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1 Introduction

Recently, twistor-like formulations of tree amplitudes have been introduced for a wide range

of interesting 6D supersymmetric theories based on rational maps [1–3]. Rational maps

had been utilized previously for the study of superamplitudes of 4D and 3D theories [4–7].

In particular, the 6D formulas extend the well-known twistor formulation of the scatter-

ing amplitudes for 4D N = 4 super Yang-Mills (SYM) [8, 9]. In the spirit of the CHY

construction of n-particle scattering amplitudes [10], the formulas can be schematically

summarized in the following form,

An =

∫
dµ6Dn IL IR , (1.1)

where the measure dµ6Dn , which is theory-independent, encodes the general information

of 6D massless kinematics (such as momentum conservation
∑

i pi = 0). Explicitly, the

measure is given in (2.5) (for even n), and it can be viewed as a map from 6D kinematics

to punctures of a Riemann sphere. Due to certain peculiarities of the 6D spinor-helicity

formalism, the construction of the measure based on rational maps treats amplitudes with

an even and an odd number of particles differently.

– 1 –
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The factors IL and IR in the integrand form a left-right double copy that contains

the dynamical information for the specific theory under consideration. For instance, (4.17)

presents the formula describing scattering amplitudes of the world-volume theory of a probe

M5-brane in 11D Minkowski spacetime. As we will review later, analogous formulas were

proposed for various other 6D supersymmetric theories including the world-volume theory

of a probe D5-brane in 10D Minkowski spacetime, 6D maximal SYM, and 6D (2, 2) and

(2, 0) supergravity, as well as 4D N = 4 SYM on the Coulomb branch.

In recent work [11], Geyer and Mason introduced a different formulation of the scat-

tering amplitudes for the aforementioned 6D supersymmetric theories (except for (2, 0)

supergravity). The new formulas are based on “polarized scattering equations”, which

generalize a 4D version of the scattering equations of ambitwistor string theory that was

proposed previously in [12].1 As we commented previously, the formulas based on the ratio-

nal maps describe 6D scattering amplitudes with n even and n odd differently. One of the

nice properties of the formulation based on polarized scattering equations is that the for-

mulas treat the amplitudes with an even and an odd number of particles in the same way.2

In this paper we prove the equivalence of these two seemingly different constructions,

as must be the case if they are both correct. The key observation is that the two formulas

can be viewed as different “gauge choices” of a larger geometric object: the symplectic

(or complex Lagrangian) Grassmannian LG(n, 2n), where n is the number of scattering

particles.3 As already pointed out in [2], the symplectic Grassmannian structure emerges

naturally in the formulas based on rational maps. We will show that this is also the case

for the formulas based on the polarized scattering equations.

Recall that in general a Grassmannian Gr(k, n) describes the space of k-planes in n-

dimensional space. It enjoys a GL(k,C) symmetry, the group of linear transformations that

leaves the k-plane invariant, that should be divided out. We will show that the formulations

based on rational maps and polarized scattering equations correspond to two different

ways of fixing the GL(n,C) symmetry of the Grassmannian LG(n, 2n). This provides

a unification of these two seemingly different constructions. GL(n,C) transformations

of the integrands of rational-map formulas also lead to new twistor-like formulas for the

superamplitudes of all of the 6D theories mentioned previously.

The rest of the paper is organized as follows. Section 2 reviews the 6D scattering equa-

tions for both formulations: one based on rational maps and the other based on polarized

scattering equations. Section 3 shows that both formulations can be interpreted in terms

of a symplectic Grassmannian LG(n, 2n), and that they correspond to different GL(n,C)

gauge choices of LG(n, 2n), which establishes the equivalence of these two formulations. In

section 4, we apply GL(n,C) transformations of the integrands to obtain new formulas for

6D superamplitudes. We conclude in section 5.

1The polarized scattering equations have also been extended to scattering amplitudes of 10D and 11D

supersymmetric theories [13].
2In the special case of n = 3 there is a degeneracy of the kinematics that must be addressed.
3LG(n, 2n) may be identified with the homogeneous space USp(2n)/U(n), which has n(n+1)/2 complex

dimensions. However, we will be led to a different realization of this space.
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2 Rational maps and polarized scattering equations

This section will briefly review the 6D rational-map constructions of [1–3], and the polarized

scattering equations introduced in [11]. We formulate scattering amplitudes of massless

particles in 6D using the 6D spinor-helicity formalism [14], which expresses the massless

momentum as

pAB = 〈λAλB〉 =
1

2
εABCD[λ̃C λ̃D] , (2.1)

where A,B = 1, 2, 3, 4 are spinor indices of Lorentz group Spin(1, 5). Here we have used

the short-hand notation

〈λAλB〉 := λAa λ
B
b ε

ab , [λ̃Aλ̃B] := λ̃A,âλ̃B,b̂ε
âb̂ , (2.2)

where a, b and â, b̂ are little-group indices. For a 6D massless particle, the little group is

Spin(4) ∼ SU(2)L × SU(2)R, so a, b in the above equation are the indices of SU(2)L with

a, b = 1, 2, and â, b̂ = 1̂, 2̂ refer to SU(2)R.

In addition to the use of the spinor-helicity formalism, the two approaches, described in

the two following subsections, have some other features in common. Perhaps the most basic

is that to each of the n massless external particles in the scattering amplitude we assign a

coordinate σi, i = 1, 2, . . . , n, that is sometimes referred to as a puncture of the Riemann

sphere (represented as the complex plane plus a point at infinity). These coordinates, which

are distinct, are defined up to an overall common SL(2,C)σ Möbius-group transformation,

σi →
aσi + b

cσi + d
, ad− bc = 1. (2.3)

This allows the coordinates of three of the punctures to be given arbitrary distinct values.

The contribution to the integration measure dµ6Dn is then
∏n
i=1 dσi/vol(SL(2,C)σ), which

is defined in a standard way.

A function of the σ coordinates F ({σi}) is said to have weight w if it transforms under

the Möbius group by the rule

F

({
aσi + b

cσi + d

})
=

[
n∏
i=1

(cσi + d)

]w
F ({σi}). (2.4)

It will turn out that the measure dµ6Dn transforms with w = −4. Therefore, for the

amplitude to be well-defined, the rest of the integrand, IL IR, must have weight 4. In

practice, each of the two factors, IL and IR, always has weight 2.

Another common feature of the two approaches is that for supersymmetric theories we

also introduce Grassmann variables. We will follow [1–3] for the construction of supersym-

metry, where Grassmann variables ηIa (as well as η̃Ĩâ in the case of non-chiral theories) will

be introduced, here the indices I and Ĩ label the supersymmetries. This enables concise

description of complete on-shell supermultiplets.

In the remainder of this section, we describe the bosonic integration measure, in forms

appropriate to the rational-maps and the polarized scattering equations approaches. We

will discuss their supersymmetric extensions in section 4 when we consider specific theories.

– 3 –
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2.1 Rational maps and symplectic Grassmannians

Let us consider first the construction based on rational maps. For even n, the n-particle

measure is given by

n∏
i=1

δ(p2i )

∫
dµ6Dn =

∫ ∏n
i=1 dσi

∏m
k=0 d

8ρk
vol (SL(2,C)σ × SL(2,C)ρ)

1

V 2
n

n∏
i=1

δ6

(
pABi − 〈ρ

A(σi) ρ
B(σi)〉∏

j 6=i σij

)
,

(2.5)

where n = 2m+ 2. The delta functions on the right-hand side imply p2i = 0, so we define

the integration measure dµ6Dn with all of the δ(p2i ) factors removed. We have also defined

σij = σi − σj and Vn =
∏
i<j

σij , (2.6)

where the latter is a Vandermonde determinant. The delta functions of the 6D rational-

map scattering equations impose the masslessness conditions p2i = 0, as we mentioned, and

also the conservation of total momenta
∑n

i=1 p
AB
i = 0. The maps in the delta functions

are given by degree-m polynomials,

ρAa (σ) =

m∑
k=0

ρAa,k σ
k , (2.7)

which are determined up to an overall SL(2,C)ρ transformation, which is a complexification

of SU(2)L, and its volume also is divided out.

