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1 Introduction

Understanding the dynamics of M-theory is very challenging because its stable objects

are not strings but rather two and five-dimensional objects known as M2-branes and M5-

branes. A very useful tool for addressing this question is the AdS/CFT correspondence,

which relates the conformal field theory living on a stack of M2- or M5-branes to M-

theory on AdS4 × S7 or AdS7 × S4, respectively [2]. The conformal field theory for M2-

branes is known and for an arbitrary number of branes has a lagrangian description in

terms of a Chern-Simons-matter theory with 24 manifest superconformal symmetries and

superconformal group OSp(6|4) [3]. In this description, there is a Zk action, where k is the

quantised Chern-Simons level, that allows a weak coupling limit. On the gravity side the

Zk acts naturally on the spacelike Hopf fibration of the S7 and k →∞ leads to IIA string

theory on AdS4 × CP3 with constant dilaton.

Much can be learned about the non-abelian M5-brane theory by dimensionally re-

ducing it to five-dimensional super-Yang-Mills theory. There the Kaluza-Klein modes are
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interpreted as solitons so that the extra dimension is recovered non-perturbatively and it

has been argued that this is a complete description [4, 5] (timelike and null reductions were

considered in [6, 7]). While five-dimensional super-Yang-Mills can be used to compute

BPS quantities in the M5-brane theory (see for example [8–12]), it remains unclear that

it provides a complete description of the M5-brane theory since the five-dimensional the-

ory contains UV divergences [13], although these could be resolved by soliton effects [14].

In [15] an ABJM inspired approach was adapted to M5-branes by invoking an R × CP2

reduction of R× S5, leading to a novel Yang-Mills theory with 12 supersymmetries and a

Chern-Simons term.

More recently, it was shown that rescaling five-dimensional super-Yang-Mills in a non-

Lorentzian way induces a classical RG flow whose fixed point is a theory with 24 su-

perconformal symmetries [16] and which leads to the DLCQ prescription for the (2, 0)

theory [17, 18]. In this paper, we provide a holographic realisation of this phenomenon also

inspired by the ABJM construction. Following [1], we consider AdS7 as a timelike Hopf

fibration over a non-compact complex projective space C̃P3
and consider M5-brane embed-

dings at constant C̃P3
radius. Reducing along the timelike fibre at finite radius then gives

a five-dimensional Yang-Mills theory with eight supercharges whose terms are rescaled in

a non-Lorentzian way by the radius and modified by an Ω-deformation [19]. Taking the

radius to infinity then induces a classical RG flow whose fixed point is a theory with 24

superconformal symmetries which can be interpreted as a null reduction of the M5-brane

theory in the boundary of AdS7. We conjecture that the boundary theory is UV complete

and provides a lagrangian description for the non-abelian M5-brane theory.

The rest of this paper is organised as follows. In section 2 we describe the AdS7 × S4

background of M-theory and its timelike reduction to C̃P3 × S4, as first discussed in [1].

In section 3 we construct the non-abelian worldvolume gauge theory for N M5-branes on

C̃P3
by reducing a single M5-brane on a timelike circle at finite radius and generalizing the

result to obtain a non-abelian Yang-Mills theory with eight supersymmetries along with

an Ω-deformation. In section 4 we consider the limit where the M5-branes are taken to

the boundary. Here the timelike reduction becomes null. We construct the non-abelian

worldvolume gauge theory and show that it has eight supersymmetries plus an additional

16 superconformal symmetries. This provides a holographic realization of non-Lorentzian

RG flows recently discussed in [16]. Section 5 contains our conclusions. We also have some

appendices which contain our conventions and various formulae.

While we were working on this project we were made aware of related unpublished

work by S. Kim, S. Mukhi and A. Tomasiello [20].

2 Holographic setup

According to the AdS/CFT correspondence, the worldvolume theory for a stack of M5-

branes is dual to M-theory in an AdS7×S4 background. Following in [1], we shall consider

AdS7 as a timelike U(1) Hopf fibration over a non-compact complex projective space C̃P3
:

ds2
AdS7

= −1

4

(
dx+ + eφ

(
dx− − 1

2
Ωijx

idxj
))2

+ ds2

C̃P3 , (2.1)
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where i = 1, 2, 3, 4 (see appendix A for further conventions) and the metric on C̃P3
is

ds2

C̃P3 =
R2

+

4
dφ2 +

1

4
eφdxidxi +

e2φ

4

(
dx− − 1

2
Ωijx

idxj
)2

. (2.2)

Note that in this construction x+ has period 4πR+ and Ωij is an antisymmetric tensor with

nonzero components Ω13 = Ω24 = R−1
+ satisfying Ωij = −1

2εijklΩkl and ΩikΩkj = −R−2
+ δij .

