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1 Introduction

Half a century ago, Bacry and Lévy-Leblond [1] asked what were the possible kinematics.

They provided an answer to this question by classifying kinematical Lie algebras in 3 + 1

dimensions subject to the assumptions of invariance under parity and time-reversal. They

also showed that the kinematical Lie algebras in their classification could be related by

contractions. Moreover they observed that each such Lie algebra acts transitively on some

(3 + 1)-dimensional spatially isotropic homogeneous spacetime and that the contractions

could be interpreted as geometric limits of the corresponding spacetimes. Physically, we

can understand these limits as approximations and this interpretation explains why these

particular spacetimes are relevant and continue to show up in different corners of physics.

Indeed, most of the spacetimes in their work are known to play a fundamental rôle

in physics. For example, the de Sitter spacetime is important for cosmology, the anti de

Sitter spacetime currently drives much of our understanding of quantum gravity due to the

AdS/CFT correspondence [2], and, in the limit where the cosmological constant goes to

zero, Minkowski spacetime is fundamental in particle physics. Other important spacetimes

of this type include the galilean spacetime, which is the playing field for condensed mat-

ter systems, and the carrollian spacetime, whose relation to Bondi-Metzner-Sachs (BMS)

symmetries, as shown in [3], is leading to exciting progress in our understanding of infrared

physics in asymptotically flat spaces (for reviews see [4, 5]).1

Twenty years later, Bacry and Nuyts [18] dropped the “by no means compelling”

assumptions of parity and time-reversal invariance and hence classified all kinematical

Lie algebras in 3 + 1 dimensions, observing that once again each such Lie algebra acts

transitively on some (3 + 1)-dimensional homogeneous spacetime.

Strictly speaking, what was shown in [1, 18] is that every kinematical Lie algebra k

in their classification has a Lie subalgebra h spanned by the infinitesimal generators of

rotations and boosts. This suggests the existence of Lie groups H ⊂ K with Lie alge-

bras h ⊂ k and hence of a homogeneous spacetime K/H. However the very existence of

the homogeneous spacetime and its precise relationship to the infinitesimal description in

terms of the Lie pair (k, h) turns out to be subtle. Furthermore, as mentioned already

in [1, 18], a physically desirable property of a kinematical spacetime is that orbits of the

boost generators should be non-compact. To the best of our knowledge, a proof of this

fact did not exist for many of the spacetimes in [18]. With this in mind, and based on a

recent deformation-theoretic classification of kinematical Lie algebras [19–21], we revisited

this problem and in [6] classified and showed the existence of simply-connected spatially

isotropic homogeneous spacetimes in arbitrary dimension, making en passant a small cor-

rection to the (3 + 1)-dimensional classification in [18]. Another novel aspect of [6] was the

classification of aristotelian spacetimes, which lack boost symmetry. One way to interpret

this classification is as a generalisation of the classification of maximally symmetric rie-

1We refer to, e.g., [6] for further motivation and a (non-exhaustive) list of further references. While this

work was under completion the interesting work [7] appeared which discusses similar aspects as this and

our earlier work. Recently, also further interesting works, which fall in the realm of the kinematical Lie

algebras and spacetimes, have appeared, see, e.g., [8–17].
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mannian and lorentzian spacetimes when we drop the requirement that there should exist

an invariant metric.

Another way is to understand this work as a generalisation of the work of Bacry

and Lévy-Leblond [1] when the assumption of parity and time reversal invariance and

the restriction to 3 + 1 dimensions is dropped. Simultaneously imposing parity and time

reversal invariance2 selects the symmetric spaces, leading to the omission of some inter-

esting spacetimes like, e.g., the non-reductive carrollian light cone LC and the torsional

galilean spacetimes.

Let us emphasise that in identifying specific Lie algebra generators as “translations”

or “boosts” one is actually implicitly referring to the homogeneous space. Indeed, the

Lie algebra itself does not provide this interpretation. For example, by inspecting table 1

one recognises that the Minkowski (M) and AdS carrollian (AdSC) spacetimes share the

same underlying Lie algebra. They are however different homogeneous spacetimes and the

precise relationship between the kinematical Lie algebras and their spacetimes was also

analysed in [6] and will be seen explicitly in the following analysis.

The methods employed in [6] are Lie algebraic and this means that in that paper

we concentrated on geometrical properties which could be probed infinitesimally, such as

determining the characteristic invariant structures (in low rank) that such a spacetime

might possess, leaving the investigation of the orbits of the boosts to the present paper.

Indeed, we will prove that the boosts do act with (generic) non-compact orbits in all

spacetimes with the unsurprising exceptions of the aristotelian spacetimes (which have no

boosts) and the riemannian symmetric spaces, where the “boosts” are actually rotations.3

To those ends we introduce exponential coordinates for each of the spacetimes in [6],

relative to which we write down the fundamental vector fields which generate the action

of the transitive Lie algebra. We also give explicit expressions for the invariant structure

(lorentzian, galilean, carrollian, aristotelian) that the spacetime may possess. In addition,

we determine the invariant connections which the homogeneous spacetimes admit (if any)

and determine their torsion and curvature. We also pay particularly close attention to the

orbits of the boost generators and in most cases show that the generic orbit is non-compact,

as one would expect to be the case for any reasonable spacetime.

Finally, using modified exponential coordinates, we determine the infinitesimal (con-

formal) symmetries of the galilean and carrollian structures of our spacetimes. They are

infinite-dimensional and reminiscent of BMS algebras. Many of the results already appear

in [3, 29]. Unobserved however was the close relation of the conformal symmetries of the

(anti) de Sitter carrollian structure, belonging to null surfaces of (anti) de Sitter spacetime,

and BMS symmetries. Section 10 can be read in large parts independently.

The paper is organised as follows. In section 2 we summarise the results of the clas-

sification in [6]. In tables 1 and 2 we list the simply-connected, spatially isotropic, homo-

geneous kinematical and aristotelian spacetimes, respectively. These are the spacetimes

whose geometry we study in this paper. Figures 1, 2, and 3 summarise the relationships

2This operation is σ(H) = −H and σ(P ) = −P leaving the remaining generators unaltered.
3Since some of these spacetimes are well studied, there is necessarily some overlap with existing work, like

the original works [1, 18] or more recent works that also discuss homogeneous spacetimes, e.g., [7, 22–28].
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between these spacetimes. These relationships take the form of limits which, in many cases,

manifest themselves as contractions of the corresponding kinematical Lie algebras. Table 3

summarises some of the geometrical properties of the spacetimes in tables 1 and 2. The list

of spacetimes naturally breaks up into classes depending on which invariant structures (if

any) the spacetimes possess: lorentzian, riemannian, galilean, carrollian and aristotelian.

There are also exotic two-dimensional spacetimes with no discernible invariant structure.

In section 3 we briefly review the basic notions of the local geometry of homogeneous

spaces, tailored to the case at hand and compute the action of the rotations and boosts on

the spacetimes. In section 4 we discuss the space of invariant connections for the reduc-

tive homogeneous spacetimes in tables 1 and 2 and calculate their torsion and curvature,

paying particular attention to the existence of flat and/or torsion-free connections. In

section 5 we discuss the lorentzian and riemannian homogeneous spaces and their limits.

This leaves a few spacetimes which are not obviously obtained in this way and we discuss

them separately: the torsional galilean homogeneous spacetimes are discussed in section 6,

the carrollian light cone in section 7, the exotic two-dimensional spacetimes in section 8,

and the aristotelian spacetimes in section 9. In section 10 we determine the infinitesimal

(resp. conformal) symmetries of the galilean and carrollian spacetimes; namely, the vector

fields which preserve (resp. rescale) the corresponding galilean and carrollian structure .

The corresponding Lie algebras are typically infinite-dimensional and reminiscent of the

BMS algebras. Finally, in section 11 we offer some conclusions. The paper contains two

appendices: in appendix A we discuss the carrollian and galilean spacetimes in terms of

modified exponential coordinates, which are the most convenient coordinates in order to

discuss their symmetries, and in appendix B we record for convenience the Lie algebras of

conformal Killing vectors on low-dimensional maximally symmetric riemannian manifolds.

2 Homogeneous kinematical spacetimes

We use the notation of [6], which we now review. Recall that a simply-connected homo-

geneous kinematical spacetime is described infinitesimally by a Lie pair (k, h). Here k is

a kinematical Lie algebra with D-dimensional space isotropy: namely, a real (D+2)(D+1)
2 -

dimensional Lie algebra with generators Jab, 1 ≤ a < b ≤ D, spanning a Lie subalgebra

isomorphic to so(D), Ba and Pa, for 1 ≤ a ≤ D, transforming as vectors of so(D) and H

transforming as a scalar. The Lie subalgebra h of k contains so(D) and an so(D)-vector

representation, which is spanned by αBa + βPa, 1 ≤ a ≤ D, for some non-zero α, β ∈ R.

We choose a basis for k such that h is always spanned by Jab and Ba. In this fashion, the

Lie brackets of k uniquely specify the Lie pair (k, h).

Let us make a notational remark: we will refer to the generators Ba as (infinitesimal)

boosts, even though in some cases (e.g., the riemannian symmetric spaces) they act as rota-

tions. A substantial part of the work that went into this paper was devoted to determining

when the boosts really act like boosts and not, say, like rotations.

Notice that in writing down the Lie brackets of k, it is only necessary to list those

brackets which do not involve Jab since those involving Jab are common for all kinematical

Lie algebras and restate the fact that Jab span an so(D) subalgebra under which Ba and

– 4 –
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Pa are vectors and H is a scalar. Explicitly, this reads

[Jab, Jcd] = δbcJad − δacJbd − δbdJac + δadJbc,

[Jab, Bc] = δbcBa − δacBb,
[Jab, Pc] = δbcPa − δacPb,
[Jab, H] = 0;

(2.1)

although we will use an abbreviated notation in which we do not write the so(D) indices

explicitly. We write J , B, P , and H for the generators and rewrite the kinematical Lie

brackets in (2.1) as

[J ,J ] = J , [J ,B] = B, [J ,P ] = P , and [J , H] = 0. (2.2)

For D 6= 2, any other brackets can be reconstructed unambiguously from the abbreviated

expression since there is only one way to reintroduce indices in an so(D)-equivariant fashion.

For example,

[H,B] = P =⇒ [H,Ba] = Pa and [B,P ] = H + J =⇒ [Ba, Pb] = δabH + Jab.

(2.3)

In D = 3 we may also have brackets of the form

[P ,P ] = P =⇒ [Pa, Pb] = εabcPc. (2.4)

Similarly, for D = 2, εab is rotationally invariant and can appear in Lie brackets. So we

will write, e.g.,

[H,B] = B + P̃ for [H,Ba] = Ba + εabPb. (2.5)

If the Lie subalgebra h contains an ideal b of k, we say that the Lie pair (k, h) is not

effective. For a kinematical Lie algebra k, such an ideal is necessarily the one spanned by the

boosts, which act trivially on the homogeneous spacetime. In such cases, we quotient by b

to arrive at an effective (by construction) Lie pair (a, r), where a = k/b is an aristotelian Lie

algebra and r ∼= so(D) is the Lie subalgebra of rotations. The Lie pair (a, r) corresponds to

an aristotelian spacetime. Not all aristotelian spacetimes arise in this way, and this justifies

the separate classification of aristotelian Lie algebras and their corresponding spacetimes

in [6, Appendix A].

2.1 Classification

We now summarise the results of [6]. Table 1 lists the (isomorphism classes of) simply-

connected, spatially isotropic, homogeneous spacetimes. We shall refer to them as “simply-

connected homogeneous kinematical spacetimes” from now on. These are described by Lie

pairs (k, h), where k is a kinematical Lie algebra with generators J ,B,P , H and h is the

Lie subalgebra spanned by J ,B. The first column is the label given in [6]. The second

column specifies the value of D, where the dimension of the spacetime is D+1. The middle

columns are the Lie brackets of k in addition to the common kinematical Lie brackets in

equation (2.2). It is tacitly assumed that when D = 1, we set J = 0 whenever it appears.

The final column contains any relevant comments, including the name of the spacetime if

known. The table is divided by horizontal rules into five sections, from top to bottom:

– 5 –
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Lorentzian. These are the homogeneous kinematical spacetimes admitting an invariant

lorentzian metric, which due to the dimension of the symmetry algebra must be

maximally symmetric:

• Minkowski spacetime (M),

• de Sitter spacetime (dS), and

• anti de Sitter spacetime (AdS).

Riemannian. These are the homogeneous kinematical “spacetimes” admitting an invari-

ant riemannian metric, which again must be maximally symmetric by dimension:

• euclidean space (E),

• round sphere (S), and

• hyperbolic space (H).

Galilean. These are the homogeneous kinematical spacetimes admitting an invariant

galilean structure:

• galilean spacetime (G),

• galilean de Sitter spacetime (dSG = dSG−1),

• torsional galilean de Sitter spacetime (dSGγ , γ ∈ (−1, 1]),

• galilean anti de Sitter spacetime (AdSG = AdSG0), and

• torsional galilean anti de Sitter spacetime (AdSGχ, χ > 0),

• a two-parameter family (S12γ,χ) of three-dimensional galilean spacetimes inter-

polating between the torsional galilean (anti) de Sitter spacetimes.

Carrollian. These are the homogeneous kinematical spacetimes admitting an invariant

carrollian structure:

• carrollian spacetime (C),

• carrollian de Sitter spacetime (dSC),

• carrollian anti de Sitter spacetime (AdSC), and

• carrollian light cone (LC).

These spacetimes are identifiable as null hypersurfaces in homogeneous, lorentzian

kinematical spacetimes in one dimension higher: M for C and LC, AdS for AdSC

and dS for dSC. In particular, the image of the embedding LC ⊂ M is the future

light cone.4

Exotic. These are two-dimensional kinematical spacetimes without any discernible invari-

ant structures.

4Strictly speaking, it is the future light cone if D > 1 and its universal cover if D = 1, a fact that was

initially glossed over in [6].
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Label D Non-zero Lie brackets in addition to [J ,J ] = J , [J ,B] = B, [J ,P ] = P Comments

S1 ≥ 1 [H,B] = −P [B,B] = J [B,P ] = H M
S2 ≥ 2 [H,B] = −P [H,P ] = −B [B,B] = J [B,P ] = H [P ,P ] = −J dS

S3 ≥ 1 [H,B] = −P [H,P ] = B [B,B] = J [B,P ] = H [P ,P ] = J AdS

S4 ≥ 1 [H,B] = P [B,B] = −J [B,P ] = H E
S5 ≥ 1 [H,B] = P [H,P ] = −B [B,B] = −J [B,P ] = H [P ,P ] = −J S
S6 ≥ 1 [H,B] = P [H,P ] = B [B,B] = −J [B,P ] = H [P ,P ] = J H

S7 ≥ 1 [H,B] = −P G

S8 ≥ 1 [H,B] = −P [H,P ] = −B dSG = dSGγ=−1
S9γ ≥ 1 [H,B] = −P [H,P ] = γB + (1 + γ)P dSGγ∈(−1,1]
S10 ≥ 1 [H,B] = −P [H,P ] = B AdSG = AdSGχ=0

S11χ ≥ 1 [H,B] = −P [H,P ] = (1 + χ2)B + 2χP AdSGχ>0

S12γ,χ 2 [H,B] = −P [H,P ] = (1 + γ)P − χP̃ + γB − χB̃ γ ∈ [−1, 1), χ > 0

S13 ≥ 2 [B,P ] = H C

S14 ≥ 2 [H,P ] = −B [B,P ] = H [P ,P ] = −J dSC

S15 ≥ 2 [H,P ] = B [B,P ] = H [P ,P ] = J AdSC

S16 ≥ 1 [H,B] = B [H,P ] = −P [B,P ] = H + J LC

S17 1 [H,B] = −P [B,P ] = −H − 2P

S18 1 [H,B] = H [B,P ] = −P
S19χ 1 [H,B] = (1 + χ)H [B,P ] = (1− χ)P χ > 0

S20χ 1 [H,B] = −P [B,P ] = −(1 + χ2)H − 2χP χ > 0

Table 1. Simply-connected homogeneous (D + 1)-dimensional kinematical spacetimes. The hor-

izontal rules separate the lorentzian, riemannian, galilean, carrollian and exotic spacetimes. For

further properties see table 3.

Since, in two dimensions, it is largely a matter of convention what one calls space

and time,5 some of the spacetimes become accidentally pairwise isomorphic when D = 1:

namely, C ∼= G, dS ∼= AdS, dSC ∼= AdSG and AdSC ∼= dSG. In order to arrive at a

one-to-one correspondence between the rows of the table and the isomorphism class of

simply-connected homogeneous spacetimes, we write D ≥ 2 for dS, C, dSC and AdSC.

Table 2 lists the isomorphism classes of simply-connected aristotelian spacetimes. Ho-

mogeneous aristotelian spacetimes are always reductive, and they admit simultaneously

invariant galilean and carrollian structures. We label them as A# as opposed to S#, for

mnemonic reasons:

• A21 is the static aristotelian spacetime (S),

• A22 is the torsional static aristotelian spacetime (TS),

• A23ε are the Einstein static spacetime R×SD for ε = +1 and the hyperbolic version

R× HD for ε = −1, and

• A24 is a three-dimensional static spacetime with underlying manifold the Heisenberg

Lie group.

2.2 Geometric limits

Many of the above spacetimes are connected by geometric limits, some of which manifest

themselves as contractions of the kinematical Lie algebras. Figure 1 illustrates these limits

for generic D ≥ 3. For D ≤ 2, the picture is modified in a way that will be explained below.

5While true when discussing the geometry of homogeneous spacetimes, there is of course a physical

distinction between space and time: time translations are generated by the hamiltonian, whose spectrum

one often requires to be bounded from below, whereas the spectrum of spatial translations is not subject

to such a requirement.
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Label D Non-zero Lie brackets in addition to [J ,J ] = J and [J ,P ] = P Comments

A21 ≥ 0 S

A22 ≥ 1 [H,P ] = P TS

A23+1 ≥ 2 [P ,P ] = −J R× SD

A23−1 ≥ 2 [P ,P ] = J R× HD

A24 2 [P ,P ] = H

Table 2. Simply-connected homogeneous (D+ 1)-dimensional aristotelian spacetimes. For further

properties see table 3.

dS

dSG dSG1 = AdSG∞

dSC

C M

G

AdS

AdSG = AdSG0

AdSC

S

LC

TS

R× SD R× HD

dSGγ∈[−1,1]

AdSGχ≥0

lorentzian

galilean

carrollian

aristotelian

Figure 1. Homogeneous spacetimes in dimension D + 1 ≥ 4 and their limits.

There are several types of limits displayed in figure 1:

• flat limits in which the curvature of the canonical connection goes to zero: AdS→ M,

dS→ M, AdSC→ C, dSC→ C, AdSG→ G and dSG→ G;

• non-relativistic limits in which the speed of light goes to infinity (morally speaking):

M→ G, AdS→ AdSG and dS→ dSG;

in this limit there is still the notion of relativity, it just differs from the standard

lorentzian one. Therefore, although it might be more appropriate to call it the

“galilean limit”, we will conform to the literature and call it the non-relativistic limit.

• ultra-relativistic limits in which the speed of light goes to zero (again, morally speak-

ing): M→ C, AdS→ AdSC and dS→ dSC.

• limits to non-effective Lie pairs which, after quotienting by the ideal generated by

the boosts, result in an aristotelian spacetime: the dotted arrows LC → TS, C → S

and G→ S;

• LC→ C, which is a contraction of so(D + 1, 1);

• dSGγ → G and AdSGγ → G, which are contractions of the corresponding kinematical

Lie algebras;
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dS

dSG dSG1 = AdSG∞

dSC

C M

G

AdS

AdSG = AdSG0

AdSC

S

LC

TS

R× S2 R× H2A24

dSGγ∈[−1,1]

AdSG 2
χ

S12γ,χ

lorentzian

galilean

carrollian

aristotelian

Figure 2. Three-dimensional homogeneous spacetimes and their limits.

• limits between aristotelian spacetimes TS→ S, R× SD → S and R× HD → S; and

• a limit limχ→∞ AdSGχ = dSG1, which is not due to a contraction of the kinematical

Lie algebras.

We can compose these limits like arrows in a commutative diagram, and therefore we do

not show all the possible limits. All these limits are explained in [6].

The situation in D ≤ 2 is slightly different. As can be seen in tables 1 and 2, there are

two classes of spacetimes which are unique to D = 2: a two-parameter family of galilean

spacetimes (S12γ,χ, for γ ∈ [−1, 1) and χ > 0) and the aristotelian spacetime A24. We can

understand this latter spacetime as the group manifold of the three-dimensional Heisenberg

group. The former two-parameter family interpolates between the torsional galilean (anti)

de Sitter spacetimes. As shown in figure 2, the limit γ → 1 of S12γ,χ is AdSG2/χ, so that if

we then take χ→ 0, we arrive at dSG1. More generally, the limit χ→ 0 of S12γ,χ is dSGγ ,

whereas the limit χ→∞ is independent of γ and given by AdSG.

Table 1 shows that there are four classes of two-dimensional spacetimes unique to

D = 1. These spacetimes are affine but have no discernible structure. In [6] we describe

a number of limits involving these two-dimensional spacetimes. Figure 3 illustrates the

relationship between the two-dimensional spacetimes. This figure includes the riemannian

maximally symmetric spaces which are missing from figures 1 and 2.

2.3 Geometrical properties

In table 3 we summarise the basic properties of the homogeneous kinematical spacetimes

in table 1 and aristotelian spacetimes in table 2. The first column is our label in this paper,

the second column specifies the value of D, where the dimension of the spacetime is D+ 1.

The columns labelled “R”, “S”, and “A” indicate whether or not the spacetime is reductive,

symmetric, or affine, respectively. A X indicates that it is. A (X) in the affine column

reflects the existence of an invariant connection (other than the canonical connection) with

vanishing torsion and curvature. The columns labelled “L”, “E”, “G”, and “C” indicate the
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dSG1 = AdSG∞

dSG = AdSC AdSG = dSC
G = C

S18

(A)dS

S

LC

TS
S17

M E

SH

S19χ S20χ

dSG
γ∈[−1,1] AdSGχ

≥0

riemannian/lorentzian

galilean = carrollian

aristotelian

exotic

Figure 3. Two-dimensional homogeneous spacetimes and their limits.

kind of invariant structures the spacetime possesses: lorentzian, riemannian (“euclidean”),

galilean, and carrollian, respectively. Again a X indicates that the spacetime possesses that

structure. The columns “P”, “T”, and “PT” indicate whether the spacetime is invariant

under parity, time reversal or their combination, respectively, with X signalling that they

do. The column “B” summarises results of the current paper (to be found below) and

indicates whether the boosts act with non-compact orbits in a kinematical spacetime. The

columns “Θ” and “Ω” tell us, respectively, about the torsion and curvature of the canonical

invariant connection for the reductive spacetimes (that is, all but LC). A “ 6= 0” indicates

the presence of torsion, curvature, or both torsion and curvature. Its absence indicates

that the connection is torsion-free, flat, or both. The final column contains any relevant

comments, including, when known, the name of the spacetime.

The table is divided into six sections. The first four correspond to lorentzian, euclidean,

galilean and carrollian spacetimes. The fifth section contains two-dimensional spacetimes

with no invariant structure of these kinds. The sixth and last section contains the aris-

totelian spacetimes. Some of the spacetimes which exist for all D ≥ 1 become accidentally

pairwise isomorphic in D = 1: namely, C ∼= G, dS ∼= AdS, dSC ∼= AdSG and AdSC ∼= dSG.

These accidental isomorphisms explain why we write D ≥ 2 for carrollian, de Sitter, and

carrollian (anti) de Sitter. In this way no two rows are isomorphic, and hence every row in

the table specifies a unique simply-connected homogeneous spacetime, up to isomorphism.
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Label D R S A L E G C P T PT B Θ Ω Comments

S1 ≥ 1 X X X X X X X X M
S2 ≥ 2 X X X X X X X 6= 0 dS

S3 ≥ 1 X X X X X X X 6= 0 AdS

S4 ≥ 1 X X X X X X X E
S5 ≥ 1 X X X X X X 6= 0 S
S6 ≥ 1 X X X X X X 6= 0 H

S7 ≥ 1 X X X X X X X X G

S8 ≥ 1 X X (X) X X X X X 6= 0 dSG

S9γ 6=0 ≥ 1 X (X) X X X 6= 0 6= 0 dSGγ , 0 6= γ ∈ (−1, 1]

S90 ≥ 1 X (X) X X X 6= 0 dSG0

S10 ≥ 1 X X X X X X X 6= 0 AdSG

S11χ ≥ 1 X X X X 6= 0 6= 0 AdSGχ, χ > 0

S12γ,χ 2 X X X X 6= 0 6= 0 γ ∈ [−1, 1), χ > 0

S13 ≥ 2 X X X X X X X X C

S14 ≥ 2 X X X X X X X 6= 0 dSC

S15 ≥ 2 X X X X X X X 6= 0 AdSC

S16 ≥ 1 (X)D=1 X X X LC

S17 1 X X X X X
S18 1 X X X X X
S19χ 1 X X X X X χ > 0

S20χ 1 X X X X X χ > 0

A21 ≥ 0 X X X X X X X X X X S

A22 ≥ 1 X (X) X X X X X 6= 0 TS

A23+1 ≥ 2 X X X X X X X X X 6= 0 R× SD

A23−1 ≥ 2 X X X X X X X X X 6= 0 R× HD

A24 2 X (X) X X X X X 6= 0

Table 3. Properties of simply-connected homogeneous spacetimes. This table describes if a D + 1

dimensional kinematical spacetime (table 1) or aristotelian spacetime (table 2) is reductive (R),

symmetric (S) or affine (A). A spacetime might exhibit a lorentzian (L), riemannian (E), galilean (G)

or carrollian (C) structure, and be invariant under parity (P), time reversal (T) or their combination

(PT). The boosts (B) may act with non-compact orbits. Furthermore the canonical connection of

a reductive spacetime might be have torsion (Θ) and/or curvature (Ω).

3 Local geometry of homogeneous spacetimes

In this section, we review some basic properties of homogeneous spaces, tailored to the

cases of interest. We discuss exponential coordinates, the fundamental vector fields, the

group action, the action of rotations and boosts, the soldering form, and the vielbein. In

addition, we discuss the invariant connections on a reductive homogeneous space.

3.1 Exponential coordinates

Let M = K/H be a kinematical spacetime with associated Lie pair (k, h) in which k is

a kinematical Lie algebra and h is the Lie subalgebra spanned by the rotations Jab and

the boosts Ba. The identification of M with the coset manifold K/H singles out a point

o ∈ M corresponding to the identity coset. We call it the origin of M . Any other point

in M would be equally valid as an “origin”, but that choice would induce an identification
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with a different coset manifold since the new origin typically has a different, but of course

conjugate, stabiliser subgroup.

