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1 Introduction

High-energy photons may constitute an important signal for the particle nature of dark

matter (DM) through the pair annihilation of DM particles. In order to distinguish the

DM component from the astrophysical γ-ray background, one searches for the line signal

of the two-body annihilation χ0χ0 → γγ (or γZ) at (or very close to) Eγ = mχ, where mχ

is the mass of the dark matter particle, to be determined.

In particular, the paradigmatic WIMP with mass in the 100 GeV to 10 TeV range and

electroweak charge is expected to be observed or ruled out by the Cherenkov Telescope

Array (CTA) [1] under construction even under conservative assumptions on astrophysical

uncertainties, especially due to the dark matter density profile near the Galactic center.

Precise theoretical computations of the photon yield from DM annihilation are therefore

well motivated.
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Recent theoretical work has focused on two aspects of the problem. First, for dark

matter annihilation into energetic particles, electroweak Sudakov (double) logarithms

O((α2 ln2(mχ/mW ))n) are large and should be summed to all orders [2–5], in addition

to the summation of ladder diagrams known as the Sommerfeld effect. Second, since γ-

ray telescopes do not measure two photons from a single annihilation in coincidence, the

observable is not χ0χ0 → γγ (or γZ) but rather the semi-inclusive single-photon energy

spectrum γ+X, where X denotes the unidentified other final state particles. Although the

leading term in the perturbative expansion of the semi-inclusive annihilation rate arises

from the two-body final states γγ, γZ, the logarithmically enhanced terms differ in higher

orders and this affects their resummation [6–8]. It has been shown, both for the exclusive

γγ annihilation rate [5], as well as for the semi-inclusive rate at narrow energy resolution

(as defined below) [7], that resummation with NLL’ accuracy, which combines the full one-

loop calculations with next-to-leading logarithmic resummation provides precise results for

the photon rate with uncertainties around 1%.

The resummation of the semi-inclusive spectrum is performed for the primary photon

energy spectrum d(σvrel)/dEγ of the DM pair annihilation cross section multiplied by the

relative velocity of the annihilating particles. While in forecasts for the rate observed

by a specific telescope, the spectrum will have to be smeared with an instrument-specific

resolution function of some width Eγres in energy, the expected impact and accuracy of the

theoretical prediction can be equally discussed for the spectrum integrated over the energy

interval Eγres from its kinematic endpoint:

〈σv〉(Eγres) =

∫ mχ

mχ−Eγres
dEγ

d(σv)

dEγ
. (1.1)

The endpoint-integrated spectrum depends on the three scales mχ, mW (representative

of electroweak scale masses), and Eγres. We consider TeV scale dark matter, hence the

hierarchy mW � mχ is always assumed. The details of the resummation of electroweak

Sudakov logarithms near the endpoint, Eγres � mχ, differ according to the scaling of Eγres

and mW with respect to each other. We distinguish the following three regimes:

narrow : Eγres ∼ m2
W /mχ

intermediate : Eγres ∼ mW

wide : Eγres � mW (1.2)

The wide resolution regime was considered in [6, 8] and resummed at the NLL order. Due

to the double hierarchy mχ � Eγres � mW a two-step procedure applies to simultaneously

sum the unrelated large logarithms of mχ/mW and Eγres/mW . This procedure requires

large dark matter masses to satisfy both hierarchies. Resummation of electroweak Sudakov

logarithms for the narrow resolution case was accomplished in [7] at the NLL’ order. The

intermediate resolution regime has not been considered up to now.

In the present paper we close this theoretical gap. We develop the effective field theory

(EFT) for the intermediate resolution regime and sum the electroweak logarithms at the

NLL’ order. We show that the result can be smoothly joined to the narrow resolution
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Figure 1. Energy resolution of the CTA experiment (solid black line, from [9]), and the power-law

fit Eγ
res = 0.0915 (Eγ/TeV)0.653 (dash-dotted) with Eγ = mχ. The dark-grey (red) and light-grey

(blue) bands show where the intermediate and narrow resolution resummation applies, respectively.

The boundaries are defined by mW [1/4, 4] (intermediate resolution) and m2
W /mχ [1/4, 4] (narrow

resolution).

regime to provide a precise prediction of the photon energy spectrum near mχ in the

entire region from the line signal (Eγ
res = 0) to Eγ

res ≈ 4mW . We also provide details and

derivations for the narrow resolution regime not given in the letter [7].

The intermediate resolution regime is relevant to present and upcoming DM searches.

For example, assuming the regime to apply to Eγ
res in [mW /4, 4mW ] the energy resolution of

the H.E.S.S. experiment Eγ
res/Eγ ≈ 10% [10] implies that dark matter masses in the range

200 GeV to 3.2 TeV are covered by the intermediate resolution calculation. For the CTA

experiment, we obtain the power-law fit Eγ
res/Eγ = 0.0915 (Eγ/TeV)

−0.347 from figure 11

of [9] in the range of photon energies of interest, which is shown as the dash-dotted line

in figure 1 together with the unapproximated resolution (solid line). The horizontal band

(dark-grey/red) represents the region of applicability of the intermediate resolution regime,

which extends to 6.8 TeV for the CTA experiment. Thus, the intermediate resolution

calculation covers the mass values where the thermal relic density of the pure Higgsino

(electroweak doublet) and pure wino (triplet) models agrees with the observed relic density.

The outline of the paper is as follows. In section 2 we discuss the momentum modes

and effective Lagrangians relevant to the problem and derive a factorization formula for

the photon energy spectrum valid when mχ − Eγ = O(mW ), which corresponds to the

intermediate resolution regime. We also discuss the modifications that apply to narrow

resolution [7]. In section 3 we calculate the hard, jet and soft functions that appear in

the factorization formula at the one-loop order, as required for NLL’ resummation, provide

the renormalization group equations (RGEs), and solve them with corresponding accuracy.

These calculations are performed for the specific case of the pure wino model, which cor-

responds to the Standard Model extended by an SU(2) triplet with zero hypercharge, of

which the electrically neutral member is the dark matter particle. In the subsequent sec-

tion 4 we show our main result, the resummed endpoint-integrated photon spectrum in the
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range of dark matter masses of interest and for various Eγres. We match the intermediate

resolution calculation to the narrow resolution one from [7] and find very good agreement.

We pursue and explain this numerical observation in section 5 by expanding analytically

the resummed expressions to the two-loop order and comparing the logarithmic and con-

stant terms. We conclude in section 6. A series of appendices collects additional technical

details on soft and jet function integrals, including the narrow resolution case and the

treatment of the Z-boson resonance, the RGE invariance check for the narrow resolution

case, and the complete analytic expressions for the expansion of the resummation formula

to the two-loop order.

2 Factorization of the energy spectrum

The annihilation cross section of TeV scale dark matter with electroweak charges can be

strongly modified by the Sommerfeld effect [11] due to non-relativistic scattering of the dark

matter particles before they annihilate. This effect is well understood. Our concern are

the large electroweak logarithms in the annihilation rate χ0χ0 → γ +X, when the photon

energy is close to maximal, Eγ ∼ mχ � mW , more precisely mχ − Eγ ≤ Eγres � mχ.

The observation of a photon with this energy implies that the unobserved final state X is

“jet-like” with small invariant mass mX =
√

4mχE
γ
res. The logarithmic enhancements of

such final states are caused by soft and collinear physics relative to the large scale mχ. In a

systematic expansion in mW /mχ, where Eγres is parametrically related to mW , mχ as above,

the χ0χ0 → γ +X process is separated into a hard annihilation process and the low-scale

initial- and final-state dynamics, which is described by suitable effective Lagrangians valid

at scales µ� mχ.

We assume that the DM particle is the component of an SU(2) multiplet of the elec-

troweak interaction, which remains electrically neutral after electroweak symmetry break-

ing. Since mχ � mW , this is always a good approximation at leading order in an expansion

in mW /mχ unless there are two nearly degenerate heavy multiplets, such that large mixing

can occur. For definiteness, we assume (as in [7]) that χa, a = 1, . . . , 2j + 1, is a 2j + 1

dimensional isospin-j SU(2) multiplet of Majorana fermions with integer j (thus hyper-

charge vanishes). The essence of the derivation of the factorization formula below does not

rely on these assumptions.

2.1 Effective Lagrangians and annihilation operators

After integrating out virtualities of order m2
χ, the short-distance part of the annihilation

process is represented by an operator that destroys the two DM particles at a single point,

and a set of collinear and anti-collinear fields along opposite light-like directions starting

from this point, which describe the energetic particles in X and those that convert to the

observed photon. We refer to the direction nµ− of the jet X as “collinear”. The direction

of the photon momentum defines the “anti-collinear” direction, pµγ = Eγn
µ
+. The reference

vectors satisfy n2
− = n2

+ = 0, n+ · n− = 2. A general momentum is written in components

as kµ = (n+k, n−k, k⊥), such that for collinear momenta n+ · k � n− · k, vice-versa for

anti-collinear momenta.

– 4 –
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The low-energy dynamics of the intermediate resolution case is described by non-

relativistic effective field theory [12] and soft-collinear effective field theory (SCET) [13–

15]. The kinematics of the annihilation process considered here is a mixture of an inclusive

process in the collinear direction, also called a SCETI problem, and an exclusive final

state of the SCETII type in the other direction with the added complication of electroweak

symmetry breaking and gauge boson masses. The effective Lagrangian must describe the

interactions of the relevant modes with momentum scaling

hard-collinear (hc) : kµ ∼ mχ(1, λ,
√
λ)

collinear (c) : kµ ∼ mχ(1, λ2, λ)

anti-collinear (c̄) : kµ ∼ mχ(λ2, 1, λ)

soft (s) : kµ ∼ mχ(λ, λ, λ)

potential (p) : k0 ∼ m2
W /mχ, k ∼ mW

ultrasoft (s) : kµ ∼ mχ(λ2, λ2, λ2) (2.1)

Hard modes with momentum kµ ∼ mχ(1, 1, 1) are integrated out into matching coefficients

and are no longer part of the effective Lagrangian by construction. The power counting

parameter is the small ratio λ = mW /mχ. Compared to the narrow resolution case [7],

an additional hard-collinear mode is needed to describe the unobserved final state X with

hard-collinear virtuality of order m2
χλ = mχmW . On the other hand, the effective theory

for the wide resolution case [6, 8] requires a yet more numerous set of modes to account

for the independent scales Eγres and mW . This set collapses to the one above when Eγres is

set parametrically to mW .

The leading hard annihilation processes are those into two energetic final-state par-

ticles. Adding another collinear or anti-collinear field to the primary annihilation vertex,

implies a suppression by at least one power in λ due to the scaling of the fields in the

effective Lagrangian. In this work as well as in all previous works on electroweak Sudakov

resummation for dark matter annihilation, the aim is to sum logarithms of mW /mχ at

leading power in the expansion in λ. Power-suppressed effects in λ = mW /mχ are system-

atically neglected in this treatment.

A consequence of neglecting power corrections is that (anti-) collinear fields must

preserve their identity while emitting soft radiation. Since the energetic final state in the

anti-collinear direction consists of a single photon with nearly maximal energy, which hence

cannot be generated from an energetic fermion or Higgs boson, the leading-power operators

for the hard annihilation process contain a single anti-collinear SU(2) or U(1)Y gauge field.

The collinear part of the operator must then also be an SU(2) or U(1)Y gauge field by gauge

invariance, because the non-relativistic initial state consists of a DM two-particle state with

vanishing hypercharge and colour, and integer weak isospin. It is therefore not possible to

combine the anti-collinear SU(2) (U(1)Y ) gauge field with any other single Standard Model

(SM) field to form these quantum numbers, except with another SU(2) (U(1)Y ) gauge field.

The hard annihilation process is reproduced by the effective Lagrangian

Lann =
1

2mχ

∑

i

∫
dsdt Ĉi(s, t, µ)Oi (2.2)

– 5 –
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with operators of the form

Oi = χc†v Γµνi TABi χvAA⊥c,µ(sn+)AB⊥c̄,ν(tn−) . (2.3)

Here χv is a two-component non-relativistic spinor field in the SU(2) weak isospin-j rep-

resentation, χcv = −iσ2χ∗v = −εχ∗v (with ε the antisymmetric 2 x 2 matrix with ε12 = 1)

the charge-conjugated field, and AA⊥c,µ (AB⊥c̄,ν) the collinear (anti-collinear) SU(2) gauge

field of soft-collinear effective theory. (For the case of U(1)Y , replace AA⊥,µ by B⊥,µ and

omit TABi .) The definitions will be given below. Fields without position arguments are

evaluated at x = 0. The operator is non-local, since (anti-) collinear field operators are

integrated along the light-cone of the respective direction with the coefficient function Ĉi.
1

The spin matrix Γµνi is contracted with the two-spinor indices of the DM fields (not writ-

ten explicitly) and the Lorentz index of the gauge fields. Similarly, the SU(2) group index

matrix TABi is contracted with the two isospin-j representation indices of the DM fields

(not written explicitly) and the adjoint index of the gauge fields. The operator basis is

given by the list of distinct spin- and group-matrix structures.

2.1.1 Non-relativistic dynamics

For energies below mχ but above mW the DM interactions are described by the standard

non-relativistic Lagrangian

LNRDM = χ†v(x)

(
iD0 +

D2

2mχ

)
χv(x) (2.4)

with Dµ = ∂µ− ig2A
C
µ T

C the SU(2) covariant derivative, TC , C = 1, 2, 3, the SU(2) gener-

ators in the isospin-j representation of the DM field, and g2 the SU(2) gauge coupling. The

Lagrangian can be extended to include interactions suppressed by powers of p/mχ. Since

the largest non-relativistic momentum scale is mW , they correspond to power corrections,

which are neglected.

The non-relativistic Lagrangian describes the soft, potential and ultrasoft modes (see,

for example, [16]) of the non-relativistic DM and light SM fields. The soft modes can be

integrated out from the non-relativistic Lagrangian in straightforward analogy with heavy

quark anti-quark systems in non-relativistic QCD. Together with the potential modes of the

light particles, they generate instantaneous but spatially non-local interactions between the

DM fields, that is, DM potentials. The effective Lagrangian for the remaining potential

modes of the DM field and the ultrasoft modes of the light fields, is the potential-non-

relativistic dark matter Lagrangian [17]. At leading power,

LPNRDM =
∑

i

χ†vi(x)

(
iD0(t,0)− δmi +

∂2

2mχ

)
χvi(x) (2.5)

−
∑

{i,j},{k,l}

∫
d3rV{ij}{kl}(r)χ

†
vk(t,x)χ†vl(t,x + r)χvi(t,x)χvj(t,x + r) .

1In momentum space, this simply implies that the hard coefficient depends on the large (anti-) collinear

momentum component.
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We indicated explicitly the space-time arguments of the fields to highlight the non-locality

of the potential interaction and the fact that the ultrasoft gauge field in the covariant

derivative D0 is multipole-expanded around x = 0.2 Note that the covariant derivative is

now the one with respect to the unbroken electromagnetic gauge symmetry, since ultrasoft

light fields with momentum k ∼ mχλ
2 ∼ m2

W /mχ exist only for fields with masses much

smaller than mW . The electroweak gauge bosons no longer appear as dynamical fields in

PNRDM effective theory.

The soft modes of the light particles have virtuality of order m2
W . Hence, in matching

NRDM EFT to PNRDM EFT, the masses of the electroweak gauge bosons and of the

top quark and Higgs boson cannot be neglected. The potential V{ij}{kl}(r) depends on

these masses, resulting in Yukawa (electroweak gauge bosons, Higgs bosons) and Coulomb

potentials (photons). Furthermore, the components of the original isospin-j DM multiplet

acquire slightly different masses after electroweak symmetry breaking. The Lagrangian

above uses δmi = mi −mχ0 ≥ 0, where mi is the mass of eigenstates labelled by i. Since

LPNRDM is no longer invariant under the SU(2)L×U(1)Y gauge symmetry and calculations

are carried out in broken theory, we express it in terms of mass eigenstate fields χvi rather

than the fields χva of the SU(2) multiplet.

While soft subgraphs not connected to the annihilation vertex generate potential

interactions, soft momentum running through the annihilation vertex, dresses the non-

relativistic fields in the operators (2.3). Since the leading soft interaction is of the eikonal

type, this dressing takes the form of a Wilson line. This is seen most easily by noting

that the temporal soft gauge-field coupling in the covariant derivative D0 in (2.4) can be

removed by the field redefinition

χva(x) = Yv,ab(x0)χ
(0)
vb (x) , (2.6)

where the soft Wilson line Yv(x) is defined as the path-ordered exponential

Yv(x) = P exp

[
ig2

∫ 0

−∞
dt v ·ACs (x+ vt)TC

]
, (2.7)

with TC the SU(2) generators in the spin-j representation and vµ = (1,0).3 Dropping the

2The multipole expansion must be done around the center-of-mass point, which here is assumed to

be zero. If the center-of-mass were at some ~a, the matrix elements would acquire an irrelevant phase

due to translation invariance of the center-of-mass. However, the multipole expansion breaks translation

invariance in the relative coordinate by the explicit appearance of the special point ~x = 0 (and explicit

factors of ~x in higher-order terms in the Lagrangian). The breaking is always of higher-order in the EFT

expansion than the one of consideration, and is reduced successively with order of accuracy. This can best

be seen in momentum space, where setting ~x = 0 corresponds to neglecting subleading ultrasoft momentum

components in the interactions with heavy particles, and the explicit appearance of ~x to an expansion in

these components. The same issue arises in the standard quantum mechanics problem of the interaction of

light with atoms, and in the multipole-expansion of soft-collinear effective theory below.
3The field redefinition is analogous to but not the same as the field redefinition discussed in [18]. There

ultrasoft gauge bosons are decoupled from potential fields in potential non-relativistic EFT. Here the decou-

pling refers to soft gluons in NRDM EFT. In both cases the soft Wilson lines can and must be evaluated at

the multipole-expanded position x0 = (t,0), since the three-momentum of the gauge boson does not enter

the virtual heavy particle propagator in the leading-power approximation.

– 7 –
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superscript (0), the non-relativistic part of the operators (2.3) takes the form

χc†v Γµνi [Y †v T
AB
i Yv]χv (2.8)

after the field redefinition. The coupling of soft electroweak gauge bosons to the DM field

is now (at leading power) fully accounted by the Wilson lines Yv in the operator and the

soft gauge bosons are decoupled from the Lagrangian (2.5).

The main use of the PNRDM Lagrangian after the field redefinition is related to the

computation of the Sommerfeld effect. In this context it is convenient to write the sums over

the field indices in terms of a sum over the composite indices I = {ij} and K = {kl} of two-

particle states according to the bound- and scattering-states of the Schrödinger problem

for the relative coordinate. For example, for the triplet wino model, the index i takes the

values 0,+,− corresponding to the electric charge of the DM mass eigenstates. The index I

runs over the nine two-particle values 00,+−,−+, 0+,+0, 0−,−0,++,−−, ordered by the

modulus of the electric charge. Since electric charge is conserved, it is sufficient for the

computation of the χ0χ0 annihilation rate to solve the Sommerfeld problem in the charge-0

sector of the two-particle states. For the SU(2) j = 1 triplet the fields are related to the

mass basis by χ± = (χ1 ∓ iχ2)/
√

2, χ0 = χ3. The two-particle states are related by

χc†vaχvb = Kab,I [χ
c†
v χv]I , (2.9)

where the 9× 9 matrix Kab,I can be read off from




χ1εχ1

χ1εχ2

χ1εχ3

χ2εχ1

χ2εχ2

χ2εχ3

χ3εχ1

χ3εχ2

χ3εχ3




ab

=




0 1
2

1
2 0 0 0 0 1

2
1
2

0 − i
2

i
2 0 0 0 0 i

2 − i
2

0 0 0 0 1√
2

0 1√
2

0 0

0 i
2 − i

2 0 0 0 0 i
2 − i

2

0 1
2

1
2 0 0 0 0 −1

2 −1
2

0 0 0 0 i√
2

0 − i√
2

0 0

0 0 0 1√
2

0 1√
2

0 0 0

0 0 0 i√
2

0 − i√
2

0 0 0

1 0 0 0 0 0 0 0 0







χ0εχ0

χ+εχ−
χ−εχ+

χ0εχ+

χ+εχ0

χ0εχ−
χ−εχ0

χ+εχ+

χ−εχ−




I

. (2.10)

While the specific form of the K-matrix depends on the SU(2) representation of the DM

field, the formalism is general.

From this point on the non-relativistic part of the problem follows the discussion of

the computation of the Sommerfeld effect for an arbitrary set of heavy fermions nearly

degenerate with the DM particle, developed for the general minimal supersymmetric SM

in [17, 19–21]. The framework described in these papers in turn generalizes the original

work [11, 22] to mixed DM states and reformulates it in the DM EFT context. For the

case of the pure wino triplet, the result is identical to the original treatment, but can in

principle be extended to systematically include radiative and velocity corrections to the

Sommerfeld effect. In this paper, however, as in all previous studies, the Sommerfeld effect

is computed only at leading order in the PNRDM EFT.
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What will appear in the factorization formula is the matrix element of non-relativistic

annihilation operators of the form

χ†ve4Γχcve3 χ
c†
ve2Γχve1 , (2.11)

which arise from (2.8) after squaring the amplitude. The matrix Γ = 1 or σi (Pauli matrix)

operates on the spinor index of χv, depending on whether the fermion bilinear destroys or

creates a spin-0 or spin-1 state. By assuming that the spin matrices in the two bilinears

are the same, we implicitly make use of the fact that the potential V{ij}{kl}(r), while

being spin-dependent, does not change the spin of the incoming two-particle state before it

annihilates. The NRDM EFT matrix element of the above operator in an incoming χiχj
DM state with some relative velocity vrel, orbital quantum number L = 0 (S-wave) and

total spin S is given by (no sum over i, j) [20]

〈χiχj |χ†ve4Γχcve3 χ
c†
ve2Γχve1 |χiχj〉

= 〈χiχj |χ†ve4Γχcve3 |0〉 〈0|χc†ve2Γχve1 |χiχj〉 (2.12)

=
[
〈ξc†j Γξi〉

(
ψ

(0,S)
e4e3, ij

+ (−1)Sψ
(0,S)
e3e4, ij

)]∗
〈ξc†j Γξi〉

(
ψ

(0,S)
e1e2, ij

+ (−1)Sψ
(0,S)
e2e1, ij

)
,

where ψ
(L,S)
e1e2, ij

is the χe1χe2-component of the scattering wave function for the incoming

χiχj state, evaluated for zero relative distance and normalized to the free scattering so-

lution, that is ψ
(L,S)
eaeb, ij

→ δeai δebj in the absence of interactions.4 The symbols ξi, ξj in

the second line of (2.12) denote the Pauli spinor of the incoming particles χi and χj , and

〈. . . 〉 stands for the trace in spin space (spin sum). The multi-component wave function

ψ
(L,S)
e2ei,ij

accounts for the potential interactions of the incoming χiχj state, which couple

it to all possible intermediate two-body states e2e1 with the same charge, spin and or-

bital angular momentum. Both wave-function components e1e2 and e2e1 contribute to the

matrix-element of the operator χc†e2χe1 . For an operator with quantum numbers L and S,

there is a relative sign (−1)L+S between the two components. The above-defined ψ
(0,S)
e1e2, ij

is related via

ψ
(0,S)
e1e2, ij

= [ψE(0)]∗e1e2, ij (2.13)

to the coordinate-space scattering wave-function [ψE(r )]I,ij at the origin, which in turn

can be obtained directly from the matrix-Schrödinger equation

([
−∇

2

2µI
− E

]
δIK + VIK(r)

)
[ψE(r )]K,ij = 0 (2.14)

with the potential (2.5), now including the mass splitting between the mass MI of the

two-particle state I and the mass of the χ0χ0 state via VIK → VIK + δIK(MI − 2mχ). The

energy E is fixed through the relative velocity of the initial state, and the label ij refers to

4The first equality in (2.12) holds, since the PNRDM Lagrangian (2.5) conserves particle number. Hence,

inserting a complete set of states between the two DM bilinears, only the vacuum state contributes.
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the fact that this equation should be solved with the initial condition corresponding to the

particular incoming two-particle state ij. µI is the reduced mass of the two-particle state

I, which can be set to mχ/2 in the leading-order treatment of the Sommerfeld effect. We

refer to [20] for further details and the methods employed to solve this equation.

For the task at hand, we focus on the initial state I = ij = 00. The other two-particle

states appear only as virtual states in the ladder diagrams summed by the Schrödinger

equation.5 Due to electric charge conservation, the potential is block-diagonal and it is

sufficient to solve (2.14) in the charge-0 sector, which, for the wino example, consists

of I = 00,+−,−+. The description in terms of three two-particle states is convenient,

since the framework can be formulated without additional rules for the construction of

the potential for different S and L. The (anti-) symmetrization is encoded automatically

in the (anti-) symmetry of the operator and its short-distance coefficient. However, the

description is redundant, since the fermion bilinear with +− fields is identical up to a

possible sign to the one with −+. It is customary in the discussion of the Sommerfeld

effect to reduce the basis of two-particle states to non-identical ones (six instead of nine,

for the triplet model, and two instead of three for the charge-0 sector). In the following

we adopt this convention. Specifically, for the wino (triplet) model, I shall then refer to

00,+− only. The precise relation between the two formulations, referred to as method-1

and method-2, respectively, is explained in [20], including the explicit forms of the potential

and tree-level short-distance annihilation coefficients in both methods. Irrespective of the

method, the Sommerfeld factors are defined as

SIJ =
[
ψ

(0,S)
J, 00

]∗
ψ

(0,S)
I, 00 . (2.15)

The discussion up to now ignored the coupling of ultrasoft photons to the charged

members of the DM multiplet through the electromagnetic covariant derivative in (2.5).

This is justified, since the field redefinition mentioned in footnote 3 removes the ultrasoft

photon field from the Lagrangian at the expense of modifying the DM fermion bilinear as

[χc†v χv]I → SviSvj [χ
c†
v χv]I (2.16)

where Svi is an electromagnetic time-like Wilson line corresponding to the charge of the

field χvi in I = {ij}. In the charge-0 sector, the charges of the fields i, j add to zero, which

implies SviSvj = SviS
†
vi = 1, reflecting the well-known fact that photons with wave-length

much larger than the size of the system only couple to the total charge (here, zero) of

the system.

Finally we note that the factorization of non-relativistic dynamics from the soft and

collinear dynamics of the final state is independent of the photon energy resolution as de-

fined above, at least to the accuracy considered here. The key requirement is the decoupling

of soft and ultrasoft interactions from the ladder diagrams that build up the Sommerfeld

5They also appear as convenient external states for the computation of the matching coefficients. Since

the potential interaction can convert the 00 into the +− state, which then annihilates at short distances,

the short-distance coefficients have to be computed for all two-particle states, including off-diagonal terms,

see [17, 20].
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effect, which holds because soft gauge bosons throw potential DM propagators off-shell, and

because ultrasoft photons do not interact with the electrically neutral two-particle state.

