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1 Introduction

The light-cone gauge approach [1] offers considerable simplifications of approaches to many
problems of quantum field theory and superstring. This approach hides Lorentz symme-
tries but eventually turns out to be effective. Exploring this approach for the analysis of
ultraviolet finiteness of N = 4 Yang-Mills theory may be found in refs. [2, 3]. Light-cone
gauge superstring field theories are studied in refs. [4-6], while string bit models for super-
string and super p-branes in the framework of light-cone gauge formulation are considered
in ref. [7] and [8, 9] respectively. Application of light-cone gauge formalism for studying
the interacting continuous-spin fields in flat space may be found in refs. [10, 11]. Various
applications of light-cone gauge approach to field theory like QCD are discussed in [12, 13].
Methods for building Lorentz covariant formulation by using light-cone gauge formulation
are investigated in ref. [14]. In the framework of light-cone gauge approach, study of free
continuous-spin field in AdS space may be found in refs. [15, 16].

One interesting application of light-cone gauge approach is a higher-spin massless field
theory. In refs. [17, 18], a wide class of cubic interaction vertices for higher-spin massless



fields in 4d flat space was constructed, while the full list of cubic interaction vertices for ar-
bitrary spin massless fields in 4d flat space was obtained in ref. [19].! Our aim in this paper
is to provide the full list of cubic interaction vertices for N = 1 arbitrary integer and half-
integer spin supermultiplets in the flat 4d space. Doing so, we provide, among other things,
the supersymmetric extension for all cubic interaction vertices for massless bosonic fields in
the 4d flat space presented in ref. [19].2 To this end we use superfields defined in light-cone
momentum superspace. The light-cone momentum superspace has successfully been used
in many interesting studies of superstring and supergravity theories. For example, we men-
tion the use of the momentum superspace in superstring field theories in refs. [4-6] and 10d
extended supergravity in ref. [22].> The momentum superspace was also adapted for the
studying light-cone gauge 11d supergravity in ref. [24]. Using the momentum superspace,
we collect the N = 1 integer and half-integer spin massless supermultiplets into a suitable
unconstrained superfields and use such superfields for building cubic interaction vertices. It
is the use of the light-cone gauge unconstrained superfields that allows us to build a simple
representation for all cubic interaction vertices of the N = 1 integer and half-integer spin
massless supermultiplets and to provide the full classification of such cubic vertices.

This paper is organized as follows.

In section 2, we review the well known description of N = 1 integer spin and half-
integer spin supermultiplets in terms of light-cone gauge components fields. We introduce
the field content and describe a realization of the Poincaré superalgebra on space of the
component fields.

In section 3, we introduce a momentum superspace and describe light-cone gauge
unconstrained superfields defined in such superspace. Also we describe a realization of the
Poincaré superalgebra on space of our light-cone gauge unconstrained superfields.

In section 4, we describe a general structure of n-point interaction vertices. Namely,
we present restrictions imposed by kinematical symmetries of the Poincaré superalgebra
on n-point interaction vertices.

In section 5, we study cubic vertices. First, we present restrictions imposed by kinemat-
ical and dynamical symmetries of the Poincaré superalgebra on cubic vertices. Second, we
formulate light-cone gauge dynamical principle and present complete system of equations
required to determine the cubic vertices uniquely.

In section 6, we present our general solution for all cubic vertices which describe
interactions of arbitrary spin massless supermultiplets. First, we present superfield form
of the cubic vertices. After that, we discuss the cubic vertices in terms of the component
fields and provide the full classification of the cubic vertices for integer and half-integer
arbitrary spin supermultiplets.

Section 7 is devoted to our conclusions.

!Generalization of results in ref. [19] to the case of massless and massive arbitrary spin bosonic and
fermionic fields in R4~"!, d-arbitrary, may be found in refs. [20, 21].

2In the framework of light-cone superspace formalism, a scalar superfield that describes arbitrary N-
extended supermultiplets and involves fields with helicities f%N <A< %N (%N -integer) was studied in
ref. [18]. For such scalar superfield, a cubic vertex that involves * N derivatives was obtained in ref. [18].

#Recent interesting discussion of 10d Yang-Mills theory in light-cone superspace may be found in ref. [23].



In appendix A, we describe our basic notation and conventions for Grassmann algebra
we use in this paper. In appendix B, we discuss properties of our unconstrained superfields.
In appendix C, we present some details of the derivation of the cubic vertices.

2 Light-cone gauge formulation of free massless N = 1 supermultiplets

Poincaré superalgebra in light-cone frame. A method suggested in ref. [1] tells us
that the problem of finding a light-cone gauge dynamical system amounts to a problem of
finding a light cone gauge solution for commutation relations of a symmetry algebra. For
supersymmetric theories in the flat space R*!, basic symmetries are associated with the
Poincaré superalgebra. Therefore, in this section, we review a realization of the Poincaré
superalgebra on a space of massless supermultiplets and present well known formulation of
free N = 1 supersymmetric multiplets in terms of the light-cone gauge component fields.

For the flat space R*!, the Poincaré superalgebra is spanned by the four translation
generators PH, the six generators of the so(3,1) Lorentz algebra J*”, and four Majorana
supercharges Q. We assume the following (anti)commutators:

[P, JVP) = " PP — P PV, [JH, JP) =P JH7 4 3 terms,  (2.1)
1
(@, J"] = 7" Q, {Q,Q% =—(yrch)pr, (2:2)

where n* ia the mostly positive Minkowski metric. We do not present an explicit form of
~vH-matrices and charge conjugation C-matrix because throughout this paper we use only
light-cone form of (anti)commutators (2.1), (2.2).

In place of the Lorentz basis coordinates a#, i = 0, 1, 2, 3, we introduce the light-cone

+

basis coordinates x™, %, x* defined as

(2% £ 29), o= (2! +iz?), b= —(a —ix?), (2.3)

Sl
S

where the coordinate ™ is considered as an evolution parameter. In the light-cone ba-
sis (2.3), the so(3,1) Lorentz algebra vector X* is decomposed as X, X~ X*® X’ while
a scalar product of the so(3,1) Lorentz algebra vectors X* and Y* is decomposed as

NuwX'Y' =XTY "+ X YT+ XY+ XY R, (2.4)

From (2.4), we learn that, in the light-cone basis, non-vanishing elements of the flat metric

are given by ny— = n—4 = 1, ngr = nr = 1. This implies that the covariant and
contravariant components of vector X# are related as X+ = X, X~ = X, X = X,
Xt = X5g.
In light-cone basis (2.3), generators of the Poincaré superalgebra are separated into
two groups:
Pt PR PR JTRgTE gt g QTR Q1) kinematical generators;  (2.5)
P, Jt JR QT QT dynamical generators.  (2.6)



We recall that, for T = 0, in a field realization, generators (2.5) are quadratic in fields,*
while, generators (2.6) involve quadratic and higher order terms in fields.
In the light-cone basis, commutators of the Poincaré algebra are obtained from (2.1)

simply by using the flat metric n*¥ which has non-vanishing elements n*— = =+ = 1,
nfit = nt% = 1. We now present the light-cone form of the (anti)commutators given in (2.2),
1 1
[J+_a QiR] = i§QiR ) [J+_7 QiL] = i?QiL ’ (27)
1 1
[, Q¥ = SQF", [ Q) = =S, (2.8)
[Q_R7 J+L] = _Q+L 5 [Q_La J+R] = _Q+R ) (29)
Q" T =Q7", [, T~ =Q7", (2.10)
T, Q™ =P, {Q"%Q " =-P", (2.11)
{T",Q "} =P, Q@ "y=r". (2.12)
Hermitian conjugation rules for the generators are assumed to be as follows
P:I:T — Pi, PRT — PL7 JRLT — JRL’ J+—’r _ _J—F—7 J:I:RT — _J:I:L’
QR — gt Q Rt — Q. (2.13)

In order to provide a field theoretical realization of generators of the Poincaré superalgebra
on massless fields, we use a light-cone gauge formulation. To this end we start with a
description of field content we use in this paper and review the well known light-cone
gauge formulation of arbitrary spin massless fields.

Field content. To discuss supersymmetric field theories we use light-cone gauge massless
fields considered in helicity basis. First, using a label A\ to denote a helicity of a massless
field, we introduce the following set of complex-valued massless fields:

bosonic fields: ¢y, A=+1,4+2 ..., +c0, Uy, A==%1,£2,...,+00; (2.14)
fermionic fields: ¢y, A==+3, £3 ... +oo, ¥\, A=*x3 +3 .. doo, (2.15)

where fields (2.14), (2.15) depend on space time-coordinates z¥, z™* (2.3).
Fields (2.14), (2.15) satisfy the following hermitian conjugation rules

oh(z) = da(x),  vi(2) =y \(2). (2.16)
We collect fields (2.14), (2.15) into integer and half-integer spin supermultiplets given by
(s, b,_1) (¢p—s,¢_,,1) spin-s supermultiplets, s=1,2,...,00; (2.17)

2 2

1
(Vi1 ,%s) (V_,_1,%5) spin- (s + 2) supermultiplets, s=1,2,...,00; (2.18)
2 2

4With exception of J~, generators (2.5) are also quadratic in fields when 2™ # 0. The J*~ takes the
form J*~ = Go + izT P, where Gy is quadratic in fields, while P~ involves quadratic and higher order
terms in fields.



