
J
H
E
P
0
8
(
2
0
1
9
)
1
1
5

Published for SISSA by Springer

Received: July 2, 2019

Accepted: August 10, 2019

Published: August 21, 2019

Non-Abelian T-duality as a transformation in Double

Field Theory

Aybike Çatal-Özer
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1 Introduction

Non-Abelian T-duality (NATD) is a generalization of T-duality for strings on backgrounds

with non-Abelian isometries [1]–[5]. Although it is not as well established as T-duality

is as a string duality symmetry, it works well as a solution generating transformation for

supergravity. The rules for the transformation of the fields in the NS-NS sector, namely the

metric, the B-field and the dilaton field has been known for a long time. Recently, NATD

has gained a new interest, as the rules for the transformation of the fields in the RR sector

of Type II strings has also been found [6]. This has been applied to many supergravity

backgrounds by various groups, especially to backgrounds that are relevant for AdS-CFT

correspondence, see for example [7]–[16].
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Recently, a compact formula for the transformation of the supergravity fields for a

generic Green-Schwarz string with isometry G has been obtained in [17], where they also

showed that the sigma model after NATD has kappa symmetry. This means that the

resulting background is a solution of the generalized supergravity equations (GSE), which

have recently been introduced in [18] as a generalization of supergravity equations, see

also [19]. To be more precise, when the isometry group G is unimodular, the dualized

sigma model is Weyl invariant and the target space is a solution of standard Type II

supergravity equations. If G is non-unimodular so that the structure constants of the

Lie algebra of G is not traceless, the trace components give rise to a deformation of the

equations to be satisfied by the target space fields to GSE.1

The purpose of this paper is to describe the NATD transformation rules obtained

in [17] as a coordinate dependent O(10, 10) transformation.2 In Abelian T-duality with d

commuting isometries, the transformation rules for the supergravity fields in the NS-NS

sector can be neatly described through the action of a constant O(d, d) matrix embedded

in O(10, 10) [23]. The RR fields are then packaged in a differential form, which can be a

regarded as a spinor field that transforms under Spin(d, d). If the fields in the NS-NS sector

transform under T ∈ O(d, d), then the spinor field that encodes the RR fields transform

under ST ∈ Spin(d, d), which is the element that projects onto T under the double covering

homomorphism ρ between O(d, d) and Spin(d, d), that is, ρ(S) = T [24]. In a similar

fashion, we show in this paper that the NATD transformation of the supergravity fields in

the NS-NS sector can be described through the action of an O(10, 10) matrix (presented

in (3.20)), this time not constant but with an explicit dependence on the coordinates of the

dual theory. The dependence on the coordinates is determined by the structure constants

of the Lie algebra associated with the isometry group. The transformation of the RR fields

is then automatically determined by the corresponding Spin(d, d) matrix, as in Abelian

T-duality. We would like to note that we had already presented the NATD matrix we give

in this paper at a workshop at APCTP, Pohang [27]. Very recently, a paper has appeared

which also views NATD as an O(d, d) transformation [25]. See also [26], which has a similar

approach to NATD.

Besides making calculations significantly easier, our approach makes it possible to

view NATD as a solution generating transformation in Double Field Theory (DFT), a

framework which provides an O(d, d) covariant formulation for effective string actions [28]–

[38] by introducing dual, winding type coordinates. In its current formulation, DFT is

a consistent field theory only when a certain constraint, called the strong constraint is

satisfied. If the DFT fields have no dependence on the winding type coordinates, the strong

constraint is satisfied trivially and the fields are said to be in the supergravity frame. In

such a case, DFT of Type II strings constructed in [34, 38] reduces to Type II supergravity

1The fact that the NATD background fails to satisfy standard supergravity equations when G is non-

unimodular was first noted in [20] and the generalized equations appeared first in [21]. For a detailed

account, see [22].
2The O(10, 10) matrix associated with the NATD transformation is obtained by embedding an O(d, d)

matrix in O(10, 10), where d is the dimension of the isometry group. Hence, the only non-trivial action is on

the isometry directions. For this reason, we will sometimes refer to this action as an O(d, d) transformation.
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in the democratic formulation. When the duality group is unimodular, the NATD fields

always belong to the supergravity frame, and hence our method provides a simple proof of

the fact that the transformed fields solve supergravity equations, when the isometry algebra

is unimodular. If the isometry algebra is non-unimodular, we show that the generalized

dilaton field of DFT is forced to have a linear dependence on the winding type coordinates.

In such a coordinate frame, DFT equations are known to reduce to generalized supergravity

equations [39, 40]. This then implies that the resulting NATD fields should solve GSE,

consistent with what has been found in the literature so far. Let us make a remark at this

point. The NATD rules for the NS-NS sector and the fact that it is a solution generating

transformation for supergravity has been known since early 90’s, as has been mentioned

before. These rules were obtained directly from the sigma model by applying the Buscher

procedure. On the other hand, the rules for the fields in the RR sector has been figured

out only recently in [6], by “guessing” them from how the Buscher rules extend to the

RR sector in Abelian T-duality (and initially only for the Principal Chiral Model). This

approach does not provide a proof of why the transformed fields should constitute a proper

supergravity background, so it had to be checked example by example that the NATD

fields indeed solved (generalized) supergravity equations. Embedding NATD in DFT as we

do here provides a proof that this should always be the case. Our approach in this paper

is quite different from that of [17], where they also prove that the dualized fields satisfy

the GSE by checking the kappa symmetry of the transformed Green-Schwarz sigma model.

Here, we consider the transformation of the fields within DFT and directly check that the

dual fields satisfy the field equations of DFT in an appropriate frame, where they reduce

to (generalized) supergravity equations. NATD has been studied in the context of DFT

also in the papers [41, 42]. There is a generalized notion of T-duality, called the Poisson

Lie T-Duality [43, 44], which does not require the symmetry group G to act by isometries.

It includes Abelian T-duality and NATD as special cases. Poisson Lie T-duality has been

studied in the context of DFT in [45]3 and very recently in [25].

As the O(10, 10) matrix that produces the NATD fields is not constant, it is not

immediately clear that it generates a solution generating transformation for DFT. To

show that this is indeed the case, we find it useful to utilize the framework of Gauged

Double Field Theory (GDFT), which is obtained by a duality twisted (Scherk-Schwarz)

reduction [49, 50] of DFT [51]–[54]. GDFT is a deformation of DFT, determined by the

fluxes associated with the twist matrix that define the duality twisted reduction anzats.

Our strategy is as follows: we start with a solution of Type II supergravity. Since Type

II supergravity can be embedded in DFT, one can construct corresponding DFT fields

which constitute a solution for DFT in the supergravity frame. If the space-time metric

has an isometry symmetry G, which is also respected by the B-field and the RR fluxes

(not necessarily the gauge potentials), we can extract DFT fields out of the original ones,

which satisfy the field equations of GDFT determined by the geometric flux associated

with the isometry group G. We call these fields untwisted DFT fields. The DFT fields

3To be more precise, [45] studies Poisson Lie T-duality in the framework of DFT on group manifolds

(usually called DFTWZW), which is a different theory from the standard DFT. DFT on group manifolds

was constructed in the papers [46–48].
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corresponding to the NATD background are obtained by acting on these untwisted fields

with the O(10, 10) NATD matrix we present here. We will show that these dual fields also

satisfy the field equations of DFT by using the following three key facts, which we will

prove in the body of the paper: i) Field equations of GDFT are O(d, d) (or Spin(d, d))

covariant, provided we also allow fluxes transform as generalized tensors. ii) By using fact

(i) above, we show that a set of duality twisted DFT fields, which we generically write as

φ(x, Y ) = U(Y ).φ(x),4 satisfy the field equations of DFT if and only if the untwisted fields

φ(x) satisfy the field equations of GDFT determined by the fluxes associated by the twist

matrix U . This immediately implies the following: a set of fields φ̃(x, Z) = Ũ(Z).φ(x),

where the twist matrix Ũ(Z) produces the same fluxes as U(Y ), will satisfy the field

equations of DFT if and only if the fields φ(x, Y ) = U(Y ).φ(x) satisfy the field equations

DFT. iii) The fluxes associated with the isometry group G and the NATD matrix T are

exactly the same. Facts ii) and iii) together prove that the NATD fields indeed form a

solution of DFT, as claimed.

The structure of the paper is as follows: in the next section, we give a brief review of

the O(d, d) structure of Abelian T-duality, first in the NS-NS sector and then in RR sector

in subsection 2.2. This enables us to identify the coordinate dependent O(d, d) matrix

that generates the NATD background in section 3. Also in this section (in subsection 3.1),

we demonstrate how the NATD of the background AdS3 × S3 × T 4 studied in [6] can be

obtained by the action of the NATD matrix we have identified. Then in section 4, we

study the embedding of NATD in DFT. The three key facts that we listed in the previous

paragraph are proved in this section. The distinction between the unimodular and non-

unimodular cases is also discussed here. We finish the paper with discussions and outlook

in section 5.

Note added. While we were about to finalize the writing of this manuscript, the pa-

per [25] appeared on the arXiv, parts of which overlap with the work we present here.

2 The action of O(d, d) on curved string backgrounds

In this section, we review how Abelian T-duality can be described as an O(d, d) transfor-

mation, first for the NS-NS sector and then for the RR sector. For the RR sector, the

duality group should be lifted to Spin(d, d). We closely follow [23] in section 2.1 and [24]

in section 2.2.

2.1 Transformation of the fields in the NS-NS sector

Let g and B be the metric and the Kalb-Ramond 2-form field that describes a D dimen-

sional supergravity background, with d commuting isometries. The string living on this

background exhibits an O(d, d, Z) T-duality symmetry. Accordingly, there is an O(d, d,R)

action, which acts as a solution generating symmetry in the low energy limit. Let us define

4Here, the action of U(Y ) ∈ O(d, d) is determined by how φ transforms under O(d, d) or more generally

under Spin(d, d) if φ is a spinor field in DFT.
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the D ×D background matrix

Q(G,B) = G+B. (2.1)

Due to the presence of d commuting isometries, it is possible to choose adopted coordinates

X = (xI , xm), I = 1, · · · , d such that the background matrix does not depend on the d

coordinates xI . Let us decompose the background matrix with respect to this choice of

coordinates as

Q =

(
QIJ QIm
QmI Qmn

)
=

(
E F 2

F 1 F

)
. (2.2)

Let T be a matrix in O(d, d,R). Then

T =

(
a b

c d

)
, atc+ cta = 0, btd+ dtb = 0, atd+ ctb = I. (2.3)

This can be embedded in O(D,D,R) as follows

T̂ =

(
â b̂

ĉ d̂

)
, (2.4)

where â, b̂, ĉ, d̂ are D ×D matrices defined below:

â =

(
a 0

0 I

)
, b̂ =

(
b 0

0 0

)
, ĉ =

(
c 0

0 0

)
, d̂ =

(
d 0

0 I

)
. (2.5)

Let

Q′(G′, B′) = T̂ . Q(G,B) ≡ (âQ+ b̂)(ĉQ+ d̂)−1 (2.6)

be the new background matrix obtained by the above action of O(D,D,R) on Q. Then,

it is well known that the transformed metric and the transformed B-field obtained from

G′ =
Q′ +Q′t

2
, B′ =

Q′ −Q′t

2
(2.7)

define (along with the transformed dilaton field we will discuss below, see (2.10)) valid

supergravity backgrounds. That is, the O(D,D,R) transformation defined above acts as a

solution generating transformation.

