

pL

2β
eλ , (2.27)
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where the notation for partial derivatives and the definition of symbol eλ are given by

∂β ≡ ∂/∂β , ∂pR ≡ ∂/∂pR , ∂pL ≡ ∂/∂pL , (2.28)

eλ = 0 for integer λ , eλ = 1 for half-integer λ , (2.29)

eλ + eλ+ 1
2
= 1 , eλeλ+ 1

2
= 0 . (2.30)

In (2.30), we present relations which follow from the definition of eλ given in (2.29).

Having presented realization of the Poincaré algebra in terms of differential operators

in (2.23)–(2.27) we are able to provide a field representation for generators in (2.1). To

quadratic order in fields, a field representation of the Poincaré algebra generators (2.1) is

given by

G[2] =

∞
∑

s=1

G
(s)
[2] +

∞
∑

s=0

G
(s+ 1

2
)

[2] , (2.31)

G
(s)
[2] = 2

∫

d3p
(

βφ†
sGdiffφs + φ†

s− 1
2

Gdiffφs− 1
2

)

, (2.32)

G
(s+ 1

2
)

[2] = 2

∫

d3p
(

βψ†
sGdiffψs + ψ†

s+ 1
2

Gdiffψs+ 1
2

)

, (2.33)

where Gdiff denotes the differential operators presented in (2.23)–(2.27), while G[2] denotes

the field representation for the generators (2.1). For the odd elements of the Poincaré super-

algebra (supercharges Q±R,L), a field representation G[2] takes the form as in (2.31), where

Q
+R (s)
[2] = 2

∫

d3p βφ†
sφs− 1

2
, Q

+L (s)
[2] = 2

∫

d3p βφ†

s− 1
2

φs , (2.34)

Q
−R (s)
[2] = 2

∫

d3p pRφ†

s− 1
2

φs , Q
−L (s)
[2] = 2

∫

d3p pLφ†
sφs− 1

2
, (2.35)

Q
+R (s+ 1

2
)

[2] = −2

∫

d3p βψ†

s+ 1
2

ψs , Q
+L (s+ 1

2
)

[2] = −2

∫

d3p βψ†
sψs+ 1

2
, (2.36)

Q
−R (s+ 1

2
)

[2] = −2

∫

d3p pRψ†
sψs+ 1

2
, Q

−L (s+ 1
2
)

[2] = −2

∫

d3p pLψ†

s+ 1
2

ψs . (2.37)

The fields φλ, ψλ satisfy the Poisson-Dirac equal-time commutation relations

[φλ(p),φ
†
λ′(p

′)] =
δλλ′

2β
δ3(p−p′) , [ψλ(p),ψ

†
λ′(p

′)] =
δλλ′

2β
δ3(p−p′) , integer λ,λ′ , (2.38)

{φλ(p),φ†
λ′(p

′)}= δλλ′

2
δ3(p−p′) , {ψλ(p),ψ†

λ′(p
′)}= δλλ′

2
δ3(p−p′) , half-integer λ,λ′ . (2.39)

Using relations given in (2.31)–(2.33), we verify the standard equal-time commutation

relations between the fields and the even generators

[φλ, G[2] ] = Gdiffφλ , [ψλ, G[2] ] = Gdiffψλ , (2.40)
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while using expressions in (2.34)–(2.37), we find the following equal-time

(anti)commutation relations between the supercharges and the fields

[φs, Q
+R] = φs− 1

2
, {φs− 1

2
, Q+L} = βφs , (2.41)

{φs− 1
2
, Q−R} = pRφs , [φs, Q

−L] =
pL

β
φs− 1

2
, (2.42)

{ψs+ 1
2
, Q+R} = −βψs , [ψs, Q

+L] = −ψs+ 1
2
, (2.43)

[ψs, Q
−R] = −pR

β
ψs+ 1

2
, {ψs+ 1

2
, Q−L} = −pLψs . (2.44)

3 Superfield formulation of free massless N = 1 supermultiplets

In order to discuss a light-cone gauge superfield formulation we introduce a Grassmann-odd

momentum denoted by pθ. The momentum superspace is parametrized by the light-cone

time x+, the momenta pR, pL, β and the Grassmann momentum pθ,

x+ , β , pR , pL , pθ . (3.1)

Using component fields (2.17)–(2.20) depending on x+ and momenta pR, pL, β , we in-

troduce then unconstrained superfields Φs, Φ−s+ 1
2
and Ψs+ 1

2
, Ψ−s defined in the super-

space (3.1) in the following way:

Φs=φs+
pθ
β
φs− 1

2
, Φ−s+ 1

2
=φ−s+ 1

2
+pθφ−s , for spin-s supermultiplets, (3.2)

Ψs+ 1
2
= pθψs+ψs+ 1

2
, Ψ−s=ψ−s+

pθ
β
ψ−s− 1

2
, for spin-

(

s+ 1

2

)

supermultiplets, (3.3)

Ψ 1
2
= pθψ0+ψ 1

2
, Ψ0 =ψ−0+

pθ
β
ψ− 1

2
, for spin- 1

2
supermultiplets, (3.4)

where, in (3.2), (3.3), s = 1, . . . ,∞.

Our basic observation which considerably simplifies our analysis of theory of inter-

acting superfields is that the unconstrained superfields (3.2)–(3.4) can be collected into

unconstrained superfields denoted as Θλ,

Θλ(p, pθ) , λ = 0,±1
2 ,±1, . . . ,±∞ , (3.5)

where, depending on λ, the superfield Θλ is identified with the ones in (3.2)–(3.4) as follows:

Θs ≡ Φs , Θ−s+ 1
2
≡ Φ−s+ 1

2
, s = 1, 2, . . . ,∞ ,

Θs+ 1
2
≡ Ψs+ 1

2
, Θ−s ≡ Ψ−s , s = 0, 1, . . . ,∞ . (3.6)

We note the following property of the superfield Θλ. Using the notation GP(Θλ) for the

Grassmann parity of the superfield Θλ and taking into account definition of eλ (2.29), we

note the relation,

GP(Θλ) = eλ . (3.7)

We see that, for integer λ, the superfield Θλ is Grassmann even, while, for half-integer λ,

the superfield Θλ is Grassmann odd.
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Φs Φ−s+ 1
2

Ψs+ 1
2

Ψ−s

Q+R β∂pθ −β∂pθ −β∂pθ β∂pθ

Q+L pθ −pθ −pθ pθ

Q−R 1
βp

Rpθ − 1
βp

Rpθ − 1
βp

Rpθ
1
βp

Rpθ

Q−L pL∂pθ −pL∂pθ −pL∂pθ pL∂pθ

M+− 1
2pθ∂pθ

1
2pθ∂pθ − 1

2
1
2pθ∂pθ − 1

2
1
2pθ∂pθ

MRL s− 1
2pθ∂pθ −s− 1

2pθ∂pθ +
1
2 s− 1

2pθ∂pθ +
1
2 −s− 1

2pθ∂pθ

Table 1. Realization of supercharges (3.14), (3.15) on superfields (3.2)–(3.4). Realization of the

Poincaré algebra on superfields (3.2)–(3.4) is given by relations (3.8)–(3.12), where the operators

M+−
λ , MRL

λ should be replaced by operators M+−, MRL given in this table.

Realizations of the Poincaré superalgebra on superfield Θλ. Realization of the

Poincaré superalgebra in terms of differential operators acting on the superfield Θλ(p, pθ)

is given by

PR = pR , PL = pL , P+ = β , P− = p− , p− ≡ −pRpL

β
, (3.8)

J+R = ix+PR + ∂pLβ , J+L = ix+PL + ∂pRβ , (3.9)

J+− = ix+P− + ∂ββ +M+−
λ , JRL = pR∂pR − pL∂pL +MRL

λ , (3.10)

J−R = −∂βp
R + ∂pLp

− +MRL

λ

pR

β
−M+−

λ

pR

β
, (3.11)

J−L = −∂βp
L + ∂pRp

− −MRL

λ

pL

β
−M+−

λ

pL

β
, (3.12)

M+−
λ =

1

2
pθ∂pθ −

1

2
eλ , MRL

λ = λ− 1

2
pθ∂pθ (3.13)

Q+R = (−)eλβ∂pθ , Q+L = (−)eλpθ , (3.14)

Q−R = (−)eλ
1

β
pRpθ , Q−L = (−)eλpL∂pθ , (3.15)

where the symbol eλ is defined in (2.29), while a quantity ∂pθ stands for left derivative

w.r.t. the Grassmann momenta pθ (see appendix A). Explicit realization of the Poincaré

superalgebra on the superfields Φ and Ψ (3.2)–(3.4) is given in table 1.

In addition to the superfields Θλ, we find it convenient to use other superfields denoted

by Θ∗
λ. The superfields Θ∗

λ are constructed out of the hermitian conjugated fields φ†
λ, ψ

†
λ

and defined as follows. First, we define superfields Φ∗
λ, Ψ

∗
λ by the relations

Φ∗
s− 1

2

= pθφ
†
s−φ†

s− 1
2

, Φ∗
−s=φ†

−s+
pθ
β
φ†

−s+ 1
2

, for spin-s supermultiplets; (3.16)

Ψ∗
s =ψ†

s+
pθ
β
ψ†

s+ 1
2

, Ψ∗
−s− 1

2

= pθψ
†
−s−ψ†

−s− 1
2

, for spin-
(

s+ 1

2

)

supermultiplets; (3.17)

Ψ∗
0 =ψ†

0+
pθ
β
ψ†

1
2

, Ψ∗
− 1

2

= pθψ
†
−0−ψ†

− 1
2

, for spin- 1
2
supermultiplets; (3.18)
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where, in (3.16), (3.17), s = 1, . . . ,∞. Second, we introduce superfields Θ∗
λ defined for all λ,

Θ∗
λ(p, pθ) , λ = 0,±1

2 ,±1, . . . ,±∞; (3.19)

where, depending on λ, the superfield Θ∗
λ is identified with the ones in (3.16)–(3.18) as

Θ∗
s− 1

2

≡ Φ∗
s− 1

2

, Θ∗
−s ≡ Φ∗

−s , s = 1, 2, . . . ,∞;

Θ∗
s ≡ Ψ∗

s , Θ∗
−s− 1

2

≡ Ψ∗
−s− 1

2

, s = 0, 1, . . . ,∞ . (3.20)

The new superfields Θ∗
λ are not independent of the superfields Θλ. Namely, in view of

the hermitian conjugation rule given in (2.22), we find the relation

Θ∗
−λ(−p,−pθ) = (−)eλΘλ(p, pθ) , (3.21)

where eλ is defined in (2.29) and we show explicitly momentum arguments p, pθ entering

the superfields. For integer λ, the superfield Θ∗
λ is Grassmann even, while, for half-integer

λ, the superfield Θ∗
λ is Grassmann odd. In other words, the Grassmann parity of the

superfield Θ∗
λ, is given by the relation GP(Θ∗

λ) = eλ.

