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1 Introduction

2d U(N) Yang-Mills theory has been studied for a long time as a prototypical example of

exactly solvable gauge theories [1–6]. It has a profound connection with matrix models

and conformal field theories [7–9] as well as constitutes the integrable structures of various

field and string theory models, including topological strings [10–13], supersymmetric gauge

theories [14–19] and black hole microstates [20–22].

The large N ’t Hooft expansion of the partition function of 2d U(N) Yang-Mills theory

has been studied in the seminal paper by Gross and Taylor [23]. In the largeN limit the par-

tition function factorizes into the chiral and anti-chiral parts. The chiral partition function

Z admits a string interpretation. It has the characteristic form Z = exp
[∑∞

g=1 g
2g−2
s Fg

]

with the string coupling gs = 1/N , where the free energy Fg “counts” the maps of a genus

g string world-sheet to the 2d target space.

In this paper we focus on the case where the target space is a torus T 2. The genus

expansion of the partition function of 2d U(N) Yang-Mills theory on a torus has been

studied in detail [8, 24]. In particular it was shown [12, 25] that Fg (g ≥ 2) is a quasi
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modular form for SL(2,Z) acting on the modulus τ , i.e. Fg is a polynomial of the three

Eisenstein series E2(τ), E4(τ), E6(τ).

It has been known that the chiral partition function Z is interpreted as the topologi-

cal string partition function for a class of certain non-compact Calabi-Yau threefolds [20].

Concerning this there is a long-standing puzzle in the literature. The puzzle is about

holomorphic anomaly. It is well known that the topological string partition function for

Calabi-Yau threefolds obeys the holomorphic anomaly equation [26]. In fact, it was pro-

posed in [9] that Z in the present case satisfies the holomorphic anomaly equation of

the form

∂Z

∂τ̄
=

( gs
Imτ

)2 ∂2Z

∂τ2
. (1.1)

In order to make sense of this equation, one needs to restore the anti-holomorphic depen-

dence on τ̄ . This is most commonly done by exploiting the trade-off between the holo-

morphic anomaly and the modular anomaly. It is empirically known [27, 28] that in many

cases where the topological string amplitude is expressed in terms of quasi modular forms

in τ , the anti-holomorphic dependence on τ̄ is restored by merely replacing E2(τ) with

Ê2(τ, τ̄) = E2(τ)−
3

πImτ
. (1.2)

However, it turns out that (1.1) is actually not satisfied when τ̄ -dependence is restored in

this way. No correct holomorphic anomaly equation was found, nor consistent recovery of

τ̄ -dependence was proposed for the 2d Yang-Mills theory on a torus.1

In this paper we resolve this puzzle by clarifying how the holomorphic anomaly arises

in the partition function. Our construction is based on the chiral boson interpretation

of the 2d Yang-Mills theory on a torus. It turns out that E2’s are originated from two

kinds of source, the propagator and the period integrals, and only those from the former

kind is reasonably promoted to Ê2. Taking this into account, we are able to identify the

precise form of the holomorphic anomaly equation. We observe that the equation is of

fairly traditional form similar to (1.1), but does not seem to be entirely equivalent.

We propose two different ways of restoring the τ̄ -dependence to F = lnZ: one is

obtained as the free energy F for all connected diagrams and the other is obtained as the

free energy F1PI for one-particle irreducible (1PI) diagrams only. They are in fact related

and we find a relation which gives F in terms of F1PI. Correspondingly, we obtain two

holomorphic anomaly equations, one is for F and the other is for F1PI. The former is of

traditional form as mentioned above while the latter has a rather unconventional form.

Using the above relation between F and F1PI we have verified that the two holomorphic

anomaly equations are equivalent.

Moreover, we find a closed analytic expression for the deformed partition function

Z = expF . Using this expression we show that the holomorphic anomaly equation is

1For instance, there is a statement in [29] that “In many cases no recursive holomorphic anomaly is

known. E.g. for the 2d QCD example it was argued in [24] that such a recursion does not exist”. Also,

in [30] it is stated that “There is, however, no known explicit holomorphic anomaly equations of higher

genus for elliptic curves”.
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satisfied by Z at all orders of the genus expansion. We also study the behavior of the

deformed partition function when the modulus t = −2πiτ is large and small, i.e. the

’t Hooft coupling and/or the area of the torus is large and small. In the limit of large t, Z
reduces to an Airy integral. In the limit of small t, drastic simplification occurs and Z is

given by a Fermi-Dirac integral. This small t behavior of Z is even simpler than that of

the original partition function Z. We think that this gives another nontrivial support for

our anti-holomorphic deformation.

This paper is organized as follows. In section 2, we first review the free fermion

representation of the partition function without the anti-holomorphic dependence. Next, we

review the chiral boson interpretation and elucidate how the anti-holomorphic dependence

is naturally restored to the partition function. We then explain in detail how to calculate

the free energy with anti-holomorphic dependence using Feynman diagrams. Finally we

present the relation which expresses F for connected diagrams in terms of F1PI for 1PI

diagrams. In section 3, we present the holomorphic anomaly equations for both F and

F1PI. We also give them a diagrammatic interpretation. In section 4, we present the

closed analytic expression for the deformed partition function Z. We then study the large

and small t behavior of Z. We also discuss how Fg is determined by using the holomorphic

anomaly equation. In section 5, we conclude with some discussion for future directions.

In appendix A, we present a calculation of the free energy at g = 3, 4. In appendix B, we

summarize our convention of special functions and present some useful relations.

2 Partition function of 2d Yang-Mills theory on T 2

2.1 Free fermion interpretation

The chiral partition function of 2d U(N) Yang-Mills theory on a torus admits the large N

expansion2

Z(t) = exp




∞∑

g=1

g2g−2
s Fg(t)


 . (2.1)

Here, gs = 1/N denotes the string coupling and t is the dimensionless combination of the

’t Hooft coupling and the area A of the torus

t = g2YMNA. (2.2)

The large N 2d Yang-Mills theory is often viewed as a string theory [23, 31]. From this

viewpoint Fg(t) is regarded as the genus g free energy, which “counts” the maps of a genus

g string world-sheet to the target space T 2. First few of them are

F1 = − ln η,

F2 =
5E3

2 − 3E2E4 − 2E6

51840
,

F3 = −6E6
2 − 15E4

2E4 − 4E3
2E6 + 12E2

2E
2
4 + 12E2E4E6 − 7E3

4 − 4E2
6

35831808
,

(2.3)

2Throughout this paper we ignore the non-perturbative O(e−1/gs) corrections.
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where η = η(τ), E2n = E2n(τ) are the Dedekind eta function and Eisenstein series of

weight 2n respectively and

τ =
it

2π
. (2.4)

There are a number of ways to compute Fg. Among others, it is worth mentioning that

the partition function Z admits an interpretation in terms of a system of non-relativistic

free fermions on a circle [7]. This free fermion picture allows us to express Z at large N

as [8, 12]

Z = Q− 1
24

∮
dx

2πix

∏

p∈Z≥0+
1
2

(
1 + xQpegsp

2/2
)(

1 + x−1Qpe−gsp2/2
)
, (2.5)

where Q = e2πiτ = e−t. Based on this expression it was shown that Fg (g ≥ 2) is a

quasi modular form of weight 6g − 6 for SL(2,Z) [12, 25]. Using this fact one can, in

principle, compute Fg up to any g from the above expression. Moreover, if we expand Z

as Z = eF1(1+
∑∞

n=1 g
2n
s Zn), Zn obeys a simple recursion relation, originally found in [25]

and improved in [32], which determines Fg much more efficiently than just expanding (2.5).