1

In this paper, we will mainly consider brane embeddings at constant φ. Restricting

the metric in (2.1) to finite φ then gives

ds2
φ =

eφ

4

[
−e−φdx+dx+ − 2dx+

(
dx− − 1

2
Ωijx

idxj
)

+ dxidxi
]
. (2.3)

Reducing the M5-brane theory along x+ therefore corresponds to a timelike reduction, as

studied for example in [6]. On the other hand, if we take φ→∞ this becomes

ds2
φ→∞ =

eφ

4

[
−2dx+

(
dx− − 1

2
Ωijx

idxj
)

+ dxidxi
]
, (2.4)

and so reducing along x+ at the boundary corresponds to a null reduction, as considered

in the DLCQ construction [17, 18]. We will discuss the details of the finite and infinite φ

reductions in the next sections. Note that the full metric of AdS7 × S4 is

ds2
AdS7×S4 = ds2

φ +
1

4
R2

+

(
dφ2 + ds2

S4

)
. (2.5)

Introducing the new radial coordinate r = eφ, this can be written as

ds2
AdS7×S4 = ds2

φ +
1

4
R2

+r
−2dXIdXI , (2.6)

where XI is a 5-vector with length XIXI = r2. If one considers the DBI action for a

probe M5-brane in this geometry and identifies (x±, xi) with the worldvolume coordinates

via static gauge, the target space coordinates XI then correspond to the scalar fields of

the worldvolume theory (see section 4 of [24] for more details). Expanding the DBI action

to second order in derivatives will then give the bosonic part of the abelian theory we

construct in the next section. From this construction, it is clear that the theory will have

SO(5) R-symmetry. Moreover it is not difficult to see that this will persist in the nonabelian

theory. Placing a stack of M5-branes at finite radius corresponds to turning on a vacuum

expectation value (vev) for the scalar fields, but if the branes are coincident then the vev

will be proportional to a unit matrix and the R-symmetry will remain unbroken since the

action only contains derivatives and commutators of the scalar fields.

Now we wish to argue that M5-branes embedded at finite φ preserve eight supercharges,

but this becomes enhanced to 24 supercharges at the boundary. In particular, the amount

of supersymmetry preserved by the M5-branes corresponds to the number of AdS7 Killing

spinors which are eigenspinors of γφ [21]. The relevant solutions to the AdS7 Killing spinor

1We have chosen slightly different coordinates to that of [1]: x3 = R+y1, x
4 = R+y2, x

+ = R+τ, x
− =

R+(χ− 1
2
(x1y1 + x2y2)) and our AdS7 has radius R+.
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equation were given in [1] and we include their results in appendix B, adapted to our

coordinates. In total there are 32 independent AdS7 Killing spinors. Firstly there are eight

(ε−1,8 in the notation of [1]) which depend on x+ but these are not eigenspinors for any value

of φ. Thus they would not survive our reduction on x+ in any case. Of the remaining 24

one sees that at finite φ only eight (ε−3,5) are eigenspinors of γφ. Thus at finite φ we expect

that the M5-brane worldvolume theory admits eight supersymmetries, all of which survive

the reduction on x+. At infinite φ one finds that the other 16 supersymmetries (ε−2,7 and

ε−4,6) become eigenspinors of γφ. These spinors are independent of x+ but have a non-trivial

dependence on xi and x−. They are naturally thought of as conformal Killing spinors on

the M5-brane. In appendix C we derive the corresponding 32 conformal Killing spinors for

the six-dimensional boundary metric. Hence, after reducing the M5-brane theory along x+

we expect to obtain a theory with eight supercharges at finite φ which flows to a theory

with 24 supercharges at the boundary. We will confirm this holographic prediction below

by first constructing the the theory at finite φ and carefully taking the limit φ→∞.

Lastly let us comment on the more traditional embedding of an M5-brane in AdS7.

As pointed out in [1] the usual radial coordinate, ρ, in AdS7 is related to φ through:

eφ/2 =
eρ

cos(x+/2R+)
. (2.7)

Placing the M5-branes on surfaces of constant ρ leads to the metric

ds2
ρ =

e2ρ

4 cos2(x+/2R+)

×
[
− cos(x+/R+)e−2ρdx+dx+ − 2dx+

(
dx− − 1

2
Ωijx

idxj
)

+ dxidxi
]
. (2.8)

The problem with this embedding is that the metric depends on x+ and so we cannot

directly perform a Kaluza-Klein reduction to map the M5-brane dynamics to that of a

five-dimensional Yang-Mills gauge theory. On the other hand in the limit ρ → ∞ we find

the boundary metric

ds2
ρ→∞ =

e2ρ

4 cos2(x+/2R+)

[
−2dx+

(
dx− − 1

2
Ωijx

idxj
)

+ dxidxi
]
. (2.9)

In fact this is simply six-dimensional Minkowski space, as one would expect to find in the

traditional flow to the boundary of AdS7 (in general the boundary is only defined up to

a conformal class). In this case the coordinate x+ has a finite range x+ ∈ (−πR+, πR+).

However the metrics ds2
φ→∞ and ds2

ρ→∞ only differ by a conformal factor and the M5-brane

theory, being conformal, is insensitive to this rescaling.2 So the boundary worldvolume

theories will agree.

Thus for embeddings at finite constant values of φ and ρ we obtain two different

descriptions of the M5-brane (although we don’t know how to construct an action for the

case of finite ρ), both coupled to bulk eleven-dimensional M-theory modes. However when

2In principle, there could be a Weyl anomaly [22], but the anomaly vanishes for the metric in (2.4)

and (2.9).
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we take the limits φ, ρ → ∞ the bulk modes decouple and either embedding leads to a

description of the (2, 0) theory of M5-branes on the six-dimensional spacetime with metric

ds2 = −2dx+

(
dx− − 1

2
Ωijx

idxj
)

+ dxidxi , (2.10)

where we have again performed a conformal rescaling to simplify the metric.

