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ABSTRACT: The annihilation cross section of weakly interacting TeV scale dark matter par-
ticles x° into photons is affected by large quantum corrections due to electroweak Sudakov
logarithms and the Sommerfeld effect. We extend our previous work on the resummation
of the semi-inclusive photon energy spectrum in x°x° — v + X in the vicinity of the
maximal photon energy E. = m, with NLL’ accuracy from the case of narrow photon en-
ergy resolution Eies of order m%v /my to intermediate resolution of order Els ~ my. We
also provide details on the previous narrow resolution calculation. The two calculations,
performed in different effective field theory set-ups for the wino dark matter model, are
then shown to match well, providing an accurate representation up to energy resolutions
of about 300 GeV.
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1 Introduction

High-energy photons may constitute an important signal for the particle nature of dark
matter (DM) through the pair annihilation of DM particles. In order to distinguish the
DM component from the astrophysical vy-ray background, one searches for the line signal
of the two-body annihilation xx° — v (or vZ) at (or very close to) E, = m,, where m,,
is the mass of the dark matter particle, to be determined.

In particular, the paradigmatic WIMP with mass in the 100 GeV to 10 TeV range and
electroweak charge is expected to be observed or ruled out by the Cherenkov Telescope
Array (CTA) [1] under construction even under conservative assumptions on astrophysical
uncertainties, especially due to the dark matter density profile near the Galactic center.
Precise theoretical computations of the photon yield from DM annihilation are therefore
well motivated.



Recent theoretical work has focused on two aspects of the problem. First, for dark
matter annihilation into energetic particles, electroweak Sudakov (double) logarithms
O((az In?(m, /mw))") are large and should be summed to all orders [2-5], in addition
to the summation of ladder diagrams known as the Sommerfeld effect. Second, since ~-
ray telescopes do not measure two photons from a single annihilation in coincidence, the
observable is not x°x® — vy (or vZ) but rather the semi-inclusive single-photon energy
spectrum v+ X, where X denotes the unidentified other final state particles. Although the
leading term in the perturbative expansion of the semi-inclusive annihilation rate arises
from the two-body final states vv,~vZ, the logarithmically enhanced terms differ in higher
orders and this affects their resummation [6-8]. It has been shown, both for the exclusive
~7 annihilation rate [5], as well as for the semi-inclusive rate at narrow energy resolution
(as defined below) [7], that resummation with NLL’ accuracy, which combines the full one-
loop calculations with next-to-leading logarithmic resummation provides precise results for
the photon rate with uncertainties around 1%.

The resummation of the semi-inclusive spectrum is performed for the primary photon
energy spectrum d(ove1)/dE- of the DM pair annihilation cross section multiplied by the
relative velocity of the annihilating particles. While in forecasts for the rate observed
by a specific telescope, the spectrum will have to be smeared with an instrument-specific
resolution function of some width Eyks in energy, the expected impact and accuracy of the
theoretical prediction can be equally discussed for the spectrum integrated over the energy
interval Es from its kinematic endpoint:

My
(ov)(EL,) = / : ar, dcgzv). (1.1)
My —Eres Y

The endpoint-integrated spectrum depends on the three scales m,, my (representative
of electroweak scale masses), and Eres. We consider TeV scale dark matter, hence the
hierarchy mw < m, is always assumed. The details of the resummation of electroweak
Sudakov logarithms near the endpoint, Efes < my, differ according to the scaling of Fres
and myy with respect to each other. We distinguish the following three regimes:

. Y ~m?
narrow :  E ~ miy/m,

intermediate : E

res ~ MW

wide :  ElL > my (1.2)

The wide resolution regime was considered in [6, 8] and resummed at the NLL order. Due
to the double hierarchy m, > Efs > mw a two-step procedure applies to simultaneously
sum the unrelated large logarithms of m, /my and Efes/myu. This procedure requires
large dark matter masses to satisfy both hierarchies. Resummation of electroweak Sudakov
logarithms for the narrow resolution case was accomplished in [7] at the NLL’ order. The
intermediate resolution regime has not been considered up to now.

In the present paper we close this theoretical gap. We develop the effective field theory
(EFT) for the intermediate resolution regime and sum the electroweak logarithms at the
NLL’ order. We show that the result can be smoothly joined to the narrow resolution
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Figure 1. Energy resolution of the CTA experiment (solid black line, from [9]), and the power-law
fit B, = 0.0915 (E,/TeV)?5%3 (dash-dotted) with E, = m,. The dark-grey (red) and light-grey
(blue) bands show where the intermediate and narrow resolution resummation applies, respectively.
The boundaries are defined by my [1/4,4] (intermediate resolution) and m#, /m, [1/4,4] (narrow
resolution).

regime to provide a precise prediction of the photon energy spectrum near m, in the
entire region from the line signal (Ejs = 0) to Eres ~ 4my. We also provide details and
derivations for the narrow resolution regime not given in the letter [7].

The intermediate resolution regime is relevant to present and upcoming DM searches.
For example, assuming the regime to apply to Efes in [my /4, 4myy] the energy resolution of
the H.E.S.S. experiment Efes/E- ~ 10% [10] implies that dark matter masses in the range
200 GeV to 3.2 TeV are covered by the intermediate resolution calculation. For the CTA
experiment, we obtain the power-law fit Eres/E, = 0.0915 (E.,/TeV)~%347 from figure 11
of [9] in the range of photon energies of interest, which is shown as the dash-dotted line
in figure 1 together with the unapproximated resolution (solid line). The horizontal band
(dark-grey/red) represents the region of applicability of the intermediate resolution regime,
which extends to 6.8 TeV for the CTA experiment. Thus, the intermediate resolution
calculation covers the mass values where the thermal relic density of the pure Higgsino
(electroweak doublet) and pure wino (triplet) models agrees with the observed relic density.

The outline of the paper is as follows. In section 2 we discuss the momentum modes
and effective Lagrangians relevant to the problem and derive a factorization formula for
the photon energy spectrum valid when m, — E, = O(myw ), which corresponds to the
intermediate resolution regime. We also discuss the modifications that apply to narrow
resolution [7]. In section 3 we calculate the hard, jet and soft functions that appear in
the factorization formula at the one-loop order, as required for NLL’ resummation, provide
the renormalization group equations (RGEs), and solve them with corresponding accuracy.
These calculations are performed for the specific case of the pure wino model, which cor-
responds to the Standard Model extended by an SU(2) triplet with zero hypercharge, of
which the electrically neutral member is the dark matter particle. In the subsequent sec-
tion 4 we show our main result, the resummed endpoint-integrated photon spectrum in the



range of dark matter masses of interest and for various Fjes. We match the intermediate
resolution calculation to the narrow resolution one from [7] and find very good agreement.
We pursue and explain this numerical observation in section 5 by expanding analytically
the resummed expressions to the two-loop order and comparing the logarithmic and con-
stant terms. We conclude in section 6. A series of appendices collects additional technical
details on soft and jet function integrals, including the narrow resolution case and the
treatment of the Z-boson resonance, the RGE invariance check for the narrow resolution
case, and the complete analytic expressions for the expansion of the resummation formula
to the two-loop order.

2 Factorization of the energy spectrum

The annihilation cross section of TeV scale dark matter with electroweak charges can be
strongly modified by the Sommerfeld effect [11] due to non-relativistic scattering of the dark
matter particles before they annihilate. This effect is well understood. Our concern are
the large electroweak logarithms in the annihilation rate x°x° — v + X, when the photon
energy is close to maximal, E, ~ m, > my, more precisely m, — E, < Els < m,.
The observation of a photon with this energy implies that the unobserved final state X is
“jet-like” with small invariant mass mx = \/4m, Fres. The logarithmic enhancements of
such final states are caused by soft and collinear physics relative to the large scale m,. In a
systematic expansion in my /m,, where Ejes is parametrically related to myy, m,, as above,
the x°x? — v 4+ X process is separated into a hard annihilation process and the low-scale
initial- and final-state dynamics, which is described by suitable effective Lagrangians valid
at scales 1 < m,.

We assume that the DM particle is the component of an SU(2) multiplet of the elec-
troweak interaction, which remains electrically neutral after electroweak symmetry break-
ing. Since m, > my, this is always a good approximation at leading order in an expansion
in myy /m, unless there are two nearly degenerate heavy multiplets, such that large mixing
can occur. For definiteness, we assume (as in [7]) that x4, a = 1,...,2j +1,is a 25 + 1
dimensional isospin-j SU(2) multiplet of Majorana fermions with integer j (thus hyper-
charge vanishes). The essence of the derivation of the factorization formula below does not
rely on these assumptions.

2.1 Effective Lagrangians and annihilation operators

After integrating out virtualities of order mi, the short-distance part of the annihilation
process is represented by an operator that destroys the two DM particles at a single point,
and a set of collinear and anti-collinear fields along opposite light-like directions starting
from this point, which describe the energetic particles in X and those that convert to the
observed photon. We refer to the direction n" of the jet X as “collinear”. The direction
of the photon momentum defines the “anti-collinear” direction, p5y = Evn’j_. The reference
vectors satisfy n? = ni =0, ny -n_ = 2. A general momentum is written in components
as kM = (nyk,n_k, k), such that for collinear momenta n -k > n_- k, vice-versa for
anti-collinear momenta.



The low-energy dynamics of the intermediate resolution case is described by non-
relativistic effective field theory [12] and soft-collinear effective field theory (SCET) [13-
15]. The kinematics of the annihilation process considered here is a mixture of an inclusive
process in the collinear direction, also called a SCET} problem, and an exclusive final
state of the SCETy; type in the other direction with the added complication of electroweak
symmetry breaking and gauge boson masses. The effective Lagrangian must describe the
interactions of the relevant modes with momentum scaling

hard-collinear (hc) :  k* ~ m, (1, A, V\)
c): kM~ my (1, A3)0)
&) kM ~my (A% 1,0)
)
)

collinear (
anti-collinear (
(

soft (s) : k¥ ~my (A A N)

potential (p) :  k° ~ m3y, /my, k ~ my

ultrasoft (s) :  k* ~ my (A% A%, \?) (2.1)

Hard modes with momentum k* ~ m,(1,1,1) are integrated out into matching coefficients
and are no longer part of the effective Lagrangian by construction. The power counting
parameter is the small ratio A\ = my,/m,. Compared to the narrow resolution case [7],
an additional hard-collinear mode is needed to describe the unobserved final state X with
hard-collinear virtuality of order mi/\ = mymw . On the other hand, the effective theory
for the wide resolution case [6, 8] requires a yet more numerous set of modes to account
for the independent scales Ejes and myy. This set collapses to the one above when Efk is
set parametrically to myy.

The leading hard annihilation processes are those into two energetic final-state par-
ticles. Adding another collinear or anti-collinear field to the primary annihilation vertex,
implies a suppression by at least one power in A due to the scaling of the fields in the
effective Lagrangian. In this work as well as in all previous works on electroweak Sudakov
resummation for dark matter annihilation, the aim is to sum logarithms of my /m, at
leading power in the expansion in A\. Power-suppressed effects in A = my/m, are system-
atically neglected in this treatment.

A consequence of neglecting power corrections is that (anti-) collinear fields must
preserve their identity while emitting soft radiation. Since the energetic final state in the
anti-collinear direction consists of a single photon with nearly maximal energy, which hence
cannot be generated from an energetic fermion or Higgs boson, the leading-power operators
for the hard annihilation process contain a single anti-collinear SU(2) or U(1)y gauge field.
The collinear part of the operator must then also be an SU(2) or U(1)y gauge field by gauge
invariance, because the non-relativistic initial state consists of a DM two-particle state with
vanishing hypercharge and colour, and integer weak isospin. It is therefore not possible to
combine the anti-collinear SU(2) (U(1)y) gauge field with any other single Standard Model
(SM) field to form these quantum numbers, except with another SU(2) (U(1)y) gauge field.
The hard annihilation process is reproduced by the effective Lagrangian

1 ~
['ann - m ;/det Cz(S,t,,U)O'L (22)



with operators of the form

O; = XTI TP xy Al (sn ) AT, (tn ). (2.3)

Here x, is a two-component non-relativistic spinor field in the SU(2) weak isospin-j rep-

resentation, & = —io?x} = —ex; (with € the antisymmetric 2 x 2 matrix with ejo = 1)
A

the charge-conjugated field, and A (Afé’y) the collinear (anti-collinear) SU(2) gauge

le,

field of soft-collinear effective theory. #(For the case of U(1)y, replace Aiu by B, , and
omit TiAB .) The definitions will be given below. Fields without position arguments are
evaluated at x = 0. The operator is non-local, since (anti-) collinear field operators are
integrated along the light-cone of the respective direction with the coefficient function C;.!
The spin matrix I'¥" is contracted with the two-spinor indices of the DM fields (not writ-
ten explicitly) and the Lorentz index of the gauge fields. Similarly, the SU(2) group index
matrix TZ-AB is contracted with the two isospin-j representation indices of the DM fields
(not written explicitly) and the adjoint index of the gauge fields. The operator basis is

given by the list of distinct spin- and group-matrix structures.

2.1.1 Non-relativistic dynamics

For energies below m, but above my the DM interactions are described by the standard
non-relativistic Lagrangian

2
LNRDM = XI}(SL‘) <iDO + 2])> Xo () (2.4)
My
with D, = 0, —iggAg T the SU(2) covariant derivative, T¢, C' = 1,2, 3, the SU(2) gener-
ators in the isospin-j representation of the DM field, and g, the SU(2) gauge coupling. The
Lagrangian can be extended to include interactions suppressed by powers of p/m,. Since
the largest non-relativistic momentum scale is myy, they correspond to power corrections,
which are neglected.

The non-relativistic Lagrangian describes the soft, potential and ultrasoft modes (see,
for example, [16]) of the non-relativistic DM and light SM fields. The soft modes can be
integrated out from the non-relativistic Lagrangian in straightforward analogy with heavy
quark anti-quark systems in non-relativistic QCD. Together with the potential modes of the
light particles, they generate instantaneous but spatially non-local interactions between the
DM fields, that is, DM potentials. The effective Lagrangian for the remaining potential
modes of the DM field and the ultrasoft modes of the light fields, is the potential-non-
relativistic dark matter Lagrangian [17]. At leading power,

2
LpNRDM = lei(x) (iDO(ty 0) — om; + 28> Xoi(Z) (2.5)

my

- > / dr Viigyray () b (83008 (6% 4 1) i (8, %) X (8% + 7).
{e.3H{k 1}

In momentum space, this simply implies that the hard coefficient depends on the large (anti-) collinear
momentum component.



We indicated explicitly the space-time arguments of the fields to highlight the non-locality
of the potential interaction and the fact that the ultrasoft gauge field in the covariant
derivative D is multipole-expanded around x = 0.? Note that the covariant derivative is
now the one with respect to the unbroken electromagnetic gauge symmetry, since ultrasoft
light fields with momentum k& ~ mx)\2 ~ m%/v /my, exist only for fields with masses much
smaller than my,. The electroweak gauge bosons no longer appear as dynamical fields in
PNRDM effective theory.

The soft modes of the light particles have virtuality of order m#,. Hence, in matching
NRDM EFT to PNRDM EFT, the masses of the electroweak gauge bosons and of the
top quark and Higgs boson cannot be neglected. The potential V{ij}{kl}(r) depends on
these masses, resulting in Yukawa (electroweak gauge bosons, Higgs bosons) and Coulomb
potentials (photons). Furthermore, the components of the original isospin-j; DM multiplet
acquire slightly different masses after electroweak symmetry breaking. The Lagrangian
above uses dm; = m; — myo > 0, where m; is the mass of eigenstates labelled by . Since
LpNrpM is no longer invariant under the SU(2) 7 xU(1)y gauge symmetry and calculations
are carried out in broken theory, we express it in terms of mass eigenstate fields y,; rather
than the fields x,q of the SU(2) multiplet.

While soft subgraphs not connected to the annihilation vertex generate potential
interactions, soft momentum running through the annihilation vertex, dresses the non-
relativistic fields in the operators (2.3). Since the leading soft interaction is of the eikonal
type, this dressing takes the form of a Wilson line. This is seen most easily by noting
that the temporal soft gauge-field coupling in the covariant derivative D? in (2.4) can be
removed by the field redefinition

Xea() = Yy a(z0)x D (2) (2.6)

where the soft Wilson line Y, (z) is defined as the path-ordered exponential
0
Y,(x) = Pexp [z’gg/ dtv-AS(x 4+ vt) TC| | (2.7)

—0o0

with T the SU(2) generators in the spin-j representation and v* = (1,0).3 Dropping the

2The multipole expansion must be done around the center-of-mass point, which here is assumed to
be zero. If the center-of-mass were at some @, the matrix elements would acquire an irrelevant phase
due to translation invariance of the center-of-mass. However, the multipole expansion breaks translation
invariance in the relative coordinate by the explicit appearance of the special point & = 0 (and explicit
factors of # in higher-order terms in the Lagrangian). The breaking is always of higher-order in the EFT
expansion than the one of consideration, and is reduced successively with order of accuracy. This can best
be seen in momentum space, where setting £ = 0 corresponds to neglecting subleading ultrasoft momentum
components in the interactions with heavy particles, and the explicit appearance of Z to an expansion in
these components. The same issue arises in the standard quantum mechanics problem of the interaction of
light with atoms, and in the multipole-expansion of soft-collinear effective theory below.

3The field redefinition is analogous to but not the same as the field redefinition discussed in [18]. There
ultrasoft gauge bosons are decoupled from potential fields in potential non-relativistic EFT. Here the decou-
pling refers to soft gluons in NRDM EFT. In both cases the soft Wilson lines can and must be evaluated at
the multipole-expanded position zo = (¢, 0), since the three-momentum of the gauge boson does not enter
the virtual heavy particle propagator in the leading-power approximation.



superscript (0), the non-relativistic part of the operators (2.3) takes the form
XgTF?V[YvTEABYv]XU (2.8)

after the field redefinition. The coupling of soft electroweak gauge bosons to the DM field
is now (at leading power) fully accounted by the Wilson lines Y, in the operator and the
soft gauge bosons are decoupled from the Lagrangian (2.5).

The main use of the PNRDM Lagrangian after the field redefinition is related to the
computation of the Sommerfeld effect. In this context it is convenient to write the sums over
the field indices in terms of a sum over the composite indices I = {ij} and K = {kl} of two-
particle states according to the bound- and scattering-states of the Schrodinger problem
for the relative coordinate. For example, for the triplet wino model, the index 7 takes the
values 0, +, — corresponding to the electric charge of the DM mass eigenstates. The index I
runs over the nine two-particle values 00, +—, —+, 0+, 4+0,0—, =0, +4, ——, ordered by the
modulus of the electric charge. Since electric charge is conserved, it is sufficient for the
computation of the x’x° annihilation rate to solve the Sommerfeld problem in the charge-0
sector of the two-particle states. For the SU(2) j = 1 triplet the fields are related to the
mass basis by x* = (x1 Fix2)/v2, X° = x3. The two-particle states are related by

]

Xehoxon = Kab 11X5 0l 1 (2.9)

where the 9 x 9 matrix Ky, ; can be read off from

XlGX1 0 % % 00 0 0 % % X0€EX0

ey? 0-5 5 00 0 0 5 —5|[yier

x'ex’ 00 0 03 0 J5 0 0]y e,

xZex! 05 =300 0 0 5 =3[/ xoex+

o | =[od T oo 0 0 4l veo| . e
Y2ey 00 0 05 0 —55 0 0 YoeX—

Xie’i 00 0 % 0 % 0 0 0 X—€X0

><36><3 00 0 50-5 0 00 X+EX+

XeX/ g \1 0 0 0 0 0 0 0 O X-€X-/ ;

While the specific form of the K-matrix depends on the SU(2) representation of the DM
field, the formalism is general.

From this point on the non-relativistic part of the problem follows the discussion of
the computation of the Sommerfeld effect for an arbitrary set of heavy fermions nearly
degenerate with the DM particle, developed for the general minimal supersymmetric SM
in [17, 19-21]. The framework described in these papers in turn generalizes the original
work [11, 22] to mixed DM states and reformulates it in the DM EFT context. For the
case of the pure wino triplet, the result is identical to the original treatment, but can in
principle be extended to systematically include radiative and velocity corrections to the
Sommerfeld effect. In this paper, however, as in all previous studies, the Sommerfeld effect
is computed only at leading order in the PNRDM EFT.