2.1.2 Soft-collinear dynamics

The characteristics of the final state is an energetic photon, whose momentum is balanced

by a jet of unobserved particles. The low-energy physics of energetic objects with small

invariant mass interacting with soft modes is described by SCET. Its application to elec-

troweak Sudakov situations was first discussed in [23, 24] for the production of two particles

with electroweak charges in a high-energy collision. As in the non-relativistic sector, one

needs two different effective Lagrangians depending on whether the virtuality is much larger

than or of order m2
W .

Although in higher orders all SM fields are present in the collinear and soft interactions,

we restrict ourselves to the gauge boson Lagrangian, since the gauge boson SCET fields

appear directly in the annihilation operators, and since the discussion of fermions is fairly

standard from QCD applications of SCET. The SCET Lagrangian consists of

LSCET−I = Lc + Lc̄ + Lsoft , (2.17)

where Lsoft is the purely soft field Lagrangian that takes the same form as the corresponding

SM Lagrangian except that all fields are assumed to be soft. The collinear Lagrangian at

leading power is

Lc = −1

2
tr
(
Fµνc F cµν

)
+ (Dµϕc)

†Dµϕc , (2.18)

where g2F
µν
c = i [Dµ, Dν ] as usual, but the collinear SU(2) covariant derivative is given by

Dµ = ∂µ − ig2A
µ
c (x)− ig2n−As(x− + x⊥)

nµ+
2
. (2.19)

We included the collinear Higgs doublet field ϕc for later purposes. At leading power, soft-

collinear interactions involve only the n−As projection of the soft gauge field. Moreover,

the soft gauge field is evaluated at the multipole-expanded position xµ− + xµ⊥ with xµ− =

(n+x)nµ−/2, reflecting the fact that the n+k component of the soft momentum can be

neglected relative to the corresponding large component of hard-collinear and collinear

momentum. The Lagrangian above accounts for collinear modes of both, the hard-collinear

and collinear type and is formulated in the unbroken phase of SU(2) gauge symmetry,

since this is relevant to the hard-collinear fields of virtuality mχmW . The anti-collinear

Lagrangian Lc is the same up to the interchange of n+ ↔ n−. The above expressions should

be amended in an obvious manner to include the gauge field for the U(1) hypercharge

interaction and its coupling to the Higgs field.

The SCET Lagrangian enjoys separate collinear, anti-collinear and soft gauge sym-

metries [25]. It is convenient to express the collinear Lagrangian in terms of manifestly
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collinear-gauge invariant collinear fields6 Φc(x) = W †c (x)ϕc(x) and

AB,µc (x)TB = Aµc (x) =
1

g2
W †c [iDµWc](x) =

∫ 0

−∞
ds n+ν [W †c F

νµ
c Wc](x+ sn+) , (2.20)

where the collinear Wilson line is defined as

Wc(x) = P exp

[
ig2

∫ 0

−∞
ds n+ ·ACc (x+ sn+)TC

]
. (2.21)

In terms of these, together with

iDµ ≡W †c iDµWc = i∂µ + g2Aµc , FBc,µνTB =
i

g2
[Dµ,Dν ], (2.22)

the collinear Lagrangian is expressed as

Lc = −1

2
tr
(
Fµνc Fcµν

)
+ (DµΦc)

†DµΦc . (2.23)

In this form it is apparent that the collinear gauge field degrees of freedom are represented

by the transverse fields, since n+Ac = 0 from (2.20), while n−Ac can be eliminated using

the gauge-field equation of motion (see, for instance [26], appendix B for the operator

equation in QCD).

At scales µ� mχ there are no interactions between collinear modes of different direc-

tions, as well as between collinear and non-relativistic DM modes, since this would result

in hard virtualities, which are already integrated out into the short distance coefficients

of annihilation operators. However, they all interact with each other through the soft

gauge fields. As was the case for the non-relativistic DM field, the soft gauge field can be

decoupled from the hard-(anti-)collinear fields through the field redefinition7

ABc (x) = Y BC
+ (x−)AC(0)

c (x) ABc̄ (x) = Y BC
− (x+)AC(0)

c̄ (x) , (2.24)

with [14]

Y±(x) = P exp

[
−ig2

∫ ∞

0
ds n∓ ·ADs (x+ sn∓)TD

]
. (2.25)

Here the SU(2) generator TD refers to the adjoint representation, (TD)BC = −iεDBC ,

in case of the adjoint gauge field, and the fundamental representation for the analogous

decoupling transformation of the (anti-) collinear Higgs fields. As a result of this field

redefinition, soft Wilson lines appear in the annihilation operator.

6The following construction can be extended to the hypercharge gauge field by introducing an abelian

U(1) collinear Wilson line. Since the Higgs field carries hypercharge, the collinear-invariant field includes

the hypercharge Wilson line.
7In the coupling to hard-collinear (as opposed to collinear) fields, the argument of the soft field in the

covariant derivative (2.19) can be set to x− at leading-power accuracy, since the transverse momentum

of the soft mode is negligible compared to the hard-collinear one. This simplification is required, so that

the field redefinition in the following equation removes the soft field from the covariant derivative on

hard-collinear fields. Also note the order of adjoint indices in (2.24). With the alternative definition

ABc (x) = AC(0)
c (x)Y CB+ (x−), the sign in the exponent of (2.25) is +ig2.
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In the intermediate resolution case, the virtuality of the unobserved jet is not resolved

by the measurement below the hard-collinear scale mχmW . The dynamics of this jet is

described by hard-collinear modes. On the other hand the scale for the anti-collinear direc-

tion of the observed photon is set by the virtuality m2
W of the collinear electroweak gauge

bosons, whose masses cannot be neglected. The photon “jet-function” as well as possible

mass effects within the hard-collinear jet must be computed with the SCET Lagrangian

for the (anti-) collinear modes of the massive electroweak gauge bosons and the photon

after electroweak symmetry breaking. The gauge boson mass term follows from the Higgs

covariant kinetic term in (2.23) from

(DµΦc)
†DµΦc = (n+∂Φc)

†n−DΦc + (n−DΦc)
†n+∂Φc + (Dµ⊥Φc)

†D⊥,µΦc

Φc=(0,v/
√

2)−→ g2
2v

2

8
AB,µ⊥c AB⊥c,µ , (2.26)

which shows explicitly that the mass term arises only for the transverse field. The collinear

gauge field Lagrangian for virtualities of order m2
W , ignoring now the Higgs field, reads

Lc = −1

4
FB,µνc Fc,Bµν +

m2
W

2
AB,µ⊥c AB⊥c,µ . (2.27)

The hypercharge interaction should be added in the standard way. It is then convenient to

express the Lagrangian in terms of mass eigenstates fields. The collinear fields no longer

interact with soft fields, as discussed above, but the interaction with ultrasoft fields is still

present. However, only fields with masses much smaller than mW can be ultrasoft, and the

leading-power ultrasoft interactions are included through electromagnetic covariant deriva-

tives acting on the electrically charged electroweak gauge fields with covariant derivatives

defined as in (2.19), except that now n−As(x−) refers the ultrasoft photon field only.

2.1.3 Annihilation operator basis

The annihilation operators (2.3) and their short-distance coefficients do not depend on

the photon energy resolution as long as Eγres � mχ. Two relevant operators have been

identified in previous work [4, 5, 7], but the arguments that these two operators form a

complete basis to all orders in perturbation theory have not been explicitly provided. In

the following we use symmetries to reduce the possible operators to

O1 = χc†v ΓµνχvAB⊥c,µ(sn+)AB⊥c̄,ν(tn−) , (2.28)

O2 =
1

2
χc†v Γµν{TA, TB}χvAA⊥c,µ(sn+)AB⊥c̄,ν(tn−) , (2.29)

O3 = χc†v σ
ρ(n−ρ − n+ρ)T

Cχv ε
CABAA⊥c,µ(sn+)AB,µ⊥c̄ (tn−) (2.30)

with the spin matrix in d space-time dimensions given by

Γµν =
i

4
[σµ, σν ]σα(n−α − n+α) =

1

2i
[σm, σn]σ · n d=4 only

=
1

2
εµναβn+αn−β ≡ εµν⊥ . (2.31)

(Conventions vµ = (1, 0, 0, 0), nµ± = (1, 0, 0,∓1), n = (0, 0, 1), m,n = 1, 2, 3, ε0123 = −1

are used.) We then show that the third operator does not contribute when the detected

gauge boson is a photon.
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We have already shown that the collinear and anti-collinear field must each consist of

a single SU(2) or U(1)Y gauge field. Since the wino does not carry hypercharge, operators

with B⊥c (B⊥c̄) fields cannot be generated at tree level. Their matching coefficients can

be non-zero starting from the two-loop order through closed loops of particles that carry

SU(2) and hypercharge, such as the Higgs boson and the fermions of the SM. Since two-

loop matching coefficients are needed only for resummation with NNLL’ or higher accuracy,

we drop these operators here. We therefore start from the general form (2.3)

Oi = χc†v ΓµνTABi χvAA⊥c,µ(sn+)AB⊥c̄,ν(tn−) , (2.32)

and note that the two DM fields must couple to an operator with SU(2) isospin 0, 1 or 2.

Thus, the group-index matrix must be from

TAB1 = δAB, TAB2 =
1

2
{TA, TB}, TAB3 = εCABTC , (2.33)

where TA are the SU(2) generators in the isospin-j representation.

Turning to the spinor and Lorentz indices, the two spin-1/2 DM fields can couple to

spin-0 or spin-1. In the first case the implicit pair of two-spinor indices of Γµν must be of

the form δαβ . The spin-1 structure is the vector of Pauli matrices (0,σ) or [σρ−(v ·σ)vρ]αβ .

For the spin-0 case, noting that µ, ν are transverse indices, we obtain two different Γµν by

multiplying with

gµν⊥ = gµν − nµ+n
ν
− + nµ−n

ν
+

2
or εµν⊥ , (2.34)

defined in (2.31). For spin-1, the three independent combinations

(n−ρ − n+ρ) g
µν
⊥ , (n−ρ − n+ρ) ε

µν
⊥ , gρλvκε

λκµν (2.35)

can be formed. Here vρ (σρ−(v·σ)vρ) = 0 was used to reduce a number of further structures

to the given ones. Together with the three independent SU(2) structures, this results in

six spin-0 and nine spin-1 operators.

The final state of two gauge bosons must respect Bose symmetry, hence the operator

has to be symmetric under the simultaneous exchange of all labels, c ↔ c̄, n+ ↔ n−,

A ↔ B, µ ↔ ν. The admissible structures are therefore the product of TAB1 , TAB2 (TAB3 )

with the symmetric (antisymmetric) tensors from (2.34), (2.35), which leaves three spin-0

and four spin-1 operators.

The DM gauge interaction conserves CP symmetry and consequently parity for Ma-

jorana fermions. Since χc†v χv (χc†v σχv) has negative (positive) parity, this excludes gµν⊥
in (2.34) and all except the first structure in (2.35), resulting in the two spin-0 operators

O1,2 and one spin-1 operator O3 as given above.

In the process χ0χ0 → γ + X, the assumption of a single photon in the anti-collinear

final state implies that the SU(2) index B in Oi must necessarily be B = 3. For the operator

O3, the index C in χc†v TCχv must then be C = 1 or 2, in which case the bilinear cannot

annihilate an electrically neutral two-particle state. Thus, O3 does not contribute to the

annihilation into γ + X when the photon is required to have nearly maximal energy. We
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note that the remaining two operators are both spin-singlet, so the dominant short-distance

annihilation process occurs in the 1S0 configuration.

When the matching calculations are done with dimensional regularization, the question

arises whether the above operator basis is complete in d dimensions or whether it has to be

complemented by evanescent operators, which vanish in d = 4. We find that no evanescent

operators arise. The d-dimensional basis is given by the same O1,2 except that the first

form on the right-hand side of (2.31) should be used for the spin matrix rather than the

four-dimensional expression εµν⊥ . To see this we note that an arbitrary full theory diagram

in the calculation of the hard matching coefficients contains a single string of Dirac matrices

of the form8

v̄(mχv)γµ1γµ2 . . . γµNu(mχv) (2.36)

with indices µi that can be contracted among each other, with the vectors v or n± and

with the two transverse polarization vectors εc⊥, εc̄⊥ of the external gauge boson lines. To

obtain an S-wave annihilation operator in the non-relativistic EFT, N must be odd. By

systematically exploiting the on-shell condition /vu(p) = u(p), the relations n− = 2v − n+

and n+ · εc⊥ = n+ · εc̄⊥ = 0, which imply {/n+, /εc⊥} = {/n+, /εc̄⊥} = 0 the string can be

reduced to the two structures

εc⊥ · εc̄⊥ v̄(mχv)/n+u(p), v̄(mχv)[/εc⊥, /εc̄⊥] /n+u(p) . (2.37)

After expressing the Dirac spinors in terms of non-relativistic two-spinors, the first structure

corresponds to the spin matrix of O3, and the second to Γµν .

The operator basis holds for any integer isospin-j DM multiplet with vanishing hyper-

charge. The coefficient functions C1,2 of O1,2 and their renormalization group evolution

(RGE) to scales µ � mχ can be found in [7] and we refer to this paper and section 3.1

below for the detailed expressions.

2.2 Factorization

In this section we derive the factorization formula for the photon energy spectrum for

intermediate photon resolution. We also comment on the modifications for the narrow-

resolution case, in this way providing the derivation of this case omitted in [7]. To guide

the reader let us preview here the main result of this section by giving the equation that

will subsequently be used for the calculation of the resummed spectrum at the NLL’ order.

Independent of the resolution we can represent the energy spectrum in the form

d(σvrel)

dEγ
=
∑

I,J

SIJ ΓIJ(Eγ) =
∑

I,J

SIJ
∑

i,j=1,2

Ci(µ)C∗j (µ) γijIJ(Eγ , µ) , (2.38)

where the sums over I, J run over all electrically neutral two-particle states that can be

formed from the 2j + 1 single-particle states of the electroweak DM multiplet, and the

sums over i, j refer to the two operators O1,2. The expression after the first equality

8Closed loops of DM lines do not contain γ5 and the corresponding trace is well-defined in d dimensions.

Loops of SM chiral fermions require the same treatment as in the SM.
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expresses the factorization of the Sommerfeld enhancement factor from the remainder of

the process. SIJ is the same Sommerfeld factor as usual, except that the tree-level short-

distance annihilation matrices are replaced by matrices ΓIJ(Eγ), which include electroweak

Sudakov resummation and other radiative corrections up to the specified accuracy. The

expression after the second equality factors the hard matching coefficients, evolved to the

scale µ with their RGE equation, which are also universal. The quantity γijIJ(Eγ , µ) is

therefore related to the square of matrix elements of Oi in the state 〈γX| . . . |[χχ]I〉, summed

and integrated over the phase-space of the final-state particles. For intermediate resolution,

we shall derive

γijIJ(Eγ , µ) =
1

(
√

2)nid

1

4

2

πmχ
Z33
γ (µ, ν)

×
∫
dω Jint(4mχ(mχ − Eγ − ω/2), µ)W ij

IJ(ω, µ, ν) . (2.39)

The various functions will be defined below. Some of them require rapidity regularization

in addition to the conventional dimensional regularization, resulting in a dependence of the

renormalized function on the rapidity factorization scale ν in addition to the dimensional

regularization scale µ. We note the convolution of the jet function Jint for the unobserved

final state X with a soft function W , which accounts for radiation of soft electroweak gauge

bosons and other soft particles into the final state, and virtual corrections. We can compare

this to the corresponding formula for narrow resolution,

γijIJ(Eγ , µ) =
1

(
√

2)nid

1

4

2

πmχ
Z33
γ (µ, ν)

×Di
I,33(µ, ν)Dj ∗

J,33(µ, ν)J33
nrw(4mχ(mχ − Eγ), µ, ν) . (2.40)

The main difference is that the smaller invariant mass of the final state X forbids soft real

radiation. The soft effects are purely virtual, and appear at the amplitude level in the

factors D.

The starting point for the derivation is the general expression for the initial-state

spin-averaged and final-state spin-summed annihilation cross section

d(σvrel)

dEγ
=

1

4

1

4m2
χ

∫

X

∑∫
d3pγ

(2π)32p0
γ

(2π)4δ(4)(pχχ̄−pγ−pX)δ(Eγ−|pγ |)
∣∣Tχ0χ0→γX

∣∣2. (2.41)

The sum-integral symbol implies a sum over all kinematically allowed final states X with

total momentum pX and the phase-space integral over the final-state momenta. Summation

over spins is understood for the initial and final state and the overall factor 1/4 accounts

for the initial-state spin average. In the center-of-mass frame the initial-state momentum

is pχχ̄ = (2mχ + E)v. Ti→f is the T-matrix element for the transition, and E denotes

the small kinetic energy of the DM two-particle state. After integrating out the hard

momentum modes, the T-matrix element is non-vanishing only if it involves the effective

interaction (2.2), and we can write

Tχ0χ0→γX =
1

2mχ

∑

i=1,2

∫
dsdt Ĉi(s, t, µ) 2mχ〈γ(pγ)XcXs| Oi |[χχ]00〉 . (2.42)
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We have split the sum over X into a sum over (hard-) collinear particles Xc and soft

particles Xs. The matrix element is to be evaluated in non-relativistic and soft-collinear

EFT. The factor 2mχ arises from the non-relativistic normalization of external DM state.

After the field redefinitions (2.6), (2.24) that decouple soft gauge bosons from the

(hard-) collinear, (hard-) anti-collinear and non-relativistic fields the operators are

Oi = χc†v Γµνi [Y †v T
AB
i Yv]χv YAV+ YBW− AV⊥c,µ(sn+)AW⊥c̄,ν(tn−) . (2.43)

We now use the symbol Y±(x) to denote SU(2) Wilson lines in the adjoint representa-

tion and recall that fields and Wilson lines without space-time argument are evaluated at

x = 0. Because the different types of fields no longer interact, we can factorize the matrix

element into

〈γ(pγ)XcXs| Oi |[χχ]00〉 = 〈γ(pγ)| AW⊥c̄,ν(tn−) |0〉〈Xc| AV⊥c,µ(sn+) |0〉 (2.44)

×〈Xs| [Y †v TABi Yv]ab YAV+ YBW− |0〉Kab,I 〈0| [χc†v Γµνi χv]I |[χχ]00〉 .
Translation invariance implies

〈γ(pγ)| AW⊥c̄,ν(tn−) |0〉 = eitn−·pγ 〈γ(pγ)| AW⊥c̄,ν(0) |0〉 ,
〈Xc| AV⊥c,µ(sn+) |0〉 = eisn+·pXc 〈Xc| AV⊥c,µ(0) |0〉 , (2.45)

where pXc is the total four-momentum of the collinear final state, which allows us to

perform the s, t integrations in (2.42) and express them in terms of the momentum-space

coefficient function

Ci(n+pX , n−pγ , µ) =

∫
dsdt eisn+·pXc+itn−·pγ Ĉi(s, t, µ) . (2.46)

Up to power-suppressed corrections n−pγ = 2Eγ ≈ 2mχ, n+ · pX ≈ 2mχ. We therefore

define

Ci(µ) = Ci(2mχ, 2mχ, µ) , (2.47)

and these are given in [7] and below in the one-loop approximation required for NLL’

accuracy.

We write the four-momentum conservation delta-function in (2.41) as the space-time

integral of the exponential, insert the factorized matrix element 〈γ(pγ)XcXs| Oi |[χχ]00〉
into (2.42), and the square of the resulting expression for the T-matrix element in (2.41).

In this way, we obtain

d(σvrel)

dEγ
=

∑

i.j=1,2

Ci(µ)C∗j (µ)
∑

I,J

1

4

1

4m2
χ

∫
d3pγ

(2π)32p0
γ

δ(Eγ − |pγ |)

×
∫
d4x ei(pχχ−pγ)·x 〈[χχ]00(pχχ)| [χc†v Γµ

′ν′

j χv]
†
J |0〉 〈0| [χc†v Γµνi χv]I |[χχ]00(pχχ)〉

× 〈0| AY⊥c̄,ν′ |γ(pγ)〉〈γ(pγ)| AW⊥c̄,ν |0〉
∫

Xc

∑
e−ipXc ·x 〈0| AX⊥c,µ′ |Xc〉〈Xc| AV⊥c,µ |0〉

×
∫

Xs

∑
e−ipXs ·xKab,IK

†
a′b′,J 〈0| Y

†A′X
+ Y†B′Y− [Y †v T

A′B′
j Yv]

†
a′b′ |Xs〉

× 〈Xs| [Y †v TABi Yv]ab YAV+ YBW− |0〉 . (2.48)
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We use translation invariance again to absorb the exponentials e−ipXc ·x, e−ipXs ·x into a

shift of position 0 to x in the first halves of the collinear and soft matrix elements, after

which the sums over complete sets of collinear and soft intermediate states can be done.

We also use (2.12), (2.15) to express the non-relativistic matrix element in the form

〈[χχ]00(pχχ)| [χc†v Γµ
′ν′

j χv]
†
J |0〉 〈0| [χc†v Γµνi χv]I |[χχ]00(pχχ)〉

= 4 〈ξc†0 Γµ
′ν′

j ξ0〉∗ 〈ξc†0 Γµνi ξ0〉SIJ (2.49)

with ξ0 the spinor of an external χ0 field (with the two orientations ↑, ↓). The Sommer-

feld factor is a function of the small kinetic energy E of the DM two-particle state. For

annihilation in the present Universe E is much smaller than any other energy scale in the

problem. After factoring the Sommerfeld effect, E can be neglected in the other parts of

the calculation, that is, we set pχχ = 2mχ.

After these manipulations in (2.45), by comparing to (2.38) we can read off the quan-

tity γijIJ(Eγ):

γijIJ(Eγ) =
1

4

1

4m2
χ

∫
d3pγ

(2π)32p0
γ

δ(Eγ − |pγ |) 4 〈ξc†0 Γµ
′ν′

j ξ0〉∗ 〈ξc†0 Γµνi ξ0〉

× 〈0| AY⊥c̄,ν′ |γ(pγ)〉〈γ(pγ)| AW⊥c̄,ν(0) |0〉
∫
d4x ei(pχχ−pγ)·x 〈0| AX⊥c,µ′(x)AV⊥c,µ |0〉

×
∫

Xs

∑
〈0| [S†]jJ,XY (x) |Xs〉 〈Xs| SiI,V W (0) |0〉 , (2.50)

introducing the soft operator

SiI,V W (x) = Kab,I [Y †v T
AB
i Yv]ab(x)YAV+ (x)YBW− (x) . (2.51)

The last three factors in the above equation define, in order, an anti-collinear, hard-collinear

and soft function, as follows.

2.2.1 Definitions for the intermediate resolution case

Photon collinear function. The “jet” function for the exclusive anti-collinear photon

state is defined by the squared matrix element

− g⊥νν′ ZYWγ =
∑

λ

〈0|AY⊥c̄,ν′(0)|γ(pγ , λ)〉〈γ(pγ , λ)|AW⊥c̄ν(0)|0〉 . (2.52)

We have made the sum over photon polarizations explicit. Obviously, only Z33
γ is non-

vanishing. From (2.20) and (2.21) is follows that Z33
γ /ŝ

2
W can be interpreted as the on-shell

photon field renormalization constant in anti-collinear light-cone gauge n− · Ac̄ = 0. Z33
γ

depends on the electroweak scale masses mW , mZ , mH and mt of the SM particles, the

dimensional regularization scale µ and a rapidity regulator scale ν, since the factorization

formula involves the separation of regions (here anti-collinear and soft) with equal virtuality

but parametrically different n± momentum components.
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Unobserved-jet collinear function. The jet function pertaining to the inclusive (un-

observed) collinear final state is defined as

−g⊥µµ′ JXV (p2,mW ) =
1

π
Im
[
− g⊥µµ′ iJXV (p2,mW )

]

≡ 1

π
Im

[
i

∫
d4x eip·x〈0|T

{
AX⊥µ′(x)AV⊥µ(0)

}
|0〉
]

=

∫
d4x eip·x 〈0| AX⊥c,µ′(x)AV⊥c,µ |0〉 . (2.53)

The jet function is defined in SCETI in terms of the hard-collinear gauge field. It depends

on the hard-collinear scale through the invariant mass squared p2 of the final state X, but

also on the scale mW through the electroweak scale masses of the particles inside the jet.

The jet function as defined above is therefore still a two-scale object, which can be further

factorized into a hard-collinear and collinear function [6]. Up to power corrections of order

m2
W /p

2 ∼ mW /mχ,

JXV (p2,mW ) = Jint(p
2) JXVm (mW ) +O(m2

W /p
2) . (2.54)

The hard-collinear matching coefficient Jint(p
2) can be computed in the theory with un-

broken electroweak gauge symmetry in close analogy with the standard gluon jet function

in QCD. It depends on the renormalization scale µ, but does not require rapidity regu-

larization. The collinear mass-jet function JXVm (mW ) is momentum-independent, but can

depend on both µ and the rapidity regulator. However, we find that at tree-level and at

the one-loop order, the collinear mass function is trivial, that is

JXVm (mW ) = δXV +O(α2
2) . (2.55)

It is plausible that this result holds to any order in the coupling, since the observable is

not sensitive to the internal jet structure.9 We shall make use of this simplification in

deriving (2.39).

Soft function. The sum over the soft final state in (2.50) is the unit operator, which

allows us to define the soft function in momentum space,

〈0| T̄[[S†]jJ,XY (x)] T[SiI,V W (0)] |0〉 ≡
∫

d4k

(2π)4
e−ik·xW ij

IJ,V WXY (k) . (2.56)

We also define the integrated soft function

W ij
IJ,V WXY (ω) =

1

2

∫
d(n+k)d2k⊥

(2π)4
W ij

IJ,V WXY (k)

=
1

4π

∫
d(n+y) eiωn+·y/2 〈0| T̄[[S†]jJ,XY (y+)] T[SiI,V W (0)] |0〉 , (2.57)

9Naively calculating the expression (2.53) with massive gauge boson propagators reveals a leading-

power sensitivity to mW . However, this arises from the soft region, which must be discarded, since it is

already accounted for in the soft function defined below. Some technical details on this point are given in

appendix B.1. The mass-sensitive collinear mode with transverse momentum of order mW does not appear

in leading power, at least at the one-loop order.
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where ω = n− · k, and then the SU(2) index-contracted soft function

W ij
IJ(ω) = W ij

IJ,V 3V 3(ω) . (2.58)

The soft functions must be calculated in the broken SU(2) theory and depend on the

electroweak masses of the SM particles. They also depend on the renormalization scale µ

and the rapidity regularization scale ν.