For completeness, let us write the final form of the transformed background matrix Q′:

Q′ =

(
E′ (a− E′c)F 2

F 1(cE + d)−1 F − F 1(cE + d)−1cF 2

)
, (2.8)

where

E′ = T.E = (aE + b)(cE + d)−1. (2.9)

For the resulting background to be a valid supergravity solution, the dilaton field φ

should also transform under O(D,D,R) in the following way:

e−2φ′ = e−2φ

√
detG

detG′
(2.10)
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For later reference, we define the following field d, which is invariant under O(D,D) trans-

formations:

d = φ− 1

4
ln detG. (2.11)

Note that this gives

e−2d =
√

detG e−2φ. (2.12)

It is easily checked from (2.10) that e−2d′ = e−2d under O(D,D). The field d will play an

important role in DFT as the generalized dilaton field, as we will discuss in section 4.1.

2.2 Transformation of the fields in the RR sector

Let us now discuss how the p-form fields in the RR sector of Type II supergravity theory

transform under the action of O(d, d,R) described in the section above. For this discussion

we closely follow [24], see also [55].

In the democratic formulation of Type II supergravity [56], the 0,2 and 4-form fields in

Type IIB and 1 and 3 form fields in Type IIA are combined with their Hodge duals to form

sections of the exterior bundle
∧even T ∗M for the first case and of

∧odd T ∗M for the latter,

where M is the space-time manifold. It is well known that these bundles carry the chiral

spinor representations of Pin(d, d), which is the double covering group of O(d, d). The

transformation of the RR fields under T-duality is determined by this action of Pin(d, d)

on the RR fields, viewed as a section of the exterior bundle. More precisely, if the T-duality

transformation in the NS-NS sector is realized by the O(d, d) matrix T , then the Pin(d, d)

element acting on the spinor field that packages the modified RR gauge potentials is S,

where ρ(S) = T .5 Here, ρ is the double covering map

ρ : Pin(d, d)→ O(d, d). (2.13)

Then, if χ is the spinor field that packages the modified RR fields we have

χ→ χ′ = S χ (2.14)

Let us now discuss the transformation of the field strength /∂χ under Pin(d, d). This is

important since RR fluxes are defined as

F = e−B/∂χ. (2.15)

As was discussed in [24], the transformation (2.14) does not imply /∂χ → S/∂χ. However,

when one doubles the space-time coordinates as in Double Field Theory (DFT), which we

will discuss in more detail in section 4.1, /∂χ also transforms as a vector under Pin(d, d) as

/∂χ→ S/∂χ. In DFT, the usual space-time coordinates are doubled by introducing winding

type coordinates, which combine with the space-time coordinates to form an O(d, d) vector

XM = (x̃µ, x
µ) that transforms as XM → X ′M = TMNX

N (see section 4.1). This implies

5See the papers [38] and [54] for an overview of O(d, d) and its double covering group Pin(d, d). The

method to find the Pin(d, d) matrix corresponding to a given O(d, d) matrix is also explained in these papers.
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∂M → ∂′M = (T−1) N
M ∂N . Now, using S−1ΓMS = TMPΓP , which follows directly from

ρ(S) = T , one can show

/∂χ = ΓM∂Mχ→ /∂
′
χ′ = ΓM (T−1)NM∂N (Sχ)

= SS−1ΓMS(T−1)NM∂Nχ = S /∂χ. (2.16)

The transformation of /∂χ implies that

F = e−B /∂χ→ F ′ = e−B
′
/∂
′
χ′ = e−B

′
S/∂χ = e−B

′
SeBF. (2.17)

3 NATD as an O(d, d) transformation

Non-Abelian T-duality can be applied by using the standard tools of the Buscher method.

For a generic nonlinear sigma model with isometry group G, one starts with gauging the

symmetry group (or a subgroup of it) and introduces Lagrange multiplier terms which

constrains the gauge field to be pure gauge. Integrating out the Lagrange multipliers, one

obtains the original model. Integrating out the gauge field gives the NATD model, for

which the Lagrange multiplier terms play the role of coordinates on the dual manifold.

The NATD of a generic Green-Schwarz string sigma model with isometry group G

has been recently obtained in [17]. Here we present their results (for bosonic G) and show

that the new backgrounds can also be obtained by applying a coordinate dependent O(d, d)

transformation embedded in O(10, 10). The best way to present the rules for transformation

is to introduce coordinates which makes the isometry symmetry manifest. With respect to

such coordinates one can write

ds2 = Gµνdx
µdxν = Gmndx

mdxn + 2Gmidx
mdθi +Gijdθ

idθj (3.1)

= Gmndx
mdxn + 2GmIdx

mσI +GIJσ
IσJ (3.2)

= Gαβσ
ασβ , (3.3)

where θi, i = 1, · · · , d are coordinates for G and σa = δamdx
m and σI , I = 1, · · · , dimG

are the left invariant 1-forms σI = lIidθ
i on G defined from the Maurer-Cartan form:

g−1dg = σITI with TI forming a basis for the Lie algebra G of G. Similarly,

B =
1

2
Bµνdx

µ ∧ dxν (3.4)

=
1

2
Bmndx

m ∧ dxn +BmIdx
m ∧ σI +

1

2
BIJσ

I ∧ σJ . (3.5)

Since the group G acts on the background by isometries, all the θ dependence of the fields

are encoded in lIi. After applying NATD with respect to G, one ends up with a sigma

– 7 –
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model which corresponds to the following background6

G′mn = Gmn − [(G+B)N(G+B)](mn) (3.6)

G′mI =
1

2
[(G+B)N ]mI −

1

2
[N(G+B)]Im (3.7)

G′IJ = N(IJ) (3.8)

B′mn = Bmn − [(G+B)N(G+B)][mn] (3.9)

B′mI = −1

2
[(G+B)N ]mI −

1

2
[N(G+B)]Im (3.10)

B′IJ = −N[IJ ], (3.11)

where

N IJ = (GIJ +BIJ + νKC
K

IJ )−1. (3.12)

Here, C K
IJ are the structure constants of the Lie algebra G with respect to the basis TI ,

that is, [TI , TJ ] = C K
IJ TK . The metric and the B-field in the transformed background are

ds2 = G′mndx
mdxn + 2G′mIdx

mdνI +G′IJdν
IdνJ (3.13)

B′ =
1

2
B′mndx

m ∧ dxn +B′mIdx
m ∧ dνI +

1

2
B′IJdν

I ∧ dνJ . (3.14)

Here, νI are Lagrange multiplier terms in the Buscher method. They parameterize the

dual space and hence they have lower indices as in (3.12). Those indices are raised by

the Kronecker delta νI = δIJνJ in (3.13), (3.14) so that they have the standard upper

placement of indices as coordinates of the NATD fields. This has also been discussed

in [17], see their footnote 7.

The transformation for the dilaton field presented in [17] is

φ′ = φ+
1

2
ln detN. (3.15)

Now, let us write the above transformation rules in the terminology of the previous

section. We define the background matrix Q = G+B and Q′ = G′ +B′. Then the above

rules become

Q′mn = Qmn − [(QmIN
IJQJn] (3.16)

Q′mI = [QN ]mI (3.17)

Q′Im = −[NQ]Im (3.18)

Q′IJ = NIJ (3.19)

Comparing this with (2.8) and (2.9) one immediately sees that the new background

has been obtained by the action of the fractional linear transformation with the following

O(d, d) matrix TNATD embedded in O(10, 10),7 in the way presented in the section above:

TNATD =

(
0 1

1 θIJ

)
, θIJ = νKC

K
IJ . (3.20)

6Note that due to the convention in [17] there is a difference in the sign in front of the B field term.
7We name both matrices (the O(d, d) matrix (3.20) and the O(10, 10) matrix in which it is embedded)

as TNATD.
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Let us also check that the transformation rule (3.15) for the dilaton field can be obtained

through the action of TNATD by comparing it with (2.10). It is a well known fact that the

transformation (2.6) implies for G′ the following [23]:

G′ =
1

(ĉQ+ d̂)T
G

1

(ĉQ+ d̂)
. (3.21)

Then,
detG′

detG
=
(

det(ĉQ+ d̂)−1
)2
. (3.22)

When T is as in (3.20) this gives √
detG′

detG
= detN, (3.23)

and the two expressions (2.10) and (3.15) indeed match.

It is important to note that the dimension d of the isometry group determines whether

the NATD matrix TNATD acts within Type IIA/Type IIB or it involves a reflection which

implies that a Type IIA solution is mapped to a Type IIB solution or vice versa. The

former situation arises when d is even and the latter occurs when d is odd.