Second, by analogy with (2.18), we introduce the spin—% massless supermultiplets

(1/1% ,10) (w_% ,_0) spin—% supermultiplets, (2.19)
@) =vo@), vl =y (@), (2.20)

where, in (2.20), we fix the hermitian conjugation rules for two complex-valued scalar fields
Yo, ¥_o and two complex-valued spin—% fermionic fields ¢ /9, ¥_1 /.
From (2.16)—(2.20), we see that the supermultiplet ¢, gbs_% is hermitian conjugated to

the supermultiplet ¢_g, ¢_ while the supermultiplet ¢, 1, is hermitian conjugated
2

s+
to the supermultiplet w_s_—zz,w_s. For supermultiplets qﬁs,(ﬁs_% and qﬁ_s,qﬁ_s_% (2.17),
we use the shortcut (s,s — 5), s = 1,2,...,00, while, for supermultiplets 1/18_%,1/15 and
w_s_%7¢—s (2.18), (2.19), we use the shortcut (s+ 3,s), s =0,1,..., 0.

Fields in (2.17)-(2.19) constitute the field content in our approach. In our field content,
each helicity occurs twice. Our motivation for the use of such field content is discussed in
section 6.

In what follows, we prefer to use fields which obtained from the ones in (2.14)—(2.19)

R

by using the Fourier transform with respect to the coordinates x—, z, and x*,

d3p i(Bx™ T T
or(w) = [ et g, @ ),

d3 o
vale) = / (27r)€/2 P tplat ey (ot p),  dPp=dpdptdpt,  (2.21)

where the argument p of fields ¢y (1, p), ¥a(z, p) stands for the momenta 3, p?, p*. In
terms of the fields ¢y (z™,p), ¥r(x™,p) , the hermicity conditions (2.16), (2.20) take the
form

OL(0) = d-r(-p), i) =v_s(-p), (2.22)

where in (2.22) and below dependence of the fields on the light-cone time z™ is implicit.

Field-theoretical realization of the Poincaré superalgebra. We now review a field
theoretical realization of the Poincaré superalgebra on the space of massless supermulti-
plets. First, we consider even elements of the Poincaré superalgebra (2.1). Realizations of
the Poincaré algebra (2.1) in terms of differential operators acting on the fields ¢, (p) and
Pa(p) (2.14)—(2.19) is given by the well known expressions.

Realizations on space of ¢x(p) and ¥x(p):

R__ R L_ L +_ - - - prp*
P =D, P =p, P _/37 P =p p =—- B ) (223)
JH=ig TP +0,., Jt =izt P"40,r0, (2.24)
1
J+_:ix+P_+85,3—§€)\, JRLZpRapR—pLapL—i-)\, (2.25)
. - pi pf
= B —+—= 2.2
J Opp™ +0,Lp +/\5 +256)" (2.26)
J ™ =—0sp" +0,rp~ —)\pr—l-ie)\ (2.27)
P g2



where the notation for partial derivatives and the definition of symbol ey are given by

g =0/0B, 0O,rn=0/0p", Opr = 0/0p*, (2.28)
ex=0 for integer X, ex=1 for half-integer A, (2.29)
e,\+e/\+%:1, 6)\6)\+%:0. (2.30)

In (2.30), we present relations which follow from the definition of ey given in (2.29).
Having presented realization of the Poincaré algebra in terms of differential operators

n (2.23)-(2.27) we are able to provide a field representation for generators in (2.1). To

quadratic order in fields, a field representation of the Poincaré algebra generators (2.1) is

given by
- s = s+1
Go = Y G + ZG[(Q] 7, (2.31)
s=1 s=0
G = 2/d3p (BoIGaids + ¢Z_%Gdiff¢s,%) ; (2.32)
ord
G[(2]+2> — 2/d3p (BYIGans + ¢Z+%Gdiff¢s+%) , (2.33)

where Gqig denotes the differential operators presented in (2.23)-(2.27), while G|, denotes
the field representation for the generators (2.1). For the odd elements of the Poincaré super-
algebra (supercharges Q*™), a field representation Gy takes the form as in (2.31), where

Qi =2 [ polo, . Q=2 [dppel o
Q=2 [yl 6., Q[Zf O=a [dprele g @)
S 1 S
Qi = [ el u QU = [ suiv.,. @30
R(s—&—%) _

— S+
Q[z] _2/d3p pR¢l¢s+%7 Q[zL( = 2/d3p p%;%ws- (2.37)

The fields ¢y, ¥y satisfy the Poisson-Dirac equal-time commutation relations

Ian Oan

(@)% 0N =550 0=, AL @)= 550 (-p),  integer AN, (2.38)
(5 5 7

{03005 ()} =570 (), {ea(®), 0} ()} =58 (0—#), halfinteger AN (2.39)

Using relations given in (2.31)-(2.33), we verify the standard equal-time commutation
relations between the fields and the even generators

[Dx, Ga] = Gaigda » [, Gy ] = Gaigtdy » (2.40)



while using expressions in (2.34)—(2.37), we find the following equal-time
(anti)commutation relations between the supercharges and the fields

60 @ =6, 3. {6,1.Q"} = Bo. (2.41)
(6,1.Q7") =0 0.0 =T0 . @)
(s 1.Q7") = B Yo Q@™ =~dyy,  (243)

00 Q7 =~y Wy @ = . (244)

3 Superfield formulation of free massless N = 1 supermultiplets

In order to discuss a light-cone gauge superfield formulation we introduce a Grassmann-odd
momentum denoted by pg. The momentum superspace is parametrized by the light-cone
time 2", the momenta p?, p*, B and the Grassmann momentum py,

=, B8, p", p", pe. (3.1)

Using component fields (2.17)-(2.20) depending on 2™ and momenta p®, p*, § , we in-

troduce then unconstrained superfields ®,, ®__ 41 and ¥ W_, defined in the super-
2

s+%7

space (3.1) in the following way:

O, =g+ %%—% , <I>_S+% = ¢_S+% +pod_s, for spin-s supermultiplets, (3.2)

U 1 =pegths+1h, 1 U =1 +@1/) 1 for spin-(s+ 3) supermultiplets,  (3.3)
s+3 =PoYs s+31 —s—=P—s B —s—1> 1% ) P p 5 .

U1 =peto+iy, Uo=1_og+ %1/),% , for spin-3 supermultiplets, (3.4)

where, in (3.2), (3.3), s=1,...,00.

Our basic observation which considerably simplifies our analysis of theory of inter-
acting superfields is that the unconstrained superfields (3.2)—(3.4) can be collected into
unconstrained superfields denoted as O,

Ox(p, o), A=0,+% £1,...,+00, (3.5)
where, depending on A, the superfield O, is identified with the ones in (3.2)—(3.4) as follows:

O, =d,, (S P

7S+%E s=1,2,...,00,

O_,=V_,, s=0,1,...,00. (3.6)

P
s+2

) v

1 = 1
1 L
s+2 s+2

We note the following property of the superfield ©). Using the notation GP(©,) for the
Grassmann parity of the superfield ©, and taking into account definition of ey (2.29), we
note the relation,

GP(@)\) =€) . (37)

We see that, for integer A, the superfield ©) is Grassmann even, while, for half-integer A,
the superfield ©, is Grassmann odd.



P, Qi1 Yord Vo
QtF B0y, —B0p, —B0p, BOp,
Q+r Do —po —Po Peo
| EPpe —5P"po 5P 5P"Po
Q" "0y, —p" Op, —p"Op, P"Opy
M| Lpgdy, 5Po0p, — 5 2P60py — 3 3P0
M" | s — 5ppdy, | =5 — 5000p, + 5 | 8 — 5P00p, + 3 | —5 — 5D00p,

Table 1. Realization of supercharges (3.14), (3.15) on superfields (3.2)—(3.4). Realization of the
Poincaré algebra on superfields (3.2)-(3.4) is given by relations (3.8)-(3.12), where the operators
M;r_, M* should be replaced by operators M+~ M given in this table.

Realizations of the Poincaré superalgebra on superfield ©®). Realization of the
Poincaré superalgebra in terms of differential operators acting on the superfield ©,(p, py)

is given by
PR — R PL — pF + - - - _ pRpL
=p , =p , P _ﬂa P =P , P =—- B ) (38)
JH=ia TP+ 0,0, JT =1zt P 4+ 0,0, (3.9)
JTT =it PT 4+ 038+ M, J = p 0, — p"O,L + MY, (3.10)
R
T = —0ap" + 0,up” + MRLpﬁ M;*% , (3.11)
L
JF = —0sp" + Orp” Mprﬁ M;—% , (3.12)
o1 1 RL 1
M)\ = 2 8 — 56,\, M)\ =)\ — 5])98};9 (313)
= (=)?B0p, » QT = (—)py, (3.14)
1 - e
( ) p Po, Q b= (7) )\pLapev (315)
p

where the symbol ey is defined in (2.29), while a quantity 0,, stands for left derivative
w.r.t. the Grassmann momenta py (see appendix A). Explicit realization of the Poincaré
superalgebra on the superfields ® and ¥ (3.2)—(3.4) is given in table 1.

In addition to the superfields ©,, we find it convenient to use other superfields denoted
by ©3. The superfields ©F are constructed out of the hermitian conjugated fields gi);, 1/1;
and defined as follows. First, we define superﬁelds @1, U3 by the relations

‘I):_; :pe(bl _¢i—l , (bT —|— 3 ¢T o1 for spin-s supermultiplets; (3.16)
= ! —|— 5 wT+ L \I’*_S_; —pe’(/JT —wT ,  for spin- (s+ %) supermultiplets;  (3.17)
Ui = 1/)8; + %)1/)1 , U, =pepl =l for spin-1 supermultiplets; (3.18)

2 2 2



where, in (3.16), (3.17), s = 1,...,00. Second, we introduce superfields O3 defined for all A,
Oi(p.pe),  A=0,£1,%1,... +oc; (3.19)
where, depending on A, the superfield O3 is identified with the ones in (3.16)—(3.18) as
0f , =9 |, er, = o7 s=1,2,...,00;
5_2 S—

—s

N[

e;=VUr, CX =v"

1
) )

) s=0,1,...,00. (3.20)

The new superfields ©F are not independent of the superfields ©,. Namely, in view of
the hermitian conjugation rule given in (2.22), we find the relation

O~ \(=p, —pa) = (=)*OA(P, po) , (3.21)

where e) is defined in (2.29) and we show explicitly momentum arguments p, pg entering
the superfields. For integer A, the superfield ©F is Grassmann even, while, for half-integer
A, the superfield ©3 is Grassmann odd. In other words, the Grassmann parity of the
superfield O3, is given by the relation GP(©3) = e,.