From the point of view of Minksowski space the coordinate x+ in (2.10) takes values

in the range x+ ∈ (−πR+, πR+). We can then extend the range to x+ ∈ [−πR+, πR+]

to obtain a spacetime we refer to as null conformally compactified Minkowski space. Note

however that in this null conformally compactified spacetime x+ is not necessarily periodic.

However, as we have seen the original AdS7 boundary corresponds to a periodic x+ with

period 4πR+. We propose that we can extend the range of x+ to [−2πR+, 2πR+] by

imposing reflecting boundary conditions at x+ = ±πR+, making the dynamics of M5-

branes on a doubled copy of Minkowski space periodic with period 4πR+, in agreement

with the AdS7 interpretation.

The analogy with the ABJM construction suggests that one should consider orbifolding

the fibre by modifying the periodicity of x+ in (2.1) to 4πR+/k where k is a positive integer.

Taking k →∞ then corresponds to shrinking the fibre while setting k = 1 recovers AdS7.

However, in this case the act of orbifolding does not seem to have a profound effect as in

the case of M2-branes. We will comment further on this in appendix D.

3 Theory at finite radius

Let us first consider the metric at finite φ in (2.3) and reduce the abelian M5-brane theory

along x+. In [23] the action of multiple M5-branes reduced on a spacelike fibration was

constructed and we will follow their methodology: namely we first consider the dimensional

reduction of the abelian theory and then use supersymmetry to construct a suitable non-

abelian five-dimensional action.

3.1 M5-brane reduction

Recall that the field content of the abelian theory is a tensor multiplet consisting of five

scalars, a 2-form gauge field with self-dual field strength H and fermions which contribute

eight on-shell degrees of freedom. The equations of motion for the 2-form in the abelian

theory are simply

H = ?H , dH = 0 . (3.1)

To reduce along the x+ direction, we drop ∂+ and re-label in terms of five-dimensional

fields as follows:

H+ij ≡ Fij , H−ij ≡ Gij , H+−j ≡ F−j . (3.2)

The dH = 0 equation then implies the following equations in five-dimensions:

∂[iFjk] = ∂[−Fij] = ∂[iHjkl] = ∂−Hjkl − 3∂[jGkl] = 0 , (3.3)
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and we may consequently introduce gauge potentials A−, Ai to solve the first two of these

equations. To reduce the self-duality constraint, we will first convert to tangent space in-

dices:

Hµνρ = eµ
µ̂eν

ν̂eρ
ρ̂Hµ̂ν̂ρ̂ , (3.4)

where eµ
µ̂ is a vielbein for the metric in (2.4). We then obtain the following useful relations:

H−µν = H−̂µ̂ν̂ ,

Hijk = Hîĵk̂ +
3

2
Ω[i|m|x

mGjk] ,

Fij = H+̂îĵ + Ω[i|mx
mF−|j] +

1

2
e−φGij . (3.5)

In the tangent space, the self-duality constraint is simply

Hµ̂ν̂ρ̂ =
1

6
εµ̂ν̂ρ̂ω̂σ̂λ̂H

ω̂σ̂λ̂ . (3.6)

Combining this constraint with the relations in (3.5) then implies

G = ?G ,

F−l = −1

6
εijklHijk +

1

2
Ωimx

mGil ,

G = eφ(F + ?F) , (3.7)

where we have defined

Fij = Fij − Ω[i|mx
mF−|j] . (3.8)

We now propose an action for the gauge fields at finite φ:

LA =
1

2
Fi−Fi− +

1

4
eφ
(
F2
ij + εijklΩmix

mFjkF−l
)
. (3.9)

In particular the equations of motion for A− and Ai are

∂iF−i = −1

2
eφ
(
Ωimx

m∂jFji +R−2
+ xjF−j

)
,

∂−F−i = −eφ (∇jFji + ΩijF−j) , (3.10)

where ∇i = ∂i − 1
2Ωijx

j∂−. It is not difficult to show that these equations indeed follow

from (3.3) and (3.7).

Let us now consider the matter fields. For the scalar fields, we have

LX = −1

2
∂µX

I∂µXI = −1

2
ηµ̂ν̂

(
e−1
)
µ̂
µ∂µX

I
(
e−1
)
ν̂
ν∂νX

I . (3.11)

Plugging (2.3) into (3.11), dropping x+ derivatives, and rescaling fields to get canonical

kinetic terms then gives the following scalar lagrangian:

LX = −1

2
∇iXI∇iXI − 1

2
e−φ∂−X

I∂−X
I . (3.12)
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Similarly, for the fermions we have

LΨ =
i

2
Ψ̄Γµ

(
∂µ +

1

4
ων̂ρ̂µ Γν̂ρ̂

)
Ψ =

i

2
Ψ̄Γµ̂

(
e−1
)
µ̂
µ

(
∂µ +

1

4
ων̂ρ̂µ Γν̂ρ̂

)
Ψ , (3.13)

where Γ012345Ψ = −Ψ, and Ψ̄ = ΨTC. After plugging in (2.3) and dropping ∂+ terms

we obtain3

LΨ = − i

2
Ψ̄Γ+∂−Ψ +

i

2
Ψ̄Γi∇iΨ +

i

4
e−φΨ̄Γ−∂−Ψ . (3.14)

