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1 Introduction

Asymptotic symmetries in gauge and gravitational theories have seen a resurgence of in-

terest in recent years, both for studying the structure of cosmological observables and

for investigating the formal structure of scattering amplitudes in field theory and gravity.

Asymptotic symmetries are residual gauge or diffeomorphism symmetries of the gauge-

fixed action that do not fall off at infinity, and since asymptotic symmetries do not leave



the wavefunction invariant (i.e., they are spontaneously broken) they can lead to physi-
cal Ward identities involving the associated Goldstone bosons. These identities constitute
a generalization of soft-pion theorems for internal symmetries in field theory to the case
of spontaneously broken spacetime symmetries, and the associated Goldstones are gauge
bosons or gravitons. For a general discussion of asymptotic symmetries and the construc-
tion of the associated Noether charges, see for instance [1-3].

A specific application of this formalism is to the derivation of consistency relations
for in-in correlation functions for cosmological perturbations, performed in unitary gauge
in [4] and in conformal Newtonian gauge in [5]. Here the associated Ward identities of
the residual symmetries are phrased in terms of relations between the soft limit of an
(N + 1)-point function on the one hand and a symmetry transformation acting on an N-
point function on the other. In the soft momentum limit a Goldstone boson will become
locally indistinguishable from an asymptotic symmetry transformation, and can therefore
be transformed away. Schematically the Ward identities take on the form

([Q,0]) = —i(60), (1.1)

where the charge @) creates the soft Goldstone boson that realizes the nonlinear symmetry
transformation, and 0 denotes the part of the symmetry that acts linearly on observables.
Another choice of notation (see for instance [6, 7]) which we will follow is

([@s,0]) = =([Qu, O)), (1.2)

where Qg creates the soft mode realizing the nonlinear part of the symmetry, and @ g is the
linear transformation acting on the hard modes. Strictly speaking, Q)g is not well-defined
for spontaneously broken charges since it is not normalizable, but its commutator with
local operators is. The full charge Q = Qg + Qg then commutes with the operator O.

It was recently shown in [6, 7] that Weinberg’s soft graviton theorem for scattering
amplitudes [8] is related to the Ward identities of the BMS symmetries [9-11] of asymptoti-
cally Minkowski spacetimes, with the soft graviton playing the role of the Goldstone boson.
This was shown to hold at subleading order in the soft momenta as well [12], and has been
further generalized to include asymptotic gauge and fermionic symmetries [13-15] and to
the scattering of massive particles [16], which travel out to timelike infinity. A more com-
prehensive and pedagogical review of these ideas can be found in [17]. The BMS symmetries
enlarge the Poincaré algebra to an infinite-dimensional algebra consisting of supertransla-
tions and superrotations, and it remains to be fully understood whether they contain novel
information about the structure of the gravitational S-matrix in flat space, or whether they
repackage the known symmetry content of the theory in an illuminating way. In [18] it was
proposed that the soft charges mediate transitions between degenerate vacua in quantum
gravity and may help resolve the problem of information loss in black hole evaporation.!
BMS symmetry has also been studied as the starting point for defining a holographic dual
to Minkowski space which would live on the null boundary (see for instance [20-24] for

!See however [19] for a discussion of why the soft modes may be insufficient to encode the information
loss at leading order.



early works on this subject). Further evidence for a 2d CFT structure dual to the 4d
scattering amplitudes was found e.g. in [25-27, 29]. It is fair to say, however, that whether
it is possible to have a well-defined holographic theory living on the null boundary, and
how such a theory dual to Minkowski space should behave, is still not well understood.
In the current work our goal is to understand how the asymptotic BMS symmetry alge-
bra is realized in terms of the scattering amplitudes. This generalizes the work of [6, 7, 12]
to amplitudes where more than one graviton is taken to be soft, and a particular combina-
tion of soft limits corresponds to the commutator of the BMS charge algebra. The general
structure of the BMS algebra and the corresponding Dirac bracket in three and four di-
mensions was analyzed by studying the form of the classical symmetry transformations and
charges in [30] (see also [31]), and it was found that while the global subalgebra in 4d has
no central charges, there is a nontrivial extension of the classical algebra by a generalized 2-
cocycle when the BMS algebra is promoted to include local (singular) superrotations. The
extension term breaks the symmetry, similar to the breaking of conformal invariance by a
nonzero central charge. In the current work we will show how the symmetry algebra at null
infinity is realized in the language of scattering amplitudes as a particular limit of the double
soft amplitude. (See also [32] for previous work relating the double consecutive soft ampli-
tude to nested Ward identities, in which many similar issues are discussed.) What makes
this more subtle than the single-soft case is that the Goldstones themselves are charged
under the symmetry; therefore, transforming away one soft mode will shift the second as
101Q2s = [Q2s, Q11| # 0, and this shift needs to be accounted for when transforming away
the second soft mode.? We will see that this shifting of the single-soft amplitudes is crucial
for realizing the asymptotic BMS algebra, and is related to the structure of contact terms
between single-soft factors that arise in the antisymmetrized consecutive double-soft limit.
Our main results can be written schematically in terms of the S-matrix elements as

lim lim} Z /d2z1d222\1'1(q1)\112(q2)(0ut q1, q2|Slin) = (out|[Q[1 2] + K(1,2), Sl|in),

[w2—0 w1 —0 N v
(1.3)
where the g1 2 collectively denote the energies w; 2, the directions z12 and the helicities
A1,2 of the soft gravitons, and the weights W o are appropriately chosen for the BMS
transformations corresponding to @1 and Q2. ()[1 ) refers to the charge associated with
the commutator in the unextended BMS algebra, and K, 7) contains the extension, which
agrees to leading order with the expression found in [30]. In general, K s is non-zero
and does not commute with S if one of the transformations is a supertranslation and the
other is a singular superrotation, but vanishes otherwise. We will perform the calculation
at the level of scattering amplitudes, and also at the level of the commutators of the charge
operators. The term K transforms under the BMS algebra and satisfies the generalized

cocycle condition

i[Q3, K(1,2)] + K([1,91,3) + (cyclic permutations) = 0, (1.4)

so the Jacobi identity is satisfied and the BMS algebra has a nontrivial extension.

2This is already familiar from the case of two soft pions — see appendix B for a review.



This paper is organized as follows: in the next section we will review the form of
the BMS transformations and the structure of the algebra. In section 3 we review and
rederive the definition of the integrated charges and the connection between the BMS Ward
identities and the single-soft graviton theorems, and in section 4 we demonstrate step by
step how the BMS algebra is realized in the double-soft graviton amplitudes. The results
of this section, which comprise the main results of the paper, are summarized in 4.6. We
discuss the possibility of relating these asymptotic charges to local currents and operators
in a dual picture in section 5, although we stress that we still do not know whether we
have the necessary ingredients for an understanding of flat space holography. We conclude
and indicate further directions in section 6, and compare the soft pion and asymptotic
Yang-Mills calculations in the appendices.

2 BMS transformations and algebra

The BMS transformations (named for Bondi, van der Burg, Metzner and Sachs [9-11])
arise as residual diffeomorphism symmetries of asymptotically flat spacetime in Bondi
gauge which do not fall off at infinity. While the metric may be quite complicated in a
localized spatial region, we will assume that it looks like Minkowski at large r, and the
Penrose diagram is therefore the same as for Minkowski space. The BMST symmetries
apply near the future null boundary .# ", and there is a corresponding set of BMS™ sym-
metries associated with the past null boundary .#~. We will focus on BMS™ in what
follows; although the actual symmetry operating on gravitational scattering amplitudes is
the diagonal subgroup of BMS™ x BMS™ [6], the generalization to the appropriate linear
combination of symmetries involving the full null boundary is straightforward. Near .,
we can write the Minkowski metric in the advanced coordinates {u,r, z, z} as

ds® = —du® — 2dudr + 2r*y,zdzdz (2.1)

where v,z = ﬁ is the round metric on the sphere. Allowing fluctuations around this

metric, Bondi gauge is defined by
Grr = 07 Grz = 07 9rz = 07 det 9gAB = 4T4732 . (22)

The first three conditions ensure that outgoing radial trajectories are geodesics for massless
particles, and the final condition links the radial coordinate to the volume of the 2-sphere.
Bondi gauge is well adapted to studying the interaction of gravitational radiation with an
isolated system in an otherwise flat space, for which it was originally developed.

The metric is also required to satisfy certain asymptotic flatness conditions, which keep
the metric close to Minkowski up to corrections at higher order in a 1/r expansion.> The
exact definition of asymptotic flatness under consideration is not a gauge condition, but is

3A more coordinate invariant definition of asymptotic falloff conditions exchanges the coordinate ex-
pansion in 1/r to powers of the scalar function 2 which appears in the formal definition of the conformal
compactification. A little work shows that the specific coordinate choice above, which is much more conve-
nient for calculations, is in fact equivalent — see for instance Chapter 11 of [36].



an additional choice depending on the level and type of structure one wishes to consider.
In Bondi gauge, near the future null boundary we take the metric of an asymptotically
Minkowski spacetime to leading order in metric perturbations to have the form (in the
notation of [9-11, 30])

2
ds? = —e?P <<1 - m) du?® + 2dudr) — U sda du + gapda®da® (2.3)
T

where to O(1/r?), the corrections have the form

1
W—1- —CupCA8 +...
e 16,2 AB +

1 2 /1
Ua= —§DBCAB “ 3, <4CABDCCBC + NA> +-- (2.4)

1
gap = rCap + 1’74 + ZCCDCCD’YAB + o

The form of the metric is fixed by the gauge and flatness conditions, and we have also
applied the constraint equations to derive the form of U4. The quantities m, N4 are re-
spectively the Bondi mass and the Bondi angular momentum, and Nap = 0,Cap is the
Bondi news, which is related to the energy carried out to null infinity by gravitational ra-
diation. Here and afterwards, raised indices A, B mean raised only with the round metric
Yoz = ﬁ on the two-sphere, and D4 refers to the covariant derivative with respect to
~.z. A similar parametrization holds for the metric perturbations around Z~, and appro-
priate matching conditions between Z* and Z~ can be defined (see for instance [6, 38]).

Although the gauge condition does not allow transformations x#* — x* + £* which fall
off at infinity, there are residual symmetries which consist of diffeomorphisms x#* — x# +&*
that do not fall off at infinity. The gauge conditions restrict them to have the form

1 1
=, =Yt DA C 0T

é"f‘

1 1
—rDAEN + U4 f (2.5)
2 2r

1 . 1 1
—irDAYA +7%0,0:f — EC’ABDADBJC + ;'YABUAan7

%

where A runs over the complex spherical coordinates {z, z}, D is the covariant derivative

with respect to the spherical metric v,z = 0 and f, Y4 depend on the coordinates

2
1+22)2°
{u,z,z}.

The BMS symmetries are further required to obey the asymptotic falloff conditions at
large r; that is, they must preserve the form of the asymptotic Minkowski metric above.
Equivalently, the BMS symmetries are asymptotic solutions to Killing’s equation, meaning
that they satisfy L¢gu, = 0 up to a certain order in a 1/r expansion around Minkowski
space. Requiring that the BMS transformations preserve this form of the metric further
restricts Y4 to be a conformal Killing vector on the sphere, and f,Y* to have the form

f=T(z2) + %uDAYA, Y?=Y*(2),Y? =Y?(%). (2.6)



The T(z, 2) piece is called a supertranslation, and the Y4 piece is a superrotation. Only
the modes Y* D {1, z, z2}, Y* > {1, z, 22} are nonsingular on the sphere, and these define
the global subalgebra of BMS. Including the singular configurations, where the symmetry
breaks down at a set of isolated poles on the sphere, the superrotations are enlarged to
an infinite-dimensional Virasoro symmetry. The physical significance of the local Virasoro
symmetries is more subtle, but it was proposed in [37] that they are related to topological
transitions between asymptotically locally flat spacetimes with stringlike defects.

In order to derive the BMS algebra, we must remember that performing a transfor-
mation will alter the metric, which will backreact on any other asymptotic Killing vectors
present. The Lie bracket will therefore pick up improvement terms and is generalized to
the Dirac bracket

{€.¢") =&, &) — 0 & + L&, (2.7)

where £ is considered to be an implicit function of the metric, and 5? &' is given by applying
the chain rule and using (5? Guv = Leguy. The result is found in [30] and is itself a BMS
transformation with?

1
Tjy g = Vi 0ATs — 5DAY{‘T2 —(1+2), Yiy=YlopYs -Vlopv. (28

Another prescription for extending the global BMS algebra is to consider the set of all
smooth functions Y4 € C(52) [39]; this, however, does not preserve the same asymptotic
falloff conditions and may therefore not be as well suited to the same physical situations,
such as to symmetries of the S-matrix. Another prescription is to apply the BMS for-
malism to the asymptotic symmetries of the near-horizon limit of a Schwarzschild black
hole [33, 34]. Here the superrotations have the same Virasoro structure, but the form of
the commutator between a supertranslation and a Virasoro transformation is instead

Tii o) = Y{' 04Ty — Y5 04Ty . (2.9)

The associated group manifold in this case is parameterized by SDiff (52) x C*°(52), which
is the semidirect product of volume-preserving diffeormorphisms of the two-sphere with the
set of smooth functions living there. This group also arises as the set of symmetries of a
compressible fluid on the two-sphere and may be relevant for a deeper understanding of the
membrane paradigm for black holes horizons [35].> The algebra for near-horizon BMS can
also be extended to include a second set of supertranslation generators; see [34] for details.
Our goal is to explore how the algebra at null infinity, which arises from the specific
asymptotic flatness prescriptions appropriate to this case, is realized in the language of
soft graviton amplitudes. First, however, we will review how the BMS transformations are
related to soft graviton theorems by considering the single-soft theorem(s) as a warmup.

4We will refer to this as the “commutator” [s1, s2] of the BMS transformations si and ss, since this is
a well-defined Lie bracket structure for the algebra BM S, , but the bracket on the corresponding vector
fields &" is the Dirac bracket. Hopefully this will not lead to too much confusion.

5We thank Robert Penna for discussions on this point.



3 Review of the single-soft limits

It was shown in [6, 7] that the Ward identities associated with supertranslations are equiv-
alent to the leading soft-graviton identities with a single soft graviton. Similarly, it was
shown in [12] that the subleading soft-graviton theorem implies the Ward identities for su-
perrotations (although unlike the case of the leading soft-graviton theorem, the converse is
not true [39, 40]). We will review these calculations here, and for the most part we follow the
same notation. The difference between our discussion and [6, 7, 12] is that we also explicitly
expand the terms quadratic in the boundary data in terms of creation and annihilation
operators, which as we will see generates the linear transformation of the hard modes.

To O(q) (which is NNLO or sub-subleading order) the amplitude for the emission of
a soft graviton with momentum ¢ in an underlying hard process involving quanta with
momenta p;y ..., p, is given by

Z K [ € pr)? (pk &) (EuanJy”)

lim € MMV . Ce _
40 7% (Qaph 7pn pk q (pk ] Q)

2
k

1 (E,uQVJk )(EpQUJISU)
2 (Px - q)

= (59 + V(@) + 5P (g) + - ) M1+ .pa).