Since we have identified the O(10, 10) matrix that generates the NS-NS sector of the

NATD background, we can immediately determine the transformed RR sector, as well. All

we have to do is to find the Pin(10, 10) matrix that acts on the spinor field that pack-

ages the modified p-form gauge potentials in the democratic formulation. The Pin(10, 10)

element SNATD that projects to the O(10, 10) element (3.20) under the double covering

homomorphism ρ : Pin(d, d)→ O(d, d) can be found easily:

SNATD = CSθ = SβC, (3.24)

where C is the charge conjugation matrix. For more details, see [38] and [54]. The factors Sθ
and Sβ in SNATD are the Spin+(10, 10) elements that projects onto the SO+(10, 10) matrix

that generates the B-transformations and β-shifts with θIJ = νKC
K

IJ and βIJ = νKC
K

IJ ,

respectively. Then the transformation of the p-form fluxes is

F ′ = e−B
′
SNATDe

BF. (3.25)

An important remark is in order here. Recall from the discussion in section 2.2 that

the transformation (2.17) is equivalent to the transformation (2.16). Also recall that the

transformation (2.16) equivalent to the transformation (2.14), when S is constant. However,

when S is not constant as in here, the two transformations (2.16) and (2.14) are not

equivalent. Naively, one would have expected that the right transformation rule for the

RR fields under NATD would follow from the transformation

χ→ SNATDχ, (3.26)

which would imply a different transformation rule for the field strength F that would also

involve fluxes associated with SNATD (see section 4.3.2). However, the right transformation

rule is as in (3.25), as we will demonstrate in the next section through the example of the

AdS3 × S3 × T 4. Then in section 4.4.2, we will prove that the transformed fields will

constitute a solution of the GSE when the transformation for the RR fields is as in (3.25).

– 9 –
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3.1 An example: AdS3 × S3 × T 4

Let us consider the simple example AdS3×S3×T 4. This geometry arises as the near horizon

limit of the D1-D5 system. The geometry has to be supported by 3-form Ramond-Ramond

flux. We have

ds2 = ds2(AdS3) + ds2(S3) + ds3(T 4) (3.27)

F3 = Vol(S3) + Vol(AdS3) (3.28)

Note that we also need the Hodge dual of the 3-form flux which is the following 7-form flux:

F7 = −(?F3) = (Vol(S3) + Vol(AdS3)) ∧Vol(T 4). (3.29)

Due to the presences of the 3-sphere in the geometry, one has a global SO(4) '
SU(2) × SU(2) isometry symmetry. It is possible to use one of these SU(2) groups to

apply NATD. Writing the S3 part of the metric as

ds2(S3) = (σ1)2 + (σ2)2 + (σ2)2, (3.30)

where σI , I = 1, 2, 3 are the 3 left invariant 1-forms for SU(2), we have

QmI = QIm = 0 (3.31)

and

QIJ = EIJ = GIJ = δIJ . (3.32)

Now we apply the NATD matrix (3.20) on this background. Here, the structure constants

that determine the NATD matrix are C K
IJ = ε K

IJ . This gives

ds2(S3
def) =

1

1 + r2

3∑
I,J=1

(
(1 + νI)2(dνI)2 + 2νIνJdνIdνJ

)
(3.33)

B′ =
1

1 + r2

(
−ν3dν1 ∧ dν2 + ν2dν1 ∧ dν3 − ν1dν2 ∧ dν3

)
, (3.34)

where r2 = (ν1)2 + (ν2)2 + (ν3)2. Writing this in spherical coordinates

ν1 = r sin θ cosφ ν2 = r sin θ sinφ ν3 = r cos θ (3.35)

we have

ds2 = ds2(AdS3) + ds2(S̃3) + ds3(T 4)

ds2(S̃3) = dr2 +
r2

1 + r2
dΩ2 = dr2 +

r2

1 + r2

(
dθ2 + sin2 θdφ2

)
(3.36)

B′ = − r3

1 + r2
Vol(S2) = − r3

1 + r2
sin θdθ ∧ dφ

Φ′ = −1

2
ln (1 + r2) (3.37)
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Now, let us look at the transformation of the RR sector. Similar to the Abelian case

we form the differential form, which encodes the RR fluxes

F =
∑
p

G(p) =
∑
p

(
F (p) + F

(p−1)
I σI +

1

2
F

(p−2)
IJ σI ∧ σJ + F (p−3)σ1 ∧ σ2 ∧ σ3

)
(3.38)

where we have decomposed a p-form RR flux G(p) according to how many legs it does

have along the directions of the isometry group SU(2). The fluxes F (p−a), a = 0, 1, 2, 3

have no dependence on the coordinates r, θ, φ. We map this differential form to a Clifford

algebra element in the usual way. The difference we have here is that it is σI and not

dxi that we identify with the Clifford algebra element ψI , for I = 1, 2, 3. On the other

hand, for a = d + 1, · · · , 10, dxa is replaced with ψa, as usual. Here, ψα, α = (I, a) are

the Clifford algebra elements ψα = 1/
√

2Γα, where Γα are the Gamma matrices. For more

details, see [54]. For index conventions, see appendix A. For the example we consider in

this section we only have 3- and 7-form fluxes, so the spinor field takes the following form:

F = ψ1.ψ2.ψ3 + F (3)ψ1̂.ψ2̂.ψ3̂ (3.39)

+ F (3)F (4)ψ1̂.ψ2̂.ψ3̂ψ4̂.ψ5̂.ψ6̂ψ7̂ + F (4)ψ1.ψ2.ψ3ψ4̂.ψ5̂.ψ6̂ψ7̂. (3.40)

Here, Vol(AdS3) = F (3)dx1̂∧dx2̂∧dx3̂ and Vol(T 4) = F (4)dx4̂∧dx5̂∧dx6̂∧dx7̂. Here, the

hatted numbers count the non-isometric directions. Note that F (3) and F (4) are functions,

not forms. Now we calculate F ′ from (3.25). First note that eBF = F , since the B-field

is zero on the original background. Let us first calculate SθF = (1 + νKε
K

IJ ψI .ψJ).F . As

one can easily calculate, this gives

Sθ.F = F + νKε
K

IJ ψI .ψJ .F

= F + F (3)νKε
K

IJ ψI .ψJ .ψ1̂.ψ2̂.ψ3̂(1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂). (3.41)

Now we apply the charge conjugation operator [38]

C ≡ (ψ1 − ψ1).(ψ2 − ψ2).(ψ3 − ψ3) (3.42)

on (3.41):

CSθ.F = C.F − F (3)νKψ
Kψ1̂.ψ2̂.ψ3̂(1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂)

= 1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂ + F (3)ψ1.ψ2.ψ3.ψ1̂.ψ2̂.ψ3̂(1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂)

− F (3)νKψ
Kψ1̂.ψ2̂.ψ3̂(1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂). (3.43)

Finally, we apply e−B
′

= 1 + 1
1+r2

νKε
K

IJ ψI .ψJ on (3.43), where we read off B′

from (3.34):

F ′ = e−B
′
CSθF = 1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂

+

(
1− r2

1 + r2

)
F (3)ψ1.ψ2.ψ3.ψ1̂.ψ2̂.ψ3̂(1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂)

− νKψKF (3)ψ1̂.ψ2̂.ψ3̂(1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂)

+
1

1 + r2
νKε

K
IJ ψI .ψJ .(1 + F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂). (3.44)
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From F ′ we can read off the p-form fluxes of the dual background after now identifying ψI

with dνI . Since it is only the S3 directions that have been dualized, we still have

F (4)ψ4̂.ψ5̂.ψ6̂ψ7̂ ↔ Vol(T 4) and F (3)ψ1̂.ψ2̂.ψ3̂ ↔ Vol(AdS3),

The fluxes in the NATD background are then found as

F0 = 1

F2 =
1

1+r2
(ν1dν2∧dν3+ν2dν3∧dν1+ν3dν1∧dν2) =

r3

1+r2
Vol(S2)

F4 = Vol(T 4)−
3∑
I=1

νIdνIVol(AdS3) = Vol(T 4)−rdrVol(AdS3)

F6 =
1

1+r2

[
dν1∧dν2∧dν3∧Vol(AdS3)+(ν1dν2∧dν3+ν2dν3∧dν1+ν3dν1∧dν2)Vol(T 4)

]
=

r2

1+r2
dr∧Vol(S2)∧Vol(AdS3)+

r3

1+r2
Vol(S2)∧Vol(T 4)

= Vol(S̃3)∧Vol(AdS3)+
r3

1+r2
Vol(S2)∧Vol(T 4)

F8 =−
3∑
I=1

νIdνI∧Vol(AdS3)∧Vol(T 4) =−rdr∧Vol(AdS3)∧Vol(T 4)

F10 = Vol(S̃3)∧Vol(AdS3)∧Vol(T 4) = ?1.

Here,

Vol(S̃3) =
r2 sin θ

1 + r2
dr ∧ dθ ∧ dφ =

1

1 + r2
Vol(S3) =

r2

1 + r2
drVol(S2),

and ? is the Hodge dual with respect to the metric of the deformed background given

in (3.36). These results match exactly with the results obtained in [6] by conventional

methods of NATD.

4 NATD as a solution generating transformation in Double Field Theory

The purpose of this section is to show that the NATD fields obtained by applying the

transformation (2.6) and (3.25), where T in (2.4) is the NATD matrix (3.20) are solutions

of (generalized) supergravity equations. We find it useful to discuss this in the framework

of Double Field Theory (DFT), where O(d, d) arises as a manifest symmetry of the action

and hence of the field equations. Therefore, we start with a brief review of DFT.

4.1 A brief review of Double Field Theory

DFT is a field theory defined on a doubled space, which implements the O(d, d) T-duality

symmetry of string theory as a manifest symmetry. In addition to the standard space-

time coordinates, the doubled space also includes dual coordinates, which are associated

with the winding excitations of closed string theory on backgrounds with non-trivial cycles.
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The space-time and the dual coordinates transform as a vector under the T-duality group

O(d, d):

X ′M = hMNX
N , XM =

(
x̃µ
xµ

)
(4.1)

Here x̃µ are the dual coordinates and hMN is a general O(d, d) matrix. In what follows we

will always decompose the indices M labelling the O(d, d) representation as M = (µ,
µ),

where µ and µ label representations of the GL(d) subgroup of O(d, d). We will raise and

lower indices by the O(d, d) invariant metric η, so that XM = ηMNX
N .

In DFT, the dynamical fields are the fields H, S, d and χ. They are all allowed to

depend on both the standard and the winding type coordinates. The generalized metric

H is an element of SO−(d, d) and it encodes the semi-Riemannian metric and the B-field,

see (4.17). The generalized dilaton field d is defined from e−2d =
√
ge−2φ and it is O(d, d)

invariant as was discussed in section 2.1, see (2.12). The spinor field S is the element in

Spin−(d, d) that projects onto H under the double covering homomorphism (2.13) between

Spin(d, d) and SO(d, d), that is ρ(S) = H. The spinor field χ encodes the RR fields in the

democratic formulation of Type II supergravity. For more details see [38, 54].