2.2.2 Derivation of the final formula

With the above definitions of the collinear and soft function, we can rewrite the corre-

sponding terms in (2.50),

∫
d4x ei(pχχ−pγ)·x 〈0| AX⊥c,µ′(x)AV⊥c,µ |0〉 ×

∫

Xs

∑
〈0| [S†]jJ,XY (x) |Xs〉 〈Xs| SiI,V W (0) |0〉

= −g⊥µµ′
∫
d4x

∫
d4p

(2π)4

∫
d4k

(2π)4
ei(pχχ−pγ−p−k)·x JXV (p2,mW )W ij

IJ,V WXY (k)

= −g⊥µµ′
∫

d4k

(2π)4
JXV (4mχ(mχ − Eγ − n−k/2),mW )W ij

IJ,V WXY (k)

= −g⊥µµ′
∫
dωJXV (4mχ(mχ − Eγ − ω/2),mW )W ij

IJ,V WXY (ω) , (2.59)

where in passing from the second to the third line we used p2 → (pχχ − pγ − k)2 ≈
4mχ(mχ−Eγ−n−k/2). There is no dependence on the direction of the photon momentum,

hence we can perform the photon phase-space integral in (2.50),

∫
d3pγ

(2π)32p0
γ

δ(Eγ − |pγ |) =
Eγ
4π2

, (2.60)

to obtain

γijIJ(Eγ) =
1

4

1

4πm2
χ

〈ξc†0 Γµνj ξ0〉∗ 〈ξc†0 Γi,µνξ0〉

×Z33
γ

∫
dωJXV (4mχ(mχ − Eγ − ω/2),mW )W ij

IJ,V 3X3(ω) . (2.61)

This equation represents the factorization formula for the intermediate resolution case in

its general form. To obtain (2.39), we note that both operators involve the same spin

matrix (2.31), that is Γµν1 = Γµν2 = εµν⊥ , which implies

〈ξc†0 Γµνj ξ0〉∗ 〈ξc†0 Γi,µνξ0〉 = εµν⊥ ε⊥,µν〈ξ
c†
0 ξ0〉∗ 〈ξc†0 ξ0〉 = 8 . (2.62)

We then use the property (2.55), which allows us to replace

JXVW ij
IJ,V 3X3 → JintW

ij
IJ . (2.63)

Finally, we switch from method-1 to method-2 (see the discussion before (2.15)) and sum

only over distinguishable two-particle states I, J . As discussed in [20], this implies certain

replacement rules for the potential used in the computation of the Sommerfeld effect and the
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annihilation matrix ΓIJ , which introduces the factor 1/(
√

2)nid in (2.39), where nid = 0, 1, 2

depending on how often the two-particle state 00 appears in the index pair IJ . The objects

in the factorization formula are assumed to be evolved from their natural scales, where they

exhibit no large logarithms, to a common scale in µ and in ν with the renormalization group

equations discussed in the following section. The evolution factors accomplish the desired

resummation of large logarithms.

Let us comment on the treatment of ultrasoft modes that we did not mention in the

derivation. After the decoupling of soft modes from the (anti-) collinear and non-relativistic

fields, all of them still interact with ultrasoft modes. In writing the various sectors in a

factorized form, we implicitly made use of the fact that an ultrasoft Wilson line field

redefinition decouples ultrasoft interactions from (anti-) collinear modes at leading power.

This introduces multiple convolutions from the different sectors with an ultrasoft function.

We omitted this ultrasoft function in the above discussion, since it is actually absent due

to the electric charge neutrality of the initial state and the anti-collinear photon final

state. The soft and the hard-collinear final state, however, are not necessarily electrically

neutral. However, all momentum components of an ultrasoft mode are small compared to

the corresponding momentum component of a soft or hard-collinear mode, such that in

leading power, the ultrasoft momentum transfer to the soft or hard-collinear function can

be neglected. This eliminates the possibility of a non-trivial convolution and allows us to

ignore the ultrasoft mode.

2.2.3 Modifications for the narrow resolution case

Following the above line of argument, we derive the factorization formula for the narrow

resolution case stated in [7] and written in (2.40) in present notation. There is no change

to the discussion of the non-relativistic and photon jet function, but for the unobserved jet

function and soft function, the following differences need to be noted.

The narrow resolution jet function has the same definition as (2.53), except that now

the gauge field is collinear rather than hard-collinear. Consequently, there is no further

factorization. Since there is no soft radiation into the final state, the collinear function must

be charge-neutral which selects the X = V = 3 component of the jet function. The narrow

resolution jet function depends on the collinear invariant mass squared p2 ∼ m2
W and the

electroweak scale particle masses of the SM. It further depends on the renormalization

scale µ and, contrary to the intermediate resolution hard-collinear jet function, also on

the rapidity scale ν. The different structure of rapidity logarithms for the two cases is

matched by different rapidity logarithms in the soft function. Details on the calculation of

the narrow resolution jet function are provided in appendix B.2.

The small energy resolution Eγres ∼ m2
W /mχ forbids soft radiation into the final state,

hence the soft factors are defined at the amplitude level, rather than for the square of

the amplitude as above. Technically, the sum over the soft final state in (2.50) is empty,

such that ∫

Xs

∑
〈0| [S†]jJ,XY (x) |Xs〉 〈Xs| SiI,V W (0) |0〉

→ 〈0| [S†]jJ,XY (x) |0〉 〈0| SiI,V W (0) |0〉 ≡ Di
I,V W Dj ∗

J,XY (2.64)
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where Di
I,V W is defined as the vacuum matrix element of the soft operator (2.51). The

photon jet function selects Y = W = 3, and the unobserved jet function selects X = V = 3,

which implies that only the single SU(2) component Di
I,33 of the soft amplitude is needed.

As in the intermediate resolution case the soft function must be computed in the broken

theory. The inclusive nature of the soft function for intermediate resolution entails a

partial cancellation of infrared singularities between virtual and real contributions, which

does not happen for the narrow resolution case, where real contributions are absent. This

also changes the structure of the rapidity evolution factor, since the narrow resolution

soft function couples to the rapidity evolution of the collinear and anti-collinear sector,

while only the latter has rapidity divergences for intermediate resolution. This explains

the differences between the two factorization formulas (2.40) and (2.39).10

3 NLL’ resummation

In this section we collect the one-loop results as well as the NLL’ resummation formulas

for the hard, soft and jet functions. These functions are the ingredients of the factorization

theorems for the semi-inclusive photon spectrum in DM annihilation derived in the previous

section. Furthermore we will show the consistency of the renormalization group and discuss

different resummation schemes.

The hard functions have been computed for an electroweak DM with any integer isospin

j. The (anti-) collinear functions for the photon and for the unobserved jet triggered by

an electroweak gauge boson are universal. The soft function given below is specific to the

triplet (wino, j = 1) DM model, which is the focus of this work.

3.1 Hard function

The hard matching coefficients for the annihilation of dark-matter particles in an inte-

ger isospin-j multiplet were previously computed in [7]. For the operators O1,2 defined

in (2.28), (2.29), they read

C1(µ) =
ĝ4

2(µ)

16π2
c2(j)

[
(2− 2iπ) ln

µ2

4m2
χ

−
(

4− π2

2

)]
, (3.1)

C2(µ) = ĝ2
2(µ) +

ĝ4
2(µ)

16π2

[
16− π2

6
− c2(j)

(
10− π2

2

)
− 6 ln

µ2

4m2
χ

+ 2iπ ln
µ2

4m2
χ

− 2 ln2 µ2

4m2
χ

]
, (3.2)

where c2(j) = j (j + 1) is the SU(2) Casimir of the isospin representation j, and ĝ2(µ)

denotes the SU(2) gauge coupling in the MS scheme at the scale µ.11 They satisfy the

RGE equation

d

d lnµ
Ci(µ) = (ΓT )ij(µ)Cj(µ) . (3.3)

10In [7] the rapidity evolution factor V (µW ; νs; νj) has been made explicit, while in the present nota-

tion (2.40), the rapidity evolution of every factor is implied to be contained in that factor.
11When the argument µ is omitted in the following, it is implied. Similarly for α̂2 = ĝ22/(4π).
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The one-loop anomalous dimension matrix takes the form

Γ =
α̂2

4π




8 ln
4m2

χ

µ2
− 8iπ − 43

3
+

8

3
nG 0

(4− 4iπ)c2(j) 8 ln
4m2

χ

µ2
+ 4iπ − 79

3
+

8

3
nG


 . (3.4)

nG = 3 is the number of SM fermion generations. For NLL resummation we also include the

two-loop cusp anomalous dimension. A detailed discussion of the evolution of the Wilson

coefficients after diagonalization of the anomalous dimension can be found in [7], and will

not be repeated here. Details on the calculation of the hard functions and anomalous

dimensions are provided in appendix A.

It is convenient to define the vector

~H =
(
C∗1C1, C

∗
2C1, C

∗
1C2, C

∗
2C2

)T
, (3.5)

of hard functions which will be used below to demonstrate the scale invariance of the

annihilation rate. The RGE for ~H reads

d

d lnµ
~H(µ) = ΓTH(µ) ~H(µ) , (3.6)

with

ΓH =




2 Re Γ11 0 0 0

Γ∗21 Γ11 + Γ∗22 0 0

Γ21 0 Γ∗11 + Γ22 0

0 Γ21 Γ∗21 2 Re Γ22


 , (3.7)

as follows from (3.3).

3.2 Photon jet function

The anti-collinear photon jet function is the same as for the narrow resolution case and

its definition is given in (2.52). Since the photon jet function and the soft function have

the same invariant mass squared of order m2
W , they are defined in SCETII and require an

additional rapidity regulator. We chose to use the rapidity regulator introduced in [27,

28]. Details on the implementation of this regulator can be found in appendix B.1. For

completeness we report the result for Zγ ≡ Z33
γ , already given in [7]:

Zγ(µ, ν) = ŝ2
W (µ)

{
1− α̂2(µ)

4π

[
− 16 ln

mW

µ
ln

2mχ

ν
+ 8 ln

mW

µ

− ŝ2
W (µ)

80

9

(
ln
m2
Z

µ2
− 5

3

)
− ŝ2

W (µ)
16

9
ln
m2
t

µ2

+ ŝ2
W (µ)

(
3 ln

m2
W

µ2
− 2

3

)
− 4

m2
W

m2
Z

ln
m2
W

µ2

]
−∆α

}
, (3.8)
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where ν is the scale associated with the rapidity regulator and ŝW (µ) is the sine of the weak

mixing angle in the MS scheme. ∆α is the difference between the fine structure constant

α = 1/137.036 and αOS(mZ) = α/(1−∆α).

Since Zγ depends both on µ and ν, we need to resum the photon jet function in

virtuality and rapidity. We will first discuss the resummation in µ and then in ν. The RG

equation is

d

d lnµ
Zγ(µ, ν) = γµZγZγ(µ, ν) , (3.9)

with anomalous dimension

γµZγ = 4γcusp ln
ν

2mχ
+ 2γZγ . (3.10)

The anomalous dimensions can be expanded perturbatively in the form12

γi =
α̂2

4π
γ

(0)
i +

(
α̂2

4π

)2

γ
(1)
i +O

(
α̂3

2

)
, (3.11)

The cusp anomalous dimension coefficients up to the two-loop order are given by

γ(0)
cusp = 4 , γ(1)

cusp =

(
268

9
− 4π2

3

)
c2(ad)− 80

9
nG −

16

9
(3.12)

with c2(ad) = 2 and nG = 3. The one-loop coefficient γ
(0)
Zγ

can be obtained from its

definition. Calculating the derivative in µ of (3.8) using the beta-function of ŝ2
W , which

can be inferred from (E.17), yields

γ
(0)
Zγ

= β0,SU(2) =

(
43

6
− 4

3
nG

)
. (3.13)

In the computation of (3.10), we used the fact that the cusp anomalous dimension appears

in the same way at all orders [29], so only a one-loop calculation is necessary to determine

the prefactor of the cusp piece. Eq. (3.9) can easily be solved, which results in the following

expression for the virtuality evolution factor

Zγ(µf , ν) = U(µi, µf , ν)Zγ(µi, ν)

= exp

[∫ lnµf

lnµi

d lnµ

(
4γcusp ln

ν

2mχ
+ 2 γZγ

)]
Zγ(µi, ν) , (3.14)

where µi and µf denote the initial and final virtuality scales before and after evolution,

respectively. Note that (3.14) is a general solution to the RGE (3.9), valid to all orders. The

integral in the exponent in (3.14) has to be computed numerically due to the appearance

of other Standard Model couplings in the β-function beyond one-loop. This is also true for

the virtuality evolution factors of the other functions in the factorization theorem.

12In general, starting from the two-loop order, γ
(1)
i , second-order terms involving several SM couplings

can appear. However, this is not the case for the cusp anomalous dimension, which is the only two-loop

anomalous dimension needed at NLL’.

– 24 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
3

More care has to be taken when performing the resummation in rapidity. The rapidity

renormalization group (RRG) equation is given by

d

d ln ν
Zγ(µ, ν) = γνZγZγ(µ, ν) (3.15)

with the fixed-order one-loop anomalous dimension

γνZγ =
α̂2

4π
4γ(0)

cusp ln
µ

mW
. (3.16)

One could now use (3.16) to solve the RRG. This procedure imposes that one first evolves

in rapidity and only afterwards in virtuality, because in higher orders γνZγ contains terms

of the form αn2 lnm(µ/mW ) with m ≤ n. If the virtuality evolution is done first, these

logarithms become large and require themselves resummation. To avoid this issue, we note

that the independence of any observable of the scales µ and ν gives the condition

[
d

d lnµ
,

d

d ln ν

]
= 0 . (3.17)

From (3.9), (3.15) and (3.17) we deduce the constraint

d

d lnµ
γνZγ =

d

d ln ν
γµZγ = 4γcusp . (3.18)

(A similar constraint also applies for the soft function, discussed in section 3.4 below.) We

can now solve (3.18) to obtain the integrated form of the rapidity anomalous dimension

γνZγ (µ) =

∫ lnµ

d lnµ′
d

d ln ν
γµZγ (µ′) + const. , (3.19)

where the constant is determined such that one obtains the fixed-order non-cusp piece of the

rapidity anomalous dimension, which is zero at the one-loop order (3.16). The logarithms

ln(µ/mW ) are summed by (3.19) to all orders in perturbation theory. Using the integrated

form (3.19) of the rapidity anomalous dimension, we solve the RRG (3.15) to obtain the

resummed rapidity evolution factor

Zγ(µ, νf ) = V (µ, νi, νf )Zγ(µ, νi) = exp

[
γνZγ (µ) ln

νf
νi

]
Zγ(µ, νi) , (3.20)

where νi and νf denote the initial and final scales of the rapidity evolution, respectively.

Expanding the argument in the exponent of V (µ, νi, νf ) in α̂2 to order O(α̂2), one would

recover the rapidity evolution factor that can be computed from the fixed-order expression

for γνZγ in (3.16). Note that in order to confirm the µ-independence of the cross section,

which will be discussed below in section 3.5, it suffices to use this fixed-order expression.

For more details on the rapidity evolution factor we refer to [28].

Depending on which resummation path is chosen, the anomalous dimensions in both

evolution factors (3.14) and (3.20) are required at different order. If we first evolve in

rapidity and only afterwards in virtuality, the µ-dependent logarithm in V (µ, νi, νf ) is
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never large and we only need γcusp at the one-loop order to achieve NLL’ accuracy. At the

same time, the ν-dependent logarithm in U(µi, µf , ν) will be large and thus the virtuality

evolution factor requires γcusp at two loops. If we first resum in virtuality and then in

rapidity, the situation in reversed and we need γcusp at the two-loop order for V (µ, νi, νf )

and at one-loop for U(µi, µf , ν).

Using the resummed expression for V (µ, νi, νf ) and keeping in mind which order of

the anomalous dimensions needs to be included ensures path independence for the µ − ν
resummation, which implies the relation

V (µf , νi, νf )U(µi, µf , νi) = U(µi, µf , νf )V (µi, νi, νf ) . (3.21)

For the resummation of the photon jet function, we chose to resum first in rapidity and

then in virtuality. As discussed above, for NLL’ accuracy, this requires γcusp in the one-loop

approximation for V (µ, νi, νf ) and we use (3.20) in the form

Zγ(µ, νf ) = exp

[
γ

(0)
cusp

β0,SU(2)
ln

(
α̂2(µ)

α̂2(mW )

)
ln
ν2
f

ν2
i

]
Zγ(µ, νi) . (3.22)

The virtuality evolution factor U(µi, µf , ν) is computed with the two-loop cusp and one-

loop non-cusp anomalous dimension from (3.14). The resummed photon jet function reads

Zγ(µf , νf ) = U(µi, µf , νf )V (µi, νi, νf )Zγ(µi, νi) . (3.23)

Hence, the rapidity scale appearing in the virtuality RGE (3.14) is to be understood as the

endpoint νf ∼ mW of the rapidity evolution.

3.3 Jet function for intermediate resolution

The jet function (2.53) in the intermediate energy resolution case describes the unobserved

hard-collinear final state with virtuality mχmW � m2
W . It is therefore justified to neglect

the masses of the electroweak gauge bosons, the fermions, and the Higgs boson, and to cal-

culate the jet function in the unbroken regime of the SU(2)L×U(1)Y gauge symmetry. This

implies that no additional rapidity regulator is needed (contrary to the case of the narrow

resolution jet function, which is further discussed in appendices B.1 and B.2). We sepa-

rately give the results of the Wilson line contribution and of the self-energy contribution,

in order to better identify the origin of the different terms, and hence write

iJXV (p2, µ) = iJXVWilson(p2, µ) + iJXVse (p2, µ) . (3.24)

The one-loop results for the unrenormalized jet function terms read

iJXVWilson(p2, µ) =
δXV

−p2 − iε

{
1 +

(
µ2

−p2 − iε

)ε
ĝ2

2(µ)

16π2
c2(ad)

(
4

ε2
+

2

ε
+ 4− π2

3

)}
, (3.25)

iJXVse (p2, µ) =
δXV

−p2 − iε

(
µ2

−p2 − iε

)ε
ĝ2

2(µ)

16π2

{
1

ε

(
5

3
c2(ad)− 8

3
TFnG −

1

3
Tsns

)

+
31

9
c2(ad)− 40

9
TFnG −

8

9
Tsns

}
, (3.26)
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where TF = Ts = 1/2 and ns = 1. The jet function follows after taking the imaginary

part and expanding in terms of star distributions [30]. We obtain, using (2.55) and the

numerical values of the group factors,

Jint(p
2, µ) = δ(p2) +

α̂2(µ)

4π

{
δ(p2)

(
70

9
− 2π2

)
− 19

6

[
1

p2

][µ2]

∗
+ 8


 ln p2

µ2

p2




[µ2]

∗

}
. (3.27)

The definition of the star distributions is provided in (B.36) of appendix B.2.

The further treatment is very similar to the gluon jet function in QCD [31]. It is

convenient to work with the Laplace-transformed jet function jint since it renormalizes

multiplicatively. The Laplace transform of Jint(p
2, µ) is defined by

jint

(
ln
τ2

µ2
, µ

)
=

∫ ∞

0
dp2e−lp

2
Jint(p

2, µ), (3.28)

where l = 1/(eγEτ2) and the explicit result after renormalization reads

jint

(
ln
τ2

µ2
, µ

)
= 1 +

α̂2(µ)

4π

(
4 ln2 τ

2

µ2
− 19

6
ln
τ2

µ2
+

70

9
− 4π2

3

)
. (3.29)

The corresponding RG equation is the ordinary differential equation

d

d lnµ
jint

(
ln
τ2

µ2
, µ

)
= γµj jint

(
ln
τ2

µ2
, µ

)
. (3.30)

with Laplace-space anomalous dimension

γµj = −4γcusp ln
τ2

µ2
− 2γJ . (3.31)

γJ is needed at the one-loop order for NLL’ resummation,

γJ =
α̂2

4π
γ

(0)
J + . . . with γ

(0)
J = −β0,SU(2) . (3.32)

The RGE (3.30) is solved by

jint

(
ln
τ2

µ2
, µ

)
= exp

[
−
∫ lnµ

lnµj

d lnµ′
(

4γcusp(α̂2(µ′)) ln
τ2

µ′ 2
+ 2γJ(α̂2(µ′))

)]
jint

(
ln
τ2

µ2
j

, µj

)

= exp [4S(µj , µ) + 2AγJ (µj , µ)] jint (∂η, µj)

(
τ2

µ2
j

)η
, (3.33)

where µj ∼ √mχmW is the natural scale of the hard-collinear jet function and the integrals

S(µj , µ) and AγJ (µj , µ) are defined as

S(µj , µ) =−
∫ lnµ

lnµj

d lnµ′ γcusp(α̂2(µ′)) ln
µ2
j

µ′ 2
, (3.34)

Aγ(µj , µ) =−
∫ lnµ

lnµj

d lnµ′ γ(α̂2(µ′)) . (3.35)
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The variable η is defined by

η = 4Aγcusp(µj , µ) . (3.36)

As mentioned before, at NLL’ the integrals S(µj , µ) and AγJ (µj , µ) can only be solved

numerically due to the appearence of several SM couplings in the β-function for α̂2 beyond

one loop. Note that in the second line of (3.33), the logarithm in the argument of the

Laplace-transformed jet function has been traded for a derivative with respect to η. The

complete τ -dependence of jint is then contained in the factor (τ2/µ2
j )
η, and the inverse

Laplace transform becomes simple. By exploiting the relation
∫ ∞

0
dp2e−p

2/(τ2eγE )
(
p2
)η−1

= Γ(η)eγEη
(
τ2
)η
, (3.37)

one obtains the resummed jet function in momentum space in the form

Jint(p
2, µ) = exp [4S(µj , µ) + 2AγJ (µj , µ)] jint(∂η, µj)

e−γEη

Γ(η)

1

p2

(
p2

µ2
j

)η
. (3.38)

The more complicated jet function for the narrow energy resolution, Jnrw, was used

in [7]. In appendix B.2, we provide details on its computation and give its full expression.

3.4 Soft function

The soft function is defined by the vacuum amplitude (2.57) of the soft operator (2.51) with

index contraction as specified in (2.58). Let us recall that the soft operator is the product

of soft Wilson lines arising from the decoupling of soft SU(2) gauge bosons from the four

particles in the 2→ 2 annihilation amplitude. The SU(2) indices are then contracted in a

way that depends on the operator Oi and the external DM two-particle state I, resulting

in the function W ij
IJ(ω).

The soft function is sensitive to physics at virtualities of order m2
W , and therefore

must be computed in the effective theory with broken SU(2)L×U(1)Y gauge symmetry

and massive SM particles (unless the mass is much smaller than mW ). For NLL’ accuracy,

the one-loop soft function and its NLL RG evolution is needed. Here we summarize these

results. Technical details on the computation of virtual and real one-loop diagrams are

given in appendix C, including the regularization, which involves rapidity regularization,

together with some observations on partial virtual-real singularity cancellations.

The virtual one-loop contributions to the soft function are the same as for the narrow

resolution case and they were already computed in [7]. In the intermediate resolution range,

the real emission of soft EW gauge bosons is kinematically allowed. The new contributions

as well as the virtual diagram results are given explicitly in appendix C. To guide the dis-

cussion we present here the result for the W 22
(+−)(+−) component of the soft function, which

has the most complicated structure and allows us to explain the resummation procedure:

W 22
(+−)(+−)(ω, µ, ν) = δ(ω) +

α̂2(µ)

4π

[
δ(ω)

(
−8 ln

mW

µ
− 16 ln

mW

µ
ln
mW

ν

)

− 6

ω
ln

(
m2
W + ω2

m2
W

)
+

[
1

ω

][mW ]

∗
8 ln

µ2

m2
W

]
. (3.39)
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The complete set of soft function components for all operator and two-particle-state com-

binations is collected in appendix C.4.

As for the unobserved-jet function, renormalization becomes multiplicative in Laplace

space. The forward and inverse Laplace transforms are defined as

w(s) = L{W (ω)} =

∫ ∞

0
dω e−ωsW (ω) , (3.40)

W (ω) = L−1 {w(s)} =
1

2πi

∫ c+i∞

c−i∞
ds esω w(s) . (3.41)

As can be seen from (3.39), the Laplace transforms required for the soft function are

(s = 1/(eγEκ))

L{δ(ω)} = 1 ,

L
{[

1

ω

][mW ]

∗

}
= ln

κ

mW
,

L
{

1

ω
ln

(
m2
W + ω2

m2
W

)}
= si2 (mW s) + ci2 (mW s) ≡ G̃(s) , (3.42)

where the functions si, ci are defined as

si(x) ≡ −
∫ ∞

x
dt

sin(t)

t
, and ci(x) ≡ −

∫ ∞

x
dt

cos(t)

t
. (3.43)

It is convenient to introduce the following vector notation

~wIJ =
(
w11
IJ , w

12
IJ , w

21
IJ , w

22
IJ

)T
(3.44)

for the Laplace transformed soft functions. The RRG equations for the soft functions take

the form

d

d ln ν
~wIJ(s, µ, ν) = ΓνW ~wIJ(s, µ, ν) , (3.45)

where the fixed-order one-loop rapidity anomalous dimension is given by

ΓνW =
α̂2

4π
4γ(0)

cusp ln
mW

µ
14 . (3.46)

Note that the non-cusp piece of ΓνW is zero at one loop. The discussion of the rapidity evolu-

tion factor from section 3.2 equally applies to the soft function. We hence use (3.18), (3.19)

and (3.45) to compute the rapidity-resummed soft function

~wIJ(s, µ, ν) = exp

[
ΓνW (µ) ln

ν

νs

]
~wIJ(s, µ, νs) , (3.47)

where ΓνW (µ) is the integrated rapidity anomalous dimension for the soft function. As was

discussed in the case of the photon jet function, the order of the anomalous dimensions

included in (3.47) depends on the resummation path in the µ − ν plane. The RRG is
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diagonal in both the operator index, encapsulated in the vector notation, and the two-

particle state index pair IJ . Notice that only the soft functions and the photon jet function

depend on the rapidity scale. We make the choice to evolve the photon jet function from

the jet rapidity scale νh ∼ 2mχ down to νs ∼ mW . This means that we can set ν = νs for

the soft function, which makes the rapidity evolution factor (3.47) equal unity.

