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1 Introduction

In the recent paper [1] the classification of non-unitary representations of the three di-

mensional superconformal group has been constructed. From AdS/CFT -correspondence

(i.e. from the fact that the very same superalgebra plays the role of the super-AdS4 al-

gebra in the bulk and of the superconformal one on the boundary) there must exist their

analogues in four-dimensional Anti de Sitter space (AdS4) as well.1 By the structure of

the supermultiplets they constructed, the authors of [1] suggested that they correspond to

the supermultiplets with the partially massless fields which are also non-unitary in AdS4.

Moreover, the simplest example of such supermultiplets which contain partially massless

spin-2, massless spin-1, massless spin-3/2 and a massive spin-3/2 was explicitly constructed.

The dynamical description of the arbitrary supermultiplets was not studied. In this paper

we fill this gap and construct explicit Lagrangian realization of all N = 1 supermultiplets

containing partially massless fields with arbitrary integer and half-integer superspins.

The partially massless fields [2–6] (non-unitary in AdS) of integer s or half-integer

s + 1/2 spins are labelled by the depth t ∈ {0, 1, 2, . . . , (s − 1), s}. Two boundary values

t = 0 and t = s correspond to massless and massive cases respectively. For other values of

1It is well known hat in de Sitter space the N=1 supersymmetry is inconsistent, yielding imaginary spin

3/2 mass parameter and non-real Lagrangian in local theory. Some argument concerning the existence of

N=1 supergravity in dS is presented in [13] however, these aspects are outside the scope of this article.
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t we have pure partially massless field which propagates 2(t + 1) degrees of freedom. As

it was shown in [1] the general partially massless N = 1 supermultiplets are described by

the diagrams

[s+ 1
2 ]t

[s]t Y = s [s]t−1

[s− 1
2 ]t−1

[s− 1
2 ]t

[s]t Y = s− 1
2 [s− 1]t−1

[s− 1
2 ]t−1

(1.1)

Here integers s and t are the spin and the depth of the partially massless fields. As in the

massive case N = 1 partially massless supermultiplets contain a pair of the bosonic fields

and a pair of the fermionic ones. For instance, left diagram describes partially massless

supermultiplet with superspin Y = s which contains two partially massless bosonic spin-s

fields of depth t and (t− 1), partially massless fermionic spin-(s+ 1/2) field of depth t and

partially massless fermionic spin-(s− 1/2) field of depth (t− 1). Taking into account that

depth t partially massless fields propagate 2(t + 1) degrees of freedom it is easy to check

that the number of bosonic and fermionic degrees of freedom matches and equals 4t.

For the description of the individual partially massless higher spin bosonic and

fermionic fields we use the frame-like gauge invariant description similar to the massive

case [7–9]. In such formalism partially massless spin s(s+ 1/2) of the depth t is described

by a set of massless fields with spins s, s− 1, . . . , s− t combined together into one system.2

To combine partially massless fields into supermultiplets (1.1) we follow the strategy of

our recent paper [9] where massive higher spin supermultiplets were constructed. For the

Lagrangian we just take the sum of four free Lagrangians for the two partially massless

bosonic and the two partially massless fermionic fields entering the supermultiplet. Then

for each pair of bosonic and fermionic fields (we call it superblock in what follows) we find

the supertransformations leaving the sum of their two Lagrangians invariant. After that

we combine all four possible superblocks and adjust their parameters so that the algebra

of the supertransformations be closed on-shell.

The paper is organized as follows. In section 2 we give non-unitary frame-like gauge

invariant formulation for free partially massless arbitrary integer and half-inter spins. In

section 3 we consider superblocks containing one partially massless bosonic and one par-

tially massless fermionic fields and find corresponding supertransformations. In section 4

we combine the constructed partially massless superblocks into the partially massless

supermultiplets.

2As in the massive case the fields with spins s−1, . . . , s−t are auxiliary and play a role of the Stuckelberg

fields. In works [11, 12] it was shown that in the metric-like formalism they can be derived from a log radial

dimensional reduction of the massless theory. In the case of the frame-like formalism we used, in general

the reduction produces more field components than it is necessary so one has to exclude the unnecessary

ones by solving their equations and/or gauge fixing. This is even more true for the supermultiplets because

starting with N = 1 supersymmetry in higher dimensions one usually ends with the N = 2 supersymmetry

and again has to truncate somehow to go back to N = 1.

– 2 –
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2 Partially massless higher spin fields

In this section we provide frame-like gauge invariant formulation for (non-unitary) partially

massless fields with arbitrary integer and half-inter spins in AdS4 space.

2.1 Partially massless bosons

The gauge invariant formulation for the partially massless fields can be easily obtained

from the general massive case just by adjusting the value of mass parameter. But unitarity

requires that the sign of the cosmological term be positive so that naturally the partially

massless fields live in de Sitter space. In this work we use the gauge invariant formulation

for the partially massless fields in AdS4 space where half the number of components have

wrong signs of the kinetic terms. Such a description is explicitly non-unitary but the

Lagrangian is hermitian and all coefficients are real.

In such approach a partially massless integer spin-s field of depth t = (s−l−1) is formu-

lated in terms of massless fields with spins (l+1) ≤ k ≤ s. Each massless bosonic fields with

spin k ≥ 2 (the case of the partially massless bosonic fields of the last depth t = (s− 1) re-

quires introduction of the spin-1 component and has to be considered separately) described

by the physical one-form fα(k−1)α̇(k−1) and the auxiliary one-forms Ωα(k)α̇(k−2),Ωα(k−2)α̇(k).