3.2 Non-abelian theory

The lagrangian LA+LX+LΨ we obtained in the previous subsection can be non-abelianized

as follows (all geometric quantities are those of flat space):

Sφ =
1

g2
YM

tr

∫
d4x dx−

{
− 1

2
∇iXI∇iXI − 1

2
e−φD−X

ID−X
I − 1

4
e−φ

[
XI , XJ

]2
+

1

2
Fi−Fi− +

1

4
eφ
(
F2
ij + εijklΩmix

mFjkF−l
)

− i

2
Ψ̄Γ+D−Ψ +

i

2
Ψ̄Γi∇iΨ +

i

4
e−φΨ̄Γ−D−Ψ

− 1

2
Ψ̄Γ+ΓI

[
XI ,Ψ

]
− 1

4
e−φΨ̄Γ−ΓI

[
XI ,Ψ

]}
, (3.15)

where g2
YM is a coupling constant with dimensions of length,

∇i = Di −
1

2
Ωijx

jD− , (3.16)

and DµX = ∂µX−i[Aµ, X]. To describe N M5-branes we take the gauge group to be U(N).

This model enjoys the following supersymmetries:

δXI = iε̄
(0)
− ΓIΨ ,

δAi = iε̄
(0)
− ΓiΓ+Ψ +

i

2
Ωijx

j ε̄
(0)
− Γ−+Ψ ,

δA− = iε̄
(0)
− Γ−+Ψ ,

δΨ = − Γ+ΓID−X
Iε

(0)
− + ΓiΓ

I∇iXIε
(0)
−

− ΓiΓ+−F−iε
(0)
− −

i

2
Γ+ΓIJ [XI , XJ ]ε

(0)
− −

eφ

2
ΓijΓ+Fijε(0)

− , (3.17)

where ε
(0)
− is constant spinor satisfying Γ012345ε = ε and Γ05ε

(0)
− = −ε(0)

− so that the theory

has eight supercharges. The spinor ε = ε
(0)
− is a solution to the Killing spinor equation

for the metric in (2.3), as described in appendix C. Note that there are also non-constant

solutions to the Killing spinor equations but we do not expect them to correspond to

3From this point forward, the derivatives acting on fermions do not include spin connection terms. Also

note that the fermionic mass-like term ∼ Ψ̄Γ−(Ω · Γ)Ψ vanishes via duality arguments.
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symmetries, as the theory is not conformal. This is also suggested by the holographic

argument in section 2.

Further note also that the metric in (2.3) is invariant under the following rescaling of

the coordinates, including φ:

x+ → x+ , x− → λ2x− , xi → λxi , eφ → λ−2eφ , (3.18)

where λ is a constant. As a consequence, the action (3.15) is invariant under the scalings

XI → λ−2XI , A− → λ−2A− , Ai → λ−1Ai ,

Ψ+ → λ−3Ψ+ , Ψ− → λ−2Ψ− , (3.19)

but only if we also transform the radial coordinate according to

eφ → λ−2eφ . (3.20)

Moreover, invariance of the supersymmetry variations implies that

ε+ → ε+ , ε− → λε− . (3.21)

Since (3.20) corresponds to moving the branes along the φ direction, the scaling symmetry

is broken if we hold φ fixed.

Remarkably, the theory we obtain from dimensionally reducing the M5-brane theory

at finite φ corresponds to an Ω-deformation of the model considered in [16] which was

obtained by non-Lorentzian rescaling five-dimensional super-Yang-Mills. While for Ωij = 0

and φ = 0 we recover five-dimensional maximally supersymmetric euclidean Yang-Mills

as studied in [6]. In the present context, the non-Lorentzian rescaling is controlled by

the radial coordinate φ. In the next section, we will show that in the limit φ → ∞ the

supersymmetry becomes enhanced and the theory becomes invariant under the rescalings

in (3.18) and (3.19). In this sense, the boundary theory can be thought of as the fixed

point of a classical RG flow induced by taking φ→∞.

Let us make some further comments. First we need to determine the coupling g2
YM .

By comparing to the case Ωij = 0 we can impose the usual relation for the gauge cou-

pling of five-dimensional super-Yang-Mills in terms of the period x+ ∼ x+ + 4πR+ of the

compactification:

g2
YM = 8π2R+ , (3.22)

which is valid for spacelike or timelike reductions (e.g. see [6]).

Lastly we note that the action has a Chern-Simons-like term

−e
φ

4
εijklΩmix

mtr(FjkF−l) =
eφ

4
Ωmix

mdxi ∧ tr(F ∧ F )

∼=
eφ

2
Ω ∧ tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
, (3.23)

where Ω = 1
2Ωijdx

i∧dxj and A is viewed as a 1-form in 1 + 4 dimensions with components

(A−, Ai). Normally such a term is associated with a quantization of the coupling constant.
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However that does not seem to be the case here because the form of the action on the left

hand side is manifestly gauge invariant, without compromising other symmetries. In the

ABJM theory, quantization of the Chern-Simons coupling corresponded to performing an

orbifold on the gravity side. Although this does not appear to be required in our context,

we consider performing such an orbifold in appendix D.