The DFT action is as below:

S =

∫
dxdx̃ (LNS−NS + LRR) , (4.2)

where

LNS−NS = e−2d R(H, d) (4.3)

and

LRR =
1

4
〈 /∂χ, C−1S /∂χ〉. (4.4)

Here, 〈 〉 is the Mukai pairing, which is a Spin(d, d) invariant bilinear form on the space of

spinors [57]. This action has to be implemented by the following self-duality condition

/∂χ = −K /∂χ, K ≡ C−1S. (4.5)

Moreover, one needs to impose the following O(d, d) covariant constraint, which is called

the strong constraint:

∂M∂MA = ηMN∂M∂NA = 0 , ∂MA∂MB = 0 , ηMN =

(
0 1

1 0

)
, (4.6)

where A and B represent any fields or parameters of the theory. When the constraint is

satisfied, the DFT action is gauge invariant under generalized diffeomorphisms and the

gauge algebra closes under the C-bracket, which is an O(d, d) covariant extension of the

Courant bracket. When the fields and the gauge parameters have no dependence on the

winding type coordinates, that is, when ∂̃µ = 0, the strong constraint (4.6) is satisfied

trivially. In this case, the theory is said to be in the supergravity frame because for this

solution of the constraint it can be shown that (4.3) reduces to the standard NS-NS action
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for the massless fields of string theory and (4.4) reduces to the RR sector of the democratic

formulation of Type II supergravity theory.

The term R(H, d) in (4.3) is the generalized Ricci scalar and its explicit form is as

follows:

R(H, d) = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd (4.7)

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

The DFT action presented in (4.4) is invariant under the following transformations:

S(X) −→ S′(X ′) = (S−1)† S(X)S−1 , χ(X) −→ χ(X ′) = Sχ(X) (4.8)

Here S ∈ Spin(d, d) and X ′ = hX, where h = ρ(S) ∈ SO+(d, d). As mentioned before, the

generalized dilaton field is O(d, d) invariant. The transformation rules for the generalized

metric H = ρ(S) is determined by those of S and is as given below:

H(X) −→ H′(X ′) = (h−1)T H(X)h−1 . (4.9)

The generalized Ricci scalar (4.7) is manifestly invariant under these transformations. A

fact that is of crucial importance is that the transformation (4.9) is equivalent to [35]

Q→ Q′ = (AQ+B)(CQ+D)−1, (4.10)

where

h =

(
A B

C D

)
.

4.2 Embedding NATD in Double Field Theory

We showed in the previous section that the NATD of a given Type II background with

isometry G can be obtained through the action of the O(d, d) matrix (3.20). As we have

mentioned before, the field equations of DFT reduce to the field equations of Type II

supergravity for the trivial solution of the constraint, that is when the fields are in the

supergravity frame. As a result, the type II supergravity solution on which the NATD

acts can also be regarded as a solution for DFT. Now, assume that the isometry group

G is unimodular8 and that it acts freely on the background. The latter condition means

that one can pick up coordinates in which the metric and the B-field can be written as

in (3.2) and (3.5). We label these coordinates as {x1, · · · , x10−d, θ1, · · · , θd}; then the

dual coordinates will be labelled as {x̃1, · · · , x̃10−d, θ̃1, · · · , θ̃d}. Obviously, the DFT fields

H, S, d, χ that correspond to this background do not depend on the dual coordinates, that

is, they are in the supergravity frame.

Since the group G acts on the background by isometries, all the θ dependence of the

fields in (3.2) and (3.5) are encoded in lIi. We define the matrices G(x, θ), G(x), B(x, θ)

and B(x) from

ds2 = dxTG(x, θ)dx = σTG(x)σ, B = dxTB(x, θ) ∧ dx = σTB(x) ∧ σ, (4.11)

8We will relax the condition of unimodularity later on.
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where ∧ denote the obvious wedge product of matrices and dx and σ denote the 10-vectors

with components (dx1, · · · , dx10) and (σ1, · · · , σd, dxd+1, · · · , dx10), respectively. Then the

background matrix Q = G+B in (2.1) has the following form:

Q(x, θ) = lT (θ)Q(x)l(θ), (4.12)

where l is the GL(10) matrix obtained by embedding the GL(d) matrix ld with components

(ld)
I
i = lIi. The embedding is as described in (2.5), so (ld)

I
m = lai = 0 and (ld)

a
m = δam.

This is equivalent to the following O(10, 10) action:

Q(x, θ) = L(θ).Q(x), (4.13)

where L is the O(10, 10) matrix

L =

(
lT 0

0 l−1

)
. (4.14)

As stated at the end of section 4.1, the equation (4.13) is equivalent to [35]:

H(x, θ) = L(θ)H(x)LT (θ). (4.15)

Hence, the dependence of the generalized metric H on the coordinates (x, θ) is separated.

Since the twist matrix L operates between curved and flat indices, the index structure of

it is as follows:

HMN (x1, · · · , x10−d, θ1, · · · , θd) = LMA(θ1, · · · , θd)HAB(x1, · · · , x10−d)LNB(θ1, · · · , θd),
(4.16)

where we have identified

H ←→ HMN ←→

(
G−BG−1B G−1

−G−1B G−1

)
. (4.17)

From (4.14) we read off L a
m = δ a

m , Lma = δma, L
I
m = LmI = L a

i = Lia = 0 and

L I
i = (Ld)

I
i = l Ii , LiI = (Ld)

i
I = liI , where liI l

I
j = δij .

Similarly, the dependence of the field S on the coordinates (x, θ) is also separated.

S(x1, · · · , x10−d, θ1, · · · , θd) = (S−1
L )†(θ1, · · · , θd)S(x1, · · · , x10−d)(SL)−1(θ1, · · · , θd)

(4.18)

Here, SL is the Pin(10, 10) matrix that projects onto L under the double covering homo-

morphism: ρ(SL) = L. For K ≡ C−1S, this implies

K(x, θ) = SL(θ)K(x)S−1
L (θ). (4.19)

We also assume that the p-form field strengths (not the gauge potentials) respect this

isometry, that is, we assume that any p-form flux in the background can be written as

G(p) =
∑
p

(
F (p)(x) + F

(p−1)
I (x)σI +

1

2
F

(p−2)
IJ (x)σI ∧ σJ + · · ·+ F (p−d)σ1 ∧ · · · ∧ σd

)
.

(4.20)
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Here, we have decomposed a p-form RR flux G(p) according to how many legs it does

have along the directions of the isometry group G. Since G acts by isometries, the fluxes

F (p−a)(x), a = 0, 1, · · · , d will have no dependence on the isometry coordinates θi. Let F

be the differential form that packages these p-forms as in the democratic formulation:

F =
∑
p

G(p). (4.21)

This can be regarded as a spinor field as discussed in section 3, for more details, see [38]

and [54]. Owing to the form (4.20), we have

F (x, θ) = SL(θ)F (x) (4.22)

where F (x, θ) is the spinor field that encodes the components of the field strengths written

with respect to the coordinate basis (dx1, · · · , dx(10−d), dθ1, · · · , dθd). As we will show in a

moment, when the twist matrix is of the form (4.14), (4.22) is equivalent to the following

F (x, θ) = e−B(x,θ)SL(θ)eB(x)F (x). (4.23)

As we have mentioned before, the relation (4.23) above is equivalent to

/∂χ(x1, · · · , xn−d, θ1, · · · , θd) = SL(θ1, · · · , θd)/∂χ(x1, · · · , xn−d). (4.24)

In order to show the equivalence of the equations (4.22) and (4.23), first note that

S−1
L (θ)eB(x,θ)SL(θ) = eB(x). (4.25)

This follows from (4.11), which implies that B(x, θ) = lTB(x)l. Writing

hB =

(
1 B

0 1

)
, (4.26)

this means

L−1hB(x,θ)L = hB(x). (4.27)

Then, we have

ρ(S−1
L )ρ(eB(x,θ))ρ(SL) = ρ(eB(x)), (4.28)

where ρ is the double covering homomorphism ρ : Spin(d, d) → O(d, d). Note that we

have used ρ(eB) = hB and ρ(SL) = L. Now, ρ is a homomorphism so the left hand side

can be rewritten as ρ(S−1
L eB(x,θ)SL). This then gives (4.25), as desired. Using this we

immediately get

e−B(x,θ)SL(θ)eB(x)F (x) = e−B(x,θ)SL(θ)S−1
L (θ)eB(x,θ)SL(θ)︸ ︷︷ ︸F (x) = SL(θ)F (x), (4.29)

where the indicated terms is written by using (4.25).

Using the terminology from duality twisted (Scherk-Shwarz) reduction that we will

discuss in subsection 4.3.1, we call the fields H(x), S(x), d(x) and F (x) untwisted fields.
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Now, we apply the NATD transformation (2.6) and (3.25) on these untwisted fields,

where T in (2.4) is as in (3.20). This will give us the dual fields H′, d′, S′ and F ′, which will

depend on the coordinates {x1, · · · , x10−d, ν1, · · · , νd}, which we collectively call {x, ν}.

H′MN (x, ν) = (TNATD)MA(ν)HAB(x)(TNATD)NB(ν) (4.30)

K(x, ν) = SNATD(ν)K(x)(SNATD)−1(ν) (4.31)

F ′(x, ν) = e−σ(ν,ν̃)e−B
′(x,ν)SNATD(ν)eB(x)F (x) (4.32)

d′(x, ν) = d(x) + σ(ν, ν̃). (4.33)

Here, ρ(SNATD) = TNATD and B′(x, ν) is read off from the antisymmetric part of H′(x, ν)

in (4.30). The field σ(ν, ν̃) in (4.33) and (4.32) is non-vanishing only when the isometry

group is non-unimodular. We leave the discussion of this term to section 4.6.

Our strategy will be to show that these new fields H′(x, ν), d′(x, ν), S′(x, ν) and F ′(x, ν)

form a solution for the field equations of DFT. Identifying the coordinates {x, ν} with the

standard space-time coordinates, this means that the corresponding supergravity fields in

the NATD background form a solution for the field equations of Type II supergravity, as the

field equations of DFT and Type II supergravity are equivalent in the supergravity frame.

The key point in our argument will be to show that the two twist matrices L(θ)

and TNATD(ν) generate the same fluxes defined in the framework of Gauged Double Field

Theory(GDFT). In the next section, we give a brief review of GDFT, and introduce the

fluxes that arise in this context. Finally, we compute the fluxes associated with L and

TNATD and show that they are indeed the same.