L (3.1)

M(p17 o 7pn)

Here €, M", M refer to the amplitudes with and without the soft graviton, respectively,
and k%2 = 327rG. We have written the graviton polarization tensor as € = €46 for a
graviton of definite helicity, and J” = (p}.0y — p}dh, +X4") is the angular momentum,°
which further decomposes into an orbital piece and a spin piece. The derivatives and spin
matrices act on the hard amplitude M(p1,--- ,p,). We take all momenta to be outgoing,
and the generalization to an arbitrary S-matrix amplitude follows simply by applying the
LSZ formula and crossing symmetry. In the last line we have written S (¢), S (q), S@ (q)
to refer to the leading, subleading, and subsubleading parts of the soft factor respectively.
The leading term in the soft factor is gauge invariant by conservation of global energy-
momentum, the subleading term is gauge invariant by the conservation of global angular
momentum, and the subsubleading piece is automatically gauge invariant because J,’: Y is
anti-symmetric. The above expression can be derived diagrammatically at tree level using
gauge invariance and the graviton coupling to external lines [41, 42]; loop corrections begin
for generic momenta at O(q) and at O(1) in the collinear limit [42, 43].

We will show that the leading and subleading parts of the soft graviton theorem imply
the Ward identity

(out| [Q,S] lin) =0, (3.2)

where as usual S is the operator whose matrix elements encode the S-matrix and @ =
Qs + Qp is the Noether charge associated with the asymptotic BMS symmetry. The soft
part of the charge operator creates a soft Goldstone boson associated with the symmetry

5Note that this is —i times the usual angular momentum operator, which is Hermitian. We will adopt
this convention instead for the sake of convenience.



(in this case, a graviton) and the hard part acts on the hard modes in the |in) and (out|
states. In other words, the soft charge is the nonlinearly realized part of the spontaneously
broken symmetry, and the hard charge is the linearly realized part.” The general procedure
for defining and computing the asymptotic charges is discussed in [1, 2], and the Noether
current is integrated over initial and final Cauchy surfaces that are to be sent to .#*.
Comparing the notation of [7] and [2] with the notation we are using here, the above
expression becomes

(out| [Qg, S] lin) = —(out| [Qm,S]|in) = —i{out|dS|in) ,
(out](Q4S — SQ3)lin) = —(outl(@Q}S — SQplim) 1)

<</Ei*j> <1>1-..<1>n>:5<<1>1--.<1>n> 2]

where on the left hand side of each equation we have the nonlinear part of the transforma-

(3.3)

tion, and on the right hand side we have the linear part. The correlators are always taken
to have the usual time ordering. The second line, which uses the notation of [7], makes
explicit the difference between the BMS symmetries at future and past null infinity. We
will not make this distinction in what follows but implicitly assume that the full symmetry
is indeed the diagonal combination BMS™* x BMS™. The final line is in the notation of [2],
where ¥F are initial and final Cauchy surfaces (which for the S-matrix elements will be
taken to £00), and j* is the Noether current associated with the symmetry.®

A general discussion of how to derive the Noether charges for an asymptotic symmetry
is given e.g. in [1-3], building on the work of [44, 45]. The integrated charge can be
expressed as an integral of the Noether current 3-form over a Cauchy surface 3:

Q:/dZMVpJ/“’P:/dEM JH (34)

where J# = SH + 0, KM consists of a part S* which vanishes on-shell plus improvement
terms which have the form of a divergence of an antisymmetric two-form field. We have
absorbed a factor of \/—g into the definition of the one-form, so it is the flat-space diver-
gence of the two-form field, not the covariant one, that appears. We can derive the Noether
current including the improvement terms K*¥ from applying the Noether procedure to the
following action [44],

S= ﬁ / 'z (V=gR — V=GR + 9,k") (3.5)

where the unbarred and barred quantities refer to the quantities associated with the metric
guv and the background metric g, respectively, which is this context is taken to be the

"In the language of Noether currents and soft pions, as in appendix B, the soft charge contains the LSZ
pole, and the hard charge contains the regular terms.

8We should note that the total charge is gauge invariant, but the soft and hard charges separately are
not. Under a gauge transformation é* — €* + A\g", the polarization of the soft graviton created by Qs will
be shifted longitudinally, and the hard charge is shifted by a global transformation Qn — Qu + Qo which
will commute with the S-matrix. Since we have already restricted our attention to Bondi gauge we will not
need to worry about gauge transformations, but we mention this issue anyway for the sake of completeness.



Minkowski metric 7,,. Both metrics are evaluated with respect to the same coordinates.
The vector k¥ is given by

b = —0,(V=a™) = v/ =ale" 8T, — 78T, (3.6)
where 6I' = I' — T is a tensor even though individual Christoffels are not. It can be shown
that the term 0,k*, which is a boundary term (and not the usual Gibbons-Hawking-York
term) effectively removes all terms from the Ricci scalar which involve second derivatives
of the metric tensor. The action (3.5) may appear problematic from the perspective of
quantization due to the wrong-sign kinetic term for g,,, but this term (which vanishes
anyway for g, = 1),,,) should be considered merely as a formal trick for covariantizing the
boundary term. For a derivation using a more covariant formalism, see for instance [45],
or [30]. Note that this formalism is not background independent, but this is understandable
given that the BMS transformations are defined with respect to the Minkowski metric.

Performing the Noether procedure on this Lagrangian, we find the Noether current
JH =S+ 0, K"", where K"* is given by

K = o (V=g — gl 4 gl k) (37)

The first term is the Komar formula, [46] the second is the Komar formula associated with
the Minkowski metric, and the third is the boundary term. In the derivation of (3.7) we
have used the property that &* is a Killing vector, but not the equations of motion. The
bulk contribution S* to the current vanishes identically, consistent with the fact that there
are no local observables in a gravitational theory.

The BMS charge is then given by

*J = *K = K”‘ (3.8)
7+ 7t

which can be expanded perturbatively around flat space in terms of the boundary data in
Bondi gauge. The Cauchy surface ¥ near the future null boundary consists of the null rays
fibered over a sphere at large r, and its boundary consists of a pair of spheres at large |ul,
which we then send to u = fo0o. The radius r is also taken to infinity, so ¥ — . and 9% —
JF. Tt is straightforward to calculate the form of the charges in terms of the Bondi bound-
ary data m, N4, Nag = 9,Cap and the BMS transformations T, Y, and the result is?>1°

1 1
Q=-— / B2y, [ Amf + 2N YA + =Y ADA(CopCCP)
167G Jzy 16
. . (3.9)
S 227z [4mT + 2muD YA + 2N YA + 1—6YAD A(CCDCCD)] .
{58

167G

9This is closely related to the charges defined [30], but differs from it. We work with the difference
between the negative of the charges defined there as u — oo and u — —oo. This implies that our hard

charges compute a weighted sum of the energy/angular momentum carried out to .# by massless states
that, for example, reduces to the total energy for 7' = 1,Y* = 0. The negative sign was introduced to
achieve the usual convention for the Poisson bracket that an infinitesimal transformation of ()1 generated

by Q2 is given by 62Q1 = {Q1,Q2}.
19See [16] for a discussion of how to include massive fields in the formalism for the asymptotic charges.



3.1 Leading symmetry

First we show that the leading order soft graviton theorem is equivalent to the BMS Ward
identity for supertranslations. For the supertranslations, the charge at positive null infinity
is given up to terms that vanish as r — oo by

1
0 _— __~ 2 _
Q G /ﬂ; d Z’yZZTm, (3.10)

where m is the Bondi mass aspect. Using the constraint equation

1 1
dum = ~DaDpNPA — gz\f,g‘zvj%’ — 4nG lim 72Ty, , (3.11)

4 r—00

where Nac is the Bondi news, we can equivalently write this as

1
167G I+

Q(O) _

7—00

1
d?zdu~.:T [DADCNAC — iNACNAC — 167G lim 2TM| . (3.12)
The first term contains the LSZ pole for the soft graviton insertion,

QY = —ﬁ dud®z~** [D2T N.. + DT N..] | (3.13)
where we have integrated by parts, assuming appropriate fall-off conditions on T'(z, 2) as
z — 00.!1 There is a corresponding integral over the boundary at negative null infinity, but
we will not worry about this here, since the soft gravitons can be moved from the in- to
the out-state using crossing symmetry.!? Expanding the Bondi news in terms of creation
and annihilation operators for the graviton and evaluating the integrals using the method
of steepest descent gives

(o.)
N,, = _8:;2%2/ dw w [a‘jr“t(w:i‘)e_wu + a(iUt(wi‘)Tewu} ) (3.14)
0

as well as!?
/du N, = _8£'Yz2 hn’bw [aiut(fﬂf) + a(iut(wj)T] . (315)
T w—>

and a corresponding contribution from Nzz. Although we will not need to change gauges
in what follows, it is straightforward to check using the stationary phase approximation
that this expression is invariant under a general gauge transformation.

Considering the N, contribution first, the left hand side of the Ward identity becomes

(OJPSTPARRS S [ S Yy out/ ol
(out|[Qg”, S]in) D o /d ZDZTL’ljl_)mOw(out!aJr (wz)S|in) 16

1 2 2 . in A\t
~ e d zDZTuljlgbw(ouﬂSa_ (wz)in) ,

H)\fore generally, we can split a general function T(z,Z) on the sphere into functions with compact
support using a partition of unity, and then add the results at the end.

2This can be expressed in terms of antipodal boundary conditions [7], or in terms of what are the
appropriate adiabatic modes in the asymptotic limit [38].

13A factor 1/2 arises because the integral over w only extends over the positive half-line.

,10,



where we have implicitly used that the charge ng) is an element of the diagonal subal-
gebra of BMS™ x BMS™ in writing aout on the first and amJr on the second line. Using
crossing symmetry to relate the amplitude with an incoming negative helicity graviton to
the corresponding amplitude with an outgoing positive helicity graviton, and including the
contribution from N3z, we find

<out|[QS ,Slin) = — /d2z DT hm w(out!aOUt(wi)S\im

1 (3.17)

+ — / d?z DT lim w(out|a®™(wi)S|in) .
2Tk w—0

With the understanding that any creation and annihilation operators that act on out-states

are a(:)tut (:)tutT

and those acting on in-states are a'l', aiT, we will from now on drop the in
and out labels.
We can now apply Weinberg’s soft-graviton theorem. It will be convenient to express

the momenta and polarization vectors in holomorphic coordinates

E
= ﬁ(l + 22k, 2k + 2k, —i(2k — Zk), 1 — Z1Zk) (3.18)

p
and using the choice of gauge in [7]
1
€+ \ﬁ

so that the relevant expressions are

)= V2Ei(z — z) _ V2Ei(z — z)

(i - € Otz (pp-€ )=~

2B w|z — 2i)?
(1+22)(1 4 22k)

(z,1,—i,—2), ' =—(z,1,i,—2), (3.19)

14

(3.20)

(P q) = —

where we are working in the “mostly plus” convention for the metric. Inserting the resulting
expression for the soft factor
K (pg - €5)2 Kk Ey (Z—2z) (14 22)

2 (pe-q) 2w (z—2r) (I+22) (3.21)

into (3.17), we have

k) (1 + 22)
— zk) (1 + 2k 2k)

(0) 1 2 12 .
(out|[QY, S]lin) = —47T/d zDETZE (out|S|in)

(z -
1 9 9 (z —2k)(1 + 22) outlSlin
/d DTZE G k(1+zk2)< t|Slin).  (3.22)

Undoing the integration by parts in the definition of the charge and using the Cauchy-

Pompeiu formula

az< ! > — (205 (2 — ) | (3.23)

Z— Zk

MFor simplicity we will assume the hard quanta are massless.
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leads us to

©0) gy — L 22 10 Bi(1 + 22) c.c.| (out|Slin
(out|[QY), S]jin) = 47r/d 82T2k:(z_2k)(1+zk2k)+ .| (out|Slin)
_ 1 2, 6@ (2 — 2 M c.c| (out|S|in
— 47T/d T%:[Ek(z )83 ( k)(1+zk5k)+ .]( t|Slin)
= =3 BT (z){out|Sin) . (3.24)
k
so that
(out[QY, Slin) = — Y ExT(z4){out|Slin) . (3.25)
k

Note that keeping both helicities is important here. In [7], the calculation focused on
a single helicity, but the factor of two was preserved by taking the boundary conditions
N,, = DEN ,Nzz = D%N at future null infinity. It is also worth noting, as emphasized
in [7], that one linear combination of the helicities decouples in the leading soft limit —
this can be thought of as the statement that there are two graviton polarizations but only
one Goldstone boson.

What remains is to show that the remaining terms in the charge

o _ 1
H 161G [+

1
dud®z7,= T <2NACNAC +167G lim 7«2T%> (3.26)
r—r

generate the same contribution with opposite sign so that (out|[Q,S]|in) = 0. Focusing
on the NyoNAC terms, this part of the charge is given in terms of graviton creation and
annihilation operators by

Qg) D dud?z~v**T :N,. Nz :
1 o0 )
— m d2Z 'YzzT/ dw w2 [a_,_(wf)Ta_i_(wfc) + G_(wi')Ta_ (OUSAU) 4o
& 0

Here we have made use of the expansion (3.14) for N, in terms of creation and annihilation
operators, and the ellipses indicate terms of higher order in terms of the number of creation
and annihilation operators.'”®> The commutator of this expression with a graviton operator
is straightforward to calculate and is given by [a+ (k), Qg)] = ExT(zx)ax (k) so that

0 . .
(out|[QY, Sllin) = S~ BT (z1) (out|Slin) | (3.28)
k
which is equal and opposite in sign to the result for the soft part of the charge as expected.
Because we have only considered the contribution from gravitons, the sum so far only runs
over all outgoing hard gravitons. However, the terms involving the stress-energy tensor
of the matter field provide the same contribution for each of the matter lines so that

(out] [@,S] |in) = 0.

15These arise because the graviton is an interacting field rather than a free one, and so the relationship
between the metric perturbations and creation/annihilation operators is nonlinear. Such higher-order terms
would be present in any theory with interacting pions.

— 12 —



3.2 Subleading symmetries

The subleading symmetry arises from the parts of the charge that are of higher order in
u. To keep track of these, we must consider the angular momentum contribution to the
charge as well. We will work with the following subleading charge

1 1
QW = o7 [ dud®zr: [QuDBYBDADcNAC
1
_ §UNE |:D0DBDBYA — DCDBDAYB1|1|
1 1
B m dud?z Y2z |: - ZUDAYANZZNZZ + Zyzazau(czzczz) (329)
1

1 1
— JYPND.Cs. = JY N2 DO = JY70.(C¥ N - CZZNZZ)} + hec.

1
+ / dud®z . [uDAYA lim 72Ty, + 2Y4 lim ’I“QTuA:| .
2 r—00 r—00
The first two lines comprise the soft graviton insertion, and the last three lines contain the
terms which rotate the hard particles. This charge can be obtained from the subleading
part of the charge introduced earlier

1 1
QW = e /)¢+ 27,5 [QNAYA +2uD Y 4 m + EYADA(CCDCCD) . (3.30)
<+
by using the constraint equations
1 1
dum = 1DADBNBA — gNng —4nG lim Ty (3.31)

1
OuNa = 0am — 1 Dp (DPDcCY — DsDcCEO)
1 1 1
+1604 (NECE) - Zz\r(?DACg - ;D5 (CENY — NECS) (3.32)
—87G lim r?Ty4,
T—00

and dropping the total u-derivative

AQY =

1 o 1
dud?z~,: — |=uY?Dg (DPDoCS — DAD-CBCY| . 3.33
167G Jo 1 FT au[zu 5 (D" DcCy — DaDcC™) (3.33)

The last step implies that our charge differs from that in [30] by AQ(Sl), but the defini-
tion (3.29) is appropriate in the context of soft graviton theorems. To see this, notice that
in terms of creation and annihilation operators AQE;) contains contributions of the form

o ik
_ ; o o\ f
/ du 0y (uCyy) = In(l 1 22)2 aljlg%] [w@wa+(wx) wiya_(wz)'| , (3.34)

— 00

which leads to <0ut\[Qg),SHin> that are singular in the soft limit. Such contributions
cannot arise in (out]| [Qg) ,S]|in) so we must drop the total u-derivative and work with (3.29)
to bring the soft graviton theorem into the form (out|[Q™), S]|in).