4 Boundary theory

In this section, we will take the φ→∞ limit of the theory derived in the previous section

and show that the supersymmetry becomes enhanced to 24 supercharges, providing a

holographic realization of the classical RG flow mechanism proposed in [16]. We will

also show that the resulting theory can be obtained from a null reduction of the M5-brane

theory at the boundary.

4.1 M5-brane reduction

We will first reduce the abelian M5-brane theory along x+ in (2.4). The analysis is very

similar to the one in section 3.1. In fact, all that changes is the last line in equations (3.5)

and (3.7):

Fij = H+̂îĵ + Ω[i|mx
mF−|j] ,

F = − ? F . (4.1)

Let us now propose a lagrangian which encodes these dimensionally reduced equations of

motion for the gauge fields:

LA =
1

2
F−iF−i +

1

2
GijFij , (4.2)

where Gij is self-dual (but not subject to a Bianchi identity). The anti-self-duality of F
immediately follows from varying the action with respect to Gij , which is essentially a

Lagrange multiplier. From the point of view of the M5-brane, Gij can be identified with

Hij−. Furthermore, the equations of motion for A− and Ai are

∂iF−i +
1

2
∂i

(
GijΩjkx

k
)

= 0 ,

∂−

(
F−i +

1

2
GijΩjkx

k

)
− ∂jGij = 0 , (4.3)

which indeed follow from (3.3) and the second line of (3.7). It remains to derive a lagrangian

for matter fields, but this is also straightforward. In particular, plugging (2.4) into (3.11)

and (3.13), and dropping ∂+ terms gives

LX = −1

2
∇iXI∇iXI , (4.4)

and

LΨ = − i

2
Ψ̄Γ+∂−Ψ +

i

2
Ψ̄Γi∇iΨ . (4.5)
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Our next step would be to find a non-abelian extension of the lagrangian

L = LA + LX + LΨ , (4.6)

and supersymmetrize it. However, rather than do this we will instead consider obtaining

the theory as a limit of the finite φ action along the lines presented in [16]. The final result

will be the same.

4.2 Classical RG flow

Let us now carefully take φ → ∞ of the theory constructed in section 3. Taking φ → ∞
in (3.15) will remove the terms which scale like e−φ, but the following terms diverge in

this limit:

LF2 = F2
ij + εijklΩmix

mFjkF−l . (4.7)

In fact we can write this as

LF2 = 2F+
ijF

+
ij −

1

2
εijklFijFkl , (4.8)

where F+
ij is the self-dual part of Fij . Note that the second term is a total derivative. Thus

we see that finiteness of the dynamics in the limit φ→∞ imposes the constraint

F+
ij = 0 , (4.9)

i.e. F is anti-self-dual. Hence, the divergent terms can be cancelled by introducing a self-

dual Lagrange multiplier Gij which imposes that F is anti-self-dual. Note that the second

term in (4.8) can actually contribute non-perturbatively for field configurations with non-

zero instanton number. The resulting divergence as φ → ∞ can then be interpeted as

coming from Kaluza-Klein modes whose momentum undergoes an infinite boost as the

fibre becomes null.

We then arrive at the following action:

S =
1

g2
YM

tr

∫
d4x dx−

{
1

2
F−iF−i +

1

2
FijGij −

1

2
∇iXI∇iXI

− i

2
Ψ̄Γ+D−Ψ +

i

2
Ψ̄Γi∇iΨ−

1

2
Ψ̄Γ+ΓI [XI ,Ψ]

}
, (4.10)

with Gij = 1
2εijklGkl. This is therefore the natural choice for the non-abelian generalization

of (4.6). For U(N) gauge group it describes N M5-branes on the six-dimensional space with

the metric (2.10) and the restriction that x+ is periodic with period 4πR+. This in turn

corresponds to two copies of a null compactified Minkowski spacetime with x+ ∈ [0, 2πR+]

along with reflecting boundary conditions at x+ = 2πR+. Let us emphasize that this theory

was obtained by a classical RG flow, along which the Yang-Mills coupling remains constant.

This is an Ω-deformation of the non-Lorentzian theory constructed in [25] and obtained

as a similar RG flow in [16], which can be identified as a null reduction of the M5-brane
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on R1,5. One can check that it is invariant under the following supersymmetries:

δXI = iε̄ΓIΨ ,

δAi = iε̄ΓiΓ+Ψ +
i

2
Ωijx

j ε̄Γ−+Ψ ,

δA− = iε̄Γ−+Ψ ,

δGij =
i

2
ε̄ΓkΓijΓ−∇kΨ−

i

2
ε̄Γ+Γ−ΓijD−Ψ +

1

2
ε̄Γ+Γ−ΓijΓ

I [XI ,Ψ]− 3iη̄Γ−ΓijΨ ,

δΨ = − 1

4
ΓijΓ−Fijε− Γ+ΓID−X

Iε+ ΓiΓ
I∇iXIε− ΓiΓ+−F−iε ,

− 1

4
ΓijΓ+Gijε−

i

2
Γ+ΓIJ [XI , XJ ]ε− 4XIΓIη , (4.11)

where ε and η parametrise the x+-independent solutions to the Killing spinor equation as

described in appendix C (i.e. types II,III,IV). Note that there are 24 independent solutions,

all of which satisfy Γ012345ε = ε. The constant solutions satisfy the further constraint

Γ05ε = −ε but in addition we find 16 superconformal symmetries where ε is not constant.