The SL(2,C)σ transformations of the coordinates ρAa,k are determined by requiring that

the expressions inside the delta functions in (2.5) are invariant. Then one can show (with

some effort) that dµ6Dn has weight −4.

As shown in [2], by introducing n additional 2 × 2 matrices (Wi)
b
a, the rational-map

scattering equations (2.5) can be recast in the “linear” form4

∫
dµ6Dn =

∫ ∏n
i=1 dσi d

4Wi
∏m
k=0 d

8ρk
vol (SL(2,C)σ × SL(2,C)ρ)

n∏
i=1

δ8
(
λAi,a − (Wi)

b
aρ
A
b (σi)

)
δ

(
|Wi| −

1∏
j 6=i σij

)
,

(2.8)

where we use the short-hand notation: |Wi| = detWi. In this formula the SU(2) indices a

and b of (Wi)
b
a refer to different groups. Specifically, b is contracted with the SU(2) index

of the moduli ρAk,b, and therefore it is a global little-group index, whereas a is associated

with the little group of the i-th particle.

We can now integrate out the moduli ρAa,k of the maps [15], which leaves an integral

over only the σi’s and the Wi matrices. Then (2.8) reduces to∫
dµ6Dn =

∫ ∏n
i=1 dσi d

4Wi

vol(SL(2,C)σ×SL(2,C)W )

m∏
k=0

δ2×4

(
n∑
i=1

(Wi)
b
aσ

k
i λ

A,a
i

)
n∏
i=1

δ

(
|Wi|−

1∏
j 6=iσij

)
,

(2.9)

4Here “linear” is in comparison with (2.5), where the maps ρAa (σi) enter the constraints quadratically.

– 4 –
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where the action of SL(2,C)ρ has become SL(2,C)W , which is the symmetry acting on the

global little-group index b. We can now show the emergence of the symplectic Grassman-

nian. (Wi)
b
aσ

k
i can be viewed as an n× 2n matrix:

Ck,b;i,a = (Wi)
b
a σ

k
i , (2.10)

where we group the exponent k with the global SL(2,C) index b and the index i with the

i-th little-group SL(2,C) index a. The matrix C formed in this way satisfies the identity

C · Ω · CT = 0 , (2.11)

where Ω is the symplectic metric

Ω =

(
0 In
−In 0

)
, (2.12)

where In is the n× n identity matrix. If M is a symplectic matrix belonging to USp(2n),

satisfying MT · Ω ·M = Ω, the identity (2.11) is invariant under the symplectic transfor-

mation C → C ·MT . It is proved by using the delta-function constraints and the theorem5

n∑
i=1

σKi∏
j 6=i σij

= 0 for K = 0, 1, . . . , n− 2 . (2.13)

The scattering-equation constraints can then be encoded as

m∏
k=0

δ2×4

(
n∑
i=1

Ck,b;i,a λ
Aa
i

)
. (2.14)

For amplitudes with an odd number of particles, n = 2m+ 1, there are odd-n versions

of (2.5) and (2.14) [2]. Here we will only present the formula in the symplectic Grass-

mannian form, which is more relevant for the following discussions. For odd n the delta

function product in (2.14) is replaced by

δ4

(
n∑
i=1

Cm,b;i,aξ
b λAai

)
m−1∏
k=0

δ2×4

(
n∑
i=1

Ck,b;i,a λ
Aa
i

)
, (2.15)

where additional integration variables ξb have been introduced [2]. There is an additional

GL(1,C) symmetry acting on ξb as well as a “T-shift” symmetry that acts on Ck,b;i,a as

Ck,b;i,a → Ck,b;i,a − α ξb ξcCk+1,c;i,a , k = 0, 1, · · · ,m− 1 , (2.16)

Cm,b;i,a → Cm,b;i,a , (2.17)

for an arbitrary parameter α. In this way, the number of integration variables and the

number of the delta functions continue to match. Ck,b;i,a is still given by (2.10). Now

Ck,b;i,a (with k = 0, 1, . . . ,m− 1) together with Cm,b;i,aξ
b form an n× 2n matrix.

5This theorem is easy to establish by showing that the residues of poles vanish (whenever K is a non-

negative integer) and that there are suitable asymptotic properties for K < n− 1.

– 5 –
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In general, for both even and odd n, we can encode the 6D scattering equations in the

Grassmannian form

δ4×n(C · Ω · ΛA) , (2.18)

with C · Ω · CT = 0. We have introduced a 2n-dimensional vector ΛA, which is also a

Lorentz spinor, built out of the spinor-helicity coordinates λAi,a,

ΛA := {λA1,1, λA2,1, . . . , λAn,1, λA1,2, λA2,2, . . . , λAn,2} . (2.19)

Invariance under symplectic transformations requires that ΛA →M · ΛA.

Let us verify that C parametrizes LG(n, 2n), as has been claimed, see e.g. [16]. First

we can check the dimension, which is supposed to be n(n+ 1)/2. To begin, C is an n× 2n

complex matrix, which has 2n2 complex dimensions. However, it can be multiplied on the

left by an arbitrary GL(n,C) matrix, without changing the scattering equations or the

constraint equations. The latter are given by the n × n antisymmetric matrix equation

C · Ω · CT = 0. Altogether, we are left with 2n2 − n2 − n(n− 1)/2 = n(n+ 1)/2 complex

dimensions. The remaining requirement is that USp(2n) should be a “global” symmetry

to agree with the homogeneous space USp(2n)/U(n). This has been demonstrated to be

the case in the preceding paragraphs.

For non-chiral theories, such as 6D SYM and supergravity, the integrands require the

use of additional conjugate variables (W̃i, and ξ̃ if n is odd). They satisfy analogous

rational-map constraints,

δ4×n(C̃ · Ω̃ · Λ̃A) , (2.20)

where C̃ and Ω̃ are defined in the same way as C and Ω, but with Wi → W̃i, a → â,

and ξ → ξ̃ (if n is odd), and the helicity spinor Λ̃A := {λ̃1,A,1̂, . . . , λ̃n,A,1̂, λ̃1,A,2̂, . . . , λ̃n,A,2̂}.
Since (2.9) is already the integration measure that encodes the 6D kinematics, the conjugate

delta functions (2.20) in fact do not explicitly appear in the construction of amplitudes,

but they are used to determine W̃i and ξ̃ if these conjugate variables are involved in the

integrands, as we will see, which is the case for non-chiral theories.

2.2 Polarized scattering equations and symplectic Grassmannians

Let us now review the 6D polarized scattering equations that were introduced in [11]. In

this approach associated to each external particle there is a null momentum pABi (and hence

spinor-helicity coordinates λAai ) and arbitrary nonzero polarization spinors εi,a. Explicitly,

the corresponding 6D measure takes the form∫
dµ6Dn =

∫ ∏n
i=1 dσi d

2vi d
2ui

vol(SL(2,C)σ×SL(2,C)u)

n∏
i=1

δ(vi,a ε
a
i −1)δ4(vi,aλ

Aa
i −ui,aλAa(σi)) . (2.21)

Instead of the polynomials ρAa (σ) that appear in the case of the rational-map approach,

the polarized scattering equation approach uses rational functions λAa(σ) given by

λAa(σ) =
n∑
j=1

uaj εj,bλ
Ab
j

σ − σj
. (2.22)

– 6 –
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Thus, the delta functions imply that 〈viεi〉 = 1 for all i, and the scattering equations

become

〈vi λAi 〉 = 〈ui λA(σi)〉 =
∑
j 6=i

〈uiuj〉〈εjλAj 〉
σij

. (2.23)

The symmetry SL(2,C)u, which we mod out, is a complexification of a global SU(2)L
symmetry acting simultaneously on all of the uai ’s. (εi, vi, and λAi are inert.)