,13,



Just like for the leading soft theorem, our goal will now be to determine
<out|[Qg),S]|in> and <0ut|[Qg),S]|z’n> to show that (out|[Q"),S]lin) = 0. We first fo-
cus on the soft graviton insertion. Integrating by parts, making use of the fact that Y*,Y*
are holomorphic and antiholomorphic, respectively, and using the identity D3Y? = 93Y*,

we can write it as
1

1 _ 2., 2% 3v/7 3y 2
Qs' =15 | Wwd’ =y u [03Y?N., + 8Y*Nzz| . (3.35)
We can express the integral of V., over u in terms of creation and annihilation operators
/duusz = ﬁ’yzg lim [(1 + wdy)ay (wt) — (1 + w@w)a_(w:%)q , (3.36)
8 w—0
and see that the charge is given by
Qg) = —47”{ /d2283YZ hn%] [(1 + wiy,)ay(wt) — (1 + waw)a_(wa?)T] + h.c.  (3.37)

The subleading contribution is then given by

gmﬂwghﬂmwg—lL/fzﬁyfmnu+wagwmm4w@smw (3.38)
2TK w—0

_ 2, 9By E (Z—z1)(1+22) M ) (2—%,) Sl
= 47T/d agy g[(zk—z)(lﬁ-szk)EkaEk_'_ (zk—z) 8zk+hk(2k—2)]< t‘S’ >7

where hy, is the helicity of the k" particle, and in the last line we have applied the subleading

soft theorem with the subleading soft factor given in terms of the holomorphic coordinates
bylﬁ

NI (—m)(1+2 2 — %) Pz

(e NG li) _ G=amtz) po G2,y L Eoa) g

(P q) (26 — 2)(1 + 2k zk) (2 — 2) (2k — 2)

We have again included an overall factor of two from applying crossing symmetry to the

corresponding expression at & .
We can evaluate the [ d?z integral in (3.38) by integrating by parts and applying the
Cauchy-Pompeiu theorem. The final result is

<out![QS ,S]lin) D ZZ [ (D3, Y*)EyOp, — Y05, + hk@gkYZ’“] (out|S|in) (3.40)

=1 Z [ (Dz sz ) (ExOg, + hi) — V& (0s, + thZk):| (out|Slin) ,

where Q; = %ng is the spin connection. Including the contribution from Nzz, which

creates a negative helicity graviton, the result is therefore

h _
Y (D Y — D, Y)

<0ut\[QS ,S]|in) —ZZ|: DAYA(zk)EkaEk 2(

(3.41)
—Y*(0,, — hiQs,) — Y #k (0z, + hk'sz):| (out|Slin) .

5This form of the soft factor disagrees with the forms given in holomorphic coordinates in [12] and [26],
but it agrees with the soft factor in spinor helicity variables given in [41, 42], asnd we have confirmed that
it agrees with explicit perturbative calculations.
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As before it was crucial to include both helicities in the soft charge in order to derive this
expression.

Let us now consider the part of the charge that is quadratic in the boundary data —
this will perform a rotation on any hard gravitons in the initial and final states. The piece
involving only gravitons becomes:

1 1 1
W= T 167G /duszvzz [ = uDAY s NeeN* 2 42V D0, (: OO )
1 1
— §Y’Z :N**D.C., : —QYz :N,.D.C?* : (3.42)
1

— inDZ(: C*N,,:—:C,,N** )} + h.c.

We can express the charge in terms of creation and annihilation operators, using the ex-
pressions

o0
N, = _8:;2%2/ dw w [aur(wi)e_“"“ + a,(w;%)fe“"“} ,
0 3.43)
1K o . ) ( ’
Cr. = —87T27zz/ dw [aJr(wi)e_“”“ - a,(wi)TeW“] ,
0
and similarly for the complex conjugates. Keeping only the terms quadratic in creation
and annihilation operators, this leads to
(M _ __t d?z .z /Oo dw w }DAYAa_i_(CUi')Taw(wa_’_(w{i'))
" 1673 [+ 0 4
—0.Y?ay (wit) ay (wi) — Yar (wi) 0,0 (wi) (3.44)

1
—§DZYZ (a+(w£)Ta+(wzﬁ)) } —(aead,+ o —)} + h.c.
Including the contribution from the complex conjugate explicitly, this can be written as

i o 1 N N
Qg) = 163 /I+ d*z fyzg/o dw w{ [2DAYAa+(wx)Tw8w(a+(w:c))

—0.Y?a, (wi)lay (wi) — Yay (w2)'0.a4 (wi)
+0:Y%a, (wi)lay (wi) — Ya, (w:i)Taza+(w:E)}
—(a<al,+ o —)}, (3.45)

and together with the contribution for negative helicity gravitons, we can bring the con-
tribution of the hard charge that is of second order in creation and annihilation operators
into the form

1y _ i 2 _/OOd 3.46
Q) = ~jqms || Pores [ o (3.46)

X {a+ (wi)T BD AYAwd, + (D:Y? — D,Y?) —Y*(d, — 200,) — Y*(8: + 292)} ay (wi)

+a_(wi)T BD AYAwd, — (D:Y? — D.Y?) —Y*(8. 4+ 2Q.) — Y?(d; — 2QZ)] a_ (wfc)} .
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The commutator of this with a hard graviton operator is given by

1 , i
at(Erpdy), ;p] _ —i{QD AYAELOp, + (D5, Y =D, Y*)—Y*D, —Y*D,, )]ai(Eka?k) ,

(3.47)
where for later convenience we have introduced the notation

D.ai(Ez) = (0, F2Q,)ar(ET) and D:ay (Ez) = (0: £20z)asr(ET).  (3.48)

Comparing to equation (3.41), we see that the contributions from hard graviton legs in
<out|[Qg),S] lin) and (out| [le), S]|in) are equal and opposite. The matter contribution to
the hard charge quadratic in creation and annihilation operators similarly generates the
appropriate rotation of the matter fields, concluding the proof that (out|[Q,S]|in) = 0.
We have integrated by parts on the sphere several times, and assumed that there are
no boundary terms at z = oo. It is worth discussing this point in further detail. Some (but
not all) of the integrations by parts are purely a matter of convenience, since we integrated
by parts several times in going from (3.29) to (3.38), and then undid many of these same
integrations again when deriving the Ward identity. Whether dropping the boundary terms
is fully justified, however, is more of an issue here than it was for supertranslations: since
we have chosen falloff conditions on the metric that restrict Y#, Y? to be holomorphic and
antiholomorphic, if we do not restrict to the global subalgebra, we will introduce singular
points on the sphere. We can avoid this by choosing the extended Y4 to be smooth, of
course, as in [39], but this will not preserve the same falloff conditions, so the application to
S-matrix elements is less clear, and the definition of the soft charges will need to be modified.
For the extended algebra involving Virasoro transformations, if we impose that the
quantities Y*, Y fall off sufficiently fast at infinity that there are no boundary terms in
the integrals, (anti)holomorphy means that we necessarily introduce singularities at finite z.
For the derivation of (3.38) and the subleading soft theorem, these additional singularities
will not contribute, since no holomorphic derivatives act on the antiholomorphic poles in Y*
(or vice versa for Y#) but this is not always the case,'” and it would be interesting to know
whether these poles can have more subtle consequences. A similar set of questions arises
when deriving Ward identities in a 2d CE'T: here, although the Virasoro generators give
rise to an infinity of locally conserved currents, only specific choices of wavefunction and
contour lead to meaningful global Ward identities for the correlation functions, and the rest
generate spurious results involving the value of the correlator at the introduced poles.'® Tt
might be interesting to pursue these issues further for the case at hand, and to understand
whether these poles can have nontrivial physical consequences. It may be the case, however,
that they indicate that the interpretation of the charges is in fact more subtle, and that

"Tn section 4.5, we will find that in the calculation of the commutator of two BMS transformations, the
only time when the derivatives may act on the poles in Y to produce a spurious delta function contribution
arises in the commutator of the two superrotation charges, for the part of the charges where the two soft
gravitons are of opposite helicities.

8In particular, we may find interesting Ward identities when one of the hard operators has a null vector
which vanishes at a given pole.
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the integrals should be considered as formal objects in order to drop the boundary terms
— such subtleties can arise for instance in the case of a vertex operator algebra [31].

Another complication is that the subleading soft theorem may receive quantum correc-
tions arising at one-loop level in the collinear limit [42, 43]. It was found in [47], however,
that there is nevertheless a Virasoro symmetry still at one-loop order, and that this sym-
metry can be generated by adding only local corrections to the subleading charge. The
corrections to the soft charge are given by the expression

AQs =~ / @z 77Y* [NOD.NY + D, (NOND) | + hee. (3.49)
16m2Ge

where IV Z(S) = f duN,, and € = 4 — d comes from the UV divergence terms in dimensional
regularization.'® The Virasoro symmetry may therefore persist at one-loop in terms of these
dressed charges.? In what follows we will continue to work with the tree-level expressions
for @ for ease of calculation; however, we expect that our arguments will generalize in
a straightforward manner to the corrected version of the charge, and the commutator
should therefore continue to be robust in the presence of these one-loop collinear quantum
corrections.

4 Charge algebra and double-soft limit

We will now study the structure of the charge algebra, generalizing the analysis of the
previous section to include multiple insertions of the charge operator. The expression we
would like to check, and the relevant limit of soft graviton amplitudes, is schematically

lim lim Z/d221d222\111(q1)\112(q2)<0utql,q2|Sin)
[w2—0 w1 —0] A (4.1)

= (out| [[Q1, Q2] — [Q1rr, Q2rr] , S |in) = i(out] Q1,95 S] lin)

where the g1 collectively denote the energies wio and directions z;2 defining the 4-
momenta of the gravitons, as well as their helicities A1 2. The charges associated with
the BMS transformations &{', and 5?172} are denoted Q12 and Q[ g, respectively, and the
soft graviton weights Wy 9 are chosen appropriately for the BMS transformations of inter-
est. For a general derivation of this expression, and to understand why the charge algebra
is realized this way and not by (out|[[Q1, Q2] ,S] |in) = i{out]| [Q[IQ},S] lin) when the soft
part of the charge operator is restricted to the creation and annihilation of on-shell states,
see appendix B.

To evaluate the commutator using scattering amplitudes, we will split the commutator
into a piece that changes the number of gravitons as it acts on the state, and a piece that

19This is presumably just the charge in 4 — € dimensions written in terms of four-dimensional expressions
— it would of course be preferable to have an expression for the charges that works in all dimensions, or
to have a better understanding of the regulator in order to derive this directly from the expression for Q.

20 Although we cannot rule out the possibility of finite corrections at one loop, as these have not been
calculated explicitly — see discussion in [47].
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does not. In the language of soft-pion theorems, these pieces correspond to terms in the
current that give rise to LSZ poles for pions and terms that do not. As we did for the
individual charges, we will denote these as [Q1,Q2]g and [Q1, Q2]y, respectively. For soft
pion theorems, current conservation relates the pole and non-pole pieces. In terms of the
soft and hard parts of the charges Q1 and ()2, these are simply given by

(out| [[Q1, Q2] STlin) = {out| [([Qia, Qas]y + [Q1s: Q2mly), S |in), (4.2)
(out| [[Q1, Q2] g, S]|in) = (out| [([Q1s, Qas] + [Q11, Q2s]g + [Q15, Q2m]g), S] lin) . (4.3)

The first term [Q15, Q2s] on the right hand side of equation (4.3) is associated with the
commutator of two soft graviton operators and will be shown to vanish. The second and
third terms [Qp,Q@s|g create a single soft graviton, and these terms are present because
gravitons are themselves charged under the broken symmetry generators. Such terms
appear in the context of soft pion theorems if the coset is not a symmetric space, and we
show this in more detail in appendix B. In the language of general relativity, the presence of
a single soft graviton will alter the metric, which will affect the action of the other charge.
This is familiar from the study of consistency relations for cosmological correlators, where
the presence of a transverse traceless metric perturbation ;; alters the consistency relations
order by order in 7 [4]. We might expect the soft and hard parts of the charges to obey the
commutator algebra (4.1) independently. However, we will see that while the hard charges
do indeed obey (out|[([Q1, Q2] — [Qa, Q2m]), S]|in) = i(out| [Qq om,S] |in), the soft
parts of the charges instead encode the extended structure found in [30]

(out| [[Q1, Q2] , S] |in)
= (out| [([Q1s, Q2s] + [Q11, Q2slg — [Q2m, Qis]g), S] |in) (4.4)
= i{out| [(Quas + K(1,2)5),S] lin)

with the extension term given (to leading order in u) by [30]2!

1
Koz = 327G )+ d*27.:CPC (1D Dc(DAY5") — ToDpDe(DAYT))
A (4.5)
1 z 5 _
= ~53m@ ), Gud'zY*Nez (T1DF(D:Y) — TaD3(D:¥7)) + hc.

where in the last step we have assumed that Y? and Y at most have poles at infinity
(see the discussion of subtleties involving poles at finite z in the previous section). The
extension term vanishes when we restrict to the global BMS algebra, as was already noted
in [30]. This type of extended structure can arise when asymptotic symmetries act on
manifolds with boundary, in which case the associated Noether charge can have a bulk and
a boundary contribution. We refer the reader to [3] for an instructive example in the context
of Chern-Simons theory: there the integrated charges consist of corresponding bulk and
boundary pieces, and when taking the commutator of two such charges, the commutator of

#Since our charges differ from those [30] (see footnote 9) the extension term also differs from that given
in [30] but is consistent with it up to the change in conventions.
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the two boundary terms gives an additional boundary term that has no corresponding bulk
piece. As also discussed in [2], this term comes from the failure of the commutator of two
asymptotic transformations to satisfy the gauge fixing conditions on the boundary as well
as in the bulk. The extra boundary term is sometimes referred to as a central charge, or
more precisely as a field-dependent central extension [1, 30, 31] since the corresponding bulk
part of the charge is trivial. While in the Chern-Simons example in [3] the extended terms
can be thought of as a purely boundary effect, in gravity the situation is a little different,
since here the current is a total derivative and there is no unambiguous definition of bulk
and boundary terms.?? Here the “bulk” at future infinity is .#%, and the “boundary” is
given by the limiting two-spheres .#;" without integrating over the null coordinate.

Since the extension term K(; ) does not have a corresponding hard operator, this
contribution break the symmetry. The extension term was interpreted in [30, 31] as a field-
dependent central extension of the algebra giving rise to a Lie algebroid structure; because
of the presence of the Bondi news in K(; ), however, this operator does not commute
with rest of the algebra. Expressing the Bondi news in terms of creation and annihilation
operators as before, we can write K to leading order as

1 = . N .
Ka2)s = Srn /dzz {W[LQ] Uljlg%)w at (W) + a,(wx)q + h.c.} , (4.6)
where
Wi o) = =4DZVing) (47)
with . a \( )
— +ww)(w — 2 - -
=— [ To05Y\" — T103Y5") . 4.
Y2 87r/ U 22w e 2PN~ T10aYE) (48)

If V' were real, this could simply be a leading soft charge with T" = —4V| but since it is
complex we cannot write it in this way. Applying the soft-graviton theorem at leading

order, writing only the terms involving NV, we have

(out| [K (1 9),S] |in)
(4.9)

5 —Siﬂ a2z Zk: Ey g - 2’3 (iljziz) (T103Y5 — Tod2YY) (out|Slin) + h.c.
While this operator does not simply commute with the BMS transformations, we will
confirm in section 4.5 (and as found in [30]) that the Jacobi identity continues to hold with
the K(1 ) terms included, so the algebra is indeed well defined. We will refer to the term
K1) as the extension term, since it indicates the existence of a modified Lie bracket for
the algebra. The extension term we find here agrees with that in [30] to leading order in
u, whereas an additional part subleading in u found in [30] does not appear. It can be
confirmed by explicit calculations at the level of the operators that this occurs precisely
because the definition of the subleading charge in (3.29) differs from that in [30].