Finally it is easy to see that the action in (4.10) is invariant under the following Lifshitz

rescaling of the fields:

XI → λ−2XI , A− → λ−2A− , Ai → λ−1Ai ,

Ψ+ → λ−3Ψ+ , Ψ− → λ−2Ψ− , Gij → λ−4Gij . (4.12)

In this sense, the theory has conformal symmetry even though it has a dimensionful

coupling.

5 Conclusion

In this paper we constructed the non-abelian field theories corresponding to N M5-branes

compactified on a timelike fibration of AdS7 over C̃P3
which becomes null as we approach

the boundary. In particular, the timelike reduction was constructed by considering brane

embeddings at finite C̃P3
radius and turns out to be a non-abelian field theory with eight

supersymmetries which resembles an Ω-deformation of five-dimensional euclidean super-

Yang-Mills. We then took the radius to infinity inducing a classical RG flow whose fixed

point has an additional 16 superconformal symmetries and a Lifshitz scaling symmetry.

Moreover, we showed that the fixed point theory describes the (2, 0) theory reduced along

a null direction in a conformal compactification of Minkowski space corresponding to the

boundary of AdS7.

A number of questions immediately present themselves. The first is to identify the

precise symmetry group of the five-dimensional fixed point theory and understand how it

is related to symmetries of the bulk theory (see [26] for a review of Lifshitz holography).

We expect the bosonic subgroup to be SU(3, 1)×SO(5), since these are the bulk isometries

after reducing along the fibre. Once the superconformal symmetry is identified, it would

interesting to check if the theory is in fact UV finite. A closely related question is to

understand the moduli space dynamics of the fixed point theory. The equations of motion
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for null reductions of the M5-brane theory without an Ω deformation were previously shown

to reduce to motion on instanton moduli space [7], familiar from the DLCQ description of

the (2, 0) theory [17, 18]. In this description, the six-dimensional theory is recovered by

taking the number of instantons to infinity but the moduli space is singular because of small

instantons, which leads to conceptual and technical difficulties. It would be interesting to

repeat this analysis for the model presented in this paper and see if the Ω-deformation

helps regulate these singularities.

Lastly our results suggest a new paradigm for holography where the emergence of time

appears to be a non-perturbative phenomenon, as studied in [6, 27]. Ultimately, it would

interesting to see if this is a generic consequence of M-theory or just a peculiar feature of

our construction.
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A Conventions

A.1 Indices

The following table summarizes the different sets of indices we use throughout the body of

this paper.

M,N,P, . . . 0, . . . , 10 eleven-dimensional frame indices

s, t, u . . . 0, . . . , 6 seven-dimensional coordinate indices

ŝ, t̂, û, . . . 0, . . . , 6 seven-dimensional frame indices

µ, ν, ρ, . . . 0, . . . , 5 six-dimensional worldvolume coordinate indices

µ̂, ν̂, ρ̂, . . . 0, . . . , 5 six-dimensional worldvolume frame indices

I, J,K, . . . 6, . . . , 10 transverse Spin(5) R-symmetry indices

i, j, k, . . . 1, . . . , 4 worldvolume coordinate and frame indices

+,− worldvolume lightcone frame indices

A.2 Gamma matrix conventions

The coordinate independent Clifford matrices of Spin(1, 10) are denoted ΓM and satisfy

{ΓM ,ΓN} = 2ηMN , ΓT
M = −CΓMC

−1 . (A.1)

In addition, the charge conjugation matrix satisfies CT = −C,C† = −C,C−1 = −C and

we may take it to be C = Γ0. The antisymmetric product of Clifford matrices is defined

with weight one:

ΓM1...Mn = Γ[M1
ΓM2 · · ·ΓMn] . (A.2)
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We now decompose Spin(1, 10) into Spin(1, 5)×Spin(5) by splitting the eleven-

dimensional index into worldvolume and transverse indices: ΓM = (Γµ̂,ΓI) such that

{Γµ̂,ΓI} = 0 , {Γµ̂,Γν̂} = 2ηµ̂ν̂ , {ΓI ,ΓJ} = 2δIJ . (A.3)

The fermions we introduce are single 32-component Majorana spinors and satisfy

Γ012345Ψ = −Ψ , (A.4)

Γ012345ε = + ε , (A.5)

Γ012345η = − η . (A.6)

In going to the light-cone we define

Γ+ =
1√
2

(Γ0 + Γ5) , Γ− =
1√
2

(Γ0 − Γ5) . (A.7)

Then we can rewrite the projections conditions on the fermions as

Γ+−ΓijklΨ = + εijklΨ , (A.8)

Γ+−Γijklε = − εijklε , (A.9)

Γ+−Γijklη = + εijklη , (A.10)

with ε1234 = +1.