The little-group spinors εi satisfy the constraints 〈vi εi〉 = 1, as shown explicitly

in (2.21). Moreover, the measure is invariant under the group ⊗ni=1SU(2)i, where the

i-th factor rotates εi, vi, and λAi simultaneously (ui is inert). This allows us to make a con-

venient choice of little-group frames, specified by the εi,a’s such as εi,a = (0, 1) for all i. For

this choice the delta-function constraint 〈vi εi〉 = 1 is solved by vi,a = (1, vi), these delta

functions can be eliminated, and the integration over vi,a reduces to a one-dimensional

integral. However, as we will see, there are advantages to exhibiting all of the symmetries.

Based on the polarized scattering equations, very concise formulas were written down

in [11] for the supersymmetric amplitudes of various 6D theories that had been studied

previously in [1, 2]. Even though the formulas for scattering amplitudes must be the same

in both approaches, the formulas based on rational maps and polarized scattering equations

have quite different structures. In particular, one of nice properties of the 6D polarized

scattering equations approach is that it treats scattering amplitudes with n even and n

odd in a uniform way.

It is important that the measure based on the polarized scattering equations, given by

delta functions in (2.21), can be expressed in the Grassmannian form∫
dµ6Dn =

∫ ∏n
i=1 dσi d

2vi d
2ui

vol(SL(2,C))σ × SL(2,C)u)

n∏
i=1

δ(vi,a ε
a
i − 1)δ4(V · Ω · ΛA) . (2.24)

The explicit form of the n× 2n matrix V that follows from (2.21) is

Vi;j,a =

{
vi,a if i = j

− 〈uiuj〉σij
εj,a if i 6= j,

(2.25)

where the indices are grouped as Vi;j,a, for i, j = 1, 2, . . . , n and a = 1, 2, such that V is

an n × 2n matrix. Crucially, like the matrix C in the rational-map approach, V is also

symplectic, transforming as V → VMT , that satisfies the USp(2n)-invariant constraint

V · Ω · V T = 0 . (2.26)

This can be verified using the conditions 〈vi εi〉 = 1. Note that the USp(2n) symmetry

exhibited here actually contains the subgroup ⊗ni=1SU(2)i, as described earlier. Note, also,

that the equations 〈vi εi〉 = 1 are only invariant under the subgroup. Again, for non-chiral

theories conjugate variables must be introduced, and they satisfy the conjugate version of

the polarized scattering equations,

δ4×n(Ṽ · Ω̃ · Λ̃A) , (2.27)

where Ṽ is given in the same form as (2.24) and (2.25), with vi,a → ṽi,â, ui,a → ũi,â and

εai → ε̃ȧi .

– 7 –
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To summarize, both the rational-map equations and the polarized scattering equations

can be recast in the symplectic Grassmannian form

δ4×n(S · Ω · ΛA) with S · Ω · ST = 0 , (2.28)

where S = C or S = V . As in the usual Grassmannian representation of scattering ampli-

tudes, (2.28) provides a geometric picture for the kinematics [17]. S ·Ω·ΛA = 0 implies that

S is orthogonal to ΛA, and S ·Ω ·ST = 0 means that ST contains ΛA. The null symplectic

property of S then implies that (ΛA)T · Ω · ΛB = 0, which is momentum conservation.

3 Equivalence of rational maps and polarized scattering equations

In the previous section, we showed that the 6D scattering equations, in both the rational-

map and the polarized scattering equations approaches, have a natural interpretation in

terms of a symplectic Grassmannian. Here we will show that the geometric Grassmannian

picture allows us to establish the equivalence of these two formulations. The basic idea

is that they are given by different GL(n,C) gauge fixings of a symplectic Grassmannian

LG(n, 2n).

3.1 4D scattering equations

Before discussing the 6D case, let us begin with the simpler 4D case as a warmup exercise.6

In contrast to 6D, where there is a single formula for the n-particle amplitude, in 4D the

n-particle amplitude decomposes into n−3 sectors labeled by (d, d̃), where d+d̃ = n−2 and

d = 1, 2, . . . , n − 3. Then the scattering equations that play the same role as (2.9) for the

(d, d̃) sector, or equivalently the (n, k) sector, where k = d+ 1, are encoded in the measure∫
dµ4Dn,k =

∫ ∏n
i=1 dσi dti/ti

vol (SL(2,C)σ ×GL(1,C))

d∏
m=0

δ2(

n∑
i=1

tiσ
m
i λ

α
i )

d̃∏
m̃=0

δ2

(
n∑
i=1

t̃iσ
m̃
i λ̃

α̇
i

)
, (3.1)

where t̃i = ti
−1 1∏

j 6=i σij
. In the above formula, we have used the standard spinor-helicity

formalism for a 4D massless momentum,

pα α̇i = λαi λ̃
α̇
i . (3.2)

The constraints can be viewed in a Grassmannian form [17],

C4D · Λα = 0 , C⊥4D · Λ̃α̇ = 0 , (3.3)

where Λα := {λα1 , λα2 , · · · , λαn}, and similarly for Λ̃α̇. C4D is a k × n matrix with entries

given by tiσ
m
i , namely

C4D =


t1 t2 · · · tn
t1σ1 t2σ2 · · · tnσn

...
... · · ·

...

t1σ
d
1 t2σ

d
2 · · · tnσdn

 . (3.4)

6A similar argument was given in [18] for the 4D case.

– 8 –
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Similarly, C⊥4D is an (n− k)× n matrix with entries given by t̃iσ
m̃
i . Due to the constraints

tit̃i =
∏
j 6=i σ

−1
ij and equation (2.13), we have

C4D · [C⊥4D]T = 0. (3.5)

Namely, C⊥4D is the complement of C4D.

There is a GL(k,C) symmetry associated with this realization of the Grassmannian

Gr(k, n).7 The scattering amplitudes are independent of how the GL(k,C) symmetry

transformation is chosen. One choice of interest is to utilize the GL(k,C) symmetry to

transform C4D into the form

C ′4D := CGL(k) · C4D =


1 0 · · · 0 c1 k+1 · · · c1n
0 1 · · · 0 c2 k+1 · · · c2n
...

... · · ·
...

... · · ·
...

0 0 · · · 1 ck k+1 · · · ck n

 , (3.6)

where CGL(k) is a GL(k,C) matrix. Obviously, the GL(k,C) transformation that turns C4D

into C ′4D is given by

CGL(k) =


t1 t2 · · · tk
t1σ1 t2σ2 · · · tkσk

...
... · · ·

...

t1σ
d
1 t2σ

d
2 · · · tkσdk


−1

. (3.7)

After the GL(k,C) transformation that produces C ′4D, the first set of delta functions

in (3.1), which encodes the 4D scattering equations, reduces to

k∏
i=1

δ2(λαi −
n∑

J=k+1

ci Jλ
α
J ) , (3.8)

where

ci J =
tJ
∏
j 6=i σjJ

ti
∏
j 6=i σji

, (3.9)

with i ∈ {1, 2, · · · , k} and J ∈ {k + 1, · · · , n}. Define

t′J := tJ
∏
j

σjJ , t′i :=
1

ti
∏
j 6=i σji

, (3.10)

ci J can be expressed as

ci J =
t′it
′
J

σiJ
. (3.11)

7Gr(k, n) can be identified with the homogeneous space U(n)/U(k) × U(n − k), which has k(n − k)

complex dimensions.
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Via a corresponding GL(k̃) transformation, we fix the complement C⊥4D to be

(C⊥4D)′ =


−c1 k+1 · · · −ck k+1 1 0 · · · 0

−c1 k+2 · · · −ck k+2 0 1 · · · 0
... · · ·

...
...

... · · ·
...

−c1n · · · −ck n 0 0 · · · 1

 . (3.12)

With these results, the 4D delta functions in (3.1) become

k∏
i=1

δ2

(
λαi −

n∑
J=k+1

t′it
′
Jλ

α
J

σi J

)
n∏

J=k+1

δ2

(
λ̃α̇J −

k∑
i=1

t′it
′
J λ̃

α̇
i

σi J

)
. (3.13)

This encodes the 4D version of the polarized scattering equations first proposed in [12].