The virtuality RG equation for the Laplace-transformed soft function is also diagonal

in IJ , but its non-cusp piece is non-diagonal in operator space,

d

d lnµ
~wIJ(s, µ, ν) = ΓµW ~wIJ(s, µ, ν) , (3.48)

with anomalous dimension

ΓµW = 4 γcusp ln
κ

ν
14 +




0 0 0 0

−2γW 3γW 0 0

−2γ∗W 0 3γ∗W 0

0 −2γ∗W −2γW 3γW + 3γ∗W



. (3.49)

As in the case of the photon jet function, (3.46) and (3.49) can be obtained from their

definitions by taking the derivatives in µ and ν, respectively, of ~wIJ . At the one-loop

order, which is enough for NLL’ resummation, the anomalous dimension γW evaluates to

γ
(0)
W = (2 + 2πi)c2(j) . (3.50)

The solution to (3.48) takes the form

~wIJ(s, µ, ν) = R−1UW (µ, µs)R ~wIJ(s, µs, ∂η)
(κ
ν

)η
. (3.51)

The evolution matrix UW is diagonal,

UW =




1 0 0 0

0 exp [3AγW ] 0 0

0 0 exp
[
3Aγ∗W

]
0

0 0 0 exp
[
3(AγW +Aγ∗W )

]



, (3.52)

and the diagonalization matrix R and its inverse R−1 are given by

R =




2
3 0 0 0

−2
3 1 0 0

−2
3 0 1 0
2
3 −1 −1 3

2



, R−1 =




3
2 0 0 0

1 1 0 0

1 0 1 0
2
3

2
3

2
3

2
3



. (3.53)

The integrals AγW and η have been introduced in (3.35) and as already explained there, they

can only be solved numerically at NLL’. As a last step we need to go back to momentum

space and compute the inverse Laplace transform of (3.51). The entire dependence on
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κ is contained in ~wIJ(s, µs, ∂η)
(
κ
ν

)η
. We therefore define ~̂WIJ(ω, µs, ν) to be the inverse

Laplace transform of ~wIJ(s, µs, ∂η)
(
κ
ν

)η
:

~̂WIJ(ω, µs, ν) = L−1

[
~wIJ(s, µs, ∂η)

(
κ

ν

)η ]
. (3.54)

The inverse transformation requires the computation of

L−1
[(κ
ν

)η]
=
e−γEη

Γ(η)

(ω
ν

)η 1

ω
, (3.55)

F (ω) ≡ L−1

[(
κ

ν

)η
G̃
(
e−γE/κ

)]

=

(
e−γE

ν

)η
ω1+η

Γ(2 + η)m2
W

4F3

(
1, 1, 1,

3

2
; 1 +

η

2
,

3

2
+
η

2
, 2;− ω2

m2
W

)
. (3.56)

For the above representative index and operator combination IJ = (+−)(+−) and ij = 22,

the inverse Laplace transform gives

Ŵ 22
(+−)(+−)(ω, µs, ν) =

{
1 +

α̂2(µs)

4π

[(
16 ln

µs
mW

∂η

)
− 8 ln

mW

µs

]}
e−γEη

Γ(η)

1

ω

(ω
ν

)η

+
α̂2(µs)

4π
(−6)F (ω) . (3.57)

The results for Ŵ ij
IJ in all possible index and operator combinations IJ and ij are collected

in appendix C.5. Finally, using (3.51) and (3.54), we find that the virtuality resummed

soft function in momentum space takes the form

~WIJ(ω, µ, ν) = R−1UW (µ, µs)R ~̂WIJ(ω, µs, ν) . (3.58)

We emphasize that we did not include the rapidity evolution factor (3.47) in (3.58), since we

evolve Zγ in ν from νh to νs which makes the soft function rapidity evolution factor unity.

3.5 RG and RRG invariance of the cross section

The factorization formula for the intermediate resolution case given in (2.38) and (2.39)

puts constraints on the anomalous dimensions, since the physical photon energy spectrum

has to be independent of the virtuality and rapidity factorization scales µ and ν. This

independence on the scales manifests itself in the two consistency equations

d

d lnµ

d(σvrel)

dEγ
= 0 , (3.59)

d

d ln ν

d(σvrel)

dEγ
= 0 . (3.60)

Note that the Sommerfeld factor (2.15) is computed at leading order, which makes it scale

independent so it does not have to be taken into account when computing (3.59) and (3.60).

In previous subsections, we already made use of the fact that a Laplace transformation

turns convolution into multiplication. It is thus easiest to derive the implications of (3.59)
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and (3.60) in Laplace space, by taking the Laplace transform of (2.38), (2.39) with respect

to the variable eγ ≡ 2(mχ − Eγ). Calling the Laplace variable t, the Laplace transform

of the convolution of the jet with the soft function is (for brevity, we omit µ and ν in the

arguments, as well as operator and two-particle state indices)

L
[∫ ∞

0
dω Jint(2mχ(eγ − ω))W (ω)

]
=

∫ ∞

0
deγ e

−teγ
∫ ∞

0
dω Jint(2mχ(eγ − ω))W (ω)

=

∫ ∞

0

dp2

2mχ
e−tp

2/2mχJint(p
2)

∫ ∞

0
dω e−tωW (ω)

=
1

2mχ
jint

(
ln

2mχ

teγEµ2

)
w(t) . (3.61)

When going from the second to the third line in (3.61), we made use of the substitution p2 =

2mχ(eγ−ω). Also, since p2 is strictly positive, we can set the lower p2-integration boundary

to zero. Using the definitions (3.28), (3.40) of the Laplace-transformed jet function and soft

function, respectively, we arrive at the fourth line of (3.61). We can therefore write (3.59) as

d

d lnµ

[
~H(µ) · ~w(t, µ, ν)Zγ(µ, ν)jint

(
ln

2mχ

teγEµ2
, µ

)]
= 0 . (3.62)

Taking the derivative and making use of the definitions (3.6), (3.9), (3.30) and (3.48) of

the anomalous dimensions results in

ΓH + ΓµW + γµZγ14 + γµj 14 = 0 . (3.63)

The terms in (3.63) are matrices in operator space. Because the virtuality RG equation for

the Laplace-transformed soft function is diagonal in IJ , (3.63) holds for every index pair

IJ . We can now use the values of the anomalous dimensions, given in (3.7), (3.10), (3.31)

and (3.49), to verify that (3.63) is indeed satisfied. For example, for the cusp terms, the

consistency equation reads explicitly

(
4γcusp ln

4m2
χ

µ2
+ 4γcusp ln

1

teγEν
+ 4γcusp ln

ν

2mχ
− 4γcusp ln

2mχ

teγEµ2

)
14 = 0 . (3.64)

The same steps can be applied for the evaluation of (3.60), except that in (3.62) we

differentiate with respect to ln ν. Since only the photon jet function and the soft function

depend on the rapidity scale ν, using the definitions (3.15) and (3.45) results in the rapidity

consistency equation

γνZγ14 + ΓνW = 0 . (3.65)

This can be shown to be satisfied by the values for the rapidity anomalous dimensions

given in (3.16) and (3.46).

Since (3.63) and (3.65) are fulfilled, we confirm that at the one-loop order the factorized

cross section is independent of the scales µ and ν. It should be noted that the cancellation

of the off-diagonal non-cusp terms of ΓH and ΓµW in (3.63) is non-trivial. In total, this

provides a strong check of the consistency of the calculation. The corresponding consistency

check for the factorization of the narrow resolution case is presented in appendix D.
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Figure 2. Different possibilities for resumming the functions in the factorization theorem. Left:

common reference scale is µs. Right: common reference scale is µj . In both cases, Zγ is evolved in

ν from νh to νs.

3.6 Resummation schemes

Having collected the RG equations for all the factors in the factorization formula, we show

in figure 2 two different possibilities for the resummation of the functions appearing in the

factorization theorem. For the first resummation scheme, shown in the left figure 2, we

choose µs as the common reference scale and evolve the Wilson coefficients Ci and the

unobserved-jet function J down to the soft scale µs, while the soft function W and the

photon jet function Zγ do not contain large logarithms when evaluated with µ = µs, and

hence do not require resummation in µ. Resummation in the rapidity scale is however

necessary. We choose to evolve the photon jet function from νh to νs. Equivalently one

could also evolve the soft function from νs to νh. This resummation scheme is close to the

implementation of the narrow resolution case [7], where there is no hard-collinear scale µj ,

and the hard functions are evolved all the way from the hard to the soft scale.

A more conventional implementation of resummation in the presence of an intermediate

hard-collinear scale is the second resummation scheme illustrated in the right figure 2. Here

we choose µj as the common reference scale, and evolve Ci down, and Zγ and W up to µj .

Zγ is evolved in rapidity from νh to νs as before. Note that in this second case, as discussed

in section 3.2, the specific form of the rapidity evolution factor V depends on whether we

first evolve in ν and then in µ or vice versa. Since we saw that V takes a simpler form if we

resum first in ν and then in µ, we choose this ordering, as is also shown in figure 2 (right).

Both schemes give the same results up to effects beyond the accuracy of the truncation

of the RG equations.

4 Results

In this section we present the results for the DM annihilation process χ0χ0 → γ + X,

assuming an intermediate energy resolution Eγres of the instrument of order of the weak

scale mW . First we show 〈σv〉(Eγres), as defined in (1.1), as a function of the DM mass
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mχ and then perform a numerical comparison of the present calculation with the narrow-

resolution result of [7]. An analytic comparison of the two energy resolution cases is made

in the next section, where we discuss the logarithms in the annihilation rates up to the

two-loop order.

For the numerical results given in this section we use the couplings at the scale

mZ = 91.1876 GeV in the MS scheme as input: α̂2(mZ) = 0.0350009, α̂3(mZ) = 0.1181,

ŝ2
W (mZ) = ĝ2

1/(ĝ
2
1 + ĝ2

2)(mZ) = 0.222958, λ̂t(mZ) = 0.952957, λ(mZ) = 0.132944. The MS

gauge couplings are in turn computed via one-loop relations from mZ ,mW = 80.385 GeV,

αOS(mZ) = 1/128.943, and the top Yukawa and Higgs self-coupling, which enter our calcu-

lation only implicitly through the two-loop evolution of the gauge couplings, via tree-level

relations to mt = 163.35 GeV (corresponding to the top pole mass 173.2 GeV at four loops)

and mH = 125.0 GeV.

4.1 Energy spectrum

The upper panel of figure 3 shows the cumulative endpoint annihilation rate 〈σv〉(Eγres),

plotted as a function of the DM mass mχ. The mass range includes the first two Som-

merfeld resonances. The different lines refer to: the Sommerfeld-only calculation (black-

dotted), also called “tree”, since ΓIJ is evaluated in the tree approximation without any

resummation, and multiplied with the Sommerfeld factor SIJ according to (2.38); the

LL (magenta-dotted-dashed), the NLL (blue-dashed) and finally the NLL’ (red-solid) re-

summed expression for ΓIJ , the latter of which represents the calculation with the highest

accuracy. The photon energy resolution is set to Eγres = mW in this figure.

The lower panel of the figure shows the same LL, NLL and NLL’ resummed annihilation

rates, but normalized to the Sommerfeld-only result for better visibility of the resummation

effect. We see that the resummation leads to a substantial reduction of the cross section,

as is generally expected for Sudakov resummation. The size of the effect is consistent

with the finding of previous computations [3–5, 7] of related observables or in different

resolution regimes. In particular, in the interesting mass range around 3 TeV where wino

DM accounts for the observed relic density, the rate is suppressed by about 30 − 40%.

The resummed predictions are shown with theoretical uncertainty bands computed

from a parameter scan with simultaneous variations of all scales. Specifically, the scales

µh, νh were varied in the interval 2mχ[1/2, 2], µj was varied in the interval
√

2mχmW [1/2, 2]

and µs, νs were varied in the interval mW [1/2, 2]. The errors were then determined very

conservatively by taking the maximum and minimum values in this five-dimensional pa-

rameter space. This scan was repeated for each mass point. For each parameter scan, we

specified 21 values distributed logarithmically in the intervals given above, with ten values

above and ten below the central values of the intervals.

We find that the residual theoretical uncertainty at the NLL’ order becomes neg-

ligible and is given by the width of the red-solid curve in figure 3. It is also ap-

parent that the different levels of resummation successively reduce the theoretical un-

certainty considerably, from 15% at LL, to 9% at NLL and 1% at NLL’ at mχ =

2 TeV. Numerically, for the two mass values mχ = 2 TeV (10 TeV) the ratio to the

Sommerfeld-only rate is 0.641+0.103
−0.089 (0.402+0.088

−0.072) at LL, 0.707+0.066
−0.064 (0.463+0.039

−0.039) at NLL
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Figure 3. Integrated photon energy spectrum within Eγ
res from the endpoint mχ in the tree

(Sommerfeld only) and LL, NLL, NLL’ resummed approximation. The energy resolution is set to

Eγ
res = mW . The shaded/hatched bands show the scale variation of the respective approximation

as described in the text. For the NLL’ result the theoretical uncertainty is given by the thickness

of the red line.

and 0.665+0.008
−0.007 (0.434

+0.006
−0.005) at NLL’. The central values correspond to central scales of

the above intervals.

It is instructive to separate the integrated photon energy spectrum 〈σv〉(Eγ
res) into the

contributions due to the different Sommerfeld factors in (2.38). Thus, we write

〈σv〉 = S(00)(00)[σv](00)(00) + 2Re[S(00)(+−)[σv](00)(+−)] + S(+−)(+−)[σv](+−)(+−) , (4.1)

where

[σv]IJ(E
γ
res) =

∫ mχ

mχ−Eγ
res

dEγ ΓIJ(Eγ) (4.2)
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as in (1.1). We find (Sommerfeld factors in bold), adopting Eγres = mW ,

〈σv〉 =

[
34.246× (1.5886)︸ ︷︷ ︸

∼4%

+ 2Re [42.100× (−1.1356 + 5.7902i)]︸ ︷︷ ︸
∼−6%

+ 51.755× (30.054)︸ ︷︷ ︸
∼102%

]
× 10−28 cm3/s = 1.5142× 10−25 cm3/s , (4.3)

for mχ = 2 TeV and

〈σv〉 =

[
1.1345× (1.8637)︸ ︷︷ ︸

∼27%

+ 2Re [0.35103× (−1.3934 + 7.7840i)]︸ ︷︷ ︸
∼−12%

+ 0.10861× (63.080)︸ ︷︷ ︸
∼85%

]
× 10−27 cm3/s = 7.9872× 10−27 cm3/s . (4.4)

for the smaller DM mass value mχ = 500 GeV. We observe that at mχ = 2 TeV (and

similarly for larger masses), the Sommerfeld factors are large, as expected, and the an-

nihilation rate is dominated by the (+−)(+−) hard annihilation channel, which starts at

tree level in the fixed-order expansion. The Sommerfeld factors are O(1) and even smaller

than 1 for mχ = 500 GeV for the off-diagonal annihilation contributions (00)(+−) and

(+−)(+−), for which the Sommerfeld enhancement does not compensate the loop sup-

pression at small masses.

The results shown in this section were computed with the more conventional second of

the two resummation schemes discussed in section 3.6. We implemented both schemes and

found full numerical agreement at NLL’ at the 0.1% level, as also follows from the analytic

comparison, see (5.25) below.

4.2 Matching energy resolutions

In the introduction we identified three different regimes for the energy resolution Eγres, the

narrow, the intermediate and the wide region. These cover the entire range of Eγres for DM

indirect detection experiments. In [7] we provided NLL’ predictions for the photon-energy

spectrum near the endpoint assuming a narrow energy resolution of Eγres ∼ m2
W /mχ, close

to the line signal, while in this work we focus on Eγres ∼ mW , which is more realistic for

present and future indirect DM searches in the TeV energy region. The two calculations

differ in the structure of the unobserved jet function and the soft function, and exhibit dif-

ferent large logarithms. The question arises whether the two computations can be matched

to provide an accurate result for the entire range from Eγres ∼ 0 to Eγres ≈ 4mW , which we

tentatively define as the upper limit of validity of the intermediate resolution case.

In figure 4, we show the annihilation cross sections for the narrow (blue-dotted) and

the intermediate resolution (red-dashed) cases, plotted as functions of Eγres for two repre-

sentative DM mass values, mχ = 2 TeV (upper panel) and mχ = 10 TeV (lower panel).

We also indicate the regions of validity of the narrow resolution (light-grey/blue) and the

intermediate resolution (dark-grey/red) computations. The boundaries of these regions are

defined by m2
W /mχ[1/4, 4] (narrow resolution) and mW [1/4, 4] (intermediate resolution).
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Figure 4. Annihilation cross sections plotted as function of Eγ
res. The blue-dotted line shows the

cross section for the narrow resolution computed in [7]. The red-dashed line shows the intermediate

resolution cross section. The light-grey (blue) area represents the region of validity for the narrow

resolution case and the dark-grey (red) area represents the region of validity for the intermedi-

ate resolution case. The ratio of the intermediate to narrow resolution annihilation cross section

〈σv〉int/〈σv〉nrw is added below each plot. The results are shown for DM masses of mχ = 2TeV

(upper plot) and mχ = 10TeV (lower plot).

We observe a wide interval in Eγ
res, covering the range of resolution in between the

validity regions of the two calculations, for which the annihilation rates in both calculations

agree with high precision. At low resolution there is a steep rise of the narrow resolution

rate, which occurs at Eγ
res ≈ 4m2

Z/mχ. Above this value the resolution is not enough

to separate the γZ contribution, leading to a sharp increase of the semi-inclusive rate.

Since the unobserved-jet function for the intermediate resolution cross section is computed
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under the assumption that the particles are massless, this feature is absent in this curve

(dashed/red), which is hence clearly not valid for very small resolution. In the narrow

resolution regime the invariant mass of the unobserved-jet function also passes through the

W+W−, ZH and tt̄ thresholds. However, these thresholds are not visible on the scale of

the plot. The narrow resolution computation agrees very well with the intermediate one

well into the regime of validity of the latter, and vice versa. As one moves to even higher

Eγres, the intermediate resolution line starts to depart from the narrow resolution one. Here

the narrow resolution computation clearly ceases to be accurate, because it fails to capture

the effect of soft electroweak gauge boson radiation, which is now kinematically allowed.

Nevertheless, even at the highest Eγres = 1 TeV shown in the plot, the difference stays

below the 20% level, as can be seen from the ratio plots at the bottom of the two panels

in figure 4. We note that as the DM mass becomes larger, the separation between the two

validity regimes (the shaded bands in the figure) increases, but the matching continues to

work well even for the 10 TeV DM mass example.

These observations show that the present work and [7] combined result in highly ac-

curate theoretical predictions for the photon energy spectrum in dark matter annihilation,

here for the wino model, in the entire energy resolution range from Eγres ∼ 0 to Eγres ≈ 4mW .

It would be interesting to perform a similar matching between the results of the present

paper and the results of [6], which would extend the knowledge of the resummed energy

spectrum to even wider resolution. As discussed in the introduction, with the anticipated

energy resolution of the CTA experiment, we expect this to be necessary for DM searches

only in the 10 TeV mass region and beyond.

5 Fixed-order expansions

In this section we perform analytic expansions of the annihilation rate matrix ΓIJ up to

the two-loop order. This provides some insight into the structure of large logarithms in the

photon energy spectrum at large photon energy, depending on the energy resolution, and

explains why the two computations agree remarkably well over a large interval of Eγres, as

observed in the previous section. Readers interested only in the numerical result for the

spectrum may skip this section.

5.1 Double-logarithmic approximation

Before moving to fixed-order expansions it is instructive to compare the NLL’ result to the

double-logarithmic approximation. This approximation is obtained by a) evaluating all

functions in the tree-approximation, b) keeping only the α̂2 × log2 terms in the exponents

of the RG evolution factors. For the two resolution regimes discussed in this paper, the

double-logarithmic approximations read

〈σv〉nrw(Eγres) =
2πα̂2

2ŝ
2
W

m2
χ

[
ŝ2
W + ĉ2

WΘ

(
Eγres −

m2
Z

4mχ

)]
e
− α̂2

π
ln2 4m2

χ

m2
W S(+−)(+−) , (5.1)

〈σv〉int(E
γ
res) =

2πα̂2
2ŝ

2
W

m2
χ

e
− 3α̂2

4π
ln2 4m2

χ

m2
W S(+−)(+−) . (5.2)
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Figure 5. Same as figure 4 but in the double-logarithmic (“simplified”) approximation. For

comparison the complete (“full”) NLL’ results of figure 4 are also included (dimmer dashed and

dotted lines). Top: mχ = 2 TeV. Bottom: mχ = 10 TeV.

The dependence of the coefficient of large logarithms on the energy resolution is already ap-

parent from these equations. Since the ‘nrw’ formula describes an observable that is more

exclusive than the ‘int’ one, the effect of the Sudakov double logarithm is, as expected,

larger for the former. The exponents arise as follows in the first resummation scheme of

section 3.6, where all functions are evolved to the soft scale. In both, the ‘nrw’ and ‘int’

energy resolution formula the resummation of the hard function is responsible for the con-

tribution − α̂2
4π ×4 ln2

4m2
χ

m2
W

to the Sudakov exponent from the diagonal cusp logarithm in the

anomalous dimension (3.4). While in the ‘nrw’ formula there are no further sources of dou-

ble logarithms, the evolution of the unobserved-jet function from the hard-collinear to the

soft scale for the ‘int’ case adds the (positive) contribution + α̂2
4π × ln2

4m2
χ

m2
W
, which partially

compensates the Sudakov suppression associated with the hard-function resummation.

The double-logarithmic approximation is visualized in figure 5. It is seen that within

their respective validity ranges (shaded areas in the plots) the double-log approximations

of the intermediate and narrow resolution results are close to the full NLL’ resummed
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results, shown for comparison (dimmer dashed/red and dotted/blue curves). In the narrow

resolution case the step function in (5.1) correctly describes the sharp rise of the annihilation

cross section due to the opening of the γZ channel.

However, figure 5 also demonstrates that the precise shape of the cumulative annihi-

lation rate in Eγres and, in particular, the smooth matching of the two resolution regimes

observed in the previous section cannot be explained in the double-logarithmic approxima-

tions (5.1), (5.2). We therefore analyze the subleading logarithms in the one- and two-loop

order in the following subsection.

5.2 Expansion of the resummed annihilation rate

We re-expand the resummed annihilation rates (2.39), (2.40) for the intermediate and

narrow resolution, respectively, in the number of loops. More precisely, we expand [σv]IJ
defined in (4.2) in the form

[σv]IJ(Eres
γ ) =

2πα̂2
2(µ)ŝ2

W (µ)√
2
nidm2

χ

∞∑

n=0

2n∑

m=0

c
(n,m)
IJ (Eγres, µ)

(
α̂2(µ)

π

)n
lnm

4m2
χ

m2
W

(5.3)

where, by construction, the coefficients c
(n,m)
IJ (Eγres, µ) are O(1) numbers, and the large

logarithms ln(2mχ/mW ) are made explicit. Note that the coefficients c
(n,m)
IJ (Eγres, µ) are

different for the two resolution regimes.13 The resummed rate depends on many scales, µ

from the renormalization of the coupling, and the scales from the initial and final values

of the RG evolution. To make the large logarithms explicit, we normalize scales by their

natural values. For example, ln(µ2
j/m

2
W ) is written as ln(µ2

j/(2mχmW )) + 1
2 ln(4m2

χ/m
2
W ),

such that the first logarithm is O(1) and part of one of the c
(n,m)
IJ coefficients. For both

factorization formulas we determine the c
(n,m)
IJ coefficients up to the two-loop level (n = 2)

for all possible m and IJ combinations. These are listed in appendix E, where some details

about their determination are also discussed. Figure 6 compares the numerical evaluation

of the resulting fixed-order expressions with the full resummed result of figure 3.14 The

figure shows the breakdown of electroweak perturbation theory in the few TeV DM mass

region, and makes the necessity of the resummation evident.

Before discussing the behaviour of the c
(n,m)
IJ coefficients as functions of Eγres, let us

clarify which logarithms in (5.3) are captured by NLL’ resummation. After RG evolution,

the resummed annihilation cross sections are obtained in the form

σv ∝ (1 + C1α̂2 + . . .) exp [Lf0(α̂2L) + f1(α̂2L) + . . .] (5.4)

with functions fi(α̂2L) of the O(1) quantity α̂2L ≡ α̂2 ln(4m2
χ/m

2
W ). The LL approxima-

tion amounts to keeping f0, NLL adds f1, while NLL’ adds C1. Other terms not written

are beyond the NLL’ accuracy. Expanding in α̂2, we observe that NLL’ resummation

determines the three highest powers of logarithms in any order of perturbation theory,

13In the following we drop the arguments Eγres, µ for brevity.
14We use the following terminology: “n-loop” refers to the O(α̂n2 ) correction only, while NLO refers to

the sum of tree and one-loop, etc.
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Figure 6. Left: ratios to the tree-level cross section of the various fixed-order cross sections at

NLO (dotted) and NNLO (dashed) and of the fully resummed NLL’ cross section (solid) for the

narrow resolution Eγ
res = (150GeV)2/mχ. Right: the same ratios as in the left panel, but in the

intermediate resolution regime Eγ
res = mW . As in figure 3, in both cases the Sommerfeld factor SIJ

is included and the formulas are evaluated at the central scales.

specifically c
(n,2n)
IJ , c

(n,2n−1)
IJ and c

(n,2n−2)
IJ in (5.3) for all n. In particular, for n = 1 (one-

loop) the NLL’ resummation determines all the possible coefficients that exist at this order,

including the non-logarithmic term m = 0, while at two loops (n = 2) all logarithms except

the single logarithm are obtained. Since the dependence on the matching scales such as µj

introduced by resummation must cancel at every fixed order, those fixed-order coefficients,

which are obtained exactly from expanding the resummation formula, must be independent

of these scales. On the other hand, at two loops, the single logarithmic and constant terms

still depend on O(1) quantities such as ln(µ2
j/(2mχmW )) as can be seen from the explicit

expressions in appendix E.

In the following we discuss the logarithmic structure for the channel IJ = (+−)(+−),

which is the most interesting one, since the other channels do not have a tree-level coeffi-

cient.15 We then evaluate the coefficients outside of their validity range, for example we take

a coefficient from the double Taylor expansion of the narrow resolution formula and extrap-

olate it to Eγ
res ∼ mW or to the transition energy resolution scale Eγ

res ∼ (mW /mχ)
1/2mW

in order to study the numerical matching of the two resolution cases. The extrapolation

induces a reshuffling of the logarithms in (5.3) because O(1) coefficients in one regime may

develop large logarithms in the other.

5.2.1 Tree level

The tree-level coefficients in (5.3) are c
(0,0)
(00)(00) = c

(0,0)
(00)(+−) = 0 in both narrow and inter-

mediate resolution cases. The χ+χ− → γ +X tree-level cross sections, on the other hand,

depend on which factorization formula is being employed:

c
nrw(0,0)
(+−)(+−) = ŝ2W + ĉ2WΘ

(
Eγ

res −
m2

Z

4mχ

)
, (5.5)

c
int(0,0)
(+−)(+−) = 1 . (5.6)

15The other channels are listed in appendix E.
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The narrow resolution formula distinguishes the contribution from the γZ line from the γγ

while the intermediate resolution formula does not. When evaluated at Eγres > m2
Z/(4mχ)

both formulas yield the same result.