The action of K on M is induced by left multiplication on K. If we let $ : K→M =

K/H denote the canonical surjection, then for all g ∈ K, we have that

g ·$(k) = $(gk). (3.1)

This is well defined because if $(k) = $(k′), then there is some h ∈ H such that

k′ = kh and by associativity of the group multiplication gk′ = g(kh) = (gk)h, so that

$(gk) = $(gk′).

Now consider acting with g ∈ K on the origin. If g ∈ H, g · o = o, so this suggests the

following. Let m = span {Pa, H} denote a vector space complement of h in k and define

expo : m→M by

expo(X) = exp(X) · o for all X ∈ m. (3.2)

This map defines a local diffeomorphism from a neighbourhood of 0 in m and a neighbour-

hood of o in M , and hence it defines exponential coordinates near o via σ : RD+1 → M ,

where σ(t,x) = expo(tH + x · P ). This coordinate chart has an origin o ∈ M , which is

the point with coordinates (t,x) = (0,0). We may translate this coordinate chart from the

origin to any other point of M via the action of the group and in this way arrive at an expo-

nential coordinate atlas for M . It is not the only natural coordinate system associated with

a choice of basis for m. Indeed, it is often more convenient computationally to use modified

exponential coordinates via products of exponentials, say, σ′(t,x) = exp(tH) exp(x ·P ) · o.
For most of this work we have opted to use strict exponential coordinates in our calcula-

tions for uniformity and to ease comparison: the exception being the determination of the

symmetries, where modified exponential coordinates (as described in appendix A) allow

for a more uniform description.

There are some natural questions one can ask about the local diffeomorphism expo :

m→M or, equivalently, the local diffeomorphism σ : RD+1 →M . One can ask how much

of M is covered by the image of expo. We say that M is exponential if M = expo(m) and

weakly exponential if M = expo(m), where the bar denotes topological closure. Similarly,

we can ask about the domain of validity of exponential coordinates: namely, the subspace

of RD+1 where σ remains injective. In particular, if σ is everywhere injective, does it follow

that σ is also surjective? We know very little about these questions for general homogeneous

spaces, even in the reductive case. However, there are some general theorems for the case

of M a symmetric space.

Theorem 1 (Voglaire [30]). Let M = K/H be a connected symmetric space with symmetric

decomposition k = h⊕m and define expo : m→M . Then the following are equivalent:

1. expo : m→M is injective

2. expo : m→M is a global diffeomorphism

3. M is simply connected and for no X ∈ m, does adX : k → k have purely imaginary

eigenvalues.
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Since our homogeneous spaces are by assumption simply-connected, the last criterion

in the theorem is infinitesimal and, therefore, easily checked from the Lie algebra. This

result makes it a relatively simple task to inspect table 1 and determine for which of the

symmetric spaces the last criterion holds by studying the eigenvalues of adH and adPa on k.

Inspection of table 1 shows that M, E, H, G, dSG, C and AdSC satisfy criterion (3) above and

hence that the exponential coordinates define a diffeomorphism to RD+1 for these spaces.

It also follows by inspection that dS, AdS, S, AdSG and dSC do not satisfy criterion (3)

above and hence the exponential coordinates do not give us a global chart. We will be able

to confirm this directly when we calculate the soldering form for these symmetric spaces.

Concerning the (weak) exponentiality of symmetric spaces, we will make use of the

following result.

Theorem 2 (Rozanov [31]). Let M = K/H be a symmetric space with K connected. Then

1. If K is solvable, then M is weakly exponential.

2. M is weakly exponential if and only if M̂ = K̂/Ĥ is weakly exponential, where K̂ =

K/Rad(K) and similarly for Ĥ, where the radical Rad(K) is the maximal connected

solvable normal subgroup of K.

The Lie algebra of Rad(K) is the radical of the Lie algebra k, which is the maximal

solvable ideal, and can be calculated efficiently via the identification rad k = [k, k]⊥, namely,

the radical is the perpendicular subspace (relative to the Killing form, which may be

degenerate) of the first derived ideal.

It will follow from Theorem 2 that AdSG is weakly exponential.

3.2 The group action and the fundamental vector fields

The action of the group K on M is induced by left multiplication on the group. Indeed,

we have a commuting square

K K

M M

$

Lg

$

τg

τg ◦$ = $ ◦ Lg, (3.3)

where Lg is the diffeomorphism of K given by left multiplication by g ∈ K and τg is the

diffeomorphism of M given by acting with g. In terms of exponential coordinates, we have

g · (t,x) = (t′,x′) where

g exp(tH + x · P ) = exp(t′H + x′ · P )h, (3.4)

for some h ∈ H which typically depends on g, t, and x.

If g = exp(X) with X ∈ h and if A = tH + x · P ∈ m, the following identity will

be useful:

exp(X) exp(A) = exp (exp(adX)A) exp(X). (3.5)
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If M is reductive, so that [h,m] ⊂ m, which is the case for all but one of the kinematical

spacetimes, then adX A ∈ m and, since m is a finite-dimensional vector space and hence

topologically complete, exp(adX)A ∈ m as well. In this case, we may act on the origin

o ∈M , which is stabilised by H, to rewrite equation (3.5) as

exp(X) expo(A) = expo (exp(adX)A) , (3.6)

or, in terms of σ,

exp(X)σ(t,x) = σ(exp(adX)(tH + x · P )) = σ(t′,x′). (3.7)

This latter way of writing the equation shows the action of exp(X) on the exponential

coordinates (t,x), namely

(t,x) 7→ (t′,x′) where t′H + x′ · P := exp(adX)(tH + x · P ). (3.8)

As we will show below, the rotations act in the usual way: they leave t invariant and

rotate x, so we will normally concentrate on the action of the boosts and translations. This

requires calculating, for example,

exp(vaPa)σ(t,x) = σ(t′,x′)h. (3.9)

In some cases, e.g., the non-flat spacetimes, this calculation is not practical and instead we

may take v to be very small and work out t′ and x′ to first order in v. This approximation

then gives the vector field ξPa generating the infinitesimal action of Pa. To be more concrete,

let X ∈ k and consider

exp(sX)σ(t,x) = σ(t′,x′)h (3.10)

for s small. Since for s = 0, t′ = t, x′ = x, and h = 1, we may write (up to O(s2))

exp(sX)σ(t,x) = σ(t+ sτ,x+ sy) exp(Y (s)), (3.11)

for some Y (s) ∈ h with Y (0) = 0, and where τ and y do not depend on s. Equivalently,

exp(sX)σ(t,x) exp(−Y (s)) = σ(t+ sτ,x+ sy), (3.12)

again up to terms in O(s2). We now differentiate this equation with respect to s at s = 0.

Since the equation holds up to O(s2), the differentiated equation is exact.

To calculate the derivative, we recall the expression for the differential of the exponen-

tial map (see, e.g., [32, § 1.2,Thm. 5])

d

ds
exp(X(s))

∣∣∣∣
s=0

= exp(X(0))D(adX(0))X
′(0) , (3.13)

where D is the Maclaurin series corresponding to the analytic function

D(z) =
1− e−z

z
= 1− 1

2
z +O(z2). (3.14)
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(We have abused notation slightly and written equations as if we were working in a matrix

group. This is only for clarity of exposition: the results are general.)

Let A = tH + x · P . Differentiating equation (3.12), we find

X exp(A)− exp(A)Y ′(0) = exp(A)D(adA)(τH + y · P ), (3.15)

and multiplying through by exp(−A) and using that D(z) is invertible as a power series

with inverse the Maclaurin series corresponding to the analytic function F (z) = z/(1−e−z),
we find

G(adA)X − F (adA)Y ′(0) = τH + y · P , (3.16)

where we have introduced G(z) = e−zF (z) = z/(ez− 1). It is a useful observation that the

analytic functions F and G satisfy the following relations:

F (z) = K(z2) +
z

2
and G(z) = K(z2)− z

2
, (3.17)

for some analytic function K(ζ) = 1 + 1
12ζ + O(ζ2). To see this, simply notice that

F (z)−G(z) = z and that the analytic function F (z) +G(z) is invariant under z 7→ −z.

Equation (3.16) can now be solved for τ and y on a case by case basis. To do this, we

need to compute G(adA) and F (adA) on Lie algebra elements. Often a pattern emerges

which allows us to write down the result. If this fails, one can bring adA into Jordan

normal form and then apply the usual techniques from operator calculus. A good check of

our calculations is that the linear map k→X (M), sending X to the vector field

ξX = τ
∂

∂t
+ ya

∂

∂xa
, (3.18)

should be a Lie algebra anti -homomorphism: namely,

[ξX , ξY ] = −ξ[X,Y ]. (3.19)

We have an anti-homomorphism since the action of k on M is induced from the vector

fields which generate left translations on K and these are right-invariant, hence obeying

the opposite Lie algebra.

3.3 The action of the rotations

In this section, we illustrate the preceding discussion for the case of rotations. Here,

of course, D ≥ 2. We will see rotations act in the way we may naively expect on the

exponential coordinates: namely, t is a scalar and xa is a vector.

The infinitesimal action of the rotational generators Jab on the exponential coordinates

can be deduced from

[Jab, H] = 0 and [Jab, Pc] = δbcPa − δacPb. (3.20)

To be concrete, consider J12, which rotates P1 and P2 into each other:

[J12, P1] = −P2 and [J12, P2] = P1, (3.21)

– 15 –



J
H
E
P
0
8
(
2
0
1
9
)
1
1
9

but leaves H and P3, · · · , PD inert. We see that ad2
J12 Pa = −Pa for a = 1, 2, so that

exponentiating,

exp(θ adJ12)(tH + x · P ) = tH + x1(cos θP1 − sin θP2)

+ x2(cos θP2 + sin θP1) + x3P3 + · · ·xDPD
= tH + (x1 cos θ + x2 sin θ)P1

+ (x2 cos θ − x1 sin θ)P2 + x3P3 + · · ·+ xDPD.

(3.22)

Restricting attention to the (x1, x2) plane, we see that the orbit of (x10, x
2
0) under the

one-parameter subgroup exp(θJ12) of rotations is(
x1(θ)

x2(θ)

)
=

(
cos θ sin θ

− sin θ cos θ

)
·

(
x10
x20

)
. (3.23)

Differentiating (x1(θ), x1(θ)) with respect to θ yields

dx1

dθ
= x2 and

dx2

dθ
= −x1, (3.24)

so that

ξJ12 = x2
∂

∂x1
− x1 ∂

∂x2
. (3.25)

In the general case, and in the same way, we find

ξJab = xb
∂

∂xa
− xa ∂

∂xb
, (3.26)

which can be checked to obey the opposite Lie algebra

[ξJab , ξJcd ] = −δbcξJad + δbdξJac + δacξJbd − δadξJbc = −ξ[Jab,Jcd]. (3.27)

3.4 The action of the boosts

For a homogeneous space M = K/H of a kinematical Lie group K to admit a physical

interpretation as a genuine spacetime, one would seem to require that the boosts act

with non-compact orbits [1]. Otherwise, it would be more suitable to interpret them as

(additional) rotations. In other words, if (k, h) is the Lie pair describing the homogeneous

spacetime, with h the subalgebra spanned by the rotations and the boosts, then a desirable

geometrical property of M is that for all X = waBa ∈ h the orbit of the one-parameter

subgroup BX ⊂ H generated by X should be homeomorphic to the real line. Of course,

this requirement is strictly speaking never satisfied: the “origin” of M is fixed by H and,

in particular, by any one-parameter subgroup of H, so its orbit under any BX consists

of just one point. Therefore the correct requirement is that the generic orbits be non-

compact. It is interesting to note that we impose no such requirements on the space and

time translations.

With the exception of the carrollian light cone LC, which will have to be studied

separately, the action of the boosts are uniform in each class of spacetimes: lorentzian,

riemannian, galilean and carrollian. (There are no boosts in aristotelian spacetimes.) We

can read the action of the boosts (infinitesimally) from the Lie brackets:
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• lorentzian:

[B, H] = P , [B,P ] = H and [B,B] = J ; (3.28)

• riemannian:

[B, H] = −P , [B,P ] = H and [B,B] = −J ; (3.29)

• galilean:

[B, H] = P ; (3.30)

• (reductive) carrollian :

[B,P ] = H; (3.31)

• and carrollian light cone (LC):

[B, H] = −B and [B,P ] = H + J . (3.32)

Below we will calculate the action of the boosts for all spacetimes except for the carrollian

light cone and the exotic two-dimensional spacetimes (S17, S18, S19χ and S20χ) which will

be studied case by case.

In order to simplify the calculation, it is convenient to introduce two parameters ς and

c and write the infinitesimal action of the boosts as

[Ba, H] = −ςPa and [Ba, Pb] =
1

c2
δabH. (3.33)

Then (ς, c−1) = (−1, 1) for lorentzian, (ς, c−1) = (1, 1) for riemannian, (ς, c−1) = (−1, 0)

for galilean and (ς, c−1) = (0, 1) for (reductive) carrollian spacetimes.

The action of the boosts on the exponential coordinates, as described in section 3.2, is

given by equation (3.8), which in this case becomes

tH + x · P 7→ exp(adw·B)(tH + x · P ). (3.34)

From equation (3.33), we see that

adw·BH = −ςw · P

ad2
w·BH = − 1

c2
ςw2H,

and
adw·B P =

1

c2
wH

ad2
w·B P = − 1

c2
ςw(w · P ),

(3.35)

so that in all cases ad3
w·B = − 1

c2
ςw2 adw·B. This allows us to exponentiate adw·B easily:

exp(adw·B) = 1 +
sinh z

z
adw·B +

cosh z − 1

z2
ad2
w·B, (3.36)

where z2 = − 1
c2
ςw2, and hence

exp(adw·B)tH = t cosh zH − ςtsinh z

z
w · P ,

exp(adw·B)x · P = x · P +
1

c2
sinh z

z
x ·wH +

cosh z − 1

w2
(x ·w)w · P .

(3.37)
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Therefore, the orbit of (t0,x0) under exp(sw ·B) is given by

t(s) = t0 cosh(sz) +
1

c2
sinh(sz)

z
x0 ·w,

x(s) = x⊥0 − ςt0
sinh(sz)

z
w +

cosh(sz)

w2
(x0 ·w)w,

(3.38)

where we have introduced x⊥0 := x0 − x0·w
w2 w to be the component of x0 perpendicular

to w. It follows from this expression that x⊥(s) = x⊥0 , so that the orbit lies in a plane

spanned by w and the time direction.

Differentiating these expressions with respect to s, we arrive at the fundamental vector

field ξBa . Indeed, differentiating (t(s),x(s)) with respect to s at s = 0, we obtain the value

of ξw·B at the point (t0, x0). Letting (t0, x0) vary we obtain that

ξBa =
1

c2
xa

∂

∂t
− ςt ∂

∂xa
. (3.39)

In particular, notice that one of the virtues of the exponential coordinates, is that the

fundamental vector fields of the stabiliser h – that is, of the rotations and the boosts – are

linear and, in particular, they are complete. This will be useful in determining whether or

not the generic orbits of one-parameter subgroup of boosts are compact.

Let exp(sw · B), s ∈ R, be a one-parameter subgroup consisting of boosts. Given

any p ∈ M , its orbit under this subgroup is the image of the map c : R → M , where

c(s) := exp(sw · B) · p. As we just saw, in the reductive examples (all but LC) the

fundamental vector field ξw·B is linear in the exponential coordinates, and hence it is

complete. Therefore, its integral curves are one-dimensional connected submanifolds of

M and hence either homeomorphic to the real line (if non compact) or to the circle (if

compact). The compact case occurs if and only if the map c is periodic.

If the exponential coordinates define a global coordinate chart (which means, in par-

ticular, that the homogeneous space is diffeomorphic to RD+1), then it is only a matter

of solving a linear ODE to determine whether or not c is periodic. In any case, we can

determine whether or not this is the case in the exponential coordinate chart centred at the

origin. For the special case of symmetric spaces, which are the spaces obtained via limits

from the riemannian and lorentzian maximally symmetric spaces, we may use Theorem 1,

which gives an infinitesimal criterion for when the exponential coordinates define a global

chart. Recalling the discussion in section 3.1, we again state that M, E, H, G, dSG, C, and

AdSC satisfy criterion (3) in Theorem 1 and hence that the exponential coordinates define

a diffeomorphism M ∼= RD+1. Using exponential coordinates, we will see that the orbits of

boosts in E and H are compact, whereas the generic orbits of boosts in the other cases are

non-compact.

The remaining symmetric spacetimes dS, AdS, S, AdSG, and dSC do not satisfy the

infinitesimal criterion (3) in Theorem 1, and hence the exponential coordinates are not

a global chart. It may nevertheless still be the case that the image of expo covers the

homogeneous spacetime (or a dense subset). It turns out that S is exponential and AdSG is

weakly exponential. The result for S is classical, since the sphere is a compact riemannian

symmetric space, and the case of AdSG follows from Theorem 2. If D ≤ 2, then the
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kinematical Lie group for AdSG is solvable and hence AdSG is weakly exponential, whereas

if D ≥ 3, the radicals rad k = span {B,P , H} and rad h = span {B}. Therefore, k/ rad k ∼=
so(D) ∼= h/ rad h. Therefore, with K̂ := K/Rad(K) and similarly for Ĥ, K̂/Ĥ is trivially

weakly exponential and hence, by Theorem 2, so is K/H. We will see that boosts act with

compact orbits in S, but with non-compact orbits in AdSG.

Among the symmetric spaces in table 1, this leaves dS, AdS, and dSC. We treat those

cases using the same technique, which will also work for the non-symmetric LC. Let M

be a simply-connected homogeneous spacetime and q : M → M a covering map which

is equivariant under the action of (the universal covering group of) K. By equivariance,

q(exp(sw ·B) · o) = exp(sw ·B) · q(o), so the orbit of o ∈M under the boost is sent by q

to the orbit of q(o) ∈M . Since q is continuous it sends compact sets to compact sets, so if

the orbit of q(o) ∈M is not compact then neither is the orbit of o ∈M . For M one of dS,

AdS, dSC, or LC, there is some covering q : M →M such that we can equivariantly embed

M as a hypersurface in some pseudo-euclidean space where K acts linearly. It is a simple

matter to work out the nature of the orbits of the boosts in the ambient pseudo-euclidean

space (and hence on M), with the caveat that what is a boost in M need not be a boost

in the ambient space. Having shown that the boost orbit is non-compact on M we deduce

that the orbit is non-compact on M . We will show in this way that the generic boost orbits

are non-compact for dS, AdS, dSC, and LC.

Finally, this still leaves the torsional galilean spacetimes dSGγ , AdSGχ and S12γ,χ,

which require a different argument to be explained when we discuss these spacetimes in

section 6.5.

3.5 Invariant connections

There is only one non-reductive homogeneous spacetime in table 1 and 2, namely LC, and

its invariant connections were already determined in [6]. There it is shown the light cone for

D ≥ 2 admits no invariant connections, whereas for D = 1 there is a three-parameter family

of invariant connections and a unique torsion-free, flat connection. We will, therefore,

restrict ourselves to the remaining reductive homogeneous spaces in this section.

Let (k, h) be a Lie pair associated to a reductive homogeneous space. We assume that

(k, h) is effective so that h does not contain any non-zero ideals of k. We let k = h ⊕ m

denote a reductive split, where [h,m] ⊂ m. This split makes m into an h-module relative

to the linear isotropy representation λ : h→ gl(m), where

λXY = [X,Y ] for all X ∈ h and Y ∈ m. (3.40)

As shown in [33], one can uniquely characterise the invariant affine connections on

(k, h) by their Nomizu map α : m × m → m, an h-equivariant bilinear map; that is, such

that for all X ∈ h and Y,Z ∈ m,

[X,α(Y,Z)] = α([X,Y ], Z) + α(Y, [X,Z]). (3.41)

The torsion and curvature of an invariant affine connection with Nomizu map α are given,

respectively, by the following expressions for all X,Y, Z ∈ m,

Θ(X,Y ) = α(X,Y )− α(Y,X)− [X,Y ]m,

Ω(X,Y )Z = α(X,α(Y,Z))− α(Y, α(X,Z))− α([X,Y ]m, Z)− [[X,Y ]h, Z],
(3.42)
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where [X,Y ] = [X,Y ]h + [X,Y ]m is the decomposition of [X,Y ] ∈ k = h⊕m. In particular,

for the canonical invariant connection with zero Nomizu map, we have

Θ(X,Y ) = −[X,Y ]m and Ω(X,Y )Z = −λ[X,Y ]hZ. (3.43)

For kinematical homogeneous spacetimes, we can determine the possible Nomizu maps

in a rather uniform way. Rotational invariance determines the form of the Nomizu map up

to a few parameters and then we need only study the action of the boosts. From table 1

it is clear that the action of the boosts is common to all spacetimes within a given class:

lorentzian, riemannian, galilean, and carrollian; although the curvature and torsion of the

invariant connections of course do depend on the spacetime in question.

3.6 The soldering form and the canonical connection

Recall that on the Lie group K there is a left-invariant k-valued one-form ϑ: the (left-

invariant) Maurer-Cartan one-form. It obeys the structure equation

dϑ = −1

2
[ϑ, ϑ], (3.44)

where the notation hides the wedge product in the right-hand side. Using exponential

coordinates, we can pull back ϑ to a neighbourhood of the origin on M . The following

formula, which follows from equation (3.13), shows how to calculate it:

σ∗ϑ = D(adA)(dtH + dx · P ), (3.45)

where, as before, A = tH + x · P and D is the Maclaurin series corresponding to the

analytic function in (3.14).

The pull-back σ∗ϑ is a one-form defined near the origin on M with values in the Lie

algebra k. Let m be a vector space complement to h in k so that as a vector space k = h⊕m.

This split allows us to write

σ∗ϑ = θ + ω , (3.46)

where θ is m-valued and and ω is h-valued. If the Lie pair (k, h) is reductive and m is chosen

to be an h-submodule of k, then ω is the one-form corresponding to the canonical invariant

connection on M . The soldering form is then given by θ.

The torsion and curvature of ω are easy to calculate using the fact that ϑ obeys the

Maurer-Cartan structure equation (3.44).6 Indeed, the torsion two-form Θ is given by

Θ = dθ + [ω, θ] = −1

2
[θ, θ]m (3.47)

and the curvature two-form Ω by

Ω = dω +
1

2
[ω, ω] = −1

2
[θ, θ]h, (3.48)

which agree with the expressions in equation (3.43).

6Let us emphasise that in this work, curvature always refer to the curvature of an invariant affine

connection and hence should not be confused with the curvature of the associated Cartan connection,

which is always flat for the homogeneous spaces (also called Klein geometries in that context).
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In the non-reductive case ω does not define a connection, but we may still project the

locally defined k-valued one-form σ∗ϑ to k/h. The resulting local one-form θ with values in

k/h is a soldering form which defines an isomorphism TpM → k/h for every p ∈M near the

origin. Wherever θ is invertible, the exponential coordinates define an immersion, which

may however fail to be an embedding or indeed even injective. In practice, it is not easy

to determine injectivity, but it is easy to determine where θ is invertible by calculating the

top exterior power of θ and checking that it is non-zero. Provided that θ is invertible, the

inverse isomorphism is the vielbein E, where E(p) : k/h→ TpM for every p ∈M near the

origin. The vielbein allows us to transport tensors on k/h to tensor fields on M and, as we

now recall, it takes H-invariant tensors on k/h to K-invariant tensor fields on M .

3.7 Invariant tensors

It is well-known that K-invariant tensor fields on M = K/H are in one-to-one correspon-

dence with H-invariant tensors on k/h and if H is connected, with h-invariant tensors on k/h.

We may assume that H is indeed connected, passing to the universal cover of M , if neces-

sary. In practice, given an (r, s)-tensor T on k/h — that is, an element of (k/h)⊗r⊗((k/h)∗)⊗s

— we can turn it into an (r, s)-tensor field T on M by contracting with soldering forms

and vielbeins as appropriate to arrive, for every p ∈ M , to T (p) ∈ (TpM)⊗r ⊗ (T ∗pM)⊗s.

Moreover, if T is H-invariant, T is K-invariant.

Our choice of basis for k is such that J and B span h and therefore P := P mod h

and H := H mod h span k/h. In the reductive case, k = h⊕m and m ∼= k/h as h-modules.

We will let η and πa denote the canonical dual basis for (k/h)∗.

Invariant non-degenerate metrics are in one-to-one correspondence with h-invariant

non-degenerate symmetric bilinear forms on k/h and characterise, depending on their sig-

nature, lorentzian or riemannian spacetimes. On the other hand, invariant galilean struc-

tures7 consist of a pair (τ, h), where τ ∈ (k/h)∗ and h ∈ S2(k/h) are h-invariant, h has

co-rank 1 and h(τ,−) = 0, if we think of h as a symmetric bilinear form on (k/h)∗. On

M , τ gives rise to an invariant clock one-form and h to an invariant spatial metric on

one-forms. Carrollian structures are dual to galilean structures and consist of a pair (κ, b),

where κ ∈ k/h defines an invariant vector field and b ∈ S2(k/h)∗ is an invariant symmetric

bilinear form of co-rank 1 and such that b(κ,−) = 0. Homogeneous aristotelian spacetimes

admit an invariant galilean structure and an invariant carrollian structure simultaneously.

Invariance under h implies, in particular, invariance under the rotational subalgebra,

which is non-trivial for D ≥ 2. Assuming that D ≥ 2 for now, it is easy to write down the

possible rotationally invariant tensors and therefore we need only check invariance under

B. The action of B is induced by duality from the action on k/h which is given by

λBa(H) = [Ba, H] and λBa(P b) = [Ba, Pb], (3.49)

with the brackets being those of k. In practice, we can determine this from the explicit

expression of the Lie brackets by computing the brackets in k and simply dropping any B

or J from the right-hand side. The only possible invariants in k/h are proportional to H,

7We will not distinguish notationally the H-invariant tensor from the K-invariant tensor field.
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which is invariant provided that [B, H] = 0 mod h. Dually, the only possible invariants in

(k/h)∗ are proportional to η, which is invariant provided that there is no X ∈ k such that

H appears in [B, X]. Omitting the tensor product symbol, the only rotational invariants

in S2(k/h) are linear combinations of H2 and P 2 := δabPaPb, whereas in S2(k/h)∗ are η2

and π2 = δabπ
aπb.

In D = 1 there are no rotations, so we need only concern ourselves with the action

of B. Possible invariants in k/h are linear combinations of H and P , whereas in (k/h)∗

they are linear combinations of η and π. Similarly in the space of symmetric tensors, we

can have now linear combinations of H2, HP , and P 2 in S2(k/h) and of η2, ηπ, and π2 in

S2(k/h)∗. These are again easy to determine from the Lie bracket.

4 Invariant connections, curvature, and torsion for reductive spacetimes

In this section we determine the invariant affine connections for the reductive spacetimes

in tables 1 and 2. This is equivalent to determining the space of Nomizu maps which, as

explained above, can be done uniformly, a class at a time. We also calculate the curvature

and torsion of the invariant connections.