In conclusion, a class of 4D theories, including N = 4 SYM, have n − 3 sectors.8

The amplitude of the k-th sector, An,k, is described by Gr(k, n) with k = 2, 3, . . . , n − 2.

Therefore, the n-particle amplitudes have a U(n) symmetry in each sector. The U(1)n

subgroup corresponds to the product of little groups of the n particles. Different choices of

“gauge fixing” of the GL(k) symmetry of the formulas given above leads to different forms

of the scattering equations. Let us now apply this approach to 6D, where we will find that

there is a single sector based on the symplectic Grassmannian LG(n, 2n).

3.2 6D scattering equations

We now consider the scattering equations in 6D beginning with the case of even n. Recall

that the symplectic Grassmannian LG(n, 2n) obtained from rational maps in (2.10) takes

the form

C =
(
C1 C2

)
, (3.14)

where Ca are n× n matrices

Ca =



(W1)
1
a (W2)

1
a · · · (Wn)1a

(W1)
2
a (W2)

2
a · · · (Wn)2a

(W1)
1
aσ1 (W2)

1
aσ2 · · · (Wn)1aσn

(W1)
2
aσ1 (W2)

2
aσ2 · · · (Wn)2aσn

...
... · · ·

...

(W1)
1
aσ

n
2
−1

1 (W2)
1
aσ

n
2
−1

2 · · · (Wn)1aσ
n
2
−1

n

(W1)
2
aσ

n
2
−1

1 (W2)
2
aσ

n
2
−1

2 · · · (Wn)2aσ
n
2
−1

n


, (3.15)

and a = 1, 2 is the little-group index.

Let us compare this with the V matrix of the polarized scattering equations. In the

convenient choice we made for εai and vai , namely εai = (0, 1) and vai = (1, vi), the explicit

form of LG(n, 2n) in (2.25) is

V =
(
In V2

)
, (3.16)

8In the case of DBI-like theories, such as the super D3-brane, An,k is nonzero only if n is even and

k = n/2. The latter means that only the helicity-preserving amplitude, An,n/2, is non-zero.
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where V2 is an n× n symmetric matrix

V2 =



v1 − 〈u1u2〉σ12
· · · − 〈u1un〉σ1n

− 〈u2u1〉σ21
v2 · · · − 〈u2un〉σ2n

...
... · · ·

...

− 〈un−1u1〉
σn−1 1

− 〈un−1u2〉
σn−1 2

· · · − 〈un−1un〉
σn−1n

− 〈unu1〉σn1
− 〈unu2〉σn2

· · · vn


. (3.17)

Just as in the case of 4D, to bring the C matrix in (3.14) into the form of the V matrix

in (3.16), we need to perform a GL(n,C) transformation. The GL(n,C) matrix

CGL(n) = (C1)
−1 (3.18)

does the job. Then the GL(n,C) transformed matrix C ′ is

C ′ = CGL(n) · C =
(
In (C1)

−1 · C2

)
. (3.19)

The constraint C · Ω · CT = C1 · CT2 − C2 · CT1 = 0 implies that the n × n sub-matrix

(C1)
−1 · C2 is symmetric. This fact allows us to map each entry of C ′ to that of the V

matrix in (3.16) and to make the identification

(C1)
−1 · C2 = V2 . (3.20)

For the entries on the diagonal part of the sub-matrix V2, we identify

vi = |C[i]| |CGL(n)| , (3.21)

where C[i] is an n× n matrix of the form

C[i] =



(W1)
1
1 · · · (Wi)

1
2 · · · (Wn)11

(W1)
2
1 · · · (Wi)

2
2 · · · (Wn)21

(W1)
1
1σ1 · · · (Wi)

1
2σi · · · (Wn)11σn

(W1)
2
1σ1 · · · (Wi)

2
2σi · · · (Wn)21σn

... · · ·
... · · ·

...

(W1)
1
1σ

n
2
−1

1 · · · (Wi)
1
2σ

n
2
−1

i · · · (Wn)11σ
n
2
−1

n

(W1)
2
1σ

n
2
−1

1 · · · (Wi)
2
2σ

n
2
−1

i · · · (Wn)21σ
n
2
−1

n


. (3.22)

So C[i] only differs from C1 given in (3.15) by a flip of one of the SU(2) indices of Wi in

the i-th column. For the off-diagonal entries in V2, we have

〈uiuj〉
σij

=
(−1)i+j

σij
|C[i,j]| |CGL(n)| , (3.23)
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where C[i,j] is a (n−2)× (n−2) matrix, given by

C[i,j] =



· · · (Wi−1)
1
1 (Wi+1)

1
1 · · · (Wj−1)

1
1 (Wj+1)

1
1 · · ·

· · · (Wi−1)
2
1 (Wi+1)

2
1 · · · (Wj−1)

2
1 (Wj+1)

2
1 · · ·

· · · (Wi−1)
1
1σi−1 (Wi+1)

1
1σi+1 · · · (Wj−1)

1
1σj−1 (Wj+1)

1
1σj+1 · · ·

· · · (Wi−1)
2
1σi−1 (Wi+1)

2
1σi+1 · · · (Wj−1)

2
1σj−1 (Wj+1)

2
1σj+1 · · ·

· · ·
...

... · · ·
...

... · · ·
· · · (Wi−1)

1
1σ

n
2
−2

i−1 (Wi+1)
1
1σ

n
2
−2

i+1 · · · (Wj−1)
1
1σ

n
2
−2

j−1 (Wj+1)
1
1σ

n
2
−2

j+1 · · ·
· · · (Wi−1)

2
1σ

n
2
−2

i−1 (Wi+1)
2
1σ

n
2
−2

i+1 · · · (Wj−1)
2
1σ

n
2
−2

j−1 (Wj+1)
2
1σ

n
2
−2

j+1 · · ·


. (3.24)

Namely, it is defined by removing the i-th and j-th columns as well as the last two rows

(the rows with σn/2−1) of the matrix C1 in (3.15). We note that 〈uiuj〉 in (3.23) can be

viewed as Plücker coordinates of a Gr(2, n), whereas |C[i,j]| are Plücker coordinates of a

Gr(n − 2, n). The Grassmannian duality between Gr(2, n) and Gr(n − 2, n) then ensures

that a solution exists for (3.23).9

The GL(n,C) transformation procedure works in a similar fashion for the case of odd

n. From (2.15) we see that for odd n the Ca matrix is given by

Ca =



(W1)
b
aξbσ

n−1
2

1 (W2)
b
aξbσ

n−1
2

2 · · · (Wn)baξbσ
n−1
2

n

(W1)
1
a (W2)

1
a · · · (Wn)1a

(W1)
2
a (W2)

2
a · · · (Wn)2a

...
... · · ·

...

(W1)
1
aσ

n−3
2

1 (W2)
1
aσ

n−3
2

2 · · · (Wn)1aσ
n−3
2

n

(W1)
2
aσ

n−3
2

1 (W2)
2
aσ

n−3
2

2 · · · (Wn)2aσ
n−3
2

n


, (3.25)

and C = (C1 C2). Again, there exists a GL(n,C) transformation that turns the C matrix

of the rational-map description into the V matrix of the polarized scattering equations

description, namely,

CGL(n) · C = V , (3.26)

with CGL(n) = (C1)
−1 and V = (In V2). The entries of V2 matrix in terms of rational-map

variables take the same forms as (3.21) and (3.23), and now C[i], C[i,j] are given by

C[i] =



(W1)
b
1ξbσ

n−1
2

1 · · · (Wi)
b
1ξbσ

n−1
2

i · · · (Wn)b1ξbσ
n−1
2

n

(W1)
1
1 · · · (Wi)

1
2 · · · (Wn)11

(W1)
2
1 · · · (Wi)

2
2 · · · (Wn)21

... · · ·
... · · ·

...