Using the realization of the Poincaré superalgebra in terms of differential operators

in (3.8)–(3.15), we can present a superfield representation for generators in (2.5), (2.6). To

quadratic order in the superfields Θλ, a superfield representation of Poincaré superalgebra

generators (2.5), (2.6) is given by

G[2] =
+∞
∑

λ=−∞

G[2], λ G[2], λ =

∫

d3pdpθ βΘ∗
λ− 1

2

Gdiff, λΘλ , (3.22)

where realization of Gdiff, λ on space of Θλ is given in (3.8)–(3.15). A realization of Gdiff, λ

on space of the superfield Θ∗
λ may be found in appendix B.

The superfields Θλ, Θ
∗
λ satisfy the Poisson-Dirac equal-time commutation relations

[Θλ(p, pθ),Θ
∗
λ′(p′, p′θ)]± =

(−)
e
λ+1

2

2β
δ3(p− p′)δ(pθ − p′θ)δλ−λ′, 1

2
, (3.23)

where [a, b]± stands for a graded commutator, [a, b]± = (−)ǫaǫb+1[b, a]±. Using relations

given in (3.22), (3.23), we verify the standard equal-time (anti)commutation relation be-

tween the superfields and the generators

[Θλ, G[2]]± = Gdiff, λΘλ , (3.24)

where Gdiff, λ are given in (3.8)–(3.15).

In light-cone gauge Lagrangian approach, the light-cone gauge action takes the form

S =
1

2

∞
∑

λ=−∞

∫

dx+d3pdpθ Θ∗
λ− 1

2

(

2iβ∂− − 2pRpL
)

Θλ +

∫

dx+P−
int , (3.25)

where ∂− ≡ ∂/∂x+ and P−
int is a light-cone gauge Hamiltonian describing interactions.

Internal symmetry can be incorporated via the Chan-Paton method used in string theory

(see section 6).
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4 General structure of n-point dynamical generators of the Poincaré

superalgebra

We now describe a general structure of the dynamical generators of the Poincaré superal-

gebra. For theories of interacting fields, the Poincaré superalgebra dynamical generators

receive corrections having higher powers of fields. In general, one has the following expan-

sion for the dynamical generators

Gdyn =
∞
∑

n=2

Gdyn
[n] , (4.1)

where Gdyn
[n] in (4.1) stands for a functional that has n powers of superfields Θ∗.

In this section, for arbitrary n ≥ 3, we describe restrictions imposed on the dynamical

generators Gdyn
[n] by the kinematical symmetries of the Poincaré superalgebra. We discuss

the restrictions in turn.

Kinematical PR,L, P+, Q+L symmetries. Using (anti)commutation relations be-

tween the dynamical generators given in (2.6) and the kinematical generators PR, PL, P+,

Q+L, we verify that the dynamical generators Gdyn
[n] with n ≥ 3 take the following form:

P−
[n] =

∫

dΓ[n] 〈Θ∗
[n]|p−[n]〉 , (4.2)

Q−R
[n] =

∫

dΓ[n] 〈Θ∗
[n]|q−R[n] 〉 , (4.3)

Q−L
[n] =

∫

dΓ[n] 〈Θ∗
[n]|q−L[n] 〉 , (4.4)

J−R
[n] =

∫

dΓ[n] 〈Θ∗
[n]|j−R[n] 〉+ 〈XR

[n]Θ
∗
[n]|p−[n]〉+ (−)n〈X[n] θΘ

∗
[n]|q−R[n] 〉 , (4.5)

J−L
[n] =

∫

dΓ[n] 〈Θ∗
[n]|j−L[n] 〉+ 〈XL

[n]Θ
∗
[n]|p−[n]〉+

(−)n+1

n
P[n] θ〈Θ∗

[n]|q−L[n] 〉 , (4.6)

where we use the notation

dΓ[n] = dΓp
[n]dΓ

pθ
[n] , (4.7)

dΓp
[n] = (2π)3δ3

(

n
∑

a=1

pa

)

n
∏

a=1

d3pa

(2π)3/2
, d3pa = dpRadp

L

adβa , (4.8)

dΓpθ
[n] ≡ dpθ1 . . . dpθnδ

(

n
∑

a=1

pθa

)

, (4.9)

XR

[n] = − 1

n

n
∑

a=1

∂pLa , XL

[n] = − 1

n

n
∑

a=1

∂pRa , (4.10)

X[n] θ =
1

n

n
∑

a=1

∂pθa , P[n]θ =
n
∑

a=1

pθa
βa

. (4.11)
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In (4.2)–(4.6), expressions 〈Θ[n]|p−[n]〉, 〈Θ[n]|q−R,L[n] 〉, and 〈Θ[n]|j−R,L[n] 〉 stand for shortcuts de-

fined as

〈Θ[n]|p−[n]〉 ≡
∑

λ1...λn

Θ∗
λ1...λnp

−
λ1...λn

, (4.12)

〈Θ[n]|q−R,L[n] 〉 ≡
∑

λ1...λn

Θ∗
λ1...λnq

−R,L
λ1...λn

, (4.13)

〈Θ[n]|j−R,L[n] 〉 ≡
∑

λ1...λn

Θ∗
λ1...λnj

−R,L
λ1...λn

, (4.14)

Θ∗
λ1...λn ≡ Θ∗

λ1
(p1, pθ1) . . .Θ

∗
λn(pn, pθn) . (4.15)

To simplify our presentation, the quantities p−λ1...λn
, q−R,Lλ1...λn

, and j−R,Lλ1...λn
appearing in (4.12)–

(4.14), will shortly be denoted as gλ1...λn ,

gλ1...λn = p−λ1...λn
, q−Rλ1...λn

, q−Lλ1...λn
, j−Rλ1...λn

, j−Lλ1...λn
. (4.16)

We refer to quantities gλ1...λn (4.16) as n-point densities. We note that n-point densities

gλ1...λn (4.16) depend on the momenta pRa , p
L
a , βa, Grassmann momenta pθa , and helicities

λa, a = 1, 2 . . . , n,

gλ1...λn = gλ1...λn(pa, pθa) . (4.17)

Note that we use the indices a, b = 1, . . . , n to label superfields entering n-point interaction

vertex. Also note that, in (4.2)–(4.6), the differential operators XR,L
[n] , X[n] θ are acting only

on the arguments of the superfields. For example, the expression 〈XRΘ∗
[n]|g[n]〉 should read

as

〈XRΘ∗
[n]|g[n]〉 =

∑

λ1,...λn

(XRΘ∗
λ1...λn)gλ1...λn . (4.18)

Note that the argument pa in (4.8) stands for the momenta pRa , p
L
a , and βa. In what follows,

the density p−[n] will often be referred to as an n-point interaction vertex, while, for n = 3,

we refer to density p−[3] as cubic interaction vertex.

J+−-symmetry equations. Commutation relations between the dynamical generators

P−, Q−R,L, J−R,L and the kinematical generator J+− amount to equations for the densities

given by:

n
∑

a=1

(

βa∂βa
+

1

2
pθa∂pθa +

1

2
eλa

)

gλ1...λn
=

n−1

2
gλ1...λn

, for gλ1...λn
= p−λ1...λn

, j−R,L
λ1...λn

, (4.19)

n
∑

a=1

(

βa∂βa
+

1

2
pθa∂pθa +

1

2
eλa

)

gλ1...λn
=

n

2
gλ1...λn

, for gλ1...λn
= q−R,L

λ1...λn
. (4.20)

JRL-symmetry equations. Commutation relations between the dynamical generators

P−, Q−R,L, J−R,L and the kinematical generator JRL amount to equations for the densities
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given by

n
∑

a=1

(

pRa∂pRa − pLa∂pLa − 1

2
pθa∂pθa + λa

)

pλ1...λn = −n− 1

2
p−λ1...λn

, (4.21)

n
∑

a=1

(

pRa∂pRa − pLa∂pLa − 1

2
pθa∂pθa + λa

)

q−Rλ1...λn
= −n− 2

2
q−Rλ1...λn

, (4.22)

n
∑

a=1

(

pRa∂pRa − pLa∂pLa − 1

2
pθa∂pθa + λa

)

q−Lλ1...λn
= −n

2
q−Lλ1...λn

, (4.23)

n
∑

a=1

(

pRa∂pRa − pLa∂pLa − 1

2
pθa∂pθa + λa

)

j−Rλ1...λn
= −n− 3

2
j−Rλ1...λn

, (4.24)

n
∑

a=1

(

pRa∂pRa − pLa∂pLa − 1

2
pθa∂pθa + λa

)

j−Lλ1...λn
= −n+ 1

2
j−Lλ1...λn

. (4.25)

J+R, J+L, Q+R-symmetry equations. Using (anti)commutation relations between

the dynamical generators P−, Q−R,L, J−R,L and the kinematical generators J+R, J+L, and

Q+R, we find that the densities gλ1...λn (4.16) depend on the momenta pR,La and the Grass-

mann momenta pθa through new momentum variables PR,Lab and Pθ ab defined by the relations

P
R

ab ≡ pRaβb − pRb βa , P
L

ab ≡ pLaβb − pLb βa , Pθ ab ≡ pθaβb − pθbβa . (4.26)

This is to say that our densities gλ1...λn (4.16) turn out to be functions of PR,Lab and Pθ ab

in place of pR,La , pθa ,

gλ1...λn = gλ1...λn(P
R

ab,P
L

ab ,Pθ ab, βa) . (4.27)

We now summarize our study of the restrictions imposed on n-point densities by kine-

matical symmetries of the Poincaré superalgebra as follows.

i) (Anti)commutation relations between the dynamical generators P−, Q−R,L, J−R,L

and the kinematical generators PR,L, P+, Q+L lead to delta-functions in (4.8), (4.9)

and hence imply the conservation laws for the momenta pR,La , βa and the Grassmann

momenta pθa .

ii) (Anti)commutation relations between the dynamical generators P−, Q−R,L, J−R,L

and the kinematical generators J+−, JRL lead to the differential equations given

in (4.19)–(4.25).

iii) (Anti)commutation relations between the dynamical generators P−, Q−R,L, J−R,L

and the kinematical generators J+R,L, Q+R tell us that the n-point densities p−[n],

q−R,L[n] , j−R,L[n] turn out to be dependent of the momenta P
R,L
ab , Pθab (4.26) in place of

the respective momenta pR,La , pθa .

iv) Using the conservation laws for the momenta pRa , βa it is easy to check that there are

only n − 2 independent momenta P
R

ab (4.26). For example, for n = 3, there is only

one independent PR (see relations below). The same holds true for the momenta P
L

ab

and Pab θ.

– 12 –



J
H
E
P
0
8
(
2
0
1
9
)
1
3
0

5 Kinematical and dynamical restrictions on cubic vertices and light-

cone gauge dynamical principle

We now restrict our attention to cubic vertices. First, we represent kinematical J+−, JRL

symmetry equations (4.19)–(4.25) in terms of the momenta P
R,L
ab and Pab θ. Second, we

find restrictions imposed by dynamical symmetries. Finally, we formulate light-cone gauge

dynamical principle and present the complete system equations required to determine the

cubic vertices uniquely.