2276 guide our intuition and to connect with the example in [3], however, we might choose to think of
Qu as a bulk charge when it acts on hard momenta, since these should correspond to wavepackets with a
finite extent in u, and to all effects creating or transforming a soft charge as boundary terms.
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4.1 Operator commutators

Before studying the charge algebra at the level of the amplitudes, we can attempt to
evaluate the charge algebra directly at the level of the operators. We can use the expressions
for Q@ = Q¢ + Qg in terms of creation and annihilation operators from the previous
subsection and take the commutator. The parts of the hard and soft charges which are
leading and subleading in powers of u are given by

o _ 1 2 [ p27 1 A .
Qg pP /d Z|:D2TC£1LI%)W(CL+(WZL‘) +a_(wz)") + h.c.] ,

1 o . . . .
Qg) = 163 /dzz %ZT/O dw w? [ai(wx)cur(wx) +ai(wx)a_(wx)} 4o,

O = i [ o by ) o] na]

00
H — _167T3 Z’sz/o dw{wa+|: DAY'AWa +(D YZ DZYZ):| a+

+wal [QDAYAwaw — (DY — DZYZ)] a_
—wa+Y Da(ay) — wa' YAD4(a )} +---

where the dots represent the contributions to the hard charges from matter as well as
contributions that contain three or more creation and annihilation operators. The com-
mutators are straightforward to calculate, and the operators Qg act as supertranslations
and superrotations on local operators such as QJg. The commutators of two soft charges
[Q15, Q25] are schematically

Q12,7 / 2z 7% (D2Ty D2Ty — D*T\ D2Ty)

2 2z 2 3vzZ P2 3y 2
QY. QW o [ d?z4**(DXT102Y5 — D2T192Y5) (4.11)
Q1Y QL)) / &2z (DX(DaY{")) DA(DpYS) — DX(DAY5" ) DA(DpY)) .

These all vanish upon integration by parts in the angular variables. Among the factors
we have not written are delta functions in the soft momenta wq,ws, both of which are
to be taken to zero. To fix the order of soft limits, we take the commutator first before
integrating in wu, and this picks out the simultaneous double soft limit w; = wy — 0.

The remaining commutators (at leading order in the creation and annihilation opera-
tors) are given by

(1 s
Q1% Q5]s = 4mgg%<1+wa )/dzz [Tla% (a++al )+ 103V w(a— +a+>},
LH> 47mw—>0 1 v ) 1
al

+DTy <2D AYwd, 4+ (D:Y{ — D.Y?) - YD A)
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1 ]
+D?T, <2D AY{ wd, — (D:Y{ —D.Y{)-Y{D A) a_

1 _
+D*Ty <2 DAY wd, — (D:Y{ —D.Y?) - YD A)aq ., (4.12)

47m w—0

/1 _
[QlH? (1)] = — lim (1+wd, )/dQZ [aSYQZ <2DAY1Aw6w +(DzY7 = D:YY) _YlADA>a+
/1 _
+03Y5 <2D AY{ wd, +(D:Y{ —D.Y{)-Y{D A> al
1 i
+0%Y5 <2D AY{ wd, — (D:Y{ — DY) -Y{D A) a_

1
+93Y5 <

5D AY{ wd, — (D:Y{ —D.Y?)—Y{*D A) al} :

(@11, Q2m] = iQp 21 -

Combining the terms from [Qg(g, Q%)]g and | S&, Qgg]s, and integrating the YA D 4 terms

by parts, we have

Q% Q51s + 1'%, Q%15 — Q%% Q1]s — (@5, Ws

= — limw / d*z (Dg (YIAaATQ — 2DAY1AT2> (ay +al)

1
+ D? (Y{‘@ATQ - 5D AY{‘Tg) (a_ + ai))
Z, (4.13)
- miigbw/dQ <D3Y12T2(a+ +al )+ DYy (a + ai))

(A
S dmy w1+ wd) / @z ((DAY{* DT, + DHDAY{)Ty) (a4 +al)

— (DAY D2y + DX DAY )To)(a- +al)) = (1 2)

The first set of terms can be recognized as the leading (supertranslation) part of the
operator iQ[; g5, Where T'(z, Z) associated with the soft charge on the right hand side is
given by

Tjy g = Y{ 0ATs — %TQDAYIA —(1+2). (4.14)

The second set of terms corresponds to the leading part of the operator iK(; 3)g, and the
third set of terms will vanish when evaluated at the level of the amplitudes, because of the
soft limit lim,_,o w(1 + wd,,). Therefore, at subleading order in the charges, at the level of
the amplitudes we have found

(out|[[Q1a1, Qass + [Qus, Qauls, Slin) = (out|[iQ[}y, Sllin) + (out|[iK (7, S]lim)
(4.15)
In the following subsections we will extract this commutator from double-soft scatter-
ing amplitudes and we will find that the two methods agree. The calculations here make
it manifest that this commutator can be derived from contact terms that arise when se-
quentially applying the single-soft limits. First one soft graviton treats the other as hard,
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and the second soft graviton is then applied to the hard modes. Here one single-soft factor
acts on the soft momentum in the other. The commutators [Qm,Qs|g therefore depend
only on the sequential application of single-soft factors, which picks out a specific part of
the double soft graviton amplitude that is singular in the collinear limit.

We can similarly calculate the subsubleading commutators, and find

(out][[Q'2), Qs + (@Y, @15, S)in)
= —Z [ D 4( Yl aBYQ YQBaBylA)Ek‘aEk

h ) ] (4.16)
+ 5 Do/ 04YF = Y{'04YF) = D.(Y{0aY5 - ¥3'04Y7)]

— (YPopYs — YLPoapY D4l (out|Sin),
consistent with
1 1 . 1 1 . .
(out|[[Q1}), Q541 Slim) + (out|[[Q1Y, Q5115 Slin) = (out|[iQ{ g, Sllin),  (4.17)
where the vector field associated with the charge on the right is
Vil = Y104y — Y04V (4.18)
The soft parts of the commutators of the charges therefore realize the algebra

(out|[[Qru, Qa2s]s + [Q1s, Qanls, S]lin) = (out|[iQ[1 215, Sl|in) + (out|[iK (1 ), S]|in) ,
(4.19)
where the charge () 9] is associated with the BMS transformation parametrized by

1
Tho = <Y1A(9AT2 - 2T2DAY1A> —(14+2), (4.20)
Yy = Yi0aY? = Y504yl

To derive the commutator for the hard part of the charges, we can either expand them in
terms of creation and annihilation operators, or as a shortcut we can consider their action

on other operators. For the action on graviton operators,

lay (Exir), (@i, Q2] = — [la+(Ex2r), Qe , Qia] + [la(Erir), Qiu] , Q2mH]
= iE} |:Y1A(9AT2 — %DAYlATQ — (1 < 2):| a+(Ek§:k)

1 _
+ | §DAPORYBLO8,) + D0.Y5) - D.(v10.75)
—YBopYs'Ds— (1 & 2)} ay (Epiy), (4.21)

so that to subsubleading order

(out|[[Q1u, Q2m], S]lin) = (out|[iQ[1 21, S]|in) . (4.22)
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To summarize the results of this section, from the parts of Q(©) and Q") which are linear
and quadratic in the creation and annihilation operators we have derived the leading part
of the commutators [Qx, Qs|g and [Q1a, Q2m]y. As is shown in detail in appendix B, in
order to derive the result in (4.1) we need the commutators [Qx, Qs|g as well as [Qx, Qs]y,
with the latter arising from operator commutators involving terms of cubic or higher order
in @ and af. In the subsections to come we will show how both these pieces can be derived
straightforwardly from the amplitudes. Specifically, we will derive both the soft and hard
parts of the charge algebra in (4.1) from the double soft amplitude,

lim lim Z /d2z1d 2901 (q1)¥2(q2)(out q1, g2|S|in)
[wg%OW14)0])\ )\2 (423)

= (out| [[Q1m, Q2s] + [Q1s, Q2m] , S] |in)

where the charge [Q1, Q2s] + [Q15, Q2] has soft and hard parts coming separately from
the collinear and non-collinear parts of the amplitude. In this way we will confirm that the
double-soft graviton amplitude knows about both the commutator and the extension terms.

4.2 Double soft graviton amplitude

We will explore how the BMS commutator is realized by double soft graviton amplitudes,
using the explicit expressions for the amplitude at tree level. The relevant limit of the
amplitude is primarily the antisymmetrized consecutive soft limit. We have already seen
how to write the single soft amplitudes in terms of the amplitude of the underlying hard
process and soft factors, and we can similarly define the antisymmetrized consecutive double
soft factor S(qi1,q2) as

lim lim 6¥616262Muup0(q1 q2;P1, " pn) = S(q17q2)M(p17 e 7pn) (424)

[wa—0 w1 —0]

where M with and without indices refers to the matrix element with and without soft
gravitons, and we are taking all of the hard momenta to be outgoing.

To leading order in the soft momenta, the antisymmetrized consecutive double soft
factor is given by

S(ar,a2) = SM(a1) {8 (a) } — 5V(02) {$O(a1) }

£l ) g0 ) 0B gy,

2 (q1 - q2) 2 (q1- Q2)
pi-€)? (2(pr- &) (g &) (pk - E)?
Z[ (Pr-q1) (Pk - q2) B (pk-qQ)Q(m'QZ))
€ € - &9)?
) (AP B ) (4.25)

+(Q2 @)% (pr - @)° <1 (P q1)) —(gp-&1) <_ (pk - €)% (px - €1)>

(a1 a2)(pk - q2) (Pk - 42) (pk - q2)?
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MCCRNIGEE) (2(1% - €) (pr - ql))

(1 - q2) (P - q2)
(q2-€)(q1-&) (2(pr - €)(pk - €1)
(@) ( (Pr - q2) )]_(“_}2)'

This expression can be derived by taking the contact terms between single-soft factors.
The last two lines make use of the fact that inside the soft factor and when acting on a
gauge invariant amplitude we can take

0 0 0 0
MY [ BN P v
J P oy P I + € e, € 95, (4.26)

where the derivatives with respect to the momenta only act on the explicit momentum
dependence of the amplitude but not the momentum dependence of the polarization vec-
tors [42]. (See appendix A for details.) This also shows that S(qi,q2) is universal at this
order, including quantum corrections, since the single-soft factors are.?> Note that this
expression contains no terms of order 1/¢?, which will be seen to be consistent with the
fact that two supertranslations commute.

For a given matter content, the expression for the antisymmetrized double-soft ampli-
tude can, of course, also be derived by starting with the full tree-level amplitude to next to
leading order (NLO) in the soft momenta, calculated using Feynman diagrams, and taking
the appropriate consecutive soft limits. Here we explicitly provide a check for the scattering

of n scalars and two soft gravitons. The full amplitude to NLO in the soft momenta is:?*

et .
€1 €1€2€2Muvpo(QIa q2;pP1, " 'pn)

4

_ K2 (Epy)? (&2 pr)? | (€1 p)* (&2 pr) (E2uq20T;")
B [Z [(pj"h) (Pk - q2) - (pj - q1) (pr - q2)

Jk

(& - p)? (& -pj)(auqlpJf”)]

(Pk - g2) (pj - q1)
+ zk: ZZ (291; pgg '-ZZ;Q (pk '_(qqll :—qu))
(o )
- 1%'(:12+f12)(61 - €2) (€1 - pi)(€2 - pr)

2

4(q1 - @2)pr - (g1 + q2) {(61 &) [(pk -q1)” + (k- 42)? + (o1 - 1) (08 - @2)

+ (&1 pr)(q1 - €)% + (&2 pr)* (g2 - €)% — 2(€1 - @2) (€2 - q1) (€1 - i) (&2 - i)

2 Remember the only possible loop corrections at this order come from the one-loop anomalous corrections
to S (¢) in the collinear limit g1 || g2. The divergent piece can, however, be redefined away in the definition
of the charges, as explained earlier in the single-soft limit case, and the dressed charge returns the tree-level
contact term.

#4See for instance [52, 53] for the explicit expressions for the graviton propagators and couplings.
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+ (€1 - €2) [2(Q1 ~q2) (€1 - pr) (€2 - pr) — 2(q2 - €) (€2 - pi) (P - G2)
—2(q1 - &) (€1 pr) (P - q1)] }”M(M, ot Dn)

Here the first two lines on the right hand side come from the insertions of external lines on
separate external legs, and also from insertions on internal legs which are necessary to pre-
serve gauge invariance. The third and fourth lines come from the subleading contributions
when two gravitons insert into separate points in the same external leg (“Born” terms).
The fifth line comes from graviton seagull terms on the external legs, and the last four lines
come from the graviton pole diagram, where a three-way graviton vertex inserts a single
graviton into an external leg. As before, k2 = 327G; and we have written the graviton
polarization tensors as € = é*€”, which is always possible for gravitons of definite helicity;
and the angular momentum operator for scalars is
0 0

It is straightforward to check that the full amplitude reproduces the expression in
equation (4.25) in the appropriate limits, and that the full amplitude is gauge invariant
under the separate gauge symmetries E‘f’Q — EllL,2 + A1 2¢*. Checking the gauge invariance
el — & + \g' explicitly, we find that to linear order in A,

A (&G M upo(q1:2;p15 7+ D))

N e o[ Eee)? (@ o) (@420 ") e (€2 - pr)°
_J,Zk2(1 pj)[(pk-qz)Jr (P - 42) +J-,Zk4(l“q”"];p)(pk-qz)
R EC )@ o) (- @2)(q1 - &)(&1 - &)
+zk: 2 [ (pk-a2) & @)l pd + (¢1-q2)
(ar- GQ)EZ? 212))(62 )| (142, (4.29)

These terms vanish by conservation of total momentum and angular momentum. Note
that the first of the subleading terms combines with the leading term to ensure total
momentum conservation. Equivalently, one can check that the expression for S(qi,¢2) in
equation (4.25) is gauge invariant after antisymmetrization, although a single consecutive
double soft limit need not be because the process of taking the soft limit does not necessarily
commute with a general gauge transformation.