2.2 Chiral boson interpretation

As discussed in [8, 9] (see also [11, 13]), the bosonization maps the free fermion system

for the 2d Yang-Mills theory to a theory of compactified boson field ϕ. In this picture the

chiral partition function is expressed as

Z =

∫
Dϕ exp

[∫

T 2

(
∂̄ϕ∂ϕ+

gs
3!
(∂ϕ)3

)]
. (2.6)

Here, we let a new symbol Z denote the “bosonic” (B-model) partition function, meaning

that it slightly differs from the “fermionic” (A-model) partition function Z in (2.5). As is

well known, the correspondence between the fermionic and bosonic pictures is nontrivial

and the exact equivalence of the partition functions is achieved only if one appropriately

takes account of all the winding modes of the compactified boson ϕ. In defining Z, however,

we consider only the local quantum fluctuation and ignore the winding mode contribution.

Z then deviates from Z and gets mild τ̄ dependence. We will see that Z defined in this

way provides us with a natural generalization of Z.

We expand the partition function (2.6) as

lnZ = F =
∞∑

g=1

g2g−2
s Fg. (2.7)

The free energy Fg is then given by

Fg =

〈(
1

3!

∫
(∂ϕ)3

)2g−2
〉

connected

. (2.8)
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The expectation value is evaluated by the Wick contraction by means of the propagator

G(z1, z2) := 〈∂ϕ(z1)∂ϕ(z2)〉. (2.9)

We take the torus here (i.e. on the B-model side) to be

T 2 := C/(2πZ+ 2πτZ). (2.10)

The propagator is then given by [8, 9]

G(z1, z2) = −℘(z1 − z2)−
Ê2

12

= −℘(z1 − z2)−
E2

12
+ S.

(2.11)

Here, Ê2 is defined in (1.2) and we have introduced the notation

S :=
1

t+ t̄
=

1

4πImτ
=

E2 − Ê2

12
. (2.12)

The propagator (2.11) is obtained by taking two derivatives of the usual free boson propaga-

tor 〈ϕ(z1, z̄1)ϕ(z2, z̄2)〉. Note that S accounts for the background charge, which is inversely

proportional to the area 4π2Imτ of the torus (2.10). Such a non-holomorphic piece may

or may not remain in the final result, depending on one’s treatment of the winding mode

of ϕ. If one takes account of all the winding mode contributions, S is eventually canceled

out [33]. On the other hand, if one restricts oneself to the large N limit, the compact

nature of ϕ is not seen [8] and one can consistently ignore the winding mode. We choose

the latter option and keep the S dependence intact.

The free energy (2.8) is computed as the sum of all possible connected Feynman dia-

grams with 2g−2 trivalent vertices. To evaluate the Feynman diagrams, we need to specify

the integration prescription. We follow the prescription of [8, 34]: for a Feynman diagram

Γ with 2g − 2 trivalent vertices, the integral is given by

IΓ =

∮ 2g−2∏

i=1

dxi
2πixi

3g−3∏

k=1

G(x+k /x
−
k ) = Coeffx0

1···x
0
2g−2

[
3g−3∏

k=1

G(x+k /x
−
k )

]
, (2.13)

where xi labels the ith vertex and x±k are the two vertices connected by the kth propagator.

The propagator G(x) is given by

G(x) =
∞∑

n=1

n(xn + x−nQn)

1−Qn
+ S

=
∑

n∈Z

xQn

(1− xQn)2
+ S,

(2.14)

which is equivalent to G(z, 0) given in (2.11) with the identification x = eiz.3 As demon-

strated in [34], one can easily evaluate the Feynman diagram at least in the small Q

3By abusing notation we let the same propagator be denoted by G(z, 0) or G(x), depending on the

context.
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expansion. One difference from [34] is that here we have the non-holomorphic piece S

in the propagator. Consequently, the result is not simply a quasi modular form, but a

polynomial in S whose coefficients are given by quasi modular forms. More specifically, we

assume that the result takes the form

IΓ =

3g−3∑

k=0

Skf6g−6−2k(τ) (2.15)

with f2n(τ) being a quasi modular form of weight 2n. Then we can find the exact expression

by matching the small Q expansion.

A few technical remarks are in order: the residue integral in (2.13) is equivalent to the

period integral over one of the fundamental cycles of the torus. In terms of the variable z,

the period integral is expressed as

∮
dz(· · · ) = 1

2π

∫ z0+2π

z0

dz(· · · ), (2.16)

where z0 is a generic value chosen in such a way that the integration path avoids the

singularities. For instance, it is easy to check that the above prescription based on (2.13)

and (2.14) reproduces the period integrals used in [8]

∮
dz℘(z) = −E2

12
,

∮
dz℘(z)2 =

E4

144
,

∮
dz℘(z)3 =

4E6 − 9E2E4

8640
. (2.17)

Next, the evaluation of the multiple Laurent series expansion (2.13) needs care, because the

order of the expansions matters. The reader is referred for the details to the reference [34].

Here we simply mention that what we need to do is to take the symmetric average of all the

possible orderings of |xi| for the position xi of vertices in (2.13). Third, the symmetry factor

is simply given by the order of the automorphism group of the graph Γ [34]. This means

that the contribution of the Feynman diagram Γ to the free energy is to be normalized as

1

|Aut(Γ)|IΓ. (2.18)

Due to the presence of S in the propagator a new feature appears: 1-particle reducible

(1PR) diagrams do not vanish and yield nontrivial contribution to the free energy. One

can argue that the integral I for the 1PR diagram Γ always has the structure I = SI1I2, as

follows: suppose that Γ can be decomposed as Γ1 ∪ Γ2 with a single propagator G(xa/xb)

connecting Γ1 and Γ2. The contribution of Γ is written schematically as

I =

∮
dxa
2πixa

dxb
2πixb

G(xa/xb)

×
∏

u∈Γ1

dxu
2πixu

∏
G(xui/xuj )G(xuk

/xa)
∏

v∈Γ2

dxv
2πixv

∏
G(xvi/xvj )G(xvk/xb).

(2.19)

– 6 –



J
H
E
P
0
8
(
2
0
1
9
)
0
2
5

Since the propagator depends only on the ratio of x’s, we can set xa = xb = 1 in the second

line of (2.19) by rescaling xu → xuxa and xv → xvxb. Thus we find

I =

∮
dxa
2πixa

dxb
2πixb

G(xa/xb)

×
∏

u∈Γ1

dxu
2πixu

∏
G(xui/xuj )G(xuk

)
∏

v∈Γ2

dxv
2πixv

∏
G(xvi/xvj )G(xvk)

= SI1I2,

(2.20)

where Ik (k = 1, 2) is the integral for the diagram Γk. From this it is clear that all 1PR

diagrams vanish in the limit τ̄ → −i∞ or S → 0. This is why one has only to consider 1PI

diagrams in the literature.

1PR diagrams often contain the self-contraction G(x/x) = G(z, z). Naively, it di-

verges as −℘(ǫ) ∼ −1/ǫ2 for ǫ → 0. However, the self-contraction always appears as the

tadpole diagram and thus the amplitude can be consistently renormalized. We do this by

regularizing G(z, z) as

G(z, z) = −E2

12
+ S = − Ê2

12
. (2.21)

One can understand it by applying the zeta-function regularization to (2.14):4 the propa-

gator G(x) in (2.14) at x = 1 is regularized as

G(x = 1) =
∞∑

n=1

n+ 2
∞∑

n=1

nQn

1−Qn
+ S

= ζ(−1) +
1− E2

12
+ S = −E2

12
+ S.

(2.22)

Here we have used ζ(−1) = −1/12.

An important identity, which we will use frequently, is

DG(z1, z2) =

∮
dz3G(z1, z3)G(z3, z2), (2.23)

where

D := −∂t = Q∂Q =
1

2πi

∂

∂τ
. (2.24)

This identity can easily be shown by using the expression (2.14) as
∮

dy

2πiy
G(y/x1)G(y/x2)

= S2 +

∮
dy

2πiy

∞∑

n,m=1

n(yn/xn1 + (xn1/y
n)Qn)

1−Qn

m(ym/xm2 + (xm2 /ym)Qm)

1−Qm

= S2 +
∞∑

n=1

n2(xn1/x
n
2 + xn2/x

n
1 )Q

n

(1−Qn)2

= DG(x1/x2).