What will appear in the factorization formula is the matrix element of non-relativistic
annihilation operators of the form

XheaTxX ey Xoba T Xy (2.11)

which arise from (2.8) after squaring the amplitude. The matrix I' = 1 or ¢! (Pauli matrix)
operates on the spinor index of x,, depending on whether the fermion bilinear destroys or
creates a spin-0 or spin-1 state. By assuming that the spin matrices in the two bilinears
are the same, we implicitly make use of the fact that the potential Vi;jypy(r), while
being spin-dependent, does not change the spin of the incoming two-particle state before it
annihilates. The NRDM EFT matrix element of the above operator in an incoming x;Xx;
DM state with some relative velocity vy, orbital quantum number L = 0 (S-wave) and
total spin S is given by (no sum over i, j) [20]

6 e, X ey XotaTXue, 1XiX5)
= (XX Xea TX5es 0) (OIXEE,TXe, XX (2.12)
= [ty (@02 + 050 )] gtre) @Dy + CUSely),
where 1/}6162 ij
XiX;j state, evaluated for zero relative distance and normalized to the free scattering so-

lution, that is ¢£Lef ”
the second line of (2.12) denote the Pauli spinor of the incoming particles x; and x;, and

is the X, Xe,-component of the scattering wave function for the incoming
— Oe,i 0y in the absence of interactions.? The symbols &;, & in

(...) stands for the trace in spin space (spin sum). The multi-component wave function

(L,S)
we2€i7ij
it to all possible intermediate two-body states ese; with the same charge, spin and or-

accounts for the potential interactions of the incoming x;x; state, which couple

bital angular momentum. Both wave-function components ejes and ese; contribute to the
matrix-element of the operator le Xe,- For an operator with quantum numbers L and S
there is a relative sign (—1)**9 between the two components. The above-defined @ZJel ez, i
is related via

WO = WE(0)]E ey i (2.13)

to the coordinate-space scattering wave-function [ g(r)]r:; at the origin, which in turn
can be obtained directly from the matrix-Schrodinger equation

\v/ 2
<[—2W - E} ok + Vik(r )> [Ve(r)lki; =0 (2.14)
with the potential (2.5), now including the mass splitting between the mass M of the
two-particle state I and the mass of the xOx° state via Vi — Vix + 075 (M — 2my). The
energy FE is fixed through the relative velocity of the initial state, and the label 7j refers to

4The first equality in (2.12) holds, since the PNRDM Lagrangian (2.5) conserves particle number. Hence,
inserting a complete set of states between the two DM bilinears, only the vacuum state contributes.



the fact that this equation should be solved with the initial condition corresponding to the
particular incoming two-particle state ij. pr is the reduced mass of the two-particle state
I, which can be set to m,/2 in the leading-order treatment of the Sommerfeld effect. We
refer to [20] for further details and the methods employed to solve this equation.

For the task at hand, we focus on the initial state I =45 = 00. The other two-particle
states appear only as virtual states in the ladder diagrams summed by the Schrodinger

> Due to electric charge conservation, the potential is block-diagonal and it is

equation.
sufficient to solve (2.14) in the charge-0 sector, which, for the wino example, consists
of I = 00,+—,—+. The description in terms of three two-particle states is convenient,
since the framework can be formulated without additional rules for the construction of
the potential for different S and L. The (anti-) symmetrization is encoded automatically
in the (anti-) symmetry of the operator and its short-distance coefficient. However, the
description is redundant, since the fermion bilinear with +— fields is identical up to a
possible sign to the one with —+. It is customary in the discussion of the Sommerfeld
effect to reduce the basis of two-particle states to non-identical ones (six instead of nine,
for the triplet model, and two instead of three for the charge-0 sector). In the following
we adopt this convention. Specifically, for the wino (triplet) model, I shall then refer to
00, +— only. The precise relation between the two formulations, referred to as method-1
and method-2, respectively, is explained in [20], including the explicit forms of the potential
and tree-level short-distance annihilation coefficients in both methods. Irrespective of the
method, the Sommerfeld factors are defined as

91 .S
Sty = [w(J?OO)} wg)oo)' (2.15)

The discussion up to now ignored the coupling of ultrasoft photons to the charged
members of the DM multiplet through the electromagnetic covariant derivative in (2.5).
This is justified, since the field redefinition mentioned in footnote 3 removes the ultrasoft
photon field from the Lagrangian at the expense of modifying the DM fermion bilinear as

ST Xl r = SuiSui XS Xl (2.16)

where S,; is an electromagnetic time-like Wilson line corresponding to the charge of the
field x4 in I = {ij}. In the charge-0 sector, the charges of the fields 4, j add to zero, which
implies S, Sy; = SW-SL = 1, reflecting the well-known fact that photons with wave-length
much larger than the size of the system only couple to the total charge (here, zero) of
the system.

Finally we note that the factorization of non-relativistic dynamics from the soft and
collinear dynamics of the final state is independent of the photon energy resolution as de-
fined above, at least to the accuracy considered here. The key requirement is the decoupling
of soft and ultrasoft interactions from the ladder diagrams that build up the Sommerfeld

SThey also appear as convenient external states for the computation of the matching coefficients. Since
the potential interaction can convert the 00 into the +— state, which then annihilates at short distances,
the short-distance coefficients have to be computed for all two-particle states, including off-diagonal terms,
see [17, 20].
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effect, which holds because soft gauge bosons throw potential DM propagators off-shell, and
because ultrasoft photons do not interact with the electrically neutral two-particle state.

2.1.2 Soft-collinear dynamics

The characteristics of the final state is an energetic photon, whose momentum is balanced
by a jet of unobserved particles. The low-energy physics of energetic objects with small
invariant mass interacting with soft modes is described by SCET. Its application to elec-
troweak Sudakov situations was first discussed in [23, 24] for the production of two particles
with electroweak charges in a high-energy collision. As in the non-relativistic sector, one
needs two different effective Lagrangians depending on whether the virtuality is much larger
than or of order m%,[,

Although in higher orders all SM fields are present in the collinear and soft interactions,
we restrict ourselves to the gauge boson Lagrangian, since the gauge boson SCET fields
appear directly in the annihilation operators, and since the discussion of fermions is fairly
standard from QCD applications of SCET. The SCET Lagrangian consists of

Lscrr—1 = Le+ L&+ Loofs (2.17)

where Lo is the purely soft field Lagrangian that takes the same form as the corresponding
SM Lagrangian except that all fields are assumed to be soft. The collinear Lagrangian at
leading power is

1
L. = —5tr (FIYFS,) + (DPe) Duge (2.18)

where go " = i [DH, D¥] as usual, but the collinear SU(2) covariant derivative is given by

o
DH = 9" — igy Al (z) — igan_ Ay(z_ + xL)% . (2.19)

We included the collinear Higgs doublet field ¢, for later purposes. At leading power, soft-
collinear interactions involve only the n_ A, projection of the soft gauge field. Moreover,
the soft gauge field is evaluated at the multipole-expanded position z* + 2/ with 2 =
(nyx)n" /2, reflecting the fact that the nik component of the soft momentum can be
neglected relative to the corresponding large component of hard-collinear and collinear
momentum. The Lagrangian above accounts for collinear modes of both, the hard-collinear
and collinear type and is formulated in the unbroken phase of SU(2) gauge symmetry,
since this is relevant to the hard-collinear fields of virtuality m,my,. The anti-collinear
Lagrangian L. is the same up to the interchange of n <+ n_. The above expressions should
be amended in an obvious manner to include the gauge field for the U(1) hypercharge
interaction and its coupling to the Higgs field.

The SCET Lagrangian enjoys separate collinear, anti-collinear and soft gauge sym-
metries [25]. It is convenient to express the collinear Lagrangian in terms of manifestly
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collinear-gauge invariant collinear fields® ®.(z) = Wi (x)pe(z) and

APHT? = Ap(@) = LW W) = [ dom WIRWw ), (220
where the collinear Wilson line is defined as
We(x) =Pexp [z’gg /0 dsny - AS (x +sny) T . (2.21)
—0
In terms of these, together with
iD" = WHDMW, = io" + go A, FB,TP = ;[DM,DV], (2.22)
the collinear Lagrangian is expressed as
L. = —%tr (FFs,) + (D'®.) D, @ . (2.23)

In this form it is apparent that the collinear gauge field degrees of freedom are represented
by the transverse fields, since ny. A, = 0 from (2.20), while n_.A. can be eliminated using
the gauge-field equation of motion (see, for instance [26], appendix B for the operator
equation in QCD).

At scales ;1 < m, there are no interactions between collinear modes of different direc-
tions, as well as between collinear and non-relativistic DM modes, since this would result
in hard virtualities, which are already integrated out into the short distance coefficients
of annihilation operators. However, they all interact with each other through the soft
gauge fields. As was the case for the non-relativistic DM field, the soft gauge field can be
decoupled from the hard-(anti-)collinear fields through the field redefinition”

Al (@) = VP ) ATO @) AP (@) = VI ALV ), (2.24)
with [14]
Y.i(z) =Pexp [—igg/ dsns - AP (z + snz) TP (2.25)
0
Here the SU(2) generator TP refers to the adjoint representation, (T°)gc = —iePBC,

in case of the adjoint gauge field, and the fundamental representation for the analogous
decoupling transformation of the (anti-) collinear Higgs fields. As a result of this field
redefinition, soft Wilson lines appear in the annihilation operator.

5The following construction can be extended to the hypercharge gauge field by introducing an abelian
U(1) collinear Wilson line. Since the Higgs field carries hypercharge, the collinear-invariant field includes
the hypercharge Wilson line.

"In the coupling to hard-collinear (as opposed to collinear) fields, the argument of the soft field in the
covariant derivative (2.19) can be set to x_ at leading-power accuracy, since the transverse momentum
of the soft mode is negligible compared to the hard-collinear one. This simplification is required, so that
the field redefinition in the following equation removes the soft field from the covariant derivative on
hard-collinear fields. Also note the order of adjoint indices in (2.24). With the alternative definition
AB(2) = Ag(m(az)YfB (z—), the sign in the exponent of (2.25) is +iga.
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In the intermediate resolution case, the virtuality of the unobserved jet is not resolved
by the measurement below the hard-collinear scale m,my,. The dynamics of this jet is
described by hard-collinear modes. On the other hand the scale for the anti-collinear direc-
tion of the observed photon is set by the virtuality m%/v of the collinear electroweak gauge
bosons, whose masses cannot be neglected. The photon “jet-function” as well as possible
mass effects within the hard-collinear jet must be computed with the SCET Lagrangian
for the (anti-) collinear modes of the massive electroweak gauge bosons and the photon
after electroweak symmetry breaking. The gauge boson mass term follows from the Higgs
covariant kinetic term in (2.23) from

(D'®,) 1D, ®. = (n,00.)'n_Dd. + (n_Dd.)'n, 89, + (D" @)D, , P,

2e=(0.4/V2) 9§8v2

which shows explicitly that the mass term arises only for the transverse field. The collinear

B7
‘AJ_cu‘AEc,u ) (2.26)

gauge field Lagrangian for virtualities of order m%V, ignoring now the Higgs field, reads

1 mg
Lo= = FOFL + E AL AL, (227)

The hypercharge interaction should be added in the standard way. It is then convenient to
express the Lagrangian in terms of mass eigenstates fields. The collinear fields no longer
interact with soft fields, as discussed above, but the interaction with ultrasoft fields is still
present. However, only fields with masses much smaller than myy can be ultrasoft, and the
leading-power ultrasoft interactions are included through electromagnetic covariant deriva-
tives acting on the electrically charged electroweak gauge fields with covariant derivatives
defined as in (2.19), except that now n_Ag(z_) refers the ultrasoft photon field only.

2.1.3 Annihilation operator basis

The annihilation operators (2.3) and their short-distance coefficients do not depend on
the photon energy resolution as long as Ejes < m,. Two relevant operators have been
identified in previous work [4, 5, 7], but the arguments that these two operators form a
complete basis to all orders in perturbation theory have not been explicitly provided. In
the following we use symmetries to reduce the possible operators to

O = Xf}TijXU AEC,M(SH"I‘)AEE,V(tn_) ) (228)
1

02 = 5 XzCJTFMV{TAv TB}XU Afc,p(sn-F)Afé,u(tn—) s (229)

O5 = x0P(n_p — 1) T xe CAB AL, (s ) AP (1) (2.30)

with the spin matrix in d space-time dimensions given by

' 1 —4 onty 1
= i [0#, 0" 0%(Neg — Npa) = % [c™,c"]o - n d=Lony 56“”0‘5n+an_5 =€". (2.31)
i

(Conventions v* = (1,0,0,0), n'. = (1,0,0,F1), n = (0,0,1), m,n = 1,2,3, 123 = —1
are used.) We then show that the third operator does not contribute when the detected
gauge boson is a photon.

~13 -



We have already shown that the collinear and anti-collinear field must each consist of
a single SU(2) or U(1)y gauge field. Since the wino does not carry hypercharge, operators
with B, (B1z) fields cannot be generated at tree level. Their matching coefficients can
be non-zero starting from the two-loop order through closed loops of particles that carry
SU(2) and hypercharge, such as the Higgs boson and the fermions of the SM. Since two-
loop matching coefficients are needed only for resummation with NNLL’ or higher accuracy,
we drop these operators here. We therefore start from the general form (2.3)

0, = Xf]TF’“’TiABXU Aj_lcw(anr).Afay(tn,) , (2.32)

and note that the two DM fields must couple to an operator with SU(2) isospin 0, 1 or 2.
Thus, the group-index matrix must be from

1
TAP =648, TP = 3 (14,78, TP = £ABTC (2.33)

where T4 are the SU(2) generators in the isospin-j representation.

Turning to the spinor and Lorentz indices, the two spin-1/2 DM fields can couple to
spin-0 or spin-1. In the first case the implicit pair of two-spinor indices of I'* must be of
the form d,. The spin-1 structure is the vector of Pauli matrices (0, o) or [0” — (v-0)v”]45.
For the spin-0 case, noting that u, v are transverse indices, we obtain two different I'*” by
multiplying with

nkn” 4+ ntn?

g =g - s or e, (2.34)

defined in (2.31). For spin-1, the three independent combinations

(nfp - n+p) gjL_V’ (n*p - n+p) Eiya gp)xvne)\mw (235)

can be formed. Here v, (6 —(v-0)v”) = 0 was used to reduce a number of further structures
to the given ones. Together with the three independent SU(2) structures, this results in
six spin-0 and nine spin-1 operators.

The final state of two gauge bosons must respect Bose symmetry, hence the operator
has to be symmetric under the simultaneous exchange of all labels, ¢ < ¢, ny < n_,
A ¢ B, pi <+ v. The admissible structures are therefore the product of TYAZ, T5'B (Tg“B )
with the symmetric (antisymmetric) tensors from (2.34), (2.35), which leaves three spin-0
and four spin-1 operators.

The DM gauge interaction conserves CP symmetry and consequently parity for Ma-
jorana fermions. Since xSy, ( “Tox») has negative (positive) parity, this excludes g
in (2.34) and all except the first structure in (2.35), resulting in the two spin-0 operators
O1 2 and one spin-1 operator O3 as given above.

In the process x"x" — v 4+ X, the assumption of a single photon in the anti-collinear
final state implies that the SU(2) index B in O; must necessarily be B = 3. For the operator
O3, the index C in Xf)TTCXU must then be C' = 1 or 2, in which case the bilinear cannot
annihilate an electrically neutral two-particle state. Thus, O3 does not contribute to the
annihilation into v + X when the photon is required to have nearly maximal energy. We
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note that the remaining two operators are both spin-singlet, so the dominant short-distance
annihilation process occurs in the 1Sy configuration.

When the matching calculations are done with dimensional regularization, the question
arises whether the above operator basis is complete in d dimensions or whether it has to be
complemented by evanescent operators, which vanish in d = 4. We find that no evanescent
operators arise. The d-dimensional basis is given by the same Op2 except that the first
form on the right-hand side of (2 31) should be used for the spin matrix rather than the
four-dimensional expression ¢/ J_ To see this we note that an arbitrary full theory diagram
in the calculation of the hard matching coefficients contains a single string of Dirac matrices
of the form®

(my )y a2 AN u(my ) (2.36)

with indices p; that can be contracted among each other, with the vectors v or ni and
with the two transverse polarization vectors €., €z of the external gauge boson lines. To
obtain an S-wave annihilation operator in the non-relativistic EFT, N must be odd. By
systematically exploiting the on-shell condition pu(p) = u(p), the relations n_ = 2v —n
and ny - .1 = ny - ez = 0, which imply {s#t,,¢., } = {1h,, ¢, } = 0 the string can be
reduced to the two structures

Ecl " €zl ﬁ(mxv)¢+u(p), o(myv)[¢,,  ¢2] 7L+u(p) . (2.37)

After expressing the Dirac spinors in terms of non-relativistic two-spinors, the first structure
corresponds to the spin matrix of Oz, and the second to I'*”.

The operator basis holds for any integer isospin-j DM multiplet with vanishing hyper-
charge. The coefficient functions C7 2 of O12 and their renormalization group evolution
(RGE) to scales 1 < m, can be found in [7] and we refer to this paper and section 3.1
below for the detailed expressions.

2.2 Factorization

In this section we derive the factorization formula for the photon energy spectrum for
intermediate photon resolution. We also comment on the modifications for the narrow-
resolution case, in this way providing the derivation of this case omitted in [7]. To guide
the reader let us preview here the main result of this section by giving the equation that
will subsequently be used for the calculation of the resummed spectrum at the NLL’ order.
Independent of the resolution we can represent the energy spectrum in the form

UUre ij
) Z SriTr(E Z Sty Y Cilp)C; (1) 77 (B, ), (2.38)

4,j=1,2

where the sums over I,J run over all electrically neutral two-particle states that can be
formed from the 2j + 1 single-particle states of the electroweak DM multiplet, and the
sums over ¢,j refer to the two operators ;2. The expression after the first equality

8(Closed loops of DM lines do not contain s and the corresponding trace is well-defined in d dimensions.
Loops of SM chiral fermions require the same treatment as in the SM.
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expresses the factorization of the Sommerfeld enhancement factor from the remainder of
the process. S7j is the same Sommerfeld factor as usual, except that the tree-level short-
distance annihilation matrices are replaced by matrices I'7 y(E), which include electroweak
Sudakov resummation and other radiative corrections up to the specified accuracy. The
expression after the second equality factors the hard matching coefficients, evolved to the
scale p with their RGE equation, which are also universal. The quantity v}jj(E ) is
therefore related to the square of matrix elements of O; in the state (yX]|...|[xx]r), summed
and integrated over the phase-space of the final-state particles. For intermediate resolution,
we shall derive

1 1 2

(V2)mia 4 Tm,
X /dw Jint (dmy (my — By —w/2), 1) W%(w, w,v). (2.39)

V(B ) = Z33(u,v)

The various functions will be defined below. Some of them require rapidity regularization
in addition to the conventional dimensional regularization, resulting in a dependence of the
renormalized function on the rapidity factorization scale v in addition to the dimensional
regularization scale u. We note the convolution of the jet function Ji, for the unobserved
final state X with a soft function W, which accounts for radiation of soft electroweak gauge
bosons and other soft particles into the final state, and virtual corrections. We can compare
this to the corresponding formula for narrow resolution,

Vi (Ey, 1) = (Vayua 4 T, 25 (s v)
X D3733(M7 Z/)D{IBS(Mv U)Jnrw(4mX( X - E’Y)’ M, V) . (240)

The main difference is that the smaller invariant mass of the final state X forbids soft real
radiation. The soft effects are purely virtual, and appear at the amplitude level in the
factors D.

The starting point for the derivation is the general expression for the initial-state
spin-averaged and final-state spin-summed annihilation cross section

d(Uvrol dgp’)’ 4¢(4 2
E = i Zﬁ | Gy 2 G =I5B 1) [Tl @41

The sum-integral symbol implies a sum over all kinematically allowed final states X with
total momentum px and the phase-space integral over the final-state momenta. Summation
over spins is understood for the initial and final state and the overall factor 1/4 accounts
for the initial-state spin average. In the center-of-mass frame the initial-state momentum
is pyy = (2my + E)v. T is the T-matrix element for the transition, and E denotes
the small kinetic energy of the DM two-particle state. After integrating out the hard
momentum modes, the T-matrix element is non-vanishing only if it involves the effective
interaction (2.2), and we can write

TXOX0~>7X Z /detC 5,1, lu’) 2mX< (p’Y)X X |O HXX]OO) (242)
i=1,2
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We have split the sum over X into a sum over (hard-) collinear particles X, and soft
particles Xs. The matrix element is to be evaluated in non-relativistic and soft-collinear
EFT. The factor 2m, arises from the non-relativistic normalization of external DM state.
After the field redefinitions (2.6), (2.24) that decouple soft gauge bosons from the
(hard-) collinear, (hard-) anti-collinear and non-relativistic fields the operators are

O = X T VTP o YV YEW AT, (sn) AT (tn) (2.43)

We now use the symbol Vi (x) to denote SU(2) Wilson lines in the adjoint representa-
tion and recall that fields and Wilson lines without space-time argument are evaluated at
x = 0. Because the different types of fields no longer interact, we can factorize the matrix
element into

(Y(py) XX O |[xxloo) = (v(py)| AT, (tn=) [0)(Xc| AT, (sny) |0) (2.44)
< (X [YITAPY, ) YV YW 10) K1 (O] [XSTTH o)1 1 [xXJ00) -

Translation invariance implies

(v(py)| AL, (tn2) 0) = =27 (y(py)| AT, (0) [0),
(X AL (sn) [0) = et Pxe (X[ AT, ,(0)]0), (2.45)

where px, is the total four-momentum of the collinear final state, which allows us to
perform the s, ¢ integrations in (2.42) and express them in terms of the momentum-space
coefficient function

Ci (nerX) N—Dry, ,LL) - / dsdt eiSnJr‘ch"‘itnf.p’Y éi(s7 t M) : (246)

Up to power-suppressed corrections n_p, = 2E, =~ 2m,, ny - px =~ 2m,. We therefore
define

Ci(p) = Ci(2my, 2my, 1), (2.47)
and these are given in [7] and below in the one-loop approximation required for NLL’
accuracy.