They are two-component multispinors symmetric on its local dotted and undotted spinorial

indices separately. These fields satisfy the following reality condition

(fα(k−1)α̇(k−1))† = fα(k−1)α̇(k−1), (Ωα(k)α̇(k−2))† = Ωα(k−2)α̇(k). (2.1)

In these notations the gauge invariant Lagrangian for the partially massless bosonic

field can be written as follows:

(−1)σ
1

i
L =

s∑
k=l+1

[
kΩα(k−1)βα̇(k−2)Eβ

γΩα(k−1)γα̇(k−2)

−(k − 2)Ωα(k)α̇(k−3)β̇Eβ̇
γ̇Ωα(k)α̇(k−3)γ̇

+2Ωα(k−1)βα̇(k−2)eβ
β̇Dfα(k−1)α̇(k−2)β̇ − h.c.

]
+

s∑
k=l+2

ak

[
Eβ(2)Ω

α(k−2)β(2)α̇(k−2)fα(k−2)α̇(k−2)

+
(k − 2)

k
Eβ(2)f

α(k−3)β(2)α̇(k−1)Ωα(k−3)α̇(k−1) − h.c.

]
+

s∑
k=l+1

bk[f
α(k−2)βα̇(k−1)Eβ

γfα(k−2)γα̇(k−1) − h.c.]. (2.2)

Here the even/odd parameter σ determines the common sign of the Lagrangian that will

be important for the construction of the supermultiplets. The Lagrangian (2.2) is invariant

under the following gauge transformations:

δfα(k−1)α̇(k−1) = Dξα(k−1)α̇(k−1) + eβ
α̇ηα(k−1)βα̇(k−2) + eαβ̇η

α(k−2)α̇(k−1)β̇

−(k − 1)ak+1

2(k + 1)
eββ̇ξ

α(k−1)βα̇(k−1)β̇ +
ak

2k(k − 1)
eαα̇ξα(k−2)α̇(k−2)

– 3 –
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δΩα(k)α̇(k−2) = Dηα(k),α̇(k−2) − ak+1

2
eββ̇η

α(k)βα̇(k−2)β̇ (2.3)

+
ak

2k(k + 1)
eαα̇ηα(k−1)α̇(k−3) +

bk
2k
eαβ̇ξ

α(k−1)α̇(k−2)β̇ ,

provided

bk =
2s(s+ 1)l(l + 1)

k(k − 1)(k + 1)
λ2

ak
2 =

4(s− k + 1)(s+ k)(k − l − 1)(k + l)

(k − 2)(k − 1)
λ2. (2.4)

In what follows we assume that all parameters ak are positive. It is also worth to note

that Lagrangian (2.2) is parity invariant that is invariant under spatial reflections. These

transformations can be defined by operator P as follows

Pfα(k−1)α̇(k−1) = fα(k−1)α̇(k−1), PΩα(k)α̇(k−2) = Ωα(k−2)α̇(k),

P eαα̇ = eαα̇, PEαβ =Eα̇β̇ . (2.5)

Using the fact that Lagrangian in four dimensions is differential 4-form which is pro-

portional to antisymmetric tensor εµνρσ and Pεµνρσ = −εµνρσ we can see that the La-

grangian (2.2) is P -invariant. Moreover, due to the Lagrangian is quadratic in fields, it

describes both parity-even boson defined by (2.5) and parity-odd one defined by

Pfα(k−1)α̇(k−1) = −fα(k−1)α̇(k−1), PΩα(k)α̇(k−2) = −Ωα(k−2)α̇(k). (2.6)

In the gauge invariant formalism we use, for each field (physical or auxiliary) there

exist a corresponding gauge invariant object (“torsion” or “curvature”). Their form is

completely determined by the structure of the gauge transformations (2.3):3

T α(k−1)α̇(k−1) = Dfα(k−1)α̇(k−1) + eβ
α̇Ωα(k−1)βα̇(k−2) + eαβ̇Ωα(k−2)α̇(k−1)β̇

−(k − 1)ak+1

2(k + 1)
eββ̇f

α(k−1)βα̇(k−1)β̇ +
ak

2k(k − 1)
eαα̇fα(k−2)α̇(k−2),

Rα(k)α̇(k−2) = DΩα(k),α̇(k−2) − ak+1

2
eββ̇Ωα(k)βα̇(k−2)β̇ (2.7)

+
ak

2k(k + 1)
eαα̇Ωα(k−1)α̇(k−3) +

bk
2k
eαβ̇f

α(k−1)α̇(k−2)β̇ .