For reductive homogeneous spaces there always exists, besides the canonical connection

with vanishing Nomizu map, another interesting connection. It is given by the torsion-free

connection defined8 by α(X,Y ) = 1
2 [X,Y ]m. The canonical and the natural torsion-free

connections have the same geodesics and, as one can easily observe below, the connections

coincide for symmetric spaces.

For any spacetime the Nomizu maps needs to be rotationally invariant which gives us

α(H,H) =

{
µH D > 1

µH + µ′P D = 1

α(Pa, Pb) =


ζδabH D > 3

ζδabH + ζ ′εabcPc D = 3

ζδabH + ζ ′εabH D = 2

ζH + ζ ′P D = 1

α(H,Pa) =


νPa D > 2

νPa + ν ′εabPb D = 2

νP + ν ′H D = 1

α(Pa, H) =


ξPa D > 2

ξPa + ξ′εabPb D = 2

ξP + ξ′H D = 1,

(4.1)

for some real parameters µ, µ′, ν, ν ′, ζ, ζ ′, ξ, ξ′. Now we simply impose invariance under Ba.

4.1 Nomizu maps for lorentzian spacetimes

The lorentzian spacetimes in table 1 all share the same action of the boosts:

λBaH = Pa and λBaPb = δabH. (4.2)

We will impose invariance explicitly in this case to illustrate the calculation and only state

the results in all other cases.

8It is the unique Nomizu map with α(X,X) = 0 for all X ∈ m and vanishing torsion and called “canonical

affine connection of the first kind” in [33].
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4.1.1 D ≥ 4

We calculate (remember (3.41))

(λBcα)(Pa, Pb) = ζδabPc − νδacPb − ξδbcPa, (4.3)

whose vanishing requires ζ = ν = ξ = 0, as can be seen by considering a = b 6= c, a = c 6= b,

and b = c 6= a in turn. Finally,

(λBcα)(H,H) = µPc, (4.4)

whose vanishing imposes µ = 0 and hence the only invariant Nomizu map is the zero map.

4.1.2 D = 3

The only change here is an additional term ζ ′εabcPc in α(Pa, Pb). This results in

(λBcα)(Pa, Pb) = ζδabPc + ζ ′εabcH − νδacPb − ξδbcPa, (4.5)

whose vanishing again requires ζ = ζ ′ = ν = ξ = 0. Hence continuing as in D ≥ 4, we find

that the only invariant Nomizu map is the zero map.

4.1.3 D = 2

The 2 + 1 dimensional case differs with respect to its higher dimensional counterparts. We

start by calculating

(λBcα)(Pa, Pb) = ζδabPc + ζ ′εabPc − δac(νPb + ν ′εbdPd)− δbc(ξPa + ξ′εadPd). (4.6)

Considering a = b 6= c requires that ζ = 0. Next we set a = c 6= b, which leads us to ν = 0

and ζ ′ = −ν ′. Similarly, b = c 6= a imposes ξ = 0 and ζ ′ = ξ′ and leaves us, for now, with

t = ζ ′ = ξ′ = −ν ′. We need to check if the remaining components of the Nomizu map are

also invariant, e.g.,

(λBcα)(H,H) = µPc (4.7)

vanishes if and only if µ = 0, while α(Pa, H) and α(H,Pa) are invariant without further ado.

In summary, we get a one-parameter family of Nomizu maps, parametrised by t ∈ R,

α(Pa, Pb) = tεabH α(H,Pa) = −tεabPb α(Pa, H) = tεabPb . (4.8)

It can be written in a more compact way using lorentzian 2 + 1 dimensional tensors,

α(Pµ, Pν) = t̃εµνρη
ρσPσ.

4.1.4 D = 1

Here we notice that λB is the identity on m, hence minus the identity on m∗. Therefore,

by parity, there are no zero eigenvalues in m∗ ⊗ m∗ ⊗ m and hence no invariants but the

zero Nomizu map.

In summary, lorentzian homogeneous spacetimes have, with the exception D = 2, of

a unique invariant connection given by the canonical connection. As we will see in the

next sections, there is more freedom for galilean and carrollian spacetimes. However since

we start with an unique (vanishing) Nomizu map, only this vanishing case arises also as

a limit. The additional invariant non-relativistic and ultra-relativistic connections can be

seen as an intrinsic property that does not originate from the relativistic spacetimes.
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4.2 Nomizu maps for riemannian spacetimes

The situation here is very similar to the lorentzian case. Now the boosts act as

λBaH = −Pa and λBaPb = δabH. (4.9)

The results are as in the lorentzian case: the only invariant connection is the canonical

connection, except in D = 2 where there is a one-parameter family.

4.3 Nomizu maps for galilean spacetimes

On a galilean spacetime, the boosts act as

λBaH = Pa (4.10)

and the Pa are invariant. This results in the following invariant Nomizu maps:

α(H,H) =

{
(ν + ξ)H D > 1

(ν + ξ)H + µ′P D = 1

α(Pa, Pb) = 0

α(H,Pa) =

{
νPa D 6= 2

νPa + ν ′εabPb D = 2

α(Pa, H) =

{
ξPa D 6= 2

ξPa − ν ′εabPb D = 2.

(4.11)

We will now analyse the curvature and torsion for these Nomizu maps for each galilean

spacetime.

4.3.1 Galilean spacetime (G)

For D ≥ 3, the torsion and curvature of the resulting connection have the following non-zero

components:

Θ(H,Pa) = (ν − ξ)Pa and Ω(H,Pa)H = −ξ2Pa. (4.12)

There is a unique torsion-free, flat invariant connection corresponding to the canonical

connection with ν = ξ = 0.

For D = 2, the torsion and curvature are given by the following non-zero components:

Θ(H,Pa) = (ν−ξ)Pa+2ν ′εabPb and Ω(H,Pa)H = (ν ′2−ξ2)Pa+2ν ′ξεabPb, (4.13)

so that again the canonical connection is the unique torsion-free, flat invariant connection.

Finally, for D = 1, torsion and curvature are given by

Θ(H,P ) = (ν − ξ)P and Ω(H,P )H = −ξ2P. (4.14)

Since neither depend on µ′, we now have a one-parameter family of torsion-free, flat in-

variant connections, defined by the Nomizu map

α(H,H) = µ′P. (4.15)

– 24 –



J
H
E
P
0
8
(
2
0
1
9
)
1
1
9

4.3.2 Galilean de Sitter spacetime (dSG)

Let D ≥ 3. The torsion and curvature, given by equation (3.42), have the following non-

vanishing components:

Θ(H,Pa) = (ν − ξ)Pa and Ω(H,Pa)H = (1− ξ2)Pa. (4.16)

Therefore, there are two torsion-free, flat invariant connections corresponding to ν = ξ =

±1. The Nomizu maps for these two connections are

α(H,H) = 2H

α(H,Pa) = Pa

α(Pa, H) = Pa

and

α(H,H) = −2H

α(H,Pa) = −Pa
α(Pa, H) = −Pa.

(4.17)

In D = 2, the vector space of Nomizu maps is three-dimensional and the non-vanishing

curvature and torsion components in this dimension are

Θ(H,Pa) = (ν − ξ)Pa + 2ν ′εabPb and Ω(H,Pa)H = (ν ′2 − ξ2 + 1)Pa + 2ξν ′εabPb.

(4.18)

Again, there are two torsion-free, flat invariant connection corresponding to ν = ξ = ±1.

Finally, let D = 1. The non-vanishing torsion and curvature components are

Θ(H,P ) = (ν − ξ)P and Ω(H,P )H = (1− ξ2)P. (4.19)

The torsion-free, flat connections are once again given by ν = ξ = ±1, but now there is a

free parameter µ′.

4.3.3 Galilean anti de Sitter spacetime (AdSG)

The torsion and curvature have have the following non-zero components:

Θ(H,Pa) =

{
(ν − ξ)Pa D 6= 2

(ν − ξ)Pa + 2ν ′εabPb D = 2
(4.20)

and

Ω(H,Pa)H =

{
−(1 + ξ2)Pa D 6= 2

−(1 + ξ2 − ν ′2)Pa + 2ξν ′εabPb D = 2.
(4.21)

There are torsion-free connections, but none are flat.

4.3.4 Torsional galilean de Sitter spacetime (dSGγ=1)

Let D ≥ 3. The torsion has the following non-zero components

Θ(H,Pa) = (ν − ξ − 2)Pa, (4.22)

whereas the only non-zero component of the curvature is

Ω(H,Pa)H = −(1 + ξ)2Pa. (4.23)
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Therefore, there exists a unique invariant connection with zero torsion and curvature cor-

responding to ν = 1 and ξ = −1:

α(H,Pa) = Pa and α(Pa, H) = −Pa. (4.24)

If D = 2, we have an additional parameter in our family of invariant affine connections:

α(H,H) = (ν+ξ)H, α(H,Pa) = νPa+ν ′εabPb, and α(Pa, H) = ξPa−ν ′εabPb. (4.25)

The only non-zero component of the torsion is

Θ(H,Pa) = (ν − ξ − 2)Pa + 2ν ′εabPb, (4.26)

and the only non-zero component of the curvature is

Ω(H,Pa)H = ((ν ′)2 − (1 + ξ)2)Pa + 2ν ′(1 + ξ)εabPb. (4.27)

We see that there is a unique torsion-free, flat invariant connection with Nomizu map

α(H,Pa) = Pa and α(Pa, H) = −Pa. (4.28)

Finally, in D = 1 we have a three-parameter family of Nomizu maps:

α(H,H) = (ν + ξ)H + µ′P, α(H,P ) = νP, and α(P,H) = ξP. (4.29)

The torsion is given by

Θ(H,P ) = (ν − ξ − 2)P, (4.30)

and the curvature by

Ω(H,P )H = −(1 + ξ)2P. (4.31)

Imposing zero torsion and zero curvature still leaves a one-parameter family of invariant

connections with Nomizu map

α(H,H) = µ′P, α(H,P ) = P, and α(P,H) = −P. (4.32)

4.3.5 Torsional galilean de Sitter spacetime (dSGγ 6=1)

For D ≥ 3, the torsion is given by

Θ(H,Pa) = (ν − ξ − (1 + γ))Pa (4.33)

and the curvature by

Ω(H,Pa)H = −(ξ + 1)(ξ + γ)Pa. (4.34)

Therefore, there are precisely two torsion-free, flat invariant connections, with No-

mizu maps

α(H,H) = (γ − 1)H

α(H,Pa) = γPa

α(Pa, H) = −Pa

and

α(H,H) = (1− γ)H

α(H,Pa) = Pa

α(Pa, H) = −γPa.
(4.35)
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If D = 2, then there is a three-parameter family of invariant connections with torsion

and curvature that have the following non-zero components:

Θ(H,Pa) = (ν − ξ − (1 + γ))Pa + 2ν ′εabPb

Ω(H,Pa)H = (ν ′2 − (ξ + 1)(ξ + γ))Pa + ν ′(2ξ + 1 + γ)εabPb.
(4.36)

There are precisely two torsion-free, flat invariant connections, whose Nomizu maps are

identical to those for D ≥ 3 in equation (4.35).

In D = 1, the torsion and curvature have the following non-zero components:

Θ(H,P ) = (ν − ξ − (1 + γ))P and Ω(H,P )H = −(ξ + 1)(ξ + γ)P. (4.37)

There are two one-parameter families of torsion-free, flat invariant connections. They have

Nomizu maps

α(H,H) = (γ − 1)H + µ′P

α(H,P ) = γP

α(P,H) = −P
and

α(H,H) = (1− γ)H + µ′P

α(H,P ) = P

α(P,H) = −γP.
(4.38)

4.3.6 Torsional galilean anti de Sitter spacetime (AdSGχ)

The torsion and curvature of the connection corresponding to this Nomizu map in D ≥ 3

are given by the following non-zero components:

Θ(H,Pa) = (ν − ξ − 2χ)Pa and Ω(H,Pa)H = −(1 + (ξ + χ)2)Pa. (4.39)

Therefore, we see that there are no flat invariant connections; although there is a one-

parameter family of torsion-free invariant connections.

For D = 2, we have a three-parameter family of invariant connections for which the

torsion and curvature are given by the following non-zero components:

Θ(H,Pa) = (ν − ξ − 2χ)Pa + 2ν ′εabPb

and Ω(H,Pa)H =
(
(v′)2 − (ξ + χ)2 − 1

)
Pa + 2ν ′(ξ + χ)εabPb. (4.40)

Again, there are no flat invariant connections, but there is a two-parameter family of

torsion-free invariant connections.

Let D = 1. We calculate the torsion and curvature to be

Θ(H,P ) = (ν − ξ − 2χ)P and Ω(H,P )H = −(1 + (ξ + χ)2)P, (4.41)

respectively. As in higher dimensions, we thus find there to be no flat invariant connections.

There is, however, a two-parameter family of torsion-free invariant connections.

4.3.7 Spacetime S12γ,χ

Since this spacetime is particular to D = 2 and reductive, we need only consider the D = 2

case of (4.11) and we may use equation (3.42) to obtain the following torsion and curvature

Θ(H,Pa) = (ν − ξ − (1 + γ))Pa + (2ν ′ + χ)εabPb

Ω(H,Pa)H = (ν ′(ν ′ + χ)− (ξ + 1)(ξ + γ))Pa + (2ν ′ξ + (1 + γ)ν ′ + (1 + ξ)χ)εabPb.

(4.42)
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For the torsion to vanish we need ν ′ = −χ/2 and ν − ξ = 1 + γ. If, in addition, the

curvature were to vanish we would find

0 = 2ν ′ξ + (1 + γ)ν ′ + (1 + ξ)χ = −1

2
(γ − 1)χ. (4.43)

Hence torsion-free, flat invariant connections require either γ = 1 or χ = 0. Both of these

values lie outside the range of their corresponding parameter. From the vanishing of the Pa
term in the curvature, we see that χ = 0 is necessary, which agrees with the previous results:

torsional galilean de Sitter spacetimes (dSGγ) admit torsion-free, flat invariant connections,

but torsional galilean anti de Sitter spacetimes (AdSGχ) do not (unless χ = 0).

4.4 Nomizu maps for carrollian spacetimes

On a carrollian spacetime, the boosts act as

λBaPb = δabH, (4.44)

and H is invariant. This results in the following invariant Nomizu maps:

α(H,H) = 0

α(Pa, Pb) =


ζδabH D ≥ 3

ζδabH + ζ ′εabH D = 2

ζH + (ν ′ + ξ′)P D = 1

α(H,Pa) =

{
0 D ≥ 2

ν ′H D = 1

α(Pa, H) =

{
0 D ≥ 2

ξ′H D = 1.

(4.45)

4.4.1 Carrollian spacetimes (C)

For D ≥ 3, the corresponding invariant connections are flat and torsion-free for all val-

ues of ζ.

Letting D = 2, we find the following non-vanishing torsion component

Θ(Pa, Pb) = 2ζ ′εabH. (4.46)

We, therefore, have the same torsion-free, flat invariant connections that were found in

higher dimensions.

For D = 1, the torsion and curvature are easily calculated to be

Θ(H,P ) = (ν ′ − ξ′)H Ω(H,P )P = (ν ′)2H. (4.47)

We thus find a one-parameter family of torsion-free, flat invariant connections, as in higher

dimensions:

α(P, P ) = ζH. (4.48)

4.4.2 (Anti) de Sitter carrollian spacetimes (dSC and AdSC)

We will treat these two spacetimes together by introducing κ = ±1. Carrollian de Sitter

spacetime (dSC) corresponds to κ = 1 and carrollian anti de Sitter spacetime (AdSC) to

κ = −1.
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IfD ≥ 3, the torsion vanishes and the curvature has the following non-zero components:

Ω(H,Pa)Pb = κδabH and Ω(Pa, Pb)Pc = κ(δbcPa − δacPb), (4.49)

which is never flat. Both of these results are independent of the Nomizu map.

If D = 2, the non-zero components of the torsion and curvature are given by

Θ(Pa, Pb) = 2ζ ′εabH,

Ω(H,Pa)Pb = εδabH, and,

Ω(Pa, Pb)Pc = ε(δbcPa − δacPb).
(4.50)

It is torsion-free if ζ ′ = 0, but it is never flat.

Finally, if D = 1, then the non-zero components of the torsion and curvature are

Θ(H,P ) = (ν ′ − ξ′)H
Ω(H,P )P = (κ + ν ′2)H,

(4.51)

which is never flat if κ = 1 (dSC ∼= AdSG), but if κ = −1 (AdSC ∼= dSG) then we can take

ν ′ = ξ′ = ±1, to yield two one-parameter families of torsion-free, flat connections with

Nomizu maps:

α(H,P ) = H

α(P,H) = H

α(P, P ) = ζH + 2P

and

α(H,P ) = −H
α(P,H) = −H
α(P, P ) = ζH − 2P.

(4.52)

4.4.3 Carrollian light cone (LC)

As show in [6], this homogeneous spacetime does not admit any invariant connections for

D ≥ 2. For D = 1, there is a three-parameter family of invariant connections and a unique

torsion-free, flat invariant connection.

4.5 Nomizu maps for exotic two-dimensional spacetimes

In the bottom section of table 1 there are exotic two-dimensional reductive spacetimes

with no discernible structure, and we must study their Nomizu maps separately. We can

distinguish the four types of spacetime by the action of λB on the two-dimensional space

m spanned by P and H.

In the case of spacetime S17, λB is not diagonalisable. Therefore, one needs to study

the linear system defined by λBα = 0. Having done so, one deduces that the only invariant

Nomizu map is the zero map.

For all the remaining spacetimes, λB acts semi-simply: diagonally over R for spacetimes

S18 and S19χ and diagonally over C for spacetime S20χ. In spacetime S18, λB is minus

the identity on m, hence the identity on m∗. By parity, there are no zero eigenvalues in

m∗ ⊗m∗ ⊗m, and hence the only invariant Nomizu map is the zero map.

In spacetime S19χ, λB acts diagonally on m with eigenvalues 1−χ and −1−χ. Letting

Vh denote the one-dimensional module of B with weight h, we see that as a B-module,

m ∼= V1−χ ⊕ V−1−χ, so that m∗ ∼= V−1+χ ⊕ V1+χ. Therefore,

m∗⊗m∗ ∼= V2χ−2⊕V2χ+2⊕2V2χ and m∗⊗m∗⊗m ∼= 3Vχ+1⊕3Vχ−1⊕Vχ+3⊕Vχ−3. (4.53)
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Therefore, for generic χ > 0, there are no invariant Nomizu maps other than the zero map.

But, for χ = 1 there are three invariants:

α(H,P ) = ν ′H, α(P,H) = ξ′H, and α(P, P ) = ζ ′P, (4.54)

and for χ = 3 there is one invariant:

α(P, P ) = ζH. (4.55)

In the limit χ → ∞, spacetime S19χ tends to spacetime S18. Since there are no non-zero

invariant Nomizu maps for generic χ, we expect the same is true in the limit, which agrees

with our previous findings.

Finally, in spacetime S20χ, λB is semi-simple with complex eigenvalues, hence diago-

nalisable in the complexification mC of m. If now Vh denotes the complex one-dimensional

B-module with weight h, we have that as B-modules

mC
∼= V−χ+i ⊕ V−χ−i and hence m∗C

∼= Vχ−i ⊕ Vχ+i. (4.56)

The imaginary parts of the weights of mC and m∗C are ±i, so (by parity) there cannot be

any real weights in m∗C ⊗ m∗C ⊗ mC and, in particular, no zero weights. Had there been a

zero weight in m∗ ⊗ m∗ ⊗ m, this would have resulted in a zero weight in m∗C ⊗ m∗C ⊗ mC

upon complexification. Therefore there are no zero weights in m∗ ⊗m∗ ⊗m and hence the

only invariant Nomizu map is the zero map.

4.6 Nomizu maps for aristotelian spacetimes

In this section, we study the geometrical properties of the aristotelian spacetimes of table 2.

They are all reductive, so there is a canonical invariant connection, and any other invariant

connection is determined uniquely by its Nomizu map. The Nomizu maps α : m×m→ m

are only subject to equivariance under rotations and are given by (4.1). They depend only

on the dimension D and not on the precise aristotelian spacetime; although, of course, the

precise expression for the torsion and curvature tensors does depend on the spacetime. We

will calculate the torsion and curvature for each spacetime below.

4.6.1 Static spacetime (S)

For D ≥ 4, the torsion and curvature of the most general invariant connection has the

following non-zero components:

Θ(H,Pa) = (ν − ξ)Pa,
Ω(H,Pa)H = ξ(ν − µ)Pa,

Ω(H,Pa)Pb = ζ(µ− ν)δabH, and

Ω(Pa, Pb)Pc = ζξ(δbcPa − δacPb).

(4.57)

There are three classes of torsion-free, flat invariant connections in addition to the

canonical connection:
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1. ζ = 0 and µ = ν = ξ 6= 0,

2. ν = ξ = ζ = 0 and µ 6= 0, and

3. µ = ν = ξ = 0 and ζ 6= 0.

For D = 3, the torsion and curvature have the following non-zero components:

Θ(H,Pa) = (ν − ξ)Pa,
Θ(Pa, Pb) = 2ζ ′εabcPc,

Ω(H,Pa)H = ξ(ν − µ)Pa,

Ω(H,Pa)Pb = ζ(µ− ν)δabH,

Ω(Pa, Pb)H = 2ξζ ′εabcPc, and

Ω(Pa, Pb)Pc = (ζξ − ζ ′2)(δbcPa − δacPb) + 2ζζ ′εabcH.

(4.58)

The torsion-free condition implies that ζ ′ = 0. With this value of ζ ′, the above components

reduce to those in the case D ≥ 4. We, therefore, end up with the same torsion-free, flat

invariant connections.

In D = 2, the torsion and curvature have components

Θ(H,Pa) = (ν − ξ)Pa + (ν ′ − ξ′)εabPb,
Θ(Pa, Pb) = 2ζ ′εabH,

Ω(H,Pa)H = (ξ(ν − µ)− ξ′ν ′)Pa + (ξν ′ + (ν − µ)ξ′)εabPb,

Ω(H,Pa)Pb =
(
(ζ(µ− ν)− ζ ′ν ′)δab + (ζν ′ + (µ− ν)ζ ′)εab

)
H,

Ω(Pa, Pb)H = 2(ξζ ′ − ξ′ζ)εabH, and

Ω(Pa, Pb)Pc = (ζξ + ζ ′ξ′)(δbcPa − δacPb) + (ζξ′ − ζ ′ξ)εabPc.

(4.59)

Here we find a one-parameter family of torsion-free, flat invariant connections given by

α(Pa, Pb) = ζδabH. (4.60)

Finally, in D = 1, the torsion and curvature have the following non-vanishing:

components

Θ(H,P ) = (ν ′ − ξ′)H + (ν − ξ)P,
Ω(H,P )H = (ξν ′ − ζµ′)H + (ξ(ν − µ) + µ′(ξ′ − ζ ′))P, and

Ω(H,P )P = (ζµ+ ν ′(ζ ′ − ξ′))H + (ζµ′ − ν ′ξ)P.
(4.61)

Imposing torsion-free and flatness conditions, the following classes of invariant connec-

tions are found

1. µ = ν = ξ = µ′ = 0, and ν ′ = ξ′ = ζ ′,

2. ν = ξ = ζ = 0, and ν ′ = ξ′ = ζ ′,

3. µ′ = ν ′ = ξ′ = ζ = 0, and µ = ν = ξ,
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4. ν = ξ = ζ = 0, and ν ′ = ξ′,

5. ζ = ζ ′ = 0, and ν = ξ, ν ′ = ξ′,

6. ν = ξ = µ′ = 0, and ν ′ = ξ′, and,

7. µ = ν = ξ = µ′ = ν ′ = ξ′ = 0.

Since the remaining aristotelian spacetimes, all have the same Nomizu maps as this

static case, all of them will have the above torsion and curvature components as a base,

with a few additional terms included due to the additional non-vanishing brackets of the

specific spacetime.

4.6.2 Torsional static spacetime (TS)

For D ≥ 4, the torsion and curvature are given by

Θ(H,Pa) = (ν − ξ − 1)Pa,

Ω(H,Pa)H = ξ(ν − µ− 1)Pa,

Ω(H,Pa)Pb = ζ(µ− ν − 1)δabH, and

Ω(Pa, Pb)Pc = ζξ(δbcPa − δacPb).

(4.62)

As in the static case, we again find three classes of torsion-free, flat invariant

connection:

1. ξ = ζ = 0, and ν = 1,

2. µ = ξ = ν − 1, and ζ = 0, and,

3. ξ = 0, ν = 1, and µ = 2.

Letting D = 3, we get the following non-vanishing torsion and curvature components:

Θ(H,Pa) = (ν − ξ − 1)Pa,

Θ(Pa, Pb) = 2ζ ′εabcPc,

Ω(H,Pa)H = ξ(ν − µ− 1)Pa,

Ω(H,Pa)Pb = ζ(µ− ν − 1)δabH − ζ ′εabcPc,
Ω(Pa, Pb)H = 2ξζ ′εabcPc, and

Ω(Pa, Pb)Pc = (ζξ − ζ ′2)(δbcPa − δacPb) + 2ζζ ′εabcH.

(4.63)

Imposing the torsion-free condition makes ζ ′ vanish such that we get the same three

classes of torsion-free, flat invariant connections as in the D ≥ 4 case.

In D = 2, the torsion and curvature are given by

Θ(H,Pa) = (ν − ξ − 1)Pa + (ν ′ − ξ′)εabPb,
Θ(Pa, Pb) = 2ζ ′εabH,

Ω(H,Pa)H = (ξ(ν − µ− 1)− ξ′ν ′)Pa + (ξ′(ν − µ− 1) + ξν ′)εabPb,

Ω(H,Pa)Pb = (ζ(µ− ν − 1)− ν ′ζ ′)δabH + (ζ ′(µ− ν − 1) + ν ′ζ)εabH,

Ω(Pa, Pb)H = 2(ξζ ′ − ξ′ζ)εabH, and

Ω(Pa, Pb)Pc = (ζξ + ζ ′ξ′)(δbcPa − δacPb) + (ζξ′ − ζ ′ξ)εabPc.

(4.64)
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Here we find a unique torsion-free, flat invariant connection with

α(H,H) = 2H α(H,Pa) = 2Pa and α(Pa, H) = Pa. (4.65)

Finally, let D = 1. The components of the torsion and curvature are

Θ(H,P ) = (ν ′ − ξ′)H + (ν − ξ − 1)P,

Ω(H,P )H = (ξν ′ − ζµ′ − ξ′)H + (ξ(ν − µ− 1) + µ′(ξ′ − ζ ′))P, and

Ω(H,P )P = (ζ(µ− ν) + ν ′(ζ ′ − ξ′))H + (ζµ′ − ν ′ξ − ζ ′)P.
(4.66)

We find the following classes of torsion-free, flat invariant connections

1. ξ = ζ = ν ′ = ξ′ = ζ ′ = 0, and ν = 1,

2. ξ = 0, µ = ν = 1, and ν ′ = ξ′ = ζ ′ = µ′ζ,

3. ζ = 0, µ = ξ = ν − 1, and µ′ = ν ′ = ξ′ = ζ ′ = 0, and,

4. µ′ = 0, µ = ξ = 1, ν = 2, and ν ′ = ξ′ = −ζ ′ =
√
−ζ
2 , for when ζ ≤ 0.