Using the realization of the Poincaré superalgebra in terms of differential operators
in (3.8)—(3.15), we can present a superfield representation for generators in (2.5), (2.6). To
quadratic order in the superfields O, a superfield representation of Poincaré superalgebra
generators (2.5), (2.6) is given by

+oo
G[Q] = Z G[z],A G[2],>\ = /dspdpg ﬁ@;_%GdiﬁiA@/\a (3-22)

A=—00

where realization of Ggig, » on space of ©) is given in (3.8)-(3.15). A realization of Ggig, x
on space of the superfield ©} may be found in appendix B.
The superfields © ), ©3 satisfy the Poisson-Dirac equal-time commutation relations
(=)>4
20

where [a, b1 stands for a graded commutator, [a,b]+ = (—)“%T1[b,a]+. Using relations

[Ox(p,p0), OX (P Pp)]+ = 0%(p = p)3(po — Pp)or_x 1 (3.23)

given in (3.22), (3.23), we verify the standard equal-time (anti)commutation relation be-
tween the superfields and the generators

[Ox, G+ = Gaifr, AO, (3.24)

where Ggig,  are given in (3.8)—(3.15).
In light-cone gauge Lagrangian approach, the light-cone gauge action takes the form

1 & ¢ (o an— _
S=3 > / dzt d®pdpy @A_%(ma —2p"p") Oy + / dzt P, (3.25)
A=—00
where 9~ = 0/0z" and P, is a light-cone gauge Hamiltonian describing interactions.

Internal symmetry can be incorporated via the Chan-Paton method used in string theory
(see section 6).



4 General structure of n-point dynamical generators of the Poincaré
superalgebra

We now describe a general structure of the dynamical generators of the Poincaré superal-
gebra. For theories of interacting fields, the Poincaré superalgebra dynamical generators
receive corrections having higher powers of fields. In general, one has the following expan-
sion for the dynamical generators

G =G, (4.1)
n=2

where Gﬁf]’n in (4.1) stands for a functional that has n powers of superfields ©*.

In this section, for arbitrary n > 3, we describe restrictions imposed on the dynamical
generators Gf,f]'n by the kinematical symmetries of the Poincaré superalgebra. We discuss
the restrictions in turn.

Kinematical P®f, P+, Q1! symmetries. Using (anti)commutation relations be-
tween the dynamical generators given in (2.6) and the kinematical generators P%, P, P,
Q"t, we verify that the dynamical generators G(;f]’n with n > 3 take the following form:

P = [are ©, o) (42)
QL = /drm O, lanm (4.3)
QF = /drm O 10, (4.4)
Jit = [dr, O i) + XE ey + L P el (46)

ml = ) A (n] @ [n] [Pn] ) 0\ ) Dy / :

where we use the notation
F’P 353 . . d3pa 3 R 3 L
dry, = (2r) lea H1 PR d*po = dplidpydB, , (4.8)
dl“ﬁf] = dp91 e dpgn(s <Z p9a> N (4.9)
a=1

S o po Ly

Xim = —;Z Q" Xim = _gz pit (4.10)
a=1 a=1
1 n n pea

Xpo =~ > o, s Po =Y B (4.11)
a=1 a=1 "9

,10,



In (4.2)-(4.6), expressions (O[pp), (Oumilap, "), and (O]j,; ") stand for shortcuts de-
fined as

Owlpp) = D O% AP, (4.12)
Al An

Owlan™) = D O3 ann i (4.13)
A An

(Oumlini™) = D Ohiandnein s (4.14)
Al An

O%a, = O3, (P1,p0,) - - - O3, (P, Do, ) - (4.15)

To simplify our presentation, the quantities Py, q;f"jn, and j/\_f’jn appearing in (4.12)—
(4.14), will shortly be denoted as gy, .,

IAiAn = Pxy g q;f,,\n7 qilL...,\M -7';11.%..,\,17 j;f...xn- (4.16)

We refer to quantities gy, ., (4.16) as n-point densities. We note that n-point densities
9., (4.16) depend on the momenta pf, pk, B4, Grassmann momenta py,, and helicities
Ao, a=1,2...,n,

IriAn = Grr. A (Pas Do, ) - (4.17)

Note that we use the indices a,b = 1,...,n to label superfields entering n-point interaction
vertex. Also note that, in (4.2)—(4.6), the differential operators X}, X;,j¢ are acting only
on the arguments of the superfields. For example, the expression (X*0] |g;.;) should read
as

<XR@E‘n1|9[n1> = Z (XR@f\l...An)gAl...,\n- (4.18)
Ao

Note that the argument p, in (4.8) stands for the momenta pZ, p-, and S,. In what follows,
the density p, will often be referred to as an n-point interaction vertex, while, for n = 3,
we refer to density py as cubic interaction vertex.

JT~-symmetry equations. Commutation relations between the dynamical generators
P~, Q ™t J~™L and the kinematical generator J™~ amount to equations for the densities
given by:

n
1 1 n—1 _ ,,
Z <Baa,3a + §p9aap9a + e)\a)g>\1~-->\n = IX1 X s for IXN1 X TPy a])\f,’_L,\n ’ (419)

2 2
a=1
- 1 1 n i
> Bads, + 520,000, T 5600 | 901 hn = 590000 5 for gx,.n, =y, A, - (4.20)

a=1

JEL_symmetry equations. Commutation relations between the dynamical generators
P, Q ™t J ™ and the kinematical generator J** amount to equations for the densities
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given by

n

1 n—1 _
< R _pg pé‘ - ipeaapga + >\a>p>\1)\n = _Tp)\lm)\n 3 (421)
a=1
n
1 _ n—2 _
Z ( pa pL épeaapea + )\a> Q)\ll_z_)\n = = 9 Q,\lR An (422)
a=1
n
1 —L n _r
Z( —Pa L — §p9aapea "‘)‘a)qxl...,\n = 73D (4.23)
a=1
n
1 L n—3 . _
> < — Pa0ps — 5P0.0pg, + Aa)JAl’fAn =~ i (4.24)
a=1
n
1 ,, n+1 _
Z( pa pL — §p9aapea +)\a>])\le,\n = - ) ])\1L A (4.25)

Q
Il
—

JTE JTL QtE.symmetry equations. Using (anti)commutation relations between
the dynamical generators P—, QL J~®L and the kinematical generators J %, J% and
Q*", we find that the densities gy, ., (4.16) depend on the momenta pe™ and the Grass-
mann momenta pg, through new momentum variables ]P’Z’)L and Py 4 defined by the relations

P = pi By — i Ba Pry = pg By — 1y Ba Py ap = Do, B — Po,Ba - (4.26)

This is to say that our densities gy,. , (4.16) turn out to be functions of ]P’Z;L and Py
in place of pa", py, ,

g)\l...)\n - 9)\1...)\n (P5b7 ]P)gb 9 ]P)Q abs /Ba) . (427)

We now summarize our study of the restrictions imposed on n-point densities by kine-
matical symmetries of the Poincaré superalgebra as follows.

i) (Anti)commutation relations between the dynamical generators P—, Q=% J~ &L
and the kinematical generators P™*, PT QT* lead to delta-functions in (4.8), (4.9)
and hence imply the conservation laws for the momenta pg", 3, and the Grassmann
momenta pg, .

ii) (Anti)commutation relations between the dynamical generators P~, Q™% J~ &k
and the kinematical generators J*—, J%L lead to the differential equations given
n (4.19)-(4.25).

iii) (Anti)commutation relations between the dynamical generators P~, Q%% J~F
and the kinematical generators JT™L Q7% tell us that the n-point densities Pings
q[;]R’L, j[;]R’L turn out to be dependent of the momenta IP’Z’,L, Pgqp (4.26) in place of

the respective momenta pff ’L, Do, -

iv) Using the conservation laws for the momenta pZ, 3, it is easy to check that there are
only n — 2 independent momenta P% (4.26). For example, for n = 3, there is only
one independent P¥ (see relations below). The same holds true for the momenta P,
and Pabg.
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5 Kinematical and dynamical restrictions on cubic vertices and light-
cone gauge dynamical principle

We now restrict our attention to cubic vertices. First, we represent kinematical JT—, J#¢
symmetry equations (4.19)-(4.25) in terms of the momenta Py and Pug. Second, we
find restrictions imposed by dynamical symmetries. Finally, we formulate light-cone gauge
dynamical principle and present the complete system equations required to determine the
cubic vertices uniquely.