In this work we use a formalism analogous to the so-called 1 and 1/2 order formalism, very

well known in supergravity. Namely, we do not introduce any supertransformations for the

auxiliary fields, instead all calculations are done using the “zero torsion conditions”:

T α(k−1)α̇(k−1) ≈ 0 ⇒ eβ
α̇Rα(k−1)βα̇(k−2) + eαβ̇R

α(k−2)α̇(k−1)β̇ ≈ 0. (2.8)

As for the supertransformations for the physical fields, the variation of the Lagrangian can

be compactly written using the gauge invariant curvatures given above:

δL = −(−1)σ2i
s∑

k=l+1

Rα(k−1)βα̇(k−2)eββ̇δfα(k−1)α̇(k−2)β̇ − h.c. (2.9)

3Note that to construct a full set of gauge invariant objects one has to introduce a number of so-called

extra fields. But these fields do no enter the free Lagrangian so in what follows we omit them.
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2.2 Partially massless fermions

To construct a gauge invariant Lagrangian for the fermionic fields one only needs physical

fields. So to describe partially massless spin s+1/2 field of depth t = (s − l − 1) we

introduce a set of one-forms Φα(k)α̇(k−1),Φα(k−1)α̇(k), l+ 1 ≤ k ≤ s which are symmetric on

their dotted and undotted spinorial indices separately and satisfying a reality condition

(Φα(k)α̇(k−1))† = Φα(k−1)α̇(k).

The Lagrangian for the partially massless fields in AdS4 has the form

(−1)τL =
s∑

k=l+1

Φα(k−1)βα̇(k−1)e
β
β̇DΦα(k−1)α̇(k−1)β̇

+
s∑

k=l+2

ck[E
β(2)Φα(k−2)β(2)α̇(k−1)Φ

α(k−2)α̇(k−1) + h.c.]

+

s∑
k=l+1

dk

[
(k + 1)Φα(k−1)βα̇(k−1)E

β
γΦα(k−1)γα̇(k−1)

−(k − 1)Φα(k)α̇(k−2)β̇E
β̇
γ̇Φα(k)α̇(k−2)γ̇ + h.c.

]
. (2.10)

As in the bosonic case half the number of components have wrong signs of the kinetic

terms. Such a description is explicitly non-unitary but the Lagrangian is hermitian and all

coefficients are real. In what follows we assume that the parameters ck are positive while

τ (even/odd) in Lagrangian (2.10) parameterize the common sign of the Lagrangian.

This Lagrangian is invariant under the following gauge transformation:

δΦα(k)α̇(k−1) = Dξα(k)α̇(k−1) + eβ
α̇ηα(k)βα̇(k−2) + 2dke

α
β̇ξ
α(k−1)α̇(k−1)β̇

−ck+1eββ̇ξ
α(k)βα̇(k−1)β̇ +

ck
(k − 1)(k + 1)

eαα̇ξα(k−1)α̇(k−2), (2.11)

provided

dk = ±(s+ 1)(l + 1)

2k(k + 1)
λ

ck
2 =

(s− k + 1)(s+ k + 1)(k − l − 1)(k + l + 1)

k2
λ2. (2.12)

We assume that all parameters ck are positive. The sign of dk (which is not fixed by the

gauge invariance) plays an important role in the construction of the supermultiplets. As

it will be seen below the pair of the fermions entering N = 1 supermultiplet must have

opposite signs of dk forming in this way the Dirac mass-like term.

In the fermionic case for each field we also have a corresponding gauge invariant object

(as in the bosonic case we omit any extra fields):

Fα(k)α̇(k−1) = DΦα(k)α̇(k−1) + 2dke
α
β̇Φα(k−1)α̇(k−1)β̇

−ck+1eββ̇Φα(k)βα̇(k−1)β̇ +
ck

(k − 1)(k + 1)
eαα̇Φα(k−1)α̇(k−2). (2.13)

– 5 –
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Using these curvatures, the variation of the Lagrangian (2.10) under the supertransforma-

tions can be compactly written as follows:

δL = −(−1)τ
s∑

k=l̃+1

Fα(k−1)βα̇(k−1)eββ̇δΦ
α(k−1)α̇(k−1)β̇ + h.c. (2.14)

3 Partially massless superblocks

As it has been shown in [1], the partially massless supermultiplets in AdS4, corresponding

to non-unitary supersymmetric representations, similarly to the massive case contain two

bosonic and two fermionic partially massless fields with the properly adjusted depths (see

diagrams (1.1) in Introduction):

Φ[s+ 1
2
]t

f[s]t f ′[s]t−1

Ψ[s− 1
2
]t−1

Φ[s− 1
2
]t

f[s]t f ′[s−1]t−1

Ψ[s− 1
2
]t−1

Here integers s and t label spin and depth respectively. For a given s the depth t of bosonic

(fermionic) partially massless field with spin s(s+ 1/2) go from 1 to (s− 1). The authors

of [1] also have found Lagrangian realization of the simplest supermultiplets containing

partially massless spin-2, massive spin-3/2 and two massless fields with spin 3/2 and spin 1

(it arises from the right diagram at s = 2 and t = 1). They have studied it from the partially

massless limit of the full massive supermultiplet. Such limit in AdS is non-unitary and lead

to that norms of kinetic terms of spin-2 and spin-1 fields in Lagrangian are opposite, the

same holds for the two spin-3/2 fields.

In this work we systematically study generic partially massless supermultiplets corre-

sponding to the above diagrams for s > 2 and 1 ≤ t < (s− 1) working from the beginning

with the partially massless fields. We follow the same strategy we used for the construction

of the massive supermultiplets [9]. At first, we consider two possible pairs of the bosonic

and fermionic partially massless fields (superblocks), namely (s, s + 1/2) and (s− 1/2, s),

and find the supertransformations which leave the sum of their free Lagrangians invariant.

Then we consider the whole system of four fields and choose the parameters in such a way

that the algebra of the supertransformations is closed.