We write the four-momentum conservation delta-function in (2.41) as the space-time
integral of the exponential, insert the factorized matrix element (7y(py)XcXs| O;[[xx]oo)
into (2.42), and the square of the resulting expression for the T-matrix element in (2.41).
In this way, we obtain

Uvrel d? Py
C _
”212 44m2/ o 32p [p,1)

X / dw(pxx—w (Dexdoo (@)l DT 15 10) (0] T Xl 1 100 (Px)

X (0] AL [y () (1(py) | ALL, 10) Ztei”“ (O] AT [ Xe)(Xe AT, 10)

X.
X Zﬁ e_ipxs v ab,IKl/b/ <0‘ yTA XyTB Y [K}TTJA/B,Y;}}Z’IJ’ ’Xs>
X,
X (| [VITABY, oy VAV YBW [0). (2.48)
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We use translation invariance again to absorb the exponentials e~#Xc® e~PXs'T into a
shift of position 0 to = in the first halves of the collinear and soft matrix elements, after
which the sums over complete sets of collinear and soft intermediate states can be done.
We also use (2.12), (2.15) to express the non-relativistic matrix element in the form

(oo (Prod)l DT Xl 10) O] XETTE Xl oo (Prac))
= 4(&TT €o) (65T €0) Sy (2.49)

with & the spinor of an external x° field (with the two orientations 1, |). The Sommer-
feld factor is a function of the small kinetic energy E of the DM two-particle state. For
annihilation in the present Universe E is much smaller than any other energy scale in the
problem. After factoring the Sommerfeld effect, E can be neglected in the other parts of
the calculation, that is, we set p,, = 2m,.

After these manipulations in (2.45), by comparing to (2.38) we can read off the quan-

tity vy, (Ey):

g d3 '
N (Ey) = - / ey S — P 4T )" (5T )

Z4m§< 2m)32p0

x (0L AL [y () (v ()| AL, (0) |0>/d41‘ e'Pocp) e (0| AY, L (2) AL, 0)

X j (018" xy () [ Xs) (X,] S7yw (0)10) 4 (2.50)
Xs

introducing the soft operator
Styw (@) = Kap YT/ PY o (2) VY () VEW (2). (2.51)

The last three factors in the above equation define, in order, an anti-collinear, hard-collinear
and soft function, as follows.

2.2.1 Definitions for the intermediate resolution case

Photon collinear function. The “jet” function for the exclusive anti-collinear photon
state is defined by the squared matrix element

= G 23" =Y (OIAT L (0) (D3 A)) ( (P, MIAT, (0)]0) - (2.52)
A

We have made the sum over photon polarizations explicit. Obviously, only Z§3 is non-
vanishing. From (2.20) and (2.21) is follows that Z33 /83, can be interpreted as the on-shell
photon field renormalization constant in anti-collinear light-cone gauge n_ - Az = 0. Z;j’?’
depends on the electroweak scale masses myy, mz, myg and m; of the SM particles, the
dimensional regularization scale u and a rapidity regulator scale v, since the factorization
formula involves the separation of regions (here anti-collinear and soft) with equal virtuality
but parametrically different n+ momentum components.
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Unobserved-jet collinear function. The jet function pertaining to the inclusive (un-
observed) collinear final state is defined as

1 .
—glful TV, mw) = ;Im[ — glfu, iTXV (p* mw)]

1 Im[i / a0 T{ AT, () A, (0)}]0)

™

_ / diz e (0] A%, (2) A, [0). (2.53)

The jet function is defined in SCET] in terms of the hard-collinear gauge field. It depends
on the hard-collinear scale through the invariant mass squared p? of the final state X, but
also on the scale myy through the electroweak scale masses of the particles inside the jet.
The jet function as defined above is therefore still a two-scale object, which can be further
factorized into a hard-collinear and collinear function [6]. Up to power corrections of order

m%/v/p2 ~ myy [y,
TV (p* mw) = Jne(p?) T ¥ (mw) + O(miy /p?) - (2.54)

The hard-collinear matching coefficient Jiyt(p®) can be computed in the theory with un-
broken electroweak gauge symmetry in close analogy with the standard gluon jet function
in QCD. It depends on the renormalization scale p, but does not require rapidity regu-
larization. The collinear mass-jet function JX" (my) is momentum-independent, but can
depend on both p and the rapidity regulator. However, we find that at tree-level and at
the one-loop order, the collinear mass function is trivial, that is

IXV (mw) = 6%V + 0(a3). (2.55)

It is plausible that this result holds to any order in the coupling, since the observable is

9

not sensitive to the internal jet structure.” We shall make use of this simplification in

deriving (2.39).

Soft function. The sum over the soft final state in (2.50) is the unit operator, which
allows us to define the soft function in momentum space,

_ . i d4k —ik-x 17
O TS s @ TS 01100 = [ 35 e ™ Wiy (). (250
We also define the integrated soft function
id 1 d(n+k)d2kg_ ij
W]]J,VWXY(W) = 2/(277)4 Lj],VWXY(k)

- ﬁ / d(nyy) "+ V2 0| TS, vy ()] TISTyw (0)]10),  (2.57)

“Naively calculating the expression (2.53) with massive gauge boson propagators reveals a leading-
power sensitivity to my . However, this arises from the soft region, which must be discarded, since it is
already accounted for in the soft function defined below. Some technical details on this point are given in
appendix B.1. The mass-sensitive collinear mode with transverse momentum of order my does not appear
in leading power, at least at the one-loop order.
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where w = n_ - k, and then the SU(2) index-contracted soft function

Wi (w) = Wli?},v3v3(w) : (2.58)

The soft functions must be calculated in the broken SU(2) theory and depend on the
electroweak masses of the SM particles. They also depend on the renormalization scale p
and the rapidity regularization scale v.

2.2.2 Derivation of the final formula

With the above definitions of the collinear and soft function, we can rewrite the corre-
sponding terms in (2.50),

t/d%xﬂmxp“w«nALwL<>AKwAm><gfauwwaxy@>ugﬂzsuﬁvwanm>

i fof

— G / (d l; (4my(my — Ey — n_k/2), mw) Wli?},vwxy(k)

X,
d4k 1]
/ : e/ Do PPkl XV (2 iy ) W ey (F)

_—— / Ao XV (A (my, — By — 0/2), ) Wy (@), (2.59)

where in passing from the second to the third line we used p?> — (py, — Py — k)? ~
4my(m, —Ey—n_k/2). There is no dependence on the direction of the photon momentum,
hence we can perform the photon phase-space integral in (2.50),

dSpW E,
/(2”)321’2 (Ey —|pyl) = i —, (2.60)

to obtain

i 1 1 c v
7IJJ(E”/) = ZW( oT K o) <fo Li o)

x 233 / dwJ XV (4my (my — By — w/2),mw) W yaxs(w) . (2.61)

This equation represents the factorization formula for the intermediate resolution case in
its general form. To obtain (2.39), we note that both operators involve the same spin
matrix (2.31), that is T} = I'}” = €/, which implies

(65T €)™ (65 T ymbo) = e (651€0) (651€0) = 8. (2:62)
We then use the property (2.55), which allows us to replace
TYVWE vaxs = JmWi - (2.63)

Finally, we switch from method-1 to method-2 (see the discussion before (2.15)) and sum
only over distinguishable two-particle states I, J. As discussed in [20], this implies certain
replacement rules for the potential used in the computation of the Sommerfeld effect and the
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annihilation matrix I'7 7, which introduces the factor 1/(v/2)™ in (2.39), where n;y = 0, 1,2
depending on how often the two-particle state 00 appears in the index pair IJ. The objects
in the factorization formula are assumed to be evolved from their natural scales, where they
exhibit no large logarithms, to a common scale in g and in v with the renormalization group
equations discussed in the following section. The evolution factors accomplish the desired
resummation of large logarithms.

Let us comment on the treatment of ultrasoft modes that we did not mention in the
derivation. After the decoupling of soft modes from the (anti-) collinear and non-relativistic
fields, all of them still interact with ultrasoft modes. In writing the various sectors in a
factorized form, we implicitly made use of the fact that an ultrasoft Wilson line field
redefinition decouples ultrasoft interactions from (anti-) collinear modes at leading power.
This introduces multiple convolutions from the different sectors with an ultrasoft function.
We omitted this ultrasoft function in the above discussion, since it is actually absent due
to the electric charge neutrality of the initial state and the anti-collinear photon final
state. The soft and the hard-collinear final state, however, are not necessarily electrically
neutral. However, all momentum components of an ultrasoft mode are small compared to
the corresponding momentum component of a soft or hard-collinear mode, such that in
leading power, the ultrasoft momentum transfer to the soft or hard-collinear function can
be neglected. This eliminates the possibility of a non-trivial convolution and allows us to
ignore the ultrasoft mode.

2.2.3 Modifications for the narrow resolution case

Following the above line of argument, we derive the factorization formula for the narrow
resolution case stated in [7] and written in (2.40) in present notation. There is no change
to the discussion of the non-relativistic and photon jet function, but for the unobserved jet
function and soft function, the following differences need to be noted.

The narrow resolution jet function has the same definition as (2.53), except that now
the gauge field is collinear rather than hard-collinear. Consequently, there is no further
factorization. Since there is no soft radiation into the final state, the collinear function must
be charge-neutral which selects the X =V = 3 component of the jet function. The narrow
resolution jet function depends on the collinear invariant mass squared p? ~ m%v and the
electroweak scale particle masses of the SM. It further depends on the renormalization
scale p and, contrary to the intermediate resolution hard-collinear jet function, also on
the rapidity scale v. The different structure of rapidity logarithms for the two cases is
matched by different rapidity logarithms in the soft function. Details on the calculation of
the narrow resolution jet function are provided in appendix B.2.

The small energy resolution Fges ~ m%v /m, forbids soft radiation into the final state,
hence the soft factors are defined at the amplitude level, rather than for the square of
the amplitude as above. Technically, the sum over the soft final state in (2.50) is empty,
such that

Zﬁ (0118 oy () 1X.) (Xa] S}y (0) [0)

s

= {01 ST xy () 10) (01 S} yw (0)0) = Df v DYy (2.64)
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where D},VW is defined as the vacuum matrix element of the soft operator (2.51). The
photon jet function selects Y = W = 3, and the unobserved jet function selects X =V = 3,
which implies that only the single SU(2) component D}733 of the soft amplitude is needed.
As in the intermediate resolution case the soft function must be computed in the broken
theory. The inclusive nature of the soft function for intermediate resolution entails a
partial cancellation of infrared singularities between virtual and real contributions, which
does not happen for the narrow resolution case, where real contributions are absent. This
also changes the structure of the rapidity evolution factor, since the narrow resolution
soft function couples to the rapidity evolution of the collinear and anti-collinear sector,
while only the latter has rapidity divergences for intermediate resolution. This explains
the differences between the two factorization formulas (2.40) and (2.39).1°

3 NLL’ resummation

In this section we collect the one-loop results as well as the NLL’ resummation formulas
for the hard, soft and jet functions. These functions are the ingredients of the factorization
theorems for the semi-inclusive photon spectrum in DM annihilation derived in the previous
section. Furthermore we will show the consistency of the renormalization group and discuss
different resummation schemes.

The hard functions have been computed for an electroweak DM with any integer isospin
j. The (anti-) collinear functions for the photon and for the unobserved jet triggered by
an electroweak gauge boson are universal. The soft function given below is specific to the
triplet (wino, 5 = 1) DM model, which is the focus of this work.

3.1 Hard function

The hard matching coefficients for the annihilation of dark-matter particles in an inte-
ger isospin-j multiplet were previously computed in [7]. For the operators O; 2 defined
in (2.28), (2.29), they read

~4 2 2
g () . . 0 T
- 9 _2immt (4T 1
) = 5 i) |2 -2im o — (1-F )] (3.0
-2 9>(1) m m p
16— — 10— ) —6m -t
2 2
' H 2 M
—|—217T1n% —21n 4777/?(:| s (32)

where c2(j) = j(j+ 1) is the SU(2) Casimir of the isospin representation j, and go(u)
denotes the SU(2) gauge coupling in the MS scheme at the scale u.!'! They satisfy the
RGE equation

d

m@(ﬂ) = (I)i5 (1) Cj(n) - (3-3)

°Tn [7] the rapidity evolution factor V(uw;vs;v;) has been made explicit, while in the present nota-
tion (2.40), the rapidity evolution of every factor is implied to be contained in that factor.
"'When the argument u is omitted in the following, it is implied. Similarly for d&e = §3/(47).
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The one-loop anomalous dimension matrix takes the form

4m? 43 8
. [ 8In—X —8ir — — + —ng 0
r— 22 p? 33 ) . (3.4)
in (4 — dim)es () St X gip - 108
— 417 )C n——em- Tm — — —Nn
2(J 2 3 T 3nc

ng = 3 is the number of SM fermion generations. For NLL resummation we also include the
two-loop cusp anomalous dimension. A detailed discussion of the evolution of the Wilson
coefficients after diagonalization of the anomalous dimension can be found in [7], and will
not be repeated here. Details on the calculation of the hard functions and anomalous
dimensions are provided in appendix A.

It is convenient to define the vector

H=(C;Cy,C5C,C1Cy, C5C,) ", (3.5)

of hard functions which will be used below to demonstrate the scale invariance of the
annihilation rate. The RGE for H reads

d - .
H(p)=TL(u) H .
T ) =Th () H ), (3.6)
with
2Rel'y 0 0 0
I3 T I3
ry=| 'm fotlm 0 v (3.7)
Iy 0 'y 4+ T2 0
0 F21 F;l QRGFQQ

as follows from (3.3).

3.2 Photon jet function

The anti-collinear photon jet function is the same as for the narrow resolution case and
its definition is given in (2.52). Since the photon jet function and the soft function have
the same invariant mass squared of order m%V, they are defined in SCET1 and require an
additional rapidity regulator. We chose to use the rapidity regulator introduced in [27,
28]. Details on the implementation of this regulator can be found in appendix B.1. For
completeness we report the result for Z., = Z§3, already given in [7]:

. () mwy , 2m my
Zy(p,v) = S%V(,u){l ~ an [ 16ln71n VX +81n7

R 80/ m% 5 X 16 . m?
Sl (22 - 2) -y m

. m2 2 m2 m3
+s%v(ﬂ)<3 ngV—3> —4nglnlg] —Aa}, (3.8)
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where v is the scale associated with the rapidity regulator and Sy (u) is the sine of the weak
mixing angle in the MS scheme. Acq is the difference between the fine structure constant
a =1/137.036 and aps(mz) = a/(1 — Aa).

Since Z, depends both on p and v, we need to resum the photon jet function in
virtuality and rapidity. We will first discuss the resummation in g and then in v. The RG
equation is

d
with anomalous dimension
v
L =4 In — +2vz7_ . 3.10
P)/ZW Ycusp 111 2mx + Yz, ( )
The anomalous dimensions can be expanded perturbatively in the form'?
. N
_ @ (0) @2 (1) ~3
Vim0t <47r> % +0(dy) (3.11)

The cusp anomalous dimension coefficients up to the two-loop order are given by

2
=1, 2l = (5 - ) o) - Pra - (312

’YC Sp: 9 3

with cg(ad) = 2 and ng = 3. The one-loop coefficient 72)7)

definition. Calculating the derivative in u of (3.8) using the beta-function of 8%, which

can be obtained from its

can be inferred from (E.17), yields

(0) 43 4
Yz, = Bosu) ( 5 3hc (3.13)
In the computation of (3.10), we used the fact that the cusp anomalous dimension appears
in the same way at all orders [29], so only a one-loop calculation is necessary to determine
the prefactor of the cusp piece. Eq. (3.9) can easily be solved, which results in the following
expression for the virtuality evolution factor

Z’Y(/‘ﬁ v) = U(Hi’ﬂ’f? V)Z’Y(Ni’ V)

Inpgp v
= exp [/ dln g <4%usp In o + 27%)] Zy(piyv), (3.14)
In p; My

where p; and py denote the initial and final virtuality scales before and after evolution,
respectively. Note that (3.14) is a general solution to the RGE (3.9), valid to all orders. The
integral in the exponent in (3.14) has to be computed numerically due to the appearance
of other Standard Model couplings in the S-function beyond one-loop. This is also true for
the virtuality evolution factors of the other functions in the factorization theorem.

12Tn general, starting from the two-loop order, %(1)7 second-order terms involving several SM couplings
can appear. However, this is not the case for the cusp anomalous dimension, which is the only two-loop

anomalous dimension needed at NLL’.
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More care has to be taken when performing the resummation in rapidity. The rapidity
renormalization group (RRG) equation is given by

d
dlnv

Zy (1, v) = vz, Zy(p, v) (3.15)
with the fixed-order one-loop anomalous dimension

v

_a %
Yz, = -

2 0

One could now use (3.16) to solve the RRG. This procedure imposes that one first evolves
in rapidity and only afterwards in virtuality, because in higher orders *y%v contains terms
of the form af In"(u/my) with m < n. If the virtuality evolution is done first, these
logarithms become large and require themselves resummation. To avoid this issue, we note
that the independence of any observable of the scales 1 and v gives the condition

d d
— | =0. 1
{dlnu’dlnu} 0 (3:.17)
From (3.9), (3.15) and (3.17) we deduce the constraint

d , d
’YZ,Y = dan’ng = 4’)/Cusp . (318)

dlnp

(A similar constraint also applies for the soft function, discussed in section 3.4 below.) We
can now solve (3.18) to obtain the integrated form of the rapidity anomalous dimension

Inp d
— / yoi !/
vz, (1) = / dlnp T2 (') + const. , (3.19)

where the constant is determined such that one obtains the fixed-order non-cusp piece of the
rapidity anomalous dimension, which is zero at the one-loop order (3.16). The logarithms
In(p/my) are summed by (3.19) to all orders in perturbation theory. Using the integrated
form (3.19) of the rapidity anomalous dimension, we solve the RRG (3.15) to obtain the
resummed rapidity evolution factor

4 . G20)

7

Zo (s vp) = V(s viy vg) Zoy (1, vi) = exp [7%7 (1) In

where v; and vy denote the initial and final scales of the rapidity evolution, respectively.
Expanding the argument in the exponent of V' (i, v;,v¢) in Go to order O(éaz), one would
recover the rapidity evolution factor that can be computed from the fixed-order expression
for 7%7 in (3.16). Note that in order to confirm the p-independence of the cross section,
which will be discussed below in section 3.5, it suffices to use this fixed-order expression.
For more details on the rapidity evolution factor we refer to [28].

Depending on which resummation path is chosen, the anomalous dimensions in both
evolution factors (3.14) and (3.20) are required at different order. If we first evolve in
rapidity and only afterwards in virtuality, the p-dependent logarithm in V(u,v;,vy) is
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never large and we only need veusp at the one-loop order to achieve NLL’ accuracy. At the
same time, the v-dependent logarithm in U(j;, pf,v) will be large and thus the virtuality
evolution factor requires 7yeusp at two loops. If we first resum in virtuality and then in
rapidity, the situation in reversed and we need 7cusp at the two-loop order for V(u, v;, v¢)
and at one-loop for U (s, puf,v).

Using the resummed expression for V' (u,v;,vf) and keeping in mind which order of
the anomalous dimensions needs to be included ensures path independence for the pu — v
resummation, which implies the relation

V(Mfa Vi, Vf)U(:U“iv Ky, l/i) = U(MZ) Ky Vf)V(Mi> Vi, Z/f) : (321)

For the resummation of the photon jet function, we chose to resum first in rapidity and
then in virtuality. As discussed above, for NLL’ accuracy, this requires veusp in the one-loop
approximation for V(u,v;, vy) and we use (3.20) in the form

V% aa(p) \, i
In | = In 5
Bo,su(2) ) v

Z, (. vy) = exp Z, (1, vs). (3.22)

a2 (mW i

The virtuality evolution factor U(u;, pf,v) is computed with the two-loop cusp and one-
loop non-cusp anomalous dimension from (3.14). The resummed photon jet function reads

Zoy (g vp) = Ul pups vg) Vi vis vy ) Zo (i Vi) - (3.23)

Hence, the rapidity scale appearing in the virtuality RGE (3.14) is to be understood as the
endpoint v ~ my of the rapidity evolution.

3.3 Jet function for intermediate resolution

The jet function (2.53) in the intermediate energy resolution case describes the unobserved
hard-collinear final state with virtuality m,my > m?,. It is therefore justified to neglect
the masses of the electroweak gauge bosons, the fermions, and the Higgs boson, and to cal-
culate the jet function in the unbroken regime of the SU(2) 7, xU(1)y gauge symmetry. This
implies that no additional rapidity regulator is needed (contrary to the case of the narrow
resolution jet function, which is further discussed in appendices B.1 and B.2). We sepa-
rately give the results of the Wilson line contribution and of the self-energy contribution,
in order to better identify the origin of the different terms, and hence write

iTXV (P2 1) = i Titeon (P 1) + 1758 ¥ (P, 1) - (3.24)

The one-loop results for the unrenormalized jet function terms read

' §XV 2 < 2(u 4 9 2
Zj\})v(i‘lgon(p2vu) = 2%{1+ < > 2( )62(ad) <€2+€+4_3>}’ (325)

D —p? —ie) 162
v i N\ g3 [1(5 8 1
XV 2 5
= “—\ 9 - ;T - *Ts s
e (P 1) = T (—pQ—ie) 1672 {e (362(ad) 3 e ”)
1 4
—i—%cQ(ad) — KOTFTLG — STSnS} , (3.26)
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where Tp = Ts = 1/2 and ny = 1. The jet function follows after taking the imaginary
part and expanding in terms of star distributions [30]. We obtain, using (2.55) and the
numerical values of the group factors,

N 2 p2
G (e 70 19 [ 1711 In 25
Jint (p%, 1) = 6(p*) + ZST) {5(172) <9 - 27r2) - [1)2} +38 pg . (3.27)

*

The definition of the star distributions is provided in (B.36) of appendix B.2.