5.2.2 One loop

The one-loop term in (5.3) reads explicitly

[σv]1−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2

π

[
c

(1,2)
(+−)(+−)L

2 + c
(1,1)
(+−)(+−)L+ c

(1,0)
(+−)(+−)

]
. (5.7)

For the presentation of the coefficients, some abbreviations will be helpful:

L ≡ ln
4m2

χ

m2
W

, xγ ≡
2Eγres

mW
,

lR ≡ ln(xγ) λR = λR(xγ) = −1

2
Li2(−x2

γ) .

The variable L is the large logarithm in the expansion (5.3). Note that lR is an O(1) quan-

tity for intermediate resolution, but counts as a large logarithm in the narrow resolution

case. The fixed-order expansion is performed in the running couplings α̂2(µ), ŝ2
W (µ) at

the scale µ of order mW . We define the O(1) quantity lµ2 ≡ ln(µ2/m2
W ). These explicit

µ-dependent logarithms cancel the implicit scale dependence of the couplings up to residual

dependence of higher order than the NLL’ accuracy of the approximation. In addition to

the variables introduced above, we define

zγ ≡
4π

ŝ2
W (µ)α̂2(µ)

Z1−loop
γ (µ, ν)

∣∣∣∣
µ=mW

=

(
−400

27
+

2

3
+

16

9
ln

m2
t

m2
W

)
ŝ2
W +

(
80

9
ŝ2
W ln

m2
Z

m2
W

− 4π∆α

α̂2

)
, (5.8)

and the resolution-dependent function j(Eγres) by means of the equation

j(Eres
γ ) ≡ 4π

α̂2(µ)

∫ 4mχEres
γ

0
dp2J33, 1−loop

nrw (p2, µ, ν)

∣∣∣∣
µ=mW

, (5.9)

where the one-loop contributions to Zγ(µ, ν) and J33
nrw(p2, µ, ν) are given in (3.8) and (B.31),

respectively. The function j(Eγres) captures the complicated dependence of J33
nrw(p2) on the

masses of the SM particles and Eγres (see appendix B.2), and is constructed such that it is

independent of µ and ν.

With these abbreviations at hand, we find

[σv]nrw 1−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2

π

[
−L2 + L+ c

nrw(1,0)
(+−)(+−)

]
, (5.10)

[σv]int 1−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2

π

[
−3

4
L2 +

(
lR +

29

48

)
L+ c

int(1,0)
(+−)(+−)

]
, (5.11)
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where

c
nrw(1,0)
(+−)(+−) =

1

4

(
19

6
− 11

3
s2
W

)
lµ2 − 6 +

3π2

4
+

1

4

[
j(Eres

γ ) + zγ
]
, (5.12)

c
int(1,0)
(+−)(+−) =

1

4

(
19

6
− 11

3
s2
W

)
lµ2 −

73

18
+

5π2

12
+

1

4
zγ + l2R −

19

24
lR −

3

2
λR . (5.13)

The lµ2 dependence in the c
(1,0)
(+−)(+−) coefficients above is compensated by the running

couplings α̂2(µ) and ŝ2
W (µ) in the corresponding LO terms.

The coefficients depend on Eγres through the functions lR, λR and j defined above.

Therefore, in order to investigate the transition from the narrow to the intermediate

resolution formulas we need to understand the asymptotic behaviour of these functions.

For instance,

j(Eγres)→ 4 ln2 4mχE
γ
res

m2
W

− 19

6
ln

4mχE
γ
res

m2
W

+
70

9
− 4π2

3
for 4mχE

γ
res � m2

W (5.14)

up to corrections of order m2
W /(4mχE

γ
res). This can be obtained from expanding the

explicit expressions for the one-loop Wilson line and self-energy contributions given in

appendix B.2, or, more simply, by performing the expansion by regions [16] before taking

the integrals.

When extrapolating (5.10) into the intermediate resolution regime, we can write

j(Eγres), using ln(4mχE
γ
res/m2

W ) = 1
2L+ lR, as

1

4
j(Eγres)→ +

1

4
L2 +

(
lR −

19

48

)
L+ l2R −

19

24
lR +

35

18
− π2

3
. (5.15)

Then, for Eγres � m2
W /mχ,

[σv]nrw 1−loop
(+−)(+−) = [σv]int 1−loop

(+−)(+−) + [σv]tree
(+−)(+−)

3

2

α̂2

π
λR

(
2Eγres

mW

)
. (5.16)

We note that due to the asymptotic behaviour of j(Eγres), the large logarithms precisely

match. The difference is a non-logarithmic term, which turns out to be quite small, and

amounts to O(1%) of the tree-level cross sections independent of the DM mass. This is

visualized in figure 7 where the one-loop coefficient (excluding the factor α̂2/π) is plotted

for the two resolutions (narrow in dashed/blue, intermediate in solid/red). The absolute

value of these dimensionless coefficients is, for both cases, large but the coefficients differ

by no more than 3% in the hatched cross-over region. Similar results are found when I or

J = (00) as can be verified from the coefficients c
(n,m)
IJ listed in appendix E.

One may wonder why in (5.16) the narrow and intermediate resolution coefficients

do not agree exactly, since by construction the NLL’ approximation reproduces the full

one-loop calculation. However, this is true only up to power corrections in mW /mχ. The

difference in (5.16) arises from the λR term in the intermediate resolution coefficient (5.11).

In the narrow resolution limit λR is a power-suppressed effect of order mW /mχ.
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Figure 7. One-loop coefficient of the series (5.3) (including all logarithms) for the ‘nrw’ (solid)

and ‘int’ (dashed) factorization formulas. Left: mχ =2 TeV. Right: mχ =10 TeV.

5.2.3 Two loops

The two-loop term in (5.3) reads

[σv]2−loop
(+−)(+−) =

2πα̂2
2ŝ

2
W

m2
χ

α̂2
2

π2

[
c
(2,4)
(+−)(+−)L

4 + c
(2,3)
(+−)(+−)L

3 + c
(2,2)
(+−)(+−)L

2

+ c
(2,1)
(+−)(+−)L+ c

(2,0)
(+−)(+−)

]
. (5.17)

NLL’ resummation determines all but the coefficients c
(2,1)
IJ and c

(2,0)
IJ of the series exactly.

The expansion of the resummation formula also yields expressions for single logarithmic

and constant terms, but these are incomplete. We find

c
nrw(2,4)
(+−)(+−) =

1

2!
(−1)2 , (5.18)

c
nrw(2,3)
(+−)(+−) = −53

72
, (5.19)

c
nrw(2,2)
(+−)(+−) =

1

4
(−1)

[
19

3
− 11

3
s2W

]
lµ2 +

671

144
− 13π2

12
− zγ + j(Eγ

res)

4
(5.20)

in the narrow resolution case and

c
int(2,4)
(+−)(+−) =

1

2!

(
−3

4

)2

=
9

32
, (5.21)

c
int(2,3)
(+−)(+−) = −2

9
− 3

4
lR , (5.22)

c
int(2,2)
(+−)(+−) =

1

4

(
−3

4

)[
19

3
− 11

3
s2W

]
lµ2

+
4489

2304
− 37π2

48
− 3

16
zγ +

9

8
λR + lR − 1

4
l2R (5.23)

for the intermediate resolution case. As before, the lµ2 dependence of the c
(2,2)
(+−)(+−) coef-

ficients in both resolutions is compensated by the scale dependence of the couplings. The

Eγ
res dependence of the coefficients is captured in the j, lR and λR functions already en-

countered in the one-loop expansion. The coefficients c
(2,1)
(+−)(+−) and c

(2,0)
(+−)(+−) are provided

in the appendix E.
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Figure 8. Two-loop coefficient of the series (5.3) (including all logarithms and evaluated on the

central scales) for the ‘nrw’ (solid) and ‘int’ (dashed) factorization formulas. Left: mχ =2 TeV.

Right: mχ =10 TeV.

Eγ
res ∼ m2

W /mχ Eγ
res ∼ mW

√
mW /mχ Eγ

res ∼ mW

j(Eγ
res) j = O(1) 1

4L
2 +O(L) L2 +O(L)

lR(E
γ
res) −1

2L+O(1) −1
4L+O(1) lR = O(1)

λR(E
γ
res) 0 0 λR = O(1)

Table 1. Leading-logarithmic dependence of the Eγ
res-dependent functions appearing in the fixed-

order expansions when evaluated at the three Eγ
res-scales relevant to figure 8. Vanishing entries are

to be understood as power-suppressed.

∑
c
(2,m)
(+−)(+−)L

m Eγ
res ∼ m2

W /mχ Eγ
res ∼ mW

√
mW /mχ Eγ

res ∼ mW

‘nrw’ 16
32L

4 +O(L3) 7
16L

4 +O(L3) 8
32L

4 +O(L3)

‘int’ 15
32L

4 +O(L3) 7
16L

4 +O(L3) 9
32L

4 +O(L3)

‘nrw’-‘int’ 1
32L

4 +O(L3) O(L3) − 1
32L

4 +O(L3)

Table 2. Leading-logarithmic terms of the two-loop coefficients in (5.3) for the ‘nrw’ and ‘int’

factorization formulas, and the difference of the two, at the scales relevant to figure 8.

Figure 8 compares for the two factorization formulas the complete two-loop coefficient

in (5.17) (including the c
(2,m)
(+−)(+−) for all m). These are evaluated at the central scales, i. e.

all lµi ’s and lνi ’s of the coefficients listed in the appendix are set to zero.

In order to understand the behaviour of the curves in the figure analytically, we use the

asymptotic behaviour of the Eγ
res-dependent functions within the coefficients. The leading-

logarithmic dependence of these for different Eγ
res scaling is shown in table 1. Besides the

two energy resolution regimes associated with the ‘nrw’ and ‘int’ factorization theorems,

the transition scale constructed from the geometric mean of the narrow and intermediate

resolution scales is also considered.

In table 2 we show the leading logarithm that results from reevaluating the ‘nrw’

and ‘int’ two-loop coefficients at the three scales in Eγ
res relevant to figure 8. We verify

the behaviour encountered in both panels of the figure. Namely, in figure 8 the two-loop
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coefficient associated with the ‘nrw’ formula is larger than the corresponding one from the

‘int’ formula for the narrow resolution regime. This property is supported by the positive

difference of the leading logarithmic term (L4/32) between the two formulas as evaluated

at the ‘nrw’ regime (last row and second column of table 2). Conversely, when Eγres ∼ mW

the opposite happens, and the ‘int’ coefficient is larger than the ‘nrw’ one, consistent with

the last entry (last column from left to right and last row from the top to the bottom) of

table 2. The vanishing of the O(L4) term for Eγres ∼ mW

√
mW /mχ explains the almost

perfect matching of the ‘nrw’ and ‘int’ coefficients in the transition region as observed in

figure 8.

In summary, that the matching works so well over a wide range of energy resolution

is a consequence of the smallness of the difference in the leading logarithms. For example,

extrapolating the narrow resolution coefficient to intermediate resolution, we find at NNLO

[σv]nrw
(+−)(+−) − [σv]int

(+−)(+−)

[σv]tree
(+−)(+−)

=
3

2

α̂2

π
λR +

α̂2
2

π2

[
−L

4

32
+

(
19

144
− lR

)
L3 +O(L2)

]
. (5.24)

At one loop, as discussed before, the difference lacks large logarithms since λR is an O(1)

function of Eγres provided Eγres ∼ mW . At the two-loop level we see a partial cancellation

of the L4 coefficients (as 1/32 � 1). In (5.24) we therefore include the L3 term, which

constitutes the largest difference term at two loops when L is not extremely large.

5.3 Resummation schemes compared

So far the discussion on the fixed-order expansions of the intermediate resolution formula

has been done using the first resummation scheme of section 3.6. This is the most natural

choice when comparing with the factorization formula in the narrow resolution case. We

performed the same fixed-order analysis for the second resummation scheme and found

exact agreement in all the coefficients at two loops except c
(2,0)
(+−)(+−). Specifically,

[σv]Res.Sc.I
(+−)(+−) − [σv]Res.Sc.II

(+−)(+−)

[σv]tree
(+−)(+−)

= − α̂
2
2

π2
3 lR ϕR , (5.25)

where ϕR is defined in (E.4). Numerically this difference is not be larger than O(0.1%) of

the tree-level cross section. Note that since the single log coefficient is not obtained unam-

biguously by NLL’ resummation, also c
(2,1)
(+−)(+−) could have depended on the resummation

scheme, but this turns out not to be the case.

6 Conclusion

The search for high-energy photons plays an important role in detecting dark matter

through its annihilation in the center of the Milky Way, or in dwarf galaxies. Connecting a

possible signal to a DM model, or to place limits on the parameters of the model, including

the DM mass itself, requires an accurate theoretical calculation of the annihilation rate.

When the DM particle carries electroweak charges and its mass is much larger than the

mass of the electroweak gauge bosons, standard perturbation theory in the small couplings
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of the SM breaks down. Large enhancements of loop diagrams due to non-relativistic

scattering and due to soft and collinear gauge bosons must be summed to all orders in

the coupling expansion. In this paper we considered the photon energy spectrum of the

semi-inclusive photon final state γ + X, integrated from the endpoint Eγ = mχ over an

interval of size Eγres, which corresponds to the observable measured by γ-telescopes, when

the flat integration in (1.1) is replaced by the instrument-specific resolution function of

characteristic width Eγres.

The main theoretical result is the factorization formula (2.38) for the annihilation

rate for energy resolution Eγres ∼ mW (2.39), and Eγres ∼ m2
W /mχ (2.40), respectively,

and the calculation of the all-order resummed rate to NLL’ accuracy in the electroweak

Sudakov logarithms. The main results relevant to observations are summarized in figures 3

and 4. The corresponding result for narrow resolution has already been shown in [7], but

the derivation and the matching to the intermediate energy resolution Eγres ∼ mW has

been presented here for the first time. While the theoretical formalism is more general,

and so are some of the calculations, the complete NLL’ calculation has been performed

in the so-called pure wino model, where the SM is extended by a fermionic SU(2) triplet,

of which the electrically neutral member is the DM particle. We highlight the following

two observations:

• Electroweak Sudakov effects are large and reduce the annihilation rate to high-energy

photons by about a factor of two in the multi-TeV region. As soon as the full one-

loop effects are included, that is, the accuracy of the calculation elevated from NLL to

NLL’, the theoretical uncertainty, as measured by renormalization and factorization

scale variation, becomes negligible (about or below 1%), see figure 3.

• The two separate calculations for narrow and intermediate energy resolution match

very accurately, resulting in precise theoretical results from the line-like final state

at Eγres ∼ 0 to Eγres ∼ 4mW (perhaps, beyond), see figure 4. While the calculations

apply to any DM mass with mχ � mW , given the energy resolution of the H.E.S.S.

and CTA experiments, they are most relevant for mχ in the range between 1 and

10 TeV. This is also the range where the wino model is most compelling.

In [6, 8] a complementary approach has been pursued, which applies to what we called

“wide” energy resolution Eγres � mW . The available results are of NLL accuracy for the

same wino model, and, given the observations above, it would be of interest to a) extend

them to NLL’ and b) match them to the intermediate resolution case discussed here.

The results shown here demonstrate the success of EFT techniques, non-relativistic

and soft-collinear, to deal with the breakdown of electroweak perturbation theory in the

high-energy regime. This opens the perspective to extend the calculations to models other

than the wino model. Given the small uncertainty of ≤ 1% from scale variation of the

resummed perturbative expansion, it is probable that the largest theoretical uncertainty

now arises from modifications of the Sommerfeld effect due to sub-leading effects in the

non-relativistic effective theory, and, for smaller mχ, from power-suppressed effects of order

mW /mχ, which are systematically neglected in the present treatment.
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A Hard matching coefficients

In this appendix we provide more details on the calculation of the hard-matching coefficients

given in (3.1) and (3.2).

A.1 Amplitude in the full theory

The matching condition between the full theory (SM plus an isopsin-j dark matter multi-

plet) and the effective theory requires that the on-shell amplitudes for 2 → 2 annihilation

of two dark matter fields to two SU(2) gauge bosons computed in the two theories must

be equal:

MAB
full ({p, s}) =

1

2mχ

∑

i=1,2

Cbare
i ({p}) (2mχ)〈Obare

i 〉AB({p, s}) . (A.1)

Here the left-hand side refers to the UV-renormalized amplitude in the full theory. The

symbol {p, s} indicates the dependence of the amplitudes on the momenta and the

spin/polarization orientations of the four external particles. The operators Oi are S-wave

operators. To extract their coefficient we can set the relative momenta of the annihilating

particles to zero. We choose p1 = p2 = mχ(1,0) for the initial state, and p3 = mχn−,

p4 = mχn+ for the final state. We define projectors applied to the full theory amplitude

such that
∑

s

PABi ({p, s})MAB
full ({p, s}) =Mi, full(4m

2
χ) , i = 1, 2 , (A.2)

whereMi, full are the full-theory projected amplitudes corresponding to the gauge and spin

structures of the two operators O1,2 defined in (2.28) and (2.29). The expressions in (A.2)

directly correspond to the bare matching coefficients since the loop diagrams in the effective

theory are all scaleless and vanish in dimensional regularization. The two projectors have

the explicit expressions

PAB1 ({p, s}) =
1

(3− 4c2(j))(2j + 1)

(
1− 2c2(j)

2
TAB1 + TAB2

)

×
ū(p1, s1)(/n+ − /n−)[γσ, γρ]v(p2, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− 3ε+ 2ε2)
,

PAB2 ({p, s}) =
1

(3− 4c2(j))(2j + 1)

(
TAB1 +

−3

c2(j)
TAB2

)

×
ū(p1, s1)(/n+ − /n−)[γσ, γρ]v(p2, s2)ερ(p3, s3)εσ(p4, s4)

32mχ (1− 3ε+ 2ε2)
, (A.3)

– 48 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
3

χ

χ

A

Aχ

χ A

A

χ

χ

A

A

χ

χ

A

A

Figure 9. Representative sample of one-loop diagrams contributing to the computation of the

Wilson coefficients.

where ε = (4 − d)/2, d is the space-time dimension and c2(j) = j(j + 1) for an isospin-j

representation. The projectors differ only in the SU(2) part, since both operators have the

same Dirac and Lorentz index structure which projects only on the spin-singlet contribution

of the amplitude. The projectors can be considered as operators in spin space and the same

is true for the amplitude.

We compute the matching coefficients at the one-loop order (see figure 9 for a sample of

diagrams). We use dimensional regularization for both ultraviolet and infrared singularities.

The calculation of the bare full theory amplitudes has been carried out by using a set of

computer-algebra tools. FeynRules [32], FeynArts [33] and FormCalc [34] were used in

combination for the model implementation and the amplitude generation. The algebraic

manipulations and simplifications have been carried out with a private code written in

FORM [35]. The reduction to master integrals at threshold was performed with Reduze [36].

We calculate the Feynman diagrams in the unbroken SU(2) gauge theory and find for the

bare projected full-theory amplitudes

Mbare
1 full(4m

2
χ) =

g4
2 bare

16π2
(4m2

χ)−ε(e−γE4π)ε

×
[

1

ε
c2(j)(2− 2iπ)− c2(j)

(
4− π2

2

)
+O(ε)

]
,

Mbare
2 full(4m

2
χ) = g2

2 bare +
g4

2 bare

16π2
(4m2

χ)−ε(e−γE4π)ε

×
[
− 4

ε2
+

1

ε
(−6 + 2iπ) + 16− π2

6
− c2(j)

(
10− π2

2

)
+O(ε)

]
, (A.4)

where

g2 bare = Zg2 µ̃
εĝ2(µ), µ̃2 =

µ2eγE

4π
. (A.5)

We find the same expressions, both for the case of Dirac and Majorana fermions. This

is no surprise since a possible difference could arise only from s-channel diagrams with

a fermion-fermion-gauge boson vertex. At threshold these diagrams do not contribute to

the amplitude.

– 49 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
3

In the following, we find it convenient to suppress the µ dependence of the renormalized

SU(2) coupling in intermediate results. We remove the UV divergences by coupling, field

and DM mass renormalization. The coupling constant is renormalized in the MS scheme

while the mass and field renormalization is done in the on-shell scheme so that no further

residue factor is required to obtain the on-shell amplitude. The SU(2) coupling, DM mass

and field renormalization, and the SU(2) gauge boson field renormalization constants are

given, respectively, by

Zg2 = 1 +
ĝ2

2

16π2

1

ε

[
2

3
c(j)r − 43

12
+

2

3
nG

]
, (A.6)

Zmχ = 1− ĝ2
2

16π2

(
µ2

m2
χ

)ε
c2(j)

3− 2ε

ε(1− 2ε)
, (A.7)

Zχ = 1− ĝ2
2

16π2

(
µ2

m2
χ

)ε
c2(j)

3− 2ε

ε(1− 2ε)
, (A.8)

ZA = 1 +
ĝ2

2

16π2

(
µ2

m2
χ

)ε[
− 4

3ε
c(j)r +O(ε)

]
, (A.9)

where c(j) = c2(j)(2j + 1)/3 and nG = 3 is the number of fermion generations. In (A.6)

the term 2c(j)r/3 corresponds to the heavy DM fermion contribution, the term −43/12

to the gauge boson and Higgs contributions, while the 2nG/3 piece arises from the SM

fermion loops. The parameter r assumes the values r = {1, 1/2} for Dirac and Majorana

fermions, respectively. In the effective theory the heavy fermion is integrated out and

does not contribute to the running of the gauge coupling anymore. Hence, similarly to

switching between schemes with different massless quark flavours in QCD, we decouple the

DM contribution from the running of the gauge coupling ĝ2 through the substitution

ĝ2
2 → ĝ2

2 +
ĝ4

2

16π2

[
4

3
c(j)r ln

µ2

m2
χ

]
. (A.10)

in (A.4). After this replacement the r dependence drops out, and the final result will

be independent of the Dirac or Majorana nature of the fermion. The UV-renormalized

projected full-theory amplitudes, which equal the bare Wilson coefficients, read

Cbare
1 =

ĝ4
2

16π2

{
c2(j)

ε
(2− 2iπ)− c2(j)

(
4− π2

2

)
+ c2(j)(2− 2iπ) ln

µ2

4m2
χ

+O(ε)

}
,

Cbare
2 = ĝ2

2 +
ĝ4

2

16π2

{
− 4

ε2
+

1

ε

[
− 79

6
+

4nG
3

+ 2iπ − 4 ln
µ2

4m2
χ

]

+ 16− π2

6
− c2(j)

(
10− π2

2

)
− (6− 2iπ) ln

µ2

4m2
χ

− 2 ln2 µ2

4m2
χ

+O(ε)

}
. (A.11)

The remaining IR divergences must be cancelled by matching. This will be done in the

next subsection by operator renormalization in the effective theory.

A.2 Operator renormalization in the effective theory

In the effective theory the loop diagrams are all scaleless and therefore vanish in dimensional

regularization. The EFT matrix element is therefore given by the tree matrix element and
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the tree diagrams with counterterm insertions. To compute the UV counterterms in the

effective theory, we need to regulate the IR-divergences with a different regulator than

dimensional regularization. To this purpose we take slightly off-shell momenta for the

incoming DM fermions and the final-state gauge bosons. By direct calculation of the

effective theory diagrams we obtain for the UV poles in the MS scheme

〈Obare
1 〉 = 〈O1〉tree

{
1 +

ĝ2
2

16π2

[
4

ε2
+

1

ε

(
4− 2c2(j) + 4iπ − 4 ln

4m2
χ

µ2

)]}
+O(ε0) , (A.12)

〈Obare
2 〉 = 〈O1〉tree ĝ2

2

16π2

1

ε

[
− c2(j)(2− 2iπ)

]
+O(ε0) (A.13)

+〈O2〉tree

{
1 +

ĝ2
2

16π2

[
4

ε2
+

1

ε

(
10− 2c2(j)− 2iπ − 4 ln

4m2
χ

µ2

)]}
+O(ε0) ,

where 〈Oi〉tree correspond to the tree-level matrix elements of the first or second operator.

Notice that the divergent parts shown do not depend on the infrared regulator and that

they only depend on the hard scale 2mχ. We still need to add the external field MS

renormalization factors for the effective theory fields, which read

Zχv = 1 +
ĝ2

2

16π2

1

ε

[
2c2(j)

]
, (A.14)

ZA = 1 +
ĝ2

2

16π2

1

ε

[
19

6
− 4

3
nG

]
. (A.15)

By combining everything we arrive at

ZχvZA〈Obare
1 〉 = 〈O1〉tree

{
1 +

ĝ2
2

16π2

[
4

ε2
+

1

ε

(
43

6
− 4

3
nG + 4iπ + 4 ln

µ2

4m2
χ

)]}
+O(ε0) ,

(A.16)

ZχvZA〈Obare
2 〉 = 〈O1〉tree ĝ2

2

16π2

1

ε

[
− c2(j)(2− 2iπ)

]
+O(ε0)

+〈O2〉tree

{
1 +

ĝ2
2

16π2

[
4

ε2
+

1

ε

(
79

6
− 4

3
nG − 2iπ + 4 ln

µ2

4m2
χ

)]}
+O(ε0) .

(A.17)

Coupling renormalization contributes only at higher orders in ĝ2.

The MS operator renormalization constants Zij are a matrix in operator space such

that Ôbare
i = ZijÔren

j (µ), i, j = 1, 2. We obtain from the above

Z11 = 1 +
ĝ2

2

16π2

[
4

ε2
+

1

ε

(
43

6
− 4

3
nG + 4iπ + 4 ln

µ2

4m2
χ

)]
,

Z12 = 0 ,

Z21 =
ĝ2

2

16π2

1

ε

[
− c2(j)(2− 2iπ)

]
,

Z22 = 1 +
ĝ2

2

16π2

[
4

ε2
+

1

ε

(
79

6
− 4

3
nG − 2iπ + 4 ln

µ2

4m2
χ

)]
. (A.18)
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By making use of the matching condition in (A.1), the decoupling relation in (A.10) and

Ci(µ) = ZjiC
bare
j (µ) , i = 1, 2 , (A.19)

we find that all 1/ε poles cancel and we obtain the explicit results for the hard matching

coefficients given in (3.1) and (3.2).