3.1 Ansatz for the supertransformations

We choose the following ansatz for the supertransformations for a pair of the partially

massless bosonic and fermionic fields (superblock):

δfα(k−1)α̇(k−1) = αk−1Φ
α(k−1)βα̇(k−1)ζβ − ᾱk−1Φα(k−1)α̇(k−1)β̇ζβ̇

+α′k−1Φ
α(k−1)α̇(k−2)ζα̇ − ᾱ′k−1Φα(k−2)α̇(k−1)ζα,

– 6 –
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δΦα(k)α̇(k−1) = βk−1Ω
α(k)α̇(k−2)ζα̇ + γk−1f

α(k−1)α̇(k−1)ζα

+β′kΩ
α(k)βα̇(k−1)ζβ + γ′kf

α(k)α̇(k−1)β̇ζβ̇ , (3.1)

δΦα(k−1)α̇(k) = β̄k−1Ω
α(k−2)α̇(k)ζα + γ̄k−1f

α(k−1)α̇(k−1)ζα̇

+β̄′kΩ
α(k−1)α̇(k)β̇ζβ̇ + γ̄′kf

α(k−1)βα̇(k)ζβ .

where all coefficients are complex. Note that this is most general possible expression

with respect to symmetrization and contraction of spinor indices.4 As we will see below

coefficients in the supertransformations can be pure real or pure imaginary. It depends on

a parity of bosonic fields that is on how bosonic fields transform under spatial reflections.

The parity is defined by operator P , acting on bosonic fields it gives

Pfα(k−1)α̇(k−1) = ±fα(k−1)α̇(k−1), PΩα(k)α̇(k−2) = ±Ωα(k−2)α̇(k).

The +, − signs define parity-even and parity-odd bosonic fields respectively. Considering

fermionic fields Φα(k),α̇(k−1) and parameter of supertransformations ζα as parity-even, one

can see that in the case of parity-even(odd) bosonic fields coefficients αk, α
′
k are imagi-

nary(real) and βk, β
′
k, γk, γ

′
k are real(imaginary). As in the case of the massive supermul-

tiplets, partially massless ones have to contain two bosonic fields with opposite parities

since it arises from the massive one in partially massless limit. Hence we have to consider

partially massless superblocks with parity-even bosonic field as well as parity-odd one. So

to unify these two cases we begin with complex coefficients in supertransformations (3.1).

In the gauge invariant formulation that we use it is easy to see that not only spins but

the depths of the superpartners must be related. Indeed, let us consider partially mass-

less bosonic field f[s]t of spin s and depth t = (s − l), which involves the field variables

fα(k−1)α̇(k−1) with l ≤ k ≤ s, i.e. it has maximal helicity s and minimal one l. Then there

are only four possible superpartners, namely, partially massless fermions with maximal

helicities s ± 1/2 and minimal ones l ± 1/2. Denoting the partially massless fermionic

field of spin s + 1/2 and depth t = (s − l) as Φ[s+ 1
2
]t

, which involves the field variables

Φα(k)α̇(k−1) with l ≤ k ≤ s, four possible superpartners of bosonic field f[s]t can be repre-

sented by diagram

Φ[s+ 1
2
]t+1

Φ[s+ 1
2
]t

f[s]t

Φ[s− 1
2
]t

Φ[s− 1
2
]t−1

(3.2)

4Remind that we use a formalism analogous to the so-called 1 and 1/2 order formalisms, which is

very well known in supergravity. Namely, we do not introduce any supertransformations for the auxiliary

fields, instead all calculations are done using the “zero torsion conditions” (2.8). The main advantage

of the multispinor formalism is that there are only two operations with spinor indices: contraction and

symmetrization. Therefore, the ansatz for supertransformations (3.1) is indeed the most general one.

– 7 –
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One can see from the diagram given above there are just four superblocks that form partially

massless supermultiplets. Note that the ansatz for supertransformations (3.1) is valid for

all types of the superblocks which differ only by the boundary conditions.

Now let us consider a sum of the bosonic (2.9) and fermionic (2.14) variations under

the supertransformations (3.1). Using the torsion zero conditions (2.8), it can be written

in the form δL+ δL′, where

δL =
s∑

k=2

[
− (−1)τ (k − 1)β̄k−1Fα(k−1)βα̇(k−1)eββ̇Ωα(k−2)α̇(k−1)β̇ζα

+(−1)σ4iαk−1Φα(k−2)βγα̇(k−1)e
γ
γ̇Rα(k−2)α̇(k−1)γ̇ζβ

−(−1)τ γ̄k−1(Fα(k−1)βα̇(k−1)eββ̇f
α(k−1)α̇(k−1)ζ β̇

+(k − 1)Fα(k−1)βα̇(k−1)eββ̇f
α(k−1)α̇(k−2)β̇ζα̇)

]
+ h.c., (3.3)

δL′ =

s+1∑
k=2

[
− (−1)τ β̄′k−1Fα(k−2)γα̇(k−2)eγγ̇Ωα(k−2)α̇(k−2)γ̇β̇ζβ̇

−(−1)σi4(k − 1)α′k−1Φα(k−2)βα̇(k−2)e
β
β̇R

α(k−2)α̇(k−2)β̇γ̇ζγ̇

−(−1)τ γ̄′k−1Fα(k−2)γα̇(k−2)eγγ̇fα(k−2)βα̇(k−2)γ̇ζβ
]

+ h.c.