(W1)
1
1σ

n−3
2

1 · · · (Wi)
1
2σ

n−3
2

i · · · (Wn)11σ
n−3
2

n

(W1)
2
1σ

n−3
2

1 · · · (Wi)
2
2σ

n−3
2

i · · · (Wn)21σ
n−3
2

n


, (3.27)

9We thank Alfredo Guevara for this observation.
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and

C[i,j] =



· · · (Wi−1)
b
1ξbσ

n−3
2

i−1 (Wi+1)
b
1ξbσ

n−3
2

i+1 · · · (Wj−1)
b
1ξbσ

n−3
2

j−1 (Wj+1)
b
1ξbσ

n−3
2

j+1 · · ·
· · · (Wi−1)

1
1 (Wi+1)

1
1 · · · (Wj−1)

1
1 (Wj+1)

1
1 · · ·

· · · (Wi−1)
2
1 (Wi+1)

2
1 · · · (Wj−1)

2
1 (Wj+1)

2
1 · · ·

· · ·
...

... · · ·
...

... · · ·
· · · (Wi−1)

1
1σ

n−5
2

i−1 (Wi+1)
1
1σ

n−5
2

i+1 · · · (Wj−1)
1
1σ

n−5
2

j−1 (Wj+1)
1
1σ

n−5
2

j+1 · · ·

· · · (Wi−1)
2
1σ

n−5
2

i−1 (Wi+1)
2
1σ

n−5
2

i+1 · · · (Wj−1)
2
1σ

n−5
2

j−1 (Wj+1)
2
1σ

n−5
2

j+1 · · ·


.

(3.28)

Finally, we remark that the Jacobian arising from the GL(n,C) transformation of the

integration measure is one. In particular, both measures of the rational maps and the

polarized scattering equations are equivalent to that of the CHY scattering equations [7].

Therefore ∫
dµ6Dn =

∫
dnσd3nW

vol (SL(2,C)σ × SL(2,C)W )
δ4×n(C · Ω · ΛA) (3.29)

=

∫
dnσdnvd2nu

vol (SL(2,C)σ × SL(2,C)u)
δ4×n(V · Ω · ΛA) .

This can be seen by viewing the 4n-dimensional integral as an integration over the entries of

n×4 sub-matrix of the n×2n matrix of the symplectic Grassmannian, the rest of entries are

not independent once we solve the symplectic constraints using rational maps or polarized

scattering equations.10 A GL(n,C) transformation generates a Jacobian |CGL(n)|4 for the

integration variables, which cancels that from the delta functions. In the above expression,

we have used the fact that the determinant of each Wi is constrained. Therefore it only

gives rise to three integration variables and, if n is odd, it should be understood that it

is necessary to include an additional integration over ξa as well as an additional scaling

symmetry and T-shift symmetry. In the second line of the equation we have set εi,a = (0, 1)

and vi,a = (1, vi).

Finally, a conjugate version of the GL(n,C) transformation is also needed for non-chiral

theories, namely

C̃GL(n) · C̃ = Ṽ . (3.30)

As we discussed early, such delta functions involving conjugate variables and Λ̃A do not

appear explicitly in the formulas of scattering amplitudes, but they are used to determine

conjugate variables in the integrands in terms of external kinematics Λ̃A.

4 GL(n,C) transformations and superamplitudes

Scattering amplitudes for supersymmetric theories can be realized by introducing Grass-

mann variables ηIa with I = 1, . . . ,N for a 6D chiral (N , 0) supersymmetric theory, whereas

10The symplectic constraints C ·Ω ·CT = 0 impose only n(n−1)/2 conditions, which in general would not

reduce the integral to 4n dimensional. This is the usual story of Grassmannian formulation of scattering

amplitudes [17], where one requires to choose appropriate contours to fix all the integration variables.
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for a non-chiral (N , Ñ ) supersymmetric theory, we will require both ηIa and η̃Ĩâ with

I = 1, . . . ,N and Ĩ = 1, . . . , Ñ . With this setup, the supercharges for the i-th parti-

cle in the amplitude of a chiral theory are given by

qA,Ii = λAi,aη
a,I
i , q̄Ai,I = λAi,a

∂

∂ηIa,i
, (4.1)

and for a non-chiral theory we also have

qĨi,A = λ̃âi,Aη̃
Ĩ
â,i , q̄i,A,Ĩ = λ̃âi,A

∂

∂η̃â,Ĩi

. (4.2)

Supersymmetry then implies conservation of the supercharges, which means that the am-

plitudes should be annihilated by

QA,I =

n∑
i=1

qA,Ii , Q̄A,I =

n∑
i=1

q̄A,Ii , (4.3)

as well as by Q̃IA and ¯̃QĨA for a non-chiral theory.

The construction of supersymmetry presented here follows closely [1–3], and is different

from those utilized in [11]. As shown in [2], for a chiral supersymmetric theory the fermionic

measure that implements supersymmetry contains

N∏
I=1

δn(C · Ω · ηI) , (4.4)

where ηI := {ηI1,1, ηI2,1, . . . , ηIn,1, ηI1,2, ηI2,2, . . . , ηIn,2}. For a non-chiral theory this becomes

N∏
I=1

δn(C · Ω · ηI)
Ñ∏
Ĩ=1

δn(C̃ · Ω̃ · η̃Ĩ) . (4.5)

The fermionic measures take the same form as bosonic ones in (2.18) with ΛA and Λ̃A
replaced by the Grassmann variables ηI and η̃Ĩ . Therefore, just as the bosonic delta

functions imply momentum conservation, the fermionic ones imply conservation of the

supercharges. Only the conservation of a mutually anticommuting set of supercharges

(namely, QA,I , Q̃IA given in (4.3)) can be realized by fermionic delta function factors in

the amplitudes. Conservation of the remaining supercharges can be shown by acting the

differential operators of Q̄A,I , ¯̃QĨA on the fermionic delta functions, which simply replaces

δn(C · Ω · ηI) by δn(C · Ω · ΛA), and the later is satisfied due to the scattering equations.

4.1 GL(n,C)

The GL(n,C) transformation that relates the scattering equations appearing in the

rational-map and the polarized scattering equation approaches also acts on the fermionic

measures, which leads to fermionic counterparts of the polarized scattering equations

δn(V · Ω · ηI) = |CGL(n)| δn(C · Ω · ηI) , δn(Ṽ · Ω̃ · η̃Ĩ) = |C̃GL(n)| δn(C̃ · Ω̃ · η̃Ĩ) , (4.6)
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for I = 1, 2, . . . ,N and Ĩ = 1, 2, . . . , Ñ , so these delta functions have multiplicity nN
and nÑ , respectively. Here |CGL(n)| and |C̃GL(n)| are the Jacobians of the GL(n,C)

transformations.

Both sides of (4.6) are degree-n polynomials of ηIi,a, from which we can straightfor-

wardly deduce the Jacobian |CGL(n)|. Consider a particular term of the polynomial, for

instance, ∏
i∈Y

ηIi,aη
I,a
i , (4.7)

where Y is an arbitrary length-(n/2) subset of the particle labels, {1, 2, . . . , n}, and Y is

defined to be the complement of Y . Using |Wi| =
∏
j 6=i σ

−1
ij , we find that the determinant

of the transformation GL(n,C) can be expressed as

|CGL(n)| =
|UY,Y | (Vn)

1
2

|XY,Y |
1
2

, (4.8)

which will become useful later. Again Vn is the Vandermonde determinant, and UY,Y and

XY,Y are n/2× n/2 matrices,

(UY,Y )iJ =
〈uiuJ〉
σiJ

, (XY,Y )iJ =
1

σiJ
, (4.9)

for i ∈ Y and J ∈ Y . The fact that the r.h.s. of (4.8) is independent of the choice of Y and

Ȳ can be made manifest using the identity [19]

|UY,Y |2

|XY,Y |
= Pf Un , (4.10)

where Un is an n× n matrix with entries

(Un)ij =
〈uiuj〉2

σij
, (4.11)

for i, j = 1, 2, . . . , n. Combining (4.8) and (4.10) gives

|CGL(n)|2 = Vn Pf Un. (4.12)

Since Pf Un has conformal weight −1 and Vn has weight 1− n, it follows that |CGL(n)| has

weight −n/2. Note that the weights balance in (4.6) where δn(V ·Ω · ηI) has weight 0 and

δn(C · Ω · ηI) has weight n/2 for each I. There are analogous relations with tildes.

