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1 Introduction and summary

Recently, a very interesting non-relativistic string sigma model on stringy Newton Cartan

geometry was proposed in [1].1 This is ultraviolet finite theory which provides a quanti-

zation of stringy Newton-Cartan geometry in the same way as relativistic string theory

provides quantum description of General Relativity. This model is generalization of the

non-relativistic string theories that were proposed in [4, 5]. These theories are invari-

ant under string Galilean global symmetry and their characteristic (and crucial) property

is an existence of two additional world-sheet fields beyond those parameterizing target

space coordinates. The non-relativistic string sigma model proposed in [1] couples non-

relativistic string to background fields which are vielbein fields, Kalb-Ramond two form

field and dilaton.

Another very interesting result that was found in [1] is related to the T-duality of

non-relativistic string sigma model on an arbitrary string Newton-Cartan background.

Due to the foliation of stringy Newton-Cartan structure there are two distinct T-duality

transformations-transverse and longitudinal. These T-duality transformations were ana-

lyzed in the context of Lagrangian formalism with interesting results derived. It was shown

that in the case of T-duality along longitudinal spatial direction we find world-sheet theory

that corresponds to relativistic string propagating on Riemannian manifold with a com-

pact lightlike isometry. This is a very intriguing result with possible important application

for definition of discrete light cone quantization (DLCQ) of string theory. More precisely,

DLCQ is defined as a quantization of theory compactified on light-like circle. In practise

this is performed with the subtle limit of compactification on space-like circle [8–10]. Then

we can hope that the result derived in [1] could be useful for an alternative definition of

DLCQ of string theory on arbitrary Lorentzian background with lightlike isometry.

1For alternative approach to non-relativistic string in Newton-Cartan background see two recent inter-

esting papers [2, 3].
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This fact is a very promising since it opens a new intriguing direction in the study of

M-theory and its DLCQ description [6–8]. For that reason we mean that T-duality in the

context of non-relativistic string theory on stringy Newton-Cartan background deserves

further study. This is the goal of this paper when we would like to give a canonical

description of T-duality of non-relativistic string. In fact, it is well known that in case of

relativistic string, T-duality can be also interpreted as canonical transformation [11, 12]. In

this paper we show that the same is true in case of non-relativistic string theory on stringy

Newton-Cartan background. In order to do it we have to use the Hamiltonian form of the

model [1] that it was found in [13]. With the help of this Hamiltonian we define T-duality

as a canonical transformation. We focus on two physically different T-dualities: T-duality

in longitudinal spatial direction and T-duality in transverse direction which have the same

description in the canonical formalism. Performing these T-duality transformations we find

T-dual Hamiltonian. Then in order to find explicit form of the transformed background field

we derive corresponding Lagrangian and we find agreement with [1] in case of longitudinal

spatial and transverse T-duality transformations. Explicitly, we find that T-duality along

longitudinal spatial direction leads to T-dual relativistic string on the background with

isometry in light-like direction while in case of T-duality in transverse direction we obtain

again non-relativistic string in T-dual background. We mean that this is a very nice result

that again shows how canonical treatment of T-duality transformation can be powerful.

We also discuss canonical description of another T-duality transformations that were

analysed in [1]. The first one is longitudinal light like T-duality and we show that non-

relativistic string is mapped into non-relativistic string with light-like isometry. However

the precise matching between canonical and Lagrangian description of this transformation

is achieved when we perform redefinition of the Lagrange multipliers that are presented in

the action for non-relativistic string [1]. Similar situation was previously observed in [1] in

case of the longitudinal spatial T-duality where relativistic string with light-like isometry is

mapped under T-duality to different non-relativistic strings that are related by redefinition

of Lagrange multipliers. Finally we discuss transverse T-duality transformation where an

isometry is along transverse spatial direction. In this case non-relativistic string is mapped

under T-duality to non-relativistic string with agreement with [1].

The structure of this paper is as follows. In the next section (2) we review basic

facts about stringy Newton-Cartan background and string sigma model together with its

canonical formulation. In section (3) we introduce T-duality as canonical transformation,

following [11, 12] and perform T-duality transformation along longitudinal spatial direction

and determine background fields. In section (4) we perform T-duality along longitudinal

light-like isometry and we analyze its properties. Finally in section (5) we perform canonical

analysis of transverse T-duality.