(2.25)

4See [35] for another regularization using the heat kernel.
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D
1 2

=
1 3 2

Figure 1. Diagrammatic representation of the identity (2.23).

F1 DF1 D2F1

Figure 2. Feynman diagrams for F1 and its derivatives.

Here we have used DS = S2 in (B.7). Note that the identity (2.23) has a simple diagram-

matic representation, as shown in figure 1. That is, the differential operator D inserts an

internal vertex into a propagator. Note also that the regularization (2.21) is compatible

with the identity (2.23).

The form of F1 is not computed from the Feynman diagram, but it is rather related

to the normalization of the path integral (2.6). It is convenient to fix it as

F1 = ln
√
2πS − ln η. (2.26)

Its derivatives DF1 and D2F1 are computed easily as

DF1 =
1

2
S − E2

24
, D2F1 =

1

2
S2 − E2

2 − E4

288
. (2.27)

(See (B.7) for the differentiation of S, η and E2n.) Fixed in this way, F1 and its derivatives

have a nice diagrammatic interpretation, as shown in figure 2: one can formally regard a

circle as the Feynman diagram for F1. As the differential operator D inserts an internal

vertex into a propagator, the Feynman diagram for DF1 and D2F1 should then be a circle

with one and two internal vertex(ices) respectively. Indeed, one can express (2.27) also as

DF1 =
1

2

∮
dzG(z, z), D2F1 =

1

2

∮
dz1dz2G(z1, z2)

2, (2.28)

which are, up to normalization, the very integrals derived from the Feynman diagrams.5

The expressions (2.28) are verified easily by using (2.21) and (2.17), or the latter expression

is derived from the former one by using (2.23).

Using the above techniques, one can compute Fg up to any g in principle. As an

illustration let us compute F2. As shown in figure 3, there are two Feynman diagrams that

contribute to F2. We therefore express F2 as

F2 = F (1)
2 + F (2)

2 (2.29)

5One might think that the symmetry factor for D2F1 would be 1/4 according to the rule (2.18), but it

is actually 1/2 as we see in (2.28). This is not contradictory since the rule (2.18) is derived for diagrams

made up of trivalent vertices only and does not necessarily apply to the present case.

– 8 –
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F (1)
2 F (2)

2

Figure 3. Feynman diagrams for F2.

with

F (1)
2 :=

1

12

∮
dz1dz2G(z1, z2)

3,

F (2)
2 :=

1

8

∮
dz1dz2G(z1, z1)G(z1, z2)G(z2, z2).

(2.30)

First, F (1)
2 is evaluated as

F (1)
2 =

1

12

∮
dz1dz2G(z1, 0)

3 =
1

12

∮
dz1G(z1, 0)

3

= − 1

12

∮
dz1

[
Ê3

2

123
+ 3

Ê2
2

122
℘(z1) + 3

Ê2

12
℘(z1)

2 + ℘(z1)
3

]

=
−5Ê3

2 + 15E2Ê
2
2 − 15E4Ê2 + 9E2E4 − 4E6

103680

=
1

12
S3 − E2

2 − E4

576
S +

5E3
2 − 3E2E4 − 2E6

51840
.

(2.31)

In the first equality we have changed the integration variables as (z1, z2) → (z1 + z2, z2)

and in the third line we have used (2.17). The final form has been appeared previously

in the literature [33]. Note that F (1)
2 becomes F2 in the limit S → 0, reproducing the

original calculation of [8]. Next, let us evaluate F (2)
2 . This is easy because the diagram for

F (2)
2 is 1PR and thus the integral is factorized as in (2.20). It is clear from the Feynman

diagram that

F (2)
2 =

1

2
S(DF1)

2 =
1

2
S

(
1

2
S − E2

24

)2

. (2.32)

We thus obtain

F2 =
5

24
S3 − E2

48
S2 − E2

2 − 2E4

1152
S +

5E3
2 − 3E2E4 − 2E6

51840
. (2.33)

We also present the results of F3 and F4 in appendix A.

As one can see from the above calculation, there are two sources of E2 or Ê2: one

is the explicit dependence of Ê2 in the propagator (2.11) and the other E2 is coming

from the integration of ℘(z) in (2.17). The latter does not appear in the combination of

Ê2 = E2 − 12S and thus the final result of Fg is a mixture of E2 and Ê2 (see e.g. the third

line of (2.31)). This clearly shows that the naive prescription of replacing all E2 by Ê2

does not work in the case of 2d Yang-Mills theory.

– 9 –
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One can choose any linear combination of S and E2 as a basis when writing Fg as

a polynomial. In (2.33) we expressed F2 in terms of the basis {S,E2, E4, E6}. Another

convenient basis is {S, Ê2, E4, E6}, in which F2 is written as

F2 =
5Ê2

2 + 2E4

1920
S +

5Ê3
2 − 3Ê2E4 − 2E6

51840
. (2.34)

From this one can see that Fg does not come back to itself under the modular transfor-

mation since S transforms inhomogeneously (see (B.8) for the modular transformation of

{S, Ê2, E4, E6}). This lack of modularity can be understood from the definition of Fg: as

shown in (2.13) and (2.16), the Feynman diagrams are evaluated as period integrals along

the A-cycle z ∈ [0, 2π] of T 2, and the A-cycle and the B-cycle z ∈ [0, 2πτ ] are treated

asymmetrically in our formalism.

2.3 1PI free energy

The free energy Fg (g ≥ 2) is calculated by evaluating all connected diagrams. One can

decompose Fg as

Fg = F1PI
g + F1PR

g , (2.35)

where F1PI
g and F1PR

g are the contributions from the 1PI and 1PR diagrams respectively.

As we saw above, all 1PR diagrams vanish when S = 0, namely F1PR
g (t, S = 0) = 0. On

the other hand, we have defined Fg so that Fg(t, S = 0) = Fg(t). Therefore, we have

F1PI
g (t, S = 0) = Fg(t) (g ≥ 2). (2.36)

This implies that not only Fg but also F1PI
g can be regarded as a natural anti-holomorphic

deformation of Fg.

The explicit form of F1PI
g can be easily obtained for small g. The first two are

F1PI
1 = F1 = ln

√
2πS − ln η,

F1PI
2 = F (1)

2 =
1

12
S3 − E2

2 − E4

576
S +

5E3
2 − 3E2E4 − 2E6

51840
.

(2.37)

We also present the results of F1PI
3 and F1PI

4 in appendix A.

The factorization property (2.20) of 1PR Feynman integrals suggests that Fg is written

in terms of F1PI
g′ with g′ ≤ g. Indeed, one observes that

F1 = F1PI
1 ,

F2 = F1PI
2 +

1

2
S(DF1PI

1 )2,

F3 = F1PI
3 + SDF1PI

1 DF1PI
2 +

1

2
S2D2F1PI

1 (DF1PI
1 )2 +

1

6
S3(DF1PI

1 )3.

(2.38)

To describe the general rule, let us introduce the total 1PI and 1PR free energies

F1PI :=

∞∑

g=1

g2g−2
s F1PI

g , F1PR :=

∞∑

g=1

g2g−2
s F1PR

g . (2.39)
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We conjecture that F is expressed in terms of F1PI as

F(t, S) = lim
~→0

~ ln

[
1√
2π~S

∫ ∞

−∞

dφ exp

(
1

~

[
− φ2

2S
+

gsφ
3

6
+ F1PI(t− gsφ, S)

])]
. (2.40)

This expression should be understood by means of the power series expansion in gs. Each

coefficient of the expansion is evaluated essentially by the Gaussian integral.

The relation (2.40) has a simple interpretation. To see this, we subtract F1PI from

both sides of the equation and rewrite it as

F1PR(t, S)

= lim
~→0

~ ln

[
1√
2π~S

∫ ∞

−∞

dφ exp

(
1

~

[
− φ2

2S
+

gsφ
3

6
+

∞∑

n=1

gns φ
n

n!
DnF1PI(t, S)

])]
.