Kinematical symmetries of the cubic densities. Taking into account the momentum

conservation laws

pR1 + pR2 + pR3 = 0 , pL1 + pL2 + pL3 = 0 , β1 + β2 + β3 = 0 , pθ1 + pθ2 + pθ3 = 0 , (5.1)

we verify that PR,L12 , PR,L23 , PR,L31 and Grassmann momenta Pθ 12, Pθ 23, Pθ 31 are expressed in

terms of new momenta P
R,L, Pθ,

P
R,L
12 = P

R,L
23 = P

R,L
31 = P

R,L , Pθ 12 = Pθ 23 = Pθ 31 = Pθ , (5.2)

where the new momenta P
R,L and Pθ are defined as

P
R ≡ 1

3

∑

a=1,2,3

β̌ap
R

a , P
L ≡ 1

3

∑

a=1,2,3

β̌ap
L

a ,

Pθ ≡
1

3

∑

a=1,2,3

β̌apθa , β̌a ≡ βa+1 − βa+2 , βa ≡ βa+3 . (5.3)

We find it convenient to use the momenta (5.3) because these momenta are manifestly

invariant under cyclic permutations of the external line indices 1, 2, 3. Therefore, using the

simplified notation for the densities,

p−[3] = p−λ1λ2λ3
, q−R,L[3] = q−R,Lλ1λ2λ3

, j−R,L[3] = j−R,Lλ1λ2λ3
, (5.4)

we note then the our cubic densities p−[3], q
−R,L
[3] , and j−R,L[3] are functions of the momenta

βa, P
R,L, the Grassmann momentum Pθ and the helicities λ1, λ2, λ3,

p−[3] = p−λ1λ2λ3
(PR,PL,Pθ, βa) , q−R,L[3] = q−R,Lλ1λ2λ3

(PR,PL,Pθ, βa) ,

j−R,L[3] = j−R,Lλ1λ2λ3
(PR,PL,Pθ, βa) . (5.5)

Thus we see that the momenta pR,La and pθa enter cubic densities (5.5) through the respec-

tive momenta P
R,L and Pθ. This feature of the cubic densities simplifies considerably the

study of kinematical symmetry equations presented in (4.19)–(4.25). We now represent

equations (4.19)–(4.25) in terms of cubic densities (5.5).

J+−-symmetry equations. Using representation for cubic densities in (5.5), we find

that, for n = 3, equations (4.19), (4.20) take the form

(J+− − 1)p−[3] = 0 ,

(

J+− − 3

2

)

q−R,L[3] = 0 , (J+− − 1)j−R,L[3] = 0 , (5.6)
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where J+− stands for an operator defined as

J+− ≡ NPR +NPL +
3

2
NPθ

+
∑

a=1,2,3

(

βa∂βa +
1

2
eλa

)

, (5.7)

NPR ≡ P
R∂PR , NPL ≡ P

L∂PL , NPθ
≡ Pθ∂Pθ . (5.8)

JRL-symmetry equations. Using the representation for the cubic densities in (5.5), we

find that, for n = 3, equations (4.21)–(4.25) take the form

(JRL + 1)p−[3] = 0 ,

(

JRL +
1

2

)

q−R[3] = 0 ,

(

JRL +
3

2

)

q−L[3] = 0 ,

JRLj−R[3] = 0 , (JRL + 2)j−L[3] = 0 , (5.9)

where JRL stands for an operator defined as

JRL ≡ NPR −NPL − 1

2
NPθ

+Mλ , Mλ ≡
∑

a=1,2,3

λa , (5.10)

and we use the notation in (5.8).

We now proceed with studying the restrictions imposed by dynamical symmetries.

Dynamical symmetries of the cubic densities. In this paper, restrictions on the

interaction vertices imposed by (anti)commutation relations between the dynamical gener-

ators will be referred to as dynamical symmetry restrictions. We now discuss restrictions

imposed on cubic interaction vertices by the dynamical symmetries of the Poincaré super-

algebra. In other words, we consider the (anti)commutators

[P−, J−R,L] = 0 , [P−, Q−R,L] = 0 , (5.11)

[J−R, J−L] = 0 , [Q−R,L, J−L] = 0 , [Q−R,L, J−R] = 0 , (5.12)

{Q−R, Q−L} = −P− , {Q−R, Q−R} = 0 , {Q−L, Q−L} = 0 . (5.13)

Let us first consider the commutation relations given in (5.11). In the cubic approximation,

commutation relations given in (5.11) can be represented as

[P−
[2], J

−R
[3] ] + [P−

[3], J
−R
[2] ] = 0 , [P−

[2], Q
−R,L
[3] ] + [P−

[3], Q
−R,L
[2] ] = 0 . (5.14)

Using equations (5.14), we find the following representation for the densities q−R,L[3] and

j−R,L[3] in terms of the cubic vertex p−[3],

q−R[3] = −ǫPθ

PL
p−[3] , q−L[3] =

ǫβ

PR
∂Pθp

−
[3] , (5.15)

j−R[3] = − β

PRPL
J−Rp−[3] , j−L[3] = − β

PRPL
J−Lp−[3] , (5.16)

ǫ = (−)Eλ , Eλ ≡
∑

a=1,2,3

eλa , (5.17)
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where J−R, J−L stand for operators defined by the relations

J−R =
P
R

β

(

−Nβ +Mλ +
1

2
Eλ+ 1

2

)

, (5.18)

J−L =
P
L

β

(

−Nβ −Mλ +
1

2
Eλ+ 1

2

)

, (5.19)

Nβ =
1

3

∑

a=1,2,3

β̌aβa∂βa , β ≡ β1β2β3 , (5.20)

Mλ =
1

3

∑

a=1,2,3

β̌aλa , Eλ+ 1
2
=

1

3

∑

a=1,2,3

β̌aeλa+ 1
2
, (5.21)

while eλ appearing in (5.17), (5.21) is defined in (2.29).

Using expressions for q−R,L[3] and j−R,L[3] given in (5.15), (5.16), we verify that all the

kinematical symmetry equations for q−R,L[3] and j−R,L[3] given in (5.6), (5.9) are satisfied

automatically provided the vertex p−[3] satisfies the kinematical symmetry equations for p−[3]
in (5.6), (5.9). Using expressions for q−R,L[3] and j−R,L[3] given in (5.15), (5.16), we also verify

that, in the cubic approximation, all (anti)commutation relations given in (5.12), (5.13)

are satisfied automatically. This is to say that, in the cubic approximation, we checked

that the kinematical symmetry equations for p−[3] in (5.6), (5.9) and equations (5.15), (5.16)

provide the complete list of equations which are obtainable from all the (anti)commutation

relations of the Poincaré superalgebra.

Light-cone gauge dynamical principle. The kinematical symmetry equations for p−[3]
in (5.6), (5.9) and the equations (5.15), (5.16) do not allow to determine the cubic vertex

p−[3] unambiguously. In order to determine the cubic vertex p−[3] unambiguously we should

impose some additional restrictions on the cubic vertex p−[3]. We will refer to such addi-

tional restrictions as light-cone gauge dynamical principle. The light-cone gauge dynamical

principle is formulated as follows:

i) The densities p−[3], q
−R,L
[3] , j−R,L[3] are required to be polynomial in the momenta P

R, PL;

ii) The cubic vertex p−[3] is required to satisfy the restriction

p−[3] 6= P
R
P
LW , W is polynomial in P

R,PL . (5.22)

The restriction on the vertex p−[3] in (5.22) is related to the freedom of field redefi-

nitions. We recall that, upon field redefinitions, the vertex p−[3] is changed by terms

proportional to P
R
P
L (see, e.g., appendix B in ref. [20]). This implies that ignoring

requirement (5.22) leads to cubic vertices which can be removed by field redefini-

tions. As we are interested in the cubic vertices p−[3] that cannot be removed by field

redefinitions, we impose the requirement (5.22). Note also the assumption i) is the

light-cone counterpart of locality condition commonly used in gauge invariant and

Lorentz covariant formulations.
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Complete system of equations for cubic vertex. To summarize the discussion in

this section, we note that, for the cubic vertex given by

p−[3] = p−λ1λ2λ3
(PR,PL,Pθ, βa) (5.23)

the complete system of equations which remain to be analysed is given by

(J+− − 1)p−[3] = 0 , kinematical J+− − symmetry; (5.24)

(JRL + 1)p−[3] = 0 , kinematical JRL − symmetry; (5.25)

j−R,L[3] = − β

PRPL
J−R,Lp−[3] , dynamical P−, J−R,L symmetries ; (5.26)

q−R[3] = −ǫPθ

PL
p−[3] , q−L[3] =

ǫβ

PR
∂Pθp

−
[3] , dynamical P−, Q−R,L symmetries ; (5.27)

Light-cone gauge dynamical principle:

p−[3] , q−R,L[3] , j−R,L[3] are polynomial in P
R,PL; (5.28)

p−[3] 6= P
R
P
LW, W is polynomial in P

R,PL; (5.29)

Equations given in (5.24)–(5.29) constitute our basic complete system of equations which

allow us to determine the cubic vertex p−[3] and densities q−R,L[3] , j−R,L[3] uniquely. Differ-

ential operators J+−, JRL, J−R,L and quantity ǫ entering our basic equations are given

in (5.7), (5.10), (5.18), (5.19) and (5.17) respectively. Considering the super Yang-Mills

and supergravity theories, we can verify that our basic equations in (5.24)–(5.29) allow us

to determine the cubic interaction vertices of those theories unambiguously (up to coupling

constants). It seems then reasonable to use our equations for studying the cubic vertices

of arbitrary spin supersymmetric theories.

6 Cubic interaction vertices

We now present the solution to our basic equations for densities given in (5.24)–(5.29).