2 Review of stringy Newton-Cartan geometry

Let us define string Newton-Cartan geometry following [1]. Let M is D + 1 dimensional

manifold and let Tp is tangent space at point p. We decompose Tp into longitudinal direc-

tions indexed by A = 0, 1 and transverse directions with A′ = 2, . . . , d−1. Two dimensional
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foliation ofM is defined by generalized clock function τ A
µ that is also known as longitudinal

vielbein field that satisfies a constraint

Dµτ
A
ν −Dντ

A
µ = 0 , (2.1)

where Dµ is covariant derivative with respect to the longitudinal Lorentz transformations

acting on index A. Let us also introduce transverse vielbein field E A′
µ . We further introduce

projective inverse τµA and EµA′ that obey following relations

E A′
µ EµB′ = δA

′
B′ , τµAτ

B
µ = δBA (2.2)

and also

τ A
µ τνA + E A′

µ EνA′ = δνµ , τµAE
A′
µ = 0 , τ A

µ EµA′ = 0 . (2.3)

From τ A
µ we can construct longitudinal metric τµν = τ A

µ τ B
ν ηAB and transverse metric

Hµν = EµA′EνB′δA
′B′

.

It is clear that in order to define string moving in stringy Newton-Cartan background

we need tensor Hµν . It was shown in [1] that such a tensor has the form

Hµν = E A′
µ E B′

ν δA′B′ + (τ A
µ m B

ν + τ A
ν m B

µ )ηAB . (2.4)

Now we are ready to write an action for non-relativistic string in this background [1]. It

turns out that this action contains world-sheet scalars xµ that parameterize an embedding

string into target space time together with two additional world-sheet fields that we denote

as λ and λ̄. These fields are needed for the realization of string Galilei symmetry on the

world-sheet theory.

Now we will be more explicit. Let σα, σ0 ≡ τ , σ1 ≡ σ parameterize world-sheet

surface Σ. The sigma model is endowed with two dimensional world-sheet metric hαβ and

we introduce two dimensional vielbein e a
α , a = 0, 1 so that

hαβ = e a
α e

b
β ηab . (2.5)

Using light cone coordinates for the flat index a on the world-sheet tangent space we define

eα ≡ e 0
α + e 1

α , ēα ≡ e 0
α − e 1

α . (2.6)

We can also use light-cone coordinates for the flat index A on the space-time tangent space

Tp and define

τµ ≡ τ 0
µ + τ 1

µ , τ̄µ = τ 0
µ − τ 1

µ . (2.7)

Then we are ready to write sigma model for non-relativistic string on an arbitrary string

Newton-Cartan geometry, NSNS two form and dilaton background in the form

S = −T
2

∫
d2σ(
√
−hhαβ∂αxµ∂βxνHµν + εαβ(λeατµ + λ̄ēατ̄µ)∂βx

µ)

−T
2

∫
d2σεαβ∂αx

µ∂βx
νBµν +

1

4π

∫
d2σ
√
−hRΦ , (2.8)

– 3 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
4

where h = dethαβ , h
αβ is inverse to hβα, R is scalar curvature of hαβ and T is string

tension. In what follows we restrict to the case of constant dilaton field so that the last

term on the second line is total derivative and will be ignored. In other words, since we

restrict ourselves to the classical canonical analysis we cannot determine transformation

rules for dilaton under T-duality transformations.

2.1 Hamiltonian for string in stringy Newton-Cartan geometry

In our previous work [13] we performed Hamiltonian analysis of string in stringy Newton

background. We found that the Hamiltonian is sum of two first class constraints Hτ ,Hσ
that have the form

Hτ =
1

T
πµH

µνπν + Tx′µHµνx
′ν − πµHµν(λ+τν + λ−τ̄ν)

+Tx′µ(λ+τµ − λ−τ̄µ) +
T

4
(λ+τµ + λ−τ̄µ)Hµν(λ+τν + λ−τν) ,

Hσ = x′µpµ , πµ = pµ + TBµρx
′ρ , x′µ ≡ ∂σxµ , (2.9)

where the matrix Hµν is inverse to Hµν so that HµνH
νρ = δρµ with following explicit form

Hµν ≡ hµν − τ̂µA(Φ−1)AB τ̂νB , HµνHνρ = δµρ , (2.10)

where we introduced τ̂µA defined as

τ̂µA = τµA − h
µρm B

ρ ηBA . (2.11)