4.3 Gauged Double Field Theory and fluxes associated with the NATD matrix

4.3.1 Gauged Double Field Theory

GDFT is obtained from duality twisted (Scherk-Schwarz) reduction of DFT [51]–[54]. The

O(d, d) invariance of the DFT action under the transformations (4.8) and (4.9) makes it

possible to introduce the following Scherk-Schwarz type reduction anzats for the DFT fields:

HMN (x, Y ) = (U−1)MA(Y )HAB(x)(U−1)NB(Y ), K(x, θ) = S(Y )K(x)S−1(Y ) (4.34)

F (x, Y ) = e−σ(Y )e−B(x,Y )S(Y )eB(x)F (x), (4.35)

d(x, Y ) = d(x) + σ(Y ), (4.36)

where ρ(S) = U−1 ∈ O(d, d) and F (x, Y ) = e−B(x,Y )/∂χ(x, Y ). The matrices U and S are

usually called twist matrices. When these anzatse are plugged into the action and the gauge

transformation rules of DFT, all the Y dependence is integrated out and one ends up with

GDFT, which is a consistent field theory for the untwisted fields H(x),K(x), d(x), F (x),

provided that the matrices U(Y ), S(Y ) satisfy a set of constraints. We will list these con-

straints in section 4.3.2. The GDFT action is a deformation of the DFT action determined

by the so called fluxes, fABC . In the NS-NS sector the Ricci scalar in (4.3) is deformed to

R → Rdef = R+Rf , (4.37)
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with

Rf = −1

2
fABCHBDHCE∂DHAE −

1

12
fABCf

D
EFHADHBEHCF

− 1

4
fABCf

B
ADHCD − 2ηA∂BHAB + 4ηAHAB∂Bd− ηAηBHAB. (4.38)

The anzats in (4.35) does not yield any deformation in the GDFT action of the RR sector,

as it is F and not χ, which is twisted. As a result one ends up with the following action

SGDFT = v

∫
dx dx̃

(
e−2d(R+Rf ) +

1

4
〈/∂χ,C−1S /∂χ〉

)
(4.39)

where v is defined as

v =

∫
ddY e−2ρ(Y ). (4.40)

Explicit form of the fluxes that determine Rf will be presented in the next subsection. The

second term in (4.39) is the usual action for the RR sector of DFT of Type II strings and

does not depend on the fluxes, as the duality twisted anzats has been imposed on the spinor

field F (which encode the RR fluxes), and not on the spinor field χ (which encodes the

modified gauge potentials). Recall that the relation between the two is as in (2.15). If it

were the field χ which had been twisted, then the DFT action of the RR sector would also

be deformed in a way determined by the fluxes. It was shown in [54] that the Lagrangian in

this case is of the same form as (4.4), except that /∂ should be replaced with /∇. Although

we will not need this deformed action in this paper, we will need and present the explicit

form of /∇ in subsection 4.4.2, where we will discuss the field equations arising from (4.39).

4.3.2 Fluxes, dual fluxes and the O(d, d) invariance of GDFT

The fluxes that determine the deformation in the NS-NS sector are defined as below [53]

fABC = 3Ω[ABC], ηA = ∂M (U−1)MA − 2(U−1)MA∂Mσ (4.41)

where σ is as in (4.36) and

ΩABC = −(U−1)MA∂M (U−1)NBU
D
NηCD. (4.42)

Note that ΩABC are antisymmetric in the last two indices: ΩABC = −ΩACB. We also make

the following definition

fA = −∂M (U−1)MA = ΩC
AC (4.43)

The constraints that should be obeyed by the twist matrices are as follows:

∂P (U−1)MA∂P g(X) = 0, (4.44)

(U−1)MA∂Mg(X) = ∂Ag(X), (4.45)

where g is any of the DFT fields (H, S, χ).

The DFT action of the NS-NS sector is manifestly O(d, d) invariant. So, if h is a

constant O(d, d) matrix, then

R[H, d, ∂] = R[htHh, d, ∂̂]. (4.46)
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We have inserted ∂ and ∂̂ in the arguments of R to emphasize that the derivatives ∂M
on the left hand side should be replaced by ∂̂N ≡ hMN∂M on the right hand side. On the

other hand, the DFT action of the RR sector is Spin+(d, d) invariant [38]. Therefore, the

field equations that arise from varying the DFT action of the NS-NS sector with respect to

the generalized metric and the generalized dilaton are O(d, d) covariant, whereas the field

equations obtained by varying the DFT action of the RR sector with respect to the spinor

field χ or the spinor field S are covariant under the subgroup Spin+(d, d) of Spin(d, d). This

point will be important in section 4.4, see equations (4.94), (4.95). Pin(d, d) elements that

do not lie in this subgroup act as dualities rather than invariances, as we will discuss in

more detail in the next section. The O(d, d) invariance of the generalized scalar curvature

R also extends to Rf , provided that we treat the fluxes fABC as spurious generalized

tensors, which also transform under O(d, d). So, if we define

f̂ABC = hADh
B
Eh

C
F f

DEF , h ∈ O(d, d) (4.47)

then it is easily shown that

Rf̂ [htHh, d, ∂̂] = Rf [H, d, ∂]. (4.48)

If the twist matric hMN satisfy the consistency condition (4.45) so that ∂̂M = ∂M acting

on the fields H(x) and d(x), then we simply have

R[htHh, d] = R[H, d] (4.49)

Rf̂ [htHh, d] = Rf [H, d]. (4.50)

At this point we find it useful to introduce dual fluxes and dual DFT fields. Let us

pick up h = J in (4.47), where J is the matrix obtained by embedding the d× d matrix Jd
below in O(10, 10) as in (2.5):

Jd =

(
0 1d
1d 0

)
. (4.51)

In this particular case, we call the resulting flux the dual flux, and we denote it by f̄ABC

for this particular case. That is,

f̄ABC = JADJ
B
EJ

C
F f

DEF . (4.52)

Note that, due to complete antisymmetry of fABC in its indices, the only independent blocks

of fABC out of the 8 possible combinations are f IJK , fIJK , f
IJ
K and f IJK , I = 1, · · · , d.

It is customary to call these the geometric flux, the H-flux, the Q-flux and the R-flux,

respectively [36]. Obviously, the geometric flux, H-flux, Q-flux and R- flux components of

f is replaced by Q-flux, R-flux, geometric flux and H-flux components in f̄ , respectively.

This is the reason why we call the flux f̄ABC the dual flux of fABC . Now, taking h = J

in (4.46) and (4.48), we get

R[H̄, d, ∂̄] = R[H, d, ∂], and Rf̄ [H̄, d, ∂̄] = Rf [H, d, ∂] (4.53)
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where we have defined

H̄ = J tHJ, ∂̄N = JMN∂M . (4.54)

The DFT field H̄ we defined above has been called the dual generalized metric, in [38].9

Also note that we have ∂i = ˜̄∂i, ∂̃i = ∂̄i, that is the standard and dual derivatives have

been swapped in ∂ and ∂̄. For future reference, we also define the dual spinor fields F̄ and

χ̄ as in [38]:

F̄ = e−B̄CeBF, χ̄ = Cχ. (4.55)

It is easily checked that F̄ = e−B̄/∂χ̄. Here, B̄ is the B-field associated with the dual

generalized metric H̄.

At this point, it is natural to ask the relation of the twist matrix Ū associated with

the fluxes f̄ to the twist matrix U associated with the fluxes f . One can easily show that

the relation is Ū = JU . Then, S̄ = ±SC, where ρ(S̄) = Ū−1 and ρ(S) = U−1. Indeed, it

can easily be shown that

Ω̄ABC = −(Ū−1)MA∂M (Ū−1)NBŪ
D
NηCD (4.56)

= −JDAJEBJFC(U−1)MD∂M (U−1)NEU
G
NηFG

= JDAJ
E
BJ

F
CΩDEF . (4.57)

For future reference, we also consider the fluxes associated with the twist matrices

Ŭ = UJ and S̆ = ±CS, with ρ(S̆) = Ŭ−1. One can easily see that the fluxes associated

with Ŭ are exactly the same as the fluxes associated with U , except for the fact that all

standard/dual derivatives in the computation of f should be replaced with dual/standard

derivatives in the computation of f̆ . More precisely, we have

Ω̆ABC = −(Ŭ−1)MA∂M (Ŭ−1)NBŬ
D
NηCD (4.58)

= −(U−1)MA∂̄M (U−1)NBU
D
NηCD

= −(U−1)MA∂
M (U−1)NBU

D
NηCD.

4.3.3 Fluxes associated with the NATD matrix

Let us now compute the fluxes associated with the matrices L(θ) in (4.14) and TNATD(ν)

in (3.20). Note that the condition (4.45) is trivially satisfied both by L(θ) and TNATD(ν),

as they are constructed by embedding O(d, d) matrices in O(10, 10) as in (2.5) and the

d coordinates on which O(d, d) acts are not included in the x coordinates of the fields

H(x), d(x), χ(x) and S(x). In the computation, the coordinates on which the twist matrices

depend are regarded as the standard coordinates and not the winding type ones. To be

more precise, the θ coordinates of the geometric twist matrix L(θ) are the standard space

coordinates for the fields in the supergravity background before the dualisation. Then,

after applying the NATD matrix TNATD(ν) on the untwisted fields, we end up with a set

of fields, which now depend on the coordinates (x, ν). For the fields after dualisation, it is

9Note that this is just a field redefinition so there is no transformation on the coordinates. For more

details, see [38].
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now these coordinates (x, ν) that are identified with the space-time coordinates. We start

by expanding the formula given in (4.41):

ΩABC = −(U−1)µA∂µ(U−1)NBU
D
NηCD − (U−1)µA∂̃

µ(U−1)NBU
D
NηCD

= −(U−1)iA∂i(U
−1)NBU

D
NηCD

= −(U−1)iA∂i(U
−1)jBU

D
j ηCD − (U−1)iA∂i(U

−1)jBU
DjηCD.

In passing from the first line to the second line, we used the fact that the twist matrix

has no dependence on the winding type coordinates so that all ∂̃µ derivatives are zero and

that they depend only on the isometry coordinates so that ∂m(U−1)NB = 0 (recall that

µ = (i,m), see appendix A.)