The further treatment is very similar to the gluon jet function in QCD [31]. It is
convenient to work with the Laplace-transformed jet function jjt since it renormalizes
multiplicatively. The Laplace transform of Ji(p?, 1) is defined by

. 2 <9 —Ip2 2
Jint [ In—5, dp*e™" Jint (D%, 1), (3.28)
H 0
where [ = 1/(e7272) and the explicit result after renormalization reads

72 ao () 72 72 70 472
int (1 , 1 4127771 — ). 2
’ t<nu2 M) T < s 293 ) (3.29)

The corresponding RG equation is the ordinary differential equation

d 72 ) 72
a0 (1n = u) = 9} Jint <1n 2 u) (3.30)

with Laplace-space anomalous dimension

2
.
vﬁb —4Yeusp In 2 2vy. (3.31)

~7 is needed at the one-loop order for NLL’ resummation,

& .
Y7 42730) +... with 750) = —607SU(2) ) (3.32)

The RGE (3.30) is solved by

. 72 In p , . 72 . 72
Jint (hl Mg:“) = €exp |:_/1 dlnp (4'Ycusp(a2( ))lnr + 27J(a2(:u ))):|]int In M2"u1

n f; J

: 72"
=exp [4 S(Mj,/i) + QAWJ(iju)]]int (87%”]') <M2> ) (333)
J

where ;1 ~ | /m,myy is the natural scale of the hard-collinear jet function and the integrals
S(pj, ) and Ay, (uj, i) are defined as

In g MQ
S(/iju) = _/1 dln M/ 'Ycusp(dQ(M,)) In T,JQ, (3.34)
IllA]
Inp
AyGryop) == [ din g2 (o). (3.35)
1’1/1]'
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The variable 7 is defined by

n= 4A'Ycusp (/’[’]7 /’[/) . (336)

As mentioned before, at NLL’ the integrals S(u;, ) and A, (u5, 1) can only be solved
numerically due to the appearence of several SM couplings in the S-function for é&s beyond
one loop. Note that in the second line of (3.33), the logarithm in the argument of the
Laplace-transformed jet function has been traded for a derivative with respect to 1. The
complete 7-dependence of ji is then contained in the factor (72/ u?)", and the inverse
Laplace transform becomes simple. By exploiting the relation

/ dp?e /(TP (p2)1TE = (n)erEn (£2)7 (3.37)
0
one obtains the resummed jet function in momentum space in the form
o0 = 5D 4 )+ 2 Ay G 0 O ) e (2) L a)
int\P, {t) = €Xp i, ) + Hjs )] Jin i)+~~~ 5| T3 . .
t J vJ g A\ Ky 1—\(77> pz M?

The more complicated jet function for the narrow energy resolution, Ju.w, was used
in [7]. In appendix B.2, we provide details on its computation and give its full expression.

3.4 Soft function

The soft function is defined by the vacuum amplitude (2.57) of the soft operator (2.51) with
index contraction as specified in (2.58). Let us recall that the soft operator is the product
of soft Wilson lines arising from the decoupling of soft SU(2) gauge bosons from the four
particles in the 2 — 2 annihilation amplitude. The SU(2) indices are then contracted in a
way that depends on the operator O; and the external DM two-particle state I, resulting
in the function W}f](w)

The soft function is sensitive to physics at virtualities of order m%v, and therefore
must be computed in the effective theory with broken SU(2);,xU(1)y gauge symmetry
and massive SM particles (unless the mass is much smaller than myy). For NLL’ accuracy,
the one-loop soft function and its NLL RG evolution is needed. Here we summarize these
results. Technical details on the computation of virtual and real one-loop diagrams are
given in appendix C, including the regularization, which involves rapidity regularization,
together with some observations on partial virtual-real singularity cancellations.

The virtual one-loop contributions to the soft function are the same as for the narrow
resolution case and they were already computed in [7]. In the intermediate resolution range,
the real emission of soft EW gauge bosons is kinematically allowed. The new contributions
as well as the virtual diagram results are given explicitly in appendix C. To guide the dis-
cussion we present here the result for the W?2 ) component of the soft function, which

(+-)(+—
has the most complicated structure and allows us to explain the resummation procedure:

& 1% mw mw mw
W(2_E_)(+_)(W7M7 V) = 5(0.)) + 2( ) |:5(W) <—811'llu — 161117111 ]j>

4T
6 2 2 17 [mw] 2
~~n (W) + [] 81n ”2] . (3.39)
w miy, W, miy,
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The complete set of soft function components for all operator and two-particle-state com-
binations is collected in appendix C.4.

As for the unobserved-jet function, renormalization becomes multiplicative in Laplace
space. The forward and inverse Laplace transforms are defined as

w@yzcwwm}:%fﬁwfwuqm, (3.40)
c+100
W(w) = £ fuw(s)} = 2iz/". ds €™ w(s). (3.41)

As can be seen from (3.39), the Laplace transforms required for the soft function are

(s =1/(e"K))
L{(w)} =

()

5{11<ij“>}_a(mW@+a%mW@=G@% (3.42)

w my,

where the functions si, ci are defined as

si(z) = — /oo dt sint(t)’ and ci(x) = — /OO dt cos(?) . (3.43)

It is convenient to introduce the following vector notation
. 112 21 22\T 3.44
wry = (lealea Wy, W IJ) (3.44)

for the Laplace transformed soft functions. The RRG equations for the soft functions take
the form

d ~
qu(s p,v) = Ly wry (s, p,v), (3.45)

where the fixed-order one-loop rapidity anomalous dimension is given by

cusp

G mw
Y = — 490 In—~14. 3.46
4m " I : (3:46)

Note that the non-cusp piece of I'}j; is zero at one loop. The discussion of the rapidity evolu-
tion factor from section 3.2 equally applies to the soft function. We hence use (3.18), (3.19)
and (3.45) to compute the rapidity-resummed soft function

- v 1% —
Wry(s, p,v) = exp [I‘W(/,L) In V} Wry(s, p, vs), (3.47)

where I'f, (1) is the integrated rapidity anomalous dimension for the soft function. As was
discussed in the case of the photon jet function, the order of the anomalous dimensions
included in (3.47) depends on the resummation path in the p — v plane. The RRG is
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diagonal in both the operator index, encapsulated in the vector notation, and the two-
particle state index pair I.J. Notice that only the soft functions and the photon jet function
depend on the rapidity scale. We make the choice to evolve the photon jet function from
the jet rapidity scale vy, ~ 2m, down to vs ~ my,. This means that we can set v = v, for
the soft function, which makes the rapidity evolution factor (3.47) equal unity.

The virtuality RG equation for the Laplace-transformed soft function is also diagonal
in I.J, but its non-cusp piece is non-diagonal in operator space,

d
mwlj(s,,u,l/):I"lle’LE]J(S,M,l/), (348)
with anomalous dimension
0 0 0 0
—2vw 3w 0 0
TV, = 4 yeup In - 14 + : (3.49)
v “2vy 0 3wy 0

0 =2y =2y 3w + 3y

As in the case of the photon jet function, (3.46) and (3.49) can be obtained from their
definitions by taking the derivatives in p and v, respectively, of wrs. At the one-loop
order, which is enough for NLL’ resummation, the anomalous dimension yy evaluates to

WD = (24 2mi)ea(f) - (3.50)

The solution to (3.48) takes the form

- — o KR\
g (s, 1,v) = B O (1 1) Rz (5, 116,0,) () (3:51)

The evolution matrix Uy is diagonal,

10 0 0
0 exp[34,, ] 0

Uw = | 0 exp [3 Am} 0 , (3.52)
0 0 0 exp [3(Aqy, + Ayg,)]

and the diagonalization matrix R and its inverse R~! are given by

2 3
2000 3000
-21 00 ., 1100
R = , R'= (3.53)
-20 10 1010
2 3 2222
3—1-13 3333

The integrals A,,, and n have been introduced in (3.35) and as already explained there, they
can only be solved numerically at NLL’. As a last step we need to go back to momentum
space and compute the inverse Laplace transform of (3.51). The entire dependence on
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k is contained in Wy (s, s, Oy) (g)n We therefore define W]J(W,M57V) to be the inverse
Laplace transform of wr(s, s, 0y) (f)n:

Wrstoper) = £ [anstoomnon (£)' ] (3.54)

14

The inverse transformation requires the computation of

G- ()5 355)

Flw) =L [(i)né(e—wm)]

e B\ Wit 3 n3 n w?
= F(1L1,L,5 0+ 2,242 2= ). (356
( v > F(2+n)mgv43< SRR m%/v> (3:56)

For the above representative index and operator combination I.J = (+—)(+—) and ij = 22,
the inverse Laplace transform gives

2722 _ Ga(ps) s _ mw || e L rwyn
WE W, pis,v) = {H dn [(16lnmwa’7> S ]} T'(n) w< )

+ 6‘24(7’:3) (—6)F(w). (3.57)

The results for W}f] in all possible index and operator combinations IJ and 7j are collected
in appendix C.5. Finally, using (3.51) and (3.54), we find that the virtuality resummed
soft function in momentum space takes the form

WIJ(("}?//L:V) = R_l UW(M?MS)RWIJ(WM-LS’V)' (358)

We emphasize that we did not include the rapidity evolution factor (3.47) in (3.58), since we
evolve Z, in v from v}, to vs which makes the soft function rapidity evolution factor unity.

3.5 RG and RRG invariance of the cross section

The factorization formula for the intermediate resolution case given in (2.38) and (2.39)
puts constraints on the anomalous dimensions, since the physical photon energy spectrum
has to be independent of the virtuality and rapidity factorization scales p and v. This
independence on the scales manifests itself in the two consistency equations

Cl d(O’Urel)
=0 3.59
dlnp dE, ’ (3.59)
d d(UUrel) o
dny B, 0. (3.60)

Note that the Sommerfeld factor (2.15) is computed at leading order, which makes it scale
independent so it does not have to be taken into account when computing (3.59) and (3.60).
In previous subsections, we already made use of the fact that a Laplace transformation
turns convolution into multiplication. It is thus easiest to derive the implications of (3.59)
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and (3.60) in Laplace space, by taking the Laplace transform of (2.38), (2.39) with respect
to the variable e, = 2(m, — E,). Calling the Laplace variable ¢, the Laplace transform
of the convolution of the jet with the soft function is (for brevity, we omit p and v in the
arguments, as well as operator and two-particle state indices)

o] [t dwemyte, )W) = [Tae e [T o s, - 0) W)

00 2 o]
_ / dp e—tp2/2mx Jint(p2)/ dw e—th(w)
0 2my 0

1 . 2m,y,
= mﬂim (ln te'YE,uz) w(t) . (3.61)

When going from the second to the third line in (3.61), we made use of the substitution p? =

2m,, (e —w). Also, since p? is strictly positive, we can set the lower p*-integration boundary
to zero. Using the definitions (3.28), (3.40) of the Laplace-transformed jet function and soft
function, respectively, we arrive at the fourth line of (3.61). We can therefore write (3.59) as

d
dlnp

= S . 2m
B (1) - 0t s ) Zs (1) i (m Wu)] —0. (3.62)

Taking the derivative and making use of the definitions (3.6), (3.9), (3.30) and (3.48) of
the anomalous dimensions results in

FH+F%+’Yg714+’Y§-L14 =0. (3.63)

The terms in (3.63) are matrices in operator space. Because the virtuality RG equation for
the Laplace-transformed soft function is diagonal in I.J, (3.63) holds for every index pair
IJ. We can now use the values of the anomalous dimensions, given in (3.7), (3.10), (3.31)
and (3.49), to verify that (3.63) is indeed satisfied. For example, for the cusp terms, the
consistency equation reads explicitly

4m? 1 v 2m
<4’YCUSp In T2X + 47cusp In % + 470usp In % — 4PYCUSp In t@’YEZQ> 14 =0. (364)
The same steps can be applied for the evaluation of (3.60), except that in (3.62) we
differentiate with respect to Inv. Since only the photon jet function and the soft function
depend on the rapidity scale v, using the definitions (3.15) and (3.45) results in the rapidity
consistency equation

74 1+ Ty = 0. (3.65)

This can be shown to be satisfied by the values for the rapidity anomalous dimensions
given in (3.16) and (3.46).

Since (3.63) and (3.65) are fulfilled, we confirm that at the one-loop order the factorized
cross section is independent of the scales u and v. It should be noted that the cancellation
of the off-diagonal non-cusp terms of I'y and I}y, in (3.63) is non-trivial. In total, this
provides a strong check of the consistency of the calculation. The corresponding consistency
check for the factorization of the narrow resolution case is presented in appendix D.
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Figure 2. Different possibilities for resumming the functions in the factorization theorem. Left:
common reference scale is ;. Right: common reference scale is ;. In both cases, Z, is evolved in
v from vy, to v,.

3.6 Resummation schemes

Having collected the RG equations for all the factors in the factorization formula, we show
in figure 2 two different possibilities for the resummation of the functions appearing in the
factorization theorem. For the first resummation scheme, shown in the left figure 2, we
choose s as the common reference scale and evolve the Wilson coefficients C; and the
unobserved-jet function J down to the soft scale us, while the soft function W and the
photon jet function Z, do not contain large logarithms when evaluated with p = pg, and
hence do not require resummation in p. Resummation in the rapidity scale is however
necessary. We choose to evolve the photon jet function from v, to vs. Equivalently one
could also evolve the soft function from v to vp,. This resummation scheme is close to the
implementation of the narrow resolution case [7], where there is no hard-collinear scale y;,
and the hard functions are evolved all the way from the hard to the soft scale.

A more conventional implementation of resummation in the presence of an intermediate
hard-collinear scale is the second resummation scheme illustrated in the right figure 2. Here
we choose 1 as the common reference scale, and evolve C; down, and Z, and W up to p;.
Z, is evolved in rapidity from v}, to v, as before. Note that in this second case, as discussed
in section 3.2, the specific form of the rapidity evolution factor V' depends on whether we
first evolve in v and then in p or vice versa. Since we saw that V takes a simpler form if we
resum first in v and then in u, we choose this ordering, as is also shown in figure 2 (right).

Both schemes give the same results up to effects beyond the accuracy of the truncation
of the RG equations.

4 Results

In this section we present the results for the DM annihilation process x°x° — v + X,
assuming an intermediate energy resolution FEpes of the instrument of order of the weak
scale myy. First we show (ov)(Fres), as defined in (1.1), as a function of the DM mass
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m, and then perform a numerical comparison of the present calculation with the narrow-
resolution result of [7]. An analytic comparison of the two energy resolution cases is made
in the next section, where we discuss the logarithms in the annihilation rates up to the
two-loop order.

For the numerical results given in this section we use the couplings at the scale
myz = 91.1876 GeV in the MS scheme as input: ao(mz) = 0.0350009, a3(mz) = 0.1181,
82 (mz) = 63 /(93 + 33)(mz) = 0.222958, \;(mz) = 0.952957, A\(mz) = 0.132944. The MS
gauge couplings are in turn computed via one-loop relations from mz, myy = 80.385 GeV,
aops(myz) = 1/128.943, and the top Yukawa and Higgs self-coupling, which enter our calcu-
lation only implicitly through the two-loop evolution of the gauge couplings, via tree-level
relations to m; = 163.35 GeV (corresponding to the top pole mass 173.2 GeV at four loops)
and my = 125.0 GeV.

4.1 Energy spectrum

The upper panel of figure 3 shows the cumulative endpoint annihilation rate (ov)(Eres),
plotted as a function of the DM mass m,. The mass range includes the first two Som-
merfeld resonances. The different lines refer to: the Sommerfeld-only calculation (black-
dotted), also called “tree”, since I';; is evaluated in the tree approximation without any
resummation, and multiplied with the Sommerfeld factor S7; according to (2.38); the
LL (magenta-dotted-dashed), the NLL (blue-dashed) and finally the NLL’ (red-solid) re-
summed expression for 'y, the latter of which represents the calculation with the highest
accuracy. The photon energy resolution is set to Epes = myy in this figure.

The lower panel of the figure shows the same LL, NLL and NLL’ resummed annihilation
rates, but normalized to the Sommerfeld-only result for better visibility of the resummation
effect. We see that the resummation leads to a substantial reduction of the cross section,
as is generally expected for Sudakov resummation. The size of the effect is consistent
with the finding of previous computations [3-5, 7] of related observables or in different
resolution regimes. In particular, in the interesting mass range around 3 TeV where wino
DM accounts for the observed relic density, the rate is suppressed by about 30 — 40%.

The resummed predictions are shown with theoretical uncertainty bands computed
from a parameter scan with simultaneous variations of all scales. Specifically, the scales
[th, Vp, were varied in the interval 2m,[1/2, 2], uj was varied in the interval \/2m,my[1/2, 2]
and ug, vs were varied in the interval myy[1/2,2]. The errors were then determined very
conservatively by taking the maximum and minimum values in this five-dimensional pa-
rameter space. This scan was repeated for each mass point. For each parameter scan, we
specified 21 values distributed logarithmically in the intervals given above, with ten values
above and ten below the central values of the intervals.

We find that the residual theoretical uncertainty at the NLL’ order becomes neg-
ligible and is given by the width of the red-solid curve in figure 3. It is also ap-
parent that the different levels of resummation successively reduce the theoretical un-
certainty considerably, from 15% at LL, to 9% at NLL and 1% at NLL’ at m, =
2TeV. Numerically, for the two mass values m, = 2TeV (10TeV) the ratio to the
Sommerfeld-only rate is 0.64175195 (0.402+3985) at LL, 0.707+39% (0.46375:059) at NLL
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Figure 3. Integrated photon energy spectrum within EJ from the endpoint m, in the tree
(Sommerfeld only) and LL, NLL, NLL’ resummed approximation. The energy resolution is set to
EY . = mw. The shaded/hatched bands show the scale variation of the respective approximation

as described in the text. For the NLL’ result the theoretical uncertainty is given by the thickness
of the red line.

and ().665J_r8:88§ (0.434”_L8:88g) at NLL’. The central values correspond to central scales of
the above intervals.
It is instructive to separate the integrated photon energy spectrum (ov)(FEks) into the

contributions due to the different Sommerfeld factors in (2.38). Thus, we write

(ov) = S(00)(00) [7V](00)(00) + 2Re[S(00)(+—) [70](00)(+—)] + S(+=)(+—)[OV](+-)(4—)» (4.1)
where

o) = [ B TE) (42)

My _E;yes
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as in (1.1). We find (Sommerfeld factors in bold), adopting Eres = myy,

(ov) = [34.246 x (1.5886) + 2Re [42.100 x (—1.1356 + 5.7902i)]

1% ~—6%
+ 51.755 x (30.054)] x 1072 cm?/s = 1.5142 x 1072 cm?/s, (4.3)
~102%

for m, = 2 TeV and

(ov) = [1.1345 x (1.8637) + 2Re [0.35103 x (—1.3934 + 7.78404)]

~27% ~—12%
+ 0.10861 x (63.080)} x 10727 cm?3/s = 7.9872 x 10727 cm?/s . (4.4)
~85%

for the smaller DM mass value m, = 500 GeV. We observe that at m, = 2 TeV (and
similarly for larger masses), the Sommerfeld factors are large, as expected, and the an-
nihilation rate is dominated by the (+—)(+—) hard annihilation channel, which starts at
tree level in the fixed-order expansion. The Sommerfeld factors are O(1) and even smaller
than 1 for m, = 500 GeV for the off-diagonal annihilation contributions (00)(+—) and
(+-)(+-), for which the Sommerfeld enhancement does not compensate the loop sup-
pression at small masses.

The results shown in this section were computed with the more conventional second of
the two resummation schemes discussed in section 3.6. We implemented both schemes and
found full numerical agreement at NLL’ at the 0.1% level, as also follows from the analytic
comparison, see (5.25) below.

4.2 Matching energy resolutions

In the introduction we identified three different regimes for the energy resolution Es, the
narrow, the intermediate and the wide region. These cover the entire range of Eks for DM
indirect detection experiments. In [7] we provided NLL’ predictions for the photon-energy
spectrum near the endpoint assuming a narrow energy resolution of Efes ~ m%/v /my, close
to the line signal, while in this work we focus on Ejes ~ my, which is more realistic for
present and future indirect DM searches in the TeV energy region. The two calculations
differ in the structure of the unobserved jet function and the soft function, and exhibit dif-
ferent large logarithms. The question arises whether the two computations can be matched
to provide an accurate result for the entire range from Eos ~ 0 to Efes ~ 4myy, which we
tentatively define as the upper limit of validity of the intermediate resolution case.