General solution for the cubic interaction vertex p−λ1λ2λ3
, the supercharge densities

q−R,Lλ1λ2λ3
, and the angular momentum densities j−R,Lλ1λ2λ3

we found is given by (for some details

of the derivation, see appendix C)

p−λ1λ2λ3
= Vλ1λ2λ3 + V̄λ1λ2λ3 , (6.1)

Vλ1λ2λ3 = Cλ1λ2λ3(PL)Mλ+1
∏

a=1,2,3

β
−λa−

1
2
eλa

a , (6.2)

V̄λ1λ2λ3 = C̄λ1λ2λ3(PR)−Mλ−
1
2 Pθ

∏

a=1,2,3

β
λa−

1
2
eλa

a , (6.3)

q−Rλ1λ2λ3
= −Cλ1λ2λ3(PL)Mλ Pθ

∏

a=1,2,3

β
−λa−

1
2
eλa

a , (6.4)

q−Lλ1λ2λ3
= −C̄λ1λ2λ3(PR)−Mλ−

3
2

∏

a=1,2,3

β
λa+1− 1

2
eλa

a , (6.5)
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j−Rλ1λ2λ3
= −2Cλ1λ2λ3Mλ(P

L)Mλ

∏

a=1,2,3

β
−λa−

1
2
eλa

a , (6.6)

j−Lλ1λ2λ3
= 2C̄λ1λ2λ3Mλ(P

R)−Mλ−
3
2 Pθ

∏

a=1,2,3

β
λa−

1
2
eλa

a , (6.7)

where, in (6.1)–(6.7) and below, we use the notation

Mλ =
∑

a=1,2,3

λa , Mλ =
1

3

∑

a=1,2,3

β̌aλa , Eλ =
∑

a=1,2,3

eλa , (6.8)

while the symbol eλ and the momenta P
R,L, Pθ, β̌a are defined in (2.29) and (5.3) respec-

tively. Quantities Cλ1λ2λ3 , C̄λ1λ2λ3 appearing in (6.1)–(6.7) stand for coupling constants

which, in general, depend on the helicities λ1, λ2, λ3. These coupling constants are non-

trivial for the following values of the helicities:

Cλ1,λ2,λ3 6= 0 , for Mλ ≥ 0 and Mλ - integer , (6.9)

C̄λ1,λ2,λ3 6= 0 , for Mλ ≤ −3
2 and Mλ - half-integer , (6.10)

Cλ1,λ2,λ3∗ = (−)Mλ+eλ2+1C̄−λ1−
1
2
,−λ2−

1
2
,−λ3−

1
2 . (6.11)

Let us discuss restrictions in (6.9)–(6.11) in turn.

i) Restrictions on Cλ1,λ2,λ3 and Mλ in (6.9) are obtained by requiring the densi-

ties (6.2), (6.4), (6.6) to be polynomial in P
L, while restrictions on C̄λ1,λ2,λ3 and Mλ

in (6.10) are obtained by requiring the densities (6.3), (6.5), (6.7) to be polynomial

in P
R.

ii) Restrictions for Mλ to be integer in (6.9) and half-integer in (6.10) can also obtained

by requiring the Hamiltonian P−
[3] to be Grassmann even. Namely, taking into account

the Grassmann parities of the vertices Vλ1,λ2,λ3 , V̄λ1,λ2,λ3 , the integration measure

dΓpθ
[3] , and product of the three superfields Θ∗

λ1λ2λ3
(4.15),

GP(Vλ1,λ2,λ3) = 0, GP(V̄λ1,λ2,λ3) = 1 , GP(dΓpθ
[3]) = 0, GP(Θ∗

λ1λ2λ3
) = Eλ ,

(6.12)

and requiring GP(P−
[3]) = 0, we get the restrictions

GP(dΓpθ
[3]Θ

∗
λ1λ2λ3

V λ1,λ2,λ3) = 0, GP(dΓpθ
[3]Θ

∗
λ1λ2λ3

V̄ λ1,λ2,λ3) = 0 , (6.13)

which amount to restrictions for Mλ to be integer in (6.9) and half-integer in (6.10).

iii) Requiring the cubic Hamiltonian P−
[3] to be hermitian and using relation (B.13) in

appendix B, we get the restrictions for coupling constants given in (6.11).

Expressions (6.1)–(6.3) provide the momentum superspace representation for all cubic

vertices, while relations in (6.9)–(6.11) provide the classification of such vertices.
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Incorporation of internal symmetry. Let the algebra o(N) be an internal symmetry

algebra. We incorporate an internal symmetry into our model in the following way.

i) In place fields φλ, ψλ (2.17)–(2.19), we introduce fields φab

λ , ψab

λ , while, in place of the

superfields Θλ, Θ
∗
λ (3.6), (3.20), we introduce superfields Θab

λ , Θ∗ab
λ , where indices a, b

are matrix indices of the o(N) algebra, a, b = 1, . . . ,N. By definition, new superfields

satisfy the algebraic constraints

Θab

λ = (−)λ−
1
2
eλΘba

λ , Θ∗ab
λ = (−)λ+

1
2
eλΘ∗ba

λ , (6.14)

where eλ is given in (2.29). Using the relation (−)2λ±eλ = 1, we verify that con-

straints (6.14) are consistent. The superfields Θab

λ and Θ∗ab
λ are not independent of

each other. By analogy with (3.21), we have the relation

Θ∗ab
−λ (−p,−pθ) = (−)eλΘab

λ (p, pθ) . (6.15)

From (6.14), we learn that the Θab

λ is symmetric in ab for even s in (3.6), while,

for odd s in (3.6), the Θab

λ is antisymmetric in ab. Also, from (6.14), we learn that

the Θ∗ab
λ is antisymmetric in ab for even s in (3.20), while, for odd s in (3.20),

the Θ∗ab
λ is symmetric in ab. Note that relations (6.14) imply that φab

λ , ψab

λ are

symmetric in ab for even s in (2.17)–(2.19), while for odd s in (2.17), (2.18) the

φab

λ , ψab

λ are antisymmetric in ab. The hermicity conditions (2.22) take the form

(φab

λ (p))† = φab

−λ(−p), (ψab

λ (p))† = ψab

−λ(−p).

ii) In (3.22), the expressions Θ∗
λ−(1/2)Θλ are replaced by Θ∗ab

λ−(1/2)Θ
ab

λ , while, in the cubic

vertices, the expressions Θ∗
λ1
Θ∗

λ2
Θ∗

λ3
are replaced by the trace Θ∗ab

λ1
Θ∗bc

λ2
Θ∗ca

λ3
.

iii) In place of graded commutator (3.23), we use

[Θab

λ (p, pθ),Θ
∗a′b′

λ′ (p′, p′θ)]± =
(−)

e
λ+1

2

2β
Πab,a′b′

λ δ3(p− p′)δ(pθ − p′θ)δλ−λ′, 1
2
, (6.16)

Πab,a′b′

λ ≡ 1

2

(

δaa
′

δbb
′

+ (−)λ−
1
2
eλδab

′

δba
′)

, Πab,a′b′

λ Πa
′
b
′,ce

λ = Πab,ce
λ , (6.17)

where the second relation in (6.17) is verified by using the relation (−)2λ−eλ = 1.

Cubic Hamiltonian in terms of component fields. To make our results more trans-

parent and pragmatic we now discuss an explicit representation for the cubic Hamiltonian

P−
[3] (4.2) in terms of component fields (2.17)–(2.19) and demonstrate explicitly powers of

momenta in our cubic vertices. To this end we restrict our attention to interaction of three

superfields Θ∗
λ1
, Θ∗

λ2
, Θ∗

λ3
and represent the corresponding cubic Hamiltonian P−

[3] (4.2)

with p−λ1λ2λ3
(6.1) as follows

P−
[3](Θλ1 ,Θλ2Θλ3) =

∫

dΓp
[3] C

λ1λ2λ3VΘλ1 ,Θλ2Θλ3 + h.c. (6.18)

Cλ1λ2λ3VΘλ1Θλ2Θλ3 ≡
∫

dΓpθ
[3] Θ

∗
λ1λ2λ3

Vλ1λ2λ3 , (6.19)
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where the integration measures dΓp
[3], dΓ

pθ
[3] are obtained by setting n = 3 in (4.8), (4.9). It is

the vertexVΘλ1Θλ2Θλ3 (6.19) that we refer to as the vertex in terms of the component fields.

From (6.2), (6.19), we see that the vertex VΘλ1Θλ2Θλ3 is nontrivial if and only if the

Θ∗
λ1λ2λ3

-term is Grassmann even. Classification of all such Θ∗
λ1λ2λ3

-terms may be found in

appendix B (see relations (B.14)–(B.17)). Here we present those Grassmann even Θ∗
λ1λ2λ3

-

terms given in (B.14)–(B.17) that respect restriction on Mλ (6.9). We classify all relevant

Grassmann even Θ∗
λ1λ2λ3

-terms as follows:

Cases 1ab : Φ∗
s1−

1
2

Φ∗
s2−

1
2

Ψ∗
s3 , Ψ∗

s1Ψ
∗
s2Ψ

∗
s3 ; (6.20)

Cases 2abc : Φ∗
s1−

1
2

Φ∗
s2−

1
2

Φ∗
−s3 , Φ∗

s1−
1
2

Ψ∗
s2Ψ

∗
−s3−

1
2

, Ψ∗
s1Ψ

∗
s2Φ

∗
−s3 ; (6.21)

Cases 3abc : Φ∗
s1−

1
2

Φ∗
−s2Ψ

∗
−s3−

1
2

, Ψ∗
s1Φ

∗
−s2Φ

∗
−s3 , Ψ∗

s1Ψ
∗
−s2−

1
2

Ψ∗
−s3−

1
2

. (6.22)

Now, all that remains is to plug expressions for Φ∗
s− 1

2

, Φ∗
−s, and Ψ∗

s, Ψ
∗
−s− 1

2

(3.16)–(3.18)

into (6.19) and make integration over the Grassmann momenta pθ1 , pθ2 , pθ3 . In order to

simplify our presentation of the vertices VΘλ1Θλ2Θλ3 , we collect the fields φ†
λ and ψ†

λ into

a field θ†λ = φ†
λ, ψ

†
λ and use the following shortcut for a product of the component fields

V θλ1θλ2θλ3 ≡
θ†λ1

(p1)θ
†
λ2
(p2)θ

†
λ3
(p3)

β
λ1+

1
2
eλ1

1 β
λ2+

1
2
eλ2

2 β
λ3+

1
2
eλ3

3

for λ1 + λ2 + λ3 > 0 . (6.23)

Now, using notation (6.23), we present expressions for the vertices VΘλ1Θλ2Θλ3 (6.19)

corresponding to the cases (6.20)–(6.22) in turn. In due course we show explicitly powers

of momentum P
L appearing in the vertices.