A.3 Operator Z-factors from the anomalous dimension

A second way to obtain the operator renormalization Zij factor is to adapt the anomalous

dimension known for QCD processes [37, 38] to the SU(2) gauge group. We switch to

the operator basis where the DM bilinear is in a definite isospin representation (the DM

bilinear can be either in a singlet or in a quintuplet representation)

O′ = V̂ TO, V̂ =


 1 −c2(j)

3
0 1


 . (A.20)

The advantage of this basis is that the anomalous dimension at threshold is diagonal [38],

Γ =
1

2
γcusp

[
2c2(ad)

(
ln

4m2
χ

µ2
− iπ

)
+ iπc2(J)

]
+ 2γad + γJH,s , (A.21)

where c2(ad) is the Casimir value of the gauge boson in the adjoint representation, and

c2(J) the one for the DM fermion pair in the representation J = 0 (singlet) or J =

2 (quintuplet). The quantity γad is the gauge boson anomalous dimension and γJH,s is

the anomalous dimension of the heavy fermion pair. The anomalous dimensions have

perturbative expansions in terms of α̂2 (and, possibly, other couplings in higher orders

than given)

γcusp(α̂2) = γ(0)
cusp

α̂2

4π
+ γ(1)

cusp

(
α̂2

4π

)2

+O(α̂3
2) , (A.22)

γ(0)
cusp = 4, γ(1)

cusp =

(
268

9
− 4π2

3

)
c2(ad)− 80

9
nG −

16

9
, (A.23)

γad(α̂2) = γ
(0)
ad

α̂2

4π
+O(α̂2

2) , (A.24)

γ
(0)
ad = −β0,SU(2) = −

(
43

6
− 4

3
nG

)
, (A.25)

γJH,s(α̂2) = γ
(0)
H,s c2(J)

α̂2

4π
+O(α̂2

2) , (A.26)

γ
(0)
H,s = −2 . (A.27)

The Higgs contribution −16/9 to the two-loop cusp anomalous dimension has been ex-

tracted from the ε-scalar contribution computed in [39].

The operator Z-factor in the MS scheme can be obtained from the anomalous dimen-

sion. Up to order ĝ2
2 it reads

Z = 1− ĝ2
2

(16π2)

(
Γ′ (0)

4ε2
+

Γ(0)

2ε

)
+O(ĝ4

2) , (A.28)
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where Γ′ = −2c2(ad)γcusp. In the diagonal basis defined in (A.20) we find

Z11 = 1 +
ĝ2

2

16π2

[
4

ε2
+

1

ε

(
43

6
− 4

3
nG + 4 ln

µ2

4m2
χ

+ 4iπ

)]
,

Z12 = 0 ,

Z21 = 0 ,

Z22 = 1 +
ĝ2

2

16π2

[
4

ε2
+

1

ε

(
79

6
− 4

3
nG + 4 ln

µ2

4m2
χ

− 2iπ

)]
. (A.29)

Transforming back to the unprimed basis (2.28), (2.29) we find agreement with (A.18).

B Collinear functions and rapidity regularization

In this appendix provide some details on the rapidity regularization, which is required for

collinear and soft functions, on collinear integrals, and we supply the lengthy expressions

for the narrow resolution jet function that were not given in [7].

B.1 Rapidity regularization

We employ the rapidity regulator introduced in [28], which amounts to the following re-

placements in the eikonal Feynman rules that originate from soft and (anti-) collinear

Wilson lines

collinear emission :
nµ+
n+k

→ nµ+
n+k

νη

|n+k|η
, (B.1)

anti-collinear emission :
nµ−
n−k

→ nµ−
n−k

νη

|n−k|η
, (B.2)

soft emission from (anti-) collinear direction :
nµ±
n±k

→ nµ±
n±k

νη/2

|2k3|η/2 , (B.3)

soft emission from the heavy line :
vµ

v · k →
vµ

v · k
νη/2

|2k3|η/2 . (B.4)

η is the rapidity regulator and ν is a newly introduced rapidity scale, the equivalent of µ

in dimensional regularization. Notice that the rapidity regulator in the above expressions

is consistent between soft and collinear integrals since 2k3 → n+k (2k3 → n−k) in the

(anti-) collinear limit. In our case all the soft and photon jet functions always require

rapidity regularization, but the unobserved-jet function only in the narrow resolution case.

In the following we focus on the collinear and anti-collinear scalar integrals, which appear,

respectively, in the unobserved jet and photon jet function calculation. In appendix C we

present the computation of the relevant soft virtual and real integrals.

As an example we compute the off-shell collinear scalar integral (p2 6= 0)

Ic(p
2) =

∫
[dk]

νη

[k2 −m2
W + iε][(p+ k)2 −m2

W + iε][n+k + iε]|n+k|η
, (B.5)
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relevant to the unobserved-jet function in the narrow resolution regime. From contour

integration we find that n+k < 0, such that we can replace the absolute value by −n+k.

We proceed with the loop integration by introducing the Feynman parametrization

1

abc1+η
=

∫ ∞

0
dx1

∫ ∞

0
dx2

(2 + η)(1 + η)

(c+ ax1 + bx2)3+η
. (B.6)

After performing the loop integration we arrive at

Ic(p
2) =

(
µ2eγE

)ε (−i)
16π2

Γ(1 + η + ε)

Γ(1 + η)
(B.7)

×
∫ ∞

0
dx1

∫ ∞

0
dx2

νη

(x1 + x2)1−η−2ε [(x1 + x2)2m2
W − x2x1p2 + n+px2]1+ε+η

.

We make the substitution x1 → x′1x2 and integrate first over x2. For convenience we drop

the +iε in the intermediate expressions, and we identify p2 → p2 + iε as follows from the

definition of the integral. After integrating over x2 we obtain

Ic(p
2) =

(
µ2eγE

)ε (−i)
16π2

(
ν

n+p

)η Γ(ε)

n+p

∫ ∞

0
dx′1 (1 + x′1)−1+2ε+η

[
m2
W (1 + x′1)2 − p2x′1

]−ε
.

(B.8)

We rewrite part of the integrand as

[
m2
W (1 + x′1)2 − p2x′1

]−ε
= (−p2)−ε

[
r (1 + x′1)2 + x′1

]−ε
, (B.9)

where r ≡ m2
W /(−p2), and perform the variable change x′1 = (1− y)/y. The y integration

amounts to
∫ 1

0
dy y−1−η(r + y − y2)−ε = −r

−ε

η
F1

(
− η, ε, ε, 1− η;

2

1 +
√

1 + 4r
,

2

1−
√

1 + 4r

)
,

(B.10)

where F1 is the F1-Appell hypergeometric function. This gives Ic(p
2) to all orders in η and

ε. Numerical checks were performed to ensure the consistency of (B.7) and (B.10). We

need to expand the result first in η → 0, using the formula

y−1−η = −δ(y)

η
+

∞∑

m=0

(−η)m

m!

[
lnm(y)

y

]

+

= −δ(y)

η
+

[
1

y

]

+

+ . . . (B.11)

and then in ε. The +-distributions acting on a test function are defined as

∫ 1

0
dx

[
lnn(x)

x

]

+

f(x) =

∫ 1

0
dx

lnn(x)

x
(f(x)− f(0)) . (B.12)

For the y-integral (B.10) we find

∫ 1

0
dy y−1−η(r + y − y2)−ε = −r

−ε

η
+ ε

[
− ln2(−x)

2

]
+O(η, ε2) . (B.13)
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We find this compact result after introducing the variables

x ≡ 1− β
1 + β

, β =

√
1− 4m2

W

p2
, (B.14)

and with the help of relations between polylogarithms of different arguments in intermediate

steps. We used the package NumExp [40] for the numerical expansion of the Appell F1

function in (B.10) to check (B.13). In total we find

Ic(p
2) =

i (n+p)
−1

16π2

[
1

εη
− 1

η
ln
m2
W

µ2
− 1

ε
ln
n+p

ν
+ ln

m2
W

µ2
ln
n+p

ν
+

ln2(−x)

2

]
+O(η, ε) .

(B.15)

The integral above is real in the region p2 < 0, but we need to extract potential imaginary

parts in the regions p2 > 4m2
W and 0 < p2 < 4m2

W . To obtain the result in the region

p2 > 4m2
W from (B.15) one needs to perform the substitution

ln(−x)→ ln(x) + iπ . (B.16)

In the region 0 < p2 < 4m2
W the result does not develop an imaginary part and it can be

obtained from (B.15) by making the substitution

ln(−x)→ i
(
− 2 arctan(β̄) + π

)
, (B.17)

where we define

β̄ =

√
4m2

W

p2
− 1 . (B.18)

In the intermediate resolution case the external momentum p has hard-collinear scaling

pµ ∼ mχ(λ, 1,
√
λ) such that p2 ∼ λm2

χ, while the square of the gauge boson mass scales

as m2
W ∼ λ2m2

χ. Hence the expansion for p2 � m2
W becomes relevant. Directly expanding

the result in (B.15) yields

Ic(p
2) =

i (n+p)
−1

16π2

[
1

εη
− 1

η
ln
m2
W

µ2
− 1

ε
ln
n+p

ν
+ ln

m2
W

µ2
ln
n+p

ν
+

1

2
ln2

(
− m2

W

p2

)]

+O(η, ε) +O
(
m2
W

p2

)
(B.19)

up to power corrections, which seems to be at variance with the gauge-boson mass inde-

pendence of the result for the hard-collinear jet function in the main text. However, the

integral (B.5) is now a two-scale object. We find that there are two regions contributing

to this integral, namely the hard-collinear and the soft region, kµ ∼ (λ, λ, λ). To extract

the soft contribution, we need to expand the propagator

[
(p+ k)2 −m2

W

]
= p2 + n+p n−k +O(λ2) . (B.20)
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in this region. The soft integral then reads

Ic-s(p
2) =

∫
[dk]

νη

[k2 −m2
W + iε][p2 + n+p n−k + iε][n+k + iε]|n+k|η

. (B.21)

Calculating the integral in a similar way as above, we obtain

Ic-s(p
2) =

i (n+p)
−1

16π2

[
− 1

ε2
+

1

εη
+
π2

12
+

1

ε
ln
m2
W

µ2
+

1

ε
ln

( −p2ν

m2
Wn+p

)
− 1

η
ln
m2
W

µ2

− 1

2
ln2 m

2
W

µ2
− ln

m2
W

µ2
ln

( −p2ν

m2
Wn+p

)]
+O(η, ε) . (B.22)

The rapidity regulator is only needed in the soft contribution and not in the hard-collinear

one. In the hard-collinear region we can drop the gauge boson mass at leading power, and

the integral evaluates to

Ic-hc(p
2) =

i (n+p)
−1

16π2

[
1

ε2
+

1

ε
ln

(
− µ2

p2

)
+

1

2
ln2

(
− µ2

p2

)
− π2

12

]
+O(ε) . (B.23)

By adding up the two contributions (B.22) and (B.23) we reproduce (B.19). After dressing

the collinear-soft scalar integral (B.21) with the proper tree-level factors to obtain the

soft contribution to the jet function Wilson line diagram, and after taking its imaginary

part, we find that the virtual (single-particle cut) piece evaluates to a scaleless integral

while the real emission (two-particle cut) piece is non-vanishing. It can be shown by

direct comparison that this last term equals the soft emission diagram in (C.15) after the

convolution with the tree-level jet function has been done. This shows that in the small

mass limit, m2
W � p2, the soft region of the jet function integral is correctly reproduced

by the soft function in the factorization formula for intermediate resolution and should

not be assigned to a mass-dependent collinear function. The hard-collinear region only

contributes the mass-independent unobserved-jet function.

The photon jet function also requires rapidity regularization. In this case only virtual

diagrams contribute. As an example, we compute the rapidity and dimensionally regulated

on-shell anti-collinear scalar integral

Ic̄(0) =

∫
[dk]

νη

[k2 −m2
W + iε][k2 + 2p · k −m2

W + iε][n−k + iε]|n−k|η
, (B.24)

which can be obtained from (B.5) by setting p2 = 0 and replacing n+k → n−k. We

parametrize the integration measure by

ddk =
1

2
dn−k dn+k d

d−2k⊥ , (B.25)

and rewrite the integrand as

νη

n−k[n+k − k2T+m2
W−iε

n−k
](n−k + 2mχ)[n+k − k2T+m2

W−iε
n−k+2mχ

][n−k + iε]|n−k|η
. (B.26)
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W+

W−

γ/Z

W+

W−

γ/Z

W+

W−

γ/Z γ/Z

Figure 10. Wilson line and self-energy type Feynman diagrams contributing to the narrow reso-

lution jet function.

We perform the n+k integral first by closing the contour in the upper half plane and pick

the pole (k2
T +m2

W − iε)/n−k for −2mχ < n−k < 0. The integral vanishes for n−k outside

this range. After performing the n−k and k⊥ integrals, we obtain the final result

Ic̄(0) =
i

32π2mχ

(
µ

mW

)2ε( ν

2mχ

)η eγEε Γ(ε)

η
. (B.27)

B.2 Unobserved-jet function for the narrow resolution case

Here we supply the lengthy expressions for the narrow resolution jet function that were not

given in [7]. The jet function of the unobserved final state in the narrow resolution regime

Eγres ∼ m2
W /mχ is defined as

(−g⊥µν)JBC(p2) ≡
∫
d4x eip·x〈0|AB⊥µ(x)AC⊥ ν(0)|0〉 . (B.28)

This is equivalent to computing the total discontinuity

JBC(p2) =
1

π
Im
[
iJ BC(p2)

]
(B.29)

of the gauge boson two-point function

(−g⊥µν)J BC(p2) ≡
∫
d4x eip·x〈0|T

{
AB⊥µ(x)AC⊥ ν(0)

}
|0〉 , (B.30)

whereAB⊥µ is the collinear gauge-invariant collinear building block of SCET. While formally

the definition appears the same as (2.53) for the intermediate resolution, in the present case

p2 ∼ m2
W rather than p2 � m2

W . The implication of this difference for the computation of

the collinear integrals have been discussed in the previous subsection.

Since we are considering the χ0χ0 , χ+χ− initial states and since we require a single

photon in the anti-collinear final state, electric charge conservation implies that we only

need to calculate the 33 component of JBC . To the one loop-order, we can write J33(p2) as

J33(p2, µ, ν) = ŝ2
W (µ)δ(p2) + ĉ2

W (µ)δ(p2 −m2
Z) + J33

Wilson(p2, µ, ν) + J33
se (p2, µ) . (B.31)

where we split the result into Wilson line and a self-energy type contributions as shown in

the first and second line of figure 10, respectively . Only the Wilson line diagrams require
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rapidity regularization. After subtracting both dimensional and rapidity regularization

poles their sum is given by

J33
Wilson(p2, µ, ν) = − ŝ2

W (µ)ĝ2
2(µ)

16π2

{
δ(p2)

[
− 16 ln

mW

µ
ln

2mχ

ν
+ 8 ln

mW

µ

]

+
1

p2
θ(p2 − 4m2

W )

[
4β + 8 ln

1− β
1 + β

]}

− ĉ2
W (µ)ĝ2

2(µ)

16π2

{
δ(p2 −m2

Z)

[
− 16 ln

mW

µ
ln

2mχ

ν
+ 8 ln

mW

µ
− 8

+ 4π2 + 4πβ̄Z − (16π + 8β̄Z) arctan(β̄Z) + 16 arctan2(β̄Z)

]

+
1

p2 −m2
Z

θ(p2 − 4m2
W )

[
4β + 8 ln

1− β
1 + β

]}
, (B.32)

where

β =

√
1− 4m2

W

p2
, β̄Z =

√
4m2

W

m2
Z

− 1 . (B.33)

The self-energy contribution J33
se (p2, µ) is expressed in terms of standard one-loop gauge-

boson self-energies which can be found in [41] in the Feynman gauge. We take the fermions

to be massless except for the top quark. Hence we further separate the massless fermion

contribution from the massive contributions,

J33
se (p2, µ) = J33

se, f 6=t only(p2, µ) + J33
se, f 6=t excluded(p2, µ) , (B.34)

where the second term includes the W+W−, ZH and tt̄ loops. For the massless fermion

contribution we obtain

J33
se, f 6=t only(p2, µ) =

ŝ2
W (µ)ĝ2

2(µ)

16π2

{
ŝ2
W (µ)

80

9

[
− δ(p2)

5

3
+

[
1

p2

][µ2]

∗

]

+ 2

(
10

3
− 80

9
ŝ2
W (µ)

)
×
[[

1

p2 −m2
Z

]

∗
− δ(p2 −m2

Z)

(
5

3
− ln

m2
Z

µ2

)]

+

(
− 20

3
+

7

2

1

ŝ2
W (µ)

+
80

9
ŝ2
W (µ)

)

×
[[

1

(p2 −m2
Z)2

]

∗∗
p2 −

(
2

3
− ln

m2
Z

µ2

)
δ(p2 −m2

Z)

]}
. (B.35)

The star distributions are defined as

∫ p2max

0
dp2


 lnn p2

µ2

p2




[µ2]

∗

f(p2)

=

∫ p2max

0
dp2 f(p2)− f(0)

p2
lnn

p2

µ2
+

f(0)

n+ 1
lnn+1 p

2
max

µ2
, (B.36)
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∫ p2max

0
dp2

[
1

p2 −m2
Z

]

∗
f(p2)

=

∫ p2max

0
dp2 f(p2)− f(m2

Z)

p2 −m2
Z

+ f(m2
Z) ln

(
p2

max −m2
Z

m2
Z

)
, (B.37)

∫ p2max

0
dp2

[
1

(p2 −m2
Z)2

]

∗∗
f(p2)

=

∫ p2max

0
dp2

[
f(p2)− f(m2

Z)− (p2 −m2
Z)f ′(m2

Z)
]

(p2 −m2
Z)2

− f(m2
Z)

(
1

m2
Z

+
1

p2
max −m2

Z

)
+ f ′(m2

Z) ln

(
p2

max −m2
Z

m2
Z

)
, (B.38)

where f(p2) is a test function and p2
max > m2

Z in the last two equations. For p2
max < m2

Z the

introduction of star distributions for the Z-boson propagators is not necessary. The above

expressions diverge as p2
max → m2

Z , see appendix B.3 for the treatment of the Z resonance.

The massive piece instead reads

J33
se, f 6=t excluded(p2, µ)

= 2ŝW (µ)ĉW (µ)

[Re
[
ΣγZ
T (0)

]
t,W

m2
Z

δ(p2)−
Re
[
ΣγZ
T (m2

Z)
]
t,W

m2
Z

δ(p2 −m2
Z)

]

− ŝ2
W (µ)Re

∂Σγγ
T (p2)t,W
∂p2

∣∣∣∣
p2=0

δ(p2)− ĉ2
W (µ)Re

∂ΣZZ
T (p2)t,W,Z,H

∂p2

∣∣∣∣
p2=m2

Z

δ(p2 −m2
Z)

+ 2ŝW (µ)ĉW (µ)

[
− 1

m2
Z

1

p2

Im
[
ΣγZ
T (p2)

]
t,W

π
+

1

m2
Z

1

p2 −m2
Z

Im
[
ΣγZ
T (p2)

]
t,W

π

]

+ ŝ2
W (µ)

1
(
p2
)2

Im
[
Σγγ
T (p2)

]
t,W

π
+ ĉ2

W (µ)
1

(
p2 −m2

Z

)2
Im
[
ΣZZ
T (p2)

]
t,W,Z,H

π
. (B.39)

In this case we do not need to introduce star distributions, because the imaginary parts

vanish below the massive thresholds indicated by the subscripts, and hence there are no

singularities at 0 and m2
Z .

For convenience we collect below the explicit expressions for the gauge-boson self ener-

gies and their derivatives in the Feynman gauge. Their transverse parts are taken from [41].

The derivatives have been computed in a straightforward way.

Σγγ
T (p2) = − ĝ2

2 ŝ
2
W

16π2

{
2

3

∑

f,i

Nf
C2Q2

f

[
− (p2 + 2m2

f,i)B0(p2,mf,i,mf,i)

+ 2m2
f,iB0(0,mf,i,mf,i) +

1

3
p2

]

+

{[
3p2 + 4m2

W

]
B0(p2,mW ,mW )− 4m2

WB0(0,mW ,mW )

}}
,

(B.40)
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∂ Σγγ
T (p2)

∂p2

∣∣∣∣
p2→0

= − ĝ2
2 ŝ

2
W

16π2

{
2

3

∑

f,i

Nf
C2Q2

f

[
−B0(p2,mf,i,mf,i)

− (p2 + 2m2
f,i)

∂ B0(p2,mf,i,mf,i)

∂p2
+

1

3

]

+

{
3B0(p2,mW ,mW ) + (3p2 + 4m2

W )
∂ B0(p2,mW ,mW )

∂p2

}}∣∣∣∣
p2→0

,

(B.41)

ΣγZ
T (p2) = − ĝ2

2 ŝ
2
W

16π2

{
2

3

∑

f,i

Nf
C(−Qf )

(
ĝ+
f + ĝ−f

)[
− (p2 + 2m2

f,i)B0(p2,mf,i,mf,i)

+ 2m2
f,iB0(0,mf,i,mf,i) +

1

3
p2

]

+
1

3ŝW ĉW

{[(
9ĉ2
W +

1

2

)
p2 + (12ĉ2

W + 4)m2
W

]
B0(p2,mW ,mW )

− (12ĉ2
W − 2)m2

WB0(0,mW ,mW ) +
1

3
p2

}}
, (B.42)

ΣZZ
T (p2) = − ĝ2

2 ŝ
2
W

16π2

{
2

3

∑

f,i

Nf
C

{(
(ĝ+
f )2 + (ĝ−f )2

)[
−(p2 + 2m2

f,i)B0(p2,mf,i,mf,i)

+ 2m2
f,iB0(0,mf,i,mf,i) +

1

3
p2

]
+

3

4ŝ2
W ĉ

2
W

m2
f,iB0(p2,mf,i,mf,i)

}

+
1

6ŝ2
W ĉ

2
W

{[(
18ĉ4

W + 2ĉ2
W −

1

2

)
p2

+ (24ĉ4
W + 16ĉ2

W − 10)m2
W

]
B0(p2,mW ,mW )

− (24ĉ4
W − 8ĉ2

W + 2)m2
WB0(0,mW ,mW ) + (4ĉ2

W − 1)
1

3
p2

}

+
1

12ŝ2
W ĉ

2
W

{(
2m2

H − 10m2
Z − p2

)
B0(p2,mZ ,mH)

− 2m2
ZB0(0,mZ ,mZ)− 2m2

HB0(0,mH ,mH)

− (m2
Z −m2

H)2

p2

(
B0(p2,mZ ,mH)−B0(0,mZ ,mH)

)
− 2

3
p2

}}
,

(B.43)

∂ ΣZZ
T (p2)

∂p2

∣∣∣∣
p2=m2

Z

= − ĝ2
2 ŝ

2
W

16π2

{
2

3

∑

f,i

Nf
C

{(
(ĝ+
f )2 + (ĝ−f )2

)[
−B0(p2,mf,i,mf,i)

− (m2
Z + 2m2

f,i)
∂B0(p2,mf,i,mf,i)

∂p2
+

1

3

]

+
3

4ŝ2
W ĉ

2
W

m2
f,i

∂B0(p2,mf,i,mf,i)

∂p2

}
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+
1

6ŝ2
W ĉ

2
W

{(
18ĉ4

W + 2ĉ2
W −

1

2

)
B0(p2,mW ,mW )

+

[(
18ĉ4

W + 2ĉ2
W −

1

2

)
m2
Z + (24ĉ4

W + 16ĉ2
W − 10)m2

W

]

× ∂B0(p2,mW ,mW )

∂p2
+ (4ĉ2

W − 1)
1

3

}

+
1

12ŝ2
W ĉ

2
W

{
−B0(p2,mZ ,mH) +

(
2m2

H − 11m2
Z

)∂B0(p2,mZ ,mH)

∂p2

+
(p2 −m2

H)2

m4
Z

(
B0(p2,mZ ,mH)−B0(0,mZ ,mH)

)

− (m2
Z −m2

H)2

m2
Z

(
∂B0(p2,mZ ,mH)

∂p2

)
− 2

3

}}∣∣∣∣∣
p2=m2

Z

. (B.44)

Here mf,i is the mass of a fermion, where i indicates the generation index and f refers to

the fermions within a generation. Nf
C is the number of fermion colors, Nf

C = 1 in the case

of leptons and Nf
C = 3 in the case of quarks. The electroweak couplings are written in

terms of the charge and the third SU(2) generator

ĝ+
f =

ŝW
ĉW

Qf , ĝ−f =
ŝ2
WQf − I3

W,f

ŝW ĉW
. (B.45)

We also provide the explicit expressions for the B0 and ∂B0/∂p
2 functions that are required

for the jet function computation. In the expressions (B.40) to (B.44) the poles in the

expressions below are subtracted. In the following p2 > 0, since the imaginary parts are

made explicit:

B0(0,m,m) =
1

ε
− 2 ln

m

µ
, (B.46)

B0(0, 0,m) =
1

ε
+ 1− 2 ln

m

µ
, (B.47)

B0(0,m1,m2) =
1

ε
+ 1 +

m2
1 +m2

2

m2
1 −m2

2

ln
m2

m1
+ ln

µ2

m1m2
, (B.48)

B0(p2, 0, 0) =
1

ε
+ 2 + ln

µ2

p2
+ iπ , (B.49)

∂B0(p2, 0, 0)

∂p2
= − 1

p2
, (B.50)

B0(p2,m,m) =

{
θ(4m2 − p2)

[
1

ε
+ 2− 2 ln

m

µ
− 2β̄ arctan

1

β̄

]

+ θ(p2 − 4m2)

[
1

ε
+ 2− 2 ln

m

µ
+ β ln(x) + iβπ

]}
, (B.51)

∂B0(p2,m,m)

∂p2
=

{
θ(4m2 − p2)

1

p2

[
1 + β̄2

β̄
arctan

1

β̄
− 1

]

+ θ(p2 − 4m2)

[
− 1

p2
+

2m2
W

p4β
(ln(x) + iπ)

]}
, (B.52)
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∂B0(p2,m,m)

∂p2

∣∣∣∣
p2=0

=
1

6m2
, (B.53)

B0(p2, 0,m) =

[
1

ε
+ 2− 2 ln

m

µ
−
(

1− m2

p2

)[
θ(m2 − p2) ln

(
1− p2

m2

)

+ θ(m2 − p2)

(
ln

(
p2

m2
− 1

)
− iπ

)]]
, (B.54)

B0(p2,M,m) =

[
1

ε
+ 2− M2 −m2

p2
ln
M

m
+ ln

µ2

mM

+

√
|κ(p2,m2,M2)|

p2
F (p2,M,m)

]
, (B.55)

∂B0(p2,mH ,mZ)

∂p2

∣∣∣∣
p2=m2

Z

=

[
− 1

m2
Z

− m2
H −m2

Z

m4
Z

ln

(
mZ

mH

)

−
(m2

H − 3m2
Z) arctan

[√
4m2

Z

m2
H
− 1

]

m4
Z

√
4m2

Z

m2
H
− 1

]
, (B.56)

where for M > m

F (p2,M,m) =





ln

√
(M+m)2−p2+

√
(M−m)2−p2√

(M+m)2−p2−
√

(M−m)2−p2
p2 < (m−M)2

−2 arctan
√

p2−(M−m)2

(M+m)2−p2 (M −m)2 < p2 < (m+M)2

ln

√
p2−(M−m)2−

√
p2−(M+m)2√

p2−(M−m)2+
√
p2−(M+m)2

+ iπ p2 > (m+M)2

and

κ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (B.57)

is the Kállen function. β, x were defined in (B.14) and β̄ in (B.18).