When U−1 = TNATD(ν) in (3.20) we have

(TNATD) I
i = 0, (TNATD)iI = δiI , (TNATD)iI = δiI , (TNATD)i I = θiI , (4.59)

(TNATD) a
m = δ a

m , (TNATD)ma = δma, (TNATD) I
m = (TNATD)mI = (TNATD) a

i = (TNATD)ia = 0.

where we have defined

θiI = δiJC K
IJ νK , (4.60)

so that the indices match. Plugging these in the formula we find that the only non-vanishing

components are

ΩI
JK = −C I

JK , ΩIJK = C H
LI C L

JK νH . (4.61)

These give rise to the following fluxes

f K
IJ = Ω K

IJ + Ω K
J I + ΩK

IJ = −C K
IJ

fIJK = ΩIJK + ΩJKI + ΩKIJ =
1

2
C H
L[I C L

JK]νH = 0,

where the last equality follows from the Jacobi identity.

Now, let us compute the fluxes associated with the geometric twist matrix (4.14)

so that U−1 = L(θ). In this case the only non-vanishing flux is the geometric flux

f K
IJ = Ω K

IJ − Ω K
JI (since ΩK

IJ = 0):

f K
IJ = −liI∂il

j
J l
K
j + liJ∂il

j
I l
K
j = −C K

IJ . (4.62)

This follows from the fact that σI = lIidθ
i are left-invariant one-forms and as such they

satisfy

dσI = −1

2
C K
IJ σJ ∧ σK . (4.63)

The fluxes associated with TNATD and L are exactly the same. This will be the key

point in proving that NATD is a solution generating transformation for DFT.
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4.4 Comparing the field equations of DFT and GDFT

In the previous subsection, we studied GDFT, which is obtained from Scherk-Schwarz

reduction of DFT. The Scherk-Schwarz anzats is known to give rise to a consistent dimen-

sional reduction, meaning that any solution of the field equations of the resulting theory

can be uplifted to a solution of the higher dimensional field equations [49, 50]. In our

case this implies that any solution of the field equations of GDFT can be uplifted to a

solution for DFT. Conversely, the field equations of DFT will reduce to the field equations

of GDFT and hence, given a solution of DFT for which the dependence of the fields on

the doubled coordinates is separated as in (4.34), (4.35) and (4.36), the untwisted fields

H(x), F (x), d(x) will form a solution of the GDFT equations, where the fluxes in the GDFT

action is determined by the twist matrix U(Y ).

This straightforward argument should be discussed in more detail, mainly for two

reasons. Firstly, the anzats in (4.34), (4.35) and (4.36) is not exactly the Scherk-Scwarz

anzats which gives a consistent dimensional reduction to GDFT, due to the difference in

the anzats for RR fields. The correct anzats would have been

χ(x, Y ) = e−σ(Y )S(Y )χ(x) (4.64)

which gives rise to a deformation of the RR sector, as well. Although the field χ appears in

the DFT action only through its field strength F = e−B/∂χ, it has a bare appearance in the

gauge transformation rules and hence a consistent reduction should involve an anzats for

the field χ.10 However, at the level of equations of motion, this raises no problem since the

field χ never appears in the field equations without a derivative. As a second important

point, the real duality group for DFT is Spin+(d, d) and hence only a twist matrix in this

subgroup of Spin(d, d) can give a consistent reduction. This point is particularly important

for us, as the NATD matrix in (3.20) is not in Spin+(d, d). However, as discussed in [38],

although the Pin(d, d) transformations which are not in this subgroup are not invariances

of DFT, they act as duality transformations. This is also true at the level of field equations.

In order to clarify these points, we will discuss below the relationship between the field

equations of DFT and of GDFT in more detail.

4.4.1 Field equations for the generalized dilaton field

The field equations obtained by varying the DFT action with respect to the generalized

dilaton field is [34]

R = 0, (4.65)

where R is as in (4.7). If we plug in (4.34) and (4.36) in (4.65), we obtain

R+Rf = 0 (4.66)

as was shown in [53]. The form of Rf was given in (4.38). It can be easily shown that

this is the field equation obtained by varying (4.39) with respect to the generalized dilaton

field. Therefore, a set of DFT fields whose dependence on the coordinates is separated

10Duality twisted reduction of DFT with the anzats (4.64) was studied in [54].
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as in (4.34), (4.35) and (4.36) will satisfy the generalized dilaton field equations of DFT

if and only if the untwisted fields H(x), d(x) satisfy the generalized dilaton equations for

the GDFT, where the fluxes fABC which determine the deformation are determined by the

twist matrix U .

4.4.2 Field equations for the spinor field χ

The field equation for the spinor field χ is [38]

/∂(K /∂χ) = 0, (4.67)

which is to be supplemented with the duality constraint

/∂χ = −K/∂χ. (4.68)

In terms of the field F = e−B/∂χ the equation and the duality constraint becomes:

/∂(K eBF ) = 0 (4.69)

F = −e−BKeBF. (4.70)

Imposing the duality constraint on the field equation we get

/∂(eBF ) = 0. (4.71)

Let us plug in (4.34) and (4.35) in (4.70). We immediately see that the duality constraint

is satisfied by H(x, Y ), F (x, Y ) if and only if the same duality constraint is satisfied by

F (x),H(x):

F (x) = −e−B(x)K(x)eB(x)F (x). (4.72)

On the other hand, plugging (4.34) and (4.35) into the field equation (4.69) we get

/∂
(
e−σ(Y )S(Y )K(x)eB(x)F (x)

)
= 0. (4.73)

We plug the duality constraint (4.72) in (4.73) to get (recall that /∂ = ΓM∂M ):

e−σ(Y )S(Y )
{
S−1(Y )ΓM∂M (S(Y )− σ(Y )) + /∂

}(
eB(x)F (x)

)
= 0. (4.74)

Now we use the following facts [54]:11

S−1ΓMS = (U−1)MAΓA (4.75)

ΓA (U−1)MAS
−1∂M S =

1

4
ΩABCΓA ΓB ΓC

=
1

12
fABCΓA ΓB ΓC − 1

2
fBΓB, (4.76)

where U = ρ(S−1). Using these one can show easily that the equation (4.74) is equivalent to

/∇
(
eB(x)F (x)

)
= 0, (4.77)

11We proved the identity (4.76) in [54] for S ∈ Spin+(d, d). It can be easily shown that it also holds for

elements of S ∈ Spin(d, d) of the form S = CS+ and S = S+C, where S+ ∈ Spin+(d, d).
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where the Dirac operator /∇ is defined as (see [54])

/∇ ≡ /∂ +
1

12
fABCΓA ΓB ΓC − 1

2
ηBΓB. (4.78)

As a result, we conclude that the fields (4.34) and (4.35) form a solution for the field

equation (4.71) if and only if the untwisted fields F (x),H(x) satisfy (4.77).12

4.4.3 Field equations for the generalized metric HMN

The field equations obtained from varying the DFT action with respect to the generalized

metric HMN is [34, 38]:

RMN + e−2φΞMN = 0, (4.79)

where

ΞMN =
1

16
H(M

P 〈/∂χ,Γ
N)PK/∂χ〉 =

1

16
H(M

P 〈e
BF,ΓN)PKeBF 〉 (4.80)

= − 1

16
H(M

P 〈F, e
−BΓN)P eBF 〉.

The first term in (4.79) comes from the variation of the GDFT action of the NS-NS sector,

and the variation of the GDFT action of the RR sector gives the second term. In pass-

ing to the second line in (4.80), we used the invariance property of Mukai pairing under

Spin+(d, d),13 (which e−B is an element of), and we also imposed the duality constraint

/∂χ = −K/∂χ. Here, ΓMN is defined as ΓPQ ≡ 1
2 [ΓP ,ΓQ]. Let us plug in the set of fields

in (4.34), (4.35), (4.36) into these equations. Consider first the following expression:

(U−1)MARMN [H(x, Y ), d(x, Y )](U−1)NB. (4.82)

We emphasize again that RMN [H(x, Y ), d(x, Y )] is obtained by varying e−2dR with respect

to HMN and then plugging in H(x, Y ). Now compare the expression in (4.82) with the

variation of the GDFT action of the NS-NS sector (which is obtained by plugging in H(x, Y )

in R first) with respect to HAB. Comparing term by term, one sees that the two give the

same result. Then, we have

e2d(U−1)MARMN [H(x, Y ), d(x, Y )](U−1)NB =
δ(e2d(R+Rf ))

δHAB
. (4.83)

So, if we define

e2dRABf =
δ(e2dRf )

δHAB
, (4.84)

12Note that (4.77), which is equivalent to /∇
(
/∂χ(x)

)
= 0 is not the field equation obtained from vary-

ing (4.39) with respect to the spinor field χ, which would have given /∂
(
/∂χ(x)

)
= 0. It is not the field

equation obtained from varying the GDFT action of the RR sector obtained in [54] through a duality

twisted ansazt on χ (rather than F ) either, which would have yielded /∇
(
/∇χ(x)

)
= 0. Note that both of

these equations are satisfied automatically due to nilpotency of /∂ and /∇.
13The Mukai pairing satisfies

〈S.φ1, S.φ2〉 = ±〈φ1, φ2〉, S ∈ Spin±(d, d) . (4.81)
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then we have

RMN [H(x, Y ), d(x, Y )] = (U−1)MA
(
RAB[H(x), d(x)] +RABf [H(x), d(x)]

)
(U−1)NB. (4.85)

Now, we plug in ΞMN the fields H,K, F,B, whose dependence on the coordinates (x, Y )

is separated as in (4.34), (4.35), (4.36). If we use the invariance property of the Mukai

pairing and the following identity

S−1ΓMNS = ΓAB(U−1)MA(U−1)NB, (4.86)

along with

HMP (x, Y ) = (U−1)MAU
B
PHAB, (4.87)

we obtain

− 1

16
(U−1)MA(Y )(U−1)NB(Y )H(A

C(x)〈S(Y )eB(x)F (x), S(Y )ΓB)CeB(x)F (x)〉 (4.88)

= ∓ 1

16
(U−1)MA(Y )H(A

C(x)〈eB(x)F (x),ΓB)CeB(x)F (x)〉(U−1)NB(Y ), S ∈ Spin±(10, 10).

Therefore, we have found that

e−2d(x,Y )ΞMN [H(x,Y ),F (x,Y ),d(x,Y )] = (U−1)MA(Y )e−2d(x)ΞAB[H(x),F (x),d(x)](U−1)NB(Y ),

(4.89)

if the twist matrix S(Y ) is in Spin+(d, d).