(2.41)

Let us now regard the ordinary integral in φ as a “path integral”. We then see that

the “action” consists of the quadratic kinetic term, the cubic interaction and the n-point

interactions. The free energy given by the above “path integral” is calculated by evaluating

all connected diagrams made up of these interaction vertices connected by the propagator

S. The limit ~ → 0 means that we have only to consider tree-level diagrams. Indeed, in

the original boson theory any 1PR diagram is a tree graph whose vertices are the trivalent

vertex or the n-point 1PI diagrams with n > 0. The edge of the tree graph is given by

the propagator G, which in this case reduces to S due to the factorization property (2.20).

Note that the symmetry factor for a graph is simply given by the inverse of the order of

its automorphism group, in the same way as in (2.18).

As we will see, the relation (2.40) is very stimulating in regard to understanding about

our main result presented in section 4.

3 Holomorphic anomaly equation

A long-standing puzzle in the literature is that the partition function Z does not seem to

satisfy a simple holomorphic anomaly equation. As we mentioned, the puzzle originates in

the wrong assumption that anti-holomorphic derivative ∂τ̄ is essentially equivalent to ∂E2 .

This is empirically true for many cases, but does not apply to the present case. As we saw

in the last section, there are two sources of E2’s and only E2’s brought by the propagator

should be replaced with Ê2. In this section we will see that the free energy Fg and the

partition function Z indeed satisfy a usual holomorphic anomaly equation. The form of

the equation is slightly different from the original proposal (1.1) in [9]. We will also present

a holomorphic anomaly equation for F1PI
g .

3.1 Holomorphic anomaly equation for connected free energy

By using the explicit form of Fg, it is not difficult to write down the holomorphic anomaly

equation for small g. Since τ̄ always appears through S, we can use

∂S = 8πi(Imτ)2∂τ̄ (3.1)

as the anti-holomorphic derivative.

– 11 –
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2∂S Fg = Fg−1 + Fg−1 +

g−1∑

h=1

Fh Fg−h

D2Fg−1 SDFg−1 DFhDFg−h

Figure 4. Diagrammatic interpretation of the holomorphic anomaly equation (3.5). The propaga-

tor removed by the action of ∂S is indicated by the dotted line.

It follows immediately from (2.27), (2.31) and (2.32) that

∂SF (1)
2 =

1

2
D2F1, ∂SF (2)

2 =
1

2
(DF1)

2 +
1

2
SDF1. (3.2)

From this one can write the holomorphic anomaly equation for F2 as

2∂SF2 = (D + S)DF1 +DF1DF1. (3.3)

One can repeat the same calculation for F3 and F4. The results are

2∂SF3 = (D + S)DF2 + 2DF1DF2,

2∂SF4 = (D + S)DF3 + 2DF1DF3 +DF2DF2.
(3.4)

Regarding these results we conjecture that

2∂SFg = (D + S)DFg−1 +

g−1∑

h=1

DFhDFg−h (g ≥ 2). (3.5)

We will present several consistency checks of this equation.

Let us first mention that the equation (3.5) admits a natural diagrammatic interpre-

tation as shown in figure 4. Recall that S always comes into the free energy through the

propagator (2.11). Therefore, the action of ∂S is interpreted as the removal of a propaga-

tor from the Feynman diagram. Diagrammatically, there are three different cases: D2Fg−1

and SDFg−1 on the right hand side of (3.5) correspond to removal of a normal propaga-

tor and a self-contracted one respectively, where the resulting diagram remains connected.

DFhDFg−h corresponds to removal of a normal propagator, where the resulting diagram

becomes disconnected.

It is also possible to express the holomorphic anomaly equation (3.5) in terms of F or

Z in (2.7). One can easily show that (3.5) is equivalent to

2∂SF − S−1 = g2s
[
(D + S)DF + (DF)2

]
, (3.6)

where we have subtracted the genus-one term 2∂SF1 = S−1 on the left hand side. One can

also recast (3.6) into the equation for the partition function Z = expF
(
2∂S − S−1

)
Z = g2s(D + S)DZ. (3.7)
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We can remove the awkward term S−1 on the left hand side of (3.7) by rescaling the

partition function as

Ẑ =
η√
2πS

Z = exp




∞∑

g=2

g2g−2
s Fg


 . (3.8)

Then the holomorphic anomaly equation for Ẑ becomes

2∂SẐ = g2s

(
D + S − Ê2

24

)(
D − Ê2

24

)
Ẑ. (3.9)

One can rewrite it in terms of ∂τ̄ using (3.1). Written in this form, our holomorphic

anomaly equation is similar to the original proposal (1.1) of [9], but does not seem to be

entirely equivalent.

Our holomorphic anomaly equation is very reminiscent of that of Bershadsky-Cecotti-

Ooguri-Vafa (BCOV) for Calabi-Yau threefolds [26]. It was shown that topological string

amplitude F̃g (g ≥ 2) for any Calabi-Yau threefold is a polynomial in the generators Sij , Si,

S, Ki [36, 37]. By regarding F̃g as a function in these generators F̃g(Sij ,Si,S,Ki; zi, z̄i),

the BCOV holomorphic anomaly equation is written as [37, 38]

∂F̃g

∂Sij
=

1

2

g−1∑

h=1

DiF̃hDjF̃g−h +
1

2
DiDjF̃g−1, (3.10)

0 =
∂F̃g

∂Ki
+ Si∂F̃g

∂S + Sij ∂F̃g

∂Sj
. (3.11)

By identifying the coordinate and the propagator as

z1 = t, S11 = S (3.12)

and the covariant derivatives as

D1F̃g = DFg, D1D1F̃g−1 = (D + S)DFg−1, (3.13)

(3.10) coincides with our equation (3.5). However, this is merely a heuristic argument and

it should not be taken at face value since we have not computed the connection and the

covariant derivative on the moduli space. The detail of this calculation can be found in [39].

It would be interesting to understand the more precise relation between our holomorphic

anomaly equation (3.5) and that of BCOV (3.10).

3.2 Holomorphic anomaly equation for 1PI free energy

In this subsection we see that F1PI
g also obeys a simple holomorphic anomaly equation.

For small g one can explicitly derive that

2∂SF1PI
1 = S−1,

2∂SF1PI
2 = D2F1PI

1 ,

2∂SF1PI
3 = D2F1PI

2 + S
(
D2F1PI

1

)2
,

2∂SF1PI
4 = D2F1PI

3 + 2SD2F1PI
2 D2F1PI

1 + S2
(
D2F1PI

1

)3
.

(3.14)
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2∂S F1PI = S−1 + F1PI + F1PI F1PI + · · ·

g2sD
2F1PI g4sS

(
D2F1PI

)2

Figure 5. Diagrammatic interpretation of the holomorphic anomaly equation (3.16). The propa-

gator removed by the action of ∂S is indicated by the dotted line.

We conjecture that these relations follow from the holomorphic anomaly equation of

the form

2S∂SF1PI =
1

1− g2sSD
2F1PI

. (3.15)

By means of power series expansion in gs we have checked that (3.15) is equivalent to (3.6)

under the identification (2.40). It would be interesting to prove this equivalence.

The equation (3.15) also has a simple diagrammatic interpretation. To see this, we

rewrite it as

2∂SF1PI = S−1 + g2sD
2F1PI + g4sS

(
D2F1PI

)2
+ g6sS

2
(
D2F1PI

)3
+ · · · . (3.16)

Written in this form, the equation is interpreted as follows: the first term on the right hand

side accounts for 2∂SF1PI
1 = S−1 at order O(g0s). At order O

(
g2g−2
s

)
(g ≥ 2), ∂S acting

on a 1PI diagram removes a propagator from it. The resulting diagram is a connected

diagram and thus viewed as a tree graph whose vertices are 1PI diagrams or the trivalent

vertex. In order for the original diagram to be 1PI, however, the tree graph in this case

cannot have any branching. That is, the resulting diagram is always a linear graph on 1PI

components as shown in figure 5. This represents (3.16).