4.6.3 Aristotelian spacetime A23ε

In D ≥ 4, the torsion and curvature are given by

Θ(H,Pa) = (ν − ξ)Pa,
Ω(H,Pa)H = ξ(ν − µ)Pa,

Ω(H,Pa)Pb = ζ(µ− ν)δabH, and

Ω(Pa, Pb)Pc = (ζξ + ε)(δbcPa − δacPb).

(4.67)

Imposing flatness, we find that this requires ε to vanish; therefore, since ε = ±1, we

find no torsion-free, flat invariant connections.

Let D = 3. The non-vanishing torsion and curvature components are

Θ(H,Pa) = (ν − ξ)Pa,
Θ(Pa, Pb) = 2ζ ′εabcPc,

Ω(H,Pa)H = ξ(ν − µ)Pa,

Ω(H,Pa)Pb = ζ(µ− ν)δabH,

Ω(Pa, Pb)H = 2ξζ ′εabcPc, and

Ω(Pa, Pb)Pc = (ζξ + ε− ζ ′2)(δbcPa − δacPb) + 2ζζ ′εabcH.

(4.68)

As in the static and torsional static cases, imposing the torsion-free condition sets

ζ ′ = 0. This means we get the same torsion-free, flat invariant connections in this case as

in D ≥ 4. Therefore, there are no torsion-free, flat invariant connections in this dimension.
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In D = 2, the torsion and curvature become

Θ(H,Pa) = (ν − ξ)Pa + (ν ′ − ξ′)εabPb,
Θ(Pa, Pb) = (2ζ ′)εabH,

Ω(H,Pa)H = (ξ(ν − µ)− ξ′ν ′)Pa + (ξ′(ν − µ) + ξν ′)εabPb,

Ω(H,Pa)Pb = (ζ(µ− ν)− ν ′ζ ′)δabH + (ζ ′(µ− ν) + ν ′ζ)εabH,

Ω(Pa, Pb)H = 2(ξζ ′ − ξ′ζ)εabH, and

Ω(Pa, Pb)Pc = (ζξ + ζ ′ξ′ + ε)(δbcPa − δacPb) + (ζξ′ − ζ ′ξ)εabPc.

(4.69)

Once again, we find no torsion-free, flat invariant connections for this spacetime.

4.6.4 Aristotelian spacetime A24

The non-vanishing torsion and curvature components are

Θ(H,Pa) = (ν − ξ)Pa + (ν ′ − ξ′)εabPb,
Θ(Pa, Pb) = (2ζ ′ − 1)εabH,

Ω(H,Pa)H = (ξ(ν − µ)− ξ′ν ′)Pa + (ξ′(ν − µ) + ξν ′)εabPb,

Ω(H,Pa)Pb = (ζ(µ− ν)− ν ′ζ ′)δabH + (ζ ′(µ− ν) + ν ′ζ)εabH,

Ω(Pa, Pb)H = (2(ξζ ′ − ξ′ζ)− µ)εabH, and

Ω(Pa, Pb)Pc = (ζξ + ζ ′ξ′ + ν ′)(δbcPa − δacPb) + (ζξ′ − ζ ′ξ − ν)εabPc.

(4.70)

We find a unique torsion-free, flat invariant connection. The corresponding non-vanishing

Nomizu maps are

α(Pa, Pb) =
9

4
δabH +

1

2
εabH. (4.71)

5 Pseudo-riemannian spacetimes and their limits

Let us introduce parameters κ = 0,±1, ς = 0,±1, and c, and consider the following Lie

brackets in addition to (2.2):

[H,B] = ςP , [H,P ] = −κB, [B,P ] =
1

c2
H, (5.1)

[B,B] = − ς

c2
J , and [P ,P ] = −κ

c2
J . (5.2)

The parameter ς corresponds to the signature: ς = 1 for riemannian, ς = −1 for lorentzian

and ς = 0 for carrollian. The parameter κ corresponds to the curvature, so κ = 1, 0,−1

for positive, zero and negative curvature, respectively.9 The limit c → ∞ corresponds

9This has to be taken with a grain of salt. Indeed, it follows from table 4 that the correspondence between

κ and the sign of the curvature is a little fictitious in the galilean setting, at least: if we interpret them as

limits of lorentzian spacetimes, then dSG has “positive” curvature and AdSG has “negative” curvature, but

if we interpret them as limits of riemannian spaces, then it’s the other way around. This means that these

spacetimes are characterised by the product ςκ (for G the sign is irrelevant). Concerning the carrollian

spacetimes it is useful to realise that subalgebra spanned by J and P is isomorphic to so(D+1) and so(D, 1)

for dSC and AdSC, respectively (see also section 10.2). Compared to the limits of section 5 in [6] we change

τ2η00 → ς and κ2η\\ → κ.
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ς κ c−1 Spacetime

−1 0 1 Minkowski (M)

−1 1 1 de Sitter (dS)

−1 −1 1 anti de Sitter (AdS)

1 0 1 euclidean (E)

1 1 1 sphere (S)

1 −1 1 hyperbolic (H)

∓1 0 0 galilean (G)

∓1 ±1 0 galilean de Sitter (dSG)

∓1 ∓1 0 galilean anti de Sitter (AdSG)

0 0 1 carrollian (C)

0 1 1 carrollian de Sitter (dSC)

0 −1 1 carrollian anti de Sitter (AdSC)

Table 4. Symmetric spacetimes.

to the non-relativistic limit. In the computations below we will work with unspecified

values of ς,κ, c and only at the end will we set them to appropriate values to recover the

results for particular spacetimes. Some of the expressions will have (removable) singularities

whenever ς or κ vanish, so will have to think of those cases as limits: the ultra-relativistic

limit ς → 0 and the flat limit κ → 0. Table 4 shows the spacetimes associated to different

values of these parameters. They can be characterised as those homogeneous kinematical

spacetimes which are symmetric, so the canonical invariant connection is torsion-free. The

table divides into four sections separated by horizontal rules corresponding, from top to

bottom, to lorentzian, euclidean, galilean and carrollian symmetric spacetimes.

5.1 Invariant structures

We will determine the form of the invariant tensors of small rank. If k = h⊕m is a reduc-

tive split then, as explained in section 3.7, invariant tensor fields on a simply-connected

homogeneous space M = K/H are in bijective correspondence with H-invariant tensors on

m, and since H is connected, these are in bijective correspondence with h-invariant tensors

on m.

The action of h on m is the linear isotropy representation, which is the restriction to h

of the adjoint action:

Jab ·H = 0

Jab · Pc = δbcPa − δacPb
and

Ba ·H = −ςPa

Ba · Pb =
1

c2
δabH.

(5.3)

With respect to the canonical dual basis η, πa for m∗, the dual linear isotropy representation

is the restriction of the coadjoint action:

Jab · η = 0

Jab · πc = −δcaπb + δcbπa
and

Ba · η = − 1

c2
πa

Ba · πb = ςδbaη.
(5.4)

It follows that H is invariant in the σ → 0 limit, whereas η is invariant in the c→∞ limit.
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Concerning the rotationally invariant tensors of second rank, let us observe that

α1H
2 + β1P

2 is invariant ⇐⇒ σα1 =
1

c2
β1 (5.5)

and

α2η
2 + β2π

2 is invariant ⇐⇒ 1

c2
α2 = σβ2. (5.6)

It is interesting to note that the sign κ of the curvature has played no rôle thus far.

We shall now specialise to the different classes of spacetimes and determine whether

and how the structures are induced in the limit.

5.1.1 Lorentzian and riemannian case

It is clear that for the (pseudo-)riemannian case, where ς 6= 0 6= 1
c2

, only the metric and its

co-metric are invariant. Keeping in mind that we wish the limit in which the parameters

ς and c tend to zero to exist, we set α1 = 1
c2

and β1 = ς and similarly for the co-metric,

which leads to the invariants

1

c2
H2 + ςP 2 and ςη2 +

1

c2
π2 . (5.7)

For negative (positive) ς this is the invariant lorentzian (riemannian) structure. The metric

and the co-metric are not per se the inverse of each other, although using definite values

for the limiting parameters they can be made to be.

5.1.2 Non- and ultra-relativistic limits

Let us now investigate the limits. Taking the non-relativistic limit (c→∞) of the metrics

leads to the invariants

ςP 2 and ςη2, (5.8)

which can be interpreted as the invariants that properly arise from the lorentzian structure.

However, as (5.3) shows also η itself is an invariant in this limit. This does not follow

from the contractions, but can be anticipated from the metrics. We could now take the

ultra-relativistic limit (ς → 0) of (5.8) leading to no invariant tensor. Of course, this

spacetime has the invariants H,P 2, η,π2, but none of these arise from the limit of the

original lorentzian and riemannian metrics. For the ultra-relativistic limit, we may apply

the same logic.

Concluding, we have the galilean structure η, ςP 2 and the carrollian structure H, 1
c2
π2,

where we have left the contraction parameters for the invariants that arise from a limit.

5.2 Action of the boosts

The actions of the boosts for all the lorentzian, riemannian, galilean, and reductive carrol-

lian spacetimes were determined in section 3.4, where we arrived at equation (3.38) for the

orbit of (t0,x0) under the one-parameter family of boosts generated by w ·B, which we

rewrite here as follows:

t(s) = t0 cosh(sz) +
1

c2
sinh(sz)

z
x0 ·w

x(s) = x⊥0 − ςt0
sinh(sz)

z
w + cosh(sz)

(x0 ·w)

w2
w,

(5.9)
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where x⊥0 := x0− x0·w
w2 w and z2 := − 1

c2
ςw2. Notice that the orbits of (0,x0) with x0 ·w = 0

are point-like. To understand the nature of the other (generic) orbits, we choose values for

the parameters. Notice that in our coset parametrisation the boosts do not depend on κ,

but only on ς and c. Therefore, we shall be able to treat each class of spacetime uniformly.

5.2.1 Lorentzian boosts

Here we take ς = −1 and keep c−1 non-zero. Then z2 = w2

c2
, so z =

∣∣w
c

∣∣, and the orbits of

the boosts are

t(s) = t0 cosh

(
s
∣∣∣w
c

∣∣∣ )+
1

c2
sinh(s

∣∣w
c

∣∣)∣∣w
c

∣∣ x0 ·w

x(s) = x⊥0 + t0
sinh(s

∣∣w
c

∣∣)∣∣w
c

∣∣ w + cosh

(
s
∣∣∣w
c

∣∣∣ )(x0 ·w)

w2
w.

(5.10)

Let x = x⊥ + yw, where x⊥ ·w = 0. Then x⊥(s) = x⊥0 for all s and the orbit takes place

in the (t, y) plane. Letting |w| = 1 and c = 1, we find

t(s) = t0 cosh(s) + sinh(s)y0 and y(s) = t0 sinh(s) + cosh(s)y0, (5.11)

which is either a point (if t0 = y0 = 0), a straight line (if t0 = ±y0 6= 0), or a hyperbola

(otherwise). The nature of the orbits in the exponential coordinates is clear, but only in

the case of Minkowski spacetime do the exponential coordinates provide a global chart and

hence only in that case can we deduce from this calculation that the generic orbits are not

compact. For (anti) de Sitter spacetime, we must argue in a different way.

Let dS denote the quotient of dS which embeds as a quadric hypersurface in Minkowski

spacetime. The covering map dS → dS relates the orbits of the boosts on dS and in the

quotient dS and since continuous maps send compact sets to compact sets, it is enough to

show the non-compactness of the orbits in dS. The embedding dS ⊂ RD+1,1 is given by

the quadric

x21 + · · ·+ x2D + x2D+1 − x2D+2 = R2, (5.12)

which is acted on transitively by SO(D + 1, 1). The stabiliser Lie algebra of the point

(0, · · · , 0, R, 0) is spanned by the so(D + 1, 1) generators Jab and Ja,D+2, so that Ba =

Ja,D+2, which is a boost in RD+1,1. We have just shown that boosts in Minkowski spacetime

have non-compact orbits; therefore, this is the case in dS and hence also in dS.

Similarly, let AdS denote the quotient of AdS which embeds in RD,2 as the quadric

x21 + · · ·+ x2D − x2D+1 − x2D+2 = −R2. (5.13)

The Lie algebra so(D, 2) acts transitively on this quadric and the stabiliser Lie algebra

at the point (0, · · · , 0, 0, R) is spanned by the so(D, 2) generators Jab and Ja,D+1, so that

Ba = Ja,D+1 which is a “boost” in RD,2. The calculation of the orbit, in this case, is formally

identical to the one for Minkowski spacetime (in fact, it takes place in the lorentzian plane

with coordinates (xa, xD+2)) and we see that they are non-compact, so the same holds in

AdS and thus also in AdS.
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5.2.2 Euclidean “boosts”

Here we take ς = 1 and keep c−1 non-zero. Then z2 = −w2

c2
, so z = i

∣∣w
c

∣∣, and the orbits of

the boosts are

t(s) = t0 cos

(
s
∣∣∣w
c

∣∣∣ )+
1

c2
sin(s

∣∣w
c

∣∣)∣∣w
c

∣∣ x0 ·w

x(s) = x⊥0 − t0
sin(s

∣∣w
c

∣∣)∣∣w
c

∣∣ w + cos

(
s
∣∣∣w
c

∣∣∣ )(x0 ·w)

w2
w.

(5.14)

As before, letting x = x⊥ + yw, and choosing |w| = 1 and c = 1, we find that the

orbit is such that x⊥ is constant and (t, y) evolve as

t(s) = t0 cos(s) + sin(s)y0 and y(s) = −t0 sin(s) + cos(s)y0, (5.15)

which is either a point (if t0 = y0 = 0) or a circle (otherwise) and in any case compact.

This suffices for E and H since the exponential coordinates give a global chart. For S it is

clear that the boosts act with compact orbits because the kinematical Lie group SO(D+2)

is itself compact, therefore, so are the one-parameter subgroups.

5.2.3 Galilean boosts

Here we take the limit c → ∞ and, for definiteness, ς = −1. The orbits of the boosts are

then the limit c→∞ of equation (5.10):

t(s) = t0

x(s) = x0 + st0w.
(5.16)

Here the orbits of (0,x0) are point-like. The generic orbit (t0 6= 0) is not periodic and

hence not compact. This suffices for G and dSG, since the exponential coordinates define

a global chart. For AdSG we need to argue differently and this is done in section 5.10.

5.2.4 Carrollian boosts

Here we keep c−1 non-zero, but take the limit ς → 0 in equation (3.38):

t(s) = t0 + s
1

c2
x0 ·w

x(s) = x0.
(5.17)

Here the orbits (t0,x0) with x0 ·w = 0 are point-like, but the other orbits are not periodic,

hence not compact. This settles it for AdSC, since the exponential coordinates give a global

chart. For the other carrollian spacetimes we can argue in a different way.

As shown in [34], a carrollian spacetime admits an embedding as a null hypersurface in

a lorentzian spacetime. For the homogeneous examples in this paper, this was done in [6]

following the embeddings of the carrollian spacetimes C and LC as null hypersurfaces of

Minkowski spacetime described already in [34].

As explained in section 3.4, for dSC it is enough to work with the discrete quotient dSC,

which embeds as a null hypersurface in the hyperboloid model dS of de Sitter spacetime,
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which itself is a quadric hypersurface in Minkowski spacetime. In [6] we showed that the

boosts in dSC can be interpreted as null rotations in the (higher-dimensional) pseudo-

orthogonal Lie group and the orbits of null rotations are never compact. This is done in

detail in section 7.1 for LC.

5.3 Fundamental vector fields

The fundamental vector fields for rotations and boosts are linear in exponential coordinates

and given by equations (3.26) and (3.39), respectively. To determine the fundamental vector

fields for the translations we must work harder.

Now let A = tH + x · P . Then we have that

adAH = κx ·B

adABa = ςtPa −
1

c2
xaH

adA Pa =
κ
c2
Jabx

b − κtBa

adA Jab = xaPb − xbPa

and

ad2
AH = κςtx · P − κ

c2
x2H

ad2
ABa =

κ
c2
ςtxbJab − κςt2Ba −

κ
c2
xax ·B

ad2
A Pa = −κ

(
1

c2
x2 + ςt2

)
Pa +

κ
c2
xax · P +

κ
c2
txaH

ad2
A Jab = −κt(xaBb − xbBa) +

κ
c2
xc(xaJbc − xbJac),

(5.18)

so that in general we have

ad3
A = −κ

(
1

c2
x2 + ςt2

)
adA . (5.19)

Letting x± denote the two complex square roots of −κ( 1
c2
x2 + ςt2), with x− = −x+, we

can rewrite this equation as ad3
A = x2+ adA.

Now, if f(z) is analytic in z and admits a power series expansion f(z) =∑∞
n=0 cnz

n, then

f(adA) = f(0) +
1

x+

∞∑
k=0

c2k+1x
2k+1
+ adA +

1

x2+

∞∑
k=1

c2kx
2k
+ ad2

A . (5.20)

Observing that

∞∑
k=0

c2k+1x
2k+1
+ =

1

2
(f(x+)−f(x−)) and

∞∑
k=1

c2kx
2k
+ =

1

2
(f(x+)+f(x−)−2f(0)), (5.21)

we arrive finally at

f(adA) = f(0) +
1

2x+
(f(x+)− f(x−)) adA +

1

2x2+
(f(x+) + f(x−)− 2f(0)) ad2

A . (5.22)

Introducing the shorthand notation:

f+ :=
1

2
(f(x+) + f(x−)) and f− :=

1

2x+
(f(x+)− f(x−)), (5.23)

equation (5.22) becomes

f(adA) = f(0) + f− adA +
1

x2+
(f+ − f(0)) ad2

A . (5.24)
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It follows from the above equation and equation (5.18), that for f(z) analytic in z,

f(adA)H = f(0)H + f−κx ·B

+
1

x2+
(f+ − f(0))

(
κςtx · P − κ

c2
x2H

)
f(adA)Ba = f(0)Ba + f−(ςtPa −

1

c2
xaH)

+
1

x2+
(f+ − f(0))

(
−κςt2Ba −

κ
c2
xax ·B +

κ
c2
ςtJabx

b
)

f(adA)Pa = f+Pa + f−(−κtBa +
κ
c2
Jabx

b) +
1

x2+
(f+ − f(0))

κ
c2
xa(tH + x · P )

f(adA)Jab = f(0)Jab + f−(xaPb − xbPa)

+
1

x2+
(f+ − f(0))κ

(
−t(xaBb − xbBa) +

1

c2
xc(xaJbc − xbJac)

)
.

(5.25)

Let us calculate ξH = τ ∂
∂t + ya ∂

∂xa , where by equation (3.16)

τH + y · P = G(adA)H − F (adA)β ·B, (5.26)

for some β. From equation (5.25), we have

τH + y · P =H +G−κx ·B +
1

x2+
(G+ − 1)

(
κςtx · P − κ

c2
x2H

)
−
(
β ·B + F−(ςtβ · P − 1

c2
x · βH) (5.27)

+
1

x2+
(F+ − 1)

(
− κςt2β ·B − κ

c2
x · βx ·B +

κ
c2
ςtJabβ

axb
))

.

By so(D)-covariance, β has to be proportional to x, since that is the only other vector

appearing in the B terms, which means that the Jab term above vanishes. This leaves

terms in B, H, and P , which allow us to solve for β, τ , and y, respectively. The B terms

cancel if and only if

β =
G−

F+
κx, (5.28)

which we can reinsert into the equation to solve for τ and y. Doing so we find

τ = 1−
(
x+ cothx+ − 1

x2+

)
κ
c2
x2 and ya =

(
x+ cothx+ − 1

x2+

)
κςtxa, (5.29)

so that

ξH =
∂

∂t
+

(
x+ cothx+ − 1

x2+

)
κ
(
ςtxa

∂

∂xa
− 1

c2
x2
∂

∂t

)
. (5.30)

To calculate ξv·P = τ ∂
∂t + ya ∂

∂xa , equation (3.16) says we must solve

τH + y · P = G(adA)v · P − F (adA)

(
β ·B +

1

2
λabJab

)
, (5.31)
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for λab, β, τ , and y from the components along Jab, B, H, and P , respectively. The details

of the calculation are not particularly illuminating. Let us simply remark that we find

λab = h1(v
axb − vbxa) + h2(β

axb − βbxa) (5.32)

for

h1 =
G− κ

c2

1− 1
x2+

(F+ − 1) κ
c2
x2

and h2 =
− 1
x2+

(F+ − 1) κ
c2
ςt

1− 1
x2+

(F+ − 1) κ
c2
x2
, (5.33)

and

β = −G
−

F+
κtv, (5.34)

so that

λab = −κ
c2

tanh(x+/2)

x+
(vaxb − vbxa). (5.35)

Re-inserting these expressions into the equation we solve for τ and y, resulting in

τ =
x+ cothx+ − 1

x2+

κ
c2
tx · v (5.36)

and

ya = x+ coth(x+)va +
x+ cothx+ − 1

x2+

κ
c2
x · vxa. (5.37)

Finally, we have that

ξPa =
x+ cothx+ − 1

x2+

κ
c2
xa

(
t
∂

∂t
+ xb

∂

∂xb

)
+ x+ cothx+

∂

∂xa
. (5.38)

Let us summarise all the fundamental vector fields and remember that x+ =√
−κ( 1

c2
x2 + ςt2)

ξJab = xb
∂

∂xa
− xa ∂

∂xb

ξBa =
1

c2
xa

∂

∂t
− ςt ∂

∂xa

ξH =
∂

∂t
+

(
x+ cothx+ − 1

x2+

)
κ
(
ςtxa

∂

∂xa
− 1

c2
x2
∂

∂t

)
ξPa =

x+ cothx+ − 1

x2+

κ
c2
xa

(
t
∂

∂t
+ xb

∂

∂xb

)
+ x+ cothx+

∂

∂xa
.

(5.39)

We can now calculate the Lie brackets of the vector fields which indeed shows the anti-

homomorphism with respect to (5.1)

[ξH , ξB] = −ςξP , [ξH , ξP ] = κξB, [ξB, ξP ] = − 1

c2
ξH ,

[ξB, ξB] =
ς

c2
ξJ , and [ξP , ξP ] =

κ
c2
ξJ . (5.40)

Let us emphasise that taking the limit of the vector fields and then calculating their Lie

bracket leads to the same result as just taking just the limit of the Lie brackets, i.e., these

operations commute.
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5.4 Soldering form and connection one-form

The soldering form and the connection one-form are the two components of the pull-

back of the left-invariant Maurer-Cartan form on K. We will calculate it first for all the

(pseudo-)riemannian cases and then take the flat, non-relativistic and ultra-relativistic

limit. As we will see, the exponential coordinates are well adapted for that purpose, and

the limits can then be systematically studied. That the limits are well defined follows from

our construction since the quantities we calculate are a power series of the contraction

parameters, ε = c−1,κ, τ in the ε→ 0 limit and not of their inverse. Let us however stress

that for some quantities like, e.g., the galilean structure, modified exponential coordinates

are more economical, see appendix A.

For the non-flat (pseudo-)riemannian geometries our exponential coordinates are, ex-

cept for the hyperbolic case, neither globally valid nor are quantities like the curvature

very compact. Since coordinate systems for these cases are well studied, we will focus in

the following mainly on the remaining cases. It is useful to derive the soldering form, the

invariant connection and the vielbein in full generality since we take the limit and use them

to calculate the remaining quantities of interest.

We start by calculating the Maurer-Cartan form via equation (3.45) for which we again

use equation (5.25). We find that

θ + ω = dtH +D−κdtx ·B +
1

x2+
(D+ − 1)

(
κςtdtx · P − κ

c2
x2dtH

)
+D+dx · P +D−

(
− κtdx ·B +

κ
c2
dxaxbJab

)
+

1

x2+
(D+ − 1)

κ
c2
x · dx(tH + x · P ), (5.41)

which, using that

D− =
1− coshx+

x2+
, D+ =

sinhx+
x+

and hence
1

x2+
(D+ − 1) =

sinhx+ − x+
x3+

,

(5.42)

gives the following expressions:

θ = dtH +
sinhx+
x+

dx · P

+
sinhx+ − x+

x3+
κ
(
ςtdtx · P +

1

c2
(tx · dxH − x2dtH + x · dxx · P )

)
ω =

1− coshx+
x2+

κ
(
dtx ·B − tdx ·B − 1

c2
xadxbJab

)
.

(5.43)

We can also evaluate the vielbein E = EHη + EP · π which leads us to

EH =
κ
x2+

[(
−σt2 − x2

c2
x+ cschx+

)
∂

∂t
+ σ (−1 + x+ cschx+) txa

∂

∂xa

]
(5.44)

EPa =
κxa

c2x2+
(−1 + x+ cschx+)

(
t
∂

∂t
+ xb

∂

∂xb

)
+ x+ cschx+

∂

∂xa
. (5.45)
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5.5 Flat limit, Minkowski (M) and euclidean spacetime (E)

In the flat limit κ → 0 the soldering form and connection one-form are given by

θ = dtH + dx · P and ω = 0, (5.46)

respectively, where (t,x) are global coordinates. The vielbein is given by

E =
∂

∂t
η +

∂

∂x
· π (5.47)

and the fundamental vector fields, taking the limit of (5.39), by

ξBa =
1

c2
xa

∂

∂t
− ςt ∂

∂xa
, ξH =

∂

∂t
, and ξPa =

∂

∂xa
. (5.48)

Using the soldering form and the vielbein we can now write the metric and co-metric, given

in equation (5.7), in coordinates

g = σdt2 +
1

c2
dx · dx g̃ =

1

c2
∂

∂t
⊗ ∂

∂t
+ σδij

1

∂xi
⊗ 1

∂xj
. (5.49)

Since the connection one-form vanishes the torsion and curvature evaluate to

Ω = 0 Θ = 0. (5.50)

We can now set σ and c to definite values to obtain the Minkowski spacetime (σ = −1,

c = 1), Euclidean space (σ = −1, c = 1), galilean spacetime (σ = 1, c−1 = 0), and

carrollian spacetime (σ = 0, c = 1). This is obvious enough for the first two cases so that

we go straight to the galilean spacetime.

5.6 Galilean spacetime (G)

For galilean spacetimes we have the fundamental vector fields

ξBa = t
∂

∂xa
ξH =

∂

∂t
ξPa =

∂

∂xa
, (5.51)

and the invariant galilean structure which is characterised by the clock one-form τ = dt

and the spatial metric on one-forms h = δab ∂
∂xa ⊗

∂
∂xb

.