Further, we also defined 2× 2 matrix (Φ−1)AB with following explicit form

(Φ−1)AB =
1

det ΦAB

(
Φ11 −Φ01

−Φ01 Φ00

)
. (2.12)

Clearly (Φ−1)AB is the matrix inverse to the matrix valued Newton potential that is de-

fined as

ΦAB = −τσAm C
σ ηCB − ηACm C

ρ τρB + ηACm
C
ρ hρσm D

σ ηDB . (2.13)

Finally, λ+, λ− are two world-sheet scalar fields which are related to λ, λ̄, for more details

see [13]. Since λ+, λ− are non-dynamical their conjugate momenta are primary constraints

and the requirement of their preservation implies an existence of two secondary constraints

in the form

Gλ+ = πµH
µντν − Tx′µτµ −

T

2
τµH

µν(λ+τν + λ−τ̄ν) ≈ 0 ,

Gλ− = πµH
µν τ̄ν + Tx′µτ̄µ −

T

2
τ̄µH

µν(λ+τν + λ−τ̄ν) ≈ 0 . (2.14)

These constraints are second class constraints together with momenta conjugate to λ+, λ−.

Then it was shown in [13] that these constraints can be solved for λ+ and λ−. Plugging
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these solutions to the original Hamiltonian constraint we obtain Hamiltonian constraint

corresponding to the non-relativistic string action that was proposed in [14].

Finally we should also say few words about redefinition of the Lagrange multiplicators

λ+, λ−. The best way how to perform this analysis is to switch to the Lagrangian formalism

of non-relativistic string action. In fact, with the help of (2.9) we obtain

∂τx
µ =

2N

T
Hµνπν −Hµν(λ+τν + λ−τ̄ν) +Nσ∂σx

µ (2.15)

and hence Lagrangian density has the form

L = pµ∂τx
µ −NHτ −NσHσ

=
NT

4
∇nxµHµν∇nxν +

NT

2
∇nxµ(λ+τµ + λ−τ̄µ)− TN∂σxµHµν∂σx

ν

−TN∂σxµ(λ+τµ − λ−τ̄µ)− TBµν∂τxµ∂σxν ,

∇nxµ =
1

N
(∂τx

µ −Nσ∂σx
µ) , (2.16)

where we used the fact that (2.15) implies

πµ =
T

2
Hµν∇nxν +

T

2
(λ+τµ + λ−τ̄µ) . (2.17)

To see that the Lagrangian defines non-relativistic string theory let us solve the equation

of motion for λ+ and λ− respectively

∇nxµτµ − 2∂σx
µτµ = 0 , ∇nxµτ̄µ + 2∂σx

µτ̄µ = 0 . (2.18)

If we multiply the first equation with τ̄µ∂σx
µ and the second one with τν∂σx

ν and sum

them we obtain

∇nxµτµτ̄ν∂σxν +∇nxµτ̄µτν∂σxν = 0 (2.19)

that can be solved for Nσ as

Nσ =
ττσ
τττ

, ταβ = τ A
µ τ B

ν ηAB∂αx
µ∂βx

ν . (2.20)

On the other hand when two equations given in (2.19) multiply together and use (2.20)

we obtain

N =

√
− det τ

2τσσ
. (2.21)

Inserting these results into (2.16) we finally obtain

S = −T
2

√
− det ταβτ

αβHαβ − TBµν∂τxµ∂σxν , (2.22)

where ταβ is matrix inverse to ταβ and Hαβ = Hµν∂αx
µ∂βx

ν . The Lagrangian

density (2.22) is Nambu-Gotto formulation of non-relativistic string theory, see for

example [1, 4].
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Let us now return to the Lagrangian density (2.16) and perform following redefinition

of world-sheet modes λ+, λ−

λ+ = Cλ̃+ +∇nxµY+
µ + 2∂σx

µY+
µ ,

λ− = Cλ̃− +∇nxµY−µ − 2∂σx
µY−µ , (2.23)

where C,Y+
µ ,Y

−
µ are arbitrary functions. Under such a redefinition the Lagrangian den-

sity (2.16) takes equivalent form

L =
NT

4
∇nxµHR

µν∇nxν +
NT

2
∇nxµ(λ̃+τRµ + λ̃−τ̄Rµ )− TN∂σxµHR

µν∂σx
ν

−TN∂σxµ(λ̃+τRµ − λ̃−τ̄Rµ )− TBR
µν∂τx

µ∂σx
ν , (2.24)

where we have following background fields

τRµ = Cτµ , τ̄Rµ = Cτ̄µ ,

HR
µν = Hµν + τµY

+
ν + Y+

µ τν + τ̄µY
−
ν + Y−µ τ̄ν ,

BR
µν = Bµν − τµY+

ν −Y+
µ τν + τ̄µY

−
ν −Y−µ τ̄ν . (2.25)

In the next section we will analyze the question how these Lagrangian densities for non-

relativistic strings which are related by redefinition of the Lagrange multipliers map under

longitudinal spatial T-duality transformations.