We note that (3.15) can also be written as

∂SF1PI
g =

g−1∑

h=1

S∂SF1PI
h D2F1PI

g−h (g ≥ 2). (3.17)

This is obtained by multiplying both sides of (3.15) by the factor
(
1− g2sSD

2F1PI
)
and

then expanding in gs. This expression is convenient for practical use.

4 Master representation and general properties

The holomorphic anomaly equation allows us to compute Fg efficiently up to very high

order. This enables us to find an all-order expression for Z, as presented below. Using this

expression we discuss some general properties of Z.

– 14 –
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4.1 Master representation

We conjecture that the partition function Z(t, S) defined by the boson theory is simply

given by

Z(t, S) =

∫ ∞

−∞

dφ e−
φ2

2S
+ gsφ

3

6 Z(t− gsφ). (4.1)

Here, Z(t) is the partition function defined in the fermion theory (2.5). The expression (4.1)

should be understood by means of the power series expansion in gs: each coefficient of the

expansion is evaluated essentially by the Gaussian integral.

Interestingly, the above relation between Z and Z is very similar to (2.40) that relates

F and F1PI. Regarding this similarity and rewriting (4.1) as

eF(t,S) =

∫ ∞

−∞

dφ exp

(
− φ2

2S
+

gsφ
3

6
+

∞∑

n=0

gns φ
n

n!
DnF (t)

)
, (4.2)

one can make the following interpretation: F is evaluated as the sum of all possible con-

nected graphs (allowing loops) consisting of the trivalent vertex, the n-point vertices (n ≥ 0)

and the edge, to which factors gs, g
n
sD

nF and S are assigned respectively. The symmetry

factor for a graph Γ is simply given by |Aut(Γ)|−1, in the same way as in section 2.

We have checked (4.1) by using the explicit data of Fg and Fg for small g. As a further

consistency check, let us verify that Z given by (4.1) indeed satisfies the holomorphic

anomaly equation (3.7). To begin with, let us introduce a formal differential operator

Dt := −(∂t)S , which is a partial derivative with respect to t holding S constant. We

distinguish it from D = −∂t, which acts on both t and S. D is expressed in terms of Dt as

D = S2∂S +Dt. (4.3)

In other words, we treat t and S as independent variables and Dt does not act on S

Dtf(t) = −∂tf(t), DtS = 0. (4.4)

By plugging (4.1) into (3.7), the left hand side of (3.7) is

(2∂S − S−1)Z =

∫ ∞

−∞

dφ e−
φ2

2S
+ gsφ

3

6

(
φ2

S2
− 1

S

)
Z(t− gsφ)

=

∫ ∞

−∞

dφ e−
φ2

2S
+ gsφ

3

6
+gsφDt

(
φ2

S2
− 1

S

)
Z(t).

(4.5)

On the other hand, the right hand side of (3.7) is

g2s(D + S)DZ =

∫ ∞

−∞

dφ e−
φ2

2S
+ gsφ

3

6
+gsφDtg2s

(
Dt + S +

φ2

2

)(
Dt +

φ2

2

)
Z(t), (4.6)

where we have used the identity

e
φ2

2S S2∂Se
−

φ2

2S = S2∂S +
φ2

2
. (4.7)
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One can easily show that the difference of the left and right hand sides of (3.7) is a total

derivative

(2∂S − S−1)Z − g2s(D + S)DZ

=

∫ ∞

−∞

dφ
d

dφ

{
e−

φ2

2S
+ gsφ

3

6
+gsφDt

[
−φ

S
− gs

(
Dt + S +

φ2

2

)]
Z(t)

}
.

(4.8)

By performing a power series expansion in gs, one can see that the boundary contribution

vanishes order by order. Hence, the holomorphic anomaly equation (3.7) is satisfied.

4.2 Large t regime

When t is large, one can study the partition function Z by means of the power series

expansion inQ = e−t. This is done by plugging the fermionic representation (2.5) into (4.1):

Z =

∫ ∞

−∞

dφ e−
φ2

2S
+ gsφ

3

6 (Qegsφ)−
1
24

×
∮

dx

2πix

∏

p∈Z≥0+
1
2

(
1 + x(Qegsφ)pegsp

2/2
)(

1 + x−1(Qegsφ)pe−gsp2/2
)
.

(4.9)

Expanding this expression in Q one can obtain the small Q expansion of Z up to any order.

In particular, in the limit t → ∞, i.e. Q = 0, the partition function is simply given by

the Airy integral

lim
t→∞

Ẑ =
1√
2πS

∫ ∞

−∞

dφ e−
gsφ
24

−
φ2

2S
+ gsφ

3

6 , (4.10)

where Ẑ is defined in (3.8) and we have treated t and S as independent variables. Note that

the Airy function also appears in a certain limit of topological string partition function [38]

and the all-genus resummation of the free energy of ABJM theory on S3 [40, 41]. We should

stress that the integral transformation (4.1) defines a mapping between the bosonic and

the fermionic partition functions without assuming a particular limit. Our formula (4.1) is

very reminiscent of the transformation appearing in the Fermi gas formalism [41, 42]. It

would be interesting to understand the relation to [41, 42] better.

4.3 Small t regime

One can study the small t behavior of the free energy by using the modular transforma-

tion (B.8). The Eisenstein series transform as

Ê2(τ) =
1

τ2
E2

(
−1

τ

)
+

12

t
− 12

t+ t̄
,

E2n(τ) =
1

τ2n
E2n

(
−1

τ

)
(n ≥ 2).

(4.11)

Therefore, taking t small and setting t̄ = 0, one has

Ê2(τ) =
1

τ2

[
1 +O

(
e−

4π2

t

)]
,

E2n(τ) =
1

τ2n

[
1 +O

(
e−

4π2

t

)]
(n ≥ 2).

(4.12)
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In this regime one also has

S =
1

t
, (4.13)

which follows from (2.12) with t̄ = 0.

Taking this into account, let us regard Fg as a polynomial in the generators Ê2, E4, E6,

S. One immediately finds that Fg is of weight 6g − 6, where weight 2, 4, 6, 2 are assigned

to Ê2, E4, E6, S respectively. Let us express it as

Fg =

3g−3∑

k=0

Pg,k(Ê2, E4, E6)S
k (g ≥ 2). (4.14)

Pg,k is a polynomial of weight 6g − 2k − 6. Note that

Pg,0

∣∣∣
Ê2=E2

= Fg. (4.15)

Based on the explicit data of Fg up to high genus we find the following two conjectural

properties. A peculiar feature of Fg is that higher powers of S vanish when written in the

basis of S and Ê2

Pg,k = 0 for k ≥ 2g − 2. (4.16)

See (2.34), (A.8) and (A.10) for the examples of this property of Fg for g = 2, 3, 4. Moreover,

if we set

Ê2 = E4 = E6 = 1, (4.17)

we find

Pg,k

∣∣∣
Ê2=E4=E6=1

=





√
π(1− 22g−1)B2g

2(2g)!Γ(5/2− 2g)
for k = 2g − 3,

0 otherwise,
(4.18)

where Bk is the Bernoulli number (see appendix B). In other words,

Fg

∣∣∣
Ê2=E4=E6=1

=

√
π(1− 22g−1)B2g

2(2g)!Γ(5/2− 2g)
S2g−3 (g ≥ 2). (4.19)

One can now evaluate the behavior of Fg in the small t regime as follows. By plug-

ging (4.12) into (4.14), one sees that all Pg,k except for k = 2g − 3 vanish up to the

O(e−4π2/t) corrections. The only remaining Pg,2g−3 is of weight 2g and thus it gets the

overall factor τ−2g along with the value in (4.18). Hence we have

Fg

∣∣∣
t≪1,t̄=0

= τ−2gFg

∣∣∣
Ê2=E4=E6=1,S=t−1

+O
(
e−

4π2

t

)

=

√
π(22g−1 − 1)ζ(2g)

Γ(5/2− 2g)
t3−4g +O

(
e−

4π2

t

)
(g ≥ 2).