In figure 4, we show the annihilation cross sections for the narrow (blue-dotted) and
the intermediate resolution (red-dashed) cases, plotted as functions of Fyes for two repre-
sentative DM mass values, m, = 2TeV (upper panel) and m, = 10TeV (lower panel).
We also indicate the regions of validity of the narrow resolution (light-grey/blue) and the
intermediate resolution (dark-grey/red) computations. The boundaries of these regions are
defined by m¥,/m,[1/4,4] (narrow resolution) and my[1/4,4] (intermediate resolution).
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Figure 4. Annihilation cross sections plotted as function of E,_. The blue-dotted line shows the
cross section for the narrow resolution computed in [7]. The red-dashed line shows the intermediate
resolution cross section. The light-grey (blue) area represents the region of validity for the narrow
resolution case and the dark-grey (red) area represents the region of validity for the intermedi-
ate resolution case. The ratio of the intermediate to narrow resolution annihilation cross section
(0V)int/(0V)nrw 1s added below each plot. The results are shown for DM masses of m, = 2TeV
(upper plot) and m, = 10TeV (lower plot).

We observe a wide interval in Ep, covering the range of resolution in between the
validity regions of the two calculations, for which the annihilation rates in both calculations
agree with high precision. At low resolution there is a steep rise of the narrow resolution
rate, which occurs at Fpes =~ 4m2Z /my. Above this value the resolution is not enough
to separate the vZ contribution, leading to a sharp increase of the semi-inclusive rate.
Since the unobserved-jet function for the intermediate resolution cross section is computed
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under the assumption that the particles are massless, this feature is absent in this curve
(dashed/red), which is hence clearly not valid for very small resolution. In the narrow
resolution regime the invariant mass of the unobserved-jet function also passes through the
WHW =, ZH and tt thresholds. However, these thresholds are not visible on the scale of
the plot. The narrow resolution computation agrees very well with the intermediate one
well into the regime of validity of the latter, and vice versa. As one moves to even higher
ElLs, the intermediate resolution line starts to depart from the narrow resolution one. Here
the narrow resolution computation clearly ceases to be accurate, because it fails to capture
the effect of soft electroweak gauge boson radiation, which is now kinematically allowed.
Nevertheless, even at the highest Es = 1TeV shown in the plot, the difference stays
below the 20% level, as can be seen from the ratio plots at the bottom of the two panels
in figure 4. We note that as the DM mass becomes larger, the separation between the two
validity regimes (the shaded bands in the figure) increases, but the matching continues to
work well even for the 10 TeV DM mass example.

These observations show that the present work and [7] combined result in highly ac-
curate theoretical predictions for the photon energy spectrum in dark matter annihilation,
here for the wino model, in the entire energy resolution range from Efbs ~ 0 to Efes = dmyy .
It would be interesting to perform a similar matching between the results of the present
paper and the results of [6], which would extend the knowledge of the resummed energy
spectrum to even wider resolution. As discussed in the introduction, with the anticipated
energy resolution of the CTA experiment, we expect this to be necessary for DM searches
only in the 10 TeV mass region and beyond.

5 Fixed-order expansions

In this section we perform analytic expansions of the annihilation rate matrix I'7; up to
the two-loop order. This provides some insight into the structure of large logarithms in the
photon energy spectrum at large photon energy, depending on the energy resolution, and
explains why the two computations agree remarkably well over a large interval of Epks, as
observed in the previous section. Readers interested only in the numerical result for the
spectrum may skip this section.

5.1 Double-logarithmic approximation

Before moving to fixed-order expansions it is instructive to compare the NLL’ result to the
double-logarithmic approximation. This approximation is obtained by a) evaluating all
functions in the tree-approximation, b) keeping only the &gy x log? terms in the exponents
of the RG evolution factors. For the two resolution regimes discussed in this paper, the
double-logarithmic approximations read

~ 2
2m6353, T . m2 B il
(0 Els) = = 5% [S%V + o (EW - 4mz>] e WS, (5.1)
X X
omadas, S
(ov)int (Bres) = — 57 ¢ "W Sy (5.2)
X
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Figure 5. Same as figure 4 but in the double-logarithmic (“simplified”) approximation. For
comparison the complete (“full”) NLL’ results of figure 4 are also included (dimmer dashed and
dotted lines). Top: m, = 2 TeV. Bottom: m, = 10 TeV.

The dependence of the coefficient of large logarithms on the energy resolution is already ap-
parent from these equations. Since the ‘nrw’ formula describes an observable that is more
exclusive than the ‘int’ one, the effect of the Sudakov double logarithm is, as expected,
larger for the former. The exponents arise as follows in the first resummation scheme of
section 3.6, where all functions are evolved to the soft scale. In both, the ‘nrw’ and ‘int’
energy resolution formula the resummation of the hard function is responsible for the con-
tribution —2‘—; x 4 In? ini;‘ to the Sudakov exponent from the diagonal cusp logarithm in the
anomalous dimension (§V4) While in the ‘nrw’ formula there are no further sources of dou-
ble logarithms, the evolution of the unobserved-jet function from the hard—collinear to the
soft scale for the ‘int’ case adds the (positive) contribution +°‘2 x In? 2 , which partially
compensates the Sudakov suppression associated with the hard- functlon resummation.
The double-logarithmic approximation is visualized in figure 5. It is seen that within
their respective validity ranges (shaded areas in the plots) the double-log approximations
of the intermediate and narrow resolution results are close to the full NLL’ resummed
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results, shown for comparison (dimmer dashed/red and dotted/blue curves). In the narrow
resolution case the step function in (5.1) correctly describes the sharp rise of the annihilation
cross section due to the opening of the vZ channel.

However, figure 5 also demonstrates that the precise shape of the cumulative annihi-
lation rate in Ees and, in particular, the smooth matching of the two resolution regimes
observed in the previous section cannot be explained in the double-logarithmic approxima-
tions (5.1), (5.2). We therefore analyze the subleading logarithms in the one- and two-loop
order in the following subsection.

5.2 Expansion of the resummed annihilation rate

We re-expand the resummed annihilation rates (2.39), (2.40) for the intermediate and
narrow resolution, respectively, in the number of loops. More precisely, we expand [ov]rs
defined in (4.2) in the form

oo 2n ~ n 2
res\ __ 271'0(2( (n,m) a2 (M) m 4mX
[UU]IJ(E’Y ) ﬁﬁldmg Z Z Cr res’ ) < = In mIQ/V (5'3)

n=0m=0
where, by construction, the coefficients c%m)(EgeS, w) are O(1) numbers, and the large
logarithms In(2m, /my ) are made explicit. Note that the coefficients c[f,’m) (Eres, j1) are
different for the two resolution regimes.'® The resummed rate depends on many scales, y
from the renormalization of the coupling, and the scales from the initial and final values
of the RG evolution. To make the large logarithms explicit, we normalize scales by their
natural values. For example, ln(,u?/m%,v) is written as ln(,u?/(QmeW)) + %ln(llmi/m%v),

such that the first logarithm is O(1) and part of one of the c%’m) coefficients. For both
factorization formulas we determine the c?}’m) coefficients up to the two-loop level (n = 2)
for all possible m and IJ combinations. These are listed in appendix E, where some details
about their determination are also discussed. Figure 6 compares the numerical evaluation
of the resulting fixed-order expressions with the full resummed result of figure 3.!* The
figure shows the breakdown of electroweak perturbation theory in the few TeV DM mass
region, and makes the necessity of the resummation evident.

Before discussing the behaviour of the c%’m) coefficients as functions of E.s, let us
clarify which logarithms in (5.3) are captured by NLL’ resummation. After RG evolution,

the resummed annihilation cross sections are obtained in the form
ov X (1 + Ciég + .. ) exp [Lfo(dQL) + fl(ééQL) + .. ] (54)

with functions f;(a2L) of the O(1) quantity doL = dIn(4m2 /m3;,). The LL approxima-
tion amounts to keeping fy, NLL adds f;, while NLL’ adds C7. Other terms not written
are beyond the NLL’ accuracy. Expanding in &2, we observe that NLL’ resummation
determines the three highest powers of logarithms in any order of perturbation theory,

131n the following we drop the arguments EJ., p for brevity.
We use the following terminology: “n-loop” refers to the O(&3) correction only, while NLO refers to
the sum of tree and one-loop, etc.

40 —



I B}, = (150 GeV)* /m,,

res

my[TeV]

Figure 6. Left: ratios to the tree-level cross section of the various fixed-order cross sections at
NLO (dotted) and NNLO (dashed) and of the fully resummed NLL’ cross section (solid) for the
= (150 GeV)?/m,. Right: the same ratios as in the left panel, but in the

intermediate resolution regime EY = my . As in figure 3, in both cases the Sommerfeld factor St

narrow resolution E7.

is included and the formulas are evaluated at the central scales.

specifically c%’%), c(;f]’%_l) and c%’2n_2) in (5.3) for all n. In particular, for n = 1 (one-

loop) the NLL’ resummation determines all the possible coefficients that exist at this order,
including the non-logarithmic term m = 0, while at two loops (n = 2) all logarithms except
the single logarithm are obtained. Since the dependence on the matching scales such as p;
introduced by resummation must cancel at every fixed order, those fixed-order coefficients,
which are obtained exactly from expanding the resummation formula, must be independent
of these scales. On the other hand, at two loops, the single logarithmic and constant terms
still depend on O(1) quantities such as ln(,u? /(2m,mw)) as can be seen from the explicit
expressions in appendix E.

In the following we discuss the logarithmic structure for the channel I.J = (+—)(+-—),
which is the most interesting one, since the other channels do not have a tree-level coeffi-
cient.'® We then evaluate the coefficients outside of their validity range, for example we take
a coefficient from the double Taylor expansion of the narrow resolution formula and extrap-
Y20
in order to study the numerical matching of the two resolution cases. The extrapolation

olate it to Eyes ~ my or to the transition energy resolution scale Eyes ~ (myy/m,)

induces a reshuffling of the logarithms in (5.3) because O(1) coefficients in one regime may
develop large logarithms in the other.

5.2.1 Tree level

The tree-level coefficients in (5.3) are ngbo))(oo) = ng’o(;)( +-)

mediate resolution cases. The xyTx~ — v+ X tree-level cross sections, on the other hand,

= (0 in both narrow and inter-

depend on which factorization formula is being employed:

nrw(0,0) A2 A y m2Z

C(+—)(+—) = Sw + CWG Eres - m ) (5'5)
int(0,0)

oy =L (5.6)

15The other channels are listed in appendix E.
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The narrow resolution formula distinguishes the contribution from the «Z line from the vy
while the intermediate resolution formula does not. When evaluated at Efes > m%/(4m,)
both formulas yield the same result.

5.2.2 One loop

The one-loop term in (5.3) reads explicitly

(11)
(+-) -

1 2ma358%, Qo [ (1.2 1,0
[Jv]l oop . 2°W 2 |:C( ) LQ—FC EJr*))(Jr*) . (5.7)

L R yLte

For the presentation of the coefficients, some abbreviations will be helpful:

am? 2E7
L=1In —QX, Ty = =
miy my
1_.
lr = In(z) AR = Ar(zy) = —§L12(—x3) .

The variable L is the large logarithm in the expansion (5.3). Note that [g is an O(1) quan-
tity for intermediate resolution, but counts as a large logarithm in the narrow resolution
case. The fixed-order expansion is performed in the running couplings aa(p), §%,(u) at
the scale p of order myy. We define the O(1) quantity 1,2 = In(p?/m3;,). These explicit
u-dependent logarithms cancel the implicit scale dependence of the couplings up to residual
dependence of higher order than the NLL’ accuracy of the approximation. In addition to
the variables introduced above, we define

47
P %Zliloor)(,u,lj)
T Sy (was(p) p=my
400 2 16, m?\ . 80 . m%  4ArAa
= (- ZF+-+—"In—& — & In—Z — 5.8
( o7 T3 nm%V>SW+(93an§V ay ) (58)

and the resolution-dependent function j(Efs) by means of the equation

4 4mXEreS
) = /0 T apR o (2 ) , (5.9)

da(p)

p=mw

(p?, i, v) are given in (3.8) and (B.31),
(p?) on the
masses of the SM particles and Fres (see appendix B.2), and is constructed such that it is

where the one-loop contributions to Z, (u, v) and J33,

respectively. The function j(Fres) captures the complicated dependence of J33,

independent of u and v.
With these abbreviations at hand, we find

2ma3sY, &
nrw 1—loop __ 2°W X2 | 72 nrw(1,0)
LEIARE . e+ L+ 0] (5.10)
int 1— 2ma3sY, ao [ 3 29 i
int 1-loop __ 2o (2 2 int(1,0)
[UU](+_)(+_) = 77’71?( ? |:—4L + <ZR+48> L+C(+_)(+_):| y (511)
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where

nrw(1,0) L /19 11 2 37T2 L. res

o)) = 7 (6 — s ) e =6+ =+ 7 ED) + 2], (5.12)
in(10) 1 /19 11, B s 1 19,3

o) = 1 < 6 3 Sy l#2 18 + 2 + 42@ +15 2413 2/\R . (5.13)

(1,0)
()=
couplings @o () and 8%, () in the corresponding LO terms.

The [,2 dependence in the ¢ ) coefficients above is compensated by the running

The coefficients depend on Ejes through the functions Iz, Ag and j defined above.
Therefore, in order to investigate the transition from the narrow to the intermediate
resolution formulas we need to understand the asymptotic behaviour of these functions.
For instance,

J(EL )%41n24mxi%fgln%+mf4—7r2 for 4m,EL, > m} (5.14)

res m%}[/ 6 m%/v 9 3 X ~res w
up to corrections of order m,/(4myEres). This can be obtained from expanding the
explicit expressions for the one-loop Wilson line and self-energy contributions given in
appendix B.2, or, more simply, by performing the expansion by regions [16] before taking
the integrals.

When extrapolating (5.10) into the intermediate resolution regime, we can write
§(ERes), using In(4my Efes/m?,) = 1L + IR, as

1 1 19 19 35 @
—J(EY P4 (g =2 )L+ 15— g+ = — = 1
7/ (Bie) = 44 +<R 48) TRT T RT3 (5.15)
Then, for Es > m%v/m><7
_ int 1— 3 2F;
nrw 1—loop __ int 1—loop tree 2 res
vl ooy = ol sy + vl EE ) QWAR< — ) : (5.16)

We note that due to the asymptotic behaviour of j(FEys), the large logarithms precisely
match. The difference is a non-logarithmic term, which turns out to be quite small, and
amounts to O(1%) of the tree-level cross sections independent of the DM mass. This is
visualized in figure 7 where the one-loop coefficient (excluding the factor éo/m) is plotted
for the two resolutions (narrow in dashed/blue, intermediate in solid/red). The absolute
value of these dimensionless coefficients is, for both cases, large but the coefficients differ
by no more than 3% in the hatched cross-over region. Similar results are found when I or
J = (00) as can be verified from the coefficients c%’m) listed in appendix E.

One may wonder why in (5.16) the narrow and intermediate resolution coefficients
do not agree exactly, since by construction the NLL’ approximation reproduces the full
one-loop calculation. However, this is true only up to power corrections in my /m,. The
difference in (5.16) arises from the Ag term in the intermediate resolution coefficient (5.11).
In the narrow resolution limit Ag is a power-suppressed effect of order my,/m,,.
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Figure 7. One-loop coefficient of the series (5.3) (including all logarithms) for the ‘nrw’ (solid)
and ‘int’ (dashed) factorization formulas. Left: m, =2 TeV. Right: m, =10 TeV.

5.2.3 Two loops
The two-loop term in (5.3) reads

- 2ma38y, 63
2—loop _ 2°W 2 (274) 4 (273) 3 (2u2) 2
ol = T [C<+—><+—>L L O i M TI
(2,1 (2,0)
et c(+—><+—>] ' (5.17)

NLL’ resummation determines all but the coefficients 6%1) and c%’o) of the series exactly.

The expansion of the resummation formula also yields expressions for single logarithmic
and constant terms, but these are incomplete. We find

T = g0, o
T =% o)
in the narrow resolution case and
2
- () - o2
= -5 it )

int(2,2)
) (+-)

3\ [19 11,
~1) |3 )

9 1
422222 +§AR+ZR—Z@ (5.23)

(2,2)
o - (+=)(+-)
ficients in both resolutions is compensated by the scale dependence of the couplings. The

for the intermediate resolution case. As before, the [, dependence of the ¢ coef-

Els dependence of the coefficients is captured in the j, [z and Ag functions already en-
(2,1) (2,0

(+-)(+-) (1—)(4—) are provided

countered in the one-loop expansion. The coefficients ¢ and ¢

in the appendix E.
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Figure 8. Two-loop coefficient of the series (5.3) (including all logarithms and evaluated on the
central scales) for the ‘nrw’ (solid) and ‘int’ (dashed) factorization formulas. Left: m, =2 TeV.
Right: m, =10 TeV.

Efes ~ m3y,/my | Eres ~ mw\/m Els ~ myy
§(Fres) j=0() 1L*+0O(L) L?+0O(L)
Ir(Els) | —3L+0(1) —1L+0(1) lr =0(1)
Ar(Eds) 0 0 Ar=0(1)

Table 1. Leading-logarithmic dependence of the E7..-dependent functions appearing in the fixed-
order expansions when evaluated at the three E7 -scales relevant to figure 8. Vanishing entries are
to be understood as power-suppressed.

> C&T))Hf)l’m Efes ~ miy /my, | Efes ~ mW\/W Els ~ myy
‘nrw’ LY+ O(L3) LLY+ O(L3) S LY+ O(L3)
‘int’ BLY+0(L?) L'+ O(L?) 2L+ O(L?)
‘arw’-‘int’ LY+ O(L3) O(L3) —+ L'+ O(L3)

Table 2. Leading-logarithmic terms of the two-loop coefficients in (5.3) for the ‘nrw’ and ‘int’
factorization formulas, and the difference of the two, at the scales relevant to figure 8.

Figure 8 compares for the two factorization formulas the complete two-loop coefficient
in (5.17) (including the cEiT)) (+-) for all m). These are evaluated at the central scales, i. e.
all [,,;’s and [,,,’s of the coefficients listed in the appendix are set to zero.

In order to understand the behaviour of the curves in the figure analytically, we use the
asymptotic behaviour of the Ess-dependent functions within the coefficients. The leading-
logarithmic dependence of these for different El scaling is shown in table 1. Besides the
two energy resolution regimes associated with the ‘nrw’ and ‘int’ factorization theorems,
the transition scale constructed from the geometric mean of the narrow and intermediate
resolution scales is also considered.

In table 2 we show the leading logarithm that results from reevaluating the ‘nrw’
and ‘int’ two-loop coefficients at the three scales in Fes relevant to figure 8. We verify
the behaviour encountered in both panels of the figure. Namely, in figure 8 the two-loop
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coeflicient associated with the ‘nrw’ formula is larger than the corresponding one from the
‘int” formula for the narrow resolution regime. This property is supported by the positive
difference of the leading logarithmic term (L*/32) between the two formulas as evaluated
at the ‘nrw’ regime (last row and second column of table 2). Conversely, when Epes ~ myy
the opposite happens, and the ‘int’ coefficient is larger than the ‘nrw’ one, consistent with
the last entry (last column from left to right and last row from the top to the bottom) of
table 2. The vanishing of the O(L?) term for Ees ~ mu/mw /m, explains the almost
perfect matching of the ‘nrw’ and ‘int’ coefficients in the transition region as observed in
figure 8.

In summary, that the matching works so well over a wide range of energy resolution
is a consequence of the smallness of the difference in the leading logarithms. For example,
extrapolating the narrow resolution coefficient to intermediate resolution, we find at NNLO

(oo =[]t 34 A2 [ LA 19
(+ )[Sv]zree () _ 5%AR+ % [_32 + (144 _ lR> L? + o(ﬁ)} . (5.24)
(+)(+-)

At one loop, as discussed before, the difference lacks large logarithms since Ag is an O(1)
function of Ejs provided Egs ~ mys. At the two-loop level we see a partial cancellation
of the L* coefficients (as 1/32 < 1). In (5.24) we therefore include the L? term, which
constitutes the largest difference term at two loops when L is not extremely large.

5.3 Resummation schemes compared

So far the discussion on the fixed-order expansions of the intermediate resolution formula
has been done using the first resummation scheme of section 3.6. This is the most natural
choice when comparing with the factorization formula in the narrow resolution case. We

performed the same fixed-order analysis for the second resummation scheme and found
(2,0)

exact agreement in all the coefficients at two loops except CLD) (4o Specifically,
Res.Sc.I Res.Sc.Il ~
[JU](JF*)H*) [GU]H*)(**) = —a—% 3lr ¥R (5.25)
[O.,U]tree 7T2 ) :

(+)+-)

where ¢p is defined in (E.4). Numerically this difference is not be larger than O0(0.1%) of
the tree-level cross section. Note that since the single log coefficient is not obtained unam-

(2,1)
) (+=)(+-)
scheme, but this turns out not to be the case.

biguously by NLL’ resummation, also ¢ could have depended on the resummation

6 Conclusion

The search for high-energy photons plays an important role in detecting dark matter
through its annihilation in the center of the Milky Way, or in dwarf galaxies. Connecting a
possible signal to a DM model, or to place limits on the parameters of the model, including
the DM mass itself, requires an accurate theoretical calculation of the annihilation rate.
When the DM particle carries electroweak charges and its mass is much larger than the
mass of the electroweak gauge bosons, standard perturbation theory in the small couplings
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of the SM breaks down. Large enhancements of loop diagrams due to non-relativistic
scattering and due to soft and collinear gauge bosons must be summed to all orders in
the coupling expansion. In this paper we considered the photon energy spectrum of the
semi-inclusive photon final state v + X, integrated from the endpoint E, = m, over an
interval of size Epes, which corresponds to the observable measured by 7-telescopes, when
the flat integration in (1.1) is replaced by the instrument-specific resolution function of
characteristic width Frs.