3 T-duality in canonical formalism

In this section we present canonical analysis of T-duality for non-relativistic string. Due

to the non-trivial foliation of target space-time we have to distinguish between T-duality

transformations in the longitudinal and transverse directions. However we will see that

these two transformations have the same treatment in the canonical formalism. Let us

start our analysis with longitudinal spatial T-duality transformation.

3.1 Longitudinal spatial T-duality transformation

Following [1] we presume that non-relativistic theory possesses longitudinal spatial Killing

vector kµ that obeys the relation

τ 0
µ k

µ = 0 , τ 1
µ k

µ 6= 0 , E A′
µ kµ = 0 . (3.1)

It is convenient to introduce coordinate system (y, xi) adapted to kµ such that kµ∂µ =

∂y. It is important to stress that xi contains longitudinal coordinate. Then the previous

condition implies

τ 0
y = 0 , τ 1

y 6= 0 , E A′
y = 0 , τy = −τ̄y 6= 0 . (3.2)

Finally, in adapted coordinates all background fields are independent on y. As a result the

theory is invariant under shift

y′ → y + ε , ε = const . (3.3)

– 6 –
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Our goal is to perform canonical transformation from y to ỹ in the same way as in case of

relativistic string [11, 12]. As was shown there the generating function has the form

G(y, ỹ) =
T

2

∫
dσ(∂σyỹ − y∂σỹ) . (3.4)

Let us denote momentum conjugate to ỹ as pỹ. Then from the definition of the canonical

transformations we derive following relation between ỹ and pỹ in the form

pỹ = −δG
δỹ

= −T∂σy ,

py =
δG

δy
= −T∂σỹ . (3.5)

With the help of these relations we obtain dual Hamiltonian when we replace ∂σy with

− 1
T pỹ and py with −T∂σy. Explicitly, using the constraints given in (2.9) we obtain T-

dual constraints in the form

HTτ =
1

T
(ki −Biypỹ)H ij(kj −Bjypỹ) +

2

T
(−T ỹ′ + TBykx

′k)Hyi(ki −Biỹpỹ)

+
1

T
(−T ỹ′ + TByix

′i)Hyy(−T ỹ′ + TByjx
′j) +

1

T
pỹHyypỹ − 2pỹHyjx

′j + Tx′iHijx
′j

−(−T ỹ′ + TByix
′i)Hyy(λ+τy + λ−τ̄y)− (−T ỹ′ + TByix

′i)Hyj(λ+τj + λ−τ̄j)

−(ki −Biypỹ)H ij(λ+τj + λ−τ̄j)− (ki −Biypỹ)H iy(λ+τy + λ−τ̄y)

+Tx′i(λ+τi − λ−τ̄i)− pỹ(λ+τy − λ−τ̄y) +
T

4
(λ+τµ + λ−τ̄µ)Hµν(λ+τν + λ−τ̄ν) ,

HTσ = x′ipi + ỹ′pỹ , (3.6)

where ki = pi + TBij∂σx
j . We see that it is very difficult to find T-dual background fields

from this form of the Hamiltonian which is a consequence of the fact that symmetries are

usually hidden in the canonical formalism. On the other hand symmetric structures and

forms of the background fields naturally emerge in the Lagrangian formalism so that we

should determine Lagrangian density corresponding to T-dual constraints (3.6). To do this

we determine time evolution of xi and ỹ using T-dual Hamiltonian in the form

HT =

∫
dσ(NHTτ +NσHTσ ) , (3.7)

where HTτ ,HTσ are given in (3.6). Explicitly we obtain

∂τx
i =

{
xi, HT

}
=

2N

T
H ij(kj −Bjypỹ) +

2N

T
H iy(−T ỹ′ + TByjx

′j)