(4.20)
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Here we have used the relation between B2g and ζ(2g) in (B.6). As one can see from (2.2),

the limit t → 0 corresponds to the weak coupling/small area limit. Fg in this limit was

studied previously [24, 43, 44]. Remarkably, here we see that Fg has a much simpler limit

than that of Fg.

It is known that the polylogarithm function Lis(z) :=
∑∞

k=1 z
k/ks, or the Fermi-Dirac

integral of order s− 1, has the asymptotic expansion of the form (see e.g. [44])

−Lis(−eµ) =
1

Γ(s)

∫ ∞

0

εs−1dε

eε−µ + 1

= 2
∞∑

k=0

(1− 21−2k)ζ(2k)

Γ(s+ 1− 2k)
µs−2k +O(e−µ).

(4.21)

By using this, F in the regime

µ ≡ t2

2gs
≫ 1, t ≪ 1, t̄ = 0 (4.22)

is expressed as

F +
t3

3g2s
= −

√
π

2gs
Li3/2(−eµ)

=

√
2

gs

∫ ∞

0

ε1/2dε

eε−µ + 1
,

(4.23)

where we have ignored the O(e−µ) and O(e−4π2/t) corrections. This is in accordance with

the result of [44], where the appearance of the Fermi-Dirac integral in the weak coupling

limit was observed by a quite different approach. Also, it is interesting to observe that

the non-perturbative correction e−µ = e−t2/2gs agrees with the one found in the resurgence

analysis in [32].

Note that the second term on the left hand side of (4.23) can be thought of as the genus-

zero free energy F0(t) = t3/3 in the bosonic theory, which differs from that in the fermionic

theory F0(t) = −t3/6 [20]. If we include the genus-zero contribution, the exponential factor

of (4.1) with S = 1/t becomes

F0(t)

g2s
− tφ2

2
+

gsφ
3

6
=

F0(t− gsφ)

g2s
+

µ(t− gsφ)

gs
. (4.24)

Thus, after a change of integration variable φ → −(φ− t/gs), (4.1) reduces to a very simple

expression in the regime of (4.22)

exp

(
−
√

π

2gs
Li3/2(−eµ)

)
=

∫ ∞

−∞

dφ eµφ exp




∞∑

g=0

g2g−2
s Fg(gsφ)


 . (4.25)

If we neglect the non-perturbative corrections of order O(e−1/t), Fg becomes a poly-

nomial in 1/t. Such polynomial part of Fg can be determined recursively by solving the

holomorphic anomaly equation (3.5) together with (4.20) as the boundary condition at
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S = 1/t to fix the integration constant, also known as the holomorphic ambiguity. Let us

demonstrate this procedure for F2 as an example. We start with the small t behavior of

the genus-one free energy (2.26)

F1(t, S) =
1

2
lnS +

1

2
ln t+

π2

6t
. (4.26)

Here and below we ignore the O(e−1/t) corrections. Plugging (4.26) into the holomorphic

anomaly equation (3.5) at g = 2, we find F2(t, S) up to a holomorphic ambiguity F2(t)

F2(t, S) =
5

24
S3 +

(
π2

12t2
− 1

4t

)
S2 +

(
π4

72t4
+

π2

12t3
− 1

8t2

)
S + F2(t). (4.27)

By imposing the boundary condition at S = 1/t (4.20)

F2(t, S = 1/t) =
7π4

120t5
, (4.28)

F2(t) is fixed as

F2(t) =
2π4

45t5
− π2

6t4
+

1

6t3
. (4.29)

This agrees with the known small t behavior of F2(t) [24, 43, 44]. In a similar manner, one

can compute the higher genus free energy in the small t regime by solving the holomorphic

anomaly equation recursively. We should stress that the polynomial-in-1/t part of the

holomorphic ambiguity is completely fixed by the boundary condition (4.20).

4.4 Some remarks on determining Fg

As we have seen above, the peculiar features (4.16) and (4.18) correspond to the boundary

condition of F at t = 0. In the theory of topological strings, it is well known that the

holomorphic anomaly equation does not determine the higher genus amplitudes completely,

leaving holomorphic ambiguities. It is also known that the ambiguities can be partially (or

sometimes completely) removed by exploiting the polynomial structure [36, 37] and some

boundary conditions at special points of the moduli space. While in the present case we

have several ways to determine Fg without ambiguity, it is still interesting to see to what

extent the boundary conditions (4.16) and (4.18) constrain the form of Fg.

In what follows let us forget everything and assume only that Fg has the polynomial

structure (4.14) and satisfies the holomorphic anomaly equation (3.5). For given g (≥ 2),

the holomorphic anomaly equation completely determines the form of Pg,k for k > 0,

given the forms of the lower genus amplitudes Fh (1 ≤ h ≤ g − 1). Therefore, the only

undetermined polynomial is Pg,0, which is a quasi modular form of weight 6g − 6. It

consists of 3g2

4

(
3g2+1

4

)
monomials in Ê2, E4, E6 when g is even (odd). We observe that

the boundary conditions (4.16) and (4.18) partially determine the unknown coefficients.

The number of determined coefficients increases slightly faster than linearly as g grows.

(For instance, 30 out of 75 coefficients are fixed at g = 10, 78 out of 300 coefficients are

fixed at g = 20.)
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To remove the ambiguities completely, one way to go further is to evaluate the higher

order corrections to the expression (4.23) and obtain more boundary conditions at t = 0.

We have the impression that this requires rather intricate analysis. Alternatively, instead

of/together with (4.16) and (4.18), one can impose boundary conditions at t = ∞. Such

conditions are obtained as many as one wants by expanding (4.9) or (2.5) in Q. As we

mentioned in section 2, however, imposing these conditions are essentially equivalent to

solving the recursion relation of [32], which is much more efficient in determining Fg =

Pg,0

∣∣
Ê2=E2

. We have the impression that solving the holomorphic anomaly equation (3.5)

together with the recursion relation of [32] is the most efficient way to obtain Fg up to

given g.

5 Conclusions and outlook

In this paper we have clarified how holomorphic anomaly arises in the partition function of

2d U(N) Yang-Mills theory on a torus and proposed a natural anti-holomorphic deforma-

tion of the partition function. Our construction is based on the chiral boson interpretation

of the partition function. We have pointed out that consistent recovery of the τ̄ -dependence

is achieved by simply ignoring the winding mode contribution. As a result, the deformed

partition function Z defined in this way contains both Ê2 and E2. Ê2 always appears

through the propagator G in (2.11) and contains the τ̄ -dependence while E2 emerges from

period integrals such as (2.17) and should not be replaced with Ê2. We have demonstrated

in detail how to calculate the deformed free energy Fg and F1PI
g . They are calculated by

evaluating all connected and all 1PI diagrams with 2g − 2 vertices respectively.

We have then identified the precise form of the holomorphic anomaly equation: (3.6)

for F , (3.7) for Z = expF and (3.15) for F1PI. We have observed that (3.6) for F is

very reminiscent of the traditional BCOV holomorphic anomaly equation. On the other

hand, (3.15) for F1PI has a rather unconventional form. However, F and F1PI are related

as in (2.40) and using this relation we have verified by means of the genus expansion that

two holomorphic anomaly equations (3.6) and (3.15) are equivalent.

Finally, we have conjectured a closed analytic expression for the deformed partition

function Z: it is expressed in terms of the undeformed partition function Z as in (4.1)

or as the free fermion representation in (4.9). We have also studied the behavior of Z
both in the cases of large and small t. In the limit of t → ∞ the partition function Z
becomes a mere Airy integral in (4.10). On the other hand, in the limit of small t with

some other conditions (4.22), the free energy F is expressed in terms of a Fermi-Dirac

integral as in (4.23). This small t result of F should be compared with the small area limit

of F . It turns out that F becomes simpler than F due to the occurrence of the drastic

cancellations (4.16) and (4.18). We think that this provides us with another nontrivial

support for our anti-holomorphic deformation.