Kinematical symmetries of the cubic densities. Taking into account the momentum
conservation laws

pr+ps+p3 =0, pr+ps+p5=0, Bi+PB2+P83=0, pg +po, +po, =0, (5.1)

we verify that ]P’fQ’L, IP’géL, IP’gl’L and Grassmann momenta Pg19, Pyog, Pg31 are expressed in
terms of new momenta P%%, Py,

Piy" =Py = Pyi" = P°, Pg12 = Ppoz = Po31 = Py, (5.2)

where the new momenta P™* and Py are defined as

1 y 1 5
Pr=g > fumi, Pr=2 > Bari,
a=1,2,3 a=1,2,3
1 . .
Py =3 > Bapo. Ba = Bat1 = Bavz, Pa = Parts- (5-3)
a=1,2,3

We find it convenient to use the momenta (5.3) because these momenta are manifestly
invariant under cyclic permutations of the external line indices 1,2, 3. Therefore, using the
simplified notation for the densities,
- _ - —R,L _ _—R,L -—R,L __ .—R,L (5 4)
Prs) = Pxydors 0 i3 = Darorgo JiBr T I :
we note then the our cubic densities py, q[;]R’L, and j[g_]R’L are functions of the momenta
Ba, P®E, the Grassmann momentum Py and the helicities A1, A2, Ag,

p[g] = p)_\l)\g)\g (]P)R’ PL’ P‘g? /Ba) ) q[g]RJJ = q;;f\fA;; (PR, ]P)L7]P)97 /8(1) ’
e = dayaaas (P PY, Py, Ba) - (5.5)

Thus we see that the momenta py” and pg, enter cubic densities (5.5) through the respec-
tive momenta P™L and Py. This feature of the cubic densities simplifies considerably the
study of kinematical symmetry equations presented in (4.19)-(4.25). We now represent
equations (4.19)—(4.25) in terms of cubic densities (5.5).

J T~ -symmetry equations. Using representation for cubic densities in (5.5), we find
that, for n = 3, equations (4.19), (4.20) take the form

3

(I —1)py =0, <J+— - 2) a7t =0, (I =1)jy"" =0, (5.6)
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where J*~ stands for an operator defined as

3 1
J""_ = NIP’R + NPL + §N]11>9 + Z (,Baaﬁa =+ 26/\a) s (57)
a=1,2,3
N]P:R = IP’REJPR s N]P:L = IPL(‘)PL ) Npg = Pgaﬂmg . (58)

JRE-symmetry equations. Using the representation for the cubic densities in (5.5), we
find that, for n = 3, equations (4.21)—(4.25) take the form

_ 1\ _ 3\ _
(I + Dp = 0, (JRL - 2) G =0, <JRL " 2) 95 =0,
UG =0, (A% +2)j5f =0, (5.9)
where J* stands for an operator defined as

1
J* = Npr — Npr — SN, + My, My = > A, (5.10)

and we use the notation in (5.8).

We now proceed with studying the restrictions imposed by dynamical symmetries.

Dynamical symmetries of the cubic densities. In this paper, restrictions on the
interaction vertices imposed by (anti)commutation relations between the dynamical gener-
ators will be referred to as dynamical symmetry restrictions. We now discuss restrictions
imposed on cubic interaction vertices by the dynamical symmetries of the Poincaré super-
algebra. In other words, we consider the (anti)commutators

[P, J ™ =0, [P~,Q ™" =0, (5.11)
[J~ % J7 =0, Q™" J7 =0, Q™™ J =0, (5.12)
{QiRv QiL} =—-FP ) {QiRa QiR} = 0’ {Qil‘v QiL} =0. (513)

Let us first consider the commutation relations given in (5.11). In the cubic approximation,
commutation relations given in (5.11) can be represented as

[Pys T + [Py, Jy 1 = 0, [P, Q"] + [P, Q"] = 0. (5.14)

Using equations (5.14), we find the following representation for the densities q[g]R’L and
j[g]R’L in terms of the cubic vertex p,

_ Py _ _ es _
G = ~pr P G = ﬁaﬂ”ep[s] ) (5.15)
- B 1 r — - [
I = “papr? P Jel = "prprd P (5.16)
e=(—)B, Ex= ) e, (5.17)
a=1,2,3
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where J™%, J~ stand for operators defined by the relations

_. PF 1
J = F —N/j“rM)\—f—gE)\_’_% 5 (518)
P 1
Jh= 7 <—N5 — M, + QEHé) : (5.19)
1 .
Ng = 3 Z BaBa0s, B = B1B2083, (5.20)
a=1,2,3
1 . 1 .
Mi=% Y Bada, Exyi=2% Y. Baey i1, (5.21)
3 a=1,2,3 : 3 a=1,2,3 :

while ey appearing in (5.17), (5.21) is defined in (2.29).

Using expressions for q[;]R’L and j[3_]R’L given in (5.15), (5.16), we verify that all the
kinematical symmetry equations for q[;]R’L and j[_g]R’L given in (5.6), (5.9) are satisfied
automatically provided the vertex py satisfies the kinematical symmetry equations for p,
in (5.6), (5.9). Using expressions for ¢ and j;™" given in (5.15), (5.16), we also verify
that, in the cubic approximation, all (anti)commutation relations given in (5.12), (5.13)
are satisfied automatically. This is to say that, in the cubic approximation, we checked
that the kinematical symmetry equations for py in (5.6), (5.9) and equations (5.15), (5.16)
provide the complete list of equations which are obtainable from all the (anti)commutation
relations of the Poincaré superalgebra.

Light-cone gauge dynamical principle. The kinematical symmetry equations for py
in (5.6), (5.9) and the equations (5.15), (5.16) do not allow to determine the cubic vertex
Pz unambiguously. In order to determine the cubic vertex py unambiguously we should
impose some additional restrictions on the cubic vertex py. We will refer to such addi-
tional restrictions as light-cone gauge dynamical principle. The light-cone gauge dynamical
principle is formulated as follows:

i) The densities p, q[;]R’L, jg]R’L are required to be polynomial in the momenta P#, P*;
ii) The cubic vertex Ppg 1s required to satisfy the restriction
pg # PHPEW, W is polynomial in P, P (5.22)

The restriction on the vertex pg in (5.22) is related to the freedom of field redefi-
nitions. We recall that, upon field redefinitions, the vertex py; is changed by terms
proportional to P#P* (see, e.g., appendix B in ref. [20]). This implies that ignoring
requirement (5.22) leads to cubic vertices which can be removed by field redefini-
tions. As we are interested in the cubic vertices pg, that cannot be removed by field
redefinitions, we impose the requirement (5.22). Note also the assumption i) is the
light-cone counterpart of locality condition commonly used in gauge invariant and
Lorentz covariant formulations.
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Complete system of equations for cubic vertex. To summarize the discussion in
this section, we note that, for the cubic vertex given by

Py = p)TIAQ,\S(PR7PL7PGaBa) (5.23)

the complete system of equations which remain to be analysed is given by

(It — Dpg =0, kinematical Jt~ — symmetry; (5.24)
(I +1)pg =0, kinematical J™" — symmetry; (5.25)
ot Pf]P’L g, dynamical P~, J ™" symmetries ; (5.26)
- Py _ - es _ . o .
Q" = —pr P 9" = ﬁé‘%p[g] , dynamical P~, Q™" symmetries ; (5.27)
Light-cone gauge dynamical principle:
P > q[;]R’L , j[;]R’L are polynomial in P, P*; (5.28)
pg 7 PPEW, W is polynomial in P# P*; (5.29)

Equations given in (5.24)—(5.29) constitute our basic complete system of equations which
allow us to determine the cubic vertex py and densities q[g]R’L, j[;]R’L uniquely. Differ-
ential operators J*—, J® J~RL and quantity e entering our basic equations are given
n (5.7), (5.10), (5.18), (5.19) and (5.17) respectively. Considering the super Yang-Mills
and supergravity theories, we can verify that our basic equations in (5.24)—(5.29) allow us
to determine the cubic interaction vertices of those theories unambiguously (up to coupling
constants). It seems then reasonable to use our equations for studying the cubic vertices
of arbitrary spin supersymmetric theories.

6 Cubic interaction vertices

We now present the solution to our basic equations for densities given in (5.24)—(5.29).
General solution for the cubic interaction vertex py , ,., the supercharge densities
1A2A3
q;ﬁ\’;}\g, and the angular momentum densities j;li’;)\s we found is given by (for some details
of the derivation, see appendix C)

p;1)\2/\3 = V>\1>\2/\3 + V/\1/\2)\3 s (6.1)
S
V)\1)\2)\3 - CAI)\Q)G (PL)M/\—H H Ba A 2%a 5 (6.2)
a=1,2,3
_ _ Ag—1
Vi, = CIA2a(pR) ™M=z py [T o 2™, (6.3)
a=1,2,3
— A1 A2\ M —a —*6 a
Uagrg = OB (PH)YA Py H Ba e (6.4)
a=1,2,3
q*L _ C)\l)\z)\g ]PR —M, - % H 6 at+1l— (6 5)
)\1)\2)\3 a ) .
a=1,2,3
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- —Ag—1 “
Infion, = —20M M PMY T 8™ 2™, (6.6)
a=1,2,3
— = _ _3 Ag— 2 "
Tniong = 2000 8M (PR M Ry T B2, (6.7)
a=1,2,3

where, in (6.1)—(6.7) and below, we use the notation

My= > Ao, MAzé Y Badan  Ex= D e, (6.8)

a=1,2,3 a=1,2,3 a=1,2,3

while the symbol ey and the momenta P%*, Py, 3, are defined in (2.29) and (5.3) respec-
tively. Quantities CMA223 0MA22s appearing in (6.1)-(6.7) stand for coupling constants
which, in general, depend on the helicities A1, A2, A3. These coupling constants are non-
trivial for the following values of the helicities:

CAtr2As £ () for M, >0 and M, - integer |, (6.9)
CrA2As £ () for M, < —% and M) - half-integer |, (6.10)
CMA2Asx (_)M/\+€A2+1C_«f)\1*%,*)\2*%7*>\3*%. (6.11)

Let us discuss restrictions in (6.9)—(6.11) in turn.

i) Restrictions on C**223 and M, in (6.9) are obtained by requiring the densi-
ties (6.2), (6.4), (6.6) to be polynomial in P*, while restrictions on C**243 and M,
in (6.10) are obtained by requiring the densities (6.3), (6.5), (6.7) to be polynomial
in PX.

ii) Restrictions for M to be integer in (6.9) and half-integer in (6.10) can also obtained
by requiring the Hamiltonian Py to be Grassmann even. Namely, taking into account
the Grassmann parities of the vertices Vi, x, a5, Vi 20,05, the integration measure
dl'ty, and product of the three superfields ©3 ,,,, (4.15),

GP(V)\L)\%)\S) =0, GP(‘_/}\L/\Q,)\S,) =1, GP(dI‘%])) =0, GP( §1A2A3) =Ej,
(6.12)
and requiring GP (P ) = 0, we get the restrictions
GP(dTT8 03, 3,0, VI 2%) =0, GP(dTH O3, 1,0, V%) =0, (6.13)

which amount to restrictions for M to be integer in (6.9) and half-integer in (6.10).

iii) Requiring the cubic Hamiltonian Py to be hermitian and using relation (B.13) in
appendix B, we get the restrictions for coupling constants given in (6.11).