−NH ij(λ+τj + λ−τ̄j)−NH iy(λ+τy + λ−τ̄y) +Nσx′i ,

∂τ ỹ =
{
ỹ, HT

}
= −2N

T
BiyH

ij(kj −Bjypỹ)−
2N

T
(−T ỹ′ + TByjx

′j)HyiBiy

+
2N

T
Hyypỹ − 2NHyjx

′j +NBiyH
ij(λ+τj + λ−τ̄j)

+NBiyH
iy(λ+τy + λ−τ̄y)−N(λ+τy − λ−τ̄y) +Nσỹ′ . (3.8)
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From the last equation we can express pỹ as

pỹ =
T

2NHyy
(Ỹ +BjyX

j + 2NHyjx
′j +N(λ+τy − λ−τ̄y)) , (3.9)

where we defined

Xi = ẋi −Nσx′i , Ỹ = ˙̃y −Nσỹ′ . (3.10)

In case of ki the situation is more involved since we have to find metric inverse to H ij . It

turns out that it has the form

hij = Hij −
HiyHyj

Hyy
. (3.11)

For further purposes we write following relation

hijH
jy = −Hiy

Hyy
(3.12)

that follows from the definition of hij . With the help of the inverse metric we find corre-

sponding Lagrangian density

LT = pỹ∂τ ỹ + pi∂τx
i −HT

=
T

4N
(g̃ττ − 2Nσ g̃στ + (Nσ)2g̃σσ)−NTg̃σσ − TB̃µν∂τ x̃µ∂σx̃ν

+
T

2
λ+A+

T

2
λ−B +

NT

Hyy
λ+λ−τyτy , (3.13)

where

g̃αβ = ∂αx̃
µH̃µν∂βx̃

ν , x̃µ = (xi, ỹ) , (3.14)

and where we have T-dual components of metric and NSNS two form

H̃yy =
1

Hyy
, H̃ij = Hij −

HiyHyj

Hyy
+

1

Hyy
BiyBjy ,

H̃yi = H̃iy =
Biy
Hyy

,

B̃ij = Bij +
BiyHyj

Hyy
− HiyByj

Hyy
, B̃ỹi =

Hyi

Hyy
,

B̃iỹ = −Hyi

Hyy
. (3.15)

Note that these transformation components of background fields agree with known

Buscher’s rules [15, 16]. The novelty of non-relativistic Lagrangian is the presence of

terms on the last line in (3.13) where A and B are equal to

A =
1

Hyy

(
ẋiAi + ˙̃yτy −Nσ[x′iAi + ỹ′τy]− 2N [x′iAi + ỹ′τy]

)
,

B =
1

Hyy

(
ẋiBi − ˙̃yτ̄y −Nσ[x′iBi − ỹ′τ̄y] + 2N [x′iBi − ỹ′τ̄y]

)
, (3.16)

– 8 –
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where Aµ and Bµ are equal to

Ai = Hyyτi +Biyτy −Hiyτy , Ay = τy ,

Bi = Hyy τ̄i −Biy τ̄y −Hiy τ̄y , By = −τ̄y . (3.17)

As the last step we will solve the equations of motion for λ+ and λ− that have the form

1

2
A+

N

Hyy
λ−τyτy = 0 ,

1

2
B +

N

Hyy
λ+τyτy = 0 (3.18)

with corresponding solutions

λ− = −Hyy

2N

A

τyτy
, λ+ = −Hyy

2N

B

τyτy
. (3.19)

Inserting back to the Lagrangian density (3.13) we obtain

LT =
T

4N
(g̃ττ − 2Nσ g̃στ + (Nσ)2g̃σσ)−NTg̃σσ − TB̃µν∂τ x̃µ∂σx̃ν −

1

4N
T
Hyy

τyτy
AB ,

(3.20)

where

− Hyy

4Nτyτy
AB = − 1

4NτyτyHyy

[
1

2
∂τ x̃

µ∂τ x̃
ν(AµBν + AνBµ)

−2Nσ∂τ x̃
µ∂σx̃

ν 1

2
(AµBν + AνBµ) + 2N∂τ x̃

µ∂σx̃
ν(AµBν −AνBµ)

+
1

2
(Nσ)2∂σx̃

µ∂σx̃
ν(AµBν + AνBµ)

−4N2∂σx̃
µ∂σx̃

ν 1

2
(AµBν + AνBµ)