In this paper we have made several conjectures, which leave room for further investi-

gation. Our main conjecture is the closed analytic expression (4.1) for Z. While we have

given it a diagrammatic interpretation, the expression is still mysterious and we would like

to have a better understanding. For example, it would be very nice if the form of (4.1)
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is understood directly from the original path integral (2.6). (4.1) is reminiscent of the

relation between the canonical and the grand canonical partition functions in the Fermi

gas formalism in [41, 42]. Also, the appearance of the Airy integral and the Fermi-Dirac

integral suggests a possible connection to the Fermi gas formalism, which deserves further

investigation.

As mentioned above, we have verified that the two holomorphic anomaly equa-

tions (3.6) for F and (3.15) for F1PI are equivalent. It would be interesting to prove

the equivalence. Another related question is whether F1PI also admits a closed analytic

expression similar to (4.1) for Z. We have discussed the similarity between (3.6) and the

traditional BCOV holomorphic anomaly equation. It would be interesting to understand

the more precise relation between them.

In our previous paper [32], we have studied the non-perturbative correction O(e−1/gs)

in the genus expansion of partition function Z, and found evidence that the contribution of

baby universes advocated in [22] is not included in the partition function of 2d Yang-Mills

theory. To gain more confidence on the absence of baby universes in the partition function

of 2d Yang-Mills theory, it would be interesting to study the trans-series solution of the

holomorphic anomaly equation (3.6) along the lines of [45]. We leave this as an interesting

future problem.

Acknowledgments

We would like to thank Ricardo Schiappa for correspondence and discussion. This work

was supported in part by JSPS KAKENHI Grant Nos. 26400257 and 16K05316, and JSPS

Japan-Russia Research Cooperative Program.

A Calculation of free energy at g = 3, 4

In this appendix we calculate Fg and F1PI
g at g = 3, 4. As shown in figure 6, there are five

diagrams that contribute to F3. The corresponding integrals are explicitly written as

F (1)
3 :=

1

16

∮
G2

12G
2
34G13G24,

F (2)
3 :=

1

24

∮
G12G13G14G23G24G34,

F (3)
3 :=

1

8

∮
G2

12G13G23G34G44,

F (4)
3 :=

1

16

∮
G11G12G

2
23G34G44,

F (5)
3 :=

1

48

∮
G11G22G33G14G24G34.

(A.1)

Here, we have used the abbreviated notation

G12 ≡ G(z1, z2) = G(x1/x2) (A.2)

and suppressed integration variables from the period integral.
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F (1)
3 F (2)

3 F (3)
3 F (4)

3 F (5)
3

Figure 6. Feynman diagrams for F3.

Among these, F (1)
3 and F (2)

3 are 1PI, for which the integrals are nontrivial. To calculate

them, we first evaluate the integrals in the small Q expansion up to sufficiently high order.

We then make the ansätze of the form (2.15) and match them with the Q expansion results.

In this way we are able to obtain the following exact results

F (1)
3 =

1

16
S6 − E2

2 − E4

1152
S4 − 3E4

2 − 22E2
2E4 + 32E2E6 − 13E2

4

331776
S2

+
E5

2 − 4E3
2E4 + 2E2

2E6 + 3E2E
2
4 − 2E4E6

497664
S

− 3E6
2 − 6E4

2E4 − 4E3
2E6 + 3E2

2E
2
4 + 12E2E4E6 − 4E3

4 − 4E2
6

35831808
,

F (2)
3 =

1

24
S6 − E3

2 − 3E2E4 + 2E6

10368
S3 − E4

2 − 6E2
2E4 + 8E2E6 − 3E2

4

165888
S2

+
E5

2 − 4E3
2E4 + 2E2

2E6 + 3E2E
2
4 − 2E4E6

497664
S − E6

2 − 3E4
2E4 + 3E2

2E
2
4 − E3

4

11943936
.

(A.3)

On the other hand, the rest are 1PR and thus, as shown in (2.20), factorize into known

pieces

F (3)
3 = SDF1DF (1)

2 ,

F (4)
3 =

1

2
S2 (DF1)

2D2F1,

F (5)
3 =

1

6
S3 (DF1)

3 .

(A.4)

DF1 and D2F1 are given in (2.27). DF (1)
2 is computed from (2.31) by using (B.7) as

DF (1)
2 =

1

4
S4 − E2

2 − E4

576
S2 − E3

2 − 3E2E4 + 2E6

3456
S +

E4
2 − 2E2

2E4 + E2
4

41472
. (A.5)

We thus obtain

F3 = F (1)
3 + F (2)

3 + F (3)
3 + F (4)

3 + F (5)
3

=
5

16
S6 − 5E2

192
S5 − 3E2

2 − 5E4

2304
S4 − 9E3

2 − 48E2E4 + 40E6

82944
S3

+
2E4

2 + 15E2
2E4 − 40E2E6 + 23E2

4

331776
S2
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+
3E5

2 − 14E3
2E4 + 8E2

2E6 + 11E2E
2
4 − 8E4E6

995328
S

− 6E6
2 − 15E4

2E4 − 4E3
2E6 + 12E2

2E
2
4 + 12E2E4E6 − 7E3

4 − 4E2
6

35831808
, (A.6)

F1PI
3 = F (1)

3 + F (2)
3

=
5

48
S6 − E2

2 − E4

1152
S4 − E3

2 − 3E2E4 + 2E6

10368
S3

− 5E4
2 − 34E2

2E4 + 48E2E6 − 19E2
4

331776
S2

+
E5

2 − 4E3
2E4 + 2E2

2E6 + 3E2E
2
4 − 2E4E6

248832
S

− 6E6
2 − 15E4

2E4 − 4E3
2E6 + 12E2

2E
2
4 + 12E2E4E6 − 7E3

4 − 4E2
6

35831808
. (A.7)

In terms of the basis {S, Ê2, E4, E6} they are expressed as

F3 = −35Ê3
2 + 42Ê2E4 + 16E6

27648
S3 − 58Ê4

2 + 33Ê2
2E4 − 40Ê2E6 − 51E2

4

331776
S2

− 3Ê5
2 − 2Ê3

2E4 − 4Ê2
2E6 − Ê2E

2
4 + 4E4E6

331776
S

− 6Ê6
2 − 15Ê4

2E4 − 4Ê3
2E6 + 12Ê2

2E
2
4 + 12Ê2E4E6 − 7E3

4 − 4E2
6

35831808
,

F1PI
3 = −17Ê3

2 + 27Ê2E4 + 12E6

20736
S3 − 45Ê4

2 + 38Ê2
2E4 − 32Ê2E6 − 51E2

4

331776
S2

− 2Ê5
2 − Ê3

2E4 − 3Ê2
2E6 − Ê2E

2
4 + 3E4E6

248832
S

− 6Ê6
2 − 15Ê4

2E4 − 4Ê3
2E6 + 12Ê2

2E
2
4 + 12Ê2E4E6 − 7E3

4 − 4E2
6

35831808
.

(A.8)

One can calculate F4 and F1PI
4 in the same way. As shown in figure 7, there are 17

diagrams that contribute to F4. The first five of them are 1PI while the others are 1PR.