We also define

Ω · Γ ≡ ΩijΓ
ij . (A.11)

B Brane embeddings

In this appendix, we will review the solutions to the Killing spinor equations in AdS7

derived in [1]. First note that the seven-dimensional Dirac matrices used in that paper are

given by4

γ+ = −iσ3 ⊗ σ3 ⊗ σ3 , γ− = 1⊗ 1⊗ σ2 , γφ = 1⊗ 1⊗ σ1 ,

γ1 = σ1 ⊗ σ3 ⊗ σ3 , γ2 = 1⊗ σ1 ⊗ σ3 , γ3 = σ2 ⊗ σ3 ⊗ σ3 , γ4 = 1⊗ σ2 ⊗ σ3 ,

(B.1)

where the labels are understood to be tangent space indices. Moreover the Killing spinor

equation is given by

∂sε
− +

1

4
ωt̂ûs γt̂ûε

− = −1

2
γsε
− . (B.2)

4In this appendix we use eight-component symplectic-Majorana spinors and 8 × 8 Clifford matrices.
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Using the coordinates defined in section 2, the eight solutions obtained in [1] are then

given by

ε−1 = eix+



0

0

0

0

0

0

0

1


, ε−2 =



0

1

−1
2e
φ/2 (x4 + ix2)

1
2e
φ/2 (x4 + ix2)

−1
2e
φ/2 (x3 + ix1)

1
2e
φ/2 (x3 + ix1)

0

0


, ε−3 = eφ/2



0

0

0

0

−1

1

0

0


, (B.3)

ε−4 =



0

x3 − ix1

−1
2e
φ/2 (x3 − ix1) (x4 + ix2)

1
2e
φ/2 (x3 − ix1) (x4 + ix2)

e−φ/2 + eφ/2
[
ix− − 1

4

(
x2

1 − x2
2 + x2

3 − x2
4

)]
e−φ/2 − eφ/2

[
ix− − 1

4

(
x2

1 − x2
2 + x2

3 − x2
4

)]
− (x4 + ix2)

0


, (B.4)

and the rest are determined from these by

ε−5 = −Bε−∗3 , ε−6 = Bε−∗4 , ε−7 = Bε−∗2 , ε−8 = Bε−∗1 , (B.5)

where B is defined by Bγ ŝB−1 =
(
γ ŝ
)∗

and has the explicit form B = −iσ1 ⊗ σ2 ⊗ σ1.

Noting that γ+γ−γ1 . . . γ4 = −γφ, standard results [21] imply that the amount of

supersymmetry preserved by a brane embedding at constant φ is related to the number of

Killing spinors which satisfy the chirality constraint

γφε− = −ε− . (B.6)

For finite φ, only ε−3 and ε−5 satisfy the constraint, so only eight supercharges are preserved

after multiplying by four to take into account the Killing spinors of S4. On the other hand,

in the limit φ→∞ we see that ε−2 , ε
−
4 , ε
−
6 , ε
−
7 also satisfy the constraint so the supersymme-

try becomes enhanced to 24 supercharges. Note that the x+-dependent solutions ε−1 and

ε−8 do not satisfy the constraint for any value of φ.

C Killing spinors

Let us look for solutions to the conformal Killing spinor equation

∇µε = Γµη , (C.1)

for the six-dimensional metric in (2.10) above, corresponding to the boundary φ → ∞ of

AdS7. We refer to a Killing spinor as conformal if it has a non-zero η. Explicitly evaluating
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this equation we find four classes of solutions:

type I
ε+ = e

x+

4
Ω·Γε

(0)
+ η+ = 0

ε− = 0 η− = − 1
16e

x+

4
Ω·Γ(Ω · Γ)Γ−ε

(0)
+

type II
ε+ = 0 η+ = 0

ε− = ε
(0)
− η− = 0

type III
ε+ = ε

(0)
+ η+ = 0

ε− = 1
2x

iΩijΓjΓ−ε
(0)
+ η− = 1

16(Ω · Γ)Γ−ε
(0)
+

type IV
ε+ = −1

2x
iΓiΓ+ε

(0)
− η+ = −1

2Γ+ε
(0)
−

ε− = −1
4ΩikΓkjx

ixjε
(0)
− + x−ε

(0)
− η− = − 1

16(Ω · Γ)xiΓiε
(0)
−

Here we use the notation that ± indicates the eigenvalue with respect to Γ05 and the

superscript (0) means that the spinor is constant. In all cases we assume that Γ012345ε = ε

and hence Γ012345η = −η. Thus each type contains eight independent spinor components.

Note that only type I has x+ dependence.

It is instructive to take the Ωij = 0 limit so that the metric describes six-dimensional

Minkowski space. In this case we see that the solutions above reduce to

type I
ε+ = ε

(0)
+ η+ = 0

ε− = 0 η− = 0

type II
ε+ = 0 η+ = 0

ε− = ε
(0)
− η− = 0

type III
ε+ = ε

(0)
+ η+ = 0

ε− = 0 η− = 0

type IV
ε+ = −1

2x
iΓiΓ+ε

(0)
− η+ = −1

2Γ+ε
(0)
−

ε− = 0 η− = 0

Here type I and III have become degenerate. We can invert the third equation of type IV

to find ε
(0)
− = Γ−η

(0)
+ and see that all four types correspond to the usual flat space ansatz

ε = ε(0) +xµΓµη
(0)
+ for various choices of ε

(0)
± and η

(0)
+ . However we are missing the solution

ε = xµΓµη
(0)
− . In particular this solution corresponds to

ε+ = x+Γ+η
(0)
− , ε− = xiΓiη

(0)
− , η− = η

(0)
− η+ = 0 , (C.2)

which is dependent on x+ and therefore will not survive the reduction on x+. The 24

transformations arising from ε
(0)
± and η

(0)
+ were shown to be a symmetries of the Ωij = 0

case in [16, 25].
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D Timelike reduction of AdS7 × S4 and a Zk orbifold