]
. (3.21)

Then using explicit form of Aµ,Bµ given in (3.17) we obtain final form of the La-

grangian density

LT =
T

4N
(g′ττ − 2Nσg′στ + (Nσ)2g′σσ)−NTg′σσ − TB′µν∂τ x̃µ∂σx̃ν , (3.22)

where

g′αβ = H ′µν∂αx̃
µ∂βx̃

ν , (3.23)

where

H ′ij = Hij +
Hyy

τyy
τij −

τiy
τyy

Hjy −
τjy
τyy

Hiy +
1

τyy
(Byiτ

A
j τ B

y εAB +Byiτ
A
j τ B

y εAB) ,

H ′ỹỹ = 0 , H ′ỹi = −
τ A
i τ B

y εAB

τyy
, (3.24)

where we have convention ε01 = −1 , ε10 = 1. Finally note that B′µν is equal to

B′ij = Bij −
Hyy

τyτy
τ A
i τ B

j εAB +
τiyByj −Byiτjy

τyτy
+
τ A
i τ B

y εABHjy − τ A
j τ B

y εABHiy

τyτy
,

B′iỹ = − τiy
τyτy

(3.25)
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These transformation rules agree with the result derived in [1]. We also see that the T-dual

string corresponds to the relativistic string with light-like isometry due to the absence of

the metric component H ′ỹỹ. To see more explicitly that we have relativistic string let us

solve the equations of motion for N and Nσ:

−g′στ +Nσg′σσ = 0 , − 1

4N2
(g′σσ − 2Nσg′στ + (Nσ)2g′σσ)− g′σσ = 0 . (3.26)

These equations can be solved for Nσ and N as

Nσ =
g′στ
g′σσ

, N =
1

2

√
− det g′αβ

g′σσ
(3.27)

Inserting back to (3.22) we obtain

LT = −T
√
− det g′αβ − TB

′
µν∂τ x̃

µ∂σx̃
ν (3.28)

that is relativistic string action in Nambu-Goto form.

Apparently the same procedure can be performed with the Lagrangian den-

sity (2.24) where

H ′′ij = HR
ij +

HR
yy

τRyy
τRij −

τRiy
τRyy

HR
jy −

τRjy
τRyy

HR
iy

+
1

τRyy
(BR

yi(τ
R
j ) A(τRy ) BεAB +BR

yjτ
R, A
i τR, By εAB) ,

H ′′ỹỹ = 0 , H ′′ỹi = −
τR, Ai τR, By εAB

τRyy
. (3.29)

Now with the help of (2.25) it is easy to see that H ′′µν = H ′µν . In other words, relativistic

string with light-like isometry is mapped to different Newton-Cartan backgrounds that are

related by fields redefinition (2.25) which is in agreement with [1].

Let us now briefly discuss an inverse T-duality transformation from the relativistic

action with light-like isometry to stringy Newton-Cartan background. The starting point

is the relativistic string in the background (3.24) and (3.25). Then since the Lagrangian

is linear in the coordinate along which T-duality should be performed it is convenient to

start with equivalent Lagrangian density (3.13) that contain two auxiliary fields λ+, λ−

and the background fields given in (3.15) and with A and B given in (3.16). Clearly

corresponding Hamiltonian is given in (3.6) and hence inverse T-duality rules (3.5) maps

the Hamiltonian (3.6) to (2.9) that corresponds to the Hamiltonian constraint of non-

relativistic string on stringy Newton-Cartan background.

4 Longitudinal lightlike T-duality

In this section we study longitudinal lightlike T-duality transformation in the canonical

formalism. In other words we study T-duality along light-like isometry direction. Let us

presume that non-relativistic sigma model has lightlike killing vector lµ that obeys

τµl
µ 6= 0 , τ̄µl

µ = 0 , E A′
µ lµ = 0 . (4.1)

– 10 –



J
H
E
P
0
8
(
2
0
1
9
)
0
7
4

We define coordinate system (u, xi) adapted to lµ so that

τu 6= 0 , τ̄u = 0 , E A′
u = 0 . (4.2)

Now performing T-duality according to (3.5) when we replace y with u and ỹ with ũ we

obtain Hamiltonian constraint in the form

HTτ =
1

T
(ki −Biupũ)H ij(kj −Bjupũ)− (ũ′ −Bukx′k)Hui(ki −Biupũ)