Expressions (6.1)—(6.3) provide the momentum superspace representation for all cubic
vertices, while relations in (6.9)—(6.11) provide the classification of such vertices.
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Incorporation of internal symmetry. Let the algebra o(N) be an internal symmetry
algebra. We incorporate an internal symmetry into our model in the following way.

i) In place fields ¢y, ¥y (2.17)—(2.19), we introduce fields ¢§\b, w;b, while, in place of the
superfields ©y, ©3 (3.6), (3.20), we introduce superfields @"j\b, @}*\ab, where indices a, b
are matrix indices of the o(N) algebra, a,b = 1,...,N. By definition, new superfields
satisfy the algebraic constraints

O = (e, R = (- Emei, (6.14)

where ey is given in (2.29). Using the relation (—)>**** = 1, we verify that con-
straints (6.14) are consistent. The superfields ©3" and ©32" are not independent of
each other. By analogy with (3.21), we have the relation

O (—p, —pp) = (=) O (p, po) - (6.15)

From (6.14), we learn that the ©3° is symmetric in ab for even s in (3.6), while,
for odd s in (3.6), the ©3 is antisymmetric in ab. Also, from (6.14), we learn that
the ©32° is antisymmetric in ab for even s in (3.20), while, for odd s in (3.20),
the @jab is symmetric in ab. Note that relations (6.14) imply that ¢f\b, ¢ib are
symmetric in ab for even s in (2.17)-(2.19), while for odd s in (2.17), (2.18) the
»2P, wib are antisymmetric in ab. The hermicity conditions (2.22) take the form

(6 (@)T = 62 (=p), WLP)T =¥ (~p).
ii) In (3.22), the expressions 617(1/2)6,\ are replaced by @;af’(l/m@ib, while, in the cubic

. . b b
vertices, the expressions ©3 ©3 O} are replaced by the trace ©37°00°07.

iii) In place of graded commutator (3.23), we use

€ 1

o — +3 i
O, 0). 057 0/, )} = LB 5 0 — )60 — 1),y + (6:16)
) 1 , / ’ / T W
Hib,a b _ 5(5% PL (_)A—%e,\éab §ba ) Hib’a b Hf\b ce Hibvce, (6.17)

where the second relation in (6.17) is verified by using the relation (—)**~¢» = 1.
Cubic Hamiltonian in terms of component fields. To make our results more trans-
parent and pragmatic we now discuss an explicit representation for the cubic Hamiltonian
Py (4.2) in terms of component fields (2.17)-(2.19) and demonstrate explicitly powers of
momenta in our cubic vertices. To this end we restrict our attention to interaction of three
superfields ©3 , ©3,, O3, and represent the corresponding cubic Hamiltonian Py (4.2)
with py . (6.1) as follows
1A2A3

P[S_](@AUGAQG))@) = /drﬁ] C()\1>\2>\3‘79’\1’6’\28’\3 + h.c. (618)

C)\1)\2)\3v@)\1@)\2@>\3 = /dl“fﬁ @’;1)\2>\3V>\1>\2)\3’ (619)
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where the integration measures dI'fy, dI'5 are obtained by setting n = 3 in (4.8), (4.9). It is
the vertex VO 192293 (6.19) that we refer to as the vertex in terms of the component fields.
From (6.2), (6.19), we see that the vertex VO 9295 is nontrivial if and only if the
Towa.-term is Grassmann even. Classification of all such ©3 , ', -terms may be found in
1A2A3 1A2A3
appendix B (see relations (B.14)-(B.17)). Here we present those Grassmann even O3 , .-
terms given in (B.14)—(B.17) that respect restriction on My (6.9). We classify all relevant
Grassmann even O3 ) , -terms as follows:

Cases lab: <I>: 7%@)* 1L, Ve e, Ve (6.20)
Cases 2abc : @:l_%(b; 1<I>_53 , <I>:1_l\1':2\11*_s3_% N R (6.21)
Cases 3abc : @:1 1(1)*—52‘1’* ey R AR \I/;‘I‘I/iSQ_%\IfiSS_% . (6.22)

Now, all that remains is to plug expressions for ®* ,, ®*, and Wg, ¥* , (3.16)(3.18)
2 2

into (6.19) and make integration over the Grassmann momenta py,, pa,, Pos- In order to

*
—S)

simplify our presentation of the vertices VO21©29%  we collect the fields ¢T/\ and 1/1; into
a field 91\ = (;SK, ¢}L\ and use the following shortcut for a product of the component fields

6}, (p1)6}, (p2)6}, (p3)

VO 00,00, — L i 1
/Bi\l+§eh Bé\?JrieM ﬁg‘3+§e>\3

for A\i + A2+ A3 > 0. (6.23)

Now, using notation (6.23), we present expressions for the vertices VO©%2®x (6.19)
corresponding to the cases (6.20)—(6.22) in turn. In due course we show explicitly powers
of momentum P* appearing in the vertices.

Cases lab. Vertices of powers (PL)s1752¥53 and (PL)sitsztsstl,

— ( V¢s1¢92'¢’93 +V¢Sl w53+%_’_v¢31_%¢32¢33+%>(]:F)L)81+S2+83’

s1 > 1, 52 >1, s3>0, (1a) (6.24)
Vs PsyWsy — ( 62+§ $3+% -V 61+1w‘2 S5+ 34V 61+%waz+%ws3) (PL)31+52+33+1’
S1 Z O S9 =~ > 0 S3 Z O, (lb) (6.25)

Cases 2abc. Vertices of powers (PF)%1752753 and (Pr)sits2—ss+1;

Vq)sl—%q)-*z—%q)’% — ( V51 Ps0b—s3 +V¢Sl <2—l¢—e3+2 4V Gl—l¢52¢—53+%>(]:E])L)51+827537
s1>1, s92>1, s3>1, S1+S9s—s3>1, (2&) (626)
Vésl—%\PSQ\P—sB—% — <V¢s1’¢192’¢—s3 _;'_Vg{)*l 2+%w* 3** _V¢s1*lwsz+é¢_ ) (]}1)11)514’52*537
S1 > 1 82>0 8320, 81-’-82—8321, (2b) (627)
V‘Psl‘l’sz‘ILSS _ ( s1+3 52+%¢*53 +sz 52+%¢7s3+% _V¢sl+%¢82¢ﬂ3+%) (IP)L)31+$2—33+1’
51 >0, s9>0, s3>1, s1+89—53>0. (2c) (6.28)
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Cases 3abc. Vertices of powers (PF)s1=52753 and (PF)st—s2—ss+l;

& 1P v 1Y 1 ¢

AVATE Dt b e (V¢sl¢ sy ¥— 53+V¢51 —sa+dVess-t s 317%’¢752+%w_53)(]P;L)Slf.sgfsg,’
51> 1, 52>1 s3>0,  s1—sa—s3>1, (3a) (6.29)
VVs1Posp sy ( 7s2+§¢753+%_v 51+2¢ 52¢753+2 +V sl+%¢752+1¢753)(]P>L)51 so— 55+1
s1 >0, s2>1, s3>1, 81 —82—53>0, (3b) (6 30)
v 1Yol _(szlw,mw,w+V%1+1¢7927M 53+V'¢)sl+%w*52w7537%)(PL)slfsgfsg,
s1 >0, s2>0, s3>0, s1—82—s83>1. (3¢) (6.31)

To summarize, our superspace cubic vertices given in (6.1) with restrictions (6.9)—
(6.11) provide the full list of cubic interaction vertices that can be constructed for integer
and half-integer spin massless N = 1 supermultiplets. Representation of our vertices (6.1)
in terms of the component fields is given in (6.24)—(6.31).5

n (6.24)-(6.31), we classified our vertices focusing on the powers of the momentum P*
appearing in the vertices. Focusing on the number of integer spin supermultiplets (s, s — %)
(superfield ®) and half-integer spin supermultiplets (s + %, s) (superfield ¥) appearing in
the vertices, we can reclassify our vertices. Namely, focusing on the number of superfields
®, U we can symbolically represent our classification (6.24)—(6.31) as follows.