The main theoretical result is the factorization formula (2.38) for the annihilation
rate for energy resolution Ees ~ mw (2.39), and Efes ~ mi,/m, (2.40), respectively,
and the calculation of the all-order resummed rate to NLL’ accuracy in the electroweak
Sudakov logarithms. The main results relevant to observations are summarized in figures 3
and 4. The corresponding result for narrow resolution has already been shown in [7], but
the derivation and the matching to the intermediate energy resolution Eps ~ mys has
been presented here for the first time. While the theoretical formalism is more general,
and so are some of the calculations, the complete NLL’ calculation has been performed
in the so-called pure wino model, where the SM is extended by a fermionic SU(2) triplet,
of which the electrically neutral member is the DM particle. We highlight the following
two observations:

e Electroweak Sudakov effects are large and reduce the annihilation rate to high-energy
photons by about a factor of two in the multi-TeV region. As soon as the full one-
loop effects are included, that is, the accuracy of the calculation elevated from NLL to
NLL’, the theoretical uncertainty, as measured by renormalization and factorization
scale variation, becomes negligible (about or below 1%), see figure 3.

e The two separate calculations for narrow and intermediate energy resolution match
very accurately, resulting in precise theoretical results from the line-like final state
at Efes ~ 0 to Efes ~ 4my (perhaps, beyond), see figure 4. While the calculations
apply to any DM mass with m, > my, given the energy resolution of the H.E.S.S.
and CTA experiments, they are most relevant for m, in the range between 1 and
10 TeV. This is also the range where the wino model is most compelling.

In [6, 8] a complementary approach has been pursued, which applies to what we called
“wide” energy resolution Eges > myy. The available results are of NLL accuracy for the
same wino model, and, given the observations above, it would be of interest to a) extend
them to NLL’ and b) match them to the intermediate resolution case discussed here.

The results shown here demonstrate the success of EFT techniques, non-relativistic
and soft-collinear, to deal with the breakdown of electroweak perturbation theory in the
high-energy regime. This opens the perspective to extend the calculations to models other
than the wino model. Given the small uncertainty of < 1% from scale variation of the
resummed perturbative expansion, it is probable that the largest theoretical uncertainty
now arises from modifications of the Sommerfeld effect due to sub-leading effects in the
non-relativistic effective theory, and, for smaller m, , from power-suppressed effects of order
myw /m,, which are systematically neglected in the present treatment.
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A Hard matching coefficients

In this appendix we provide more details on the calculation of the hard-matching coefficients
given in (3.1) and (3.2).

A.1 Amplitude in the full theory

The matching condition between the full theory (SM plus an isopsin-j dark matter multi-
plet) and the effective theory requires that the on-shell amplitudes for 2 — 2 annihilation
of two dark matter fields to two SU(2) gauge bosons computed in the two theories must

be equal:

Miifi ({p, s}) = 2;)( > P ({p}) 2m (07 )P ({p, s}) - (A.1)
i=1,2

Here the left-hand side refers to the UV-renormalized amplitude in the full theory. The
symbol {p, s} indicates the dependence of the amplitudes on the momenta and the
spin/polarization orientations of the four external particles. The operators O; are S-wave
operators. To extract their coefficient we can set the relative momenta of the annihilating
particles to zero. We choose p1 = pa = m,(1,0) for the initial state, and p3 = myn_,
ps = myn, for the final state. We define projectors applied to the full theory amplitude
such that

> PP {p sH Ml (. s)) = My ran(4m3) , i =12, (A2)
S
where M; g1 are the full-theory projected amplitudes corresponding to the gauge and spin
structures of the two operators O o defined in (2.28) and (2.29). The expressions in (A.2)
directly correspond to the bare matching coefficients since the loop diagrams in the effective
theory are all scaleless and vanish in dimensional regularization. The two projectors have
the explicit expressions

I el G e

u(p1,s1) (b, — ) [y, ¥*Jv(p2, $2)€p(P3, 83)€0 (P4, S4)
8 32my (1 — 3¢ + 2€2) :
1 3
P = g g T (0 e )
u(p1, s1) (b, — )7, ¥*Jv(p2, 52)ep(P3, 83)€0 (P4, 84)
8 32my (1 — 3¢ + 2€2) :

(A.3)
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Figure 9. Representative sample of one-loop diagrams contributing to the computation of the
Wilson coefficients.

where € = (4 — d)/2, d is the space-time dimension and c(j) = j(j + 1) for an isospin-j
representation. The projectors differ only in the SU(2) part, since both operators have the
same Dirac and Lorentz index structure which projects only on the spin-singlet contribution
of the amplitude. The projectors can be considered as operators in spin space and the same
is true for the amplitude.

We compute the matching coefficients at the one-loop order (see figure 9 for a sample of
diagrams). We use dimensional regularization for both ultraviolet and infrared singularities.
The calculation of the bare full theory amplitudes has been carried out by using a set of
computer-algebra tools. FeynRules [32], FeynArts [33] and FormCalc [34] were used in
combination for the model implementation and the amplitude generation. The algebraic
manipulations and simplifications have been carried out with a private code written in
FORM [35]. The reduction to master integrals at threshold was performed with Reduze [36].
We calculate the Feynman diagrams in the unbroken SU(2) gauge theory and find for the
bare projected full-theory amplitudes

4
g —€ — €
M3 (4m2) = 22base (412) =< (e P4
2

X [102(3')(2 — 2im) — C2(j)<4_ 7;) +O(€)] ’

4
g —ef —
Mg%ﬁl(llmi) - g% bare T 126b;1;3 (47713() 6(6 e 471')6

X [— % + %(—6 + 2im) 4+ 16 — 7;2 — Cg(j)<10 - W;) + O(e)} , (A4

where

2
g pe’r

92bare = Zg2ﬂ€g2 (H)a H . (A5)

We find the same expressions, both for the case of Dirac and Majorana fermions. This
is no surprise since a possible difference could arise only from s-channel diagrams with
a fermion-fermion-gauge boson vertex. At threshold these diagrams do not contribute to
the amplitude.
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In the following, we find it convenient to suppress the y dependence of the renormalized
SU(2) coupling in intermediate results. We remove the UV divergences by coupling, field
and DM mass renormalization. The coupling constant is renormalized in the MS scheme
while the mass and field renormalization is done in the on-shell scheme so that no further
residue factor is required to obtain the on-shell amplitude. The SU(2) coupling, DM mass
and field renormalization, and the SU(2) gauge boson field renormalization constants are
given, respectively, by

Zg» = 16772 [gc(j -5 +§ e (A.6)
Zmy =1- 12; </é> e (‘)(31__2266), (A7)
z=1- L (:,Lg)<y>f’1‘_22) , (A3)
Za=1+ 127%2 (:;() { - %c(j)r + 0(6)] , (A.9)

where ¢(j) = c2(7)(2j +1)/3 and ng = 3 is the number of fermion generations. In (A.6)
the term 2¢(j)r/3 corresponds to the heavy DM fermion contribution, the term —43/12
to the gauge boson and Higgs contributions, while the 2ng/3 piece arises from the SM
fermion loops. The parameter r assumes the values r = {1,1/2} for Dirac and Majorana
fermions, respectively. In the effective theory the heavy fermion is integrated out and
does not contribute to the running of the gauge coupling anymore. Hence, similarly to
switching between schemes with different massless quark flavours in QCD, we decouple the
DM contribution from the running of the gauge coupling g» through the substitution

" A4 4 . NQ
95 — 92 + 16 5 [3 (7)rln mi] ) (A.10)

n (A.4). After this replacement the r dependence drops out, and the final result will
be independent of the Dirac or Majorana nature of the fermion. The UV-renormalized
projected full-theory amplitudes, which equal the bare Wilson coefficients, read

2 2

chare — 95 {02(j)(2 — 2i7) — e2(§) <4 — 7T> + c2(5)(2 — 2im) lnfw + 0(6)} ;

1672 | e 2 2
~4 2
bare ~2 92 _ é 1 _ @ dng _ H
G =0T 1672 { e e [ 6 * 3 2w = dlng e 4m?

7'(2 i 7T2 M2
+16_6_02(J)(10—2)—(6—2@77)11(142—2111 pr 2+(9()}. (A.11)

The remaining IR divergences must be cancelled by matching. This will be done in the
next subsection by operator renormalization in the effective theory.

A.2 Operator renormalization in the effective theory

In the effective theory the loop diagrams are all scaleless and therefore vanish in dimensional
regularization. The EFT matrix element is therefore given by the tree matrix element and
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the tree diagrams with counterterm insertions. To compute the UV counterterms in the
effective theory, we need to regulate the IR-divergences with a different regulator than
dimensional regularization. To this purpose we take slightly off-shell momenta for the
incoming DM fermions and the final-state gauge bosons. By direct calculation of the
effective theory diagrams we obtain for the UV poles in the MS scheme

(Obaey = (O )tree { 6 [4 1<4 — 2¢y(j) + dim — 4:?)] } +O(), (A.12)

(Obarey — (@, )tree )2 — 2m)} + O (A.13)

4 N 4m2
624—6(10—202(])—2177— M2X>]}+O(eo),

where (O;)"® correspond to the tree-level matrix elements of the first or second operator.

e[
3

1671'

+(O5)tree {1 +

Notice that the divergent parts shown do not depend on the infrared regulator and that
they only depend on the hard scale 2m,. We still need to add the external field MS
renormalization factors for the effective theory fields, which read

~2
_ g5 1 .
Dy = 1+16 [2@(3)], (A.14)
2
92 119 4
Z4=1 ) A.15
4 +167r26[6 3¢ (A.15)

By combining everything we arrive at

g [4 43 4 2
Zy, Za(0P) = (0 >tr00{1+ [ +<3—nG+4m+41n a >H+O(eo),

1672 e\6 3 4m?
(A.16)
20,2405 = (01 L L[ ()2 - 20m)] + O(e)
1672 € . )
+(O02 >tree {1 + 167T [4 + p (769 — gnG —2im+4ln 4/7:&)] } + 0(60) .
(A.17)

Coupling renormalization contributes only at higher orders in gs.
The MS operator renormalization constants Z;; are a matrix in operator space such
that OPae = Zij@;en(p), i,7 = 1,2. We obtain from the above

g2 [4 1/43 4 2
Z11 =1+ 92 [2—1—(—1@@—1—4277—1—4111”)]
€ €

1672 6 3 4m§<
Z12 =0,

9

g5 1 . .
ZQl = 16227 |: — CQ(])(Q — 27,7T):| s

g3 [4 79 4 2
Loo =1 - — == -2 41 . A.18
2 +162[ +e(6 ghe — 2t n4m§<>] (A-18)
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By making use of the matching condition in (A.1), the decoupling relation in (A.10) and
Ci(p) = Z;; CP*™(n), i=1,2, (A.19)

we find that all 1/e poles cancel and we obtain the explicit results for the hard matching
coefficients given in (3.1) and (3.2).

A.3 Operator Z-factors from the anomalous dimension

A second way to obtain the operator renormalization Z;; factor is to adapt the anomalous
dimension known for QCD processes [37, 38] to the SU(2) gauge group. We switch to
the operator basis where the DM bilinear is in a definite isospin representation (the DM
bilinear can be either in a singlet or in a quintuplet representation)

A A t)
o=vio, V= 3 . (A.20)
0 1

The advantage of this basis is that the anomalous dimension at threshold is diagonal [38],
2

1 4mx . . J
I' = —7eusp | 2¢2(ad) | In 2 im | +imca(J) | + 2%ad + Vs > (A.21)

2

where cy(ad) is the Casimir value of the gauge boson in the adjoint representation, and
c2(J) the one for the DM fermion pair in the representation J = 0 (singlet) or J =
2 (quintuplet). The quantity ~.q is the gauge boson anomalous dimension and 71{1,3 is
the anomalous dimension of the heavy fermion pair. The anomalous dimensions have
perturbative expansions in terms of &y (and, possibly, other couplings in higher orders
than given)

reni2) =2 22 40, (2 + 0, (A22)
W=t = (B - aw-Fro- . ()
Taa(dz) = 1Y 52 + 0(3), (A21)
7;3) = —Bosu@) = — <4§ - gnc) : (A.25)
Vhaldn) =2 ex()) 02 1+ 0(a3), (4.26)
'ﬁ?,)s =-2. (A.27)

The Higgs contribution —16/9 to the two-loop cusp anomalous dimension has been ex-
tracted from the e-scalar contribution computed in [39].

The operator Z-factor in the MS scheme can be obtained from the anomalous dimen-
sion. Up to order g3 it reads

52 /(0) (0)
g T r R
Z=1- (16;2) < 1 + 5o ) +0(33), (A.28)
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where IV = —2¢3(ad)Yeusp. In the diagonal basis defined in (A.20) we find

g2 [4 1/43 4 2
T =14 -2 { +<—nG+4ln“+4m>],

1672 |2 e\ 6 3 4m?2
Z12 =0,
Z91 =0,
oy m1w B[ LT 4 Ly (A.29)
= -+-—=—-—2zn n—; —2im || . .
- 16r2|2 e \6 3¢ am?

Transforming back to the unprimed basis (2.28), (2.29) we find agreement with (A.18).

B Collinear functions and rapidity regularization

In this appendix provide some details on the rapidity regularization, which is required for
collinear and soft functions, on collinear integrals, and we supply the lengthy expressions

for the narrow resolution jet function that were not given in [7].

B.1 Rapidity regularization

We employ the rapidity regulator introduced in [28], which amounts to the following re-
placements in the eikonal Feynman rules that originate from soft and (anti-) collinear

Wilson lines

nh nh n
collinear emission : —+ — —+ ) (B.1)
n+k‘ ’I’LJrk |’I’L+l€|77
ticolli . nt nt (B.2)
anti-collinear emission : — , .
n_k n_k |n_k|"
nt nt n/2
soft, emission from (anti-) collinear direction : —= — —= v , (B.3)
ntk nik |2k3|77/2
f from the heavy line : - — % " B.4
soft emission from the heavy line : — . .
mission from vy line: —— ok 2R (B.4)

7 is the rapidity regulator and v is a newly introduced rapidity scale, the equivalent of u
in dimensional regularization. Notice that the rapidity regulator in the above expressions
is consistent between soft and collinear integrals since 2k* — n k (2k% — n_k) in the
(anti-) collinear limit. In our case all the soft and photon jet functions always require
rapidity regularization, but the unobserved-jet function only in the narrow resolution case.
In the following we focus on the collinear and anti-collinear scalar integrals, which appear,
respectively, in the unobserved jet and photon jet function calculation. In appendix C we
present the computation of the relevant soft virtual and real integrals.
As an example we compute the off-shell collinear scalar integral (p* # 0)

2y _ v
W)= /[dk} (k2 —m2, +ie][(p + k)2 — mY, + ie][nik + ic]|nyk|n’

I (B.5)
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relevant to the unobserved-jet function in the narrow resolution regime. From contour
integration we find that nyk < 0, such that we can replace the absolute value by —n_k.
We proceed with the loop integration by introducing the Feynman parametrization

(24+n)(1+mn)
d d B.6
abc1+’7 / 1 / w2 (c+ axy + bxg)3tm (B-6)

After performing the loop integration we arrive at

€ (—Z) F(l +n+ 6)
1672 T(1+7)

L.(p?) = (u*e™™) (B.7)

Vn
x [ dz dx .
/0 ' /0 2 (@1 + 22) 1712 (@) + 20)2m2, — o1 p? + Ny pws]HHT

We make the substitution x; — 222 and integrate first over 2. For convenience we drop
the +ic in the intermediate expressions, and we identify p? — p® + ic as follows from the
definition of the integral. After integrating over xo we obtain

—1 v \" I'(e > e
Ic(pQ) — (M26’7E)6 ( ) ( > F( ) /0 d:Cll (1 _+_x/1)71+2e+17 [m%/v(l +x/1)2 —p2$/1] )

1672 \nyp/ nyp
(B.8)
We rewrite part of the integrand as
_ —€
o1 a)? = 2] = () [ et | (B.9)

where 7 = m¥, /(—p?), and perform the variable change 2| = (1 —y)/y. The y integration
amounts to

1 —€
2 2
d 7177{]7’_’_ - 2762_7& F<_ 767671_ ; bl )7
/Oyy (r+y—y’) A T ATE i h
(B.10)

where Fy is the Fi-Appell hypergeometric function. This gives I.(p?) to all orders in 1 and
€. Numerical checks were performed to ensure the consistency of (B.7) and (B.10). We
need to expand the result first in 7 — 0, using the formula

y = j'f‘i m” [n;(y)Lz—é(ny)JrBLJr... (B.11)

m=0

and then in e. The +-distributions acting on a test function are defined as

/old“”“ [W]j (@) = /Oldw M) () - 100 (B.12)

x x
For the y-integral (B.10) we find

r

1 —€ 112 —r
/ dyy " TMr+y—yP) = —— e [— o )] + O, ). (B.13)
0 n
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We find this compact result after introducing the variables

1—
1+

=

2
4mW
p?

1—

Il
i
I

x (B.14)

)

=

and with the help of relations between polylogarithms of different arguments in intermediate
steps. We used the package NumExp [40] for the numerical expansion of the Appell F;
function in (B.10) to check (B.13). In total we find

ifngp)”tT1 1. md 1 ngp m?,  nip In?*(-x)
I.(p?)=—"T2— | ———In—¥ 2] 1 1 O :
(P") 1672 |en 7 . 2 e "y +tn 2 " + 2 +0O(m,€)

(B.15)

The integral above is real in the region p? < 0, but we need to extract potential imaginary
parts in the regions p? > 4m%v and 0 < p? < 4m12/V. To obtain the result in the region
p? > 4m}, from (B.15) one needs to perform the substitution

In(—x) — In(z) +ir. (B.16)

In the region 0 < p? < 4m12,v the result does not develop an imaginary part and it can be
obtained from (B.15) by making the substitution

In(—z) — i( — 2arctan(B) + ) , (B.17)
where we define
_ 4m?
3= ZW—1. (B.18)

In the intermediate resolution case the external momentum p has hard-collinear scaling

P~ my (A1 V) such that p? ~ )\mi, while the square of the gauge boson mass scales
2

as miy ~ )\Qmi. Hence the expansion for p? > m%/v becomes relevant. Directly expanding
the result in (B.15) yields

. -1 1 1 2 1 2 1 2
Q@%:Z%gg[ IJWV—m””lunmwhﬂ”p+2m2<—mW>]

+0O(n,¢) + O <”;§V> (B.19)

up to power corrections, which seems to be at variance with the gauge-boson mass inde-
pendence of the result for the hard-collinear jet function in the main text. However, the
integral (B.5) is now a two-scale object. We find that there are two regions contributing
to this integral, namely the hard-collinear and the soft region, k* ~ (A, A, A). To extract
the soft contribution, we need to expand the propagator

[(p+k)? —miy] =p* +nypn_k + O(N\). (B.20)
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in this region. The soft integral then reads

U
(k2 — m3, +ic][p? + nypn_k + ie][ny k + icl|ny k|7

La(p?) = / k] (B.21)

Calculating the integral in a similar way as above, we obtain

i(nyip)~? 1 1 7 1. m¥ 1 —p?v 1. mé,
I =" | - +—F+—4+-In—X 4+ In({——— | -—-In—&
os(P°) 1672 [ €2+€77+12+6 . w? tem mi,np n . w2
1 m? m? —p?v
— -l -] O(n,e). B.22
oM 12 n 12 n P + O(n,€) (B.22)

The rapidity regulator is only needed in the soft contribution and not in the hard-collinear
one. In the hard-collinear region we can drop the gauge boson mass at leading power, and
the integral evaluates to

; -1 2 2 2
Lo ne(p?) = Z(Tgﬁg [612 4 éln < - ;) 4+ Lyp2 ( ’;2> - 7172] +O().  (B.23)
By adding up the two contributions (B.22) and (B.23) we reproduce (B.19). After dressing
the collinear-soft scalar integral (B.21) with the proper tree-level factors to obtain the
soft contribution to the jet function Wilson line diagram, and after taking its imaginary
part, we find that the virtual (single-particle cut) piece evaluates to a scaleless integral
while the real emission (two-particle cut) piece is non-vanishing. It can be shown by
direct comparison that this last term equals the soft emission diagram in (C.15) after the
convolution with the tree-level jet function has been done. This shows that in the small
mass limit, m%V < p?, the soft region of the jet function integral is correctly reproduced
by the soft function in the factorization formula for intermediate resolution and should
not be assigned to a mass-dependent collinear function. The hard-collinear region only
contributes the mass-independent unobserved-jet function.

The photon jet function also requires rapidity regularization. In this case only virtual
diagrams contribute. As an example, we compute the rapidity and dimensionally regulated
on-shell anti-collinear scalar integral

Y
Ié O == dk ’
(0) /[ ][kZ—m%V+i5][k2+2p-k—m%V+i5][n—k+i5”n—k‘n

(B.24)

which can be obtained from (B.5) by setting p?> = 0 and replacing nyk — n_k. We
parametrize the integration measure by

1
d = 5 dn—kdn.k A2k, | (B.25)
and rewrite the integrand as
o
k%-‘rm%‘,—ia k%-{—m%v—ie . n (B'26)
n,k‘[n+k‘ — T](nfk + ZmX)[n+k‘ — W][nfk + 26]|n,k:|
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Figure 10. Wilson line and self-energy type Feynman diagrams contributing to the narrow reso-
lution jet function.