+T 2(ũ′ −Buixi)Huu(ũ′ −Bujx′j) +
1

T
pũHuupũ − 2pũHuix

′i + Tx′iHijx
′j

−(ki −Biũpũ)H ij(λ+τj + λ−τ̄j)− (ki −Biũpũ)H iuλ+τu

+T (ũ′ −Buix′i)Huuλ+τu + T (ũ′ −Buix′i)Huj(λ+τj + λ−τ̄j)

+Tx′i(λ+τi − λ−τ̄i)− pũλ+τu +
T

4
(λ+τi + λ−τ̄i)H

ij(λ+τj + λ−τ̄j)

+
T

2
(λ+τi + λ−τ̄i)H

iuλ+τu (4.3)

so that T-dual Hamiltonian has the form

HT =

∫
dσ(NHTτ +NσHTσ ) . (4.4)

Then in the same way as in previous section we convert this Hamiltonian to the Lagrangian

and we obtain

L = piẋ
i + pũ ˙̃u−NHTτ −NσHTσ

=
T

4N
(g̃ττ − 2Nσ g̃τσ + (Nσ)2g̃2σσ)−NTg̃σσ − T∂τ x̃µB̃µν∂σx̃ν

+
T

2Huu
λ+(∂τ x̃

µAµ −Nσ∂σx̃
µAµ − 2N∂σx̃

µAµ)

+
T

2Huu
λ−(∂τ x̃

µBµ −Nσ∂σx̃
µBµ + 2N∂σx̃

µBµ) , (4.5)

where again

g̃αβ = G̃µν∂αX̃
µ∂βX̃

ν (4.6)

and where

G̃ij = Hij −
HiuHuj

Huu
− BiuBuj

Huu
, G̃iũ =

Biu
Huu

, G̃ũũ =
1

Huu
,

B̃ij = Bij +
BuiHuj −HiuBuj

Huu
, B̃iũ =

Hiu

Huu
, B̃ũi = −Hui

Huu
,

Ai = τiHuu −Hiuτu +Biuτu , Aũ = τu , Bi = τ̄iHuu . (4.7)

In our special case we have τ̄u = 0 and hence T-dual string has the same form as non-

relativistic string in stringy Newton Cartan background. However it is important to stress
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that the values of the background fields are not uniquely determined by T-duality rules

since it is possible to perform redefinition of λ+ and λ− in the form

λ+ =
Huu

τuτu
λ̃+ +

1

N
(∂τ x̃

µY+
µ −Nσ∂σx̃

µY+
µ + 2N∂σx̃

µY+
µ ) ,

λ− = Huuλ̃
− +

1

N
(∂τ x̃

µY−µ −Nσ∂σx̃
µY−µ − 2N∂σx̃

µY−µ )

(4.8)

so that the Lagrangian density changes as

LT =
T

4N
(g̃′ττ − 2Nσ g̃′τσ + (Nσ)2g̃′σσ)−NTg̃′σσ − T∂τ x̃µB̃′µν∂σx̃ν

+
T

2
λ̃+(∂τ x̃

µAµ −Nσ∂σx̃
µAµ − 2N∂σx̃

µAµ)

+
T

2
λ̃−(∂τ x̃

µBµ −Nσ∂σx̃
µBµ + 2N∂σx̃

µBµ) , (4.9)

where

g′αβ = G̃′µν∂αx̃
µ∂βx̃

ν , (4.10)

and where G̃′µν and B̃′µν have the form

G̃′µν = G̃µν +
1

Huu
(AµY

+
ν + AνY

+
µ + BµY

−
ν + BνY

+
µ ) ,

B̃′µν = B̃µν +
1

Huu
(−AµY

+
ν + Y+

µAν + BµY
−
ν −Y−µBν) . (4.11)

This result proves the fact that there are many different non-relativistic T-dual background

which are related by redefinition of the Lagrange multiplicators λ+, λ−. In particular, if

we choose

Y+
ũ = − 1

2τu
, Y+

i =
1

2τuτu
(τiHuu −Hiuτu −Biuτu) , Y−µ = 0 (4.12)

we obtain following form of the background fields

G̃′µũ = 0 , G̃′ij = Gij +
1

τuτu
(Huuτiτj − (Huiτj +Hujτi)) ,

B̃′ũi = − τi
τu
, B̃′ij = Bij +

Buiτj − τiBuj
τu

. (4.13)

The background fields given in (4.13) agree with the background fields that were derived

in [1], explicitly given in the expressions (3.33a) − (3.33c) up to the sign factor in front

of B̃ui given in (3.44c) which is a consequence of different convention. This is very nice

consistency check of our approach.