Schematically, the structure of the variations has the form ”curvature × field”. The fact,

that both the Lagrangians and their variations are defined only up to a total derivative,

leads to a number of non-trivial identities on such terms. The general form of these

identities were given in appendix A of [9] and they are applicable to the case at hands, the

only difference being in the explicit expressions for the coefficients ak, bk, ck and dk. Using

these identities one can express the parameters α and γ in terms of β:

αk = (−1)σ+τ i
k

4
β̄k, α′k = −(−1)σ+τ

i

4k
β̄′k−1, (3.4)

γk = 2dk+1β̄k, γ′k = 2dkβ̄
′
k. (3.5)

Also we obtain recurrence relations on the parameters βk and β′k:

2(k + 1)βk−1ck+1 = kβkak+1, β′k−1ak+1 = 2β′kck. (3.6)

Last but not least, we obtain four independent equations which relate β and β′ as well as

the bosonic and fermionic depth parameters:

0 =
β′k−1ck

(k − 1)
−

β′kak+1

2(k + 1)
+ λβk−1 − γk−1, (3.7)

0 = (k − 1)βk−1ck −
(k − 2)

2
βk−2ak + λβ′k−1 − γ′k−1, (3.8)

0 =
(k − 1)

2k
β̄k−1bk − 2kdkγk−1 + λγ̄k−1 −

γ̄′kak+1

2k(k + 1)
, (3.9)

0 =
β̄′k−1bk

2
− 2(k − 1)dk−1γ

′
k−1 − λγ̄′k−1 − γ̄k−1ck. (3.10)

In the next two subsections we find the solutions of these equations for the two possible

partially massless superblocks.
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3.2 Solution for the superblock (s + 1/2, s)

Let us consider a superblock containing a partially massless boson with spin s and depth

t = (s− l− 1) and a partially massless fermion with spin s+ 1/2 and depth t̃ = (s− l̃− 1.

The explicit expressions for the bosonic coefficients have the form:

bk =
2s(s+ 1)l(l + 1)

k(k − 1)(k + 1)
λ2,

ak
2 =

4(s− k + 1)(s+ k)(k − l − 1)(k + l)

(k − 2)(k − 1)
λ2,

while the fermionic ones look like:

dk = ±(s+ 1)(l̃ + 1)

2k(k + 1)
λ,

ck
2 =

(s− k + 1)(s+ k + 1)(k − l̃ − 1)(k + l̃ + 1)

k2
λ2.

Recall that the parameters αk and γk are determined in terms of β by (3.4) and (3.5). Now

let us consider equation (3.9) at k = s. This gives

[l(l + 1)− (l̃ + 1)2]β̄s−1 = ∓(l̃ + 1)βs−1,

where the sign corresponds to that of dk, and provides us with the relation on the bosonic

and fermionic depths:

l̃ = l, β̄s−1 = ±βs−1,
l̃ = l − 1, β̄s−1 = ∓βs−1.

Remind that a real (imaginary) values of βs−1 corresponds to a parity-even (parity-odd)

bosonic field. Now we proceed with the solution of all remaining equations and obtain,

for l̃ = l

βk =

√
(s+ k + 2)(k + l + 2)

k
β, β′k = −

√
k(s− k)(k − l)β, (3.11)

and for l̃ = l − 1

βk =

√
(s+ k + 2)(k − l + 1)

k
β, β′k = −

√
k(s− k)(k + l + 1)β, (3.12)

where β = ρ (β = iρ) takes pure real (imaginary) value. These four solutions correspond

to upper line in diagram (3.2) and schematically can be presented as

[s+ 1
2 ]
τ,±
t

ρ

[s]σ,±t

[s+ 1
2 ]
τ,∓
t+1

ρ

[s]σ,±t

(3.13)

with following clarifying features. ± signs for the bosons correspond to their parity, while

for the fermions to the sign of dk. The σ, τ parameterize norm of kinetic terms in La-

grangian for bosons (2.2) and fermions (2.10) respectively, they are still unfixed at this

stage. The real parameter ρ corresponds to one free parameter in supertransformations.

Each superblock must have its own parameter ρ.
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3.3 Solution for the superblock (s, s − 1/2)

Now let us turn to the second superblock which contain a partially massless boson with

spin s and depth t = (s − l − 1) and a partially massless fermion with spin s − 1/2 and

depth t̃ = (s− l̃− 2). Thus for the bosonic field we still have the same expressions for the

coefficients ak and bk as in the previous subsection, while for the fermion we obtain

dk = ± s(l̃ + 1)

2k(k + 1)
λ,

ck
2 =

(s− k)(s+ k)(k − l̃ − 1)(k + l̃ + 1)

k2
λ2.

First of all, let us consider equation (3.8) at k = s. This gives us:

[l(l + 1)− (l̃ + 1)2]β′s−1 = ±(l̃ + 1)β̄′s−1.

where the sign corresponds to that of dk. Thus in this case we again have four possible

solutions:

l̃ = l, β̄s−1 = ∓βs−1,
l̃ = l − 1, β̄s−1 = ±βs−1.