While the full amplitude for two soft graviton insertions is symmetric under exchange
of the two soft graviton indices 1 and 2, as it must be for two identical bosons, the antisym-
metrized consecutive double-soft limit in (4.25), which involves the subtraction of different
kinematic limits, retains the information about the commutator. From the general form
of (4.25), the first two lines come from contact terms between the single-soft factors acting
on the hard modes, and the last four lines come from the contact terms where a soft mode
acts on the other soft graviton, treating it as a (relatively) hard mode. The first set of
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terms therefore correspond to the terms [Q1m, Q2s]y + [Q1s, Q21]jy, and the second set
corresponds to [Q1x, Q25]g+[Q15, Q21]g. Comparing to the expressions in (4.1) and read-
ing off the weights for the leading (3.13), (3.15) and subleading part of the charge (3.37),
we therefore have

(out| [([Q1, Q2s] + [Q1s, Q2m]), S] |in)

1
=—— lim i d*zd?
4722 (w0 w0 ) ¢
X {DnglDEQTgwlwg<0ut!a+(wljﬁl)a_(wgzﬁg)S\in)

. N N . 4.30
— zDgl T18§2 Y52w1 (1 4+ wal., ) (out|ay (wi1Z1)a— (waZe)Slin) ( )

— 002 Y7 D2, Towa (1 + w10y, ) {out|ay (wid1)a— (woide)S|in)
— 92 Y7102 Y2 (1 + w10, ) (1 + wally ) (out|ag (wi 1) a— (wado)S|in)

)

where we have expanded the charges order by order in w, and written only the (1,2_)
helicity terms for illustrative purposes. To sum over helicities, the other terms can be
generated by switching between holomorphic and antiholomorphic expressions for the test
functions.?> We will show that (4.30) becomes

(out| [([Q1H, Q2s] + [@1s, Q2r]), S] |in)

) : : . (4.31)

= (out| [(ZQ[I,Z]H + Q25 +1K(1,2)5), 5} |in)
with the separate hard and soft pieces corresponding to different pole structures in the
double-soft amplitude. We will therefore confirm the identities in (4.1), and also confirm
the identity (4.4) realizing the extended BMS algebra.

The entire combination of terms in (4.31) is gauge invariant, as it depends on a gauge-
invariant amplitude. The individual terms on the right hand side are not, but this is not a
problem, and is even to be expected, since we are computing residual gauge symmetries for
Bondi gauge after having fixed the gauge. Another technical point we should emphasize
is that in order to derive an equivalence between non-gauge invariant quantities such as
[Qu,Qs]s and iQ[1 915 +1K (1 2)5 we must pick the same choice of gauge for all soft gravitons
in the problem. In particular the gauge choice in [7], which makes the same choice of
reference vector for all soft gravitons, is a good choice, but the choice € - g2 = €3 - q1 = 0,
where we use gauge invariance separately for the first and second soft gravitons, is not.

The reader may want to consult the appendices first as a warm up: in appendix B
we review the case of how soft pion amplitudes realize the corresponding algebra, and in
appendix C we study the case of asymptotic gauge Yang-Mills theory, which is conceptually
similar to the gravitational case and technically much simpler. The leading term on the

Z5The factors of i out front do not get conjugated, however, since they come from the Fourier transform
in u.
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left hand side of (4.30) is then
(out| [([Q1a, Qas] + [Q1s, Q2m]), S] |in)

1
D 2 [J;IEO wlllglo] d?z1d* 2 {DnglDEQTgwlwg<0ut!a+a_3\z’n>}

(4.32)

and will vanish after antisymmetrization, consistent with the fact that two supertransla-
tions commute. The subleading terms can be written as

(out| [([Q11, Qa2s] + [Q15, Q2m]), S |in) D

5 lim lim d%21d%29
47T K [0.)24)0 wlﬁO}

X {D21T18§2Y2Z2w1(1 + w20y, ) (out|ara_S|in)

(4.33)

+ 8;1 Y121D§2T2w2(1 + wlawl)<out]a+a78|in>}

and will be related to the commutator of supertranslations and superrotations. The sub-
subleading terms can similarly be written as

(out| [([Q1a, Q2s] + [Q1s, Q21]), S] |in)

lim lim /d221d222 (4.34)

AT2K2 (030 wi—0]
X {8;’11/1218225/52(1 + w10,,)(1 + w28w2)<out|a+a78\in)}

and will be related to the commutator of two superrotations.

We should note that the antisymmetrized consecutive double-soft limit is also the
relevant one for cosmological soft-pion theorems. In the case of double-soft limits for the
adiabatic modes for the curvature ¢ in unitary gauge in-in cosmological correlators [48, 49]
only this limit satisfies all the necessary constraints to correspond to an adiabatic mode at
second order.?S More specifically, for cosmology in unitary gauge, performing a dilatation
and then a special conformal transformation gives a configuration which is indistinguishable
from a second order adiabatic mode and can be transformed away. Performing the SCT
and then the dilatation, however, we get the sum of this adiabatic mode and another SCT,
which is a sum of adiabatic modes rather than a single mode. The additional piece is
consistent, however, with the expected commutator [D,SCT| o« SCT for the algebra of
conformal symmetries acting on the spatial slices.

An alternate prescription for the soft limits was used in [29, 50], where the soft limit
was taken first for gravitons of one helicity, and then for the other helicity. As was the
case the cosmological correlators, however, it should ultimately be checked whether a given
prescription satisfies the adiabatic mode conditions; although we have not checked explicitly
at second order in the metric perturbations, we expect that in the BMS case as well only
the antisymmetrized consecutive double soft limit will satisfy appropriate adiabatic mode
conditions.

26These are known as adiabatic mode conditions, and they ensure that the transformation satisfies the
same constraint equations as a physical mode at small but nonzero momentum; a more complete discussion
can be found e.g. in [4].
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4.3 BMS commutator at leading order

Examining the expression (4.33) in terms of the soft graviton amplitudes, the left hand side
depends upon the antisymmetrized consecutive double-soft factor S(q1,¢2), and is therefore
gauge invariant. The subleading charge commutator then becomes

(out| [([Q1, Q28] + [Q1s, Q2m)), S] in)

D lim lim d?z1d? 2

472 K2 [wa—0 w1 —0]

Y (4.35)
x { D2, T10%, V51 (14 w30.,,) S a1, )

+ D2 182 Vi wa (1 + wid.,)S (a1, qg)}<out\8|m> ,

where the ellipses indicate a sum over helicities (although we have shown only the (1.24)
term in the equation above). The first set of terms in (4.35) picks out the part of the
amplitude proportional to 1/¢;, and the second set picks out the terms proportional to 1/g.
For our present discussion it will be convenient to break the antisymmetrized consecutive
double-soft factor in (4.25) up into different contributions

S(q1,92) = S1(q1,q2) + S2(q1, q2) + S3(q1,92) — (1 < 2), (4.36)

with different pole structures, which as discussed above will correspond to the hard and
soft parts of the commutator [Qpu,Qs]. The hard parts [Qp, Qs arise from terms that
are singular as g1 or gs are taken to zero or become collinear with one of the hard momenta

Si(qr,q2) = K Z [(pk &)’ <2(pk @)(q &)  (pr- @) (q1 - qz))

4 | (pr-q1) (Pk - q2) (Pk - 42)*
) (4.37)
[ 2pr-E)E &) (pr-€2)? >
—(pr - € - €1 ¢ ,
o 1)( (Pk - 42) (pk'QZ)Z( 1 @)
and the soft parts [Qu, Qs]g will arise from terms that are singular as ¢; and g2 become
collinear
S2(q1,q2) = s Z (01 €2)"(pi - €1)” (4.38)
’ 4 i (1 a2)(pr-q1) |’
and

—~ | (& (Pr - q2)

S3(q1,q2) = /fz [(QQ ;; (€1q1J2) {W}] . (4.39)

The individual contributions to the amplitude are not gauge-invariant, but as explained in
the previous section, they do not have to be.

We transform equations (4.35) and (4.37)—(4.39) to holomorphic coordinates as before
using (3.19) and (3.20). We first focus on the terms in (4.38) proportional to 1/gs; the
terms proportional to 1/¢; follow by interchanging the labels.
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Expressing equation (4.37) in holomorphic coordinates, we have terms which are sin-

gular as z; — 2 and as zo — 2k

K™ Ek 21— 29 (2’1 — Ek) (1 + 2’222)
5 B a Z (21 — 2z1) (22 — z1) (1 + 212k) (1424) .
1(q1,q2) = ’12@ 20— 2) (1 + 52 — 250) (51 — %) (14 20%) o (4.40)
w2 (21 — 21)(Z2 — Zk)? (1+ z1.2k) e

To flip the helicities, we can simply take the complex conjugates. The second contribu-
tion (4.38) is singular as z; — 2 and as 29 — z:

E; (21 Ek)( 22)(1 + 2929 )
_Z Z ( zk)( 22)(1 + zkzk) (1+2+)
Salan, @) = K Z Ey (21 — Z) (21 — 22)(1 + 2222) (1,2.) (4.41)
4 — w2 (21 — 2x)(Z1 — Z2) (1 + 2x2k) te
The remaining terms can be written more explicitly as
& (@) (ox ) (k-q1) - (pr-€)*(px-&1)
Sl ) = =7 [ (01-a2)(Pe-a2) (Pr-q2) (&) ( (Pr - q2)? > (4.42)

(-a)(@-e) (2pe-e)pr-a)) | (2-@)(q-e) (2(pp-€)(pr-&)
(@1-02) ( (or-a) )* (a1-02) ( (e a2) )]

and in holomorphic coordinates they become

Ek Z1 — 22) (21 — Zk) (1 + ZQZQ)
5 B 4 Z (21 — 22) (22 — 21) (1 + 2k 2k) (1+2+)
S(QLQZ) - _"f %(22 —Zk)(21+22 —25k)(21 —Ek) (1+2222) (1 9 )
4 k w9 (22 — Ek)g(zl — ZQ) (1 + Zkik) e
(4.43)

To integrate over the moduli space of soft momentum directions, as for the single soft
limits, we will integrate by parts in z; and z and assume that there are no boundary terms
at infinity, although whether this is ultimately justified will depend on our choice of fall-off
conditions for T and Y4, In addition to the global structure of moduli space, we potentially
need to consider the local structure arising at the loci where 21, 29, and z; all come together.
Such multiple-collisions can be subtle and a different set of coordinates (conformal cross-
ratios) may be required to obtain a correct local description?” — e.g. to show that certain
terms will vanish upon integration. In our case, however, since the answer is finite, we can
afford to ignore such subtleties and stick with z; and z5 as coordinates in what follows.

To compute the BMS commutator at leading order, we insert the holomorphic expres-
sions for the amplitude into the expressions for the charge in (4.35), summing over the
helicities of both gravitons, and then integrate by parts in z; and zo.

*"Naively, the (compactified) moduli space of the n-punctured Riemann sphere looks like (n — 3) copies
of CP'. But this picture breaks down near the boundary, when multiple punctures collide. The correct
description of the boundary [56] requires a sequence of blowups of the naive space, and the conformal
cross-ratios provide good coordinates near the exceptional divisors. In the case at hand, Mo is not the
naive CP* x CP*, parametrized by z; and za, but rather its blowup at 3 points (the del Pezzo, surface).
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4.3.1 [QiH,Q2s|y + [Q1s, Q2H] contact terms

We start with the contact terms between single-soft limits, and begin with the contributions
(1424 ) where both gravitons have the same (positive) helicity. Plugging (4.40) into (4.35),
we have

<0Ut’ [([Q1H7 QQS]H + [QlSu QZH]H)? S] |7/I’l>
/ d*z1d%29 02 Y D2 Th (4.44)

L
1672

(21 — 22)(Z1 — Zk) (1 + 2222) )
X ZE (1 = 20) (52— 21) (1 + 270) (out|S|in)

—(1@2).

Integrating by parts in z; and making use of the Cauchy-Pompeiu formula 0z, (#> =

Z1—2k
(2m)6®) (21 — 2;), we have

(out| [ ([Q1m, Q2sly + [Q1s, Qaml ), S lin)

271' 2’2 — Zk)(l + 2222)

) _
2 ) Ex L YD T,
~ T6n2 ZQZ (22 = 21) (1 + 22) Oa Y DT
(4.45)
47‘1’(1 + 2252) 5 0 )
- Y **D: T t|S
(22— 2r) (14 zpzp) © 207 (out]|Slin)
—(1+2).
Integrating by parts in zo, we have
(out| [([Q1a, Qasl g + [Q1s, Q2m] ), S| |in)
(4.46)

i z 1 z .
03 ;Ek <Y1 *0z, 1o — iDE’“Yl ’“Tg) (out|S|in) — (1 +» 2).

We now consider the opposite helicity terms (142_). Substituting (4.40) into (4.35), we
have

(out| [([Qle Qasly + [Q1s, Q2my), S]|in)

- ‘uTz d*21d* %02 Y D2, T
y ZE (20 — 2) (21 + 22 — 22k) (21 — Zk) (1 + 2222) (out|S]in) (4.47)
g (21 — 24) (22 — 21,)? (1+ 2ze2)
—(1+2).
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We can then integrate by parts in z;:

{out| [([Q1H7 Qa2sly + [Q1s, Q2m]y), S lin)
(22 — Zk)(l + 2222) 21 9
= Y{*D: T
16 1672 dZQZEk 5 —Zk)(1+2k5k) 8k 1 272
(4.48)
Am(l + 2229) (2 )YZ’“DQ Ty | (out|S|in)
(22 — z1)2(1 + Zka:)
— (14 2),
and then in zo:
(out| [([Q1a, Q2sl g + [Qus, Q2m]fr), S| |in)
i . 1 s , (4.49)
>3 %:Ek Y05, Ty — 5 D5 Y7 Ty | (out|S|in) — (1 4+ 2),
where we have differentiated the Cauchy-Pompeiu formula to find
1
s ) = - 21)0.6P(z — z). 4.50
0: (=) = ~ma (e - ) (4.50)
Summing over all combinations of helicities, we have
(out| [([Qir, Qasl g + [Qus, Q2m] ), S| lin)
1 4.51
DY Ey |YA04T, - 5DAylA:r’g — (1 < 2)| (out|S|in) , (4.51)
k
consistent with
(out|[[Q11, Q2s]u + [Q1s, Qar]m, Sllin) = (out|[iQp 91, S]lin) . (4.52)

4.3.2 [QiH,Q2s|g + [Q1s,Q2H]|g commutator

Let us now consider the soft parts of [Q1m, Qas]| + [Q1s, Q2. Substituting the (1424)
contribution in (4.41) into equation (4.35) leads to

(out| [([Qia,Qa2s]g + [Q1s, Q2m]g), S] |in)

i _ Zl — zk)(zl — 22)(1 + 2222)
) P2 d®2 03 Y DL T Y E
1672 / A 72050 2 Z K (2’1 — Z]C)(Zl - 22)(1 + Zkzk) (4.53)
x (out|S|in)
- (1 « 2) )

which can be integrated by parts in 25 to give

(out| [([Q1H Qas)g + [Q1s, Qarrlg), S| |in)
(z1 — zk) (1 + 2121)
(21 — 21) (1 + 212%)

D — d221 63 YZlTQ 21 ZE

87T {out|Slin) (4.54)

—(1+2).

— 31 —



Similarly, the (112_) terms give

(out]| [([QlHa Q25]g+[Q15,Q2m]g).S]|in)

167T
- (1 A 2) )
and integration by parts in zo leads to

(out| [([Q11, Qa2s]g + [Q15, Q2]

21d?2 03 Y D2 Ty Z Ek

k)(zl —Z2)<1+2222)

s), S lin)

Zl —zk)(zl —22)(1 +Zk2k)

(out|Slin)

= / d*2102 Y To(21) Y Bi E AL AR (s i)
k

—(1+2).

Finally, we need the terms in (4.43). The

zZ1 — Zk)(l + Zkzk)

(1424) terms give

(out| [([QlHa Q25]g + (@15, Q21]g), S] |in)

D -

162
—(1+2).