Let us discuss here the reduction of eleven-dimensional M-theory over the x+ coordinate

to euclidean ten-dimensional type IIA string theory. The classic Freund-Rubin AdS7 × S4

solution of eleven-dimensional supergravity is

ds2
11 = ds2

AdS7
+
R2

+

4
ds2
S4 , F

(4)
11 =

6

R+
εS4 , (D.1)

where εS4 is the volume form of the 4-sphere, and the radius is related to the flux through

the 4-sphere by (
R+

lp

)3

= πN , (D.2)

where lp is the eleven-dimensional Planck length. As shown in [1], AdS7 is a Hopf fibration

of a non-compact three-dimensional complex projective space, C̃P3
. The AdS7 metric is

ds2
AdS7

= R2
+

[
− (dτ + ω)2 + ds2

C̃P3

]
, (D.3)

where τ = x+/2R+ and dω = J is the Kähler form of C̃P3
. Recall that C̃P3

is defined by

z̄az
a = 1 , za ∼ eiθza , (D.4)

where a = 0, 1, 2, 3 and

z̄a = ηabz̄
b , η = diag (1,−1,−1,−1) . (D.5)

In terms of homogeneous coordinates,

ds2

C̃P3 = −dz̄adza + ω2 , ω = iz̄adz
a . (D.6)

Let us reduce on x+ to a euclidean IIA string theory [28] in a background given by

ds2
11 = e−2Φ/3ds2

10 − e4Φ/3
(
dx+ +A

)2
, F

(4)
11 = e4Φ/3F

(4)
10 − e

Φ/3F
(3)
10 ∧ dx

+ . (D.7)

The equations of motion for ten-dimensional euclidean IIA supergravity are given [27] by

varying

SNS = +
1

2κ2

∫
d10x
√
−ge−2Φ

{
R+ 4 (∂Φ)2 +

∣∣∣F (3)
∣∣∣2} ,

SR = − 1

4κ2

∫
d10x
√
−g
{
−
∣∣∣F (2)

∣∣∣2 +
∣∣∣F (4)

∣∣∣2} ,

SCS = − 1

4κ2

∫
d10xB(2) ∧ F (4) ∧ F (4) , (D.8)

where κ2 is proportional to Newton’s constant. Notice the non-standard signs appearing

in the measure and kinetic terms for F (2) and F (3), which are a result of reducing eleven-

dimensional supergravity along a timelike direction. Although some of the gauge fields have
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kinetic terms with a non-standard sign, this is not necessarily problematic since unitarity

is not defined in euclidean signature.

Recall the usual relations

l2str =
l3p
R11

, gstr =
R1

lstr
, (D.9)

where R11 = 2R+ is the radius of the eleventh dimension. Ignoring powers of 2 and π

we find

lstr ∼
lp

N1/6
, gstr ∼ N1/2 , (D.10)

so that the string metric is

ds2
10 = R2

str

(
ds2

C̃P3 +
1

4
ds2
S4

)
, (D.11)

with Rstr = N2/3lstr. Thus we can trust the low energy supergravity approximation to M-

theory or euclidean type IIA string theory when N � 1. But the string theory description

is never weakly coupled.

To obtain a weakly coupled euclidean type IIA description away from the boundary we

could impose a further Zk orbifold on the timelike S1 fibre. However unlike the ABJM case

this does not seem particularly natural, in part because the dual field theory has a coupling

constant g2
YM ∼ R+ with dimensions of length and which is not subject to a quantization

condition. Nevertheless let us impose by hand the additional orbifold x+ ∼= x+ + 4πR+/k

for some k ∈ {1, 2, 3, . . .}. This will not change the supergravity fields but does change the

length of the eleventh-dimension to R11 = 2R+/k. As a result we now find

lstr ∼
k1/2

N1/6
lp , gstr ∼

N1/2

k3/2
, Rstr =

N2/3

k
lstr . (D.12)

Here the string theory description is weakly coupled when N � k3 and the ten-dimensional

supergravity approximation is valid when N � k3/2:

1� k3/2 � N � k3 . (D.13)

In terms of the dual field theory the Zk orbifold means that we restrict the M5-brane

dynamics to be periodic under x+ → x+ + 4πR+/k. Thus for k ∈ {1, 2, 3, . . .} we are

looking at a subsector of the original theory. From the point of view of the worldvolume

theory this means that the coupling is shifted to

g2
YM = 8π2R+/k . (D.14)

Given the usual interpretation of the instanton-solitons with instanton number n as repre-

senting momentum modes with momentum n/2R+ we now see that the only momentum

modes are kn/2R+. Thus we are projecting out all momentum modes that are not com-

patible with the periodicity x+ → x+ + 4πR+/k.
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