The calculations are tedious but straightforward. The final results are as follows:

F4 =
1105

1152
S9 − 5

64
E2S

8 − 5(7E2
2 − 12E4)

9216
S7 − 53E3

2 − 285E2E4 + 240E6

165888
S6

− 31E4
2 − 712E2

2E4 + 1360E2E6 − 680E2
4

2654208
S5

+
15E5

2 + 179E3
2E4 − 760E2

2E6 + 910E2E
2
4 − 344E4E6

7962624
S4

+
1

286654464
(255E6

2 − 1290E4
2E4 − 812E3

2E6

+ 6393E2
2E

2
4 − 6720E2E4E6 + 1070E3

4 + 1104E2
6)S

3
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+
1

286654464
(25E7

2 − 385E5
2E4 + 696E4

2E6 + 211E3
2E

2
4

− 1484E2
2E4E6 + 725E2E

3
4 + 576E2E

2
6 − 364E2

4E6)S
2

− 1

3439853568
(71E8

2 − 496E6
2E4 + 280E5

2E6 + 886E4
2E

2
4 − 400E3

2E4E6

− 1016E2
2E

3
4 − 448E2

2E
2
6 + 1592E2E

2
4E6 − 181E4

4 − 288E4E
2
6)S

+
1

464380231680
(355E9

2 − 1395E7
2E4 − 600E6

2E6 + 1737E5
2E

2
4

+ 4410E4
2E4E6 − 2145E3

2E
3
4 − 1860E3

2E
2
6 − 6300E2

2E
2
4E6

+ 3600E2E
4
4 + 4860E2E4E

2
6 − 2238E3

4E6 − 424E3
6),

F1PI
4 =

11

36
S9 − 5(E2

2 − E4)

2304
S7 − 5(E3

2 − 3E2E4 + 2E6)

20736
S6

− 5E4
2 − 34E2

2E4 + 48E2E6 − 19E2
4

165888
S5

− E5
2 − 28E3

2E4 + 74E2
2E6 − 69E2E

2
4 + 22E4E6

995328
S4

+
1

143327232
(41E6

2 + 225E4
2E4 − 1728E3

2E6

+ 3219E2
2E

2
4 − 2400E2E4E6 + 307E3

4 + 336E2
6)S

3

+
1

35831808
(7E7

2 − 71E5
2E4 + 104E4

2E6 + 49E3
2E

2
4

− 208E2
2E4E6 + 87E2E

3
4 + 72E2E

2
6 − 40E2

4E6)S
2

− 1

286654464
(7E8

2 − 46E6
2E4 + 24E5

2E6 + 80E4
2E

2
4 − 32E3

2E4E6

− 90E2
2E

3
4 − 40E2

2E
2
6 + 136E2E

2
4E6 − 15E4

4 − 24E4E
2
6)S

+
1

464380231680
(355E9

2 − 1395E7
2E4 − 600E6

2E6 + 1737E5
2E

2
4

+ 4410E4
2E4E6 − 2145E3

2E
3
4 − 1860E3

2E
2
6 − 6300E2

2E
2
4E6

+ 3600E2E
4
4 + 4860E2E4E

2
6 − 2238E3

4E6 − 424E3
6). (A.9)

In terms of the basis {S, Ê2, E4, E6} they are expressed as

F4 =
11(175Ê4

2 + 420Ê2
2E4 + 320Ê2E6 + 228E2

4)

1474560
S5

+
875Ê5

2 + 1793Ê3
2E4 + 244Ê2

2E6 − 1128Ê2E
2
4 − 1784E4E6

2654208
S4

+
1

286654464
(10307Ê6

2 + 12810Ê4
2E4 − 13804Ê3

2E6

− 31275Ê2
2E

2
4 − 9120Ê2E4E6 + 19674E3

4 + 11408E2
6)S

3
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+
1

286654464
(593Ê7

2 − 13Ê5
2E4 − 1504Ê4

2E6 − 1789Ê3
2E

2
4

+ 2068Ê2
2E4E6 + 2185Ê2E

3
4 + 976Ê2E

2
6 − 2516E2

4E6)S
2

+
1

1146617856
(71Ê8

2 − 124Ê6
2E4 − 200Ê5

2E6 − 38Ê4
2E

2
4 + 656Ê3

2E4E6

+ 148Ê2
2E

3
4 − 16Ê2

2E
2
6 − 904Ê2E

2
4E6 + 167E4

4 + 240E4E
2
6)S

+
1

464380231680
(355Ê9

2 − 1395Ê7
2E4 − 600Ê6

2E6 + 1737Ê5
2E

2
4

+ 4410Ê4
2E4E6 − 2145Ê3

2E
3
4 − 1860Ê3

2E
2
6 − 6300Ê2

2E
2
4E6

+ 3600Ê2E
4
4 + 4860Ê2E4E

2
6 − 2238E3

4E6 − 424E3
6),

F1PI
4 =

1435Ê4
2 + 4230Ê2

2E4 + 3600Ê2E6 + 2799E2
4

1658880
S5

+
487Ê5

2 + 1226Ê3
2E4 + 300Ê2

2E6 − 681Ê2E
2
4 − 1332E4E6

1990656
S4

+
1

143327232
(4185Ê6

2 + 6825Ê4
2E4 − 5440Ê3

2E6

− 15021Ê2
2E

2
4 − 6048Ê2E4E6 + 9819E3

4 + 5680E2
6)S

3

+
1

71663616
(130Ê7

2 + 35Ê5
2E4 − 352Ê4

2E6 − 476Ê3
2E

2
4

+ 460Ê2
2E4E6 + 571Ê2E

3
4 + 260Ê2E

2
6 − 628E2

4E6)S
2

+
1

859963392
(50Ê8

2 − 79Ê6
2E4 − 152Ê5

2E6 − 47Ê4
2E

2
4 + 488Ê3

2E4E6

+ 127Ê2
2E

3
4 − 4Ê2

2E
2
6 − 688Ê2E

2
4E6 + 125E4

4 + 180E4E
2
6)S

+
1

464380231680
(355Ê9

2 − 1395Ê7
2E4 − 600Ê6

2E6 + 1737Ê5
2E

2
4

+ 4410Ê4
2E4E6 − 2145Ê3

2E
3
4 − 1860Ê3

2E
2
6 − 6300Ê2

2E
2
4E6

+ 3600Ê2E
4
4 + 4860Ê2E4E

2
6 − 2238E3

4E6 − 424E3
6). (A.10)

B Convention of special functions and some useful relations

The Weierstrass ℘-function is defined as

℘(z; 2ω1, 2ω3) :=
1

z2
+

∑

(m,n)∈Z2
6=(0,0)

[
1

(z − Ωm,n)2
− 1

Ωm,n
2

]
, (B.1)

where Ωm,n = 2mω1 + 2nω3. In this paper we always set 2ω1 = 2π, 2ω3 = 2πτ and use

the following abbreviated notation

℘(z) := ℘(z; 2π, 2πτ). (B.2)
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8 16 8 32

16 16 16

32 32 48

32 128

Figure 7. Feynman diagrams for F4. There are 17 diagrams: the five hexagonal diagrams on the

top line are 1PI and the others are 1PR. The number under each diagram shows the order of the

automorphism group of the graph, which gives the inverse of the symmetry factor.

The Dedekind eta function is defined as

η(τ) := Q1/24
∞∏

n=1

(1−Qn). (B.3)

The Eisenstein series are given by

E2n(τ) = 1− 4n

B2n

∞∑

k=1

k2n−1Qk

1−Qk
(B.4)

for n ∈ Z>0. The Bernoulli numbers Bk are defined by

x

ex − 1
=

∞∑

k=0

Bk

k!
xk. (B.5)
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The value of zeta-function at a non-negative even integer is given by

ζ(2k) =
(−1)k+1(2π)2kB2k

2(2k)!
(k ∈ Z≥0). (B.6)

We often abbreviate η(τ), E2n(τ) as η, E2n respectively.

In the main text we use the following differentiation formulas

DE2 =
E2

2 − E4

12
, DE4 =

E2E4 − E6

3
, DE6 =

E2E6 − E2
4

2
,

D ln η =
E2

24
, DS = S2,

(B.7)

where D := Q∂Q = (2πi)−1∂τ and S := (4πImτ)−1 = (E2 − Ê2)/12.

Under the modular S-transformation we have

E2n(−1/τ) = τ2nE2n(τ), (n ≥ 2),

E2(−1/τ) = τ2E2(τ) +
6τ

πi
,

S(−1/τ,−1/τ̄) = τ2S(τ, τ̄) +
τ

2πi
,

Ê2(−1/τ,−1/τ̄) = τ2Ê2(τ, τ̄),

η(−1/τ) =
√
−iτη(τ).

(B.8)

Here we have regarded S as a function of τ and τ̄ : S = S(τ, τ̄) = (4πImτ)−1.
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