5.7 Carrollian spacetime (C)

The fundamental vector fields for the carrollian spacetime are

ξBa = xa
∂

∂t
ξH =

∂

∂t
ξPa =

∂

∂xa
, (5.52)

and the invariant carrollian structure is given by κ = ∂
∂t and b = δabdx

adxb.
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5.8 Non-relativistic limit

In the non-relativistic limit c → ∞ we get x+ =
√
−κςt2 and the soldering form and

connection one-form are given by

θ = dtH +
sinhx+
x+

dx · P +
sinhx+ − x+

x3+
κςtdtx · P

ω =
1− coshx+

x2+
κ (dtx ·B − tdx ·B)

. (5.53)

We take the non-relativistic limit of the vielbein and obtain

EH =
∂

∂t
+ (1− x+ cschx+)

xa

t

∂

∂xa

EPa = x+ cschx+
∂

∂xa
.

(5.54)

We can now calculate the invariant galilean structure which is given by the clock one-form

and the spatial co-metric (h = ςP 2):

τ = η(θ) = σdt h = x2+ csch2 x+δ
ab ∂

∂xa
⊗ ∂

∂xb
. (5.55)

The fundamental vector fields are given by

ξBa = −ςt ∂

∂xa

ξH =
∂

∂t
+

(
x+ cothx+ − 1

x2+

)
κςtxa

∂

∂xa

ξPa = x+ cothx+
∂

∂xa
.

(5.56)

5.9 Galilean de Sitter spacetime (dSG)

We start be setting σ = −1 and κ = 1 so that x+ = t and see that

θ = dt

(
H +

t− sinh(t)

t2
x · P

)
+

sinh(t)

t
dx · P

ω =
1− cosh(t)

t2
(dtx ·B − tdx ·B) .

(5.57)

The soldering form is invertible for all (t,x), since sinh(t)/t 6= 0 for all t ∈ R. From the

above soldering form, it is easily seen that the torsion two-form vanishes and the curvature

two-form is given by

Ω =
1

t
sinh(t)Ba(dt ∧ dxa). (5.58)

The vielbein is given by

EH =
∂

∂t
+ (1− t csch t)

xa

t

∂

∂xa
and EPa = t csch t

∂

∂xa
. (5.59)
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We can thus find the invariant galilean structure: the clock one-form is given by τ = η(θ) =

dt and the spatial metric is given by

h = t2 csch2 tδab
∂

∂xa
⊗ ∂

∂xb
. (5.60)

Finally, the fundamental vector fields are

ξBa = t
∂

∂xa
(5.61)

ξH =
∂

∂t
+

(
1

t
− coth(t)

)
xa

∂

∂xa
(5.62)

ξPa = t coth(t)
∂

dxa
. (5.63)

5.10 Galilean anti de Sitter spacetime (AdSG)

For σ = −1 and κ = 1 the soldering form and connection one-form for the canonical

invariant connection are

θ = dt

(
H +

t− sin t

t2
x · P

)
+

sin t

t
dx · P

ω =
1− cos t

t2
(tx ·B − tdx ·B) .

(5.64)

Because of the zero of sin(t)/t at t = ±π, the soldering form is an isomorphism for all x

and for t ∈ (−π, π), so that the exponential coordinates are invalid outside of that region.

Let t0 ∈ (−π, π) and x0 ∈ RD. The orbit of the point (t0,x0) under the one-parameter

subgroup of boosts generated by w ·B is

t(s) = t0 and x(s) = x0 + st0w. (5.65)

The orbits are point-like for t0 = 0 and straight lines for t0 6= 0. These orbits remain inside

the domain of validity of the exponential coordinates. The generic orbits are, therefore,

non-compact.

The torsion two-form again vanishes and the curvature form is

Ω =
1

t
sin tBa(dt ∧ dxa). (5.66)

The vielbein is given by

EH =
∂

∂t
+

(
1− t

sin t

)
xa

t

∂

∂xa
and EPa =

t

sin t

∂

∂xa
, (5.67)

so that the invariant galilean structure has a clock one-form τ = η(θ) = dt and a spa-

tial metric

h =

(
t

sin t

)2

δab
∂

∂xa
⊗ ∂

∂xb
. (5.68)

The fundamental vector fields for galilean AdS are

ξBa = t
∂

∂xa

ξPa = t cot t
∂

∂xa

ξH =
∂

∂t
+

(
1

t
− cot t

)
xa

∂

∂xa
.

(5.69)

– 45 –



J
H
E
P
0
8
(
2
0
1
9
)
1
1
9

5.11 Ultra-relativistic limit

In the ultra-relativistic limit σ → 0 to the carrollian (anti) de Sitter spacetimes we get

x+ =
√
− κ
c2
x2 and the soldering form and invariant connection are

θ =
sinhx+
x+

(dtH + dx · P ) +

(
1− sinhx+

x+

)
x · dx
x2

(tH + x · P )

ω =
coshx+ − 1

x2
c2
(
dtx ·B − tdx ·B − 1

c2
Jabx

adxb
)
.

(5.70)

The vielbein in the ultra-relativistic limit has the following form

EH = x+ cschx+
∂

∂t

EPa =
xa

x2
(1− x+ cschx+)

(
t
∂

∂t
+ xb

∂

∂xb

)
+ x+ cschx+

∂

∂xa
.

(5.71)

The ultra-relativistic limit leads to carrollian structure consisting of κ = EH and the

spatial metric b = 1
c2
π2 given by

b =
1

c2

(
sinhx+
x+

)2

dx · dx+
1

c2

(
1−

(
sinhx+
x+

)2
)

(x · dx)2

x2
. (5.72)

The fundamental vector fields are

ξBa =
1

c2
xa

∂

∂t

ξH = x+ cothx+
∂

∂t

ξPa =
xa

x2
(1− x+ cothx+)

(
t
∂

∂t
+ xb

∂

∂xb

)
+ x+ cothx+

∂

∂xa
.

(5.73)

5.12 (Anti) de Sitter carrollian spacetimes (dSC and AdSC)

We will treat these two spacetimes together, such that κ = 1 corresponds to carrollian

de Sitter (dSC) and κ = −1 to carrollian anti de Sitter (AdSC) spacetimes. Furthermore

we set c = 1.

We find that the soldering form is given by

θ(κ=1) =
sin |x|
|x|

(dtH + dx · P ) +

(
1− sin |x|

|x|

)
x · dx
x2

(tH + x · P )

θ(κ=−1) =
sinh |x|
|x|

(dtH + dx · P ) +

(
1− sinh |x|

|x|

)
x · dx
x2

(tH + x · P ).

(5.74)

These soldering forms are invertible whenever the functions sin |x|
|x| (for κ = 1) or sinh |x|

|x|
(for κ = −1) are invertible. The latter function is invertible for all x, whereas the former

function is invertible in the open ball |x| < π.
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The connection one-form is given by

ω(κ=1) =
cos |x| − 1

x2
(dtx ·B − tdx ·B + dxaxbJab)

ω(κ=−1) =
cosh |x| − 1

x2
(dtx ·B − tdx ·B + dxaxbJab).

(5.75)

The canonical connection is torsion-free, since (A)dSC is symmetric, but it is not flat.

The curvature is given by

Ω(κ=1) =

(
sin |x|
|x|

)2

dt ∧ dx ·B − sin |x|
|x|

(
sin |x|
|x|

− 1

)
x ·B
x · x

dt ∧ dx · x

+

(
sin |x|
|x|

)2

Jabdx
a ∧ dxb

+
2 sin |x|
|x|

(
sin |x|
|x|

− 1

)
(xcxbJac − txbBa)dxa ∧ dxb,

Ω(κ=−1) =−
(

sinh |x|
|x|

)2

dt ∧ dx ·B +
sinh |x|
|x|

(
sinh |x|
|x|

− 1

)
x ·B
x · x

dt ∧ dx · x

−
(

sinh |x|
|x|

)2

Jabdx
a ∧ dxb

− 2 sinh |x|
|x|

(
sinh |x|
|x|

− 1

)
(xcxbJac − txbBa)dxa ∧ dxb.

(5.76)

Using the soldering form, we find the vielbein E to have components

E
(κ=1)
H = |x| csc |x| ∂

∂t

and E
(κ=1)
Pa

=
xa

x2
(1− |x| csc |x|)

(
t
∂

∂t
+ xb

∂

∂xb

)
+ |x| csc |x| ∂

∂xa
,

E
(κ=−1)
H = |x| csch |x| ∂

∂t

and E
(κ=−1)
Pa

=
xa

x2
(1− |x| csch |x|)

(
t
∂

∂t
+ xb

∂

∂xb

)
+ |x| csch |x| ∂

∂xa
.

(5.77)

The invariant carrollian structure is given by κ = EH and the spatial metric

b(κ=1) =

(
sin |x|
|x|

)2

dx · dx+

(
1−

(
sin |x|
|x|

)2
)

(x · dx)2

x2

b(κ=−1) =

(
sinh |x|
|x|

)2

dx · dx+

(
1−

(
sinh |x|
|x|

)2
)

(x · dx)2

x2
.

(5.78)

Finally, the fundamental vector field of our ultra-relativistic algebras are

ξBa = xa
∂

∂t

ξ
(κ=1)
H = |x| cot |x| ∂

∂t
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ξ
(κ=−1)
H = |x| coth |x| ∂

∂t

ξ
(κ=1)
Pa

=
xa

x2
(1− |x| cot |x|)

(
t
∂

∂t
+ xb

∂

∂xb

)
+ |x| cot |x| ∂

∂xa

ξ
(κ=−1)
Pa

=
xa

x2
(1− |x| coth |x|)

(
t
∂

∂t
+ xb

∂

∂xb

)
+ |x| coth |x| ∂

∂xa
. (5.79)

6 Torsional galilean spacetimes

Unlike the galilean symmetric spacetimes discussed in section 5, some galilean spacetimes

do not arise as limits from the (pseudo-)riemannian spacetimes: namely, the torsional

galilean de Sitter (dSGγ) and anti de Sitter (AdSGχ) spacetimes and spacetime S12γ,χ,

which are the subject of this section. Galilean spacetimes can be seen as null reductions

of lorentzian spacetimes one dimension higher and it would be interesting to exhibit these

galilean spacetimes as null reductions. We hope to return to this question in the future.

6.1 Torsional galilean de Sitter spacetime (dSGγ 6=1)

The additional brackets not involving J for dSGγ are [H,B] = −P and [H,P ] = γB +

(1 + γ)P , where γ ∈ (−1, 1).

6.1.1 Fundamental vector fields

We start by determining the expressions for the fundamental vector fields ξBa , ξPa , and ξH
relative to the exponential coordinates. The boosts are galilean and hence act in the usual

way, with fundamental vector field

ξBa = t
∂

∂xa
. (6.1)

To determine the other fundamental vector fields we must work harder. The matrix adA
in this basis is given by

adA = t

(
0 γ

−1 1 + γ

)
, (6.2)

which is diagonalisable (since γ 6= 1) with eigenvalues 1 and γ, so that adA = S∆S−1, with

∆ =

(
t 0

0 tγ

)
and S =

(
γ 1

1 1

)
. (6.3)

Therefore if f(z) is analytic,

f(adA) = S

(
f(t) 0

0 f(γt)

)
S−1, (6.4)

so that

f(adA)B =
f(γt)− γf(t)

1− γ
B +

f(γt)− f(t)

1− γ
P

f(adA)P =
γ(f(γt)− f(t))

γ − 1
B +

γf(γt)− f(t)

γ − 1
P .

(6.5)
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On the other hand, adAH = −γx ·B − (1 + γ)x · P , so if f(z) = 1 + zf̃(z), then

f(adA)H = H − γf̃(adA)x ·B − (1 + γ)f̃(adA)x · P

= H +
γ

1− γ

(
γf̃(γt)− f̃(t)

)
x ·B +

1

1− γ

(
γ2f̃(γt)− f̃(t)

)
x · P ,

(6.6)

where f̃(t) = (f(t)− 1)/t. With these expressions we can now use equation (3.16) to solve

for the fundamental vector fields.

Put X = v · P and Y ′(0) = β ·B in equation (3.16) to obtain that τ = 0 and

y · P =
1

γ − 1
[γ (G(γt)− γG(t))v ·B + (γG(γt)−G(t))v · P ]

− 1

1− γ
[(F (γt)− γF (t))β ·B + (F (γt)− F (t))β · P ] .

(6.7)

This requires

β = −γ G(γt)−G(t)

F (γt)− γF (t)
v, (6.8)

and hence, substituting back into the equation for y and simplifying, we obtain

y = t

(
−1 +

(γ − 1)et

eγt − et

)
v, (6.9)

so that

ξPa = t

(
−1 +

(γ − 1)et

eγt − et

)
∂

∂xa
. (6.10)

Finally, let X = H and Y ′(0) = β ·B in equation (3.16) to obtain that τ = 1 and

y · P =
γ

1− γ
(γh(γt)− h(t))x ·B +

1

1− γ
(
γ2h(γt)− h(t)

)
x · P

− 1

1− γ
(F (γt)− γF (t))β ·B − 1

1− γ
(F (γt)− F (t))β · P ,

(6.11)

where h(t) = (G(t)− 1)/t. This requires

β = γ
γh(γt)− h(t)

F (γt)− γ, F (t)
x (6.12)

so that

y =

(
1 +

1

t
+

(1− γ)et

eγt − et

)
x. (6.13)

This means that

ξH =
∂

∂t
+

(
1 +

1

t
+

(1− γ)et

eγt − et

)
xa

∂

∂xa
. (6.14)

We can easily check that [ξH , ξBa ] = ξPa and [ξH , ξPa ] = −γξBa − (1 + γ)ξPa .
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6.1.2 Soldering form and canonical connection

This homogeneous spacetime is reductive, so we have not just a soldering form, but also a

canonical invariant connection, which can be determined via equation (3.45):

θ + ω = D(adA)(dtH + dx · P )

= dt

(
H +

γ

1− γ
(γD̃(γt)− D̃(t)

)
x ·B +

1

1− γ
(γ2D̃(γt)− D̃(t))x · P

+
γ

γ − 1
(D(γt)−D(t))dx ·B +

1

γ − 1
(γD(γt)−D(t))dx · P ,

(6.15)

where now D̃(z) = (D(z) − 1)/z. Substituting D(z) = (1 − e−z)/z, we find that the

soldering form is given by

θ = dt

(
H +

1

t
x · P

)
+
e−t − e−γt

t2(1− γ)
(dtx− tdx) · P , (6.16)

from where it follows that θ is invertible for all (t,x). The canonical invariant connection

is given by

ω =

(
1

t2
+
γe−t − e−γt

t2(1− γ)

)
(dtx− tdx) ·B. (6.17)

The torsion and curvature of the canonical invariant connection are easily determined from

equations (3.47) and (3.48), respectively:

Θ =

(
1 + γ

1− γ

)
e−t − e−γt

t
dt ∧ dx · P and Ω =

(
γ

1− γ

)
e−t − e−γt

t
dt ∧ dx ·B. (6.18)

This spacetime admits an invariant galilean structure with clock form τ = η(θ) = dt

and spatial metric on one-forms h = δabEPa ⊗ EPb , where E is the vielbein obtained by

inverting the soldering form:

EH =
∂

∂t
+

(
1

t
− γ − 1

e−t − e−tγ

)
xa

∂

∂xa
and EPa =

t(γ − 1)

e−t − e−γt
∂

∂xa
. (6.19)

Therefore, the spatial metric of the galilean structure is given by

h =
t2(γ − 1)2

(e−t − e−γt)2
δab

∂

∂xa
⊗ ∂

∂xb
. (6.20)

6.2 Torsional galilean de Sitter spacetime (dSGγ=1)

This is dSG1, which is the γ → 1 limit of the previous example. Some of the expressions in

the previous section have removable singularities at γ = 1, so it seems that treating that

case in a separate section leads to a more transparent exposition.

The additional brackets not involving J are now [H,B] = −P and [H,P ] = 2P +B.

We start by determining the expressions for the fundamental vector fields ξBa , ξPa , and ξH
relative to the exponential coordinates (t,x), where σ(t,x) = exp(tH + x · P ).
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6.2.1 Fundamental vector fields

The bracket [H,B] = −P shows that B acts as a galilean boost. We can, therefore,

immediately write down

ξBa = t
∂

∂xa
. (6.21)

To find the other fundamental vector fields requires solving equation (3.16) with A =

tH + x · P and Y ′(0) = β · B (for this Lie algebra) for X = Pa and X = H. To apply

equation (3.16) we must first determine how to act with f(adA) on the generators, where

f(z) is analytic in z.

We start from

adAH = −x ·B − 2x · P
adAP = 2tP + tB

adAB = −tP .
(6.22)

It follows from the last two expressions that

adA

(
B P

)
=
(
B P

)( 0 t

−t 2t

)
, (6.23)

where the matrix

M =

(
0 1

−1 2

)
(6.24)

is not diagonalisable, but may be brought to Jordan normal form M = SJS−1, where

J =

(
1 0

1 1

)
and S = S−1 =

(
1 −1

0 −1

)
. (6.25)

It follows that for f(z) analytic in z,

f(adZ)
(
B P

)
=
(
B P

)
Sf(tJ)S. (6.26)

If f(z) =
∑∞

n=0 cnz
n,

f(tJ) =

∞∑
n=0

cnt
n

(
1 0

n 1

)
=

(
f(t) 0

tf ′(t) f(t)

)
. (6.27)

Performing the matrix multiplication, we arrive at

f(adA)B = (f(t)− tf ′(t))B − tf ′(t))P
f(adA)P = tf ′(t)B + (f(t) + tf ′(t))P .

(6.28)

Similarly,

f(adA)H = f(0)H − 2x · f̃(adA)P − x · f̃(adA)B, (6.29)

where f̃(z) = (f(z)− f(0))/z.

– 51 –



J
H
E
P
0
8
(
2
0
1
9
)
1
1
9

We are now ready to apply equation (3.16). Let X = v · P . Then equation (3.16)

becomes

τH + y · P = G(adA)v · P − F (adA)β ·B
= (G(t) + tG′(t))v · P + tG′(t)v ·B − (F (t)− tF ′(t))β ·B + tF ′(t)β · P ,

(6.30)

from where we find that τ = 0,

β =
tG′(t)

F (t)− tF ′(t)
v

and hence y =
F (t)G(t) + t(F (t)G′(t)− F ′(t)G(t))

F (t)− tF ′(t)
v = (1− t)v, (6.31)

so that

ξPa = (1− t) ∂

∂xa
, (6.32)

which is indeed the limit γ → 1 of equation (6.10).

Now let X = H, so that equation (3.16) becomes

τH + y · P = G(adA)H − β · F (adA)B

= H − 2x · G̃(adA)P − x · G̃(adA)B − β · F (adA)B

= H − (G̃(t) + tG̃′(t))x ·B − (F (t)− tF ′(t))β ·B

− (2G̃(t) + tG̃′(t))x · P + tF ′(t)β · P ,

(6.33)

from where τ = 1,

β =
G̃(t) + tG̃′(t)

tF ′(t)− F (t)
x and hence y =

t(F ′(t)G̃(t)− F (t)G̃′(t))− 2F (t)G̃(t)

F (t)− tF ′(t)
x = x.

(6.34)

In summary,

ξH =
∂

∂t
+ xa

∂

∂xa
, (6.35)

which is indeed the γ → 1 limit of equation (6.14).

6.2.2 Soldering form and canonical connection

To calculate the soldering form and the connection one-form for the canonical invariant

connection, we apply equation (3.45):

σ∗ϑ = D(adA)(dtH + dx · P )

= dt
(
H − 2x · D̃(adA)P − x · D̃(adA)B

)
+ dx ·D(adA)P

= dt
(
H − (D̃(t) + tD̃′(t))x ·B − (2D̃(t) + tD̃′(t))x · P

)
+ (D(t) + tD′(t))dx · P + tD′(t)dx ·B.

(6.36)
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Performing the calculation,

θ = dt

(
H +

1− e−t

t
x · P

)
+ e−tdx · P

ω =
1

t

(
1− e−t

t
− e−t

)
(x ·Bdt− tdx ·B),

(6.37)

which are equations (6.16) and (6.17) in the limit γ → 1. Notice that θ is an isomorphism

for all (t,x).

The torsion and curvature two-forms for the canonical invariant connection are given by

Θ = −2e−tdt ∧ dx · P and Ω = −e−tdt ∧ dx ·B. (6.38)

The vielbein E has components

EH =
∂

∂t
+

1− et

t
xa

∂

∂xa
and EPa = et

∂

∂xa
. (6.39)

The invariant galilean structure has clock form τ = η(θ) = dt and inverse spatial metric

h = δabEPa ⊗ EPb = e2tδab
∂

∂xa
⊗ ∂

∂xb
. (6.40)

6.3 Torsional galilean anti de Sitter spacetime (AdSGχ)

Here [H,B] = −P and [H,P ] = (1 + χ2)B + 2χP .

6.3.1 Fundamental vector fields

Since B acts via galilean boosts we can immediately write down

ξBa = t
∂

∂xa
. (6.41)

To calculate the other fundamental vector fields we employ equation (3.16). The adjoint

action of A = tH + x · P is given by

adAH = −(1 + χ2)x ·B − 2χx · P
adAB = −tP
adAP = t(1 + χ2)B + 2tχP .

(6.42)

In matrix form,

adA

(
B P

)
=
(
B P

)( 0 (1 + χ2)t

−t 2tχ

)
. (6.43)

We notice that this matrix is diagonalisable:(
0 (1 + χ2)

−1 2χ

)
= S∆S−1, where S :=

(
χ+ i χ− i

1 1

)
and ∆ :=

(
χ− i 0

0 χ+ i

)
.

(6.44)
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So if f(z) is analytic in z,

f(adA)
(
B P

)
=
(
B P

)
Sf(t∆)S−1 , (6.45)

or letting t± := t(χ± i),

f(adA)B =
i

2
(f(t+)− f(t−))(P + χB) +

1

2
(f(t+) + f(t−))B

f(adA)P = − i
2

(f(t+)− f(t−))(χP + (1 + χ2)B) +
1

2
(f(t+) + f(t−))P .

(6.46)

Similarly,

f(adA)H = f(0)H +
1

adA
(f(adA)− f(0)) adAH

= f(0)H − (1 + χ2)x · f̃(adA)B − 2χx · f̃(adA)P ,

(6.47)

where f̃(z) := (f(z) − f(0))/z. With these formulae we can now use equation (3.16) to

find out the expressions for the fundamental vector fields ξH and ξPa . Putting X = v · P
and Y ′(0) = β ·B in equation (3.16) we arrive at

β =
−i(1 + χ2)(G(t+)−G(t−))

F (t+) + F (t−) + iχ(F (t+)− F (t−))
v (6.48)

and hence

ξPa = t(cot t− χ)
∂

∂xa
. (6.49)

Similarly, putting X = H and Y ′(0) = β ·B in equation (3.16) we find

β =
iχ(G̃(t+)− G̃(t−))− (G̃(t+) + G̃(t−))

F (t+) + F (t−) + iχ(F (t+)− F (t−))
x (6.50)

and hence

ξH =
∂

∂t
+

(
1

t
+ χ− cot t

)
xa

∂

∂xa
. (6.51)

We check that [ξH , ξBa ] = ξPa and [ξH , ξPa ] = −(1 +χ2)ξBa − 2χξPa , as expected. Another

check is that taking χ → 0, we recover the fundamental vector fields for galilean anti

de Sitter spacetime given by equation (5.69).

6.3.2 Soldering form and canonical connection

Let us now use equation (3.45) to calculate the soldering form θ and the connection one-

form ω for the canonical invariant connection:

θ + ω = D(adA)(dtH + dx · P )

= dt
(
H − (1 + χ2)x · D̃(adA)B − 2χx · D̃(adA)P

)
+ dx ·D(adA)P ,

(6.52)

where D̃(z) = (D(z)− 1)/z. Evaluating these expressions, we find

θ = dt

(
H +

(t− eχt sin t)

t2
x · P

)
+

1

t
e−χt sin tdx · P (6.53)
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and

ω =
1− e−χt(cos t+ χ sin t)

t2
(dtx ·B − tdx ·B). (6.54)

Again, the zeros of e
−χt sin t

t at t = ±π invalidate the exponential coordinates for t 6∈ (−π, π).

The torsion and curvature of the canonical invariant connection are easily calculated

to be

Θ = −2χ

t
e−χt sin tdt ∧ dx · P

Ω = −(1 + χ2)

t
e−χt sin tdt ∧ dx ·B.

(6.55)

As χ → 0, the torsion vanishes and the curvature agrees with that of the galilean anti

de Sitter spacetime (S10) in equation (5.66).

The vielbein E has components

EH =
∂

∂t
+

(
1

t
− eχt csc t

)
xa

∂

∂xa

EPa = teχt csc t
∂

∂xa
,

(6.56)

whose χ→ 0 limit agrees with equation (5.67). The invariant galilean structure has clock

form τ = η(θ) = dt and inverse spatial metric

h = t2e2χt csc2 tδab
∂

∂xa
⊗ ∂

∂xb
, (6.57)

which again agrees with equation (5.68) in the limit χ→ 0.

6.4 Spacetime S12γ,χ

There is a two-parameter family of spacetimes which is unique to D = 2. Here the addi-

tional brackets are [H,B] = −P , and [H,P ] = (1 + γ)P − χP̃ + γB − χB̃. To make the

following calculations easier we may complexify the algebra by defining P = P 1 + iP 2 and

B = B1 + iB2 such that the brackets become [H,B] = −P, [H,P] = (1 + z)P + zB, where

z = γ+ iχ . We start by determining the expressions for the fundamental vector fields ξBa ,

ξPa , and ξH .

6.4.1 Fundamental vector fields

Since B acts via galilean boosts we can immediately write down

ξBa = t
∂

∂xa
. (6.58)

To calculate the other fundamental vector fields we employ equation (3.16). The adjoint

action of A = tH + x · P on a basis (B,P) is given by

adA = t

(
0 z

−1 1 + z

)
. (6.59)
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Notice that this matrix is diagonalisable:(
0 z

−1 1 + z

)
= S∆S−1, where S :=

(
z 1

1 1

)
and ∆ :=

(
1 0

0 z

)
. (6.60)

So if f(ζ) is an analytic function of ζ,

f(adA)
(
B P

)
=
(
B P

)
Sf(t∆)S−1 , (6.61)

such that

f(adA)B =
f(zt)− zf(t)

1− z
B +

f(zt)− f(t)

1− z
P

f(adA)P =
z(f(t)− f(zt))

1− z
B +

f(t)− zf(zt)

1− z
P.

(6.62)

Let f̃(ζ) := (f(ζ)− f(0))/ζ. Then we may write, using the notation x = x1 + ix2,

adAH = −1

t
Re (x adA P)

f(adA)H = H − Re
(
xf̃(adA)(zB + (1 + z)P)

)
.

(6.63)

Similarly, let v, β, and y now be complex numbers. Setting X = Re(vP) and Y ′(0) =

Re(βB) we obtain τ = 0 and

Re(yP) = Re

(
v

1

1− z
(z(G(t)−G(zt))B + (G(t)− zG(zt))P)

−β 1

z − 1
((zF (t)− F (zt))B + (F (t)− F (zt))P)

)
.