We perform the nik integral first by closing the contour in the upper half plane and pick
the pole (k2 +m3, —ie)/n_k for —2m, < n_k < 0. The integral vanishes for n_k outside
this range. After performing the n_k and k| integrals, we obtain the final result

L(0) = — ( & >2< v )n L) (B.27)

B 32m2m,, \ mw 2m, n

B.2 Unobserved-jet function for the narrow resolution case

Here we supply the lengthy expressions for the narrow resolution jet function that were not
given in [7]. The jet function of the unobserved final state in the narrow resolution regime
Efes ~ m3;,/m,, is defined as

(02 77G) = [t (0147, (2) A (00} (5.25)
This is equivalent to computing the total discontinuity
TP = ~im[ig " ()] (B.29)
of the gauge boson two-point function
(907G = [ dtecr (0T {AT (@) A, )} 0], (13.30)

where .Af ., is the collinear gauge-invariant collinear building block of SCET. While formally
the definition appears the same as (2.53) for the intermediate resolution, in the present case
P2~ m%,v rather than p? > m%v The implication of this difference for the computation of
the collinear integrals have been discussed in the previous subsection.

Since we are considering the x"x" , xTx~ initial states and since we require a single
photon in the anti-collinear final state, electric charge conservation implies that we only
need to calculate the 33 component of J5C. To the one loop-order, we can write J33(p?) as

TR, mv) = &y ()(p?) + &y (1) — mG) + Tison (07, 1 v) + I (0, 1) . (B.31)

where we split the result into Wilson line and a self-energy type contributions as shown in
the first and second line of figure 10, respectively . Only the Wilson line diagrams require

— 57 —



rapidity regularization. After subtracting both dimensional and rapidity regularization
poles their sum is given by

a2

G5 2m mw
T8 2y = wlg W) [ oo ey mw ) 2m oy
WllSOl’l(p y s V) 1672 (p ) n ’ n > +31n p

1 B
+ P@(pQ — 4m3y) {4& +81n Hﬁ} }
22

) 2
_ Gw(mga(n) §(p* —m%) — 161 MW 2 g MW g
1672 x v K

+ 47 4 4m Bz — (167 + 887) arctan(Bz) + 16 arCtaDQ(BZ)]

1 -p

4m = 4m?
W Br=y] m2W —1. (B.33)
Z

The self-energy contribution J33(p?, 1) is expressed in terms of standard one-loop gauge-

where

boson self-energies which can be found in [41] in the Feynman gauge. We take the fermions
to be massless except for the top quark. Hence we further separate the massless fermion
contribution from the massive contributions,

Js3e3(p2’ /‘L) = Jge% f;étonly(p2a :U') + Jge% f;étexcluded(p2? lu’) ’ (B34)

where the second term includes the WTW =, ZH and tt loops. For the massless fermion
contribution we obtain

%]

Tk p2tonty (P75 1) = i (1)35 1 ){S%/(M)go{_5(7”2)5Jr {1“’} iﬂ ]

1672 9 3 p
0 80, 1 5 9. (b m?,
<3 o) |[g] 0w (5w z
7 1 80 ,
(-5 R ERmR i)
1 2 2 mzz 2 2
lormmge) - GowiE)oor-mi]}. wa
The star distributions are defined as
Dhax In" 22 ]
/ dp® | —5" (»*)
0
Phas o f(?) = F(0), , p* | f(0) P2
= dp? L g £ LA ] Dmax B.36
/o P p? TE e e (B.36)
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where f(p?) is a test function and p2,,, > m?% in the last two equations. For pZ,. < m?% the
introduction of star distributions for the Z-boson propagators is not necessary. The above
expressions diverge as p2 . — mQZ, see appendix B.3 for the treatment of the Z resonance.
The massive piece instead reads

33 2
Jse, f#t excluded (p ) :u)

Re[77(0)] Re[237 (m3)]
= 28w (ew (1) | ———5—"8(p?) — 70yt~ m)
my my
. oxxy p2 R ONZZ (12
) L P MIE e e L R
p p2=0 % p2=m2,
Z Z
Y B S b T ) PR S SR ol Y
wp)ew ([ mQZpQ T mQZpQ_mQZ T
. 1 Im[277 ()] A 1 Im[ZF (%)
+ 5 (1) —— B & (n) — BVZE (B.3Y)
(»?) m (p? — m%) ™

In this case we do not need to introduce star distributions, because the imaginary parts
vanish below the massive thresholds indicated by the subscripts, and hence there are no
singularities at 0 and m2Z

For convenience we collect below the explicit expressions for the gauge-boson self ener-
gies and their derivatives in the Feynman gauge. Their transverse parts are taken from [41].
The derivatives have been computed in a straightforward way.

952

g55 2

SV (%) = — 1267:5 {3 > N@Q?[— (p* + 2m7 ;) Bo(p®, myi,my)
f7i

1
+ 2m?7i30(0, my, mf,i) + 3p2]

+ { {3]32 + 4m%v} BO(pQ, my, my) — 4m%VBg(O, mw, mw)}},

(B.40)
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0 Bo(p?, mysi,my 1
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(B.41)

9 Bo(p?, muy,
! {SBO(pQ’mW’mw) + (39 ampy) 220U aq;w mW)}}

~

~2
g55 2 R .
200 = - To {3 ZNé(_Qf)(‘]}r + 9f> [_ (" +2m3 ) Bo(p*, mypi,my:)
f7i

1672

1
+2m%,;Bo(0,my,my;) + p2]

3
1 ) 1Y o . 2 2
+ — 9 + = | p° + (12¢5 + 4)miy | Bo(p®, mw, mw)
35w ew 2
~9 2 1 2
— (12¢&f — 2)miy Bo(0, my, mw ) + gp }}, (B.42)

~2 a2

g55 2 R a

S 0°) = ~ T {3 > Né{ (@2 +@p7?) [_ (? +2m3 ) Bo(p* mpi,my)
f7i

1 3
+2m7;Bo(0,myi,my) + 3p2] T mfc,iBo(pQ,mm,mm)}
w=w

v (asety w0, - L P’
653,02, WEW

+ (24¢}, + 1668, — 10)m%V] Bo(p?, my, my)

1
— (24, — 8¢k + 2)miy Bo(0, my, mw) + (46, — 1>3P2}

1
1222{ (2”@1 — 10m3 —pg)Bo(pQ,mzmH)
Sww
— 2mY Bo(0,mz,mz) — 2m3 Bo(0, mu, mp)
2

m2 — m2,)2 )
B w@o@%mzvmm ~ Bo(0,mz,mir) ) ~ 3192}},

D
(B.43)
ODZZ (p2) 958% | 2 f{ -
OB _ S NE (G2 + @7)) | = Bow? myiomys)
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6§2 ~2 { <180W + 20124/ - 2>BO(p27mW,mW)
wew

1
+ [(186W + 288, — 2>m22 + (24¢h + 1688, — 10)m%v}

6B0(p2, mw, mW) ~2 1
X a2 + (4¢y — 1)

1 8Bo(p2,mz,mH)
————1 — Bo(p*, mz,mp) + (2m%1 — 11m22>
12§12/VA%V{ e Op?
(P —m%{)2 2
+ 74<Bo(p ,MZ, Mp) — BO(O7mZ7mH)>
my
2 _ 0232 /9B (12 9
_ (mZ 2mH) <a 0(p 777;27mH>> _ }} (B44)
m7 Op 3 P2

Here my; is the mass of a fermion, where ¢ indicates the generation index and f refers to
the fermions within a generation. Ng, is the number of fermion colors, Né =1 in the case
of leptons and Né = 3 in the case of quarks. The electroweak couplings are written in
terms of the charge and the third SU(2) generator

. 22 3
At SW L SwQy — IW,f

= B.45
9y Swew ( )

We also provide the explicit expressions for the By and 9By/0p? functions that are required
for the jet function computation. In the expressions (B.40) to (B.44) the poles in the
expressions below are subtracted. In the following p? > 0, since the imaginary parts are
made explicit:

1
Bo(0,m,m) =~ —2In =, (B.46)
€ p
1
Bo(0,0,m) =~ +1—2In ", (B.47)
€ u
1 2 2 2
Bo(0,my,my) = - + 14 LAT M2, M2 4 , (B.48)
€ mi—m; M mima
2 1 o
By(p®,0,0) = = +2+1In— +im, (B.49)
€ p
0By (p?,0,0 1
o(p?,0,0) - (B.50)

o P
1 1

+2—21nﬂ—2ﬂarctan }
€ p 3

e
+9(p2—4m2)[1+2—21nm Bln()+i57r]}, (B.51)

830(]782];2771 m) _ {9(4777,2 _pZ)];lz |:1 +_ 2 arctan 1_ . 1:|
2
+ 0(p* — 4m?) [—plz + Q;ZB (In(z) + m)} } , (B.52)
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OBo(p%, m, m) 1
= B.53
8p2 p2:0 6m2 ’ ( )
Bo(p?,0,m) = 1—|—2—2ln—— l—m—2 6(m?* — p*)In 1—£
) Y € M p2 m2
+0(m? — p?) (ln (p2 - 1> - iﬂ') ” (B.54)
m? ’ '
M2 _ 2 MQ
Bo(p®>, M,m) = |- +2— In— +In —
0(p7 >m) 6+ p2 nm+an
2 2 M2
i LR M ey, 2, m), (B.55)
)| L i, (me)
apz p2=m% m2Z m% H
(m?% — 3m?%) arctan [ 4"1222 - 1}
" ] : (B.56)
m? dmg 1
Z m%{
where for M > m
V(M +m)2—p?++/(M—m)2 —p? 2 2
= V (M4m)2—p2—/(M—m)?—p? e < (m—M)
F(p* M, m) = { —2arctan ﬁ%ﬁ (M —m)? <p?* < (m+ M)>?
VPP —(M-m)?—\/p?—(M+m)® . 2 2
In N/ T ARy e +ir p*>(m+ M)
and

k(x,y,2) = 22 +y° + 22 — 2xy — 222 — 22 (B.57)

is the Kallen function. §,z were defined in (B.14) and f3 in (B.18).

B.3 Treatment of the Z resonance

The ‘nrw’ jet function (B.31) requires the introduction of the star and “double-star” distri-
butions to deal with the singular Z-boson propagators when p2 . > mQZ The distributions
can be integrated against smooth test functions. However, as is evident from the defini-
tions (B.37), (B.38), as the integration limit p2,,. approaches the singular value m%, the
integrals diverge, which was already pointed out in [7] (see for instance figure 3 there).
The singularity arises from the Z-boson resonance in the narrow width jet function,'6
and can be cured by the standard Dyson resummation. Inspection of the expressions in

2
the previous subsection shows that the divergent terms in the integral f(f max 2 J33(p?)

16The issue is absent for the hard-collinear intermediate resolution jet function. In this case, the gauge
boson masses can be neglected and the Z-boson resonance does not appear in the regime of validity,
2 _
p* = O(mymw).
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arise from the light-fermion self-energy diagrams as these give rise to the star distributions
in the one-loop result (B.31). Reordering this expression as

J33(p2, 122 V) = ‘§12/V(N)6(p2) + J\%\:/))ﬂson(pga 1, V)
+ &y (W3 (p* —mZ) + JE 0%, 1) (B.58)

we therefore focus on the last two terms.
It is not necessary to perform the full Dyson resummation, resumming the Z-boson
propagator insertions is enough. We obtain (dropping the argument p from the coupling

and the jet function)
Eyo(p? —m) + Job PR (p?)

A~ ~ 2
_ 84,03 .5 80[—5(]02)54- [1][u }}
P2

1672 "W g 3 .
1 Im [S77 (p%)e,w ] [6277(192) ]

~9 T s ~ T t,W 2

Sty — — SiyRe | ————— )

W (pg)g w ap? 2o (p7)

1 57 (%) 1
+ —Im | 28w ew T

m [ —p?  —p? +m% + Re [£44(m%)] — 247 (p?)

1

1
+ = Im |& . (B.59)
™ [ W p? 4 m + Re [247 (m%)] — S42(p?) ]

Note that (B.59) also includes the tree-level Z-boson contribution to the jet function
through the last line. The terms Re [E%Z (m%)] in the denominator ensure that the real
part of the renormalized Z-boson self-energy vanishes at p? = mQZ as is required in the
adopted on-shell scheme for the Z mass. The imaginary parts of the square brackets
in (B.59) can be further simplified by noting that the Dyson resummation is necessary

only when p? ~ mQZ We then obtain
&yd(p* — m%) + J2 PV (p?)

~ ~ 2
_ 84,93 5 80[_5(102)5+ [1][u ]}

1672 V9 37 |92,
1 Im [237 (), w] [3277(2?2% W]
+55 = — — §iyRe | — 5 J(p?
w T (pg)z w ap2 20 (p )
(R[S O], Re[SFmbw]
+ 28w ew 3 o(p°) — 2 (p” —m3z)
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1 Im {E%Z(Zﬁ)t,w] 1 1Im {E%Z(Zﬁ)t,w] 1
T m?, P2 + T m? p? —m?
22 52 2 2 2
5w o (10 80 > [ p-—my 2 2\ (D mz
—|—2<—s —d(p*—m7z) |z —In—%
1672 "\ 3 9] [(»® —m%)2+mil% 77\3 12
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(B.60)
where [ ZZ( ) ) ] )
Im ET mZ f#tonly ngZ 20 ) 7 80 V1

_ _ it L B.61

z myz 6ne2, | 3 W Tt gow (B.61)

denotes the tree-level decay width of the Z boson into the light fermions of the SM (all,
except the top quark, masses set to zero). In deriving (B.60), we used the identities

ZZ 2 ZZ( 2\] (2 2 9% (m%)] , 4 2\ o102 2
Re[X77 (p*) — X727 (mZ)]d'(p* — m%) = Re o (p” —mz) ' (p° —mz), (B.62)
8EZZ 2 2
Re 7“#;@ ) _ 1z (2 _ mf) (B.63)
dp ., Tmmz \3 1
pT=mz
and z¢'(z) = —§(z), valid for non-singular test functions at p* = m?%.

The Dyson-resummed expression (B.60) can be obtained from the fixed-order expres-
sions (B.31), (B.35) and (B.39) by employing the substitution rules

{1}* - P’ —my (B.64)

p* —mi p? —m3)® +myly’
FZ 1 1 p2 Fz/mz
5(p? —m%) + [ } p? = = . (B.65)
2 wmy (P2 —m3)? ], ™ (p? —m})? + (p?)2T% /m3

C Soft function

In this appendix we discuss the one-loop computation of the soft function. We start by
discussing the scalar integrals for the virtual and real parts of the soft function. The final
result is given by linear combinations of these integrals. We also illustrate how the rapidity
divergences change between the two factorization theorems presented in the main text.
Furthermore we give the inverse Laplace transforms of the resummed soft functions W.

The integrated soft function was defined in (2.57) and the index-contracted version
in (2.58). For the calculation of the integrals and the soft coefficients we find it convenient
to shift the position of the Wilson line to 0 and to perform the integration in niy. This
leads to

W) = Yo~ npx) (O ST, s O X.) (X TIS]ws(0]10) . (C)
Xs

Diagrammatically, the one-loop soft function is shown in figure 11, where a single soft gauge
boson attaches to any two distinct (red) dots on the external legs. In the following, we
categorize the integrals according to which external legs the soft radiation attaches to. If,
for example, the soft gauge boson connects the collinear (n") and the anti-collinear (n/))
external leg, we call this the nyn_ wvirtual or real integral, depending on whether the soft
gauge boson passes through the cut.
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Figure 11. Diagrammatic representation of the one-loop soft function.

C.1 Virtual soft integrals

In this section we report the calculation of the relevant scalar integrals for the virtual soft
correction. We define the integration measure (and implicitly /i) as

. dk 2678\ ddk
(K] = i 52 = <M47r > (2m) (C2)

where d = 4 — 2¢ and g is the Euler-Mascheroni constant. For the real integrals discussed
later, we also use the phase-space measure in terms of light-cone coordinates

1 o o0
/ddk O(k°)o(k? — m¥y) = 2/ dmk/ dnk/dd_Zk:anJrknkﬁL k2 —m¥,)
0 0

- 9‘12—2 /0 Oodn+k: /0 Sk /0 OodkT k36 (nykn_k — k3 —m¥),
(C.3)
where k2 = —kﬁ_ > 0, and the delta- and theta-functions enforce nik,n_k > 0.
The nyn_ virtual integral. We start by analyzing the virtual nyn_ integral
B = —ig3o()ns o) [ (aK — e (C)
(k2 — m2, + ie][n_k + ie][ny k — ie] |2k3 |1

It is convenient to proceed by first doing the contour integration in the variable k°. To this
purpose we rewrite the integral as

dkOdk3d? 2k, "

_ cA2 ~2¢ L
o 1

[(K9)2 — B2 + ic][kO — k3 + ie] [kO + k3 — ie]

virt.
In+n,

(C.5)

where EZ = (k*)2 + k% +m3,. If k* > 0 one finds four poles in the k° complex plane
situated at +(FEy — ig), k> — ic and —k3 + ie. Two of these poles are in the upper half
plane and the other two are in the lower half plane. We close the integration contour in
the lower half plane (notice that by doing this we pick up a factor —27i). For k3 < 0 we
find again two poles in the upper half plane and two poles in the lower half plane. The
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poles in k3 — ie and —k3 4 ie moved from the positive to the negative k° domain and vice
versa, respectively. We obtain

di—2k, V1 2mi 1 1
IVlrt _2“2 - = 3
s =2ig56(w) / o {/ dk kYT 12 + i, [QEk, 2k3—i€:|
0 n 271 1 1
5 v i B
| i ] ) )

By summing the first terms in the two square brackets of (C.6) (which give the same

contribution as can be easily seen by making the variable transformation k3 — —k3 in the
second line) and after performing the k® and k| integrations one obtains for this part

A pure imaginary part comes from the sum of the remaining terms in the upper and lower
line of (C.6). The k3 integral of these two terms is

(=2mi)v™ [ o (=2mi)VT 1 1
[ m— o = | e et
= (—im) v esc(mn) ((—ie) ™" — (ie) ™)

= (27)v" csc(mn) e T sin(n 7 /2)
=724+ 0(n), (C.8)

where the result is independent of the small imaginary part ic at O(n°). After performing
the k| integration and summing the two contributions we obtain the final result

e~ _g;a<w>< p )( v > [F(; Dre+d) Tle+d) <”+o< )>

472 myw Mz I‘(l + g) 2

1 2 ] 2 2 4
__ X W) |-o 4 2 T 2w 2y w2y T
Cor e e € € 1 € v n 1
2
+ T pomim W o2 W gy W W (C.9)
12 Iz @ % v

The vny and vn_ virtual integrals. The second virtual integral we analyze is the
scalar integral which appears in initial-final state soft W exchange. The integrals for the
Wilson line combinations vn4 and vn_ give the same result because the virtual part of the
soft function is symmetric under the exchange n, <> n_. We discuss the integral

v
(k2 — m2, +ic][nyk — ie][v - k — de] |2k3|7

R = ~iggsw)(v-ny) [l (C.10)

We proceed in a very similar way to the integral I,‘{if%'_ above and first do the contour
integration in k°. The integral has four poles in the £ complex plane and only one
(Ej —1ic) is situated in the lower half plane. It is therefore easier to close the contour in the
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lower half plane both for k% > 0 and k% < 0. By summing the positive and the negative k>
regions and by integrating over k; we obtain

~ 2 1
virt g% H ‘ v\’ YE€ (5 g) ( )
Ivn - 25(0‘}) e 1
+ 8 mw mw M2 7

1 2 2
=Gy |-l 2 w2y w4y mw
A7 e en e i € v n w
2
+ g MWy W 92 T (C.11)
12 " v W

The vv virtual integral. Another virtual integral originates from the connection of the
two heavy DM Wilson lines. It is defined as

" 1
I — —i628(w) (v - )/[dk] e 1 s (C.12)

We perform the integration in k° noting that the pinched poles at k° = =+ie must not

be picked up. These poles correspond to the potential region and are already taken into
account in the one-loop contribution to the Sommerfeld effect. The integration in k is then
straightforward. The result is

. A 1 /’1‘2
e = Gag [1 2] |
e (©13)

In [6] the integrals ", Iy™%, I¥™ were already computed. We find agreement except

for the integral lejz where we find an additional term which results in the imaginary parts
of (C.9).
C.2 Real soft integrals

The real emission contribution is extracted by applying the Cutkosky rules to the cut
propagators in the previous integrals

1 Lo 2 0
We still have to keep the rapidity regulator to regulate the limit w — 0, therefore we
introduce star distributions [30], see (B.36) for the definition.