Cases 1ab. Vertices of powers (PL)s1+s2+s3 and (PL)s1+s2+s3+1:

V
Φ
s1−

1
2
Φ
s2−

1
2
Ψs3 =

(

−V φs1φs2ψs3 +V
φs1φs2−

1
2
ψ
s3+

1
2 +V

φ
s1−

1
2
φs2ψs3+

1
2

)

(PL)s1+s2+s3 ,

s1 ≥ 1 , s2≥ 1 , s3≥ 0 , (1a) (6.24)

VΨs1Ψs2Ψs3 =
(

V
ψs1ψs2+

1
2
ψ
s3+

1
2 −V

ψ
s1+

1
2
ψs2ψs3+

1
2 +V

ψ
s1+

1
2
ψ
s2+

1
2
ψs3
)

(PL)s1+s2+s3+1 ,

s1 ≥ 0 , s2≥ 0 , s3≥ 0 , (1b) (6.25)

Cases 2abc. Vertices of powers (PL)s1+s2−s3 and (PL)s1+s2−s3+1:

V
Φ

s1−
1
2

Φ
s2−

1
2

Φ−s3 =
(

−V φs1
φs2

φ−s3 +V
φs1

φ
s2−

1
2

φ
−s3+ 1

2 +V
φ
s1−

1
2

φs2
φ
−s3+ 1

2

)

(PL)s1+s2−s3 ,

s1 ≥ 1 , s2 ≥ 1 , s3 ≥ 1 , s1+s2−s3 ≥ 1 , (2a) (6.26)

V
Φ

s1−
1
2

Ψs2
Ψ

−s3−
1
2 =

(

V φs1
ψs2

ψ−s3 +V
φs1

ψ
s2+ 1

2

ψ
−s3−

1
2 −V

φ
s1−

1
2

ψ
s2+ 1

2

ψ−s3

)

(PL)s1+s2−s3 ,

s1 ≥ 1 , s2 ≥ 0 , s3 ≥ 0 , s1+s2−s3 ≥ 1 , (2b) (6.27)

VΨs1
Ψs2

Φ−s3 =
(

V
ψ

s1+ 1
2

ψ
s2+ 1

2

φ−s3 +V
ψs1

ψ
s2+ 1

2

φ
−s3+ 1

2 −V
ψ

s1+ 1
2

ψs2
φ
−s3+ 1

2

)

(PL)s1+s2−s3+1 ,

s1 ≥ 0 , s2 ≥ 0 , s3 ≥ 1 , s1+s2−s3 ≥ 0 . (2c) (6.28)
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Cases 3abc. Vertices of powers (PL)s1−s2−s3 and (PL)s1−s2−s3+1:

V
Φ

s1−
1
2

Φ−s2
Ψ

−s3−
1
2 =

(

V
φs1

φ−s2
ψ−s3 +V

φs1
φ
−s2+ 1

2

ψ
−s3−

1
2 −V

φ
s1−

1
2

,φ
−s2+ 1

2

ψ−s3
)

(PL)s1−s2−s3 ,

s1 ≥ 1 , s2 ≥ 1 , s3 ≥ 0 , s1−s2−s3 ≥ 1 , (3a) (6.29)

V
Ψs1

Φ−s2
Φ−s3 =

(

V
ψs1

φ
−s2+ 1

2

φ
−s3+ 1

2 −V
ψ
s1+ 1

2

φ−s2
φ
−s3+ 1

2 +V
ψ
s1+ 1

2

φ
−s2+ 1

2

φ−s3
)

(PL)s1−s2−s3+1
,

s1 ≥ 0 , s2 ≥ 1 , s3 ≥ 1 , s1−s2−s3 ≥ 0 , (3b) (6.30)

V
Ψs1

Ψ
−s2−

1
2

Ψ
−s3−

1
2 = −

(

V
ψs1

ψ−s2
ψ−s3 +V

ψ
s1+ 1

2

ψ
−s2−

1
2

ψ−s3 +V
ψ
s1+ 1

2

ψ−s2
ψ
−s3−

1
2

)

(PL)s1−s2−s3 ,

s1 ≥ 0 , s2 ≥ 0 , s3 ≥ 0 , s1−s2−s3 ≥ 1 . (3c) (6.31)

To summarize, our superspace cubic vertices given in (6.1) with restrictions (6.9)–

(6.11) provide the full list of cubic interaction vertices that can be constructed for integer

and half-integer spin massless N = 1 supermultiplets. Representation of our vertices (6.1)

in terms of the component fields is given in (6.24)–(6.31).5

In (6.24)–(6.31), we classified our vertices focusing on the powers of the momentum P
L

appearing in the vertices. Focusing on the number of integer spin supermultiplets (s, s− 1
2)

(superfield Φ) and half-integer spin supermultiplets (s + 1
2 , s) (superfield Ψ) appearing in

the vertices, we can reclassify our vertices. Namely, focusing on the number of superfields

Φ, Ψ we can symbolically represent our classification (6.24)–(6.31) as follows.

Three integer spin supermultiplets : ΦΦΦ–vertices in (2a) (6.32)

Two integer and one half-integer spin supermultiplets : ΦΦΨ–vertices in (1a)(3a)(3b) (6.33)

One integer and two half-integer spin supermultiplets : ΦΨΨ–vertices in (2b)(2c) (6.34)

Three half-integer spin supermultiplets : ΨΨΨ–vertices in (1b)(3c) (6.35)

To illustrate our result let us consider particular cases from the list in (6.24)–(6.31).

i) For the particular case s1 = 0, s2 = 0, s3 = 0, the vertex (6.25) takes the form

VΨ0Ψ0Ψ0 =
(

V
ψ0ψ 1

2
ψ 1

2 − V
ψ 1

2
ψ0ψ 1

2 + V
ψ 1

2
ψ 1

2
ψ0
)

P
L , WZ susy model. (6.36)

Vertex (6.36) provides light-cone description of the well known supersymmetric WZ

model.

ii) For the particular cases s1 = 1, s2 = 1, s3 = 1 and s1 = 2, s2 = 2, s3 = 2,

vertex (6.26) provides light-cone gauge description of cubic vertices of the respective

super Yang-Mills and supergravity theories,

V
Φ 1

2

Φ 1
2

Φ−1

=
(

−V φ1φ1φ−1 +V
φ1φ 1

2

φ
−

1
2 +V

φ 1
2

φs2
φ
−

1
2

)

P
L , super YM theory; (6.37)

V
Φ 3

2

Φ 3
2

Φ−2

=
(

−V φ2φ2φ−2 +V
φ2φ 3

2

φ
−

3
2 +V

φ 3
2

φ2φ
−

3
2

)

(PL)2 , supergravity; (6.38)

iii) If, for the particular cases s1 = 1, s2 = 1, s3 = 1 and s1 = 2, s2 = 2, s3 = 2, we

consider vertices that involve only integer spin supermultiplets (6.26), then we do

5In the framework of Lorentz covariant approach, the recent extensive study of cubic vertices of higher-

spin N = 1 supermultiplets by using gauge invariant supercurrents, may be found in refs. [25]–[30]. Lorentz

covariant superfield formulations of free N = 1 supermultiplets in 4d flat space were studied in refs. [31, 32].
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not find vertices with three momenta for spin-1 fields and vertices with six momenta

for spin-2 fields. This reflects the well known fact that, by using only integer spin

supermultiplets (1, 12) and (2, 32), it is not possible to build supersymmetric extensions

of F 3
YM terms and R3 terms, where FYM and R stand for the respective field strength

of YM field and Riemann tensor. The same happens for cubic vertices that involves

only the half-integer spin supermultiplets (6.25), (6.31). It turns out however, that, if,

for the particular cases s1 = 1, s2 = 1, s3 = 1 and s1 = 2, s2 = 2, s3 = 2, we consider

vertices that involves both the integer and half integer spin supermultiplets (6.24),

then we find vertices with three momenta for spin-1 fields and vertices with six

momenta for spin-2 fields given by

V
Φ 1

2

Φ 1
2

Ψ1

=
(

−V
φ1φ1ψ1 +V

φ1φ 1
2

ψ 3
2 +V

φ 1
2

φ1ψ 3
2

)

(PL)3 , F 3
YM super YM-like theory; (6.39)

V
Φ 3

2

Φ 3
2

Ψ2

=
(

−V
φ2φ2ψ2 +V

φ2φ 3
2

ψ 5
2 +V

φ 3
2

φ2ψ 5
2

)

(PL)6 , R3 supergravity-like theory; (6.40)

Thus, at least in the cubic approximation, by using two integer supermultiplets (1, 12)

and one half integer spin supermultiplet (32 , 1), we can build supersymmetric extension

of F 3
YM -terms (6.39), while, by using two integer supermultiplets (2, 32) and one half

integer spin supermultiplet (52 , 2), we can build supersymmetric extension of R3-

terms (6.40).

Interrelations between number of derivatives in light-cone gauge and covari-

ant approaches. To make our results more useful and helpful for those readers who

prefer Lorentz covariant formulations we now discuss a correspondence between number

of momenta (transverse derivatives) appearing in our light-cone gauge cubic vertices and

number of momenta (derivatives) appearing in the corresponding Lorentz covariant theory.

Using shortcuts B and F for the respective massless bosonic and massless fermionic fields,

we write schematically a cubic Lagrangian of Lorentz covariant theory Lcov and related

light-cone gauge cubic Lagrangian Llc as follows

Lcov = PKcov
BBBBBB + PKcov

FFBFFB , (6.41)

Llc = P
Klc
BBBBBB + P

Klc
FFBFFB . (6.42)

In (6.41), P stands for momenta (derivatives), while Kcov
BBB and Kcov

FFB denote numbers of

momenta P (derivatives) entering cubic vertices in metric-like Lorentz covariant formula-

tion. Accordingly in (6.42), the P stands for the momenta P
R,PL (transverse derivatives),

while K lc
BBB and K lc

FFB denote numbers of momenta P (transverse derivatives) entering

our light-cone gauge cubic vertices. We note the following relations for the numbers of the

momenta (derivatives)6

Kcov
BBB = K lc

BBB , Kcov
FFB = K lc

FFB − 1 . (6.43)

Now using (6.43) and our classification for the light-cone gauge vertices, we propose a clas-

sification of covariant vertices. We classify covariant vertices focusing on number of integer

6Relations (6.43) are valid for metric-like Lorentz covariant formulations that do not involve auxiliary

fields. In general, for Lorentz covariant formulations that involve auxiliary fields, relations (6.43) might

break down.
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spin supermultiplets (s, s− 1
2) (superfield Φ) and half-integer spin supermultiplets (s+ 1

2 , s)

(superfield Ψ) appearing in the vertices. This is to say that we represent the classification

of light-cone gauge vertices (6.24)–(6.31) in terms of the corresponding covariant cubic

vertices as follows:

Three integer spin supermultiplets (ΦΦΦ− vertices) :
(

s1, s1 −
1

2

)

-

(

s2, s2 −
1

2

)

-

(

s3, s3 −
1

2

)

, s1 ≥ 1 , s2 ≥ 1 , s3 ≥ 1 ,

(2a) Kcov
BBB = s1 + s2 − s3 , Kcov

FFB = s1 + s2 − s3 − 1 , s1 + s2 − s3 ≥ 1 ; (6.44)

Two integer and one half-integer spin supermultiplets (ΦΦΨ− vertices) :
(

s1, s1 −
1

2

)

-

(

s2, s2 −
1

2

)

-

(

s3 +
1

2
, s3

)

, s1 ≥ 1 , s2 ≥ 1 , s3 ≥ 0 ,

(1a) Kcov
BBB = s1 + s2 + s3 , Kcov

FFB = s1 + s2 + s3 − 1 , s1 + s2 + s3 ≥ 1 , (6.45)

(3a) Kcov
BBB = s1 − s2 − s3 , Kcov

FFB = s1 − s2 − s3 − 1 , s1 − s2 − s3 ≥ 1 ; (6.46)
(

s1 +
1

2
, s1

)

-

(

s2, s2 −
1

2

)

-

(

s3, s3 −
1

2

)

, s1 ≥ 0 , s2 ≥ 1 , s3 ≥ 1;