(6.64)

This requires

β =
z(G(zt)−G(t))

zF (t)− F (zt)
v. (6.65)

Substituting back into the equation we find

y = t

(
−1 +

et(−1 + γ − iχ)

−et + et(γ−iχ)

)
v =: (a+ ib)v, (6.66)

where we have introduced a and b as the real and imaginary parts of the expression mul-

tiplying v. In full glory,

a =
t((γ − 1) cos(tγ) + (1 + γ) cosh(t(γ − 1))− χ sin(tχ) + (γ − 1) sinh(t(1− γ)))

2(cos(tχ)− cosh(t(γ − 1)))

b =
t(χ cos(tχ) + (1− γ) sin(tχ)− et(1−γ)χ)

2(cos(tχ)− cosh(t(γ − 1)))
,

(6.67)

so that ya = ava − bεabvb and hence

ξPa = a
∂

∂xa
+ bεab

∂

∂xb
. (6.68)
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Now letting X = H and Y ′(0) = Re(βB), we obtain τ = 1 and

Re(yP) = −Re(xG̃(adA)((1 + z)P + zB)− Re(βF (adA)B)

= −Re

(
x(1 + z)

1− z

(
z(G̃(t)− G̃(zt))B + (G̃(t)− zG̃(zt))P

))
− Re

(
xz

1− z

(
(G̃(zt)− zG̃(t))B + (G̃(zt)− G̃(t))P

))
− Re

(
β

1− z
((F (zt)− zF (t))B + (F (zt)− F (t))P)

)
.

(6.69)

We solve for β to find

β =
z(zG̃(zt)− G̃(t))

F (zt)− zF (t)
x. (6.70)

Substituting this back in to the equation, we find

y =

(
1 +

1

t
+

(−1 + γ − iχ)et

et − e(γ−iχ)t)

)
x =: (c+ id)x, (6.71)

where c, d are the real and imaginary parts of the expression multiplying x. Expanding

we find

c =
e2γt(1 + t) + e2t(1 + tγ)− et(1+γ) (2 + t(1 + γ) cos(tχ) + tχ sin(tχ))

t
(
e2t + e2tγ − 2et(1+γ) cos(tχ)

)
d =
−e2tχ+ et(1+γ) (χ cos(tχ) + (1− γ) sin(tχ))

t
(
e2t + e2tγ − 2et(1+γ) cos(tχ)

) ,

(6.72)

so that ya = cxa − dεabxb and hence

ξH =
∂

∂t
+ cxa

∂

∂xa
+ dεabx

a ∂

∂xb
. (6.73)

One can check that [ξH , ξPa ] = ξ[Pa,H] and [ξH , ξBa ] = ξ[Ba,H].

6.4.2 Soldering form and canonical connection

We can now use equation (3.45) in order to calculate the soldering form θ and the connection

one-form ω for the canonical invariant connection:

θ + ω = D(adA)(dtH + dx · P )

= dtH − dtRe
(
xD̃(adA)(zB + (1 + z)P)

)
+ Re (dxD(adA)P) ,

(6.74)

where D̃(ζ) = (D(ζ)− 1)/ζ. Evaluating these expressions we find

θ = dtH +
dt

t
Re(xP) + Re

(
tdx− xdt
t2(z − 1)

(
e−t − e−tz

)
P

)
(6.75)

and

ω = Re

(
xdt− tdx

t2

(
1 +

e−tz − ze−t

z − 1

)
B

)
. (6.76)
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It is not immediately obvious from the expression for θ whether it fails to be an isomor-

phism. Because θHt = 1, the soldering form is invertible provided that the determinant

of θPab does not vanish. Unpacking the complex notation, we find that the determinant is

given by

e−2t(γ+1)
(
e2tγ + e2t − 2et(γ+1) cos(tχ)

)
t2 ((γ − 1)2 + χ2)

. (6.77)

This is nowhere zero for γ ∈ [−1, 1). But if γ = 1, then it becomes

2e−2t (1− cos(tχ))

t2χ2
, (6.78)

which vanishes whenever tχ = 2πk, k = ±1,±2, · · · . Therefore, for χ > 0 and γ ∈ [−1, 1),

the soldering form is invertible everywhere, whereas if γ = 1 then it is invertible for

t ∈ (−2π
χ ,

2π
χ ) and for all x ∈ R2. For χ = 0, the soldering form is invertible everywhere.

This agrees with dSGγ and AdSG2/χ, which are the χ → 0 and γ → 1 limits of S12γ,χ,

respectively.10

The torsion and curvature of the canonical invariant connection are calculated to be

Θ = −Re

(
1 + z

t(z − 1)

(
e−t − e−tz

)
dt ∧ dxP

)
Ω = −Re

(
z

t(z − 1)

(
e−t − e−tz

)
dt ∧ dxB

)
.

(6.79)

Using the soldering form we can read-off the vielbein and deduce the invariant galilean

structure. The clock one-form is τ = η(θ) = dt and the inverse spatial metric

h =

(
Re

(
(z − 1)t

e−t − e−zt

))2

δab
∂

∂xa
⊗ ∂

∂xb
. (6.80)

6.5 The action of the boosts

In this section we show that the generic orbits of boosts are not compact in the torsional

galilean spacetimes discussed above. This requires a different argument to the ones we

used for the symmetric spaces.

Let M be one of the torsional galilean spacetimes discussed in this section; that is,

dSGγ , AdSGχ or S12γ,χ, for the relevant ranges of their parameters. The following discussion

applies verbatim to the torsional galilean (anti) de Sitter, whereas for S12γ,χ the exposition

is more cumbersome; although, as we will see, the result still holds.

Our default description of M is as a simply-connected kinematical homogeneous space-

time K/H, where K is a simply-connected kinematical Lie group and H is the connected

subgroup generated by the boots and rotations. Our first observation is that we may dis-

pense with the rotations and also describe M as S/B, where S is the simply-connected

solvable Lie group generated by the boosts and spatio-temporal translations and B is the

10One might ask why in AdSG2/χ the range of t does not involve χ but here it does. It has to do with

the complex change of basis which gives the isomorphism S121,χ
∼= AdSG2/χ.
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connected abelian subgroup generated by the boosts. The Lie algebra s of S is spanned by

H,Ba, Pa and the Lie algebra b of B is spanned by Ba with non-zero brackets

[H,Ba] = −Pa and [H,Pa] = αBa + βPa , (6.81)

for some real numbers α, β depending on the parameters γ, χ. We may identify s with the

Lie subalgebra of gl(2D + 1,R) given by

s =


 0 tα1 y
−t1 tβ1 x

0 0 0


∣∣∣∣∣∣∣(t,x,y) ∈ R2D+1

 , (6.82)

where 1 is the D ×D identity matrix and b with the Lie subalgebra

b =


0 0 y

0 0 0

0 0 0


∣∣∣∣∣∣∣y ∈ RD

 . (6.83)

The Lie algebras b ⊂ s ⊂ gl(2D + 1,R) are the Lie algebras of the subgroups B ⊂ S ⊂
GL(2D + 1,R) given by

S =


a(t)1 b(t)1 y
c(t)1 d(t)1 x

0 0 1


∣∣∣∣∣∣∣(t,x,y) ∈ R2D+1

 and B =


1 0 y

0 1 0

0 0 1


∣∣∣∣∣∣∣y ∈ RD

 ,

(6.84)

for some functions a(t), b(t), c(t), d(t) which are given explicitly by(
a(t) b(t)

c(t) d(t)

)
=

1

γ − 1

(
γet − eγt γ

(
eγt − et

)
et − eγt γetγ − et

)
(6.85)

for dSGγ with γ ∈ (−1, 1), (
a(t) b(t)

c(t) d(t)

)
=

(
et(1− t) ett

−ett et(1 + t)

)
(6.86)

for dSG1, and (
a(t) b(t)

c(t) d(t)

)
=

(
etχ(cos t− χ sin t) etχ(1 + χ2) sin t

−etχ sin t etχ(cos t+ χ sin t)

)
(6.87)

for AdSGχ with χ > 0. The homogeneous space M = S/B, if not simply connected, is

nevertheless a discrete quotient of the simply-connected M and, as argued at the end of

section 3.4, it is enough to show that the orbits of boosts in M are generically non-compact

to deduce that the same holds for M .

Let us denote by g(t,x,y) ∈ S the generic group element

g(t,x,y) =

a(t)1 b(t)1 y
c(t)1 d(t)1 x

0 0 1

 ∈ S, (6.88)
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so that the generic boost is given by

g(0, 0,y) =

1 0 y

0 1 0

0 0 1

 ∈ B. (6.89)

Parenthetically, let us remark that while it might be tempting to identify M with the

submanifold of S consisting of matrices of the form g(t,x, 0), this would not be correct. For

this to hold true, it would have to be the case that given g(t,x,y), there is some g(0, 0,w)

such that g(t,x,y)g(0, 0,w) = g(t′,x′, 0) for some t′,x′. As we now show, this is only ever

the case provided that a(t) 6= 0. Indeed,

g(t,x,y)g(0, 0,w) = g(t, c(t)w + x, a(t)w + y), (6.90)

and hence this is of the form g(t′,x′, 0) if and only if we can solve a(t)w + y = 0 for w.

Clearly this cannot be done if a(t) = 0, which may happen for dSGγ∈(0,1) at t = log γ
γ−1 and

for AdSGχ>0 at cos t = ± χ√
1+χ2

.

The action of the boosts on M is induced by left multiplication on S:

g(0, 0,v)g(t,x,y) = g(t,x,y + v) (6.91)

which simply becomes a translation y 7→ y + v in RD. This is non-compact in S, but we

need to show that it is non-compact in M .

The right action of B is given by

g(t,x,y)g(0, 0,w) = g(t,x+ c(t)w,y + a(t)w), (6.92)

which is again a translation (x,y) 7→ (x+c(t)w,y+a(t)w) in R2D. The quotient R2D/B is

the quotient vector space R2D/B, where B ⊂ R2D is the image of the linear map RD → R2D

sending w → (c(t)w, a(t)w). Notice that (a(t), c(t)) 6= (0, 0) for all t, since the matrices in

S are invertible, hence B ∼= RD and hence the quotient vector space R2D/B ∼= RD. By the

Heine-Borel theorem, it suffices to show that the orbit is unbounded to conclude that it is

not compact. Let [(x,y)] ∈ R2D/B denote the equivalence class modulo B of (x,y) ∈ R2D.

The distance d between [(x,y)] and the boosted [(x,y+v)] is the minimum of the distance

between (x,y) and any point on the coset [(x,y + v)]; that is,

d = min
w
‖(x+ c(t)w,y + v + a(t)w)− (x,y)‖ = min

w
‖(c(t)w,v + a(t)w)‖. (6.93)

Completing the square, we find

‖(cw,v + aw)‖2 = (a2 + c2)

∥∥∥∥w +
a

a2 + c2
v

∥∥∥∥2 +
c2

a2 + c2
‖v‖2, (6.94)

whose minimum occurs when w = − a
a2+c2

v, resulting in

d =
|c(t)|√

a(t)2 + c(t)2
‖v‖. (6.95)
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As we rescale v 7→ sv, this is unbounded provided that c(t) 6= 0. From equa-

tions (6.85), (6.86) and (6.87), we see that for dSGγ∈(−1,1], c(t) = 0 if and only if t = 0,

whereas for AdSGχ>0, c(t) = 0 if and only if t = nπ for n ∈ Z, and hence, in summary, the

generic orbits are non compact.

Let us remark that for AdSGχ>0, if t = nπ for n 6= 0 then the exponential coordinate

system breaks down, so that we should restrict to t ∈ (−π, π). Indeed, using the explicit

matrix representation, one can determine when the exponential coordinates on M stop

being injective; that is, when there are (t,x) and (t′,x′) such that exp(tH + x · P ) =

exp(t′H + x′ · P )B for some B ∈ B. In dSGγ∈(−1,1] this only happens when t = t′ and

x = x′, but in AdSGχ>0 it happens whenever t = t′ = nπ (n 6= 0) and, if so, for all x, x′.

It now remains to look at the case of spacetime S12γ,χ. This case is very similar to

dSGγ in D = 1 except for two important changes: we work over the complex numbers and

γ is replaced by z = γ + iχ. This means that the (real) subalgebras b ⊂ s ⊂ gl(3,C) are

given by

b =


0 0 y

0 0 0

0 0 0


∣∣∣∣∣∣∣ y ∈ C

 and s =


 0 tz y
−t t(1 + z) x
0 0 0


∣∣∣∣∣∣∣ t ∈ R, x, y ∈ C

 , (6.96)

whereas the (real) subgroups B ⊂ S ⊂ GL(3,C) are given by

B =


1 0 y

0 1 0

0 0 1


∣∣∣∣∣∣∣ y ∈ C

 and S =


 zet−ezt

z−1
z(ezt−et)
z−1 y

et−ezt
z−1

zezt−et
z−1 x

0 0 1


∣∣∣∣∣∣∣ t ∈ R, x, y ∈ C

 .

(6.97)

Let g(t, x, y) denote the typical element (shown above) in S and let g(0, 0, y) denote the

typical element of B. Then we have

g(0, 0, v)g(t, x, y) = g(t, x, y+v) and g(t, x, y)g(0, 0, β) = g(t, x+a(t)β, y+c(t)β), (6.98)

where

a(t) =
zet − ezt

z − 1
and c(t) =

et − ezt

z − 1
. (6.99)

Hence the left and right action of the boosts takes place in C2: under the left action

(x, y) 7→ (x, y + v), whereas under the right action (x, y) 7→ (x + c(t)β, y + a(t)β).

Now C2 is equivalent to R4 as a metric space and hence the Heine-Borel theorem applies

and all we need to show is that the generic orbits are not bounded. The squared distance

(in the quotient S/B) between a point [g(t, x, y)] and its boost [g(t, x, y+v)] with parameter

v is

min
β
‖(x + c(t)β, y + v + a(t)β)− (x, y)‖2 = min

β
‖(c(t)β, v + a(t)β)‖2

= min
β

(
|c(t)|2|β|2 + |v + a(t)β|2

)
. (6.100)

We complete the square and write this as

min
β

(
(|a|2 + |c|2)

∣∣∣∣β +
āv

|a|2 + |c|2

∣∣∣∣2 + |v|2
(

1− |a|2

|a|2 + |c|2

))
=
|c|2|v|2

|a|2 + |c|2
, (6.101)
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where we have used that a(t) and c(t) cannot both be zero because g(t, x, y) is invertible for

all t. This grows without bound with v provided that c(t) 6= 0. Since z 6= 1, equation (6.99)

says that c(t) = 0 for those t satisfying

ezt = et ⇐⇒ e(z−1)t = 1 ⇐⇒ (z − 1)t = 2πin ∃n ∈ Z. (6.102)

But z − 1 = (γ − 1) + iξ and γ 6= 1, so that this can only be true for n = 0 and hence

t = 0. Hence the generic orbit (t 6= 0) is unbounded and hence not compact. Here too one

can show that the exponential coordinate system is everywhere valid, by working explicitly

with the matrices and checking that the equation exp(tH + x · P ) = exp(t′H + x′ · P )B

for some B ∈ B has the unique solution t = t′ and x = x′ (and hence B = 1).

7 Carrollian light cone (LC)

The carrollian light cone LC is a hypersurface in Minkowski spacetime, identifiable with

the future light cone. It does not arise as a limit and has additional brackets [H,B] = B,

[H,P ] = −P and [B,P ] = H + J , which shows that it is a non-reductive homogeneous

spacetime.

7.1 Action of the boosts

Although it might be tempting to use that the boosts in Minkowski spacetime act with

generic non-compact orbits to deduce the same about the boosts in LC, one has to be

careful because what we call boosts in LC might not be interpretable as boosts in the

ambient Minkowski spacetime. Indeed, as we will now see, boosts in LC are actually null

rotations in the ambient Minkowski spacetime.

We first exhibit the isomorphism between the LC Lie algebra and so(D + 1, 1). In the

LC Lie algebra, the boosts and translations obey the following brackets:

[H,B] = B, [H,P ] = −P , and [B,P ] = H + J . (7.1)

If we let Lµν be the standard generators of so(D + 1, 1) with µ = (0, a, \), a = 1, . . . , D,

and with Lie brackets

[Lµν , Lρσ] = ηνρLµσ − ηµρLνσ − ηνσLµρ + ηµσLνρ, (7.2)

where ηab = δab, η00 = −1, and η\\ = 1, then the correspondence is:

Jab = Lab, Ba =
1√
2

(L0a + La\), Pa =
1√
2

(L0a − La\), and H = −L0\. (7.3)

We see that, as advertised, the boosts Ba are indeed null rotations.

The boosts act linearly on the ambient coordinates Xµ in Minkowski spacetime, with

fundamental vector fields

ζBa =
1√
2

(
−X0 ∂

∂Xa
−Xa ∂

∂X0
+Xa ∂

∂X\
−X\ ∂

∂Xa

)
. (7.4)
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Consider a linear combination B = waBa and let T := X0, X := waXa, and Y := X\, so

that in terms of these coordinates and dropping the factor of 1√
2
,

ζB = −T ∂

∂X
−X ∂

∂T
+X

∂

∂Y
− Y ∂

∂X
. (7.5)

This allows us to examine the orbit of this vector field while focussing on the three-

dimensional space with coordinates T,X, Y . The vector field is linear, so there is a matrix

A such that

ζB =
(
T X Y

)
A

 ∂
∂T
∂
∂X
∂
∂Y

 =⇒ A =

 0 −1 0

−1 0 1

0 −1 0

 . (7.6)

The matrix A obeys A3 = 0, so its exponential is

exp(sA) =

1 + 1
2s

2 −s −1
2s

2

−s 1 s
1
2s

2 −s 1− 1
2s

2

 (7.7)

and hence the orbit of (T0, X0, Y0, . . . ) is given by

T (s) = (1 +
1

2
s2)T0 − sX0 −

1

2
s2Y0

X(s) = −sT0 +X0 + sY0

Y (s) =
1

2
s2T0 − sX0 +

(
1− 1

2
s2
)
Y0,

(7.8)

with all other coordinates inert, which is clearly non-compact in the Minkowski spacetime.

But of course, this orbit lies on the future light cone (indeed, notice that −T (s)2 +X(s)2 +

Y (s)2 = −T 2
0 +X2

0 +Y 2
0 ), which is a submanifold, and hence the orbit is also non-compact

on LC, provided with the subspace topology.

7.2 Fundamental vector fields

Let A = tH +x ·P and let us calculate the action of adA on the generators, this time with

the indices written explicitly:

adABa = tBa − xaH − xbJab
adA Pa = −tPa
adAH = xaPa

adA Jab = xaPb − xbPa.

(7.9)

In order to compute the fundamental vector fields using equation (3.16) and the soldering

form using equation (3.45), we need to calculate the action of certain universal power series

on adA on the generators. To this end, let us derive formulae for the action of f(adA),

for f(z) an analytic function of z, on the generators. We will do this by first calculating

powers of adA on generators. It is clear, first of all, that on P ,

f(adA)P = f(−t)P . (7.10)
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On H and J we just need to treat the constant term separately:

f(adA)H = f(0)H − 1

t
(f(−t)− f(0))x · P

f(adA)Jab = f(0)Jab −
1

t
(f(−t)− f(0)) (xaPb − xbPa).

(7.11)

On B it is a little bit more complicated. Notice first of all that whereas

ad2
ABa = t adABa − 2xaxbPb + x2Pa, (7.12)

ad3
ABa = t2 adABa. Therefore, by induction, for all n ≥ 1,

adnABa =

{
tn−1 adABa n odd

tn−1 adABa + tn−2(x2Pa − 2xax · P ) n even,
(7.13)

and therefore

f(adA)Ba = f(t)Ba −
1

t
(f(t)− f(0))(xaH + xbJab)

+
1

t2

(
1

2
(f(t) + f(−t))− f(0)

)
(x2Pa − 2xax · P ). (7.14)

Using these formulae, we can now apply equation (3.16) in order to determine the expression

of the fundamental vector fields in terms of exponential coordinates.

Let us take X = v · P in equation (3.16). We must take Y ′(0) = 0 here and find that

y · P = G(adA)v · P = G(−t)v · P =⇒ y =
t

1− e−t
v, (7.15)

resulting in

ξPa =
t

1− e−t
∂

∂xa
. (7.16)

Taking X = H in equation (3.16), we again must take Y ′(0) = 0. Doing so, we arrive

at

τH + y · P = G(adA)H =H − 1

t
(G(−t)− 1)x · P

=⇒ τ = 1 and y =

(
1

t
− 1− 1

et − 1

)
x, (7.17)

resulting in

ξH =
∂

∂t
+

(
1

t
− 1− 1

et − 1

)
xa

∂

∂xa
. (7.18)

One checks already that [ξH , ξPa ] = ξPa , as expected.

Finally, put X = v · B in equation (3.16) and hence now Y ′(0) = β · B + 1
2λ

abJab.

Substituting this in equation (3.16) and requiring that the h-terms vanish, we find

β =
G(t)

F (t)
v = e−tv and λab =

1− e−t

t
(vaxb − vbxa). (7.19)
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Comparing the H terms, we see that

τ =
1− e−t

t
x · v, (7.20)

whereas the P terms give

y =
1− e−t

2t
x2v +

1− t− e−t

t2
x · vx, (7.21)

resulting in

ξBa =
1− e−t

t
xa

∂

∂t
+

1− e−t

2t
x2

∂

∂xa
+

1− t− e−t

t2
xaxb

∂

∂xb
. (7.22)

One checks that, as expected, [ξH , ξBa ] = −ξBa and that [ξBa , ξPb ] = −δabξH − ξJab , where

ξJab = xb ∂
∂xa − x

a ∂
∂xb

.

7.3 Soldering form and canonical connection

The soldering form can be calculated from equation (3.45) and projecting the result to k/h:

θ = D(adA)(dtH + dx · P ) = dt

(
H − D(−t)− 1

t
x · P

)
+D(−t)dx · P

= dtH +
1 + t− et

t2
x · P dt+

et − 1

t
dx · P .

(7.23)

It follows from the expression of θ that it is invertible for all (t,x), since et−1
t 6= 0 for all

t ∈ R. Its inverse, the vielbein E, has components

EH =
∂

∂t
+

(
1

t
− 1

et − 1

)
xa

∂

∂xa
and EPa =

t

et − 1

∂

∂xa
. (7.24)

The invariant carrollian structure is given by κ = EH and spatial metric b = π2(θ, θ),

given by

b =
(1 + t− et)2

t4
x2dt2 +

(et − 1)2

t2
dx · dx+ 2

(et − 1)(1 + t− et)
t3

x · dxdt. (7.25)

8 Exotic two-dimensional spacetimes

In this section, we discuss the two-dimensional homogeneous spacetimes in table 1. These

spacetimes can be treated together. They are reductive, symmetric and even affine, but

have no invariant metrics, galilean or carrollian structures. Relative to exponential coor-

dinates (t, x), where σ(t, x) = exp(tH + xP ), the soldering form is

θ = dtH + dxP, (8.1)

and the invariant connection ω = 0. The vielbein are

EH =
∂

∂t
and EP =

∂

∂x
. (8.2)
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The exponential coordinates are affine, so that

ξH =
∂

∂t
and ξP =

∂

∂x
. (8.3)

The only distinguishing feature is the action of the boosts. We will see that in all cases

the fundamental vector field ξB is linear in the affine coordinates, so we will be able to

determine the orbits simply by exponentiating the corresponding matrix. Indeed, we will

see that

ξB =
(
t x
)(a b

c d

)(
∂
∂t
∂
∂x

)
= (at+ cx)

∂

∂t
+ (bt+ dx)

∂

∂x
, (8.4)

and hence the orbit of the boost through (t0, x0) is given by(
t(s)

x(s)

)
= exp(sA)

(
t0
x0

)
for A =

(
a b

c d

)
. (8.5)

As we saw in section 4.5, in all cases but S19χ, the only invariant connection is the

canonical connection.

8.1 Spacetime S17

Here [B,H] = P and [B,P ] = −H − 2P , so that

ξB = −x ∂
∂t
− (2x− t) ∂

∂x
. (8.6)

From equation (8.4), we see that the matrix A in equation (8.5) is given by

A =

(
0 1

−1 −2

)
=⇒ exp(sA) = e−s

(
1 + s s

−s 1− s

)
. (8.7)

The vector field is complete, and the orbits are homeomorphic to the real line, except for

the critical point at the origin which is its own orbit.

8.2 Spacetime S18

Here [B,H] = −H and [B,P ] = −P , so that

ξB = −t ∂
∂t
− x ∂

∂x
. (8.8)

From equation (8.4), we see that the matrix A in equation (8.5) is given by

A =

(
−1 0

0 −1

)
=⇒ exp(sA) = e−s

(
1 0

0 1

)
. (8.9)

Again, the vector field is complete, and the orbits are homeomorphic to the real line, except

for the critical point at the origin which is its own orbit.
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8.3 Spacetime S19χ

Here [B,H] = −(1 + χ)H and [B,P ] = (1− χ)P , so that

ξB = −(1 + χ)t
∂

∂t
+ (1− χ)x

∂

∂x
. (8.10)

From equation (8.4), we see that the matrix A in equation (8.5) is given by

A =

(
−(1 + χ) 0

0 1− χ

)
=⇒ exp(sA) =

(
e−s(1+χ) 0

0 es(1−χ)

)
. (8.11)

Here χ > 0. The vector field is complete, and for χ 6= 1 the orbits are homeomorphic to

the real line, except for the critical point at the origin which is its own orbit. For χ = 1,

every point on the x-axis (t = 0) is its own orbit, but the other orbits are non-compact.

If χ = 1, we have a three-parameter family of invariant connections characterised by

the Nomizu map in equation (4.54). The torsion and curvature have components

Θ(H,P ) = (ν ′ − ξ′)H and Ω(H,P )P = ν ′(ζ ′ − ξ′)H. (8.12)

Therefore, there is a two-parameter family of torsion-free invariant connections and two

one-parameter families of torsion-free, flat connections:

α(P, P ) = ζ ′P and

α(H,P ) = ν ′H

α(P,H) = ν ′H

α(P, P ) = ν ′P.

(8.13)

If χ = 3, we have a one-parameter family of invariant connections, which are flat and

torsion-free, with Nomizu map given by equation (4.55).

8.4 Spacetime S20χ

Here [B,H] = P and [B,P ] = −(1 + χ2)H − 2χP , so that

ξB = −(1 + χ2)x
∂

∂t
+ (t− 2χx)

∂

∂x
. (8.14)

From equation (8.4), we see that the matrix A in equation (8.5) is given by

A =

(
0 1

−(1 + χ2) −2χ

)
=⇒ exp(sA) = e−χs

(
cos s+ χ sin s sin s

−
(
1 + χ2

)
sin s cos s− χ sin s

)
. (8.15)

The vector field is complete, and for χ > 0 the orbits are homeomorphic to the real line,

except for the critical point at the origin which is its own orbit. For χ = 0, the orbits are

circles, as expected since, as seen in figure 3, S20χ=0 = E, the euclidean space.