Now consider the case when S is not in Spin+(d, d). We assume that it is of the form

S(Y ) = S1(Y )C, where S1 ∈ Spin+(d, d) and C is the charge conjugation element satisfying

ρ(C) = J . (This is the case for the twist matrices that determines our NATD fields. Recall

that SNATD(ν) = Sβ(ν)C and Sβ ∈ Spin+(d, d).) In this case only the S1(Y ) factor can be

dropped in passing from the first line to the second line in (4.88) and we end up with

− 1

16
(U−1)MA(Y )(U−1)NB(Y )H(A

D(x)〈CeB(x)F (x), CΓB)DeB(x)F (x)〉 (4.90)

= − 1

16
(U−1

1 )MA(Y )(U−1
1 )NB(Y )H̄(A

D(x)〈CeB(x)F (x),ΓB)DCeB(x)F (x)〉 (4.91)

where ρ(S1) = U1 and H̄ = JTHJ is the dual generalized metric we defined in (4.54). Note

that in writing the second line above we used

(U−1)THU−1 = ((U1J)−1)TH(U1J)−1 = (U−1
1 )TJTHJU−1

1 = (U−1
1 )T H̄U−1

1 . (4.92)

Also recalling the definition of the dual spinor field F̄ in (4.55) we see that (4.91) above

can be written in terms of the dual fields and we have:

ΞMN [H(x, Y ), F (x, Y ), d(x, Y )] = (U−1
1 )MA(Y )ΞAB[H̄(x), F̄ (x), d(x)](U−1

1 )NB(Y ). (4.93)

Let us now try and write the RMN part of the field equation in terms of the dual

generalized metric H̄, as well. For this we need to observe that this piece of the field

equation is O(d, d) covariant:

RAB[H(x)] = RAB[JH̄J ] = JRAB[H̄(x), d]J (4.94)

RABf [H(x), d] = RABf [JH̄(x)Jd] = JRABf̄ [H̄(x), d]J (4.95)
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where f̄ is the dual flux we defined in (4.52). These follow directly from the O(d, d) covari-

ance of R and Rf , see (4.53). Recall that J is obtained by embedding the O(d, d) matrix

Jd in O(10, 10) as in (2.5). Hence, it acts non-trivially only on the isometry directions and

acts on the partial derivatives with respect to x coordinates as an identity transformation.

Therefore, we have

JMA∂Mg(x) = ∂Ag(x), (4.96)

where g(x) denotes any of the untwisted fields H(x), F (x), d(x) or S(x). So, we have ∂̄ = ∂

in (4.53). As a result, using (4.92), we can rewrite (4.85) as:

RMN [H(x, Y ), d(x, Y )] = (U−1)MA
(
RAB[H(x), d(x)] +RABf [H(x), d(x)]

)
(U−1)NB

= (U−1
1 )MAR

AB[H̄(x), d(x)] +RABf̄ [H̄(x), d(x)](U−1
1 )NB.

To recap, we have obtained the following: for S ∈ Spin+(d, d) with ρ(S) = U−1,

equation (4.79) is satisfied by the fields H(x, Y ), S(x, Y ), F (x, Y ) and d(x, Y ) if and only

if the untwisted fields satisfy the following GDFT equation:

RAB[H(x), d(x)] +RABf [H(x), d(x)] + e−2d(x)ΞAB[H(x), F (x), d(x)] = 0. (4.97)

Here the fluxes f in Rf are produced by the twist matrix U .

On the other hand, if S = S1C with S1 ∈ Spin+(d, d) and ρ(S1) = U−1
1 so that

U = JU1 we can make the following statement. The twisted fields H(x, Y ), S(x, Y ), F (x, Y )

and d(x, Y ) satisfy equation (4.79) if and only if the untwisted dual fields H̄(x), F̄ (x) and

d(x) satisfy

RAB[H̄(x), d(x)] +RABf̄ [H̄(x), d(x)] + e−2d(x)ΞAB[H̄(x), F̄ (x), d(x)] = 0. (4.98)

Here, the fluxes f̄ in Rf̄ are fluxes dual to f , and the fluxes f are produced by the twist

matrix U .

4.5 NATD fields as a solution of DFT in the supergravity frame

We are now ready to prove our claim that NATD is a solution generating transformation

for DFT, that is, the fields (4.30), (4.31), (4.32) corresponding to the NATD background

solve DFT equations. As we discussed before, this immediately proves that the NATD

fields form a solution of Type II supergravity, if we identify (x, ν) with standard space-

time coordinates. This is because in the frame ∂̃µ = 0 the DFT equations will reduce to

Type IIA or Type IIB equations depending on the fixed chirality of χ.14

In the previous section, we saw that the fields H(x, Y ), F (x, Y ), S(x, Y ) and d(x, Y )

in (4.34)–(4.36) satisfy the field equations of DFT if and only if the untwisted fields

H(x), F (x), S(x) and d(x) satisfy the field equations of the GDFT determined by the fluxes

associated with the twist matrix U . This implies the following: suppose that we know the

fields H(x, Y ), F (x, Y ), S(x, Y ) and d(x, Y ) satisfy the field equations of DFT. Then, the

14We still assume that the duality group is unimodular. If not, the dilaton field is forced to have a linear

dependence on winding type coordinates taking the NATD background out of the supergravity frame. We

will discuss this in section 4.6.

– 26 –



J
H
E
P
0
8
(
2
0
1
9
)
1
1
5

untwisted fields satisfy the field equations of GDFT determined by the fluxes associated

with U and S. Now, consider another set of fields H̃(x, Z), F̃ (x, Z), d̃(x, Z) obtained by

twisting the same fields H(x), F (x), d(x) by the twist matrices Ũ(Z) and S̃(Z), where Ũ is

also in SO+(d, d). Suppose also that the fluxes generated by Ũ(Z) and S̃(Z) are the same

as the fluxes generated by U(Y ) and S(Y ). Since we already know that the untwisted

fields satisfy the field equations of GDFT determined by these fluxes, we immediately con-

clude that the twisted fields H̃(x, Z), F̃ (x, Z), d̃(x, Z) satisfy the field equations of DFT,

as well. If the NATD matrix (3.20) were in SO+(10, 10), this argument would immediately

imply that the fields (4.30)–(4.32) formed a solution of the DFT equations (4.65), (4.71)

and (4.79), since we already know that the untwisted fields H(x), d(x), S(x) and F (x)

satisfy the GDFT equations (4.66), (4.77) and (4.97). This is known because the fields

H(x, θ), S(x, θ) and F (x, θ) in (4.15), (4.18) and (4.23) form a solution of the DFT equa-

tions (4.65), (4.71) and (4.79) by construction, and the twist matrix L(θ) in (4.14) generates

the same fluxes as the NATD matrix (3.20) does. However, the NATD matrix TNATD is

not in SO+(10, 10). Even in this case, our argument above still holds when we compare the

DFT and GDFT equations (4.65) and (4.66) coming from the variation with respect to the

generalized dilaton field d and the equations (4.71) and (4.77) coming from the variation

with respect to the spinor field χ, since these equations are not just SO+(d, d) covariant;

they are covariant under the full duality group O(d, d). So, the only issue we should discuss

is how we compare equations (4.97) and (4.98).

In order to understand this, we look at a generic case in which U is in SO+(d, d),

and Ũ is not. We saw that comparing the generalized metric field equations of DFT and

the GDFT is subtle due to the fact that the DFT of the RR sector of Type II strings is

invariant only under the subgroup Spin+(d, d) and Pin(d, d) transformations that are not

in this subgroup must be viewed as dualities and not invariances. In analyzing this case,

we found it useful to define the following dual fields, as in [38], which we rewrite here for

convenience:

H̄ = JHJ, F̄ = e−B̄CeBF. (4.99)

Recall that F̄ = e−B̄/∂χ̄, where χ̄ = Cχ. It is possible to formulate the DFT action in

terms of these dual fields. In fact, it was shown in [38] that the DFT action takes the same

form in terms of these dual fields as the action (4.4), provided that we also transform the

partial derivatives as ∂i ↔ ∂̃i, i = 1, · · · , d. We will call this action the dual DFT action.15

If the chirality of the spinor field χ is fixed in such a way that the DFT action reduces to

the action of Type IIA/IIB theory in the supergravity frame ∂̃i = 0, the dual DFT action

reduces to the action of Type IIB/IIA theory in the frame ∂i = 0, [34, 38]. This is when d

is odd. If d is even, the chirality of the dual spinor field remains the same, and the dual

action reduces to the same Type II action in the frame ∂i = 0.16

15In fact, the DFT action of the RR sector picks up an overall minus sign but so does the duality condition.

Hence, when we plug in the duality condition into the field equations, there is no overall minus sign and

the form of the field equations are exactly the same both in terms of the original and the dual fields and

coordinates.
16If the time direction is also dualized, the resulting theory is Type IIA? or Type IIB? depending on the

chirality, see [38].
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Consider a set of fields, which form a solution for the DFT field equations in a certain

frame.17 Then, the dual fields will satisfy the equations arising from the dual DFT action

for the dual fields H̄ and F̄ . We emphasize again that these equations have exactly the

same form as the equations for the original fields, except that the standard derivatives along

the directions on which Jd acts have been replaced by the winding type derivatives and

vice versa.18 If the dependence of the fields forming the DFT solution on the coordinates

(x, Y ) is separated as in (4.34), (4.35), (4.36), then the dependence of the dual fields on

these coordinates is also separated in the following way:

H̄(x, Y ) = (Û−1)T (Y )H̄(x)Û−1(Y ), K̄(x, Y ) = Ŝ(Y )K̄(x)Ŝ−1(Y ) (4.100)

F̄ (x, Y ) = e−σ(Y )e−B̄(x,Y )Ŝ(Y )eB̄(x)F̄ (x), (4.101)

d̄(x, Y ) = d̄(x) + σ(Y ), (4.102)

where Ŝ=CSC−1, ρ(Ŝ)= Û−1 =JU−1J , and F̄ (x, Y )=e−B̄(x,Y )C/∂χ(x, Y ) and d̄=d. Con-

sider the field equation arising from varying the dual DFT action with respect to the dual

generalized metric field and assume that it is satisfied by the dual fields H̄(x, Y ), F̄ (x, Y )

and d(x) in (4.100)–(4.102). As emphasized above, this equation is exactly of the same

form as the generalized metric field equation (4.79) (albeit with ∂i ↔ ∂̃i), which means

that we can apply the arguments in section 4.4.3 directly. So, if S is in Spin+(d, d), so that

Ŝ = CSC−1 ∈ Spin+(d, d)), we find that the twisted dual DFT fields satisfy

RMN [H̄(x, Y ), d(x)] + e−2φΞMN [H̄(x, Y ), F̄ (x, Y ), d(x)] = 0 (4.103)

if and only the untwisted dual DFT fields satisfy the following equation

(Û−1)MA(Y )
(

(R+Rf̂ )AB[H̄(x), F̄ (x),d(x)]+e−2d(x)ΞAB[H̄(x), F̄ (x),d(x)]
)

(Û−1)NB(Y ) = 0.