(3b) Kcov
FFB = s1 − s2 − s3 , s1 − s2 − s3 ≥ 0 , (6.47)

One integer spin and two half integer supermultiplets (ΦΨΨ− vertices) :
(

s1, s1 −
1

2

)

-

(

s2 +
1

2
, s2

)

-

(

s3 +
1

2
, s3

)

, s1 ≥ 1 , s2 ≥ 0 , s3 ≥ 0 ,

(2b) Kcov
BBB = s1 + s2 − s3 , Kcov

FFB = s1 + s2 − s3 − 1 , s1 + s2 − s3 ≥ 1 , (6.48)
(

s1 +
1

2
, s1

)

-

(

s2 +
1

2
, s2

)

-

(

s3, s3 −
1

2

)

, s1 ≥ 0 , s2 ≥ 0 , s3 ≥ 1;

(2c) Kcov
FFB = s1 + s2 − s3 , s1 + s2 − s3 ≥ 0 ; (6.49)

Three half-integer spin supermultiplets (ΨΨΨ− vertices) :
(

s1 +
1

2
, s1

)

-

(

s2 +
1

2
, s2

)

-

(

s3 +
1

2
, s3

)

, s1 ≥ 0 , s2 ≥ 0 , s3 ≥ 0 ,

(1b) Kcov
FFB = s1 + s2 + s3 , s1 + s2 + s3 ≥ 0 , (6.50)

(3c) Kcov
BBB = s1 − s2 − s3 , Kcov

FFB = s1 − s2 − s3 − 1 , s1 − s2 − s3 ≥ 1 . (6.51)

In the left column in (6.44)–(6.51), we use the labels to show explicitly the correspondence

between the classification for covariant vertices in (6.44)–(6.51) and the one for the light-

cone gauge vertices in (6.24)–(6.31).

On problem of manifestly Lorentz covariant formulation of light-cone gauge ver-

tices. Vertices given in (6.44)–(6.46), (6.48), (6.51) provide the supersymmetric extension

for all cubic vertices for massless bosonic fields in the 4d flat space presented in ref. [19].

Note however that a manifestly Lorentz covariant formulation of some light-cone gauge ver-

tices in ref. [19] is not available so far. Therefore a manifestly Lorentz covariant formulation

of some our supersymmetric light-cone gauge vertices is not easy problem. For the reader

convenience, we now discuss those vertices in (6.44)–(6.46), (6.48), (6.51) that, as we expect,

can be converted into manifestly Lorentz covariant form in relatively straightforward way.

To this end, let us consider cubic vertex for massless bosonic spin s1-, s2-, s3- fields having
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k powers of derivatives. Results in refs. [20, 33] imply that, in 4d space, if k take the values

k = s, s− 2smin, s ≡ s1 + s2 + s3 , smin ≡ min(s1, s2, s3) , (6.52)

then the cubic vertex can be represented into manifestly Lorentz covariant form.7 Now,

making assumption that bosonic vertices with k as in (6.52) allow manifestly Lorentz

covariant supersymmetric extension, we can fix vertices that can straightforwardly be

converted into manifestly Lorentz covariant form by considering the equation

Kcov
BBB = k , (6.53)

where values of k are given in (6.52), while values of Kcov
BBB are given in (6.44)–

(6.46), (6.48), (6.51). For some vertices, equation (6.53) imposes additional restrictions

on allowed values of s1, s2, s3. If a vertex satisfies equation (6.53), then such vertex

can be represented into manifestly Lorentz covariant form, while, if a vertex does not

satisfy equation (6.53), then manifestly Lorentz covariant formulation of such vertex is

not easy problem. We now present result of analysis of solutions of equation (6.53) for the

vertices (6.44)–(6.46), (6.48), (6.51).

i) Vertices (6.44), (6.48) with the additional restrictions s3 ≤ s1, s3 ≤ s2 can be rep-

resented in manifestly Lorentz covariant form, while manifestly Lorentz covariant

formulation of all remaining vertices in (6.44), (6.48) is not easy problem.

ii) All vertices in (6.45) can be translated into manifestly Lorentz covariant form.

iii) Manifestly Lorentz covariant formulation of all vertices in (6.46) is not easy problem.

iv) Vertices (6.51) with the additional restrictions s2 = 0, s3 = 0 can be converted into

manifestly Lorentz covariant form, while manifestly Lorentz covariant formulation of

all remaining vertices in (6.51) is not easy problem.

Vertices (6.47), (6.49), (6.50) describe arbitrary spin WZ-like supersymmetric models.

We expect that manifestly Lorentz covariant formulation of all vertices in (6.47) is not easy

problem, while all vertices in (6.50) can be translated into manifestly Lorentz covariant

form. It is likely that vertices (6.49) with additional restrictions s3 ≤ s1, s3 ≤ s2 can

be represented into manifestly Lorentz covariant form, while manifestly Lorentz covariant

formulation of all remaining vertices in (6.49) is not easy problem.

Motivation for study of both the integer and half-integer spin supermultiplets

in flat space. We can try to restrict our attention to the study of supersymmetric higher-

spin theory that involves only integer spin supermultiplets. It turns out that such theory

does not exist in the flat space. Our arguments are as follows. Consider vertex (6.26) with

7In ref. [20], we noted that parity-even cubic vertices for light-cone gauge massless fields in Rd−1,1,

d-arbitrary, lead to two parity-even vertices with k as in (6.52) when d = 4. In ref. [33], it was observed

that Lorentz covariant parity-odd cubic vertices for on-shell massless field in 4d have also k as in (6.52).
Manifestly Lorentz covariant description of all parity-even cubic vertices for off-shell massless fields in

dimensions d ≥ 4 is given in refs. [34–38].
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s1 = s, s2 = s, s3 = s, s > 2. In ref. [42], for the case of bosonic theories, we demonstrated

that in order to respect some restrictions on such vertex which appear at the quartic order

one needs to use, among other things, the vertices of powers (PL)s1+s2+s3 . From the ex-

pressions in (6.24), we see however that, in our supersymmetric theory, such vertices can be

build if and only if we use both the integer and half-integer spin supermultiplets. Thus, the

N = 1 supersymmetry in higher-spin theory in the flat 4d space requires the use of both the

integer and half-integer spin supermultiplets. In other words, we should use the chain of

fields that involves each helicity twice. Appearance of such chain of fields in the supersym-

metric higher-spin theory in AdS4 space is the well known fact [39, 40] (see also ref. [41]).

Finally, we conjecture that the solution for coupling constants Cλ1λ2λ3 in refs. [42, 43]

can be generalized to the case of N = 1 supersymmetric higher-spin theory considered in

this paper as follows

Cλ1λ2λ3 =
g(−)eλ2kλ1+λ2+λ3

(λ1 + λ2 + λ3)!
, (6.54)

where eλ is defined in (2.29). In (6.54), the g is a dimensionless coupling constant, while k

is some dimensionfull complex-valued parameter in general. The g and k do not depend on

the helicities. For the supersymmetric theory with hermitian Hamiltonian, the constants

C̄λ1λ2λ3 are fixed by the relation in (6.11), while, for supersymmetric generalization of

the chiral higher-spin theory in ref. [44], we should set C̄λ1λ2λ3 = 0. For the bosonic

truncation of our supersymmetric model, solution (6.54) amounts to the one in refs. [42, 43].

Solution (6.54) can be used for discussion at least the following two supersymmetric higher-

spin field models in the flat 4d space.

i) Field content of the first model is given in (2.17)–(2.19) and described by the su-

perfields Θλ with all values λ in (3.5). For this model, the superfields Θλ (3.5) are

matrices of the internal symmetry o(N) algebra denoted as Θab
λ . By definition, the

Θab
λ are subject to the algebraic constraint in (6.14).

ii) In the second model, the superfields Θλ are singlets of the o(N) algebra and we use

the set of superfields given by
∑

λ− 1
2
eλ∈2Z

⊕ Θλ , (6.55)

where the summation is performed over those values of λ (3.5) that satisfy the restric-

tion (−)λ−
1
2
eλ = 1. In terms of the superfields Φλ, Ψλ, (3.6), the set of superfields

in (6.55) can be presented as

∞
∑

n=1

⊕ Φ2n ⊕ Φ−2n+ 1
2
+

∞
∑

n=0

⊕ Ψ2n+ 1
2
⊕Ψ−2n . (6.56)

In terms of the component fields, using notation (s, s − 1
2) and (s + 1

2 , s) for the

respective supermultiplets in (2.17) and (2.18), (2.19), we represent the field content

of the second model as
∞
∑

n=1

⊕
(

2n, 2n− 1

2

)

+
∞
∑

n=0

⊕
(

2n+
1

2
, 2n

)

. (6.57)
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Appearance of such two models in the N = 1 supersymmetric higher-spin theory in

AdS space is the well known fact. We note that, in terms of the superfields Θ∗
λ, Φ

∗
λ,

Ψ∗
λ, relations (6.55), (6.56) take the form

∑

λ+ 1
2
eλ∈2Z

⊕ Θ∗
λ , (6.58)

∞
∑

n=1

⊕ Φ∗
2n− 1

2

⊕ Φ∗
−2n +

∞
∑

n=0

⊕ Ψ∗
2n ⊕Ψ∗

−2n− 1
2

. (6.59)

7 Conclusions

In this paper, we used light-cone gauge formalism for studying the N = 1 integer spin and

half-integer supermultiplets in the flat 4d space. For such supermultiplets, we developed

the light-cone gauge formulation in terms of the unconstrained superfields. We used our

superfield formulation to build the full list of the cubic vertices that describe interactions

of massless integer and half-integer spin supermultiplets. Taking into account powers of

momenta appearing in our cubic interaction vertices, we concluded that the integer spin

supermultiplets alone are not enough for the studying the full theory of massless N = 1

interacting supermultiplets in the flat 4d space. For the studying the full N = 1 super-

symmetric theory of higher-spin massless fields in the flat 4d space one needs to use both

the integer and half-integer spin supermultiplets. In other words, as compared to bosonic

theory of massless higher-spin fields, in supersymmetric theory of higher-spin fields, one

needs to use the double set of fields (each helicity occurs twice). In this respect, the super-

symmetric theory of higher-spin massless fields in the 4d flat space and the one in AdS4

space are similar. We believe that results in this paper might be helpful for the following

generalizations and applications.

i) In this paper, we studied supersymmetric massless higher-spin theory in the flat 4d

space. Generalization of our results to the case of supersymmetric massive fields

in the flat 4d space could be of interest. We note that all parity invariant cubic

vertices for massless and massive arbitrary spin fields in the flat space Rd−1,1, d-

arbitrary, were built in refs. [20, 21, 38]. Namely, in refs. [20, 21], we built all

parity invariant cubic vertices for massless and massive bosonic and fermionic fields

in the framework of light-cone gauge formalism, while, in ref. [38], we built all parity

invariant cubic vertices for massless and massive bosonic fields in the framework of

BRST-BV approach.8 We expect that light-cone gauge cubic vertices in refs. [20, 21]

will be helpful for the studying supersymmetric theories of massless and massive fields.