Then the solution of the remaining equations gives, for l̃ = l

βk =

√
(s− k − 1)(k + l + 2)

k
β, β′k =

√
k(s+ k + 1)(k − l)β, (3.14)

and for l̃ = l − 1

βk =

√
(s− k − 1)(k − l + 1)

k
β, β′k =

√
k(s+ k + 1)(k + l + 1)β, (3.15)

where again β = ρ (β = iρ) takes pure real (imaginary) value. These four solutions

corresponds to lower line in diagram (3.2) and schematically can be presented as

[s]σ,±t

ρ

[s− 1
2 ]
τ,±
t

[s]σ,±t

ρ

[s− 1
2 ]
τ,∓
t−1

(3.16)

Here all additional notations are the same as in previous case (3.13).

4 Partially massless supermultiplets

As we have already mentioned, each partially massless supermultiplet contains two bosonic

and two fermionic fields. As in the massive case, the two bosons must have opposite parities,

and it turns out to be important that the two fermions have opposite signs of their mass
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terms. Moreover, the depths of the partial masslessness for each field must be properly

adjusted. Schematically, the two possible supermultiplets (1.1) look like:

[s+ 1
2 ]τ1,+t

ρ1 ρ3

[s]σ1,+t

ρ2

Y = s [s]σ2,−t−1

[s− 1
2 ]τ2,−t−1

ρ4

[s− 1
2 ]τ1,+t

ρ1 ρ3

[s]σ1,+t

ρ2

Y = s− 1
2 [s− 1]σ2,−t−1

[s− 1
2 ]τ2,−t−1

ρ4

with the same additional notations that was used in the construction of su-

perblocks (3.13), (3.16). Since these supermultiplets are constructed as combination of

superblocks we should take independent parameters σi, τi which normalize kinetic terms

for bosons and fermions respectively and independent ρi which parameterize supertrans-

formations for a given superblock.

Let us use the notations (f+,Ω+) and (f−,Ω−) for the parity-even/parity-odd bosons

and Φ+,Φ− for fermions according to their sign of dk. In these notations the supertrans-

formations for the whole supermultiplets are the combination of four separate superblocks

corresponding to the parameters ρ1,2,3,4 shown above. Namely, we take for the bosons:

δf
α(k−1)α̇(k−1)
+ = αk−1|ρ1Φ

α(k−1)βα̇(k−1)
+ ζβ + α′k−1|ρ1Φ

α(k−1)α̇(k−2)
+ ζα̇

+αk−1|ρ2Φ
α(k−1)βα̇(k−1)
− ζβ + α′k−1|ρ2Φ

α(k−1)α̇(k−2)
− ζα̇ + h.c.

and similarly for δf
α(k−1)α̇(k−1)
− with the replacement ρ1 → ρ3 and ρ2 → ρ4, while for the

fermions we use

δΦ
α(k)α̇(k−1)
+ = βk−1|ρ1Ω

α(k)α̇(k−2)
+ ζα̇ + γk−1|ρ1f

α(k−1)α̇(k−1)
+ ζα

+β′k|ρ1Ω
α(k)βα̇(k−1)
+ ζβ + γ′k|ρ1f

α(k)α̇(k−1)β̇
+ ζβ̇

+βk−1|ρ3Ω
α(k)α̇(k−2)
− ζα̇ + γk−1|ρ3f

α(k−1)α̇(k−1)
− ζα

+β′k|ρ3Ω
α(k)βα̇(k−1)
− ζβ + γ′k|ρ3f

α(k)α̇(k−1)β̇
− ζβ̇

and similarly for δΦ
α(k)α̇(k−1)
− with the replacement ρ1 → ρ2 and ρ3 → ρ4.

So to construct a complete partially massless supermultiplet we have to adjust these

four parameters ρ1,2,3,4 so that the algebra of supertransformations be closed. It means

that the commutator of the two supertransformations must produce a combination of

translations and Lorentz transformations:

{Qα, Qα̇} ∼ Pαα̇, {Qα, Qα} ∼ λMαα, {Qα̇, Qα̇} ∼ λMα̇α̇. (4.1)

The structure of the mass-shell condition (2.8) shows that, for example, the commutator

on the bosonic field f+
α(k−1)α̇(k−1) must only contain Ω+

α(k)α̇(k−2), Ω+
α(k−2)α̇(k), f

α(k)α̇(k)
+ ,
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f+
α(k−1)α̇(k−1) and f+

α(k−2)α̇(k−2). This requirement leads to the number of relations on

the parameters:

αk−1|ρ1β′k|ρ1 + αk−1|ρ2β′k|ρ2 = 0, α′k−1|ρ1βk−2|ρ1 + α′k−1|ρ2βk−2|ρ2 = 0,

αk−1|ρ1β′k|ρ3 + αk−1|ρ2β′k|ρ4 = 0, α′k−1|ρ1βk−2|ρ3 + α′k−1|ρ2βk−2|ρ4 = 0,

αk−1|ρ1βk−1|ρ3 + α′k−1|ρ1β′k−1|ρ3 + αk−1|ρ2βk−1|ρ4 + α′k−1|ρ2β′k−1|ρ4 = 0,

αk−1|ρ1γk−1|ρ3 − ᾱ′k−1|ρ1 γ̄′k−1|ρ3 + αk−1|ρ2γk−1|ρ4 − ᾱ′k−1|ρ2 γ̄′k−1|ρ4 = 0,

αk−1|ρ1γ′k|ρ3 − ᾱk−1|ρ1 γ̄′k|ρ3 + αk−1|ρ2γ′k|ρ4 − ᾱk−1|ρ2 γ̄′k|ρ4 = 0,

α′k−1|ρ1γk−2|ρ3 − ᾱ′k−1|ρ1 γ̄k−2|ρ3 + α′k−1|ρ2γk−2|ρ4 − ᾱ′k−1|ρ2 γ̄k−2|ρ4 = 0.