For odd n, we can compare the coefficients of a term∏
i∈Y

ηIi,aη
I,a
i ηI,1k , (4.13)

where Y is a length-(n−1)/2 sub-set of {1, 2, . . . , k−1, k+1, . . . , n}, namely the label k is

removed. From this consideration, we find that the determinant of the GL(n,C) transfor-

mation can be expressed as

|CGL(n)|2 =
1

((Wk)
b
1 ξb)

2
V

(k)
n−1 Pf U

(k)
n−1 . (4.14)
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Here U
(k)
n−1 is a (n−1) × (n−1) matrix that is defined in the same way as (4.11), the

labels run over (n−1) particles, {1, 2, . . . , k−1, k+1, . . . , n}, and V
(k)
n−1 =

∏
i<j σij for

i, j ∈ {1, 2, . . . , k−1, k+1, . . . , n}. The result is independent of the choice of k.

With the above results, we are now ready to apply GL(n,C) transformations to the

tree-level amplitude formulas based on rational maps presented in [1–3], which will lead to

new formulas for all of these superamplitudes.

4.2 M5 and D5-brane

We begin with the world-volume theory of a single probe M5-brane. It is a Born-Infeld-

like theory that only has nonzero amplitudes for n even. It has (2, 0) supersymmetry, so

I = 1, 2, and its on-shell spectrum can be packaged into an on-shell “superfield” or “super

wave function”

Φ(η) = φ+ ηaIψ
I
a + ηaI η

I,bBab + . . .+ (η)4φ̄ , (4.15)

where Bab = Bba encodes the on-shell modes of the self-dual two-form. The formula that

describes the tree amplitudes of this theory is given by [1]

AM5
n =

∫
dµ6Dn I

(2,0)
L IDBI

R , (4.16)

where the factors I(2,0)L and IDBI
R in the integrand are

I(2,0)L = δ2×n(C · Ω · ηI)Vn Pf ′Sn , IDBI
R =

(
Pf ′Sn

)2
= det′Sn . (4.17)

Recall that Vn is the Vandermonde determinant, and the bosonic measure is given by∫
dµ6Dn =

∫
dnσd3nW

vol (SL(2,C)σ × SL(2,C)W )
δ4×n(C · Ω · ΛA) . (4.18)

The matrix Sn entering the integrand is an n×n matrix. It is antisymmetric and has rank

n−2, with entries given by

[Sn]ij =
pi · pj
σij

. (4.19)

The reduced Pfaffian of Sn is defined as

Pf ′Sn =
(−1)k+l

σkl
Pf(Sn)klkl , (4.20)

where (Sn)klkl is an (n−2) × (n−2) matrix with the k-th and l-th rows and columns of Sn
removed, and the result is independent of the choice of k, l. Since Pf ′Sn has conformal

weight w = 1, we see that I(2,0)L and IDBI
R each have conformal weight w = 2, as required.

The factor IDBI
R , which is only well-defined for even n, appears in all DBI-type theories.

These theories only have nonvanishing amplitudes when n is even.
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Applying the result in (4.6), the GL(n,C) transformation leads to a new representation

of the superamplitudes,

AM5
n =

∫
dµ6Dn δ2×n(V · Ω · ηI) Vn

|CGL(n)|2
(
Pf ′Sn

)3
. (4.21)

Using the expression for |CGL(n)| given in (4.8) and the identity (4.10), the formula may

be recast into the more compact form

AM5
n =

∫
dµ6Dn δ2×n(V · Ω · ηI) (Pf Un)−1

(
Pf ′Sn

)3
. (4.22)

In this formulation,

I(2,0)L = δ2×n(V · Ω · ηI) (Pf Un)−1 Pf ′Sn , (4.23)

whereas IDBI
R remains to be same as that in (4.17). The measure in (4.22) is based on the

polarized scattering equations∫
dµ6Dn =

∫
dnσdnvd2nu

vol (SL(2,C)σ × SL(2,C)u)
δ4×n(V · Ω · ΛA) , (4.24)

which is the GL(n,C) transformation of (4.18).

Formulas similar to those of the M5-brane can be obtained for tree-level superampli-

tudes of the D5-brane, which has non-chiral (1, 1) supersymmetry. After the GL(n,C)

transformation, the rational-map formula of [1] reduces to

AD5
n =

∫
dµ6Dn δn(V · Ω · η) δn(Ṽ · Ω̃ · η̃)

Vn

|CGL(n)||C̃GL(n)|
(
Pf ′Sn

)3
=

∫
dµ6Dn δn(V · Ω · η) δn(Ṽ · Ω̃ · η̃) (Pf Un)−

1
2 (Pf Ũn)−

1
2
(
Pf ′Sn

)3
=

∫
dµ6Dn I

(1,1)
L IDBI

R , (4.25)

where now

I(1,1)L = δn(V · Ω · η) (Pf Un)−1/2 δn(Ṽ · Ω̃ · η̃) (Pf Ũn)−1/2 Pf ′Sn . (4.26)

In the second line we have applied the relation (4.8) and the identity (4.10) as well as the

conjugate version of them. As we have emphasized, I(1,1)L contains conjugate variables, such

as ũi,â, ṽi, that appear in Ṽ , Ũn. It should be understood that these conjugate variables

are determined in terms of the external kinematics Λ̃A via the conjugate version of the

scattering equations (3.30). As made clear in the formula, we do not integrate over these

conjugate variables, and the conjugate scattering equations do not appear explicitly either.

The same remark applies to the other non-chiral theories.

Again, the right-hand integrand IDBI
R implies that only amplitudes with even number

of particles are non-trivial. Therefore, the original formulas for the M5-brane and D5-brane

amplitudes based on rational maps do not suffer from the issue of an artificial distinction

between amplitudes with an even and an odd numbers of particles. However, this is not the

case for the scattering amplitudes of 6D SYM and supergravity, which we consider next.

– 17 –



J
H
E
P
0
8
(
2
0
1
9
)
1
2
5

4.3 Maximal SYM

Let us begin with the 6D (1, 1) SYM. The on-shell spectrum of the theory can be packaged

in the following form,

Φ(η, η̄) = φ11̂ + ηaψ
a1̂ + η̃âψ

1â + ηaη̃âA
aâ + . . .+ (η)2(η̃)2φ22̂ , (4.27)

where, for instance, Aaâ is the 6D gluon. The theory has non-trivial scattering amplitudes

for both even and odd n. Beginning with the case of even n, the superamplitude is given

by [2],

ASYM
n (α) =

∫
dµ6Dn δn(C · Ω · η)δn(C̃ · Ω̃ · η̃)Vn Pf ′Sn PT(α) , (4.28)

where PT(α) is the Parke-Taylor factor, which encodes the color structure of Yang-Mills

amplitudes. Here α represents a permutation of the external particles {1, 2, . . . , n}. For

instance, when α is the identity permutation,

PT(1, 2, . . . , n) =
1

σ12σ23 · · ·σn−1nσn1
. (4.29)

The Parke-Taylor factor has conformal weight w = 2.