8In the framework of various Lorentz covariant approaches, cubic vertices for massless bosonic fields were

studied in refs. [34–37]. Study of Fermi-Bose couplings in the framework of BV approach may be found in

refs. [45, 46]. Fermi-Bose couplings of fields in R3,1 by using the light-cone gauge helicity basis were studied

in ref. [47]. Interesting formulation of fermionic fields is developed in ref. [48]. Discussion of various aspects

of interacting fields in the framework of BRST approach may be found in refs. [49, 50]. In the framework of

Lorentz covariant approach, parity-odd cubic vertices for higher-spin massless fields in R3,1 are considered

in ref. [33].
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Discussion of supermultiplets in various dimensions may be found, e.g., in refs. [51,

52]. Study of N = 1 higher-spin massless supermultiplets via BRST approach may be

found in ref. [53], while theN = 1 massive supermultiplets are investigated in ref. [54].

ii) In this paper, we restricted our attention to supersymmetric massless higher-spin

theory in the flat 4d space. Gauge invariant formulation of the higher-spin theory

in AdS space is well known [55]. Various aspects of supersymmetric higher-spin

gauge field theory in AdS space have extensively been studied in the past (see, e.g.,

refs. [39–41, 56, 57]). Generalization of our results to the case of light-cone gauge

supersymmetric massless higher-spin fields in AdS4 space could of great interest.

Light-cone gauge cubic interaction vertices of higher-spin massless fields in AdS4

space have recently been obtained in ref. [58]. We believe therefore that result in

this paper and the one in ref. [58] provide a good starting point for the studying

light-cone gauge supersymmetric massless fields in AdS4 space.9

iii) In the recent time, there has been increasing interest in the studying various

higher-spin theories in three-dimensional flat and AdS spaces (see, e.g., refs. [66]–[73]

and references therein). We think that the light-cone gauge approach will simplify

considerably the whole analysis of higher-spin massive and conformal fields in

three dimensions.10 The light-cone gauge formulation of massive fields in the flat

space is well known (see, e.g., ref. [14]), while the light-cone gauge formulation of

massive fields in AdS3 space was developed in refs. [74, 75]. The ordinary-derivative

light-cone gauge formulation of free conformal fields was developed in ref. [76]. We

expect that use of the light-cone formulation in refs. [75, 76] might be helpful for

better understanding of various theories in three dimensions.

iv) As discussed in ref. [77], the chiral higher-spin model [44] is free of one-loop

divergencies. Also, the general arguments were given for cancellation of all loop

divergencies. Loop diagrams in the chiral higher-spin theory are subset of the ones

in the full (non-chiral) higher-spin theory. Therefore, the result in ref. [77] is a good

sign for the quantum finiteness of full (non-chiral) higher-spin theory. The study

of quantum properties of full (non-chiral) higher-spin in flat space theory may be

found in ref. [78]. We believe that the light-cone gauge superfield formulation of

interacting N = 1 higher-spin supermultiplets suggested in this paper will bring new

interesting novelty in the studying quantum properties of higher-spin theory.
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9We mention also methods in refs. [59–62] which might be useful for analysis of supersymmetric higher-
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refs. [63–65]) could also be of some interest.
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A Notation and conventions

Grassmann momentum is denoted by pθ, while the left derivative w.r.t. the pθ is denoted

by ∂pθ . The integral over the Grassmann momentum pθ is defined to be
∫

dpθpθ = 1.

Hermitian conjugation rules for the Grassmann momentum pθ, the derivative ∂pθ , and

integration measure dpθ are assumed to be as follows

p†θ = pθ , ∂†
pθ

= ∂pθ , dp†θ = −dpθ . (A.1)

Ghost parities of the pθ, ∂pθ , and measure dpθ are given by

GP(pθ) = 1 , GP(∂pθ) = 1 , GP(dpθ) = 1 . (A.2)

For product of two quantities A, B having arbitrary ghost numbers, the hermitian

conjugation is defined according to the rule (AB)† = B†A†. Various relations for the

Berezin integrals are summarized as
∫

dpθ (∂pθA)B = (−)ǫA+1

∫

dpθA∂pθB , (A.3)
∫

dpθ (pθ∂pθA)B =

∫

dpθA(1− pθ∂pθ)B , ǫA ≡ GP(A) , ǫB ≡ GP(B) , (A.4)

where AB = (−)ǫAǫBBA. For pθa , ∂pθa , and dpθa , a = 1, . . . , n, entering n-point vertices,

we assume the conventions

{pθa , ∂pθb} = δab

∫

dpθapθb = δab , (A.5)

{pθa , pθb} = 0 , {pθa , dpθb} = 0 , {∂pθa , dpθb} = 0 , {dpθa , dpθb} = 0 . (A.6)

Grassmann Dirac delta-function is fixed by the relations

δ(pθ) = pθ ,

∫

dp′θδ(p
′
θ − pθ)f(p

′
θ) = f(pθ) . (A.7)

Grassmann Fourier transform and its inverse are defined by the relations

F (pθ) =

∫

dp′θe
p′
θ
pθ
β f(p′θ) , f(pθ) = β

∫

dp′θe
p′
θ
pθ
β F (p′θ) . (A.8)

Using dΓpθ
[3] (4.9), we note the various helpful Berezin integrals for 3-point vertices
∫

dΓpθ
[3] pθapθa+1 = −1 ,

∫

dΓpθ
[3] pθaPθ = βa , a = 1, 2, 3 , (A.9)

∫

dΓ
p′
θ

[3] exp

(

∑

a=1,2,3

pθap
′
θa

βa

)

=
1

β
PθPθ ,

∫

dΓ
p′
θ

[3] P
′
θ exp

(

∑

a=1,2,3

pθap
′
θa

βa

)

= Pθ , (A.10)

where Pθ = pθ1 + pθ2 + pθ3 and β = β1β2β3.

B Some properties of superfields

To build interaction vertices we find it convenient to use superfields Θ∗
λ defined in (3.16)–

(3.19).
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Realizations of Poincaré superalgebra on superfield Θ∗

λ in terms of differential

operators.

PR=−pR , PL=−pL , P+=−β , P−=−p− , p−≡−pRpL

β
, (B.1)

J+R= ix+PR+∂pLβ , J+L= ix+PL+∂pRβ , (B.2)

J+−= ix+P−+∂ββ+M+−
−λ , JRL= pR∂pR−pL∂pL+MRL

−λ , (B.3)

J−R=−∂βp
R+∂pLp

−+MRL

−λ

pR

β
−M+−

−λ

pR

β
, (B.4)

J−L=−∂βp
L+∂pRp

−−MRL

−λ

pL

β
−M+−

−λ

pL

β
, (B.5)

M+−
λ =

1

2
pθ∂pθ−

1

2
eλ , MRL

λ =λ− 1

2
pθ∂pθ , (B.6)

Q+R=(−)eλβ∂pθ , Q+L=(−)
e
λ+1

2 pθ , (B.7)

Q−R=(−)
e
λ+1

2
1

β
pRpθ , Q−L=(−)eλpL∂pθ , (B.8)

where the symbol eλ is defined in (2.29). Explicit realization of the Poincaré superalgebra

on superfields Φ∗ and Ψ∗ (3.16)–(3.18) is given in the table 2.

Using relations given in (3.22), (3.23), we verify the standard equal-time

(anti)commutation relation between the superfields Θ∗
λ and the generators

[Θ∗
λ, G[2]]± = Gdiff, λΘ

∗
λ , (B.9)

where Gdiff, λ are given in (B.1)–(B.8). Note that, by using (3.21), the

(anti)commutator (3.23) can entirely be represented in terms of the superfields Θ∗
λ as

[Θ∗
λ(p, pθ),Θ

∗
λ′(p′, p′θ)]± = − 1

2β
δ3(p+ p′)δ(pθ + p′θ)δλ+λ′,− 1

2
, (B.10)

Hermitian conjugate of superfields and vertices. Hermitian conjugate of the su-

perfield Θ∗
λ denoted by Θ∗†

λ can be presented as

(Θ∗
λ(p, pθ))

† = βeλ

∫

dp′θe
p′
θ
pθ
β Θ∗

−λ− 1
2

(−p, p′θ) . (B.11)

To prove the restriction for the coupling constants (6.11) we introduce the vertices

vλ1λ2λ3 = (PL)Mλ+1
∏

a=1,2,3

β
−λa−

1
2
eλa

a , v̄λ1λ2λ3 = (PR)−Mλ−
1
2 Pθ

∏

a=1,2,3

β
λa−

1
2
eλa

a ,

(B.12)

where Mλ is defined in (6.8). Using (A.10), (B.11) considering integer values of Mλ, we

get the relation
(
∫

dΓ[3]Θ
∗
λ1λ2λ3

vλ1λ2λ3

)†

= (−)Mλ+eλ2+1

∫

dΓ[3]Θ
∗
−λ1−

1
2
,−λ3−

1
2
,−λ3−

1
2

v̄−λ1−
1
2
,−λ2−

1
2
,−λ3−

1
2 . (B.13)

Using (B.13), we see that, requiring the cubic Hamiltonian P−
[3] to be hermitian, we get the

restrictions for coupling constants given in (6.11).

– 28 –



J
H
E
P
0
8
(
2
0
1
9
)
1
3
0

Φ∗
s− 1

2

Φ∗
−s Ψ∗

s Ψ∗
−s− 1

2

Q+R −β∂pθ β∂pθ β∂pθ −β∂pθ

Q+L pθ −pθ −pθ pθ

Q−R 1
βp

Rpθ − 1
βp

Rpθ − 1
βp

Rpθ
1
βp

Rpθ

Q−L −pL∂pθ pL∂pθ pL∂pθ −pL∂pθ

M+− 1
2pθ∂pθ − 1

2
1
2pθ∂pθ

1
2pθ∂pθ

1
2pθ∂pθ − 1

2

MRL −s− 1
2pθ∂pθ +

1
2 s− 1

2pθ∂pθ −s− 1
2pθ∂pθ s− 1

2pθ∂pθ +
1
2

Table 2. Realization of supercharges (B.7), (B.8) on superfields (3.16)–(3.18). Realization of

the Poincaré algebra on superfields (3.16)–(3.18) is given by relations (B.1)–(B.5), where the

operators M+−
−λ , MRL

−λ should be replaced by operators M+−, MRL given in this table.

Grassmann even and odd Θ∗

λ1λ2λ3
-terms. For n = 3, the Grassmann parity of

Θ∗
λ1λ2λ3

-terms (4.15) is given in (6.12), where Eλ is defined in (6.8). The Θ∗
λ1λ2λ3

-terms

having (−)Eλ = 1 are Grassmann even, while the Θ∗
λ1λ2λ3

-terms having (−)Eλ = −1 are

Grassmann odd. Using basis of Φ∗, Ψ∗ superfields (3.20), we now present all Grassmann

even and odd Θ∗
λ1λ2λ3

-terms which are needed for the basis of independent vertices.