The nyn_ real integral. We start with the nin_ real emission contribution

=276 (k* — m3,) 0(k?)) VN
el n_ A2/ ax ¢ L S(w—n_k C.15
nyn_ (7”L+ n ) 92 [ ] (n+k)(n_/~c) ( n— ) ‘2]’63’” ( )
We first perform the integration in n_k using é(w — n_k), which leaves
o eV EE S(wnik — k2 —m?,)0(w + nyk)
preal . 22° / dn kd®2k 0T T M +5) C.16
ke om2—c u " T wnik|nyk —w|" ( )
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In performing the nik integral next, the step function can be dropped as it only ensures
nyk > —w, but w > 0. Since k% —i—m%/v > 0, the delta-function contributes only for positive
nyk, i.e. the step function does not pose a further restriction. Hence,

Gipe1Pe . 1
Ireal e 2€w77 1V77/ dk T . C.17
- ﬂF(l—e)'u 0 Tk%+mgv k2 + m2, — w?|" ( )

We pulled a factor of w” into the absolute value, as w > 0. The absolute value inside the
integral forces us to consider two cases. Either myy > w, in which case the absolute value
can be dropped, as kp,my > 0. Or w > my, then we split the integrand into an integral

from 0 to y/w? — m#, with a factor of (—1)" from the absolute value, and a second integral

from /w? — m%/V to 0o, where the absolute value can be dropped. To make the structure

more transparent, we perform the substitution &}, = kr/my and define w’ = w/myy, which
turns the previous integral into the integral

A 207E\ € / pw \" 1 00 E/1—2e
preal 92 (“ © ) < ) / K/ T . (C.18
M= T m%,v m%,[, wl'(1—¢€) Jo T (klﬁ + 1) ‘k? +1- w’Q‘n ( )

over dimensionless quantities.

We start with the first case w’ < 1. The absolute value can be dropped and the
integration results in

A 2 YE € n 1
real __ _% H-e rw =20 e —
4 (1 _ w12)1—6—77 F(l — E)g((e)_{— n—- 1) 2F1 (17 1— €, 92— n, 1— OJIQ) } (Clg)
n

with 9 F} the hypergeometric function. This is the exact result to all orders in €,n. The
dimensionless terms inside the curly brackets are finite in the limits w,n — 0. Therefore

the only terms involving n-poles may come from w"~tm;;/ = 6(;’) [1] )[ka] +O(n) in front
of the bracket. The d(w) term in this identity requires to expand the expression in the curly
brackets up to order n', but allows to set w’ = 0 in the function arguments. Therefore we
can simplify the hypergeometric o F} function in this case. For the term involving the star
distribution, we only keep the 7° term in the bracket, which is w independent. Therefore

to order O (1, €), the result can be written as

ve (126 [ vw \" T(e+1)
Ireal — 7% p-e 10)
n4n— 2 \ mi, m2, ) wI(1+n) + 00 €)
A 1 1 1 21 2
——0‘2[5(w)<—2++1n”2+<—1n”2+1ny>
27 € €n - n myy € miy, my
2 2 1 2 2 11mwl q 2
+”_1nwg+1n/g1n”2)+H (ang)]. (C.20)
12 2 my, 2 my,  miy w], € miy

For the above integral we assumed w’ < 1. For the second case w’ > 1, we show that
the integral can be written in the same form as above. To do so we go back to the integral
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: /
in ko

00 k/1726 Vw2—1 k/1726
/ dky T = / dkiy % 7
0 (K2 +1) [KZ +1—w?| 0 (K2 +1) (K2 +1—w?)

[e%) k/1—2€
dk! T . (C.21
+ /m TRZ 4+ 1) (K2 —1+w?)” (C-21)

The individual terms yield

Ny /12
/ dk; by
0 T(kZ+1) (KZ +1 - w?)"
(@2 -1)"""TA - gra -
= Fi(l,1—e2—c—n,1—w'?

00 /1—2€
/ dak, a ;
V=1 (KB +1) (—kZ — 14 w'?)

_ @?=1) (=) T - (e £ 1) 1
= 5 F(l-'-e) 2F1 1,6‘1‘7’],1—“6,1_7&)/2 . (022)

The rest of the discussion is analogous to the case w’ < 1. To order O(n,¢) we find the

same result as in that case.

The vny real integral. The vn, real emission integral is

en (—27m6(k* — mi,)0(k0)) v
Ivnl (1) n+)92 /[dk] ('U k)(nf;ﬂ) 5(("} _n_k)|2k3|77 :

We perform the integration in n4 k, n_k using the two delta-functions as for the nyn_ case,

(C.23)

and obtain
2¢ eVE k1*2€ 1 1
r Qg pi~e 1 T
el — n "+/ dk . (C.24
O (i QR R e P N R

Other than for the nyn_ integral, the prefactor is now w”!, which is finite in the limit
n,w — 0, regardless of how the limit is taken. Hence, at this point we can set 1 to 0. The
expression is then a standard integral, that is easily solved. The result reads

200 (e) (mi — (i + w?)) + O()
B dz 1 m%v + w2

Ao €TE
Ireal e
4 T

2w

and is finite. To compare with the other terms, we may also replace % — [l]*, as the

w
integral is non-singular as w — 0 and hence the star-distribution is equivalent to w™?.
The vn_ real integral. This integral is related to the nyn_ and vny integrals. The
identity
(nen) (om0 (.26
(nik)(n-k)  (v-k)(nik)  (n_k)(v- k)
ensures that the integral obeys the relation

Ireal _ Ireal o Ireal (027)

nin— vng C
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The vv real integral. The calculation of the vv integral follows the logic of the vn,
integral. We start with the expression
n

(=216 (k% — m2,)0(k°))d(w — n_k)|2::73|n . (C.28)

QﬁzwwﬁﬂW@zP

The two delta-functions are used for the nik,n_k integrations. This results in
the expression

24 2€ ,€YE M o k_l—25 1
Iéial — _OQWWT]Jrl/ dky T 5T . — - (029)
™ I'(l—¢) 0 (w? + k2 +mi) |w? — k2 — mi,|

For the same reasons as for the vn, integral, we can expand the integrand in n and drop
the O(n) terms. Hence

24 2€ eVE 00 k1—26
I{)‘f}al _ s e w/ dkr T S +0®)
T I'(1—e¢)  Jo (w? + k2 +m?2)

&
=2 L(e)p?eEw
™

1+4e
e @)
<m%v + w2> +0)
Q9 w

=-———F—+0(n,¢). C.30
T O (C:30)
The same result is obtained if we keep the full n-dependence and expand the hypergeometric
functions that arise for the full integrals.
All the real integrals except I'® were also computed in [6], and we confirm these
results.

C.3 Cut two-loop diagrams
The integrals now allow us to determine the total discontinuity of a given two-loop diagram,
after summing over all cuts. The sum of all cuts is
Y = Disc(iM) = —2Im M. (C.31)
cuts

In figure 12, we show the four possible cuts of the nyn_-diagram. For the other
diagram types, we apply the same procedure. The total discontinuity for the nyn_-type-

diagrams is'”

Disc(iMp, n_) =2Re <Irea1 _ pvirt. )

niLn— niLn—
A 1 2 1
_ [5(w) < g ML lan—i-anlean)
T en n W € v i v
1 [mw] 1
+ [} (— +2In mW)] . (C.32)
wl, € W

"Note that the choice of scalar integrals in the previous sections implies a relative plus/minus sign
between the real and virtual contributions in some of the cut diagrams.
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Figure 12. The four possible cuts through the nyn_-two-loop diagram.

In the nyn_-diagrams the real contribution cancels half of the virtual n rapidity divergence.
There is more than one vn_ two-loop diagram. We discuss only one of them, as the
others differ only via relative overall signs and prefactors:

Disc(iMyy,_) = Iyt — real

A 1 2 2
- [(5((») <—2+lnmw+ﬂ—2ln2mw>
47 € € n

[mw] 2 2 2
A o (M) o mw)] (©33)
wl, € myy W

For these diagrams the rapidity divergence is completely cancelled. Following the same
logic, the vn-diagrams give

DiSC(iMUm_) — Jyitt. 4 yreal

vn4 vn4

A 1 2 4 mw 2. mw 2 mw
—-—aQ[(S(w)<——|——ln+ln—ln
2
€ en 7 € 7 € v

2 1 [mw] 2 2
+7T21n2mw+4lnmwlnmw>+[] 21n<mw;’_w>].
12 o n v w miy

*

(C.34)

The n-divergence for this two-loop diagram is the same as for the virtual integrals only, as
the corresponding real integral is 7 finite.

We observe that the left-over rapidity divergences among the two-loop diagrams are
such that

Z |77_diV- + Z |77—div. = % Z |77—div. . (035)

virt. real virt.

In the narrow resolution case Frges ~ m%,[, /My, the rapidity divergence in the sum of all
virtual soft diagrams cancels the rapidity divergence of the photon jet function and the
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narrow resolution unobserved-jet function. The fact that the intermediate resolution case
allows for real soft radiation implies that it has only half the n-divergence in the soft
sector compared to the narrow resolution case. This matches precisely to the fact that
the jet function for the unobserved final state at intermediate resolution and hard-collinear
virtuality O(m,mw ) does not have rapidity divergences anymore.

C.4 Soft functions in momentum space

In this appendix we give the individual components of the index-contracted soft function
as defined in (2.58) and (C.1). For the operator combination ij = 11 we find

W00y (00) (@5 1) = Wity sy (@5 15 7) = Wiy 0y (@5 15) = W (4 (w1, )

= §(w) + f—; 5(w)(~16)In mTW In mTW + E}] imW](—16) In m;V] .
(C.36)
The operator combinations ij = {12,21} are given by
W 60y (00) (@s 15 ) = Wikigh 00) (@5 15 V)

_ %’r lé(w) (8 + 8mi) In mTW + [i] imm 81n <m%Vm2:;°"2> :
W60+ (@ 1) = WED 00y (W, 11, v)

=d(w) + %27 {(5(00) ((4 + 47i) In ﬁ - 161nm7W1n mVW>

n [1] . (4ln <W> +8In ‘i)] ,
w1k My My

W(lff)(oo) (w, p,v) = W(Qol(S(Jrf)(W,Nv v) = W(logo)(oo) (w, p,v),
Wy o @ v) = WD () (@, 1)

= Wiy ) + 2 m imW] (-2)In <w> (37

Finally, the operator combination ¢j = 22 is
A [mw] 2 2
29 (D) 1 mW +w
W 60)(00) (s 1, V) = o L]* 81n <m%v> ;

W(QO%)H*) (W, b v) = W(th),(oo) (w, p,v)

A [mw] 2 2
_da [M (8 — sriyn ™ H . (mw;i—w>
a7 W w miy

*
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(67 mw mw mw
W(2-E—)(+_) (wu My V) - 5(&)) + ﬁ |:(5((U) (—8 In 7 —161n 7 In y)

[mw] 2 2 2
A o () M)] o
w, miy mW

C.5 Expressions for the resummed soft coefficients W}?I

We collect here the inverse Laplace-transformed soft coefficients W as discussed in sec-
tion 3.4 and defined in (3.54). We also make use of the inverse Laplace transform F(w)
which was defined in (3.56). For the operator combination ij = 11, the W coefficients are

given by
W(lolo)(OO)(WaMSa v) = W(lolo)(Jr—)(waMsﬂ/) = W(li_)(()())(wa#s, v) = W(li_)(Jr_)(WaMs, V)
Gy mw e TET 1 rwN\"
=(1+=2(-16)ln—>9, | —— = (=) . _
(15 comtra) 555 6) (©3

We note that here 7 is defined as in (3.36) and should not be confused with the rapidity
regulator. For the operator combination 5 = 12, the results read

W(1020)(00) (W, pis, v) = W(lf—)(oo) (w, ps, v

)
) e (2) 4+ 22 ).

Qg .
== 1 - a2
47 [<8+8ﬂ) " us | T'(n) w 47
212 Qo mw ~oomw \| e ETL sw\n
Sy - 1 - _1 1 - 4 4 l —_ —_
W 60y (4—) (@, s, V) [ +47r (( 61n o 8,7> (4 + 4mi) In m ﬂ TORE (1/)
a
+ o [HAF W)
Wy (@5 sy 1) = Wy (4 (05 s )+E[ 2F (w)] (C.40)
and for ¢5 = 21,
00)(00 (w Hs, V ) 00)(00) (Wyﬂsyl/)
(w Hs, V ) )(w /'sty)
W(+ )(00) (w fs, V) = 00)(+ )(W s, V)
(@, s v) = WIS (L (@, s, ) (C.41)

Finally, for the operator combination ij = 22, we have the inverse Laplace-transformed

soft coefficients

Wity 00y (s s, v) = T2 BF@)]

W(%%)@ﬂ(% fhs, V) = W(2+f
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3722 Q2 my mw \] e 7ET 1 sw\n
W(+_)(+_)(W,M5,V) = |:1+47T <<—161nus&7> —8ln >:| — (*)

+ % [-6F(w)] - (C.42)

D RG and RRG invariance for the narrow resolution

In this appendix, we provide the RG and RRG equations of the unobserved-jet function
and the soft coefficients D' (i = 1,2)' of the narrow resolution case [7]. Together with
the results for Z, from section 3.2, we can then show the RG and RRG invariance in the
narrow resolution case. For the soft coefficients, the RG and RRG equations read

d i " ;
leMD (N7V) :’YD,ijD] (M?V) ’ (Dl)
d % v i
dlIlI/D (N? V) _’YDD (M7 V) ) (D2)
where the one-loop anomalous dimensions are given by
o .
© 161n — + 8mi 0
Vo = v : (D.4)

ea(j) (=4 +4mi) 16l E + (12 — i)
1%

For the unobserved-jet function, whose explicit results are collected in appendix B.2,
the RG and RRG equations are given by

33 2 v 33 2
mJ (P ) My 7/) :nyrecJ (p s by y) , (D.5)
T @ my) =25, % ) (D.6)

and the one-loop anomalous dimensions read
'Y;ri(c)) =161n muiwa (D.7)
1 (0) v 19
= 161 5 D.
/YJrec 6 n 2mx + 3 ( 8)

Analogous to the discussion in section 3.5 for the intermediate resolution case, the inde-
pendence of (2.38) and (2.40) on the scales p, v implies consistency relations among the
anomalous dimensions:

V2., la+ 7 e +9H +5 =0, (D.9)
L+T" +9p +9p +77,12 4+ 12=0. (D.10)

Using the expressions for the anomalous dimensions from the RG and RRG equations for
the hard function (3.4), the photon jet function (3.10), (3.16), the unobserved-jet func-
tion (D.7), (D.8) and the soft coefficients of the narrow resolution case (D.3), (D.4), we
can explicitly check that these consistency constraints are satisfied.

18The following does not depend on the indices I, 33 of D37337 which are therefore dropped to simplifiy
the notation.
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E Complete NNLO expansions
EZET)? oy cgii?(_jz Ei%;(_fz) defined in (5.3)
for n < 2. In this appendix, we list the remaining coefficients relevant to the understanding
of the logarithmic structure of NLL’ resummation at NNLO, that is, c%’m) with 0 <n <2
and 0 <m < 2n and I,J € {(00), (+-)}.

Additionally, this appendix provides more details on the computation of the resummed

In section 5 we showed the coefficients ¢ ) and ¢

cross section, as well as the fixed-order expansions. We introduce the following abbrevia-
tions (partially already given in section 5 but repeated here for completeness):

4m? 2 2 2
L=m—X g, =Wt g = = s (E.1)
miy 4mX 2my,mwyy miy
2 2 2
_ H Vh _ Vg _
L=t 1, =1 =1 , In=Inz. . F.2
1% n mIQ/V ’ h n 4 i s n mIQ/V R nx'y ( )
1_.
Ar = Ar(zy) = —§L12(—x7) , (E.3)
Ty dy
or = ¢r(zy) = ; ?P\R@w —y) — Ar(zy)], (E.4)
Ty In
on =) = [ ™D (e, —4) - AnGe)], (E.5)
0
where
2E7%s
Ty = m; (E.6)

E.1 Narrow resolution coefficients
E.1.1 I,J = (00), (00)

The fixed-order annihilation cross section starts at the two-loop order, and the two-loop

coefficient exhibits at most two logarithms. Hence cr(lé(‘;;((gg) =0 for n < 2, except for
nrw(2,2) 2
ooy =17
Cnrw(2,1) — 4 12
(00)(00) 2
4
nrw(2,0) 2 ™
C(UO)(OO) =4 -7 + E . (E?)
E.1.2 I,J=(4+-),(00)
The fixed-order annihilation cross section starts at the one-loop order. Hence cl(livi()o (’gg) =0,
and
nrw(1l,2)
“(+—)(00) =Y
nrw(l,1) .
C(1-)(00) = -1 —ar
nrw(1,0) 7T2

Clroyo0) = 2+
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nrw(2,4)

C+-00) = 0
nrw(2,3) .
€)ooy = 10T
nrw(2,2) @ _ 93im
“(+-)00) T 48 T 48
nrw (2,1 11 1liw 2 19 19w 55  5bim 5572 1liw®
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+96_3+6+<16 2) (Z»Y—FJ(EreS)) . (ES)
The coefficients for the index combination I, J = (00), (+—) are obtained by taking the
complex conjugate of the coefficients given in this section, i.e. cgoo) () = (c Eim))(OO))*
E13 I,J = (+-),(+-)
nrw(0,0) m2Z
C(+7)(+ ) W + CW@ < res 47nx>
nrw(l 2) .
() = 71
an(l 1)
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(+=)+=) T 9
nrw(2,3) o3
)+ T T
nrw(2,2) 19 11§%}y 1371'2 671 1
—— - E
C(+ G < 12 12 l:“f 192 144 4(Z'Y+]( res))
2
nrw(2,1) 2 § o B 11 32
)+ T 24lus + < 9 3 > s <12 12" b
3 657  PBisu)
+ Z - 288 - 8 + ( ( res )
a0 Ly 17 n 2572 203 B SU(2) 14972 15 l
(+=)(+=) 7 4 Hn 79 Hh 24 144 288 4 Hh,
55
1y _ 3 2 | 2 2
4lu5+(lys 72)l + 1, [ L, ( B > =1+,

— 76 —



12154 2141 i(E7 2
_ SW —|—7T2 :|+l |:(_J( I‘eS)_Z'Y>th_7TlV

144 576 1 1 6"
31w 1 8y 84y
+144+<16_16)”815U 16”2 1662, LY

1185, 19 _L9(E)] e 1215, 20953, | 361
v 144 288 576

48 96 48

11 1ln 1972 19 §2 1
l - A2 -n Y W
J”‘[(Q 16>SWJr 16 2+<16+ )BlSU

19 1183, 3 3n? 2z
— - E — + —+ 1) §(EY
+ <48 48 > (Z’Y +]( res)):| + ( 9 + 16 + 16> ( res

+9 Lﬂ-2+37ﬂ-4+ §+377T2
1 576 2" 16 )

E.2 Intermediate resolution coefficients

E.2.1 I,J = (00), (00)

mt( 0)

“(00)(00) =0

1nt( 2) mt( 1) 0
(00)(00) €(00)(00) ~
1nt(1 0)
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The coefficients for the index combination I, J = (00), (+—) are obtained by taking the

(n

(n,m)

complex conjugate of the coefficients given in this section, i.e. C(oo)() o= (c Clu— )(00))*.
E.23 I,J=(+-),(+-)
int(0,0)
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E.3 Further input

In obtaining the coefficients just listed, we made use of a series of expressions and properties

which we summarize below.

E.3.1 Running couplings at two loops

At one-loop the running of the SU(2) coupling s is determined from ﬂSU

oop(

A2
—BOVSU(Q)%QF while the running of the Weinberg angle sin? Oy (1) = S%V( ) follows from

its definition in terms of the SU(2) and U(1) hypercharge gauge couplings,

2 a1

e
i) = Z00 + aa()
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At two loops, contributions from other SM couplings affect the running of the EW gauge
couplings. However, we can neglect the u-dependence of the other couplings in such terms
in the beta-functions, as for example, in éqo(p)as(u), since it would be relevant only at the
NNNLO. Equivalently, to NNLO we can let the couplings run as

) ) a3 (o ug  ai(po T 15
G () = dra(po) + 2l )50,SU(2) ln;g 1 %lno) <51,5U(2) lnﬂfg + B3 suz) In? Mg) +.,

4 1672
(E.14)
where, in the SM,
19 35  33% s 3 y?
_ SR A Sac BN T E.15
Bo,sU(2) 6 Arsu() 6 2 c%,[, Qo + 2 4o ( )
A1 199 9¢4, 444y 17 o2
-4 _ P Cow  *oes | 20 . E.16
Poy =~ Py =—7g 22, 34 6 dnd (E.16)

The coupling constant ratios in 8 gu(2) and f1y are treated as constants for the expansion
to the two-loop order. The two-loop running of 8%, is given by
2

A a2
A . Qo) St (W .
5%/V(:“) = 5%/1/(,[‘0) + W [— BO,SU(Q) + (/BO’SU(Q) + ﬂo7y)sl2,‘/(;¢0)] In %
~2 a2 9
s (10) 33y (ko) 1 V! ’ (2
+ 1672 6124/(”0) (SW(MO)ﬁl,Y - CW(MO)ﬁl,SU(Q)) In ?

2
+ (Bosuz) + Boy) 8ty (85 (10)Bo,y — &y (ko) Bosu)) In? % +... (E.17)

E.3.2 Identities for the star distributions

The identities that are given here are useful for the fixed-order expansions of the resummed
cross sections. They also need to be applied when checking the pole and scale cancellations
of the individual cross sections:

(1l .
2], = E] g, (1
pzill ozl (V]
[na} _ [nb} tm? H i 2 S ). (E.19)
T |, z |, a x|, 2 a a

E.3.3 Convolutions

The convolutions provided in this section are used for both the implementation of the
resummed annihilation cross sections to compute numerical results, as well as for the

fixed-order expansion. Defining

p2

Imy
1) © 967 = [ dw ) 90F = 2m00) ey (E.20)
we have
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