Three integer spin supermultiplets :  ®PP-vertices in (2a) (6.32)

Two integer and one half-integer spin supermultiplets : ®®W-vertices in (1a)(3a)(3b) (6.33)
One integer and two half-integer spin supermultiplets : ®WWU—vertices in (2b)(2c) (6.34)
Three half-integer spin supermultiplets : W W-vertices in (1b)(3c) (6.35)

To illustrate our result let us consider particular cases from the list in (6.24)—(6.31).

i) For the particular case s; = 0, sa = 0, s3 = 0, the vertex (6.25) takes the form
V¥oloo _ (Vw%w% A A vas wlw‘)) Pt WZ susy model. (6.36)

Vertex (6.36) provides light-cone description of the well known supersymmetric WZ
model.

ii) For the particular cases s; = 1, s = 1, s3 = 1 and s; = 2, so = 2, s3 = 2,
vertex (6.26) provides light-cone gauge description of cubic vertices of the respective
super Yang-Mills and supergravity theories,

vt o (—V¢1¢1¢—1 +VE0-3 +V¢%¢32¢*%) P* super YM theory; (6.37)
ATAE A (—V¢2¢2¢*2 TRVAGE 08 IR vas Aol 3) (P*)?,  supergravity; (6.38)

iii) If, for the particular cases s; = 1, so = 1, s3 = 1 and s1 = 2, so = 2, s3 = 2, we
consider vertices that involve only integer spin supermultiplets (6.26), then we do

5In the framework of Lorentz covariant approach, the recent extensive study of cubic vertices of higher-
spin N = 1 supermultiplets by using gauge invariant supercurrents, may be found in refs. [25]-[30]. Lorentz
covariant superfield formulations of free N = 1 supermultiplets in 4d flat space were studied in refs. [31, 32].
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not find vertices with three momenta for spin-1 fields and vertices with six momenta
for spin-2 fields. This reflects the well known fact that, by using only integer spin
supermultiplets (1, %) and (2, %), it is not possible to build supersymmetric extensions
of F,, terms and R? terms, where Fy s and R stand for the respective field strength
of YM field and Riemann tensor. The same happens for cubic vertices that involves
only the half-integer spin supermultiplets (6.25), (6.31). It turns out however, that, if,
for the particular cases s1 =1, s =1, s3 = 1 and s1 = 2, s9 = 2, s3 = 2, we consider
vertices that involves both the integer and half integer spin supermultiplets (6.24),
then we find vertices with three momenta for spin-1 fields and vertices with six
momenta for spin-2 fields given by

epvy +V¢%¢1w%) (P*)?,  F,; super YM-like theory; (6.39)

¢2¢%w% +V¢%¢2w%) (]P’L)G, R? supergravity-like theory; (6.40)

AVAE 1:(_V¢1¢1¢1+V
vV 5 3 :(7v¢2¢2¢2 T V4

Thus, at least in the cubic approximation, by using two integer supermultiplets (1, %)
and one half integer spin supermultiplet (%, 1), we can build supersymmetric extension
of F,,~terms (6.39), while, by using two integer supermultiplets (2, %) and one half
integer spin supermultiplet (%,2), we can build supersymmetric extension of R3-
terms (6.40).

Interrelations between number of derivatives in light-cone gauge and covari-
ant approaches. To make our results more useful and helpful for those readers who
prefer Lorentz covariant formulations we now discuss a correspondence between number
of momenta (transverse derivatives) appearing in our light-cone gauge cubic vertices and
number of momenta (derivatives) appearing in the corresponding Lorentz covariant theory.
Using shortcuts B and F' for the respective massless bosonic and massless fermionic fields,
we write schematically a cubic Lagrangian of Lorentz covariant theory L., and related
light-cone gauge cubic Lagrangian L. as follows

Leoy = PXBEBBBB + PEFFeFFRB, (6.41)
L. = PKEss BBB + PEFre FFB. (6.42)

In (6.41), P stands for momenta (derivatives), while K55 and K5 denote numbers of
momenta P (derivatives) entering cubic vertices in metric-like Lorentz covariant formula-
tion. Accordingly in (6.42), the P stands for the momenta P* P* (transverse derivatives),
while KX, and K., denote numbers of momenta P (transverse derivatives) entering
our light-cone gauge cubic vertices. We note the following relations for the numbers of the
momenta (derivatives)®

Ki5s = Kfpp Ki%p = Kipp — 1. (6.43)

Now using (6.43) and our classification for the light-cone gauge vertices, we propose a clas-
sification of covariant vertices. We classify covariant vertices focusing on number of integer

SRelations (6.43) are valid for metric-like Lorentz covariant formulations that do not involve auxiliary
fields. In general, for Lorentz covariant formulations that involve auxiliary fields, relations (6.43) might
break down.
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spin supermultiplets (s, s — %) (superfield @) and half-integer spin supermultiplets (s+ %, s)
(superfield W) appearing in the vertices. This is to say that we represent the classification
of light-cone gauge vertices (6.24)—(6.31) in terms of the corresponding covariant cubic

vertices as follows:

Three integer spin supermultiplets (PP — vertices) :

1 1 1
<81,$1—2)-(82,82—2>-<S3,53—2>, 31217 82217 5321a

(2a) Kgpp=s51+52—53, Kppp=s1+s2—s3—1, s1+s2—s3>1; (6.44)

Two integer and one half-integer spin supermultiplets (P®W¥ — vertices) :

1 1 1
<31,31—2>-(32,32—2)-<33+2,33>, s1>21, s0>1, 53>0,

(la) Kgpp=s1+s2+s3, Kppgp=s1+sa+s3—1, s1+s2+s3>1, (6.45)
(3a) Kgpp=s51—s2—53, Kipp=s1—S2—s3—1, s1—s2—s3>1,; (6.46)
1 1 1
<51+2’81>_<82782_2>_<837S3_2>7 81207522175321;
(8b) Kyppp=s1—52—83, s1—82—532>0, (6.47)

One integer spin and two half integer supermultiplets (DWW — vertices) :

1 1 1
<31a51_2>'<52+2552>'<83+2783>7 81217 82207 532()’

(Zb) K%OEB:81+SQ*83, K%‘O%B:Sl+82*53*1, S1+8y—s3>1, (648)
1 1 1
s1+z,81)-|s2+ .82 )-(583,83—= |, 120,85 >0, s3>1;
2 2 2
(2¢) Kyppp=s1+s2—s3, s1+s2—53>0; (6.49)

Three half-integer spin supermultiplets (VWW — vertices) :

1 1 1
<81+2781>'<S2+2552>'<83+2783>7 S1 207 82207 532[)’

(1b) Kipp =s1+ s2+ s3, s1+ 59 +53>0, (6.50)
(3c) Kgpgp=s1—952—53, Kppg=s1—S2—83—1, s31—83—383>1. (6.51)

In the left column in (6.44)—(6.51), we use the labels to show explicitly the correspondence
between the classification for covariant vertices in (6.44)—(6.51) and the one for the light-
cone gauge vertices in (6.24)—(6.31).

On problem of manifestly Lorentz covariant formulation of light-cone gauge ver-
tices. Vertices given in (6.44)—(6.46), (6.48), (6.51) provide the supersymmetric extension
for all cubic vertices for massless bosonic fields in the 4d flat space presented in ref. [19].
Note however that a manifestly Lorentz covariant formulation of some light-cone gauge ver-
tices in ref. [19] is not available so far. Therefore a manifestly Lorentz covariant formulation
of some our supersymmetric light-cone gauge vertices is not easy problem. For the reader
convenience, we now discuss those vertices in (6.44)—(6.46), (6.48), (6.51) that, as we expect,
can be converted into manifestly Lorentz covariant form in relatively straightforward way.
To this end, let us consider cubic vertex for massless bosonic spin s1-, so-, s3- fields having
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k powers of derivatives. Results in refs. [20, 33] imply that, in 4d space, if k take the values
k=s,s— 25min, S =51+ 83+ S3, Smin = min(sy, sg, $3) , (6.52)

then the cubic vertex can be represented into manifestly Lorentz covariant form.” Now,
making assumption that bosonic vertices with k as in (6.52) allow manifestly Lorentz
covariant supersymmetric extension, we can fix vertices that can straightforwardly be
converted into manifestly Lorentz covariant form by considering the equation

Kggp =k, (6.53)

where values of k are given in (6.52), while values of K%Y are given in (6.44)-

(6.46), (6.48), (6.51). For some vertices, equation (6.53) imposes additional restrictions
on allowed values of sy, s9, s3. If a vertex satisfies equation (6.53), then such vertex
can be represented into manifestly Lorentz covariant form, while, if a vertex does not
satisfy equation (6.53), then manifestly Lorentz covariant formulation of such vertex is
not easy problem. We now present result of analysis of solutions of equation (6.53) for the
vertices (6.44)—(6.46), (6.48), (6.51).

i) Vertices (6.44), (6.48) with the additional restrictions s3 < s1, s3 < sa can be rep-
resented in manifestly Lorentz covariant form, while manifestly Lorentz covariant
formulation of all remaining vertices in (6.44), (6.48) is not easy problem.

ii) All vertices in (6.45) can be translated into manifestly Lorentz covariant form.
iii) Manifestly Lorentz covariant formulation of all vertices in (6.46) is not easy problem.

iv) Vertices (6.51) with the additional restrictions sy = 0, s3 = 0 can be converted into
manifestly Lorentz covariant form, while manifestly Lorentz covariant formulation of
all remaining vertices in (6.51) is not easy problem.

Vertices (6.47), (6.49), (6.50) describe arbitrary spin WZ-like supersymmetric models.
We expect that manifestly Lorentz covariant formulation of all vertices in (6.47) is not easy
problem, while all vertices in (6.50) can be translated into manifestly Lorentz covariant
form. It is likely that vertices (6.49) with additional restrictions sz < s1, s3 < sg can
be represented into manifestly Lorentz covariant form, while manifestly Lorentz covariant
formulation of all remaining vertices in (6.49) is not easy problem.