B.3 Treatment of the Z resonance

The ‘nrw’ jet function (B.31) requires the introduction of the star and “double-star” distri-

butions to deal with the singular Z-boson propagators when p2
max > m2

Z . The distributions

can be integrated against smooth test functions. However, as is evident from the defini-

tions (B.37), (B.38), as the integration limit p2
max approaches the singular value m2

Z , the

integrals diverge, which was already pointed out in [7] (see for instance figure 3 there).

The singularity arises from the Z-boson resonance in the narrow width jet function,16

and can be cured by the standard Dyson resummation. Inspection of the expressions in

the previous subsection shows that the divergent terms in the integral
∫ p2max

0 dp2 J33(p2)

16The issue is absent for the hard-collinear intermediate resolution jet function. In this case, the gauge

boson masses can be neglected and the Z-boson resonance does not appear in the regime of validity,

p2 = O(mχmW ).
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arise from the light-fermion self-energy diagrams as these give rise to the star distributions

in the one-loop result (B.31). Reordering this expression as

J33(p2, µ, ν) = ŝ2
W (µ)δ(p2) + J33

Wilson(p2, µ, ν)

+ ĉ2
W (µ)δ(p2 −m2

Z) + J33
se (p2, µ) , (B.58)

we therefore focus on the last two terms.

It is not necessary to perform the full Dyson resummation, resumming the Z-boson

propagator insertions is enough. We obtain (dropping the argument µ from the coupling

and the jet function)

ĉ2
W δ(p

2 −m2
Z) + J33,Dyson

se (p2)

=
ŝ2
W ĝ

2
2

16π2
ŝ2
W

80

9

[
− δ(p2)

5

3
+

[
1

p2

][µ2]

∗

]

+ ŝ2
W

1

π

Im
[
Σγγ
T (p2)t,W

]

(p2)2
− ŝ2

WRe

[
∂Σγγ

T (p2)t,W
∂p2

]

p2=0

δ(p2)

+
1

π
Im

[
2ŝW ĉW

ΣγZ
T (p2)

−p2

1

−p2 +m2
Z + Re

[
ΣZZ
T (m2

Z)
]
− ΣZZ

T (p2)

]

+
1

π
Im

[
ĉ2
W

1

−p2 +m2
Z + Re

[
ΣZZ
T (m2

Z)
]
− ΣZZ

T (p2)

]
. (B.59)

Note that (B.59) also includes the tree-level Z-boson contribution to the jet function

through the last line. The terms Re
[
ΣZZ
T (m2

Z)
]

in the denominator ensure that the real

part of the renormalized Z-boson self-energy vanishes at p2 = m2
Z as is required in the

adopted on-shell scheme for the Z mass. The imaginary parts of the square brackets

in (B.59) can be further simplified by noting that the Dyson resummation is necessary

only when p2 ≈ m2
Z . We then obtain

ĉ2
W δ(p

2 −m2
Z) + J33,Dyson

se (p2)

=
ŝ2
W ĝ

2
2

16π2
ŝ2
W

80

9

[
− δ(p2)

5

3
+

[
1

p2

][µ2]

∗

]

+ ŝ2
W

1

π

Im
[
Σγγ
T (p2)t,W

]

(p2)2
− ŝ2

WRe

[
∂Σγγ

T (p2)t,W
∂p2

]

p2=0

δ(p2)

+ 2ŝW ĉW

[
Re
[
ΣγZ
T (0)t,W

]

m2
Z

δ(p2)−
Re
[
ΣγZ
T (m2

Z)t,W

]

m2
Z

δ(p2 −m2
Z)

− 1

π

Im
[
ΣγZ
T (p2)t,W

]

m2
Z

1

p2
+

1

π

Im
[
ΣγZ
T (p2)t,W

]

m2
Z

1

p2 −m2
Z

]

+
ŝ2
W ĝ

2
2

16π2
2

(
10

3
− 80

9
ŝ2
W

)[
p2 −m2

Z

(p2 −m2
Z)2 +m2

ZΓ2
Z

− δ(p2 −m2
Z)

(
5

3
− ln

m2
Z

µ2

)]
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+ ĉ2
W

1

π

Im
[
ΣZZ
T (p2)t,W,Z,H

]

(p2 −m2
Z)2

− ĉ2
WRe

[
∂ΣZZ

T (p2)t,W,Z,H
∂p2

]

p2=m2
Z

δ(p2 −m2
Z)

+
ĉ2
WΓZ
πmZ

[
−
(

2

3
− ln

m2
Z

µ2

)
δ(p2 −m2

Z) +
p2

(p2 −m2
Z)2 + (p2)2Γ2

Z/m
2
Z

]
,

(B.60)

where

ΓZ =
Im
[
ΣZZ
T (m2

Z)|f 6=tonly

]

mZ
=

ĝ2
2mZ

16πĉ2
W

[
−20

3
ŝ2
W +

7

2
+

80

9
ŝ4
W

]
(B.61)

denotes the tree-level decay width of the Z boson into the light fermions of the SM (all,

except the top quark, masses set to zero). In deriving (B.60), we used the identities

Re
[
ΣZZ
T (p2)− ΣZZ

T (m2
Z)
]
δ′(p2 −m2

Z) = Re

[
∂ΣZZ

T (m2
Z)

∂p2

]
(p2 −m2

Z) δ′(p2 −m2
Z) , (B.62)

Re

[
∂ΣZZ

T,f 6=t(p
2)

∂p2

]

p2=m2
Z

=
ΓZ
πmZ

(
2

3
− ln

m2
Z

µ2

)
(B.63)

and xδ′(x) = −δ(x), valid for non-singular test functions at p2 = m2
Z .

The Dyson-resummed expression (B.60) can be obtained from the fixed-order expres-

sions (B.31), (B.35) and (B.39) by employing the substitution rules
[

1

p2 −m2
Z

]

∗
→ p2 −m2

Z

(p2 −m2
Z)2 +m2

ZΓ2
Z

, (B.64)

δ(p2 −m2
Z) +

ΓZ
πmZ

[
1

(p2 −m2
Z)2

]

∗∗
p2 → 1

π

p2 ΓZ/mZ

(p2 −m2
Z)2 + (p2)2Γ2

Z/m
2
Z

. (B.65)

C Soft function

In this appendix we discuss the one-loop computation of the soft function. We start by

discussing the scalar integrals for the virtual and real parts of the soft function. The final

result is given by linear combinations of these integrals. We also illustrate how the rapidity

divergences change between the two factorization theorems presented in the main text.

Furthermore we give the inverse Laplace transforms of the resummed soft functions Ŵ .

The integrated soft function was defined in (2.57) and the index-contracted version

in (2.58). For the calculation of the integrals and the soft coefficients we find it convenient

to shift the position of the Wilson line to 0 and to perform the integration in n+y. This

leads to

W ij
IJ(ω) =

∑∫

Xs

δ(ω − n−pXs)
〈

0
∣∣∣ T̄[[S†]jJ,V 3(0)]

∣∣∣Xs

〉 〈
Xs

∣∣T[SiI,V 3(0)] |0
〉
. (C.1)

Diagrammatically, the one-loop soft function is shown in figure 11, where a single soft gauge

boson attaches to any two distinct (red) dots on the external legs. In the following, we

categorize the integrals according to which external legs the soft radiation attaches to. If,

for example, the soft gauge boson connects the collinear (nµ−) and the anti-collinear (nµ+)

external leg, we call this the n+n− virtual or real integral, depending on whether the soft

gauge boson passes through the cut.
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n−

Figure 11. Diagrammatic representation of the one-loop soft function.

C.1 Virtual soft integrals

In this section we report the calculation of the relevant scalar integrals for the virtual soft

correction. We define the integration measure (and implicitly µ̃) as

[dk] = µ̃2ε d
dk

(2π)d
=

(
µ2eγE

4π

)ε ddk
(2π)d

, (C.2)

where d = 4− 2ε and γE is the Euler-Mascheroni constant. For the real integrals discussed

later, we also use the phase-space measure in terms of light-cone coordinates

∫
ddk θ(k0)δ(k2 −m2

W ) =
1

2

∫ ∞

0
dn+k

∫ ∞

0
dn−k

∫
dd−2k⊥δ(n+k n−k + k2

⊥ −m2
W )

=
Ωd−2

2

∫ ∞

0
dn+k

∫ ∞

0
dn−k

∫ ∞

0
dkT k

d−3
T δ(n+k n−k − k2

T −m2
W ) ,

(C.3)

where k2
T = −k2

⊥ > 0, and the delta- and theta-functions enforce n+k, n−k ≥ 0.

The n+n− virtual integral. We start by analyzing the virtual n+n− integral

Ivirt.
n+n− = −iĝ2

2δ(ω)(n+ · n−)

∫
[dk]

νη

[k2 −m2
W + iε][n−k + iε][n+k − iε]|2k3|η . (C.4)

It is convenient to proceed by first doing the contour integration in the variable k0. To this

purpose we rewrite the integral as

Ivirt.
n+n− = −2iĝ2

2δ(ω)µ̃2ε

∫
dk0dk3dd−2k⊥

(2π)d
νη

|2k3|η

× 1

[(k0)2 − E2
k + iε][k0 − k3 + iε][k0 + k3 − iε] , (C.5)

where E2
k = (k3)2 + k2

T + m2
W . If k3 > 0 one finds four poles in the k0 complex plane

situated at ±(Ek − iε), k3 − iε and −k3 + iε. Two of these poles are in the upper half

plane and the other two are in the lower half plane. We close the integration contour in

the lower half plane (notice that by doing this we pick up a factor −2πi). For k3 < 0 we

find again two poles in the upper half plane and two poles in the lower half plane. The
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poles in k3 − iε and −k3 + iε moved from the positive to the negative k0 domain and vice

versa, respectively. We obtain

Ivirt.
n+n− = 2iĝ2

2δ(ω)µ̃2ε

∫
dd−2k⊥
(2π)d

{∫ ∞

0
dk3 νη

(2k3)η
2πi

k2
T +m2

W

[
1

2Ek
− 1

2k3 − iε

]

+

∫ 0

−∞
dk3 νη

(−2k3)η
2πi

k2
T +m2

W

[
1

2Ek
− 1

2k3 − iε

]}
. (C.6)

By summing the first terms in the two square brackets of (C.6) (which give the same

contribution as can be easily seen by making the variable transformation k3 → −k3 in the

second line) and after performing the k3 and k⊥ integrations one obtains for this part

− ĝ2
2

4π2
δ(ω)

(
µ

mW

)2ε

eγEε
(

ν

mW

)η Γ
(

1
2 −

η
2

)
Γ
(
ε+ η

2

)

2η π
1
2 η

. (C.7)

A pure imaginary part comes from the sum of the remaining terms in the upper and lower

line of (C.6). The k3 integral of these two terms is

∫
dk3 (−2πi)νη

[2k3 − iε]|2k3|η =

∫ ∞

0
dk3 (−2πi)νη

(2k3)η

[
1

2k3 − iε +
1

−2k3 − iε

]

= (−iπ)νηπ csc(πη)
(
(−iε)−η − (iε)−η

)

= (2π2)νη csc(πη) ε−η sin(η π/2)

= π2 +O(η) , (C.8)

where the result is independent of the small imaginary part iε at O(η0). After performing

the k⊥ integration and summing the two contributions we obtain the final result

Ivirt.
n+n− = − ĝ2

2δ(ω)

4π2

(
µ

mW

)2ε( ν

mW

)η
eγEε

[
Γ
(

1
2 −

η
2

)
Γ
(
ε+ η

2

)

2η π
1
2 η

− Γ
(
ε+ η

2

)

Γ
(
1 + η

2

)
(
i π

2
+O(η)

)]

= − α̂2

2π
δ(ω)

[
− 1

ε2
+

2

εη
− iπ

ε
+

2

ε
ln
mW

µ
− 2

ε
ln
mW

ν
− 4

η
ln
mW

µ

+
π2

12
+ 2πi ln

mW

µ
− 2 ln2 mW

µ
+ 4 ln

mW

µ
ln
mW

ν

]
. (C.9)

The vn+ and vn− virtual integrals. The second virtual integral we analyze is the

scalar integral which appears in initial-final state soft W exchange. The integrals for the

Wilson line combinations vn+ and vn− give the same result because the virtual part of the

soft function is symmetric under the exchange n+ ↔ n−. We discuss the integral

Ivirt.
vn+

= −iĝ2
2δ(ω)(v · n+)

∫
[dk]

νη

[k2 −m2
W + iε][n+k − iε][v · k − iε]|2k3|η . (C.10)

We proceed in a very similar way to the integral Ivirt.
n+n− above and first do the contour

integration in k0. The integral has four poles in the k0 complex plane and only one

(Ek− iε) is situated in the lower half plane. It is therefore easier to close the contour in the
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lower half plane both for k3 > 0 and k3 < 0. By summing the positive and the negative k3

regions and by integrating over k⊥ we obtain

Ivirt
vn+

= − ĝ2
2

8π2
δ(ω)

(
µ

mW

)2ε( ν

mW

)η
eγEε

Γ
(

1
2 −

η
2

)
Γ
(
ε+ η

2

)

2η π
1
2 η

= − α̂2

4π
δ(ω)

[
− 1

ε2
+

2

εη
+

2

ε
ln
mW

µ
− 2

ε
ln
mW

ν
− 4

η
ln
mW

µ

+
π2

12
+ 4 ln

mW

µ
ln
mW

ν
− 2 ln2 mW

µ

]
. (C.11)

The vv virtual integral. Another virtual integral originates from the connection of the

two heavy DM Wilson lines. It is defined as

Ivirt.
vv = −iĝ2

2δ(ω)(v · v)

∫
[dk]

1

[k2 −m2
W + iε][k0 + iε][k0 − iε] . (C.12)

We perform the integration in k0 noting that the pinched poles at k0 = ±iε must not

be picked up. These poles correspond to the potential region and are already taken into

account in the one-loop contribution to the Sommerfeld effect. The integration in k is then

straightforward. The result is

Ivirt.
vv = − α̂2

2π
δ(ω)

[
1

ε
+ ln

µ2

m2
W

]
. (C.13)

In [6] the integrals Ivirt.
n+n− , I

virt.
n+v , I

virt.
n−v were already computed. We find agreement except

for the integral Ivirt.
n+n− where we find an additional term which results in the imaginary parts

of (C.9).

C.2 Real soft integrals

The real emission contribution is extracted by applying the Cutkosky rules to the cut

propagators in the previous integrals

1

k2 −m2
W + iε

→ −2πi δ(k2 −m2
W ) θ(k0) . (C.14)

We still have to keep the rapidity regulator to regulate the limit ω → 0, therefore we

introduce star distributions [30], see (B.36) for the definition.

The n+n− real integral. We start with the n+n− real emission contribution

Ireal
n+n− = (n+ · n−) ĝ2

2

∫
[dk]

(
−2πδ

(
k2 −m2

W

)
θ(k0)

)

(n+k)(n−k)
δ(ω − n−k)

νη

|2k3|η . (C.15)

We first perform the integration in n−k using δ(ω − n−k), which leaves

Ireal
n+n− = − α̂2e

γEε

2π2−ε µ
2ενη

∫
dn+kd

d−2kT
δ(ωn+k − k2

T −m2
W )θ(ω + n+k)

ωn+k |n+k − ω|η
. (C.16)
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In performing the n+k integral next, the step function can be dropped as it only ensures

n+k > −ω, but ω ≥ 0. Since k2
T +m2

W > 0, the delta-function contributes only for positive

n+k, i.e. the step function does not pose a further restriction. Hence,

Ireal
n+n− = − α̂2e

γEε

πΓ(1− ε) µ
2εωη−1νη

∫ ∞

0
dkT

k1−2ε
T

k2
T +m2

W

1∣∣k2
T +m2

W − ω2
∣∣η . (C.17)

We pulled a factor of ωη into the absolute value, as ω ≥ 0. The absolute value inside the

integral forces us to consider two cases. Either mW > ω, in which case the absolute value

can be dropped, as kT ,mW > 0. Or ω > mW , then we split the integrand into an integral

from 0 to
√
ω2 −m2

W with a factor of (−1)η from the absolute value, and a second integral

from
√
ω2 −m2

W to ∞, where the absolute value can be dropped. To make the structure

more transparent, we perform the substitution k′T = kT /mW and define ω′ = ω/mW , which

turns the previous integral into the integral

Ireal
n+n− = − α̂2

π

(
µ2eγE

m2
W

)ε(
νω

m2
W

)η 1

ωΓ(1− ε)

∫ ∞

0
dk′T

k′1−2ε
T(

k′2T + 1
) ∣∣k′2T + 1− ω′2

∣∣η . (C.18)

over dimensionless quantities.

We start with the first case ω′ < 1. The absolute value can be dropped and the

integration results in

Ireal
n+n− = − α̂2

2π

(
µ2eγE

m2
W

)ε(
νω

m2
W

)η 1

ωΓ(1− ε)

{(
ω′
)−2η

Γ(ε+ η)Γ(1− ε− η)

+
(
1− ω′2

)1−ε−η Γ(1− ε)Γ(ε+ η − 1)

Γ(η)
2F1

(
1, 1− ε, 2− ε− η, 1− ω′2

)}
(C.19)

with 2F1 the hypergeometric function. This is the exact result to all orders in ε, η. The

dimensionless terms inside the curly brackets are finite in the limits ω, η → 0. Therefore

the only terms involving η-poles may come from ωη−1m−ηW = δ(ω)
η +

[
1
ω

][mW ]

∗ +O(η) in front

of the bracket. The δ(ω) term in this identity requires to expand the expression in the curly

brackets up to order η1, but allows to set ω′ = 0 in the function arguments. Therefore we

can simplify the hypergeometric 2F1 function in this case. For the term involving the star

distribution, we only keep the η0 term in the bracket, which is ω independent. Therefore

to order O (η, ε), the result can be written as

Ireal
n+n− = − α̂2

2π

(
µ2eγE

m2
W

)ε(
ν ω

m2
W

)η Γ(ε+ η)

ωΓ(1 + η)
+O(η, ε)

= − α̂2

2π

[
δ(ω)

(
− 1

ε2
+

1

ε η
+

1

η
ln

µ2

m2
W

+
1

ε

(
− ln

µ2

m2
W

+ ln
ν

mW

)

+
π2

12
− 1

2
ln2 µ2

m2
W

+
1

2
ln

µ2

m2
W

ln
ν2

m2
W

)
+

[
1

ω

][mW ]

∗

(
1

ε
+ ln

µ2

m2
W

)]
. (C.20)

For the above integral we assumed ω′ < 1. For the second case ω′ > 1, we show that

the integral can be written in the same form as above. To do so we go back to the integral
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in k′T
∫ ∞

0
dk′T

k′1−2ε
T(

k′2T + 1
) ∣∣k′2T + 1− ω′2

∣∣η =

∫ √ω′2−1

0
dk′T

k′1−2ε
T(

k′2T + 1
) (
k′2T + 1− ω′2

)η

+

∫ ∞
√
ω′2−1

dk′T
k′1−2ε
T(

k′2T + 1
) (
−k′2T − 1 + ω′2

)η . (C.21)

The individual terms yield
∫ √ω′2−1

0
dk′T

k′1−2ε
T(

k′2T + 1
) (
k′2T + 1− ω′2

)η

=

(
ω′2 − 1

)1−ε−η

2

Γ(1− ε)Γ(1− η)

Γ(2− ε− η)
2F1(1, 1− ε, 2− ε− η, 1− ω′ 2) ,

∫ ∞
√
ω′2−1

dk′T
k′1−2ε
T(

k′2T + 1
) (
−k′2T − 1 + ω′2

)η

=

(
ω′2 − 1

)−ε (
1− ω′2

)−η

2

Γ(1− η)Γ(ε+ η)

Γ(1 + ε)
2F1

(
1, ε+ η, 1 + ε,

1

1− ω′2
)
. (C.22)

The rest of the discussion is analogous to the case ω′ < 1. To order O(η, ε) we find the

same result as in that case.

The vn+ real integral. The vn+ real emission integral is

Ireal
vn+

= (v · n+)ĝ2
2

∫
[dk]

(
−2πδ(k2 −m2

W )θ(k0)
)

(v · k)(n+k)
δ(ω − n−k)

νη

|2k3|η . (C.23)

We perform the integration in n+k, n−k using the two delta-functions as for the n+n− case,

and obtain

Ireal
vn+

= − α̂2

π

µ2εeεγE

Γ(1− ε)ν
ηωη+1

∫ ∞

0
dkT

k1−2ε
T

k2
T +m2

W

1

ω2 + k2
T +m2

W

1∣∣ω2 − k2
T −m2

W

∣∣η . (C.24)

Other than for the n+n− integral, the prefactor is now ωη+1, which is finite in the limit

η, ω → 0, regardless of how the limit is taken. Hence, at this point we can set η to 0. The

expression is then a standard integral, that is easily solved. The result reads

Ireal
vn+

= − α̂2e
εγE

2πω
µ2εΓ(ε)

(
m−2ε
W − (m2

W + ω2)−ε
)

+O(η)

= − α̂2

2π

1

ω
ln

(
m2
W + ω2

m2
W

)
+O(η, ε) , (C.25)

and is finite. To compare with the other terms, we may also replace 1
ω →

[
1
ω

]
?
, as the

integral is non-singular as ω → 0 and hence the star-distribution is equivalent to ω−1.

The vn− real integral. This integral is related to the n+n− and vn+ integrals. The

identity

(n+ · n−)

(n+k)(n−k)
− (v · n+)

(v · k)(n+k)
=

(v · n−)

(n−k)(v · k)
, (C.26)

ensures that the integral obeys the relation

Ireal
vn− = Ireal

n+n− − Ireal
vn+

. (C.27)
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The vv real integral. The calculation of the vv integral follows the logic of the vn+

integral. We start with the expression

Ireal
vv = (v · v) ĝ2

2

∫
[dk]

1

(v · k)2
(−2πδ(k2 −m2

W )θ(k0))δ(ω − n−k)
νη

|2k3|η . (C.28)

The two delta-functions are used for the n+k, n−k integrations. This results in

the expression

Ireal
vv = −2α̂2

π

µ2εeεγEνη

Γ(1− ε) ω
η+1

∫ ∞

0
dkT

k1−2ε
T(

ω2 + k2
T +m2

W

)2
1∣∣ω2 − k2
T −m2

W

∣∣η . (C.29)

For the same reasons as for the vn+ integral, we can expand the integrand in η and drop

the O(η) terms. Hence

Ireal
vv = −2α̂2

π

µ2εeεγE

Γ(1− ε) ω
∫ ∞

0
dkT

k1−2ε
T(

ω2 + k2
T +m2

W

)2 +O(η)

= − α̂2

π
εΓ(ε)µ2εeεγEω

(
1

m2
W + ω2

)1+ε

+O(η)

= − α̂2

π

ω

m2
W + ω2

+O(η, ε) . (C.30)

The same result is obtained if we keep the full η-dependence and expand the hypergeometric

functions that arise for the full integrals.

All the real integrals except Ireal
vv were also computed in [6], and we confirm these

results.

C.3 Cut two-loop diagrams

The integrals now allow us to determine the total discontinuity of a given two-loop diagram,

after summing over all cuts. The sum of all cuts is

∑

cuts

= Disc(iM) = −2 ImM . (C.31)

In figure 12, we show the four possible cuts of the n+n−-diagram. For the other

diagram types, we apply the same procedure. The total discontinuity for the n+n−-type-

diagrams is17

Disc(iMn+n−) = 2 Re
(
Ireal
n+n− − Ivirt.

n+n−

)

=
α̂2

π

[
δ(ω)

(
1

εη
− 2

η
ln
mW

µ
− 1

ε
ln
mW

ν
+ 2 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−1

ε
+ 2 ln

mW

µ

)]
. (C.32)

17Note that the choice of scalar integrals in the previous sections implies a relative plus/minus sign

between the real and virtual contributions in some of the cut diagrams.
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Figure 12. The four possible cuts through the n+n−-two-loop diagram.

In the n+n−-diagrams the real contribution cancels half of the virtual η rapidity divergence.

There is more than one vn− two-loop diagram. We discuss only one of them, as the

others differ only via relative overall signs and prefactors:

Disc(iMvn−) = Ivirt.
vn− − Ireal

vn−

=
α̂2

4π

[
δ(ω)

(
− 1

ε2
+

2

ε
ln
mW

µ
+
π2

12
− 2 ln2 mW

µ

)

+

[
1

ω

][mW ]

∗

(
2

ε
− 2 ln

(
m2
W + ω2

m2
W

)
− 2 ln

m2
W

µ2

)]
(C.33)

For these diagrams the rapidity divergence is completely cancelled. Following the same

logic, the vn+-diagrams give

Disc(iMvn+) = Ivirt.
vn+

+ Ireal
vn+

= − α̂2

4π

[
δ(ω)

(
− 1

ε2
+

2

εη
− 4

η
ln
mW

µ
+

2

ε
ln
mW

µ
− 2

ε
ln
mW

ν

+
π2

12
− 2 ln2 mW

µ
+ 4 ln

mW

µ
ln
mW

ν

)
+

[
1

ω

][mW ]

∗
2 ln

(
m2
W + ω2

m2
W

)]
.

(C.34)

The η-divergence for this two-loop diagram is the same as for the virtual integrals only, as

the corresponding real integral is η finite.

We observe that the left-over rapidity divergences among the two-loop diagrams are

such that

∑

virt.

|η−div. +
∑

real

|η−div. =
1

2

∑

virt.

|η−div. . (C.35)

In the narrow resolution case Eγres ∼ m2
W /mχ, the rapidity divergence in the sum of all

virtual soft diagrams cancels the rapidity divergence of the photon jet function and the
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narrow resolution unobserved-jet function. The fact that the intermediate resolution case

allows for real soft radiation implies that it has only half the η-divergence in the soft

sector compared to the narrow resolution case. This matches precisely to the fact that

the jet function for the unobserved final state at intermediate resolution and hard-collinear

virtuality O(mχmW ) does not have rapidity divergences anymore.

C.4 Soft functions in momentum space

In this appendix we give the individual components of the index-contracted soft function

as defined in (2.58) and (C.1). For the operator combination ij = 11 we find

W 11
(00)(00)(ω, µ, ν) = W 11

(00)(+−)(ω, µ, ν) = W 11
(+−)(00)(ω, µ, ν) = W 11

(+−)(+−)(ω, µ, ν)

= δ(ω) +
α̂2

4π

[
δ(ω)(−16) ln

mW

µ
ln
mW

ν
+

[
1

ω

][mW ]

∗
(−16) ln

mW

µ

]
.