Again, the GL(n,C) transformation leads to

ASYM
n (α) =

∫
dµ6Dn δn(V · Ω · η)δn(Ṽ · Ω̃ · η̃)

Vn

|CGL(n)||C̃GL(n)|
Pf ′Sn PT(α) . (4.30)

The integrand of the preceding expression can be simplified further using the identity

Vn

|CGL(n)||C̃GL(n)|
Pf ′Sn =

|XY,Y |

|UY,Y ||ŨY,Y |
Pf ′Sn = det′Hn , (4.31)

where the second equality in the above equation is identical to equation (30) of [11]. Here

Hn is an n×n matrix introduced by Geyer and Mason in [11], which generalizes the Hodges’

determinant of 4D theories [20]. The Hn matrix has the following entries

Hij =
〈εiλAi 〉[ε̃j λ̃A,j ]

σij
for i 6= j , ui,aHii = −λAa (σi)[ε̃iλ̃A,i] . (4.32)

Here, just as εi,a, we can choose ε̃i,â = (0, 1). Note that Hii is independent of the choice

of little-group index a, namely it is a Lorentz scalar. The reduced determinant det′H is

defined as

det′H =
detH

[ij]
[kl]

〈uiuj〉[ũkũl]
, (4.33)

where H
[ij]
[kl] means that we remove the i-th and j-th columns as well as the k-th and l-th

rows, and the result is independent of the choices [11]. Alternatively, using (4.31), when n

is even, this can be recast in the more appealing form

det′H = (Pf Un)−1/2 (Pf Ũn)−1/2 Pf ′Sn, (4.34)

which has conformal weight w = 2.
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With the help of the identity (4.31), the GL(n,C) transformation leads to the following

new formula for the tree superamplitudes of 6D (1, 1) SYM,

ASYM
n (α) =

∫
dµ6Dn I

(1,1)
L I(α)R , (4.35)

where the left and right integrands are given by

I(1,1)L = δn(V · Ω · η)δn(Ṽ · Ω̃ · η̃) det′Hn , I(α)R = PT(α) . (4.36)

Although the formula (4.35) has been obtained here for even n, we will now show that it

holds also for odd n!

All that is required is to extend the definition of det′Hn to odd n, since all the other

factors are already well-defined for odd n. Specifically, for odd n we need to replace (4.31)

or (4.34) by

det′Hn =
Vn

|CGL(n)||C̃GL(n)|
Pf ′Ŝn , (4.37)

where Ŝn is a well-defined expression for odd n [2]. This is achieved by extending the n×n
matrix Sn is to an (n+1)× (n+1) matrix, which we denote Ŝn. Ŝn is defined in the same

way as Sn for even n, as given in (4.19), but with particle labels i, j = 1, 2, . . . , n and ?.

Here σ? is a reference puncture, and p? is a null momentum defined by

pAB? =
2 q[ApB]C(σ?)q̃C

qD[ρ̃D(σ?) ξ̃]〈ρE(σ?) ξ〉q̃E
, (4.38)

where the bracket [AB] means anti-symmetrization, pBC(σ?) := 〈ρB(σ?)ρ
C(σ?)〉, and q

and q̃ are arbitrary spinors.

The validity of these formulas for odd n depends on the identity (4.37). Using the

definition of Pf ′Ŝn and the odd-point Jacobian given in (4.14), one can see that the right-

hand side of (4.37) has weight 2, which matches with that of det′Hn. This identity has been

verified numerically to hold on the support of the scattering equations. Furthermore, since

all the objects in both sides of (4.37) are known to factorize properly, it is straightforward to

see that the equality holds in the factorization limits. Therefore, as we remarked previously,

under the GL(n,C) transformation the rational-map formulas also reduce to (4.35) for odd

n. This is not so surprising, since all of the ingredients in (4.35), especially Hn, make no

distinction between even and odd n.

Given the formula for superamplitudes in 6D (1, 1) SYM, it is straightforward to obtain

the superamplitudes for SYM theories in lower dimensions [2], in particular the massive

amplitudes in 4D N = 4 SYM on the Coulomb branch. The massive spectrum of N = 4

SYM on the Coulomb branch can be obtained upon a dimensional reduction of (4.27),

Φ(η) = φ+ ηIaψ
a
I + ηIaη

J,aφIJ + ηI,aη
J
b A

ab + . . .+ (η)4φ̄ , (4.39)

here we identify {ηa, η̃â} := ηIa with I = 1, 2, and a = 1, 2 is the SU(2) little-group index

of a massive particle in 4D. The superamplitude is then given by

AN=4CB
n (α) =

∫
dµ4DCB

n δ2×n(V · Ω · ηI) det′HCB
n PT(α) . (4.40)
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The measure dµ4DCB
n takes a form similar to that of the 6D measure of massless particles,∫

dµ4DCB
n =

∫
dnσ dnv d2nu

vol(SL(2,C))σ × SL(2,C)u)
δ2×n(V · Ω · Λα)δ2×n(V · Ω · Λ̃α̇) , (4.41)

where Λα and Λ̃α̇ are the reduction of the 6D massless kinematics ΛA via

λAa →

(
λα,1 λα,2
λ̃α̇1 λ̃α̇2

)
, (4.42)

for each particle.11 The 4D momentum and mass are given by

pαα̇i = λαi,aλ̃
α̇
i,bε

ab , Miε
αβ = λαi,aλ

β
i,bε

ab , M̃iε
α̇β̇ = λ̃α̇i,aλ̃

β̇
i,bε

ab , (4.43)

and MiM̃i = m2
i is the mass squared. The masses arise as the extra dimensional momenta

satisfying
∑

iMi =
∑

i M̃i = 0. Here we have decomposed the 6D spinor indices according

to A = {α, α̇}. Also we identified a and â, since they both reduce to the same little-group

index of a 4D massive particle. For massless particles we further set λα,1 = λ̃α̇,2 = 0. The

integrand HCB is obtained from H, again via dimensional reduction,

HCB
ij =

εi,aεj,b(〈iajb〉+ [iajb])

σij
for i 6= j , ui,aH

CB
ii = −εi,b(〈λa(σi) ib〉+ [λ̃a(σi) i

b]) ,

(4.44)

where 〈iajb〉 := λaα,iλ
α,b
j and [iajb] := λ̃aα̇,iλ̃

α̇,b
j . The reduced determinant is defined as

det′HCB =
det (HCB)

[ij]
[kl]

〈uiuj〉〈ukul〉
. (4.45)

Due to the dimensional reduction, ũi has been identified with ui.

4.4 Maximal supergravity

The construction of a concise formula for the tree amplitudes of 6D maximal supergravity,

namely (2, 2) supergravity, is now very easy. It can be obtained from the formula for 6D

(1, 1) SYM via the standard double-copy procedure in the CHY formalism of scattering

amplitudes. The procedure is to replace, I(α)R , the Parke-Taylor factor PT(α) by I(1,1)R ,

PT(α)→ δn(V · Ω · η)δn(Ṽ · Ω̃ · η̃) det′Hn . (4.46)

This leads to a formula for the (2, 2) supergravity tree-level superamplitudes that is valid

for all n,

M(2,2)
n =

∫
dµ6Dn δ2×n(V · Ω · ηI)δ2×n(Ṽ · Ω̃ · η̃Ĩ) (det′Hn)2 , (4.47)

where I = 1, 2 and Ĩ = 1̃, 2̃. This formula for the (2, 2) supergravity amplitudes will be

used for constructing the superamplitudes for (2, 0) supergravity, as described in the next

subsection.

11For λ̃A,â, we perform an analogous reduction λ̃A,â →

(
λα1 λα2
λ̃α̇,1 λ̃α̇,2

)
.
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4.5 6D (2,0) supergravity

The 6D rational-map formalism has also been applied to non-maximal supersymmetric

theories, in particular the 6D (2, 0) supergravity [3]. It arises as the low-energy theory

of type IIB superstring theory compactified on a K3 surface, with interactions between

graviton supermultiplets and 21 flavors of tensor supermultiplets. The superfield of the

tensor multiplet, given in (4.15), is a scalar, whereas the graviton supermultiplet transforms

as a (1,3) representation of the little group. Therefore it carries explicit SU(2)R little-group

indices,

Φâb̂(η) = Bâb̂ + . . .+ ηIaηI,bG
ab
âb̂

+ . . .+ (η)4B̄âb̂ . (4.48)

In particular, the bottom component Bâb̂ corresponds to an anti self-dual two-form and

Gab
âb̂

in the middle, which transforms as (3,3), is the 6D graviton.