Grassmann even Θ∗3-terms, (−)Eλ = 1 ⇐⇒ Mλ - integer;

Φ∗3-terms : Φ∗
s1−

1
2

Φ∗
s2−

1
2

Φ∗
−s3 , Φ∗

−s1Φ
∗
−s2Φ

∗
−s3 , (B.14)

Φ∗2Ψ∗-terms : Φ∗
s1−

1
2

Φ∗
s2−

1
2

Ψ∗
s3 , Φ∗

s1−
1
2

Φ∗
−s2Ψ

∗
−s3−

1
2

, Ψ∗
s1Φ

∗
−s2Φ

∗
−s3 , (B.15)

Φ∗Ψ∗2-terms : Φ∗
s1−

1
2

Ψ∗
s2Ψ

∗
−s3−

1
2

, Ψ∗
s1Ψ

∗
s2Φ

∗
−s3 , Φ∗

−s1Ψ
∗
−s2−

1
2

Ψ∗
−s3−

1
2

, (B.16)

Ψ∗3-terms : Ψ∗
s1Ψ

∗
s2Ψ

∗
s3 , Ψ∗

s1Ψ
∗
−s2−

1
2

Ψ∗
−s3−

1
2

, (B.17)

Grassmann odd Θ∗3-terms, (−)Eλ = −1 ⇐⇒ Mλ - half-integer;

Φ∗3-terms : Φ∗
−s1Φ

∗
−s2Φ

∗
s3−

1
2

, Φ∗
s1−

1
2

Φ∗
s2−

1
2

Φ∗
s3−

1
2

, (B.18)

Φ∗2Ψ∗-terms : Φ∗
−s1Φ

∗
−s2Ψ

∗
−s3−

1
2

, Φ∗
−s1Φ

∗
s2−

1
2

Ψ∗
s3 , Ψ∗

−s1−
1
2

Φ∗
s2−

1
2

Φ∗
s3−

1
2

,

(B.19)

Φ∗Ψ∗2-terms : Φ∗
−s1Ψ

∗
−s2−

1
2

Ψ∗
s3 , Ψ∗

−s1−
1
2

Ψ∗
−s2−

1
2

Φ∗
s3−

1
2

, Φ∗
s1−

1
2

Ψ∗
s2Ψ

∗
s3 , (B.20)

Ψ∗3-terms : Ψ∗
−s1−

1
2

Ψ∗
−s2−

1
2

Ψ∗
−s3−

1
2

, Ψ∗
−s1−

1
2

Ψ∗
s2Ψ

∗
s3 , (B.21)

where, for Φ∗ superfields, sa ≥ 1, a = 1, 2, 3, while, for Ψ∗ superfields, sa ≥ 0, a = 1, 2, 3 .

C Derivation of cubic vertex p
−

λ1λ2λ3
(6.1)

We split our procedure of the derivation of the cubic vertex p−[3] (6.1) into the following five

steps.
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Step 1. Requirement in (5.29) implies that the cubic vertex p−[3] can be presented as

p−[3] = V (PL,Pθ) + V̄ (PR,Pθ) . (C.1)

Step 2. Using the expression for q−L[3] (5.27) and requiring the q−L[3] to be polynomial

in P
R (5.28), we find that V (PL,Pθ) (C.1) is independent of Pθ. Using the expression for

q−R[3] (5.27) and requiring the q−R[3] to be polynomial in P
L (5.28), we find that V̄ (PL,Pθ) (C.1)

is degree-1 homogeneous monomial in the Grassmann momentum Pθ. Thus, we have the

relations

V = V (PL), V̄ = V (PR,Pθ), (Pθ∂Pθ − 1)V̄ = 0 . (C.2)

Step 3. Using relations for p−[3] in (C.1), (C.2), we find that equations (5.24), (5.25)

and (5.28) amount to the following

Equations for V :

(

NPL +
1

2
− 1

2
Eλ+ 1

2
+

∑

a=1,2,3

βa∂βa

)

V = 0 , (C.3)

(

−NPL +Mλ + 1
)

V = 0 , (C.4)
(

− Nβ −Mλ +
1

2
Eλ+ 1

2

)

V = 0 . (C.5)

Equations for V̄ :

(

NPR + 2− 1

2
Eλ+ 1

2
+

∑

a=1,2,3

βa∂βa

)

V̄ = 0 , (C.6)

(

NPR +Mλ +
1

2

)

V̄ = 0 , (C.7)

(

− Nβ +Mλ +
1

2
Eλ+ 1

2

)

V̄ = 0 , (C.8)

where NPR , NPL and Nβ are defined in (5.8) and (5.20) respectively and we use the notation

Mλ≡
∑

a=1,2,3

λa , Eλ+ 1
2
≡
∑

a=1,2,3

eλa+ 1
2
, Mλ=

1

3

∑

a=1,2,3

β̌aλa , Eλ+ 1
2
=

1

3

∑

a=1,2,3

β̌aeλa+ 1
2
.

(C.9)

We note that equations (C.3), (C.6) and (C.4), (C.7) are obtained from the respective

equations (5.24) and (5.25), while the equations (C.5) and (C.8) amount to requiring the

j−L[3] and j−R[3] (5.26) to be polynomial in P
R,PL. We note also that equations (C.5) and (C.8)

are simply the respective equations J−LV = 0 and J−RV̄ = 0, where we use notation

in (5.18), (5.19) .

Analysis of system of equations (C.3)–(C.5) and (C.6)–(C.8) is identical. Therefore to

avoid the repetitions, we consider the system of equations (C.3)–(C.5).
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Step 4. We consider equation (C.4). This equation is solved as

V = (PL)Mλ+1V (1) , V (1) = V (1)(β1, β2, β3) , (C.10)

where a new vertex V (1) depends only on the momenta β1, β2, β3 and the helicities λ1, λ2, λ3.

Using (C.10), we find that equations (C.3), (C.5) amount to the following two equations

for the vertex V (1):

(

Mλ +
3

2
− 1

2
Eλ+ 1

2
+

∑

a=1,2,3

βa∂βa

)

V (1) = 0 , (C.11)

(

Nβ +Mλ − 1

2
Eλ+ 1

2

)

V (1) = 0 . (C.12)

Step 5. We consider equations (C.11), (C.12). Using relation eλ+ 1
2

= 1 − eλ, these

equations can be represented as

(

Mλ+ 1
2
e +

∑

a=1,2,3

βa∂βa

)

V (1) = 0 ,
(

Nβ +Mλ+ 1
2
e

)

V (1) = 0 . (C.13)

Introducing a new vertex V (2) by the relation

V (1) = V (2)
∏

a=1,2,3

β
−λa−

1
2
eλa

a , (C.14)

we find that equations (C.13) amount to the following respective equations for the vertex

V (2):

∑

a=1,2,3

βa∂βa V (2) = 0 , Nβ V (2) = 0 . (C.15)

Equations (C.15) tell us that the vertex V (2) is independent of the momenta β1, β2, β3,

V (2) = Cλ1λ2λ3 , (C.16)

where Cλ1λ2λ3 is a constant which depends only on the helicities. Collecting relations

in (C.10)–(C.16), we get expression for Vλ1λ2λ3 given in (6.2). Repeating analysis above-

given for case of V̄ we find solution to V̄λ1λ2λ3 given in (6.3). Plugging expressions for

Vλ1λ2λ3 , V̄λ1λ2λ3 (6.2), (6.3) into (5.26), (5.27), we find expressions for q−R,Lλ1λ2λ3
and j−R,Lλ1λ2λ3

given in (6.4)–(6.7). Note that while deriving expressions for q−R,L[3] (6.4), (6.5) from rela-

tions in (5.27), we used restrictions on ǫ (5.17) given in (6.9), (6.10).
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[35] R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even

higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].

[36] A. Sagnotti and M. Taronna, String lessons for higher-spin interactions,

Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].

[37] R. Manvelyan, K. Mkrtchyan and W. Ruehl, A generating function for the cubic interactions

of higher spin fields, Phys. Lett. B 696 (2011) 410 [arXiv:1009.1054] [INSPIRE].

– 33 –

https://doi.org/10.1016/j.nuclphysb.2006.10.002
https://arxiv.org/abs/hep-th/0512342
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512342
https://doi.org/10.1016/j.nuclphysb.2012.01.022
https://arxiv.org/abs/0712.3526
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.3526
https://doi.org/10.1016/0370-2693(83)90781-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B122,143%22
https://doi.org/10.1007/JHEP08(2015)153
https://arxiv.org/abs/1507.01068
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01068
https://doi.org/10.1103/PhysRevD.71.085017
https://arxiv.org/abs/hep-th/0410239
https://inspirehep.net/search?p=find+EPRINT+hep-th/0410239
https://doi.org/10.3390/universe4010006
https://arxiv.org/abs/1708.06262
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.06262
https://doi.org/10.1007/JHEP03(2018)119
https://arxiv.org/abs/1712.05150
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.05150
https://doi.org/10.1007/JHEP05(2018)204
https://arxiv.org/abs/1804.08539
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.08539
https://doi.org/10.1007/JHEP08(2018)055
https://arxiv.org/abs/1805.04413
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.04413
https://doi.org/10.1007/JHEP09(2018)027
https://arxiv.org/abs/1805.08055
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.08055
https://arxiv.org/abs/1904.13336
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.13336
https://inspirehep.net/search?p=find+J+%22JETPLett.,57,539%22
https://inspirehep.net/search?p=find+J+%22JETPLett.,57,534%22
https://doi.org/10.1007/JHEP08(2016)040
https://arxiv.org/abs/1605.07402
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.07402
https://doi.org/10.1007/JHEP11(2010)086
https://arxiv.org/abs/1009.0727
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.0727
https://doi.org/10.1016/j.nuclphysb.2010.04.019
https://arxiv.org/abs/1003.2877
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2877
https://doi.org/10.1016/j.nuclphysb.2010.08.019
https://arxiv.org/abs/1006.5242
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5242
https://doi.org/10.1016/j.physletb.2010.12.049
https://arxiv.org/abs/1009.1054
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1054


J
H
E
P
0
8
(
2
0
1
9
)
1
3
0

[38] R.R. Metsaev, BRST-BV approach to cubic interaction vertices for massive and massless

higher-spin fields, Phys. Lett. B 720 (2013) 237 [arXiv:1205.3131] [INSPIRE].

[39] S.E. Konstein and M.A. Vasiliev, Extended higher spin superalgebras and their massless

representations, Nucl. Phys. B 331 (1990) 475 [INSPIRE].

[40] S.E. Konshtein and M.A. Vasiliev, Massless representations and admissibility condition for

higher spin superalgebras, Nucl. Phys. B 312 (1989) 402 [INSPIRE].

[41] J. Engquist, E. Sezgin and P. Sundell, On N = 1, N = 2, N = 4 higher spin gauge theories

in four-dimensions, Class. Quant. Grav. 19 (2002) 6175 [hep-th/0207101] [INSPIRE].
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