If these relations are fulfilled, the general form of the commutator looks like:

[δ1, δ2]f
α(k−1)α̇(k−1)
+

= (αk−1|ρ1βk−1|ρ1 + α′k−1|ρ1β′k−1|ρ1 + αk−1|ρ2βk−1|ρ2 + α′k−1|ρ2β′k−1|ρ2)

·[ξαβ̇Ω
α(k−2)α̇(k−1)β̇
+ + ξβ

α̇Ω
α(k−1)βα̇(k−2)
+ ]

+(αk−1|ρ1γ′k|ρ1 + αk−1|ρ2γ′k|ρ2)f
α(k−1)βα̇(k−1)β̇
+ ξββ̇ (4.2)

+(α′k−1|ρ1γk−2|ρ1 + α′k−1|ρ2γk−2|ρ2)f
α(k−2)α̇(k−2)
+ ξαα̇

+(αk−1|ρ1γk−1|ρ1 + α′k−1|ρ1γ′k−1|ρ1 + αk−1|ρ2γk−1|ρ2 + α′k−1|ρ2γ′k−1|ρ2)

·[fα(k−2)βα̇(k−1)+ ηαβ + f
α(k−1)α̇(k−2)β̇
+ ηα̇β̇ ],

where

ξαα̇ = ζα1 ζ
α̇
2 − ζα2 ζα̇1 , ηα(2) = ζα1 ζ

α
2 − ζα2 ζα1 , ηα̇(2) = ζα̇1 ζ

α̇
2 − ζα̇2 ζα̇1 .

For the bosonic field f−
α(k−1)α̇(k−1) the commutator has the same form with the replace-

ments ρ1 → ρ3 and ρ2 → ρ4. Let us stress that all these bosonic components belong to the

same supermultiplet, i.e. to the same irreducible representations. Thus all the expressions

in round brackets in (4.2) must be k-independent. This gives additional restrictions on the

parameters and also serves as quite a non-trivial test for our calculations.

4.1 Supermultiplets with half-integer superspin

The partially massless supermultiplet with the half-integer superspin Y = (s − 1/2) has

the following structure:

[s− 1
2 ]τ1,+t

ρ1 ρ3

[s]σ1,+t

ρ2

Y = s− 1
2 [s− 1]σ2,−t−1

[s− 1
2 ]τ2,−t−1

ρ4
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We have only a handful of free parameters in our disposal and a large number of equations

to fulfill, however, the closure of the superalgebra is achieved at:

σ2 = σ1, τ2 = τ1 + 1, ρ1
2 = ρ2

2 = ρ3
2 = ρ4

2, ρ1ρ3 = ρ2ρ4. (4.3)

Note that such relations between σ, τ parameters mean that two bosons must enter with

opposite norms of kinetic terms and the same is for two fermions.5 This is in agreement

with [1] where the same result was obtained for the case of the supermultiplet with partially

massless spin-2 field.

The final form for the commutators of the supertransformations on parity-even spin-s

f+ and parity-odd spin-(s− 1) f− fields appears to be the same:

1

iρ02
[δ1, δ2]f

α(k−1)α̇(k−1)
± = Ω

α(k−1)βα̇(k−2)
± ξβ

α̇ + Ω
α(k−2)α̇(k−1)β̇
± ξαβ̇

−(k − 1)ak+1

2(k + 1)
f
α(k−1)βα̇(k−1)β̇
± ξββ̇ +

ak
2k(k − 1)

f
α(k−2)α̇(k−2)
± ξαα̇

+λ[f
α(k−2)βα̇(k−1)
± (ζα1 η

α
β + f

α(k−1)α̇(k−2)β̇
± ηα̇β̇ ],

where ak is given by (2.4) for spin s and spin (s− 1) respectively and

ρ0
2 = −(−1)σ1+τ1

s(2l + 1)

2
ρ1

2.

4.2 Supermultiplets with integer superspin

Now let us turn to the partially massless supermultiplet with integer superspin Y = s:

[s+ 1
2 ]τ1,+t

ρ1 ρ3

[s]σ1,+t

ρ2

Y = s [s]σ2,−t−1

[s− 1
2 ]τ2,−t−1

ρ4

All the relations for the closure of the superalgebra are fulfilled provided:

σ2 = σ1 + 1, τ2 = τ1, ρ1
2 = ρ2

2 = ρ3
2 = ρ4

2, ρ1ρ3 = ρ2ρ4. (4.4)

Again we see that such relations between σ, τ parameters mean that two bosons must enter

with opposite norm of kinetic terms and the same is for two fermions.6

5Let us recall that we work in metric signature (+,−,−,−) which give overall (−1)s factor in norm of

kinetic terms for given bosonic field with spin s. So the same factor for bosonic field with spin (s−1) means

opposite norm of kinetic terms (−1)s = −(−1)s−1. This explains unusual relation between σ1, σ2 in (4.3).
6Let us again recall that we work in metric signature (+,−,−,−) which give overall (−1)s factor in

norm of kinetic terms for given fermionic field with spin s + 1/2. So the same factor for fermionic field

with spin s− 1/2 means opposite norm of kinetic terms (−1)s = −(−1)s−1. This explains unusual relation

between τ1, τ2 in (4.4).
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The final form of the commutators of the supertransformations on parity-even and

parity-odd bosonic spin-s fields have the same form as in the previous case:

1

iρ02
[δ1, δ2]f

α(k−1)α̇(k−1)
± = Ω

α(k−1)βα̇(k−2)
± ξβ

α̇ + Ω
α(k−2)α̇(k−1)β̇
± ξαβ̇

−(k − 1)ak+1

2(k + 1)
f
α(k−1)βα̇(k−1)β̇
± ξββ̇ +

ak
2k(k − 1)

f
α(k−2)α̇(k−2)
± ξαα̇

+λ[f
α(k−2)βα̇(k−1)
± ηαβ + f

α(k−1)α̇(k−2)β̇
± ηα̇β̇ ],

where ak is given by (2.4) for spin s and

ρ0
2 = (−1)σ1+τ1

(2s+ 1)(l + 1)

2
ρ1

2.

5 Summary

In this paper we have presented the component Lagrangian description of partially massless

higher spin on-shell arbitrary N = 1 supermultiplets in four-dimensional AdS4 space corre-

sponding the classification given in [1].7 The constructed supermultiplets are non-unitary

and contain partially massless fields with appropriately chosen spins and depths. As in the

massive case [9] we show that N = 1 partially massless supermultiplets can be constructed

as a combination of four partially massless superblocks containing one partially massless

boson and one partially massless fermion. As a result we have derived both the super-

transformations for the components of the supermultiplet and the corresponding invariant

Lagrangian. Also we show that a closure of superalgebra requires that two bosons and two

fermions must enter supermultiplets with opposite norm of kinetic terms. All our results

are in agreement with the results of [1] and extend them. The constructed Lagrangian

formulation describes a dynamics of arbitrary superspin partially massless supermultiplets

in AdS4 space.
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A Notations and conventions

We work in the frame-like multispinor formalism. It means that all objects are differential

p-forms (p = 0, 1, 2, 3, 4 in four dimensions) with multispinors as their local indices, i.e.

Ωα(m)α̇(n) = dxµ1 ∧ . . . ∧ dxµpΩµ1...µp
α(m)α̇(n).

7In higher dimensions there exists much more rich spectrum of the partially massless fields including

mixed symmetry ones. So, in principle, there may exists a whole zoo of the corresponding supermultiplets.

However, as far as we know, such supersymmetric representations are not studied at present.
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Here dxµ are required to anti-commute dxµ ∧ dxν = −dxν ∧ dxµ with respect to exterior

product ∧. World indices µ, ν are omitted everywhere; all expressions are completely

antisymmetric on them. We use the condensed notations for local multispinor indices

α, α̇. Namely, all objects are totally symmetric on upper/low undotted/dotted indices

α1α2 · · ·αk, we denote them by the same letter with the number of indices in parentheses.

For example:

Ω(α1α2...αm)(α̇1α̇2...α̇n) = Ωα(m)α̇(n).

We also always assume if in expression spinor indices denoted by the same letters and

placed on the same level are symmetrized, e.g.

Ωα(m)ζα = Ω(α1...αmζα̇m+1) = Ωα1...αmζα̇m+1 + permutations (m terms).

The spinor indices are raised and lowered with the antisymmetric tensors εαβ (εα̇β̇):

εαβξ
β = −ξα, εαβξβ = ξα, (A.1)

the same is true for dotted indices. Hence, all the symmetric multispinors are automatically

traceless. Under the Hermitian conjugation, dotted and undotted indices are transformed

one into another. For example: (
Ωα(m)α̇(n)

)†
= Ωα(n)α̇(m).

The AdS4 space is described by the background Lorentz connections ωα(2), ωα̇(2), which

enter implicitly through the Lorentz covariant derivative D, and the background frame eαα̇.

We also use the basis elements for the two-, thee- and four-forms

ea ∼ eαα̇, Eab ∼ Eα(2), Eα̇(2), Eabc ∼ Eαα̇, Eabcd ∼ E, (A.2)

defined as follows:

eαα̇ ∧ eββ̇ = εαβEα̇β̇ + εα̇β̇Eαβ ,

Eα(2) ∧ eβα̇ = εαβEαα̇, (A.3)

Eαα̇ ∧ eββ̇ = εαβεα̇β̇E.

The hermitian conjugation rules for the basis forms are:(
eαα̇
)†

= eαα̇,
(
Eα(2)

)†
= Eα̇(2),

(
Eαα̇

)†
= −Eαα̇, (E)† = −E. (A.4)

The Lorentz covariant derivative is normalized so that

D ∧DΩα(m)α̇(n) = −2λ2(Eαβ ∧ Ωα(m−1)βα̇(n) + Eα̇β̇ ∧ Ωα(m)α̇(n−1)β̇). (A.5)

The parameter λ2 is proportional to the curvature of the space-time. The AdS space has

λ2 > 0, while the dS space has λ2 < 0. The case of λ2 = 0 corresponds to the flat

Minkowski space.

In the main text all the wedge product signs ∧ are omitted.
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