9 Aristotelian spacetimes

In this section we introduce coordinates for the aristotelian spacetimes of table 2 and study

their geometric properties.
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9.1 Static spacetime (S)

This is an affine space and the exponential coordinates (t,x) are affine, so that

ξH =
∂

∂t
and ξPa =

∂

∂xa
. (9.1)

Similarly, the soldering form is θ = dtH + dx · P , the canonical invariant connection

vanishes, and so does the torsion. The vielbein is

EH = ξH and EPa = ξPa . (9.2)

9.2 Torsional static spacetime (TS)

Here [H,P ] = P .

9.2.1 Fundamental vector fields

Letting A = tH + x · P , we find adAH = −x · P and adAP = tP . Therefore, for any

analytic function f , we conclude that

f(adA)P = f(t)P and f(adA)H = f(0)H − 1

t
(f(t)− f(0))x · P . (9.3)

Applying this to equation (3.16), we find

ξH =
∂

∂t
+

(
1

t
− 1

et − 1
− 1

)
xa

∂

∂xa

ξPa =
t

1− e−t
∂

∂xa
,

(9.4)

which one can check obey [ξH , ξPa ] = −ξPa , as expected.

9.2.2 Soldering form and canonical connection

Applying the same formula to equation (3.45), we find that the canonical invariant con-

nection one-form vanishes in this basis and that the soldering form is given by

θ = dt

(
H +

1

t

(
1− 1− e−t

t

)
x · P

)
+

1− e−t

t
dx · P , (9.5)

so that the corresponding vielbein is

EH =
∂

∂t
+

(
1

t
− 1

1− e−t

)
xa

∂

∂xa
and EPa =

t

1− e−t
∂

∂xa
. (9.6)

It is clear from the fact that the function 1−e−t
t is never zero that θ is invertible for all (t,x).

Although the canonical connection is flat, its torsion 2-form does not vanish:

Θ =
e−t − 1

t
dt ∧ dx · P . (9.7)
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9.3 Aristotelian spacetime A23ε

Here [Pa, Pb] = −εJab, where D ≥ 2.

9.3.1 Fundamental vector fields

Let A = tH + x · P . Then adAH = 0 and adA Pb = −εxaJab. Continuing, we find

ad2
A Pb = εxbx · P − εx2Pb and ad3

A Pb = (−εx2) adA Pb. (9.8)

Therefore, an induction argument shows that

adnA Pb = (−εx2) adn−2A Pb ∀n ≥ 3. (9.9)

If f(z) is analytic in z, then f(adA)H = f(0)H and

f(adA)Pb =
1

2
(f(x+) + f(x−))Pb −

1

2
(f(x+) + f(x−)− 2f(0))

xbx · P
x2

− ε

2x+
(f(x+)− f(x−))xaJab, (9.10)

where

x± = ±
√
−εx2 =

{
±|x| ε = −1

±i|x| ε = 1.
(9.11)

Similarly, adA Jab = xaPb − xbPa, so that

f(adA)Jab = f(0)Jab +
1

2

(
f̃(x+) + f̃(x−)

)
(xaPb − xbPa)

− ε

2x+

(
f̃(x+)− f̃(x−)

)
xc(xaJcb − xbJca), (9.12)

where f̃(z) = (f(z)− f(0))/z.

Inserting these formulae in equation (3.16) with X = H and Y ′(0) = 0, we see that

ξH =
∂

∂t
. (9.13)

If instead X = v ·P and Y ′(0) = 1
2λ

abJab, we see first of all that τ = 0 and that demanding

that the Jab terms cancel,

λab =
−ε (G(x+)−G(x−))

x+ (F (x+) + F (x−))
(xavb − xbva), (9.14)

and reinserting into equation (3.16), we find that

ya =
1

2

(
G(x+) +G(x−)− (G(x+)−G(x−)) (F (x+)− F (x−))

F (x+) + F (x−)

)
va

− 1

2

(
G(x+) +G(x−)− 2− (G(x+)−G(x−)) (F (x+)− F (x−))

F (x+) + F (x−)

)
v · x
x2

xa. (9.15)

From this we read off the expression for ξPa :

ξPa =
F (x+)G(x−) + F (x−)G(x+)

F (x+) + F (x−)

∂

∂xa
+

(
1− F (x+)G(x−) + F (x−)G(x+)

F (x+) + F (x−)

)
xaxb

x2
∂

∂xb
,

(9.16)
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which simplifies to

ξ
(ε=1)
Pa

= |x| cot |x| ∂
∂xa

+ (1− |x| cot |x|)x
axb

x2
∂

∂xb

ξ
(ε=−1)
Pa

= |x| coth |x| ∂
∂xa

+ (1− |x| coth |x|)x
axb

x2
∂

∂xb
.

(9.17)

9.3.2 Soldering form and canonical connection

The soldering form and connection one-form for the canonical connection are obtained from

equation (3.45), which says that

θ + ω = dtH + dxbD(adA)Pb

= dtH +
1

2
(D(x+) +D(x−))dx · P

− 1

2
(D(x+)D(x−)− 2)

x · dx
x2

x · P − ε

2x+
(D(x+)−D(x−))xadxbJab,

(9.18)

whence

θ(ε=1) = dtH +
sin |x|
|x|

dx · P +

(
1− sin |x|

|x|

)
x · dx
x2

x · P

θ(ε=−1) = dtH +
sinh |x|
|x|

dx · P +

(
1− sinh |x|

|x|

)
x · dx
x2

x · P
(9.19)

and

ω(ε=1) =
1− cos |x|

x2
xadxbJab

ω(ε=−1) =
1− cosh |x|

x2
xadxbJab.

(9.20)

It follows that if ε = −1 the soldering form is invertible for all (t,x), whereas if ε = 1 then

it is invertible for all t but inside the open ball |x| < π.

The torsion of the canonical connection vanishes, since [θ, θ]m = 0. The curvature is

given by

Ω(ε=1) =
1

2

sin2 |x|
x2

dxa ∧ dxbJab +
sin |x|
|x|

(
1− sin |x|

|x|

)
xbxc

x2
dxa ∧ dxcJab

Ω(ε=−1) = −1

2

sinh2 |x|
x2

dxa ∧ dxbJab −
sinh |x|
|x|

(
1− sinh |x|

|x|

)
xbxc

x2
dxa ∧ dxcJab.

(9.21)

9.4 Aristotelian spacetime A24

Here D = 2 and [Pa, Pb] = εabH.

9.4.1 Fundamental vector fields

Letting A = tH+x·P , we have that adAH = 0 and adA Pa = −εabxbH, whence ad2
A Pa = 0.

So if f(z) is analytic in z,

f(adA)H = f(0)H and f(adA)Pa = f(0)Pa − f ′(0)εabx
bH. (9.22)
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Since G(z) = 1− 1
2z +O(z2), from equation (3.16) we see that

ξH =
∂

∂t
and ξPa =

∂

∂xa
+

1

2
εabx

b ∂

∂t
. (9.23)

One checks that [ξPa , ξPb ] = −εabξH , as expected.

9.4.2 Soldering form and canonical connection

Since D(z) = 1− 1
2z+O(z2), equation (3.45) says that the connection one-form ω = 0 and

the soldering form is given by

θ = (dt+
1

2
εabdx

axb)H + dx · P , (9.24)

which is clearly everywhere invertible. The torsion of the canonical connection is given by

Θ = −1

2
εabdx

a ∧ dxbH. (9.25)

The vielbein is given by

EH =
∂

∂t
and EPa =

∂

∂xa
− 1

2
εabx

b ∂

∂t
. (9.26)

10 Symmetries of the spacetime structure

In this section we investigate the (conformal) symmetries of the carrollian and galilean

spacetimes and their respective invariant structures. A carrollian structure (κ, b) consists

of a spatial metric b and a so-called carrollian vector field κ, whereas a galilean structure

(τ, h) consists of a spatial co-metric h and a clock-one form τ . Let us remark that some

authors would add the invariant connection as part of the structure, but we will not do so

in the following. This means that, in the terminology of [29], we treat the “weak” rather

than the “strong” structures.

The calculations in this section are motivated by the intriguing connection between

conformally carrollian symmetries [3, 29] and the symmetries of asymptotic flat space-

times [35, 36] in 3 + 1 dimensions. This connection is given by an isomorphism between

the Lie algebra of infinitesimal conformal transformations of a carrollian structure [3] and

the Lie algebra of the Bondi-Metzner-Sachs (BMS) group [35, 36].

Similarly, the infinitesimal conformal symmetries of the galilean and carrollian struc-

tures of the homogeneous kinematical spacetimes will turn out to be infinite-dimensional

and one might hope this has interesting consequences. It should be mentioned that were one

to add the invariant connection as part of the data of the homogeneous carrollian or galilean

structure, the symmetry algebra would be typically cut down to the (finite-dimensional)

transitive kinematical Lie algebra.

Let (M, τ, h) be a galilean spacetime. We say that a vector field ξ ∈X (M) is a galilean

Killing vector field if it generates a symmetry of the galilean structure:

Lξτ = 0 and Lξh = 0, (10.1)
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whereas we say that it is a galilean conformal Killing vector field at level N ∈ N if it

generates a conformal symmetry (at level N) of the galilean structure:

Lξτ = − λ
N
τ and Lξh = λh, (10.2)

for some λ ∈ C∞(M). Similarly, if (M,κ, b) is a carrollian spacetime, we say that ξ ∈
X (M) is a carrollian Killing vector field if it generates a symmetry of the carrollian

structure:

Lξκ = 0 and Lξb = 0, (10.3)

whereas we say that it is a carrollian conformal Killing vector field at level N ∈ N if it

generates a conformal symmetry (at level N) of the carrollian structure:

Lξκ = − λ
N
κ and Lξb = λb, (10.4)

for some λ ∈ C∞(M). These definitions agree (modulo notation) with the ones in [37]

and [3, 29]. The set of galilean/carrollian Killing vector fields close under the Lie bracket

of vector fields to give rise to Lie algebras. The same is true for the set of galilean/carrollian

conformal Killing vector fields of a given fixed level N . In this section we will determine

the structure of these Lie algebras for the homogeneous carrollian and galilean spacetimes.

The calculations in this section are easier to perform if we change coordinates from

the exponential coordinates σ : RD+1 → M , with σ(t,x) = exp(tH + x · P ) · o, that

we have been using until now to modified exponential coordinates σ′ : RD+1 → M , with

σ′(t,x) = exp(tH) exp(x ·P ) · o. Appendix A discusses these coordinates further. In many

of the calculations we require knowledge of the Lie algebra of conformal Killing vector

fields on the simply-connected riemannian symmetric spaces E, S and H. In appendix B

we collect a few standard results in low dimension.

10.1 Symmetries of the carrollian structure (C)

We start by determining the carrollian Killing vector fields for the (flat) carrollian spacetime

C (as has already been done in, e.g., [3]). Since H and P commute in this spacetime, the

exponential and modified exponential coordinates agree. The invariant carrollian structure

on the spacetime parametrised by (t, xa) ∈ RD+1, with a = 1, . . . , D, is given by κ = ∂
∂t

and b = δabdx
adxb. Let ξ = ξ0 ∂∂t + ξa ∂

∂xa be a carrollian Killing vector field of (κ, b), so

that it satisfies equation (10.3). Then, Lξκ = [ξ, κ] = 0 says that T := ξ0 and ξa are

t-independent. The condition Lξb = 0, says that

0
!

= Lξb = 2(Lξdx
a)dxa = 2d(Lξx

a)dxa = 2dξadxa = 2
∂ξa

∂xb
dxbdxa =⇒ ∂ξa

∂xb
+
∂ξb

∂xa
= 0.

(10.5)

This says that ξa(x) ∂
∂xa is a Killing vector field of euclidean space. In summary, the most

general carrollian Killing vector field of (κ, b) is given by

ξ = T (x)
∂

∂t
+ ξX , (10.6)
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for some X ∈ e, the euclidean Lie algebra of ED, and some “supertranslations” T ∈
C∞(ED). As a vector space, then, the Lie algebra a of carrollian Killing vector fields is

given by C∞(ED)⊕ e, but as a Lie algebra it is a semidirect product

aC ∼= en C∞(ED), (10.7)

where the action of e on C∞(ED) is via the Lie derivative. In other words, we have a split

exact sequence

0 C∞(ED) aC e 0. (10.8)

The carrollian algebra is embedded here by considering the subalgebra of C∞(ED) consist-

ing of polynomial functions of degree at most 1: with the constant function 1 corresponding

to H and the linear function xa corresponding to Ba. When we identify Jab and Pa in e in

the obvious way we recover (5.52).

Let us now determine the carrollian conformal Killing vector fields. Let ξ = ξ0 ∂∂t +

ξa ∂
∂xa satisfy equation (10.4) where (κ, b) is again the invariant carrollian structure on C:

κ = ∂
∂t and b = δabdx

adxb. The condition Lξκ = − λ
N κ imposes

∂ξa

∂t
= 0 and λ = N

∂ξ0

∂t
. (10.9)

The condition Lξb = λb says that

∂ξa

∂xb
+
∂ξb

∂xa
= λδab, (10.10)

so that ξa ∂
∂xa is a conformal Killing vector of ED. Since ξa is independent of time, so is

λ = 2
D
∂ξa

∂xa , which we can now use to solve for ξ0 in (10.9):

ξ0 = T (x) +
2t

ND

∂ξa

∂xa
, (10.11)

for some “supertranslations” T ∈ C∞(ED). The carrollian conformal symmetries vary with

respect to the space dimension D.

Let D ≥ 3. Thus we see that, as a vector space, the Lie algebra cC of carrollian

conformal Killing vector fields of C is isomorphic to so(D+1, 1)⊕C∞(ED), where so(D+1, 1)

is the Lie algebra of conformal Killing vectors on ED which we denote by ξX . In summary

we have the vector field

ξ = ξX +
2t

ND
div ξX

∂

∂t
+ T (x)

∂

∂t
. (10.12)

for X ∈ so(D + 1, 1) and T ∈ C∞(ED), and div ξ = ∂ξa

∂xa . The vector space isomorphism is

then given by

X 7→ ξX +
2t

ND
div ξX

∂

∂t
and T 7→ T

∂

∂t
. (10.13)

As Lie algebras, cC is a semidirect product. Indeed,[
ξX +

2t

ND
div ξX

∂

∂t
, T

∂

∂t

]
=

(
ξX(T )− 2

ND
div ξXT

)
∂

∂t
, (10.14)
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so that T does not actually transform as a function but as a section of L
2
N where L is the

density line bundle, normalised so that the spatial metric b is a section of S2T ∗M ⊗L 2.

It may help to spell this out. A conformal metric is a section of S2T ∗M ⊗L 2 and a

conformal Killing vector field is one which preserves the conformal metric. Now if ζ is a

conformal Killing vector field for (M, g), then

Lζg =
2

D
div ζg ⇐⇒

(
Lζ −

2

D
div ζ

)
g = 0. (10.15)

If we interpret this as the invariance of g under the action of ζ on sections of S2T ∗M⊗L 2,

we see that the action of ξX on T , which is given in equation (10.14) by

T 7→
(
LξX −

2

ND
div ξX

)
T, (10.16)

says that T is a section of L
2
N , as claimed. In particular, if N = 2, T has conformal weight

1 in agreement with [5].

In summary, for D ≥ 3, cC is isomorphic to a split extension

0 Γ(L
2
N ) cCD≥3 so(D + 1, 1) 0, (10.17)

a result first derived in [3]. We notice that comparing to the Lie algebra of carrollian Killing

vector fields in equation (10.8), all that has happened is that the Lie algebra e of euclidean

isometries gets enhanced to the Lie algebra so(D+1, 1) of euclidean conformal symmetries,

under which the “supertranslations” transform not as functions, but as sections of a (trivial)

line bundle with conformal weight 2/N (in conventions where the metric scales with weight

2). We did not see this when we calculated the carrollian Killing vector fields because the

Lie algebra e does not contain the generator of dilatations and cannot tell the weight.

Now let D = 2. In this case, as reviewed in appendix B, the Lie algebra of conformal

Killing vector fields on E2 is enhanced to the Lie algebra O(C) of entire functions on the

complex plane with the wronskian Lie bracket: [f, g] = f∂g − g∂f . Hence for D = 2, cC is

isomorphic to a split extension

0 Γ(L
2
N ) cCD=2 O(C) 0. (10.18)

The vector field is given explicitly by

ξ = ξf +
t

N
div ξf

∂

∂t
+ T (z)

∂

∂t
where ξf = f(z)∂ + f(z) ∂. (10.19)

Finally, if D = 1, every vector field on E1 is conformal Killing and hence now cC is

isomorphic to

0 Γ(L
2
N ) cCD=1 C∞(R) 0, (10.20)

where the vector field is given by

ξ = ξ(x)
∂

∂x
+

2t

N
ξ′(x)

∂

∂t
+ T (x)

∂

∂t
. (10.21)

The last two results were already obtained in section IV of [29], to which we refer for

further information.
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10.2 Symmetries of the (anti) de Sitter carrollian structure (dSC and AdSC)

We now investigate the symmetries of the (anti) de Sitter carrollian spacetimes (dSC and

AdSC) with their carrollian structure. They can be embedded as null surfaces of the

(anti) de Sitter spacetime. Unlike the carrollian space C, the invariant connection on these

spacetimes is not flat. The carrollian structure becomes much more transparent if we work

in modified exponential coordinates, as described in appendix A. In order to be able to

treat both cases at once, let us introduce the functions

C(r) :=

{
cos(r) for dSC

cosh(r) for AdSC
S(r) := C ′(r) and G(r) :=

S(r)

C(r)
, (10.22)

with the understanding that r ∈ (0, π2 ) for dSC and r > 0 for AdSC. In those coordinates,

the invariant carrollian structures are given by

κ = C(r)−1
∂

∂t
and b = dr2 + S(r)2gSD−1 . (10.23)

The metric b defines the round metric on the sphere SD for dSC and the hyperbolic metric

on HD for AdSC. Although the coordinates only cover a hemisphere of SD, we proved in [6,

§ 4.2.5] that dSC is diffeomorphic to R× SD for D ≥ 2 and to R2 for D = 1.

Now let ξ = ξ0 ∂∂t + ξa ∂
∂xa be a carrollian Killing vector field, so that Lξκ = 0 and

Lξb = 0. We calculate

[ξ, κ] = −C(r)−1
((

∂ξ0

∂t
+ x · ξG(r)

r

)
∂

∂t
+
∂ξa

∂t

∂

∂xa

)
?
= 0, (10.24)

which is solved by

ξa = ξa(x) and ξ0 = T (x)− tx · ξG(r)

r
, (10.25)

for some t independent “supertranslations” T (x) and where we have introduced the short-

hand notation x · ξ = δabx
aξb. Therefore,

ξ =

(
T (x)− G(r)

r
tx · ξ

)
∂

∂t
+ ξa(x)

∂

∂xa
. (10.26)

Now we impose Lξb = 0. We observe that this does not constrain the ∂
∂t component of ξ,

so it is only a condition on ξa(x) ∂
∂xa . But in the submanifolds of constant t, b defines a

metric and Lξb = 0 says that ξa(x) ∂
∂xa is a Killing vector. Therefore, we have

ξ =

(
T (x)− G(r)

r
tx · ξX

)
∂

∂t
+ ξaX(x)

∂

∂xa
for X ∈

{
so(D + 1), for dSC

so(D, 1), for AdSC.
(10.27)

In summary, the Lie algebra of carrollian Killing vector fields is isomorphic to

adSC ∼= so(D + 1) n C∞(SD) and aAdSC ∼= so(D, 1) n C∞(HD), (10.28)
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where the action of so on C∞ is given by

[X,T ] = ξXT +
G(r)

r
x · ξXT. (10.29)

If we define T 7→ T̂ := −C(r)T then it follows that

[̂X,T ] = ξX T̂ , (10.30)

so the action of so on C∞ is just a “dressed” version of the standard action of vector fields

on functions.11 In this way, we may identify the finite-dimensional transitive kinematical

Lie algebras as the subalgebras

so(D + 1) n C∞≤1(S
D) and so(D, 1) n C∞≤1(H

D), (10.31)

respectively, where C∞≤1 denotes the functions T (x) which are polynomial of degree ≤ 1

in x. Comparing with table 1, one can see that the so factors are the span of J and P ,

whereas C∞≤1 are spanned by H and B, which do indeed commute.

Let us now consider the carrollian conformal Killing vector fields. Let ξ = ξ0 ∂∂t +ξa ∂
∂xa

satisfy equation (10.4). The condition Lξκ = [ξ, κ] = − λ
N κ is satisfied provided that

∂ξa

∂t
= 0 and λ = N

(
∂ξ0

∂t
+
G(r)

r
x · ξ

)
, (10.32)

where x · ξ := xaξa. The condition Lξb = λb says that ξa ∂
∂xa is a conformal Killing vector

field of the metric b with λ = 2
D∇aξ

a, with ∇ the Levi-Civita connection for b, which is

the round metric on SD for dSC, and the metric on hyperbolic space HD for AdSC.

Let D ≥ 3. Both SD and HD are conformally flat, so their Lie algebras of confor-

mal Killing vector fields are isomorphic, and indeed isomorphic to that of ED: namely,

so(D + 1, 1).

Solving for ξ0 we find

ξ0 = T (x) + t

(
2

ND
div ξ − G(r)

r
x · ξ

)
, (10.33)

where div ξ := ∇aξa and where T is a smooth function on SD or HD depending on whether

we are in dSC or AdSC, respectively. As vector spaces, the Lie algebras cdSC (resp. cAdSC)

of conformal symmetries of dSC (resp. AdSC) are isomorphic to C∞(SD) ⊕ so(D + 1, 1)

(resp. C∞(HD)⊕ so(D + 1, 1)), with the isomorphism given by

X 7→ ξX +

(
2

ND
div ξX +

G(r)

r
x · ξX

)
t
∂

∂t
and T 7→ T

∂

∂t
, (10.34)

for X ∈ so(D + 1, 1) and T a smooth function in the relevant space.

As Lie algebras, cdSC and cAdSC are again semidirect products. Indeed, if X ∈ so(D +

1, 1) and f ∈ C∞, then we find

[X,T ] = ξX(T ) +
G(r)

r
x · ξXT −

2

ND
div ξXT. (10.35)

11Alternatively, we may view this “dressing” as a change of coordinates to a new rescaled time t′ = −tg(r).

– 76 –



J
H
E
P
0
8
(
2
0
1
9
)
1
1
9

If we again define T 7→ T̂ = −C(r)T , then

[̂X,T ] = ξX(T̂ )− 2

ND
div ξX T̂ , (10.36)

so that T̂ is a section of the line bundle L
2
N . In summary, just as in the case of the flat

carrollian spacetime C, we find that the Lie algebras cdSC and cAdSC are split extensions

0 Γ(L
2
N ) c

(A)dSC
D≥3 so(D + 1, 1) 0, (10.37)

where L is the density bundle on SD or HD for dSC or AdSC, respectively. So again we

see that in going from the Lie algebras of symmetries to the Lie algebras of conformal

symmetries, all that happens is that the isometries enhance to conformal symmetries and

what earlier were thought (after the “dressing”) to be functions are actually sections of L
2
N .

Now let D = 2. Here the situation differs. As reviewed in appendix B, the case of dSC

is just as for D ≥ 3, whereas for AdSC, the Lie algebra of conformal Killing vector fields

on H2 is enhanced to O(H), the holomorphic functions on the upper half-plane with the

wronskian Lie bracket [f, g] = f∂g − g∂f . Therefore we have

0 Γ(L
2
N ) cdSCD=2 so(3, 1) 0, (10.38)

but

0 Γ(L
2
N ) cAdSCD=2 O(H) 0. (10.39)

For D = 1 again every vector field is conformal Killing and their Lie algebra is isomor-

phic to the Lie algebra of smooth functions on the real line or the circle with the wronskian

Lie bracket:

0 Γ(L
2
N ) cdSCD=1 C∞(S1) 0, (10.40)

but

0 Γ(L
2
N ) cAdSCD=1 C∞(R) 0. (10.41)

Let us restrict the discussion to N = 2. Then the conformal symmetries of the dS

carrollian structure are (at least in 3+1 dimension) isomorphic to the BMS symmetries [35,

36] (for a definition of the BMS algebra in higher dimension see, e.g., [38]). This could

have been anticipated since the dS carrollian structure is, up to a rescaling of time, the

same as in [3]. It should however not be forgotten that dSC is a null surface in de Sitter

spacetime and has nowhere vanishing curvature. For D = 2, if we allow for conformal

Killing vector fields on the sphere which are not everywhere smooth, then we may extend

sl(2,C) to “superrotations” [39, 40] (see also [41]). For D = 1, the superrotations are

built in from the start, which again is in agreement with the BMS group for 2 + 1 “bulk”

dimensions [38, 42].

Let us also observe that we find for the AdS carrollian spacetime in D = 2, a null surface

of AdS in 3 + 1 dimensions, an infinite dimensional enhancement with “superrotations”, in

addition to the supertranslations.
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10.3 Symmetries of the carrollian light cone (LC)

These were already determined in [3], but we present it here for completeness. To determine

the symmetries of the carrollian structure of LC, it is convenient to change coordinates.

Let D ≥ 2. As shown in [3, 6], LC can be embedded as the future light cone in (D+2)-

dimensional Minkowski spacetime MD+2 in such a way that the carrollian structure is the

one induced by the Minkowski metric on that null hypersurface. We may parametrise the

future light cone in MD+2 by x ∈ RD+1 \ {0} and the map i : RD+1 \ {0} → MD+2 is given

by i(x) = (r,x), where r = ‖x‖ > 0. The carrollian structure (κ, b) is given by κ = r ∂∂r
and b = i∗g, where g is the Minkowski metric:

g = ηµνdX
µdXν = −(dX0)2 +

∑
i

(dX i)2, (10.42)

where the Xµ are the affine coordinates on MD+2. On the future light cone, X0 = r and

Xi = xi. Therefore, we see that

b = i∗g = −dr2 + (dr2 + r2gSD) = r2gSD . (10.43)

In terms of the coordinates x, we have that κ = xa ∂
∂xa and

b =

(
δab −

xaxb

r2

)
dxadxb. (10.44)

Now let ξ = ξa ∂
∂xa be a symmetry of the carrollian structure (κ, b). Then Lξκ =

[ξ, κ] = 0 and Lξb = 0. We find it more convenient to write

ξ = ξr
∂

∂r
+ ζ, (10.45)

where ξr ∈ C∞(RD+1 \ {0}) and ζ is a possibly r-dependent vector field tangent to the

spheres of constant r; that is, ζr = 0. The condition [κ, ξ] = 0 results in

0
!