Integrating by parts in zo turns this into

/ d*z21d20 02 Y D2 Ty ZEk

ZQ) (21 — Ek) (1 -+ 2222)

(out|[([Q1ar,Q2s]g +[Q15,Q2m] ), S]|in)

S =2
D/dzz 83 Yzlek <(95kT2(Zk)(ZIZk)+T2(Zk)

—T2(21)

_(1<_>2)7

and integration by parts in z; gives

(21 — 22) (22 — 2x) (1 4 21.2k)

(out|S|in)

(1 +512’k) (21 —Ek)

(21—2’k)
(21 —Zk) (1+21§1)
(21— 2k) (L4 2525)

(out| [([Q1m, Qaslg + [Q1s, Q2m]g), S |in)

1 . 1 _ ‘
2 _5 ;Ek (nzkaszQ - 2D5kY1ZkT2> <0ut\8|m>

IR I SRS (21— z) 1+ 2121)
87r/dZ1321Y1 TQ;Ek( T

—(1+2).

21— 2) (1 + 21.2k)

Similarly, the (112_) terms in (4.43) lead to
(out| [([Q1H7Q2S] +[Q1s,Q2m]g),S]|in)

2’2 — Zk)(Zl + 2z — QZk)(Zl — Zk) (1 —|-2’222)

1671'2 d221d2Z2 83 Ylez TQZEk

x (out|S|in)
—(1+2).

(1 + Zkik) (Zl — Zk)

) (out|S|in)

(out|S|in)

(22— 2k)2(21 — 22)
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(1 + Zkgk)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)



We can again integrate by parts in z;

(out| [([Q1H7 Q255 + [Q1s, Q2mlg), S| |in)

_ 1 s
D —— /d222 agQYfQDzzTQ Z Ex(zo — z) (14 25%)

m(OUt|S|’Ln>

2’2 — Zk (1 + 222’2)

i _
— | d*205,Y2D2 Ty Y Ej ut|S
+ SW/ 2205,Y] b E G (% Zkzk)<0 |S]in) (4.61)
2 %2 12 (22 - Zk 1+ 2079) )
YDy T E}
87r d”z 22 (2 —2 (1—|—z )(out|81m)
—(1+2).

as well as in 29 to find

(out| [([Qm, Q255 + [Q1s, Q2m]), S] lin)

' z 1 z 4.62
D) —% ZEk <Y12k8ZkT2 — 2DzkY1ZkT2> (0ut|$]in) o (1 o 2)‘ ( )
k

Summing over all combinations of helicities, we have
(out| [([Qm, Q2s]s + [Q1s, Q2m]g), S lin)

—ZZEk

(1+22)(z — z)
1+ zxzk)(z — 2x)

Yl OaTy — fDAyl Ty — /d2 < 8;Y12T2 + C.C.)

— (1<« 2)] (out|Slin) . (4.63)

The first term is the commutator, and the second is the extension. So we see that at this
order

(out|[[Qm, Q255 + [Q1s, Q2m]s, Sllin) = i(out|[(Qn 25 + K(1,2)5), S]lin) . (4.64)

4.4 BMS commutator at subleading order

We can similarly evaluate the commutator at subsubleading order using the expression for
the soft terms in (4.34):

(out| [([Q1r, Q28] + [Q15, Qarr]), S] |in)

— 1 li d?z1d?
 4n2k2 [w;IEO wllino] 21622 (4.65)

X {8§1Y51<‘9§2Y52(1 + w10u, ) (1 4+ wad,, ) (out|ara_Slin) + - - - }
The antisymmetric consecutive double soft graviton factor S(qi,q2) can be evaluated at

subsubleading order either by explicit calculation using Feynman rules, by using the BCFW
recursion relations at tree level, or by evaluating the contact terms in the antisymmetric
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consecutive double-soft limit (see [54, 55]). The last method is the quickest, and the relevant
contact terms are:

SN (g1, 40) = [P (@) { S g2) } + 5V (@) {SD (@)} — (1 oM (460)

where SNNLO i the subleading part of the factor defined in (4.24), and the curly brackets
denote that one or both derivatives act on the momenta in the other soft factor. Only
the second set of terms are non-zero in the double-soft limit, so that these determine the
commutator. We will further break this contribution to the soft factor up into contributions
based on the pole structures, as we did previously for the subleading part of the double-soft
amplitude, with the different pieces corresponding to [Qu, Qs|y and [Qm, Qslg-

SMNEO (g1, g2) M = (ST (g1, 2) + S5 N (q1, g2) — (1 5 2)) M. (4.67)
where
(Si\INLO(ql,Cm) (1¢2)) M
pi - €)(@qdy) [ (pk - €)(E2q2Jk) |
Z[ i { T } (1(—)2)}/\4, (4.68)
and

(SgNLO(CIL%) —(1+2)M

a2 - &) (@q1J2) [ (pr - €2)(€2q2Jr)
s Z[ b { e }_(192)]/\4. (4.69)

The first contribution will encode the hard part of the commutator ([Qim,Q2s]y +
(Q15, Q2m] ). It can be written more explicitly as

STV (a1, 42)

72 [ Pk - €1) < a1 - €2)(E2g20k)  (pr - €2)(qu - QZ)2(€2(12J1<:)>

(Pk - q1) (Pk - q2) (Pk - 42)
_ (& &)(@edr) (k&)@ - ) (Eqk)
(i) ( (p - ¢2) (pk - q2)? ) (4.70)
1 (px - &) (px - &)

2 (pk - cn% (o5 - @) ((q2 - €1)(e2q1Jk) — (q1 - €2)(€1q2Jk)

+(q1 - q2)(€1€2Jk) + (€1 - 62)(Q1Q2Jk))] .

where we have used that the action of the angular momentum operator on the momentum
is given by
Ti v = 0"l — 1p} (4.71)

and that the angular momentum operators obey

[JE T IM = (0P + TP = P I = " T M. (4.72)
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The second line in equation (4.70) contains terms that are not doubly singular and therefore
vanish when we integrate by parts. As we did for the leading order calculation, we will
nevertheless keep them around, because they tend to make the expression in terms of
holomorphic coordinates simpler. We find

'_FPZ (21— 22) (21 — 2) (A + Za21) + (22 — 2) (1 + Z1.21))
4 k 2(21—Zk)(22—2:k)(1+2;k§k)
X (Exdp, +he) + _(52)_(2; )_(j’“)_(?) ) (0, 02| (1420)
Si\INLO (Q1,q2) _ 1 k 2 k
’f (21— Z21) (22 — 21) (1 + 222k B
4 Zk: (21— 2) (Z2 — Z1) 2 (14 2.2k (ExOp;, — hi)
Z1—21) % (20 — 21)?
((;1—:k>)((522— 2:))2 (9 _thZk)] (142-).
(4.73)

As before, the other helicity combinations are related to this by complex conjugation and
sending hj to —hy.

The second contribution will encode the soft part of the commutator ([Q1x,Q2s|g +
[(Q15,Q2m]g) and can be written as

NNLO _ K (g2-€1)° [ (pk-&)(pr-q1)(E22Tk) | (pr-2) -
S ) = zk: (¢1-q2) < (Pr-q2)? +(pk-q2)( ka))
o (&) (k&) (E2a2dk) | (Pro€2) .
] e e EIGE) )
L (@2-a)@ &) ((pk‘Q1)(€2Q2Jk) (pk‘€2)(Q1(I2Jk)> '
(q1-¢2) (Pk - 42) (Pk - 42)
(@2-&)(qn-&) ((pk'gl)(€QQ2Jk) n (pk'€2)(51qQJk))
(q1-42) (k- q2) (k- q2) 7

which in holomorphic coordinates becomes

Z1 —22)((21 —Zk)(1+222k) + (52 —Ek)(l +512’k))
(2’1 —22)( 29 —Zk)(l +Zk2k)

*Z

X (ExOp, +hi) + 25— B)@ —5) (%= 2) (0, +thZk)] (1424)
(21— 22) (22 — 2k)

SgNLO(QLCD) =

- 21— ;) (22 — 21) (1 + 222k )
Z[ (21 —22)(Z2 — 2)? (1 + 21 21 (Ek0g;, — hi)

(21_216) <22_Zk)2(az _th k)

(21— 22) (22 — 2,)? (1+2-).

(4.75)
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4.4.1 [Qim,Q25]y + [Q1s, Q2r]y commutator

We will begin with the terms in (4.73), which represent contact terms between the single-
soft factors acting on the hard momenta. Integrating by parts is laborious but straightfor-
ward. Starting with the contribution from two positive helicities (142, ), we have

(out] [([Qur, Qasly + [Qus, Qam] ), S]lin) O

o7 / d*z1d®z 02 Y102V

(71 — 22)((21 — Z)(1 + Z221) + (22 — Zx) (1 + Z121))
: ; 2(z1 — 2x) (22 — 2) (1 + 2121) (B, + i) (4.76)
(21 — 22) (21 — z) (22

_ zk) i )
i (21 — 2k) (22 — 2k) (0=, + he2z,)

(out|S|in)

—(1+2).
We can integrate contributions involving (Ey0g, + hi) by parts in z; to write it as

{out| [([Quar; Qas]y + [Qus; Qanl ), S]lin)

_ 21(z9 — 7,.)2 _ 4 5. 5,2 -
/d222 822}/;2 Z [ 77(22 Zk?) a?k}/lzk - TI'Zk(ZQ Zk?) 8’]6}/17%

> —
167 — | (22— ) (22 = 2) (1 + 212k) (4.77)
47T(1 + 2292 — Zkik) 5 .
— Y| (ER0 h t|S
(22 — Zk)(l +Zk2k:) 1 ( kIE, + k;) <OU ’ |Z’I’L>,
and integrating by parts in 2o gives
(out| [([Q1a, Q2sly + [Q1s, Q2mlf), S| lin)
1 5 5 2z, 5 5
DY (YR Yyr - YO, Yo
2};2<1 R B (4.78)
T .
~Y3rOL Yo+ wyzzkﬁzky1zk> (ExOp,, + hi) (out|Slin) ,
or more compactly
<OUt| [([Q1H7 QZS]H + [QlS) QQH]H)7 S] ‘Zn>
(4.79)

1 Z, zZ .
53 5D (Y 0aY5* = Y5 04Y7*) (Endp, + ) {out|S]in)
k

Next, let us consider the (0z, + hisz, ) terms. Including the contribution in which 1 and
2 are interchanged, they are given by

(out| [([Q1u, Qa2sly +[Q1s, Q2m]y). S lin) (4.80)

_ _ 2z1 — z Aa—) A—
[z ooy S A BEZA) o o, oulslin.

} T ()

1672

— 36 —



Integrating by parts in z1, we have

. 1 3
(out] ([Quir Qasly + Qs Qanl ). S im) > 155 [ 22087
4.81)
4r(Zy — 21)? 7 Sm(Z2 = Zk) | a i , (
X Z Tl ) Y T, Ty Y| @a t has ) out|Slin)
and finally 1ntegrat1ng by parts in zo, we have
(out| [([Qa, Qasly + [Q1s, Qarl ), S] lin)
Zk 9 ZL Zk 9 Zrk B B . (482)
5 =3 (V05 Y5 — Y405, Y(*) (95, + hiQz, ) (out[Sin) .

We now turn to the contribution denoted by (112_) in which the first graviton has
positive helicity, and the second graviton has negative helicity

{out| [([Quar; Q2s]y + [Qus; Qanl ), S]lin)

D~ 163 / Az d®z 02 Y02 Y5
21 — Zk ( z9 — Zk)(l + Egzk)
EyOp, — h
; [ (21— 21)(Z2 — Z)2(1 + 21.2k) (B, — ) (4.83)

(21 — 21)% (22 — 2)?
(21 — 2k)(Z2 — Zk)?

—(1+2).

(0z, — thzk)] (out|S|in)

We can integrate by parts in 2z; to write it as

<mem%$ﬁ@m%mmWWD;/fmﬁ@ﬁ2

(=) L+ ) (2= 20)? sy
E —h —= (0, —h Qz t .
XZ (Z2—2x)? 1+zkzk)( kIp, k)+(52_2k)2(8k K2z, ) | (out|S]in)

_(192)7

and after integration by parts in z9, we see that both terms are total Zo-derivatives so that
there is no contribution from the terms in the amplitude in which the two soft gravitons
have opposite helicities.

Adding the remaining contributions from the terms in which both gravitons have
negative helicity, we have

(out| [([Q1H, QQS]H + [Q15, Q211 ), S]in)subleading

D Z DA Yl (9BY2 —YQBﬁBYI )EkaEk

h ] )
+ 5 [Da(Y70aY5* = Y5'0uY(%) = Dy, (V*0aY5™ — Yi'0aY7™)]  (4:85)

B (YlBaBYQZk - YQBaBYiZk) <8Zk - thzk)

— (YPopYs* — Y2 0Y7*) (05, + hiQs,) | (out|S|in)
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consistent with

(out|[[Q1u, Qaslu + [Q1s, Qarlm, Sllin) = (out|[iQp 91, S]lin) - (4.86)

As anticipated there is no extension term.

4.4.2 [QiH,Q25]g + [Q1s,Q2H]g commutator

Next we treat the terms in (4.75), in which one soft graviton operator is treated as hard
by the other. Starting with the (1,2, ) terms, we then have

(out| [([Qm, Qasls + (@1, Q2m]g)), S |in) D> — /d221d2z2 YR Y

k

1672

(z1 — 22)((Z1 — 2k) (1 + Zozg) + (22 — Zi) (1 + Z121))

) (21 — z2) (22 — 21) (1 + 21 2k) (Bl + ) (4.87)
2B 2@ E® =) (a0 (out)Sin
(21 — 22)(22 — 2k)
—(1+2).

Starting with the (E,0g, + hy) terms, we can integrate by parts in z; to find

(out| [([Q1a, Q2s]g + (@15, Q2m]g), S in) D —/d2z 02 YZ2

3 ( 20— Z )(1 + Zgzk> 5, 14220z — 212k . (4.88)
0z, Y —- Y _ B0, + hy) (out|S|in
(- a) (I + 2z (22— 2 (L4 2kzk) (EkOp, + ) {out|Slin)
—(1+2).
Integrating by parts in Z, finally leads us to
(out| [([Q1H, Q2s]g + [Q15, Q21]g), S] |in)
1 Zk ZL ZL Zk . (489)
5= 5| Y105 D5 Y5" = Y54 05, D= Y7 | (Exdi, + hi) {out|Slin) .
k
Similarly, the (0z, + hi€2z,) terms become
(out| [([Q1m, Q255 +[Q15,Q2m]g),S] |in)
1 : 5, (Z2— 2)° s, (22— Zk) ,
—— [ 232 Y Y2 T oy ot TR (9, 4 hyS2s, ) (out
) 47_[_/ 22822 2 Zk: 82 (ZZ_Zk) 1 (22_Zk) (ak+ k k)(ou |S’Zn>
—(1+2) (4.90)

= Z (Yfk 621@ Y;k - YV;k agk lek) (agk + thgk ) <0ut‘5|zn> .
k
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Consider now the (1;2_) terms. These contribute the following terms to the amplitude:

. 1 z1 z9
(out| [([Qru, Q255 + [Q1s, Qanlg), Sl |in) D T6-2 /d221d2z2 02 Y02 Y E
%

(51 — Zk)2(2’2 — Zk)(l + Zgik)

(21 — 22)(Z2 — Zk)2(1 + 2.2k) (B, = i) (4.91)
(21 — Ek)2(22 — Zk)2
(21 — 22) (22 — 2)?

— (14 2).