(C.36)

The operator combinations ij = {12, 21} are given by

W 12
(00)(00)(ω, µ, ν) = W 21∗

(00)(00)(ω, µ, ν)

=
α̂2

4π

[
δ(ω) (8 + 8πi) ln

mW

µ
+

[
1

ω

][mW ]

∗
8 ln

(
m2
W + ω2

m2
W

)]
,

W 12
(00)(+−)(ω, µ, ν) = W 21∗

(+−)(00)(ω, µ, ν)

= δ(ω) +
α̂2

4π

[
δ(ω)

(
(4 + 4πi) ln

µ

mW
− 16 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−4 ln

(
m2
W + ω2

m2
W

)
+ 8 ln

µ2

m2
W

)]
,

W 12
(+−)(00)(ω, µ, ν) = W 21∗

(00)(+−)(ω, µ, ν) = W 12
(00)(00)(ω, µ, ν) ,

W 12
(+−)(+−)(ω, µ, ν) = W 21∗

(+−)(+−)(ω, µ, ν)

= W 12
(00)(+−)(ω, µ, ν) +

α̂2

4π

[
1

ω

][mW ]

∗
(−2) ln

(
m2
W + ω2

m2
W

)
. (C.37)

Finally, the operator combination ij = 22 is

W 22
(00)(00)(ω, µ, ν) =

α̂2

4π

[
1

ω

][mW ]

∗
8 ln

(
m2
W + ω2

m2
W

)
,

W 22
(00)(+−)(ω, µ, ν) =W 22∗

(+−),(00)(ω, µ, ν)

=
α̂2

4π

[
δ(ω) (8− 8πi) ln

mW

µ
+

[
1

ω

][mW ]

∗
4 ln

(
m2
W + ω2

m2
W

)]
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W 22
(+−)(+−)(ω, µ, ν) = δ(ω) +

α̂2

4π

[
δ(ω)

(
−8 ln

mW

µ
− 16 ln

mW

µ
ln
mW

ν

)

+

[
1

ω

][mW ]

∗

(
−6 ln

(
m2
W + ω2

m2
W

)
+ 8 ln

µ2

m2
W

)]
. (C.38)

C.5 Expressions for the resummed soft coefficients Ŵ ij
IJ

We collect here the inverse Laplace-transformed soft coefficients Ŵ as discussed in sec-

tion 3.4 and defined in (3.54). We also make use of the inverse Laplace transform F (ω)

which was defined in (3.56). For the operator combination ij = 11, the Ŵ coefficients are

given by

Ŵ 11
(00)(00)(ω, µs, ν) = Ŵ 11

(00)(+−)(ω, µs, ν) = Ŵ 11
(+−)(00)(ω, µs, ν) = Ŵ 11

(+−)(+−)(ω, µs, ν)

=

(
1 +

α̂2

4π
(−16) ln

mW

µs
∂η

)
e−γEη

Γ(η)

1

ω

(ω
ν

)η
. (C.39)

We note that here η is defined as in (3.36) and should not be confused with the rapidity

regulator. For the operator combination ij = 12, the results read

Ŵ 12
(00)(00)(ω, µs, ν) = Ŵ 12

(+−)(00)(ω, µs, ν)

=
α̂2

4π

[
(8 + 8πi) ln

mW

µs

]
e−γEη

Γ(η)

1

ω

(ω
ν

)η
+
α̂2

4π
[8F (ω)] ,

Ŵ 12
(00)(+−)(ω, µs, ν) =

[
1 +

α̂2

4π

((
−16 ln

mW

µs
∂η

)
− (4 + 4πi) ln

mW

µs

)]
e−γEη

Γ(η)

1

ω

(ω
ν

)η

+
α̂2

4π
[−4F (ω)] ,

Ŵ 12
(+−)(+−)(ω, µs, ν) = Ŵ 12

(00)(+−)(ω, µs, ν) +
α̂2

4π
[−2F (ω)] , (C.40)

and for ij = 21,

Ŵ 21
(00)(00)(ω, µs, ν) = Ŵ 12∗

(00)(00)(ω, µs, ν)

Ŵ 21
(00)(+−)(ω, µs, ν) = Ŵ 12∗

(+−)(00)(ω, µs, ν)

Ŵ 21
(+−)(00)(ω, µs, ν) = Ŵ 12∗

(00)(+−)(ω, µs, ν)

Ŵ 21
(+−)(+−)(ω, µs, ν) = Ŵ 12∗

(+−)(+−)(ω, µs, ν) . (C.41)

Finally, for the operator combination ij = 22, we have the inverse Laplace-transformed

soft coefficients

Ŵ 22
(00)(00)(ω, µs, ν) =

α̂2

4π
[8F (ω)] ,

Ŵ 22
(00)(+−)(ω, µs, ν) = Ŵ 22∗

(+−)(00)(ω, µs, ν)

=

[
α̂2

4π
(8− 8πi) ln

mW

µs

]
e−γEη

Γ(η)

1

ω

(ω
ν

)η
+
α̂2

4π
[4F (ω)] ,
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Ŵ 22
(+−)(+−)(ω, µs, ν) =

[
1 +

α̂2

4π

((
−16 ln

mW

µs
∂η

)
− 8 ln

mW

µs

)]
e−γEη

Γ(η)

1

ω

(ω
ν

)η

+
α̂2

4π
[−6F (ω)] . (C.42)

D RG and RRG invariance for the narrow resolution

In this appendix, we provide the RG and RRG equations of the unobserved-jet function

and the soft coefficients Di (i = 1, 2)18 of the narrow resolution case [7]. Together with

the results for Zγ from section 3.2, we can then show the RG and RRG invariance in the

narrow resolution case. For the soft coefficients, the RG and RRG equations read

d

d lnµ
Di (µ, ν) = γµD,ijD

j (µ, ν) , (D.1)

d

d ln ν
Di (µ, ν) = γνDD

i (µ, ν) , (D.2)

where the one-loop anomalous dimensions are given by

γ
ν (0)
D = 16 ln

mW

µ
12 , (D.3)

γ
µ (0)
D =




16 ln
µ

ν
+ 8πi 0

c2(j)(−4 + 4πi) 16 ln
µ

ν
+ (12− 4πi)


 . (D.4)

For the unobserved-jet function, whose explicit results are collected in appendix B.2,

the RG and RRG equations are given by

d

d ln ν
J33

(
p2, µ, ν

)
= γνJrecJ

33
(
p2, µ, ν

)
, (D.5)

d

d lnµ
J33

(
p2, µ, ν

)
= γµJrecJ

33
(
p2, µ, ν

)
, (D.6)

and the one-loop anomalous dimensions read

γ
ν (0)
Jrec

= 16 ln
µ

mW
, (D.7)

γ
µ (0)
Jrec

= 16 ln
ν

2mχ
+

19

3
. (D.8)

Analogous to the discussion in section 3.5 for the intermediate resolution case, the inde-

pendence of (2.38) and (2.40) on the scales µ, ν implies consistency relations among the

anomalous dimensions:

γνZγ12 + γνJrec12 + γνD + γν∗D = 0 , (D.9)

Γ + Γ∗ + γµD + γµ∗D + γµZγ12 + γµJrec12 = 0 . (D.10)

Using the expressions for the anomalous dimensions from the RG and RRG equations for

the hard function (3.4), the photon jet function (3.10), (3.16), the unobserved-jet func-

tion (D.7), (D.8) and the soft coefficients of the narrow resolution case (D.3), (D.4), we

can explicitly check that these consistency constraints are satisfied.

18The following does not depend on the indices I, 33 of Di
I,33, which are therefore dropped to simplifiy

the notation.
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E Complete NNLO expansions

In section 5 we showed the coefficients c
(n,2n)
(+−)(+−), c

(n,2n−1)
(+−)(+−) and c

(n,2n−2)
(+−)(+−) defined in (5.3)

for n ≤ 2. In this appendix, we list the remaining coefficients relevant to the understanding

of the logarithmic structure of NLL’ resummation at NNLO, that is, c
(n,m)
IJ with 0 ≤ n ≤ 2

and 0 ≤ m ≤ 2n and I, J ∈ {(00), (+−)}.
Additionally, this appendix provides more details on the computation of the resummed

cross section, as well as the fixed-order expansions. We introduce the following abbrevia-

tions (partially already given in section 5 but repeated here for completeness):

L ≡ ln
4m2

χ

m2
W

, lµh ≡ ln
µ2
h

4m2
χ

, lµj ≡ ln
µ2
j

2mχmW
, lµs ≡ ln

µ2
s

m2
W

, (E.1)

lµ ≡ ln
µ2

m2
W

, lνh ≡ ln
ν2
h

4m2
χ

, lνs ≡ ln
ν2
s

m2
W

, lR ≡ lnxγ , (E.2)

λR = λR(xγ) ≡ −1

2
Li2(−x2

γ) , (E.3)

ϕR = ϕR(xγ) ≡
∫ xγ

0

dy

y
[λR(xγ − y)− λR(xγ)] , (E.4)

ϑR = ϑR(xγ) ≡
∫ xγ

0
dy

ln(y)

y
[λR(xγ − y)− λR(xγ)] , (E.5)

where

xγ ≡
2Eγres

mW
. (E.6)

E.1 Narrow resolution coefficients

E.1.1 I, J = (00), (00)

The fixed-order annihilation cross section starts at the two-loop order, and the two-loop

coefficient exhibits at most two logarithms. Hence c
nrw(n,m)
(00)(00) = 0 for n ≤ 2, except for

c
nrw(2,2)
(00)(00) = 1 + π2

c
nrw(2,1)
(00)(00) = 4− π2

2

c
nrw(2,0)
(00)(00) = 4− π2 +

π4

16
. (E.7)

E.1.2 I, J = (+−), (00)

The fixed-order annihilation cross section starts at the one-loop order. Hence c
nrw(0,0)
(+−)(00) = 0,

and

c
nrw(1,2)
(+−)(00) = 0

c
nrw(1,1)
(+−)(00) = −1− iπ

c
nrw(1,0)
(+−)(00) = −2 +

π2

4
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c
nrw(2,4)
(+−)(00) = 0

c
nrw(2,3)
(+−)(00) = 1 + iπ

c
nrw(2,2)
(+−)(00) =

55

48
− 53iπ

48

c
nrw(2,1)
(+−)(00) =

[(
11

12
+

11iπ

12

)
ŝ2
W −

19

12
− 19iπ

12

]
lµ +

55

12
+

55iπ

18
− 55π2

96
− 11iπ3

24

−
(

1

4
+
iπ

4

)
(zγ + j(Eγres))

c
nrw(2,0)
(+−)(00) =

(
1

2
+
iπ

2

)
l3µh +

(
−31

48
+

5iπ

48
+

3π2

8

)
l2µh +

(
31

12
+

19iπ

18
− 13π2

32
− 7iπ3

24

)
lµh

+

(
1

2
+
iπ

2

)
l3µs +

[
(−1− iπ)lνs +

π2

4
+

43iπ

48
+

55

48

]
l2µs

+

(
35iπ

18
− π2

12
− iπ3

4

)
lµs +

[(
11

6
− 11π2

48

)
ŝ2
W +

19π2

48
− 19

6

]
lµ

+
7π4

96
− 4π2

3
+ 6 +

(
π2

16
− 1

2

)
(zγ + j(Eγres)) . (E.8)

The coefficients for the index combination I, J = (00), (+−) are obtained by taking the

complex conjugate of the coefficients given in this section, i.e. c
(n,m)
(00)(+−) = (c

(n,m)
(+−)(00))

∗.

E.1.3 I, J = (+−), (+−)

c
nrw(0,0)
(+−)(+−) = ŝ2

W + ĉ2
WΘ

(
Eγres −

m2
Z

4mχ

)

c
nrw(1,2)
(+−)(+−) = −1

c
nrw(1,1)
(+−)(+−) = 1

c
nrw(1,0)
(+−)(+−) =

(
19

24
− 11

12
ŝ2
W

)
lµ − 6 +

3π2

4
+

1

4
(zγ + j(Eγres))

c
nrw(2,4)
(+−)(+−) =

1

2

c
nrw(2,3)
(+−)(+−) = −53

72

c
nrw(2,2)
(+−)(+−) =

(
−19

12
+

11ŝ2
W

12

)
lµ −

13π2

12
+

671

144
− 1

4
(zγ + j(Eγres))

c
nrw(2,1)
(+−)(+−) =

19

24
l2µs +

(
35

9
− π2

3

)
lµs +

(
19

12
− 11

12
ŝ2
W

)
lµ

+
3

4
− 65π2

288
−
β1,SU(2)

8
+

1

4
(zγ + j(Eγres))

c
nrw(2,0)
(+−)(+−) = −1

4
l4µh −

17

72
l3µh +

(
25π2

24
− 203

144

)
l2µh +

(
−
β1,SU(2)

8
− 149π2

288
+

15

4

)
lµh

− 1

4
l4µs +

(
lνs −

55

72

)
l3µs + l2µs

[
− l2νh +

(
11ŝ2

W

12
− 19

24

)
lνh − l2νs + lνs
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− 121ŝ4
W

144
+ π2 − 2141

576

]
+ lµs

[(
−j(E

γ
res)

4
− zγ

4

)
lνh −

π2

6
lνs

+
31π2

144
+

(
1

16
− ŝ2

W

16

)
β1,SU(2) −

ŝ4
W

16ĉ2
W

β1,Y

+

(
11ŝ2

W

48
− 19

96

)
zγ −

19j(Eγres)

48

]
+ l2µ

(
121ŝ4

W

144
− 209ŝ2

W

288
+

361

576

)

+ lµ

[(
11

2
− 11π2

16

)
ŝ2
W +

19π2

16
− 19

2
+

(
ŝ2
W

16
+

1

16

)
β1,SU(2) +

ŝ4
W

16ĉ2
W

β1,Y

+

(
19

48
− 11ŝ2

W

48

)
(zγ + j(Eγres))

]
+

(
−3

2
+

3π2

16
+
zγ
16

)
j(Eγres)

+ 9− 7π2

4
+

37π4

576
+

(
−3

2
+

3π2

16

)
zγ (E.9)

E.2 Intermediate resolution coefficients

E.2.1 I, J = (00), (00)

c
int(0,0)
(00)(00) = 0

c
int(1,2)
(00)(00) = c

int(1,1)
(00)(00) = 0

c
int(1,0)
(00)(00) = 2λR

c
int(2,4)
(00)(00) = c

int(2,3)
(00)(00) = 0

c
int(2,2)
(00)(00) = 1 + π2 − 3λR

2

c
int(2,1)
(00)(00) = 2λRlR + 4− π2

2
+

29

24
λR + 2ϕR

c
int(2,0)
(00)(00) =

(
−1− π2

)
l2µs + lµs

(
2λRlνs − 4λRlR −

43λR
12
− 4ϕR

)

+ lµλR

(
19

6
− 11

6
ŝ2
W

)
+ 2λRl

2
R + lR

(
−19λR

12
+ 4ϕR

)

+ 4− π2 +
π4

16
+
λRzγ

2
+

(
−73

9
+

5π2

6

)
λR −

19ϕR
12

+ 4ϑR (E.10)

E.2.2 I, J = (+−), (00)

c
int(0,0)
(+−)(00) = 0

c
int(1,2)
(+−)(00) = 0

c
int(1,1)
(+−)(00) = −1− iπ

c
int(1,0)
(+−)(00) = −2 +

π2

4
+ λR

c
int(2,4)
(+−)(00) = 0
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c
int(2,3)
(+−)(00) =

3

4
+

3iπ

4

c
int(2,2)
(+−)(00) = (−1− iπ) lR +

25

24
− 17iπ

24
+
π2

16
− 3

4
λR

c
int(2,1)
(+−)(00) = lµ

[
−19

12
− 19iπ

12
+

(
11

12
+

11iπ

12

)
ŝ2
W

]
− (1 + iπ) l2R

+

(
−29

24
+

19iπ

24
+
π2

4
+ λR

)
lR +

247

72
+

10iπ

9
− 65π2

192
− iπ3

8

−
(

1

4
+
iπ

4

)
zγ +

(
77

48
+ 3iπ

)
λR + ϕR

c
int(2,0)
(+−)(00) =

(
1

2
+
iπ

2

)
l3µh +

(
−31

48
+

5iπ

48
+

3π2

8

)
l2µh +

(
31

12
+

19iπ

18
− 13π2

32
− 7iπ3

24

)
lµh

+

[
− (1 + iπ) lνs + (2 + 2iπ) lR +

79

48
+

91iπ

48
− π2

4

]
l2µs

+

[
lνsλR − 2lRλR +

35iπ

18
− iπ3

6
+

(
−67

24
− 3iπ

)
λR − 2ϕR

]
lµs

+

[
−19

6
+

19π2

48
+

(
11

6
− 11π2

48

)
ŝ2
W +

(
19

12
− 11

12
ŝ2
W

)
λR

]
lµ

+

(
−2 +

π2

4
+ λR

)
l2R +

(
19

12
− 19π2

96
− 19

24
λR + 2ϕR

)
lR

+
19

9
− 13π2

72
− π4

96
+

(
−1

2
+
π2

16

)
zγ +

zγλR
4

+

(
−37

18
+
π2

6

)
λR −

19

24
ϕR + 2ϑR (E.11)

The coefficients for the index combination I, J = (00), (+−) are obtained by taking the

complex conjugate of the coefficients given in this section, i.e. c
(n,m)
(00)(+−) = (c

(n,m)
(+−)(00))

∗.

E.2.3 I, J = (+−), (+−)

c
int(0,0)
(+−)(+−) = 1

c
int(1,2)
(+−)(+−) = −3

4

c
int(1,1)
(+−)(+−) = lR +

29

48

c
int(1,0)
(+−)(+−) =

(
19

24
− 11

12
ŝ2
W

)
lµ + l2R −

19

24
lR −

73

18
+

5π2

12
+
zγ
4
− 3

2
λR

c
int(2,4)
(+−)(+−) =

9

32

c
int(2,3)
(+−)(+−) = −3

4
lR −

2

9

c
int(2,2)
(+−)(+−) =

(
−19

16
+

11

16
ŝ2
W

)
lµ −

1

4
l2R + lR +

4489

2304
− 37π2

48
− 3

16
zγ +

9

8
λR

c
int(2,1)
(+−)(+−) =

19

48
l2µs +

[(
19

12
− 11

12
ŝ2
W

)
lR +

551

576
− 319

576
ŝ2
W

]
lµ + l3R −

7

12
l2R
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+

(
−437

192
− π2

12
+

1

4
zγ −

3

2
λR

)
lR +

1525

432
−
β1,SU(2)

8
− 227π2

576

+ 2ζ(3) +
29

192
zγ −

29

32
λR −

3

2
ϕR

c
int(2,0)
(+−)(+−) = −1

4
l4µh −

17

72
l3µh +

(
−203

144
+

25π2

24

)
l2µh +

(
15

4
− 149π2

288
−
β1,SU(2)

8

)
lµh

− 1

2
l4µj +

(
2lR −

19

18

)
l3µj +

(
−3l2R +

19

6
lR −

289

64
+ π2

)
l2µj

+ lµj

[
2l3R −

19

6
l2R +

(
289

32
− 2π2

)
lR −

665

216
+

19π2

18
+ 4ζ(3)

]

+ l2µs

[
− 1

2
l2νh +

11

12
ŝ2
W lνh −

1

2
l2νs + (2lR + 1) lνs − 2l2R −

67

24
lR −

67

48

+
5π2

6
− 121

144
ŝ4
W

]
+ lµs

[(
−35

18
+
π2

6
− 1

4
zγ

)
lνh +

(
35

18
− π2

6
− 3

2
λR

)
lνs

+

(
−35

9
+
π2

3
+ 3λR

)
lR −

1

16

ŝ4
W

ĉ2
W

β1,Y +
1

16
(1− ŝ2

W )β1,SU(2)

+

(
−19

96
+

11

48
ŝ2
W

)
zγ +

43

16
λR + 3ϕR

]

+ l2µ

(
361

576
− 209

288
ŝ2
W +

121

144
ŝ4
W

)
+ lµ

[(
19

12
− 11

12
ŝ2
W

)
l2R

+

(
−361

288
+

209

288
ŝ2
W

)
lR −

1387

216
+

1

16
β1,SU(2) +

95π2

144

+

(
803

216
+

1

16
β1,SU(2) −

55π2

144

)
ŝ2
W +

1

16

ŝ4
W

ĉ2
W

β1,Y +

(
19

48
− 11

48
ŝ2
W

)
zγ

+

(
−19

8
+

11

8
ŝ2
W

)
λR

]
+ l2R

(
−6 +

11π2

12
+

1

4
zγ −

3

2
λR

)

+ lR

(
+

19

4
− 209π2

288
− 19

96
zγ +

19

16
λR − 3ϕR

)
− 8

3
+

439π2

216
− 143π4

576

+

(
−73

72
+

5π2

48

)
zγ −

3

8
zγλR +

(
73

12
− 5π2

8

)
λR +

19

16
ϕR − 3ϑR (E.12)

E.3 Further input

In obtaining the coefficients just listed, we made use of a series of expressions and properties

which we summarize below.

E.3.1 Running couplings at two loops

At one-loop the running of the SU(2) coupling α̂2 is determined from β1−loop
SU(2) (α̂2) =

−β0,SU(2)
α̂2
2

2π while the running of the Weinberg angle sin2 θW (µ) ≡ ŝ2
W (µ) follows from

its definition in terms of the SU(2) and U(1) hypercharge gauge couplings,

ŝ2
W (µ) =

α̂1(µ)

α̂1(µ) + α̂2(µ)
. (E.13)
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At two loops, contributions from other SM couplings affect the running of the EW gauge

couplings. However, we can neglect the µ-dependence of the other couplings in such terms

in the beta-functions, as for example, in α̂2(µ)α3(µ), since it would be relevant only at the

NNNLO. Equivalently, to NNLO we can let the couplings run as

α̂2(µ) = α̂2(µ0) +
α̂2

2(µ0)

4π
β0,SU(2) ln

µ2
0

µ2
+
α̂3

2(µ0)

16π2

(
β1,SU(2) ln

µ2
0

µ2
+ β2

0,SU(2) ln2 µ
2
0

µ2

)
+ . . . ,

(E.14)

where, in the SM,

β0,SU(2) =
19

6
, β1,SU(2) = −35

6
− 3

2

ŝ2
W

ĉ2
W

− 12
α̂3

α̂2
+

3

2

y2
t

4πα̂2
, (E.15)

β0,Y = −41

6
, β1,Y = −199

18
− 9

2

ĉ2
W

ŝ2
W

− 44

3

α̂3

α̂1
+

17

6

y2
t

4πα̂1
. (E.16)

The coupling constant ratios in β1,SU(2) and β1,Y are treated as constants for the expansion

to the two-loop order. The two-loop running of ŝ2
W is given by

ŝ2
W (µ) = ŝ2

W (µ0) +
α̂2(µ0)ŝ2

W (µ0)

4π

[
− β0,SU(2) + (β0,SU(2) + β0,Y )ŝ2

W (µ0)
]

ln
µ2

0

µ2

+
α̂2

2(µ0)ŝ2
W (µ0)

16π2

[
1

ĉ2
W (µ0)

(
ŝ4
W (µ0)β1,Y − ĉ4

W (µ0)β1,SU(2)

)
ln
µ2

0

µ2

+ (β0,SU(2) + β0,Y )ŝ2
W

(
ŝ2
W (µ0)β0,Y − ĉ2

W (µ0)β0,SU(2)

)
ln2 µ

2
0

µ2

]
+ . . . (E.17)

E.3.2 Identities for the star distributions

The identities that are given here are useful for the fixed-order expansions of the resummed

cross sections. They also need to be applied when checking the pole and scale cancellations

of the individual cross sections:
[

1

x

][a]

∗
=

[
1

x

][b]

∗
− log

a

b
δ(x) , (E.18)

[
ln x

a

x

][a]

∗
=

[
ln x

b

x

][b]

∗
+ ln

b

a

[
1

x

][
√
bc]

∗
+

1

2
ln
b

a
ln
c

a
δ(x) . (E.19)

E.3.3 Convolutions

The convolutions provided in this section are used for both the implementation of the

resummed annihilation cross sections to compute numerical results, as well as for the

fixed-order expansion. Defining

f(ω)⊗ g(p2) ≡
∫ p2

2mχ

0
dω f(ω) g(p2 − 2mχω)

∣∣
p2=4mχE

γ
res
, (E.20)

we have
∫ Eγres

0
dEγ δ(ω)⊗ δ(p2) =

1

4mχ
, (E.21)

∫ Eγres

0
dEγ

[
1

ω
ln

(
1 +

ω2

m2
W

)
⊗ δ(p2)

]
=

1

4mχ
λR(xγ) , (E.22)
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∫ Eγres

0
dEγ

[
1

ω

][νs]

∗
⊗ δ(p2) =

1

4mχ
ln

(
mW

νs
xγ

)
, (E.23)

∫ Eγres

0
dEγ

[
ln ω

νs

ω

][νs]

∗
⊗ δ(p2) =

1

8mχ
ln2

(
mW

νs
xγ

)
, (E.24)

∫ Eγres

0
dEγ δ(ω)⊗

[
1

p2

][µ2j ]

∗
=

1

4mχ
ln

(
2mχmW

µ2
j

xγ

)
, (E.25)

∫ Eγres

0
dEγ

{
1

ω
ln

(
1 +

ω2

m2
W

)
⊗
[

1

p2

][µ2j ]

∗

}

=
1

4mχ

[
λR(xγ) ln

(
2mχmW

µ2
j

xγ

)
+ ϕR(xγ)

]
, (E.26)

∫ Eγres

0
dEγ

[
1

ω

][νs]

∗
⊗
[

1

p2

][µ2j ]

∗
=

1

4mχ

[
ln

(
mW

νs
xγ

)
ln

(
2mχmW

µ2
j

xγ

)
− π2

6

]
, (E.27)

∫ Eγres

0
dEγ δ(ω)⊗




ln p2

µ2j

p2




[µ2j ]

∗

=
1

8mχ
ln2

(
2mχmW

µ2
j

xγ

)
, (E.28)

∫ Eγres

0
dEγ





1

ω
ln

(
1 +

ω2

m2
W

)
⊗




ln p2

µ2j

p2




[µ2j ]

∗





=
1

4mχ

[
1

2
λR(xγ) ln2

(
2mχmW

µ2
j

xγ

)
+ ϕR(xγ) ln

2mχmW

µ2
j

+ ϑR(xγ)

]
, (E.29)

∫ Eγres

0
dEγ

[
1

ω

][νs]

∗
⊗




ln p2

µ2j

p2




[µ2j ]

∗

=
1

4mχ

[
1

2
ln

(
mW

νs
xγ

)
ln2

(
2mχmW

µ2
j

xγ

)
− π2

6
ln

(
2mχmW

µ2
j

xγ

)
+ ζ(3)

]
,

(E.30)

∫ Eγres

0
dEγ δ(ω)⊗




ln2 p2

µ2j

p2




[µ2j ]

∗

=
1

12mχ
ln3

(
2mχmW

µ2
j

xγ

)
. (E.31)
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