Motivation for study of both the integer and half-integer spin supermultiplets
in flat space. We can try to restrict our attention to the study of supersymmetric higher-
spin theory that involves only integer spin supermultiplets. It turns out that such theory
does not exist in the flat space. Our arguments are as follows. Consider vertex (6.26) with

“In ref. [20], we noted that parity-even cubic vertices for light-cone gauge massless fields in RA-1L,

d-arbitrary, lead to two parity-even vertices with k as in (6.52) when d = 4. In ref. [33], it was observed
that Lorentz covariant parity-odd cubic vertices for on-shell massless field in 4d have also k as in (6.52).
Manifestly Lorentz covariant description of all parity-even cubic vertices for off-shell massless fields in
dimensions d > 4 is given in refs. [34-38].
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1 =8, So =8, 83 =25, s> 2. Inref. [42], for the case of bosonic theories, we demonstrated
that in order to respect some restrictions on such vertex which appear at the quartic order
one needs to use, among other things, the vertices of powers (PL)51*5253  From the ex-
pressions in (6.24), we see however that, in our supersymmetric theory, such vertices can be
build if and only if we use both the integer and half-integer spin supermultiplets. Thus, the
N = 1 supersymmetry in higher-spin theory in the flat 4d space requires the use of both the
integer and half-integer spin supermultiplets. In other words, we should use the chain of
fields that involves each helicity twice. Appearance of such chain of fields in the supersym-
metric higher-spin theory in AdSs space is the well known fact [39, 40] (see also ref. [41]).

Finally, we conjecture that the solution for coupling constants C*1243 in refs. [42, 43]
can be generalized to the case of N = 1 supersymmetric higher-spin theory considered in

this paper as follows
g(—)e*2kA1+A2+A3
- , 6.54
(A1 + X2+ A3)! (6.54)

where e, is defined in (2.29). In (6.54), the ¢ is a dimensionless coupling constant, while &k

C/\1 A2z

is some dimensionfull complex-valued parameter in general. The g and k do not depend on
the helicities. For the supersymmetric theory with hermitian Hamiltonian, the constants
CM*223 are fixed by the relation in (6.11), while, for supersymmetric generalization of
the chiral higher-spin theory in ref. [44], we should set C*1*2*3 = (. For the bosonic
truncation of our supersymmetric model, solution (6.54) amounts to the one in refs. [42, 43].
Solution (6.54) can be used for discussion at least the following two supersymmetric higher-
spin field models in the flat 4d space.

i) Field content of the first model is given in (2.17)-(2.19) and described by the su-
perfields ©, with all values A in (3.5). For this model, the superfields O, (3.5) are
matrices of the internal symmetry o(N) algebra denoted as @ib. By definition, the
%" are subject to the algebraic constraint in (6.14).

ii) In the second model, the superfields ©, are singlets of the o(N) algebra and we use
the set of superfields given by

> @6, (6.55)

A—1e\€2Z

where the summation is performed over those values of A (3.5) that satisfy the restric-
tion (—)’\_%eA = 1. In terms of the superfields ®y, ¥y, (3.6), the set of superfields
in (6.55) can be presented as

oo o
PBLEK ST PR BN SHTEC) Ay (6.56)

n=1 n=0

In terms of the component fields, using notation (s,s — 1) and (s + 1,s) for the

respective supermultiplets in (2.17) and (2.18), (2.19), we represent the field content
of the second model as

> 1 > 1
D (2n.2n—= ]+ @ (2n+=,2n) . 6.57
I O R 05
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Appearance of such two models in the N = 1 supersymmetric higher-spin theory in
AdS space is the well known fact. We note that, in terms of the superfields ©3, @3,
Uy, relations (6.55), (6.56) take the form

> a@e;, (6.58)

Mlene2z
0 e
n=1 n=0

7 Conclusions

In this paper, we used light-cone gauge formalism for studying the N = 1 integer spin and
half-integer supermultiplets in the flat 4d space. For such supermultiplets, we developed
the light-cone gauge formulation in terms of the unconstrained superfields. We used our
superfield formulation to build the full list of the cubic vertices that describe interactions
of massless integer and half-integer spin supermultiplets. Taking into account powers of
momenta appearing in our cubic interaction vertices, we concluded that the integer spin
supermultiplets alone are not enough for the studying the full theory of massless N = 1
interacting supermultiplets in the flat 4d space. For the studying the full N = 1 super-
symmetric theory of higher-spin massless fields in the flat 4d space one needs to use both
the integer and half-integer spin supermultiplets. In other words, as compared to bosonic
theory of massless higher-spin fields, in supersymmetric theory of higher-spin fields, one
needs to use the double set of fields (each helicity occurs twice). In this respect, the super-
symmetric theory of higher-spin massless fields in the 4d flat space and the one in AdSy
space are similar. We believe that results in this paper might be helpful for the following
generalizations and applications.

i) In this paper, we studied supersymmetric massless higher-spin theory in the flat 4d
space. Generalization of our results to the case of supersymmetric massive fields
in the flat 4d space could be of interest. We note that all parity invariant cubic
vertices for massless and massive arbitrary spin fields in the flat space R¥~b1, d-
arbitrary, were built in refs. [20, 21, 38]. Namely, in refs. [20, 21|, we built all
parity invariant cubic vertices for massless and massive bosonic and fermionic fields
in the framework of light-cone gauge formalism, while, in ref. [38], we built all parity
invariant cubic vertices for massless and massive bosonic fields in the framework of
BRST-BV approach.® We expect that light-cone gauge cubic vertices in refs. [20, 21]
will be helpful for the studying supersymmetric theories of massless and massive fields.

8In the framework of various Lorentz covariant approaches, cubic vertices for massless bosonic fields were
studied in refs. [34-37]. Study of Fermi-Bose couplings in the framework of BV approach may be found in
refs. [45, 46]. Fermi-Bose couplings of fields in R** by using the light-cone gauge helicity basis were studied
in ref. [47]. Interesting formulation of fermionic fields is developed in ref. [48]. Discussion of various aspects
of interacting fields in the framework of BRST approach may be found in refs. [49, 50]. In the framework of
Lorentz covariant approach, parity-odd cubic vertices for higher-spin massless fields in R*! are considered
in ref. [33].
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Discussion of supermultiplets in various dimensions may be found, e.g., in refs. [51,
52]. Study of N = 1 higher-spin massless supermultiplets via BRST approach may be
found in ref. [53], while the N = 1 massive supermultiplets are investigated in ref. [54].

ii) In this paper, we restricted our attention to supersymmetric massless higher-spin
theory in the flat 4d space. Gauge invariant formulation of the higher-spin theory
in AdS space is well known [55]. Various aspects of supersymmetric higher-spin
gauge field theory in AdS space have extensively been studied in the past (see, e.g.,
refs. [39-41, 56, 57]). Generalization of our results to the case of light-cone gauge
supersymmetric massless higher-spin fields in AdSy space could of great interest.
Light-cone gauge cubic interaction vertices of higher-spin massless fields in AdSy
space have recently been obtained in ref. [58]. We believe therefore that result in
this paper and the one in ref. [58] provide a good starting point for the studying

light-cone gauge supersymmetric massless fields in AdS, space.”

iii) In the recent time, there has been increasing interest in the studying various
higher-spin theories in three-dimensional flat and AdS spaces (see, e.g., refs. [66]—[73]
and references therein). We think that the light-cone gauge approach will simplify
considerably the whole analysis of higher-spin massive and conformal fields in
three dimensions.'® The light-cone gauge formulation of massive fields in the flat
space is well known (see, e.g., ref. [14]), while the light-cone gauge formulation of
massive fields in AdSs space was developed in refs. [74, 75]. The ordinary-derivative
light-cone gauge formulation of free conformal fields was developed in ref. [76]. We
expect that use of the light-cone formulation in refs. [75, 76] might be helpful for
better understanding of various theories in three dimensions.

iv) As discussed in ref. [77], the chiral higher-spin model [44] is free of one-loop
divergencies. Also, the general arguments were given for cancellation of all loop
divergencies. Loop diagrams in the chiral higher-spin theory are subset of the ones
in the full (non-chiral) higher-spin theory. Therefore, the result in ref. [77] is a good
sign for the quantum finiteness of full (non-chiral) higher-spin theory. The study
of quantum properties of full (non-chiral) higher-spin in flat space theory may be
found in ref. [78]. We believe that the light-cone gauge superfield formulation of
interacting N = 1 higher-spin supermultiplets suggested in this paper will bring new
interesting novelty in the studying quantum properties of higher-spin theory.
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9We mention also methods in refs. [59-62] which might be useful for analysis of supersymmetric higher-
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refs. [63-65]) could also be of some interest.

10%We recall that higher-spin massless fields do not propagate in three dimensions and these fields are
trivial in the light-cone gauge. Therefore, for higher-spin massless fields in three dimensions, the usefulness
of the light-cone formulation is questionable.
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A Notation and conventions

Grassmann momentum is denoted by pg, while the left derivative w.r.t. the pg is denoted
by 0p,. The integral over the Grassmann momentum py is defined to be [dpgpy = 1.
Hermitian conjugation rules for the Grassmann momentum pg, the derivative J,,, and
integration measure dpy are assumed to be as follows

ph=po. O, =0y, dpy=—dpy. (A.1)
Ghost parities of the py, 0p,, and measure dpy are given by
GP(pg) =1, GP(0p,) =1, GP(dpg) = 1. (A.2)

For product of two quantities A, B having arbitrary ghost numbers, the hermitian
conjugation is defined according to the rule (AB)! = BTAT. Various relations for the

Berezin integrals are summarized as
/dp(’ (Opy A)B = (_)6A+1/dp9AapeB7 (A.3)
/dpg (peOp, A)B = /dpgA(l — peOp, ) B, ea =GP(A), eg =GP(B), (A4)

where AB = (—)““BBA. For py,, Op, , and dpg,, a = 1,...,n, entering n-point vertices,
we assume the conventions

{Po. Ops, } = dab /dpe Po, = Oab , (A.5)
{p9a7p9b} = 07 {p9a7 dp@z,} = 07 {6p9a s dpeb} =0 ) {dp9a7 dpeb} =0. (AG)
Grassmann Dirac delta-function is fixed by the relations
Son) <o, ot~ o) 54) = £p0). (A7)
Grassmann Fourier transform and its inverse are defined by the relations
PQP nge
Floo) = [ dohe™ 1w Fou) =8 [ dohe ™5 P (A%)
Using dfﬁ? (4.9), we note the various helpful Berezin integrals for 3-point vertices
/dr PO, P11 = -1, /drﬁ? pQGPO = Ba s a=1,2,3, (Ag)
/ P0.Dp, 1 / Po.Pp,
/dr’[’;; exp< > 5 > = PP, /drﬁg Pgexp( > 6) =Py, (A.10)
a=1,2,3 a a=1,2,3 @

where Py = pg, + pg, + pg, and 8 = (1520s.