(0z, — thZk)] (out|S|in)

After integration by parts in Z;, the (ExOg, — hi) terms become

(out| [([Q1a, Qa2s]g + (@15, Q2r]g), S] |in) D 817r/d222 92,V Z

k

2(z9 — zi)(1 + zsz)ylzzl } (4.92)

LY+,

(1 + z2k)

L () (Lt 22)
(z2 — i) (1 + 21.2k)

X (ErOg, — hi) (out|Slin) ,

and the terms involving (0,, — hi(2, ) become

(out| [([Q1#1, Qas]s + [Q15: Qo] ), S lin) > 8% / @2y 38 Y7 ;
(4.93)
M } (02, — his,,) (out|Slin) ,

— 2 —
X { — (ZQ - zk)2a§2Y122 + 822 (22 — Zk) lez

Provided we assume that the vector fields at most have poles at infinity, both contributions
vanish so that as before only the amplitudes in which the two gravitons have the same
helicities contribute.

Putting everything together and summing over helicities, we then have

(out| [([QH, Q2s)g + [Q1s, Q28] g)s S] [in)subleading

1
== LDA(Y1B<93Y2A — Y 0pY{") By,
k

h ) } _ )
+ 7k (D, (Y7*0:, Yo" — Y5*0:, Y1) — D, (Y70, Y5 " — Y5*0., Y7%)]  (4.94)
— (Y{%0,,Y5" — Y550, Y(*) (0, — hidz,)

— (Y05, Y5 — Y005, Y*) (02, + haf2z,) | (out|Slin)

consistent with

(out| [([Q1rr, Qaslg + [Q1s, Qanlg), S lin) = (out| [iQ[1 215, S] lin) . (4.95)
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4.5 Generalized cocycle condition for K

In order for the algebra of charges to satisfy the Jacobi identity the extension terms must
satisfy the cocycle condition

’L'[K[LQ} , Qg] - K[[172]73] + cyclic =0, (496)

for which we will need the commutator of K with the charges. Starting with the expression

_ 1 2 ~ BC Ay
K(l,Q)S = 397C /I;r d 22z [C (TlDBDcDAY2 ) (1 < 2)] s (4.97)

and using the mode expansion for the Bondi news, we can write K as

1 o ) )
Kags =g~ / d*z {W[l,z} lim [a+(ww) + a-(wx)q - h.c.} : (4.98)
where
Wiio) = —4D3V1 ), (4.99)
with
Vi d*w +ww( — )T63Y — T3 YP 4.100
L2 = 1+ 22)( z)(2 1 = T103Y5") . (4.100)

This expression for K also appeared in (4.13) when we found the commutator of the charges
directly from the operators. If V' were real, this could simply be a leading soft charge with
T = —4V, but since it is complex we cannot write it in this way.

First, notice that K only contains a soft piece so that this breaks up into two conditions

i[K(1,9), Qals — Kj1,9),3) + cyclic = 0, (4.101)

and
i[K[1,2), Q@3] + cyclic = 0. (4.102)

Working with the operators, we only have enough information to compute the soft con-
tribution, but we can find both by working directly with the soft limits of the scattering
amplitudes.

Let us begin with the commutator of K with the soft charges and by recalling that
the expressions for K and Qg)) are

1 -
Kaps = —3 / dud? 2y (Wit g1 Nzz + Wi g Nzz) (4.103)
2 _
QY = -5 / dud?z " [D,%TNZZ + DETNEZ] : (4.104)
K

The commutators of N, and Nzz are given by

K2

[NZ1217N2252] = E

Verz6(21 — 22)/ dgq (e_iq““_”) - eiq““‘“”) , (4.105)
0
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so that

1 _
[K(1,2)57Q§,(3q)] = 92 /dm/duQ/dqq/sz*yzz

X [W[l,z]DgTS - W[1,2]D§T3] (fiq(ul_u?) - eiq(ul_u2)> (4.106)

=0.

The commutator with the subleading contribution to the charge can be obtained by replac-
ing DTy by uDg’Y?f and similarly vanishes. So we only have to consider the commutator
of K with the hard charges. With the leading hard charge

1 > R R R R
Qi = 155 | @7l / dgq® |a+(g2) 0+ (g2) + a—(d)la_(g2)| . (4.107)
the commutator can be written as
1 ZZ |1
(K712 Qiprls = — / dud®ey Wi @), Noo] + W@ No:l| - (4.108)

With the commutators
= 21K 8(21 — 22)ay (wiy)e ™Y

= 27k 6(21 — 20)a_ (wip) e

)

, (4.100)
= 27K 8(21 — 22)ay (wiy) e

I

20z = 2K 0(21 — 22)a_ (wig)e™ Y,

we find

(4.110)

The soft part of the commutator between K and the charge is then given by
Ky, Qs = —— [ @215, 5 lim g2 [a_(qu«) - a+(qi)q +hee.. (4.111)
[ ) }7 3H 877'/{, [ ) ]q_>0

This does not lead to a contribution in the soft limit, so K commutes with supertranslations
at the level of soft scattering amplitudes.

For the subleading piece we can use the results derived below for the commutators of
the hard charge with the leading soft piece. We find

1
[lesz[l,Z]]S (4.112)
. o [ (1, ] o
B miﬂrbw/d z [W[l,z} <2DAY3 wd, + (DzYy — D.Y$) - Y3 DA>Q+

_ 1 . ) , T

Wiy | 5 DaYs'wds + (D5 — D2Y5) + Y{'Da )l
1 _

Wi <2DAY3Ao.16w — (DzYy — DY) — Y3ADA> a

1 _
~Wi (QDAYZSAW&J — (D:Y5 — D.Y5) + Y3ADA> aﬂ_] :
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The commutator of this with S is then given by

<0Ut|[[Qg2,K[1,2]]S,5Hm> = lim w/d2z

TK w—0
1
X l:W[l 2]( DY{wd, + (D:Y§ — D.YY) — YZ;ADA> (outlasSlin)  (4.113)
+Wih 2 <2DAY§AW3W — (D;Ys — D,Y§) — Y3ADA> (0ut|aS|z’n>] .
Using the soft graviton theorem, this becomes
(out|[[QSL), K1 1)s, S]lim) = Eyﬁ/f (1.114)

(1422)(z—zk)
(1 +Zk5k)(2—§k)

1 _
X{ |:W[172] <2DAY3A - aZY3Z +82Y3z +Y3A8A> :| +CC}<OUt|S|Zn> .

We can write this more explicitly as

(out|[[Q5r, K 25, Slim) = Z Ex /

(14 z2) 3 3
X T,00Y5 — 150 Y7)Y.
{[(14—2’1@51@»)(5—51@)( 10z 12 20 1) 3

- (1(1252)((2 — zk)) (TO2Y5 — To;YT )Yy
A o ot
+ ((1:,2:2;?2 = zi) (T103Y5 — T23§Y12)8ZY35] + c.c.}<out|5\m> . (4.115)

The generalized cocycle condition then becomes
(out|[K (1 2,37 + Kz,3,1)) + Kj3,1,2)), Sllin)
— i<0ut|[Q3, K[Lg]] + [Q1, K[ng]] + [QQ, K[3,1]];S”in> =0.

This can only be nontrivial if two of the transformations are superrotations and one is a

(4.116)

supertranslation. Without loss of generality, let us take the first two to be the superrota-
tions corresponding to Y7, Y5, and the third to be the supertranslation associated with T5.
In this case we find

. 1
(out|[K[1,[2,3), Sl|in) = 87r/d2z E B
k

(14 22)(z — 2z) 3
Y570,150°Y7
X{[(z 20 (1 + 210 2 0:150.Y;

(1+22)(z — 2)

2 B 3y 2
+(2—2k) 1+ 2z Y5 0:130Y] (4.117)
1 (14 22)(z — z) 3
—= T5D.Y5 0, YT
TEmE (AL
1 (1+4+22)(% = . )
-3 (; - _k;)()l( i ZkZZ)TgDZYQ Y] ] + C.C.}<out]8|m> :
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After integration by parts we can write this as

. 1 [,
(out|[K[1, 2,37, Sl|in) = _87r/d zzk:Ek

(1+22) 3
X T3Y50YT
{[( 1+ 2z)(z—zp) 0 2 20!

3 (14 22)(z — zk)
2(z2—Zzp)(1 + 2zx2)
(1+22)(z2—2k) 4 vza
(5 — Ek)(l + Zkzk)T }/2 g le
1423
(5 — Zk) (1 + zkzk)
(1+22)(z — zx)
(2 — Zk)(l + zkzk)

T30, Y502V (4.118)

_i_f

g T30z Y2283Y1] + c.c. }<0ut|8\in).

We similarly have

1 2
(out|[ Koy Sllin) = o [ d DI

(1+ 22) 3
X T3Y70Ys
{[( T+ zz)(z—2) 0 L 202

(1+22)(z — zx)
2(z2—Zp)(1 + 2zx2)
(1+22)(z2—2k) 4 za
(5 — Ek)(l + Zkzk)T Yi g Y2
1423
(5 — Zk) (1 + zkzk)
3 (1+22)(z — zx)
2 (2 — Zk)(l + zkzk)

T30, Y{02Y5 (4.119)

_i_f

T3YF02Y5

T30:Y7 83Y22] + c.c.}(ouﬂS\in) .
and finally
(out] K3 1.9, Slin) = / iz Z B (4.120)

(14 22)(z — z) 3 o _
x{ [(2 R TERn Zka)T 305 (Y70,Yy —Y50.Y] )] + c.c.}(out|$]zn> .

which we can equivalently write as

. 1
(out|[K3 1,21, S]|in) = 3 /dzzZEk

X{{ (14 22)(2 — z) ATy (D, YFOVYF — O.Y50PYF) (4.121)

Z—Zk) (1 + zxZ1)

T3(Y702Yy — YQZC()ng)] + C.c.}(ouﬂSin) .
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We will also need
. _ 1
~ilout| Q45 Kpals. Sllin) = —- Y B [ a2
k

(1+22) 3
X TRO°YFYF
{[(1+zkzk)(z—zk) 3% 72 11

(14 22)(z — 2z)
(1 + 2121) (2 — Z)?

ST503Y5 YT (4.122)

1 (1+22)(2— ) 5

2 (1 + zpz) (2 — zk)T 30, Yy 0 YT

3 (1+22)(z— 5 .
*( 1+ 2121) (2 _Zk)Ta Y28YI]+CC}<out|S\m>,

as well as

~iout|[[Q7), Kisnls, Sllin) = ZEk/

(14 22) 3
X T202YYS
{[(1+2kzk)(z—zk) e

(L+22)(2 —26) ., o3

(1 G Y7FYS (4.123)

1 (1+22)(2—2) 3
ST ) (2 DO

— 3 (1+22)(z — ) 3 c.c. p(out|Slin
30T ) = )T6Y18Y2]+ }( t|Slin) ,

and of course
— i{out|[[Q, K1 3]s, Slin) = 0. (4.124)

Combining the different contributions, we see that

(out|[Ky 2,3 + K137 + Kj3,1,2)), Sllin)

' (4.125)
—i{out|[Q3, K11 9]s + [Q1, Kpp.g)]s + [Q2, K[311]s, S]lin) =0,

so that the generalized cocycle condition indeed holds as expected.

4.6 Summary of results

To summarize the results of this section, we have shown that the antisymmetrized double
consecutive soft graviton amplitude contains information about the commutator of the
BMS algebra. The soft parts of the commutator can be found at the level of the operators,
though the hard parts of the operator still remain to be computed explicitly. Both the hard
and soft parts can be found at the level of scattering amplitudes. Splitting the amplitude
by pole structures, the individual pieces of the commutator become

(out| [([Q1rr, Q2sls + [Q1s, Q2nlg), S lin) = (out| [(iQ 215 +iK(12)s),S] lin) ~ (4.126)
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for the soft charges, and

(out| [([Quar, Q25 + [Qus, Q2rl ), Sin) = (out| [iQp 2w, S] lin) (4.127)

for the commutator of the hard parts. While we have worked with the tree-level amplitudes,
the commutator should hold at the quantum level as well once the subleading part of the
charge is dressed with the appropriate one-loop correction terms needed to preserve the
Virasoro symmetry of the single-soft theorem.

The extension appears in the soft charges but not in the hard ones, consistent with the
intuition from the Chern-Simons example in [3], where the extension piece has a boundary
contribution and no corresponding contribution in the bulk. The extension term therefore
means that the BMS symmetry is broken when the local transformations are included.

The algebra closes because the extension terms satisfy the generalized cocycle condition
— although this can in principle be derived from triple-soft amplitudes, we have derived it
from a transformed single-soft amplitude.

5 2d algebra and operators

We have just shown that scattering amplitudes and soft theorems realize an extension of the
BMS charge algebra. In this section we consider the 2d structure of the operator algebra
and its implications for defining a dual description for the 4d scattering amplitudes. In the
notation of [30], the (unextended) BMS charge algebra is realized in terms of the fields on
the 2-sphere as

1 1
Tioysa) = Y{'04To = DAY Ty = Y5'0uTy + 5 DY Ty

(5.1)
Vi = YI708Y5" = Y 0pY1",
where s19 = (TLQ,Ylf‘Q). Expanding T'(z,2z) and Y?*(z) in the basis t,,, = %, Iy =

—2™*1 ] we see that this leads to an algebra for the associated operators Ty, , and L, of
the form

[Tm,n, Tp,q] = [ng En] = O’
(141
[leTm,n] =1 (2 - m> Tl+m,n7 (5.2)
[Lma Ln] = Z<m - n)Lm-l—n )

and similarly for the antiholomorphic generators. The last term is the Virasoro algebra.
Including the extension term calculated above, the BMS algebra is realized on the fields as

Y[fz] = YlAaAyzB - YQA(?AY137

1 9 (1+ww)(w—f)

- T3 Y™ — Ty O3 Y, Viy o = h.c. .
V[1,2] Sn w 1+ 22)(w — 2) (120, Y] 10, Y5 )7V[1,2] h.c (5.3)
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where we have introduced the fields V, V representing the (generalized) 2-cocycle. In [30,
31], the extension term is interpreted as a field-dependent central extension, with a new
local field representing the complex shear of the boundary data. It is suggestive that we
can keep the description local by working in terms of the fields ¢(z, z) = D2V, ¢ = D2V,
although it is not clear whether this construction is unique. These fields contain the
structure of the 2-cocycle, and while the calculation in section 4.5 shows that the generalized
cocycle condition is satisfied, it is not clear whether the fields ¢, ¢ can be understood as
independent (unconstrained) degrees of freedom. In other words, although general ¢, ®
independent of the cocycle condition can be defined at the level of the operators, it is not
as clear whether they can be accessed at the level of on-shell scattering amplitudes. It is
nonetheless interesting that they indicate the existence of a nontrivial Lie algebra extension
to the BMS4 algebra: applying the calculation in section 4.5 to general ¢, ¢ and using the
basis elements ¢y, , = %, we find that the algebra can be extended to

[Tm,mTp,q] = [erjin] — 0,
[+1 A% -1)

[Ll, Tm,n] =1 <2 - ’I?’L> T’l-i—m,n - ZT(I)H—m—Q,n ;

[Lims L] = i(m — n) Ly (5.4)

[Lb (I)m,n] =1 (_g(l + 1) - m> q)ler,n )
_ 1 _
[Lla <I>l-l—m,n] =1 <2(l + 1) - m) (I)l-‘rm,n

and it is straightforward to check that the extended algebra still satisfies the Jacobi
identity. The operator ® scales like a primary operator of dimension (—1/2,3/2) under
the action of the Virasoro generators. Note that the fields ¢, ¢ are very similar to the
field o defined in [31]; however, we have integrated out the u-direction, so the behavior
of the fields under the BMS algebra is not the same. While we stress that it is still
unclear whether this construction is unique, or whether the interpretation of the BMS
operator algebra in terms of a 2d CFT structure with the operators and scaling dimensions
above is sensible or not, it is nevertheless interesting that the BMS4 algebra admits this
modification. It would be interesting to know whether this structure can be used to make
further predictions, e.g. about the behavior of graviton amplitudes off-shell, or about the
behavior of higher-point correlators.