(4.104)

Since all the ∂i derivatives in (4.103) has been swapped with the winding type derivatives

∂̃i, in calculating the fluxes f̂ with the formula (4.41) (with U = Û), one should replace

∂i ↔ ∂̃i. Now remember our discussion in section 4.3.2. From (4.58) we see that the fluxes f̂

are produced by the matrix Ŭ = ÛJ . Since Û = JUJ we see that the fluxes f̂ are the same

fluxes as those produced by the twist matrix Ŭ = ÛJ = JU , since J2 = Id. But, according

to (4.56) this is just the dual flux f̄ to the flux f produced by the twist matrix U , that is,

f̂ = f̄ . As a result, the equation (4.104) is equivalent to the equation (4.98). This gives

17For now, we keep the discussion general, but our ultimate goal is to apply the discussion we have here

to the fields (4.15), (4.18) and (4.23).
18Let us clarify a point that is potentially confusing. When the frame in which the fields satisfy the DFT

equations is the supergravity frame (that is, the fields have no dependence on dual coordinates x̃), they also

form a solution of Type IIA(/IIB) supergravity. Since the dual fields will not belong to the frame ∂i = 0

in general, they do not necessarily form a solution of Type IIB(/IIA) supergravity. Nevertheless, they are

a solution of the field equations of the dual DFT action, and that is all the information we need. In the

special case when the isometry group is Abelian, one can pick up coordinates with respect to which the

twisted fields will have no dependence on the coordinates xi, i = 1, · · · , d either, so the dual fields will

belong to the frame ∂i = 0. Being a solution of the dual DFT equations, they will hence form a solution of

Type IIB(/IIA) supergravity. This is what happens in Abelian T-duality.
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us the result that we want: the fact that the fields H(x, θ), F (x, θ), d(x) in (4.15), (4.23)

satisfy the DFT equation (4.79) implies that the dual fields H̄(x, θ), F̄ (x, θ), d(x) satisfy the

dual DFT equation (4.103). As a result, the dual untwisted fields H̄(x), F̄ (x), d(x) satisfy

the GDFT equation (4.98), which then implies that the NATD fields H(x, ν), F (x, ν), d(x)

in (4.30)–(4.32) satisfy the DFT equation (4.79), as desired.

4.6 Non-unimodular case: generalized supergravity equations

So far, we have assumed that the isometry group G is unimodular so that the structure con-

stants C K
IJ are traceless. When this assumption is relaxed, it is known that the resulting

NATD fields form a solution of the GSE, which have recently been introduced in [18, 19].

Let us see how this situation fits within the framework of DFT.

For simplicity, we assume that the structure constants of the Lie algebra of G have only

trace components. Then, the only non-vanishing components of the flux associated with the

twist matrix L in (4.15) will be fI , I = 1, · · · , d. This contributes to ηI , whose definition

is given in (4.41). However, it is well-known that the GDFT action with non-vanishing ηA
is not consistent [51, 53]). Therefore, the fI part in (4.41) should be compensated by a

non-trivial dilaton anzats. A similar situation was also considered [58]. Rewriting (4.41)

in components, we see that we need to have

ηI = f I − (U−1)MI∂Mσ = 0, (4.105)

ηI = fI − (U−1)MI∂Mσ = 0. (4.106)

This implies that

(U−1)MI∂Mσ = f I = 0, (4.107)

(U−1)MI∂Mσ = fI = constant. (4.108)

When the twist matrix is equal to the NATD matrix (3.20), we can expand these equation

by using (4.59) as:

δiI∂iσ = 0 (4.109)

θiI∂iσ + δiI ∂̃
iσ = constant. (4.110)

As a result, we obtain

∂iσ = 0, ∂̃iσ = constant.

In other words, σ is linear in the dual coordinates and does not depend on the standard

coordinates. Then, the generalized dilaton field in (4.33) is of the form:

d(x, ν̃) = d(x) +miν̃
i, (4.111)

where mi are constants.

Appearance of winding type coordinates in the transformed DFT fields means that we

are not in the supergravity frame anymore. (Note that, due to the form of the anzats (4.32),

the spinor field F also has a dependence on ν̃). The other DFT fields H and S depend only

on the space-time coordinates. In the papers [39] and [40], it was shown that the equations

of DFT reduce to GSE in such a frame. As a result, the fields in the target space of the

NATD model form a solution of GSE, when G is non-unimodular.
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5 Conclusions and outlook

In this paper, we studied NATD as a coordinate dependent O(d, d) transformation. The

dependence on the coordinates is determined by the structure constants of the Lie algebra of

the isometry group G. Besides making calculations significantly easier, our approach gives

a natural embedding of NATD in Double Field Theory (DFT), a framework which provides

an O(d,d) covariant formulation for effective string actions [28]–[38] by introducing dual,

winding type coordinates. As a result of this embedding, we managed to prove that the

NATD fields (both in the NS-NS and the RR sector) solve supergravity equations, when

the isometry algebra is unimodular. When the isometry algebra is non-unimodular, we

showed that the generalized dilaton field of DFT is forced to have a linear dependence on

the winding type coordinates, which implies that the NATD fields solve GSE, in agreement

with the literature.

We believe that identifying the O(d, d) matrix that generates the NATD background

is important, as it should make it easier to study some properties (such as supersymmetry

and integrability) of the NATD backgrounds and their CFT duals, as the relation to the

original background is more explicit. On the other hand, our approach also makes it

possible to explore the relation between NATD and Yang-Baxter (YB) deformations in

detail. Homogoneous YB deformation of an integrable sigma model [59] is determined by

the so called R-matrix, which forms a solution of the classical Yang-Baxter equation. In the

paper [60], it was conjectured that homogoneos YB models can be obtained by applying

NATD to the original background, with respect to an isometry group determined by the R-

matrix. This conjecture was proved in [61] for the case of Principal Chiral Models (PCM)

and they extended their work to homogenous YB deformations of more general sigma model

than PCM’s in [17]. Then, the results of our paper implies that it should be possible to

describe YB deformations also as O(d, d) transformations. This approach was also taken

in the papers [41, 42], [62]–[65] (see also the papers [66, 67] for a related approach). The

methods we have developed in this paper should give a deeper insight on YB deformations

and the relation between NATD and YB deformations. We hope to come back to these

issues in the near future [68].
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A Index conventions

Our index conventions are as follows:

M,N, · · · : Doubled coordinates; M = (µ,
µ)

A,B, · · · : Doubled coordinates; A = (α,
α)

µ = (i,m), µ = 1, · · · , 10; i = 1, · · · , d, d = dimG

α = (I, a), α = 1, · · · , 10; I = 1, · · · , d

According to the embedding rules in (2.5), a twist matrix T ∈ O(D,D,R), which only

twists the d isometry directions is of the following form:

TMA =

(
T α
µ Tµα

Tµα Tµα

)
, (A.1)

with T a
m = δ a

m , T
m
a = δma, T

I
m = TmI = T a

i = T ia = 0.
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[68] A. Çatal Özer and S. Tunalı, Yang-Baxter Deformation as an O(d, d) Transformation,

arXiv:1906.09053 [INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP11(2011)052
https://arxiv.org/abs/1109.0290
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0290
https://doi.org/10.1007/JHEP04(2012)020
https://arxiv.org/abs/1201.2924
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2924
https://doi.org/10.1007/JHEP09(2017)044
https://doi.org/10.1007/JHEP09(2017)044
https://arxiv.org/abs/1705.08181
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.08181
https://doi.org/10.1088/1126-6708/2006/02/026
https://arxiv.org/abs/hep-th/0512290
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512290
https://doi.org/10.1088/0264-9381/18/17/303
https://arxiv.org/abs/hep-th/0103233
https://inspirehep.net/search?p=find+EPRINT+hep-th/0103233
https://doi.org/10.1007/BF01389137
https://doi.org/10.1007/JHEP02(2018)179
https://doi.org/10.1007/JHEP02(2018)179
https://arxiv.org/abs/1706.08883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.08883
https://doi.org/10.1007/JHEP04(2014)153
https://arxiv.org/abs/1401.4855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.4855
https://doi.org/10.1088/1751-8113/49/49/494001
https://arxiv.org/abs/1609.02550
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.02550
https://doi.org/10.1103/PhysRevLett.117.251602
https://doi.org/10.1103/PhysRevLett.117.251602
https://arxiv.org/abs/1609.09834
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.09834
https://doi.org/10.1088/1751-8121/aa8896
https://arxiv.org/abs/1705.07116
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.07116
https://doi.org/10.1007/JHEP06(2018)161
https://arxiv.org/abs/1803.07498
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.07498
https://doi.org/10.1007/JHEP06(2018)147
https://doi.org/10.1007/JHEP06(2018)147
https://arxiv.org/abs/1803.05903
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.05903
https://doi.org/10.1007/JHEP01(2019)140
https://doi.org/10.1007/JHEP01(2019)140
https://arxiv.org/abs/1811.09056
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.09056
https://doi.org/10.1103/PhysRevD.95.105006
https://doi.org/10.1103/PhysRevD.95.105006
https://arxiv.org/abs/1702.02861
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.02861
https://doi.org/10.1088/1751-8121/aac195
https://arxiv.org/abs/1705.02063
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.02063
https://arxiv.org/abs/1906.09053
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.09053

	Introduction
	The action of O(d,d) on curved string backgrounds
	Transformation of the fields in the NS-NS sector
	Transformation of the fields in the RR sector

	NATD as an O(d,d) transformation
	An example: AdS(3) x S**(3) x T**(4)

	NATD as a solution generating transformation in Double Field Theory
	A brief review of Double Field Theory
	Embedding NATD in Double Field Theory
	Gauged Double Field Theory and fluxes associated with the NATD matrix
	Gauged Double Field Theory
	Fluxes, dual fluxes and the O(d,d) invariance of GDFT
	Fluxes associated with the NATD matrix

	Comparing the field equations of DFT and GDFT
	Field equations for the generalized dilaton field
	Field equations for the spinor field chi
	Field equations for the generalized metric cH(MN)

	NATD fields as a solution of DFT in the supergravity frame
	Non-unimodular case: generalized supergravity equations

	Conclusions and outlook
	Index conventions