5 Transverse T-duality

Finally we consider transverse T-duality transformations when we presume that the

background has transverse symmetry with following transverse spatial Killing vector pµ

that obeys

τ A
µ pµ = 0 , E A′

µ pµ 6= 0 . (5.1)
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We define coordinate system xµ(xi, z) adapted to pµ such that pµ∂µ = ∂z. Then isometry

defined above implies

τ A
z = 0 , E A′

z 6= 0 (5.2)

and consequently

τz = τ̄z = 0 , Hzz 6= 0 . (5.3)

It is also clear that all background fields do not depend on z. As in previous section we

perform replacement

pz̃ = −T∂σz , pz = −T∂σ z̃ (5.4)

so that the constraints (2.9) have the form

HTτ =
1

T
(ki −Bizpz̃)H ij(kj −Bjzpz̃) +

2

T
(−T z̃′ + TBzkx

′k)Hzi(ki −Bizpz̃)

+
1

T
(−T z̃′ + TBzix

i)Hzz(−T z̃′ + TBzjx
′j) +

1

T
pz̃Hzzpz̃ − 2pz̃Hzix

′i + Tx′iHijx
′j

−(ki −Biz̃pz̃)H ij(λ+τj + λ−τ̄j)− (−T z̃′ + TBzix
′i)Hzj(λ+τj + λ−τ̄j)

+Tx′i(λ+τi − λ−τ̄i) +
T

4
(λ+τi + λ−τ̄i)H

ij(λ+τj + λ−τ̄j) ,

HTσ = pix
′i + pz̃ z̃

′ . (5.5)

Then following the same procedure as in previous section we find the Lagrangian in the

form

LT =
T

4N
(g̃ττ − 2Nσ g̃τσ + (Nσ)2g̃2σσ)−NTg̃σσ − T∂τ x̃µB̃µν∂σx̃ν

+
T

2
λ+(∂τ x̃

µτµ −Nσ∂σx̃
µτµ − 2N∂σx̃

µτµ)

+
T

2
λ−(∂τ x̃

µτ̄µ −Nσ∂σx̃
µτ̄µ + 2N∂σx̃

µτ̄µ) ,

(5.6)

where again

g̃αβ = H̃µν∂αx̃
µ∂βx̃

ν , (5.7)

where x̃µ = (xi, z̃) and where

H̃ij = Hij −
HizHzj

Hzz
− BizBzj

Hzz
, H̃iz̃ =

Biz
Hzz

, H̃z̃z̃ =
1

Hzz
,

B̃ij = Bij +
BziHzj −HizBzj

Hzz
, B̃iz̃ =

Hiz

Hzz
, B̃zi = −Hzi

Hzz
. (5.8)

In other words, the background fields τµ and τ̄µ do not change. The form of the Lagrangian

density given above suggests that the transverse T-duality maps non-relativistic string to

the non-relativistic string in T-dual background where the background fields are given by

standard Buscher’s rules (5.8) . In order to see that (5.6) describes non-relativist string let

us solve the equations of motion for λ+ and λ−

ττ −Nστσ − 2Nτσ = 0 , τ̄τ −Nσ τ̄σ + 2Nτ̄σ = 0 , (5.9)
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where τα ≡ τµ∂αx̃
µ , τ̄α = τ̄µ∂αx̃

µ. Taking the sum and difference of these two equations

we obtain two equations

Nστ 0
σ + 2Nτ 1

σ = τ 0
τ , Nστ 1

σ + 2Nτ 0
σ = τ 1

τ (5.10)

that can be solved for N and Nσ as

Nσ =
ττσ
τσσ

, N =
1

2

√
− det ταβ

τσσ
. (5.11)

Inserting (5.11) into (5.6) and using (5.9) we obtain Lagrangian density in the form

LT = −T
2

√
− det ταβτ

αβ g̃αβ −B′µν∂τ x̃µ∂βx̃ν , (5.12)

where ταβ is inverse to ταβ . This form of Lagrangian density corresponds to the non-

relativistic string action [17] in the background fields given in (5.8) which is again in

agreement with [1].
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