As shown in [3], the spectrum and the amplitudes of (2, 0) supergravity interacting

with a single tensor multiplet can be obtained from those of (2, 2) supergravity via a SUSY

reduction,

M(2,0)
n1,n2

=

∫ ∏
i∈n1

dη̃Îi,âidη̃i,Î b̂i

∏
j∈n2

dη̃1̂j,âjdη̃
2̂ âj
j M

(2,2)
n . (4.49)

Here n1 is the number of graviton multiplets and n2 is the number of tensor multiplets,

with n1 + n2 = n. From the explicit formula of M(2,2)
n given in (4.47), the above fermionic

integration leads to

M(2,0)
n1,n2

=

∫
dµ6Dn Ṽ n1,n2

â,b̂
δ2×n(V · Ω · ηI) (det′Hn)2 . (4.50)

Here Ṽ n1,n2

â,b̂
arising from the fermionic integration is given by

Ṽ n1,n2

â,b̂
= |Ṽâ1···ân | |Ṽb̂1···b̂n |

∏
i∈n2

εâib̂i + sym , (4.51)

where the matrix Ṽâ1â2,...,ân is defined as

Ṽâ1···ân =


Ṽ1;1,â1 Ṽ1;2,â2 · · · Ṽ1;n,ân
Ṽ2;1,â1 Ṽ2;2,â2 · · · Ṽ2;n,ân

...
... · · ·

...

Ṽn;1,â1 Ṽn;2,â2 · · · Ṽn;n,ân

 . (4.52)

In (4.51), we contract the little-group indices âi, b̂i for i ∈ {1, 2, . . . , n2}, because they

refer to tensor multiplets, whose superfield is a scalar. The symbol “sym” means that we

symmetrize the little-group indices âj , b̂j with j ∈ {1, 2, . . . , n1} of the graviton multiplets.

Therefore, the subscripts â, b̂ of V n1,n2

â,b̂
are uncontracted little-group indices of graviton

multiplets.

– 21 –



J
H
E
P
0
8
(
2
0
1
9
)
1
2
5

As pointed out in [3], when we formulate the tree amplitudes of (2, 0) supergravity

using rational maps, the object PfXn2 arises after the fermionic integration (4.49). Here

Xn2 is an antisymmetric n2 × n2 matrix and is defined as

[Xn2 ]ij =

 1
σij

if i 6= j ,

0 if i = j .
(4.53)

The importance of PfXn2 is that it allows us to introduce multiple flavors for the tensor

multiplets of (2, 0) supergravity via a replacement Xn2 → Xn2 , with Xn2 given by

[Xn2 ]ij =


δfifj
σij

if i 6= j ,

0 if i = j ,
(4.54)

where fi, fj are flavor indices of particles i, j. δfifj = 1 if the particles have the same

flavor and otherwise δfifj = 0. This procedure was also applied to scattering amplitudes

of Einstein-Maxwell theory with multiple U(1) photons [21].

We see that the net effect of the above procedure for going from a theory with a single

tensor multiplet to a theory with multiple tensor multiplets is to insert the factor

PfXn2

PfXn2

, (4.55)

where the subscript n2, which is required to be even, represents the number of the par-

ticles belonging to tensor multiplets. Therefore, by this procedure and the single-flavor

formula (4.50), we obtain a formula for the tree amplitudes of 6D (2, 0) supergravity de-

scribing the interaction of graviton multiplets with multi-flavor tensor multiplets,

M(2,0)
n1,n2

=

∫
dµ6Dn

PfXn2

PfXn2

V n1,n2

â,b̂
δ2×n(V · Ω · ηI) (det′Hn)2 . (4.56)

We have checked numerically that this new formula gives the same results as obtained from

the formula proposed in [3], namely equation (26) of that paper. The result may also be

expressed in a double copy form,12

M(2,0)
n1,n2

=

∫
dµ6Dn I

(1,0),f
L,â I(1,0)

R,b̂

∏
i∈n2

εâib̂i + sym , (4.57)

where each half integrand has (1, 0) supersymmetry, and one of them (I(1,0),fL,â ) carries the

flavor symmetry,

I(1,0),fL,â = δn(V · Ω · η) det′Hn|Ṽâ1···ân |
PfXn2

PfXn2

, I(1,0)
R,b̂

= δn(V · Ω · η) det′Hn|Ṽb̂1···b̂n | .

(4.58)

Again in (4.57) we symmetrize the little group indices for graviton multiplets and for tensor

multiplets we contract the indices.

12The BCJ double copy structure [22] of 6D (2, 0) supergravity was also studied in [23].
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5 Conclusion

The Grassmannian formulation of scattering amplitudes of 4D N = 4 SYM was proposed

and extensively studied in [17, 24]. It has led to powerful geometric pictures for the

scattering amplitudes of that theory. Grassmannian formulations were later extended to

amplitudes of 3D supersymmetric Chern-Simons matter theories [25–27]. In this formula-

tion and its on-shell diagram realization, scattering amplitudes are described in terms of

on-shell data only, and physical concepts such as unitarity and locality emerge as derived

consequences of geometric properties of the Grassmannian. The Grassmannian formula-

tion of 4D N = 4 SYM was further generalized, leading to a new mathematical object for

scattering amplitudes, called the amplituhedron, in [28].

It is natural to ask whether these ideas extend to other theories, especially 6D (1, 1)

SYM and 4D N = 4 SYM on the Coulomb branch. Previously, we have seen the appear-

ance of the symplectic Grassmannian in the description of the scattering amplitudes of

these theories [2]. In this paper, we showed that the understanding in terms of the sym-

plectic Grassmannian is fruitful and provides a unifying picture for two different-looking

twistor formulations. One of them is based on rational maps and the other is based on

polarized scattering equations. In particular, these two distinct formulations simply reflect

different choices for fixing the GL(n,C) symmetry in our construction of the symplectic

Grassmannian LG(n, 2n). This understanding was shown to lead to new formulas for 6D

superamplitudes of other interesting theories that were originally studied in [1–3] includ-

ing world-volume DBI-like theories of single probe branes, (1, 1) SYM, (2, 2) and (2, 0)

supergravity. Upon dimensional reduction, following the procedure of [2], we also obtained

formulas for scattering amplitudes of 4D N = 4 SYM on the Coulomb branch. The spec-

trum includes both massive and massless supermultiplets.

This paper has focused on the implications of the symplectic Grassmannian for the

scattering equations that enter in the integrands of the scattering amplitudes, despite the

fact that the integrands are still expressed in terms of world-sheet variables. It would be

interesting to investigate how to recast the integrands in terms of Plücker coordinates of

the symplectic Grassmannian. This should lead to a Grassmannian representation of 6D

superamplitudes with local GL(n,C) symmetry. As in the case of 4D N = 4 SYM and

3D supersymmetric Chern-Simons matter theory, such a symplectic Grassmannian formu-

lation should be closely related to on-shell diagram representations of BCFW recursion

relations [29], especially the 6D version of the recursion relations [14, 30]. Furthermore,

using the symmetric plabic graphs that were introduced in [31], the stratification of positive

symplectic Grassmannian has been explored in [32], which may be directly related to the

on-shell diagram representation of 6D amplitudes.

It would also be interesting to extend the ideas developed in this paper to the polarized

scattering equations in ten and eleven dimensions, which were proposed in [13] (see [33]

for a different approach to scattering amplitudes in higher dimensions). This should help

to develop a better understanding of the structure of scattering amplitudes in higher-

dimensional supersymmetric theories as well as their reformulations in terms of geometric

objects such as Grassmannians.
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Finally, it has been found recently that the 6D tree-level supergravity amplitudes have

important implications for the correlation functions in AdS3 × S3 [34, 35] (see [36, 37] for

applications of tree-level amplitudes in 10D supergravity to the correlators in AdS5 × S5).

It would be very interesting if any of the new structures of 6D superamplitudes discussed

in this paper could be applied to holographic correlators in AdS3 × S3.
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