B Some properties of superfields

To build interaction vertices we find it convenient to use superfields O3 defined in (3.16)—
(3.19).
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Realizations of Poincaré superalgebra on superfield ©3 in terms of differential

operators.
R, L

PR:_pRa PL:_pLa P+:_57 P_:_p_’ p_E_pﬁp ) (Bl)
J+R:i:L‘+PR—|—apLB, J+L:i:L‘+PL+apRﬁ, (B.2)
JtT =iz PT+ 938+ M7, JE = pRo,r —p 0, + MES, (B.3)
T = —9p"+Dp” + M F—M* pﬁ (B.4)
JF = —0ap" +Opnp~ — MPEE 55 —M+ pﬁ (B.5)

+-_ 1 1 BRI 1
M>\ 2 8 56)\, M}\ :)\—§p08p9, (BG)
= (=) B0y, QT =(=)"*4py, (B.7)

1 _

Q = ( ) )\+7 Bp pea Q b= (_)e)\pLapg ’ (BS)

where the symbol e is defined in (2.29). Explicit realization of the Poincaré superalgebra
on superfields ®* and U* (3.16)—(3.18) is given in the table 2

Using relations given in (3.22), (3.23), we verify the standard equal-time
(anti)commutation relation between the superfields ©3 and the generators

O3, Gigl+ = Gaig, A0}, (B.9)
where Ggig,n are given in (B.1)-(B.8). Note that, by wusing (3.21), the
(anti)commutator (3.23) can entirely be represented in terms of the superfields O3 as

[O3(p, po), O3 (1, D))+ = —%53(10 +1)3(po + Ph)Orn —1 » (B.10)

Hermitian conjugate of superfields and vertices. Hermitian conjugate of the su-
perfield ©Y denoted by @:T can be presented as

(©3(p00))! =5 [ ™67,y (-p.pl). (B.11)
To prove the restriction for the coupling constants (6.11) we introduce the vertices
,U)\l)\z)\g — (]P)L)M/\-f—l H /Ba—)\a—%eka ’ 17)\1/\2/\3 _ (IP)R)—M)\—% PG H B(i\a—%(i)\a ’
a=1,2,3 a=1,2,3
(B.12)

where M), is defined in (6.8). Using (A.10), (B.11) considering integer values of My, we
get the relation

T

_ ()MA“Az“/dFm@*Al L @—M—* “he—3 X3 (B.13)

T R e

Using (B.13), we see that, requiring the cubic Hamiltonian P to be hermitian, we get the
restrictions for coupling constants given in (6.11).
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o, P vy v,
Q+R - 6 6109 5 ape /8 81?9 5 81?9
Qrr Po —Po —Po Po
o 50" Do — 5D Do —5D"po 50" Do
ot _pLape pLape pL8p9 _pLape
M+ %pBape - % %pﬁape %peape %peapa - %
L %paape + % s %p9ape 5= %paape s %p98pe + %

Table 2. Realization of supercharges (B.7), (B.8) on superfields (3.16)—(3.18). Realization of
the Poincaré algebra on superfields (3.16)—(3.18) is given by relations (B.1)-(B.5), where the
operators Mj;, M?%% should be replaced by operators M*~, M*® given in this table.

Grassmann even and odd @;Mz)‘s—terms. For n = 3, the Grassmann parity of

Xagng-terms (4.15) is given in (6.12), where E) is defined in (6.8). The ©3 ,,,,-terms

having (—)¥* = 1 are Grassmann even, while the ©% , , -terms having (—)®* = —1 are

Grassmann odd. Using basis of ®*, ¥* superfields (3.20), we now present all Grassmann

even and odd O3, , -terms which are needed for the basis of independent vertices.

Grassmann even ©*3-terms,

O*3_terms :
O*2P*_terms :
O*U*2_terms :

U3 _terms :

Grassmann odd ©*3-terms,

d*3_terms :

O*2P*_terms :

O*U*2_terms :

U*3_terms :

(-)Erx =1 <= M, - integer;
@:1_%@):2_%@*,83 R A (B.14)
NIEC SR P SRIY S0 SORIFURNS 41 S N (B.15)
@:l_%\I’:Z\I'*_sg_% R A G %\If* Lo (B.16)
280 00 \Ilzl\Il*_”_%\Il*_sg_% , (B.17)

(—)Br = -1 <= M, - half-integer;
<I>*_81(I>*_52<I>:3_%, @:1_%@);_%@:3_% , (B.18)
<I>i81<1>i52\11i53_% , <I>*_51<I>:2_%‘11:3, \Il*_sl_%q):?_%@;_% ,

(B.19)

q)isl\I’*_SQ_% Ve, ‘liisl_%\lli”_%@;_% , @:l_%\IJ;\IJ:g , (B.20)
\Il“:SI_%\II*_S2_%\I/"_SS_%, \I/*_Sl_%\I/;‘2 L, (B.21)

where, for ®* superfields, s, > 1, a = 1,2, 3, while, for ¥* superfields, s, >0, a=1,2,3 .

C Derivation of cubic vertex py ,,», (6.1)

We split our procedure of the derivation of the cubic vertex p; (6.1) into the following five

steps.
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Step 1. Requirement in (5.29) implies that the cubic vertex py can be presented as
pp = V (P, Py) + V(P",Py). (C.1)

Step 2. Using the expression for q[g]L (5.27) and requiring the q[;]L to be polynomial
in P# (5.28), we find that V(P*,Py) (C.1) is independent of Py. Using the expression for
qp" (5.27) and requiring the g5 to be polynomial in P* (5.28), we find that V (P*,Py) (C.1)
is degree-1 homogeneous monomial in the Grassmann momentum Py. Thus, we have the
relations

V=V, V=VP,P), (P, —1)V=0. (C.2)

Step 3. Using relations for py in (C.1), (C.2), we find that equations (5.24), (5.25)
and (5.28) amount to the following

Equations for V :

1 1
(NPL +5 5Bt a;gﬁaaﬁa)v =0, (C.3)
(—NPL +M)\+1)V:0, (C.4)
1
(—N/B—M)\+2EA+;>V:0. (C.5)
Equations for V :
1 _
<NPR +2- By 1+ > 5aaﬁa>v =0, (C.6)
? a=1,2,3
1\ -
(N]]:DR + M, + 2>V =0, (C.7)
1 _
(—N5+M,\+2E>\+5>V:0, (CS)

where Npr, Npr and N are defined in (5.8) and (5.20) respectively and we use the notation

1 . 1 .
Mi= ) A Epi= )0 e My = > Bada, Evii=3 > Baerii-

a=1,2,3 a=1,2,3 a=1,2,3 a=1,2,3
(C.9)

We note that equations (C.3), (C.6) and (C.4), (C.7) are obtained from the respective
equations (5.24) and (5.25), while the equations (C.5) and (C.8) amount to requiring the
js and j5 (5.26) to be polynomial in P*, P*. We note also that equations (C.5) and (C.8)
are simply the respective equations J=*V = 0 and J~ 7V = 0, where we use notation
in (5.18), (5.19) .

Analysis of system of equations (C.3)—(C.5) and (C.6)—(C.8) is identical. Therefore to
avoid the repetitions, we consider the system of equations (C.3)—(C.5).
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Step 4. We consider equation (C.4). This equation is solved as
V=@)Mrve v =vO(s, 6y, 6) (C.10)

where a new vertex V(1) depends only on the momenta (1, 32, 83 and the helicities A1, Ao, A3.
Using (C.10), we find that equations (C.3), (C.5) amount to the following two equations
for the vertex V(1.

3 1
°_Z E 1 —
<M)\ + > 2E>\+% —|—a:1235a6@1)v =0, (C.11)

(NB + M), — ;EM;)V(U =0. (C.12)

Step 5. We consider equations (C.11), (C.12). Using relation ey, 1 = 1 — ey, these
2
equations can be represented as

(Mk—i-;e + Z 6085(1)‘/(1) = 07 (N/B + MA—#—%e) V(l) =0. (0'13)
a=1,2,3

Introducing a new vertex V(2 by the relation

1
v —v@ T g, (C.14)
a=1,2,3

we find that equations (C.13) amount to the following respective equations for the vertex
V@,

> Bads, VP =0, NgV@=o0. (C.15)
a=1,2,3

Equations (C.15) tell us that the vertex V) is independent of the momenta 1, B2, S,
V@ = ghrers (C.16)

where C*122%3 is a constant which depends only on the helicities. Collecting relations
in (C.10)-(C.16), we get expression for Vy, ,x, given in (6.2). Repeating analysis above-
given for case of V we find solution to Vi, given in (6.3). Plugging expressions for
Vidoss Vaoas (6.2), (6.3) into (5.26), (5.27), we find expressions for q;f\’j)\s and j;llf\’;/\g
given in (6.4)—(6.7). Note that while deriving expressions for ¢™" (6.4), (6.5) from rela-
tions in (5.27), we used restrictions on € (5.17) given in (6.9), (6.10).
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