= [κ, ξ] =

[
r
∂

∂r
, ξr

∂

∂r
+ ζ

]
=

(
r
∂ξr

∂r
− ξr

)
∂

∂r
+ r

∂ζ

∂r
. (10.46)

This implies that ξr = rF , where F ∈ C∞(SD), so that ∂F
∂r = 0, and ζ is independent of r.

The condition Lξb = 0 results in

0
!

= Lξ(r
2gSD) = 2r2FgSD + r2LζgSD , (10.47)

so that ζ is a conformal Killing vector on SD and F = − 1
D div ζ, where div ζ is the intrinsic

divergence of ζ on the sphere relative to the round metric, but which agrees with ∂ζa

∂xa in

this case. Therefore, the symmetry algebra of the carrollian structure on LC is isomorphic

to so(D+1, 1), even for D = 2 as shown in appendix B, which is the transitive kinematical

Lie algebra. It is an intriguing result that among the homogeneous carrollian spacetimes,

it is precisely the non-reductive one whose symmetry algebra is finite-dimensional.
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For D = 1, LC is the universal cover of the future light cone in three-dimensional

Minkowski spacetime. One can model LC as the submanifold of R3 with points

LC = {(r cos θ, r sin θ, θ) | r > 0, θ ∈ R} , (10.48)

with the covering map from LC to the future light cone in M3 given by (r cos θ, r sin θ, θ) 7→
(r, r cos θ, r sin θ). Notice that the non-contractible circles of constant r in the light cone

lift to contractible helices in LC. The transitive kinematical Lie algebra is isomorphic to

sl(2,R) and is spanned by the vector fields

∂

∂θ
, cos θ

∂

∂θ
+ r sin θ

∂

∂r
and sin θ

∂

∂θ
− r cos θ

∂

∂r
. (10.49)

Since they are periodic in θ with period 2π, they descend to tangent vector fields to the

future light cone. The carrollian structure is given by κ = r ∂∂r and b = r2dθ2, except that θ

is not angular in LC. It is straightforward to work out the Lie algebra of carrollian Killing

vector fields and obtain that it is isomorphic to C∞(Rθ) with the wronskian Lie bracket.

Indeed, if f ∈ C∞(Rθ), the corresponding vector field is

ξf = f(θ)
∂

∂θ
− f ′(θ)r ∂

∂r
(10.50)

and the Lie bracket is given by

[ξf , ξg] = ξh with h = fg′ − f ′g. (10.51)

For the (non-simply connected) future light cone, we must consider periodic functions,

so that the Lie algebra of carrollian Killing vector fields is C∞(S1) with the wronskian

Lie bracket.

Let us now consider the carrollian conformal Killing vector fields. Again we first

consider D ≥ 2. This was treated already in [3], but we write it here for completeness. As

before we work in embedding coordinates where the carrollian structure on LC is given by

κ = r
∂

∂r
and b = r2gSD (10.52)

and let ξ = ξr ∂∂r + ζ, with ζr = 0, satisfy equation (10.4). The condition Lξκ = − λ
N κ

results in
∂ζ

∂r
= 0 and r

∂ξr

∂r
− ξr =

λ

N
r, (10.53)

whereas the condition Lξb = λb results in

LζgSD =

(
λ− 2ξr

r

)
gSD , (10.54)

so that ζ is a conformal Killing vector field on SD with divergence

div ζ =
D

2

(
λ− 2ξr

r

)
. (10.55)
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Solving for ξr we find

ξr = r

(
r
N
2 T − 1

D
div ζ

)
, (10.56)

for some T ∈ C∞(SD). Therefore, as a vector space, the Lie algebra cLC of carrollian

conformal Killing vector fields of LC is isomorphic to C∞(SD) ⊕ so(D + 1, 1), with the

isomorphism given by

X 7→ ζX −
1

D
div ζXr

∂

∂r
and T 7→ r

2
N Tr

∂

∂r
, (10.57)

for X ∈ so(D + 1, 1) and T ∈ C∞(SD).

As a Lie algebra, cLC is a semi-direct product with

[X,T ] = ζX(T )− 2

ND
div ζXT, (10.58)

so that T is actually a section of L
2
N . In summary, cLC is a split extension

0 Γ(L
2
N ) cLC so(D + 1, 1) 0 , (10.59)

which shows that there is an isomorphism cLC ∼= cdSC.

For D = 1, analogous to the case of carrollian Killing vector fields, we find that now the

Lie algebra of carrollian conformal Killing vector fields is larger. The carrollian conformal

Killing vector fields at level N are given by

f(θ)
∂

∂θ
− f ′(θ)r ∂

∂r
+ r

2
N g(θ)r

∂

∂r
, (10.60)

for some f, g ∈ C∞(Rθ). The Lie algebra structure is now a semidirect product of the

wronskian Lie algebra C∞(Rθ) of carrollian Killing vector fields and the abelian ideal of

sections of L
2
N :

0 Γ(L
2
N ) cLCD=1 C∞(Rθ) 0 , (10.61)

where under the isomorphism L
2
N ∼= C∞(Rθ), to a function g ∈ C∞(Rθ) there corresponds

the vector field ζg = r
2
N g(θ)r ∂∂r , so that with ξf = f(θ) ∂∂θ − f

′(θ)r ∂∂r , we have

[ξf , ζg] = ζh with h = fg′ − 2

N
f ′g. (10.62)

10.4 Symmetries of galilean structures

In this section, we will work out the Lie algebra of galilean Killing vector fields for the

homogeneous galilean spacetimes. This Lie algebra has been termed the Coriolis algebra

of a galilean spacetime in [37]. In the modified exponential coordinates of appendix A, the

invariant galilean structure takes the same form in all the homogeneous spacetimes G, dSG,

AdSG, dSGγ , AdSGχ and S12γ,χ: the clock one-form is given by τ = dt and the inverse

spatial metric by h = δab ∂
∂xa ⊗

∂
∂xb

.
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Let ξ = ξ0 ∂∂t + ξa ∂
∂xa satisfy equation (10.1). The condition that ξ preserves the

clock-one form says

0
!

= Lξτ = Lξdt = dLξt = dξ0 =⇒ ξ0 is constant. (10.63)

The condition that Lξh = 0 says that

0
!

= Lξh = −(∂aξb + ∂bξa)
∂

∂xa
⊗ ∂

∂xb
=⇒ ∂aξb + ∂bξa = 0. (10.64)

This equation says that ξa∂a is a (possibly) t-dependent Killing vector field of the D-

dimensional euclidean space ED, so that

ξa(x, t) = fa(t) + Λab(t)x
b, (10.65)

where Λab = −Λba. In other words,

ξ = ξ0
∂

∂t
+ fa(t)

∂

∂xa
+ Λ(t)abx

b ∂

∂xa
, (10.66)

so that, as a vector space, the Lie algebra a of vector fields which preserve the galilean

structure (τ, h), is isomorphic to a ∼= R ⊕ C∞(Rt, e), with e the euclidean Lie algebra and

Rt the real line with coordinate t. As a Lie algebra,

a ∼= R n C∞(Rt, e) (10.67)

has the structure of a semidirect product or, equivalently, a split extension

0 C∞(Rt, e) a R 0, (10.68)

where the splitting R → a is given by sending 1 ∈ R to ∂
∂t , corresponding to the action of

H. This was originally worked out in [37], who named it the Coriolis algebra.

We will now determine the Lie algebra c of conformal symmetries of the galilean struc-

ture and we will see that it has a very similar structure to a in equation (10.68), except

that R gets enhanced to a non-abelian Lie algebra structure on C∞(Rt).
Let ξ = ξ0 ∂∂t + ξa ∂

∂xa satisfy equation (10.2). The condition Lξτ = − λ
N τ results in

∂ξ0

∂xa
= 0 and

∂ξ0

∂t
= − λ

N
=⇒ λ = λ(t). (10.69)

The condition Lξh = λh results in

∂ξa

∂xb
+
∂ξb

∂xa
= −λδab, (10.70)

so that ξa ∂
∂xa is a (possibly) t-dependent conformal Killing vector field on ED, but since

λ = λ(t), we see that that ξa ∂
∂xa is either Killing or homothetic. In other words, we

can write

ξa = fa(t) + Λab (t)x
b + g′(t)xa, (10.71)
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where we have found it convenient to think of the homothetic component as the derivative

of a smooth function g ∈ C∞(Rt). Doing so, we may solve for ξ0 to arrive at

ξ0 = − 2

ND
g(t), (10.72)

so that

ξ =
(
fa(t) + Λab (t)x

b
) ∂

∂xa
+

(
− 2

ND
g(t)

∂

∂t
+ g′(t)xa

∂

∂xa

)
, (10.73)

in agreement with [43, eq. (3.12)] and [29, eq. (III.5)], who worked out the case of G.

Thus we see that, as a vector space, the Lie algebra c of conformal symmetries of the

galilean spacetime is isomorphic to C∞(Rt, e) ⊕ C∞(Rt), with the isomorphism such that

g ∈ C∞(Rt) is sent to the vector field

g(t) 7→ g′(t)xa
∂

∂xa
− 2

ND
g(t)

∂

∂t
. (10.74)

In particular, the Lie algebra structure on C∞(Rt) is not abelian, but rather if f, g ∈
C∞(Rt), their Lie bracket is a multiple of the wronskian:

[f, g] =
−2

ND
(fg′ − f ′g). (10.75)

As a Lie algebra, c is a semidirect product, where f ∈ C∞(Rt) acts on (v(t),Λ(t)) ∈
C∞(Rt, e) by

[f, (v,Λ)] =

(
−2

ND
fv′ + f ′v,

−2

ND
fΛ′
)
. (10.76)

In summary, the Lie algebra c is a split extension

0 C∞(Rt, e) c C∞(Rt) 0, (10.77)

so that in going from the symmetries to the conformal symmetries, the abelian Lie algebra

R has been enhanced to the non-abelian “wronskian” Lie algebra C∞(Rt).
It is intriguing that the galilean spacetimes, despite admitting non-isomorphic transi-

tive kinematical Lie algebras, have isomorphic conformal symmetry Lie algebras. It would

be interesting to investigate how the transitive Lie algebras relate via their embeddings

in c.

11 Conclusions

The main results of this and our previous paper [6] are

1. the classification of simply-connected spatially isotropic homogeneous spacetimes,

recorded in tables 1 and 2;

2. the proof that the boosts act with generic non-compact orbits on all spacetimes in

table 1 except for the riemannian symmetric spaces, and

3. the determination of the Lie algebra of infinitesimal (conformal) symmetries of these

structures.
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The second point is an important physical requirement, already mentioned in [1]. We

also discussed the subtle interplay between the kinematical Lie algebras and their space-

times [6]. Among them is the intriguing connection between the anti de Sitter carrollian

and Minkowski spacetime, which are different homogeneous spacetimes, but based on the

same Lie algebra.

In addition, we also determined the invariant affine connections on these homogeneous

spacetimes and calculated their torsion and curvature. These connections allow us to define

geodesics, which we hope to study in future work.

Table 3 summarises the basic geometric properties of the spacetimes. This table makes

it clear that the bulk of the spacetimes do not admit an invariant metric and hence that

there is a very rich landscape beyond lorentzian geometry, even if we remain within the

realm of homogeneous spaces with space isotropy.

Another aspect of this work was the analysis of the, generically infinite dimensional,

(conformal) symmetries of the carrollian and galilean structures. One observation is that

the Lie algebra of infinitesimal conformal symmetries of carrollian (anti) de Sitter space-

time, which embeds as a null hypersurface of (anti) de Sitter spacetime, is infinite dimen-

sional and reminiscent of the BMS algebra. It is tempting to speculate that this might

be relevant for BMS physics (memory effect, . . .) [4, 5] on these non-flat backgrounds (see

also [7]).

Some of the above results were made possible by the introduction of local coordinates.

We chose to consider exponential coordinates; although admittedly these are not always

the simplest coordinates for calculations. We have found modified exponential coordinates

to be quite useful as well, particularly for the determination of the infinitesimal (conformal)

symmetries of the spacetimes. We expressed the kinematical vector fields — that is, the

infinitesimal generators of rotations, boosts and translations — in terms of exponential

coordinates, and we did the same for the invariant structures (if any). This was particularly

useful in order to determine their infinitesimal (conformal) symmetries.

There are a number of possible directions for future research departing from our results.

One open problem we did not address is to exhibit the galilean spacetimes as null

reductions of lorentzian spacetimes in one higher dimension. This would complement the

description of the carrollian spacetimes as null hypersurfaces in an ambient lorentzian man-

ifold.

We showed that all of the galilean spacetimes in this paper (G, dSG, AdSG, dSGγ , AdSGχ
and S12γ,χ) have isomorphic Lie algebras of infinitesimal conformal symmetries. We did

not determine how the transitive kinematical Lie algebras are embedded in these infinite-

dimensional Lie algebras. Perhaps studying those embeddings might teach us something

about how the kinematical Lie algebras relate to each other.

It would be interesting to promote the homogeneous spacetimes to Cartan geometries

and hence study the possible theories based on them. For a discussion in 2 + 1 dimensions

see [44].

Another intriguing direction is to explore the applications of these geometries to non-

AdS holography. It is not inconceivable that some of these homogeneous geometries might

play a similar rôle in non-AdS holography to that played by anti de Sitter spacetime in
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the AdS/CFT correspondence [2]. One particularly interesting property of a non-zero

cosmological constant is that acts as an infrared regulator (often paraphrased as “AdS is

like a box”) and it would be interesting to investigate if this persists in the non-relativistic

or ultra-relativistic limits to AdSG or AdSC, respectively.
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A Modified exponential coordinates

In this appendix we revisit the local geometry of the homogeneous carrollian and galilean

spacetimes, but this time in modified exponential coordinates.

A.1 Carrollian spacetimes

A.1.1 Carrollian (anti) de Sitter spacetimes

Let σ′(t,x) = exp(tH) exp(x · P ) · o. We calculate the soldering form by pulling back the

left-invariant Maurer-Cartan one-form ϑ on the Lie group:

σ′∗(ϑ) = θ + ω = exp(− adA)Hdt+D(adA)(dx · P ), (A.1)

where A = x · P . We find

adAH = εx ·B and ad2
AH = −εx2H, (A.2)

so that

exp(− adA)H = cosh(x+)H − sinh(x+)

x+
εx ·B, (A.3)
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where x2+ = −εx2 and x− = −x+. Also, we find

adA Pa = εJabx
b

ad2
A Pa = −εx2Pa + εxaA

=⇒ ad3
A Pa = −εx2 adA Pa.

(A.4)

Therefore,

D(adA)Pa = Pa +D−εxbJab +
1

x2+
(D+ − 1)(−εx2Pa + εxax · P ), (A.5)

where D− = 1
2x+

(D(x+)−D(x−)) and D+ = 1
2(D(x+) +D(x−)). In summary,

θ = cosh(x+)dtH +D+dx · P +
ε

x2+
(D+ − 1)x · dxx · P . (A.6)

Using that D+ = sinh(x+)
x+

, we find

θ = cosh(x+)dtH +
sinh(x+)

x+
dx · P + ε

sinh(x+)− x+
x3+

x · dxx · P . (A.7)

The carrollian structure is given by κ = EH = sech(x+) ∂∂t and b = π2(θ, θ), which ex-

pands to

b = − ε

x2
sinh2(x+)dx · dx+

ε

x4
(sinh2(x+)− x2+)(x · dx)2. (A.8)

If ε = 1, x+ = ir, where r = |x| and hence sinh2 x+ = − sin2 r, so that

b =
sin2 r

r2
(
dr2 + r2gSD−1

)
− (sin2 r − r2)

r2
dr2 = dr2 + sin2 r gSD−1 , (A.9)

which is the round metric on SD. The coordinate system is good provided that r ∈ (0, π2 ).

On the other hand, if ε = −1, x+ = r and, therefore,

b =
sinh2 r

r2
(
dr2 + r2gSD−1

)
− (sinh2 r − r2)

r2
dr2 = dr2 + sinh2 r gSD−1 , (A.10)

which is the metric on hyperbolic space HD and the coordinate system is good for all r > 0.

In summary, the carrollian structures in these coordinate systems are given by

κdSC = sec(r)
∂

∂t

bdSC = dr2 + sin2 r gSD−1

and
κAdSC = sech(r)

∂

∂t

bAdSC = dr2 + sinh2 r gSD−1 .

(A.11)

A.2 Galilean spacetimes

The transitive kinematical Lie algebras for the homogeneous galilean spacetimes (with the

exception of S12γ,χ, which will be treated separately below) has additional brackets of

the form

[H,B] = −P and [H,P ] = αB + βP , (A.12)
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for some α, β ∈ R. In other words, adH is represented by a matrix of the form
(

0 α
−1 β

)
.

We define

M(t) = exp

(
t

(
0 α

−1 β

))
. (A.13)

We introduce modified exponential coordinates (t,x) by acting with L(t,x) :=

exp(tH) exp(x ·P ) on the origin o. Relative to them ξH = ∂
∂t and ξJab are as in exponential

coordinates. We will determine ξBa and then calculate ξPa = [ξH , ξBa ].

Let s ∈ (−ε, ε) and consider

exp(sv ·B)L(t,x) · o = L(τ(s),y(s)) · o , (A.14)

where τ(0) = t and y(0) = x. This is equivalent to

exp(sv ·B)L(t,x) = L(τ(s),y(s)) exp(w(s) ·B), (A.15)

where w(0) = 0, which we may re-write yet again as

exp(τ(s)H) exp(y(s) · P ) = exp(sv ·B)L(t,x) exp(−w(s) ·B). (A.16)

We now differentiate with respect to s at s = 0 to obtain (in the notation of matrix groups)

(τ ′(0)H)L(t,x) + L(t,x)(y′(0) · P ) = (v ·B)L(t,x)− L(t,x)(w′(0) ·B), (A.17)

which implies that τ ′(0) = 0 and

y′(0) · P +w′(0) ·B = M(−t)v ·B or

(
w′(0)

y′(0)

)
= M(−t)

(
v

0

)
. (A.18)

We now proceed to treat the different galilean spacetimes in turn, but first we simply

comment on the fact that the galilean structure is formally identical in all cases. Indeed,

L(t,x)−1dL(t,x) = Hdt+ (βdtxa + dxa)Pa + αdtxaBa, (A.19)

where [H,P ] = αB + βP defines α and β. It follows from this that the soldering form is

given by

θH = dt and θPa = dxa + βxadt, (A.20)

the invariant canonical connection by

ω = αdtx ·B (A.21)

and the vielbein is

EH =
∂

∂t
− βxa ∂

∂xa
and EPa =

∂

∂xa
. (A.22)

The galilean structure is given by the clock one-form

η(θ) = dt (A.23)
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and the inverse spatial metric

δabEPa ⊗ EPb = δab
∂

∂xa
⊗ ∂

∂xb
. (A.24)

The torsion and curvature are, respectively

Θ = −βdt ∧ dx · P and Ω = −αdt ∧ dx ·B. (A.25)

We now work out the expressions of the fundamental vector fields ξBa and ξPa in

each case.

A.2.1 Galilean spacetime

For the galilean spacetime G,

M(t) = exp

(
t

(
0 0

−1 0

))
=

(
1 0

−t 1

)
, (A.26)

and hence (
w′(0)

y′(0)

)
=

(
v

tv

)
, (A.27)

from where we read off

ξBa = t
∂

∂xa
and hence ξPa =

∂

∂xa
. (A.28)

A.2.2 Galilean de Sitter spacetime

For the galilean de Sitter spacetime dSG,

M(t) =

(
cosh t − sinh t

− sinh t cosh t

)
, (A.29)

and hence (
w′(0)

y′(0)

)
=

(
v cosh t

v sinh t

)
, (A.30)

from where we read off

ξBa = sinh t
∂

∂xa
and hence ξPa = cosh t

∂

∂xa
. (A.31)

A.2.3 Torsional galilean de Sitter spacetime

For the torsional galilean de Sitter spacetime dSGγ ,

M(t) =
1

1− γ

(
etγ − γet γ(et − etγ)

etγ − et et − γetγ

)
, (A.32)

and hence (
w′(0)

y′(0)

)
=

1

1− γ

(
(etγ − γet)v
(etγ − et)v

)
, (A.33)

from where we read off

ξBa =
etγ − et

1− γ
∂

∂xa
and hence ξPa =

γetγ − et

1− γ
∂

∂xa
. (A.34)
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A.2.4 Galilean anti de Sitter spacetime

For the galilean anti de Sitter spacetime AdSG,

M(t) =

(
cos t sin t

− sin t cos t

)
, (A.35)

and hence (
w′(0)

y′(0)

)
=

(
v cos t

v sin t

)
, (A.36)

from where we read off

ξBa = sin t
∂

∂xa
and hence ξPa = cos t

∂

∂xa
. (A.37)

A.2.5 Torsional galilean anti de Sitter spacetime

For the torsional galilean anti de Sitter spacetime AdSGχ,

M(t) =

(
etχ(cos t− χ sin t) etχ(1 + χ2) sin t

−etχ(1 + χ2) sin t etχ(cos t+ χ sin t)

)
, (A.38)

and hence (
w′(0)

y′(0)

)
=

(
e−tχ(cos t+ χ sin t)v

e−tχ sin tv

)
, (A.39)

from where we read off

ξBa = e−tχ sin t
∂

∂xa
and hence ξPa = e−tχ(cos t− χ sin t)

∂

∂xa
. (A.40)

A.2.6 Spacetime S12γ,χ

For spacetime S12γ,χ, the expression for the fundamental vector fields ξBa and ξPa are not

particularly transparent in modified exponential coordinates, so we will not give them here.

We will show, however, that the galilean structure is formally identical to that of all the

other homogeneous galilean spacetimes.

The transitive Lie algebra in this case is defined by the following brackets

[H,Ba] = −Pa and [H,Pa] = (1 + γ)Pa + γBa − χεab(Bb + Pb). (A.41)

Letting L(t,x) = exp(tH) exp(x ·H), we find

L(t,x)−1dL(t,x) = Hdt+ (1 + γ)xaPa − χεabxaPb + γxaBa − χεabxaBb + dxaPa, (A.42)

so that the soldering form has components

θH = dt and θPa = dxa + fa(x)dt, (A.43)

where fa(x) := (1 + γ)xa + χεabx
b. The vielbein has components

EH =
∂

∂t
− fa(x)

∂

∂xa
and EPa =

∂

∂xa
. (A.44)
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Therefore, the invariant galilean structure has clock one-form

η(θ) = dt (A.45)

and inverse spatial metric

δabEPa ⊗ EPb = δab
∂

∂xa
⊗ ∂

∂xb
. (A.46)

B Conformal Killing vectors in low dimension

In this appendix we collect some results concerning the conformal Killing vectors of eu-

clidean space ED, round sphere SD and hyperbolic space HD for D ≤ 2. We have used these

results in determining the infinitesimal (conformal) symmetries of the carrollian spacetimes.

For D = 1, every smooth vector field is conformal Killing. For example, the “metric”

on E1 is given by g = dx2 relative to the global coordinate x. Since the tangent bundle is

trivial, we may identify smooth vector fields with smooth functions globally, so ξ = f(x) d
dx

for some f ∈ C∞(R). Then we see that Lξg = 2dfdx = 2f ′g. Similar considerations apply

to S1 and H1, with conformal Killing vector fields being in bijective correspondence with

the smooth functions C∞(S1) and C∞(R), respectively.

In all cases, the Lie algebra of conformal Killing vector fields is isomorphic to the Lie

algebra of smooth functions under the wronskian Lie bracket:

[f, g] = fg′ − gf ′. (B.1)

Things are more interesting for D = 2. Let us first consider euclidean space with

metric g = dx2 + dy2 relative to global coordinates (x, y). Every vector field is of the form

ξ = u(x, y) ∂
∂x + v(x, y) ∂

∂y for u, v ∈ C∞(R2). Then the conformal Killing condition

Lξg = 2
∂u

∂x
dx2 + 2

∂u

∂y
dy2 + 2

(
∂u

∂y
+
∂v

∂x

)
dxdy

!
= λ

(
dx2 + dy2

)
(B.2)

is equivalent to
∂u

∂y
+
∂v

∂x
= 0 and

∂u

∂x
=
∂v

∂y
=
λ

2
. (B.3)

This says that u and v obey the Cauchy-Riemann equations and, since they are smooth,

that w = u(x, y) + iv(x, y) is a holomorphic function f(z), say, of z = x + iy. In other

words, every conformal Killing vector field on E2 is given by

ξ = f(z)∂ + f(z) ∂ (B.4)

for some entire function f : C → C. The Lie algebra of conformal Killing vector fields

on E2 is therefore isomorphic to the Lie algebra O(C) of entire functions relative to the

“wronskian” Lie bracket:

[f, g] = f∂g − g∂f. (B.5)

The round sphere S2 is the one-point compactification of E2. A conformal Killing vector

field on S2 takes the form ξ = f(z)∂+f(z) ∂ away from the North pole, say. But demanding
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that f(z)∂ extends to a holomorphic vector field at the North Pole, says that if ζ = 1/z,

then −ζ2f(1/ζ) should be holomorphic at ζ = 0 and this requires f(z) = a0+a1z+a2z
2, for

some a0, a1, a2 ∈ C. This is the well-known result that the (everywhere smooth) conformal

Killing vector fields on S2 define a real Lie algebra isomorphic to sl(2,C) ∼= so(3, 1). Indeed,

the wronskian Lie bracket of the polynomials of degree ≤ 2 is given by

[1, z] = 1, [1, z2] = 2z and [z, z2] = z2. (B.6)

Finally, let us consider hyperbolic space H2, which we model as the upper half-plane

{(x, y) ∈ R2 | y > 0} with metric

g =
dx2 + dy2

y2
. (B.7)

The tangent bundle is trivial so that we can write any smooth vector field as ξ = u(x, y) ∂
∂x+

v(x, y) ∂
∂y for some u, v ∈ C∞(R2). The conformal Killing condition

Lξg =
2

y2

(
∂u

∂y
+
∂v

∂x

)
dxdy+

2

y2

(
∂u

∂x
− v

y

)
dx2+

2

y2

(
∂v

∂y
− v

y

)
dy2

!
= λ

dx2 + dy2

y2
(B.8)

results in
∂u

∂y
+
∂v

∂x
= 0 and

∂u

∂x
=
∂v

∂y
=
λ

2
+
v

y
. (B.9)

In particular, u, v satisfy the Cauchy-Riemann equations and hence again w = u+iv = f(z),

where f is a holomorphic function of z = x + iy in the upper half-plane. The Schwarz

reflection principle says that if f extends continuously to y = 0 then it extends to an entire

function on the whole complex plane such that f(z) = f(z) for z in the lower half-plane.

But of course f may develop singularities as y → 0 and hence there are more holomorphic

functions on the upper half-plane than can be obtained by restricting entire functions.

In summary, the Lie algebra of conformal Killing vector fields is isomorphic to the Lie

algebra O(H) of holomorphic functions on the upper half-plane relative to the “wronskian”

Lie bracket [f, g] = f∂g − g∂f .
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