Could there be central extensions that we have overlooked in calculating the BMS
algebra? Indeed, an arbitrary central charge can be added to the Virasoro commutator
without altering the closure of the Jacobi identity. However, our calculation and the
assumption that the Y4 are regular everywhere except perhaps at infinity do not allow us to
settle this question. We can try to search for a central charge term in the four-dimensional
calculation, arising directly from the commutator algebra for the Virasoro parts of the
charge operators () = Qg + Qg in terms of creation and annihilation operators, provided
that we have taken the constraints into account correctly. Our preliminary attempts to do
so suggest that the answer is zero, which is sensible if the dual description is coupled to
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dynamical gravity; however, this calculation is not always straightforward in known field
theoretic examples unless the regulator is well understood. Since the central charge comes
from Schwinger terms proportional to the derivatives of delta functions, furthermore, it is
certainly possible that we have missed important information by integrating by parts. To
resolve this question one should consider the pole structure of the terms in the integrated
charges more carefully, or begin from a purely local prescription for the Noether currents
— we leave this for future work.

A great deal of recent work has focused on searches for 2d CFT structure in the
behavior of 4d scattering amplitudes [25-27, 29]. In addition to the existence of the Virasoro
symmetry, it is also of interest to define local operators in the 2d picture based on the 4d
soft fields. As discussed in [26], the combination

2 DQDIUNQE
#2) 87rG/d Z—w

1 ]
= 2 S~ _D2D¥ &) N (5.5)
647r2G (14 wds )/d wYwir - Pul [a—(m) at(wi)

+ 1-loop corrections,

where Ny () = [ duuNgg, and the 1-loop corrections preserve the tree-level Virasoro sym-
metry, acts upon local operators like a 2d stress tensor. Up to integration by parts this is

the subleading soft charge with Y = Y% = 0, and so using the single-soft theorem

(z— w)’
reviewed in section 3, the single-soft limit acts like the OPE of a holomorphic stress-tensor

operator t(z) with the local operators. In the notation of [26],:

(t(2)O1 -+ Oy)

3

Ck I 1 B N (5.6)
5 + (Z — Zk)Ck + (Z — Zk;) (azk thZk) <Ol On>

where ¢, = (—7 — §Ekc'?Ek> is the holomorphic conformal weight of the k" operator,

Qd;YZt ), where the curve C

and €, is the spin connection. The charge Q¢ [Y] = —i [
encloses the points z;, and Y is chosen to be nonsmgular in the interior of C, corresponds
to the part of the charge Qg that creates a soft outgoing graviton with negative helicity.

A difficulty with this definition for the local operator, however, is that the OPE
t(z1)t(z2) should contain terms that are singular as z; — z5. We see that this does not
occur because t(z1) is the same as the soft charge Qg for the superrotations, with the
particular choice of Y4 = Y* = m Applying two such charges inside a correlator and
taking the double-soft limit,

(t(21)t(22)O1 -+~ On), (5.7)

we will find terms with powers of (27 — zx) and (22 — z;) in the denominator, but not
(21 — 22).28 To address this problem, we can amend the definition of the operator to

28Note that the order of soft limits is irrelevant since both gravitons have the same helicity.

— 47 —



include terms that generate a linear rotation for hard gravitons:

T(z) = 64772G' aljlgl(l + w0, )/d R — D2Dw[ —(wz) —a.,.(wfv)q

B 16;3 /d2w’7wu-; /OOO dw
<(Z —1w)2 1 if}uw 2 —1 w> [(—;wc’)w + 1) a+(Wi”)] way (wi)T
(i) (o) e oo

! Dy [a_(wi)] wa_ (wi) + !

zZ—w zZ —

X

(5.8)

_l’_

Dy [a4 (wT)| way (wﬁv)T]
w
+ 1-loop corrections.

This is the expression for @ with Y = (z —w)~!, and there will also be a matter contri-
bution depending on the fields present. Using (5.8) and taking the consecutive double-soft
limit for the graviton insertions now implies the OPE

2 oT (w)

T(2)T(w) = +oe (5.9)

(z — w)

This is equivalent to the third line in (5.2), which is the Virasoro algebra familiar from the
study of 2d CFTs. Since it is irrelevant which graviton is taken to be soft first when the
gravitons have equal helicity, the OPE will be symmetric. Note also that the Christoffel
term cancels against a corresponding term from the spin connection. There will also be a
second copy T corresponding to the opposite helicity, and

T()T(w)=0+--- (5.10)

since they are holomorphic and antiholomorphic respectively. From the definition (5.8) it
is clear that T generates the expected transformations [T, O] for local operators. It will
commute, however, with the S-matrix itself.

We can also define an operator J corresponding to supertranslations, plus local fields
¢, ¢ corresponding to the extension term. These carry both holomorphic and antiholomor-
phic indices, and can in principle be defined using the charge operators in a similar manner,
although it is less clear which values of the fields T'(z, 2), V(z, 2), V (2, Z) we should choose.
The extended commutator algebra (5.4) is then equivalent to the following set of OPEs:

2 oT (w)

TETW) = =T+

NI (w. @) = p(w,w) 3 J(w,w) dJ(w, w)
e 6z —w)t ~ 2(z—w)* * (2 —w) ! (5.11)
R T =
T(2)p(w, w) = ;(2(107;0))2 n 8(‘2(1”;5;)
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Here T is the local operator corresponding to superrotations, J generates supertransla-

tions, ¢ is the field appearing in the extension term, 00 = 90 — i J:;’JMO, and all other
OPEs are nonsingular. We emphasize once again that allowing ¢, ¢ to be unconstrained de-
grees of freedom (as opposed to a generalized 2-cocycle constructed from supertranslations
and superrotations) appears to involve operators beyond those accessible to the on-shell
scattering amplitudes. Because of the extension term, J cannot be a primary operator.
Furthermore, even if there is a nonzero central charge present, the negative operator di-
mension of ¢ seems to indicate that unitarity is violated. As before, we emphasize that it is
not clear whether there is a well-defined 2d CFT structure in the BMS charges, or whether
we have identified the correct prescriptions for defining this structure; nevertheless, this
seems suggestive. A more thorough interpretation of this theory and whether it can be
made well defined may have to await a better understanding of the dual of flat space, if

such a dual exists, and we leave this to future work.

6 Discussion and further directions

In this paper we have shown how the BMS charge algebra in four dimensions is realized at
the level of the operator algebra as well as in terms of the double soft graviton amplitudes.
Our results are a check of the algebra derived in [30]; we agree with the form of the algebra
and with the form of the leading part of the Lie algebroid extension term as well, which
vanishes in the global subalgebra of BMS. In 4d the extension term means that the BMS
symmetry is broken, similar to the breaking of a conformal symmetry by a central charge.
The extension term itself contains a soft graviton insertion, and while its interpretation
is still unclear, it seems to indicate the existence of a nontrivial extension to the group
algebra structure in either a 4d or a 2d description.Whether the suitably extended BMS
algebra has implications either for quantum gravity in flat space or for flat space holography
deserves further study. Our derivation of the commutator algebra from the contact terms
in the consecutive double soft amplitudes also makes it manifest that the BMS algebra is
already guaranteed by the single-soft limits, even though we had to consider more than one
soft graviton. This means that the results here are robust and the only potential quantum
corrections either arise as Schwinger terms, which do not contribute to the integrated
charges, or via one-loop corrections to the subleading soft theorem that arise in the collinear
limit. Asin [47] the divergent one-loop contributions can be redefined away in the definition
of the charges, and if finite corrections are also present at one-loop, they may be fixable
as well. On the one hand this is encouraging, since it implies that the symmetry is robust
even in the presence of quantum corrections, but on the other hand, being fixed by the
single-soft limits also means that the commutator is determined by Poincaré and gauge
invariance, and it is therefore not clear whether we have really learned anything new about
quantum gravity that was not already guaranteed by the known symmetries.

There are a number of possible avenues of study for using BMS to learn more about the
structure of gravitational scattering amplitudes. The question whether there is a central
charge in the Virasoro subalgebra deserves further study, and it would be interesting to
study this from a local expression for the Noether current. It would also be interesting to
further explore aspects of the charge algebra which are not fixed by the symmetry, such as
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different combinations of the charges or correlators involving an arbitrary number of soft
modes. From the study of scattering amplitudes it is known that gravitational amplitudes
behave in many situations like a product of gauge theory amplitudes — can this observation
help guide us, and does this product structure appear somehow in the asymptotic charges?

While the symmetry algebra derived here has interesting hints of a 2d CFT structure,
it is still not clear whether the amplitudes can be understood in terms of a dual CFT
interpretation. We have tried to be clear about the choices leading to our prescription,
but it is certainly possible that there exists a different prescription for defining the charges
and local operators which leads to more sensible physics. It is also possible that the BMS
symmetries make more sense physically in the context of black hole horizons than they
do for asymptotic ones, where they correspond to the symmetries of a compressible fluid
living on the horizon [35].

The role of asymptotic symmetries in gravity and gauge theory is surprisingly subtle,
and it remains to be fully understood exactly how much information about quantum gravity
is contained in the Ward identities of BMS symmetry. We hope that the current work helps
clarify some of the subtleties in this problem, and will help develop our understanding of
the role that asymptotic symmetries play in the scattering of physical gravitons.
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A Soft factors at subleading order

Since various expressions for soft factors at subleading order, not all consistent with each
other, have appeared in the literature, we collect our conventions in this appendix. The
soft factor in our conventions is given by

K € (a, N)piapJy”
2 pr-q—ie

S (q.x) = (A1)

If the amplitude is expressed in terms of spinor helicity variables, the angular momentum
operator can be written as

0 —upB 0
JHP = e By Z PP G A2
k ok 8u}f R Gy g (4-2)
where 1 1
S _ T (oh'5Y — o¥5H) and P 1 (ato” — Vo), (A.3)

where ¢ and ° are the identity matrix, and ¢’ and —&* are the Pauli matrices.
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The two component spinors are related to the stereographic coordinates we use in the

main text according to

2k 2F;, 2F,

o 14212k _4 _ 14212k i

u (pk) = 28, € 2%k s and ua(pk) = _ 25, 62¢k s (A4)
o 1422 2k 1422k

where ¢, is some arbitrary phase that depends on the choice of standard Lorentz trans-
formation to take the standard 4-vector to the 4-momentum of the particle. The phase is
typically taken to be zero for convenience.

We can solve these equations for Ey, zx, Zx, and the phase ¢;. In this way we find that
the subleading soft factor for positive helicity gravitons in the stereographic coordinates is
given by

K
$H(g,p) = & [—

(1+zqzk)(2q—2k)E 0 (zq—z)* 0 | Z—z O

= k A T
(2g — 2)(1 + 212;)  OFE} 2q — 2 OZg 2q — 2 00y,

. } . (A5)

To simplify this further, note that the amplitude for an outgoing particle with helicity
hy is proportional to exp(ihp¢y) (consistent with the explicit expressions for the two-
component spinors.) This implies that the soft factor can equivalently be written as

K

S£+)(q7pk) =35 |:_

(A.6)

(14 z42x)(Zg — 2k) 0 (Zg—2)* 0 %4~ zk]
5 e -G

(2q — 21) (1 + 2 2) k@Ek B Zq — 2k 07k Zq — 2k
The subleading soft factor for emission of a negative helicity graviton is similarly given
by

. KT (14 2¢2k)(2g — 21) d (2 — 21)% O 2 — 2k

ST ) =2 |- e E — — + = . (AT
1) =3 (g — 20)(1 + 212k) "OE, 24— 2k Oz " z4— (A7)
We have verified these expressions with explicit perturbative calculations for hard particles
of spin—% and spin-1.

When discussing photons and gravitons, it is also helpful to have expressions of the an-
gular momentum operator and soft factors at hand that are expressed in terms of polariza-
tion vectors rather than the spinor variables. To find the relevant expression, we will imag-
ine that we have expressed the amplitude in terms of momenta and polarization vectors and
in turn now express them in terms of spinor-helicity variables. Given the spinor variables

Z 2F, 2F),
1 Z _ 1 Z
u®(py) = o) and aslee) = | V] (AS)
B 14212k 2k 14212k
we can write the momenta as
1 iy 1 »
P = =5ua(pr)o"ualpr)  or P = —u®(pr)ogat” (Pr) (A.9)

and the polarization vectors as

_ 1 ta(pg)orion, _ N
e ,_'_ — d H ,—) = —7—06. 5 Alo
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where n,, is an arbitrary reference vector. The choice that corresponds to the polarization

ney — (?) . (A.11)

The angular momentum operator in terms of derivatives with respect to momenta and

vectors used in the main text is

polarization vectors is then

0  —pod 0
po _ _ypo Bpa Y PO o Y
JP? = Eau@uﬁ by Buaﬁﬂﬁ
opt 0  —=poa ap* 0
=y Py TSP g, S
U 9uB gp % D opr
_yp0 Buaﬁﬁ_zpo ﬁua@i
¢ ouP 8€‘fr ¢ oub O
—poa _ 08 0 —pea _ O 0O
poa o O O spod o O O
T 8%, 08 8% a0 (4.12)

where the derivatives with respect to the momenta only act on the explicit momentum
dependence of the amplitude, not the momentum dependence of the polarization vectors.
To evaluate this we will need the derivatives of the momenta with respect to the
spinor-helicity variables

ap,u — _la_,u,o'zau
Diig “
P ;Oj 1 (A.13)
- ——o" a®
ou® 2 oo 7
as well as the derivatives of the polarization vectors
e, i&“ao‘na
dug /2 ubng
0" _ _i o'gdﬁa
u* V2 uynt A14
3€’j_ 1 ahn ng u MNa (A.14)
—_— s — — —6
ou® V2 ubng uin, "'u’YTuY ’
ot 1 wotn ng _ _, n°
dug /2 %ﬁﬁ usynY Ty
The angular momentum operator then takes the form
1 . 0 1_ —poa ; 0
po _ ~ axwpo B_p & Y T4 3P ZuBa _
JP? = 2u >P% . 0341 api + 2ua2 30 ua@p/‘
uO‘EpUaﬁng 0 n 1 Uazpoaﬁagdﬁd 0 (A15)
€ — - .
wn,  TOE T 2 Uy o€
1 adiPUQB5MBana b) ﬂdipgdﬁ"ﬁﬁ. i b)
V2 uPng o * wnt o
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To simplify this we can use

1 1
Sl = = (ntPa? — nPot) + ieuwmgﬁ ’

2 : (A.16)
s —p _ Lo upv  vpopy b wpe
by 025(7] a’ —n O')—§6 Tk s
where €923 = 1, and write it as
o0 g0
Opo Opp
uyro %B o 1 0 o)
2 (pprer _pongpy Y D popsg Y
uIny +8 2 (77 N ) e 26 " oet
_ PO g .
ugXgn” 9 1 0 i 0
= _ 2 (pphgo _ponzr)_ 9 Y opousz Y
+ a0 2 (el — ") e't T g (A-17)

We will ultimately be interested in the soft factors, in which the angular momentum
operator always appears in the combination €,J°?¢g,. Let us consider the coefficients of
the derivatives with respect to the positive and negative helicity particles separately. After
some algebra, one finds that the positive helicity coefficients are related by

050 Brg i 1 Eq+ ¢’
_ U= a 1B U popk — ¢ "
E—p [ UZ”"/ € T 26 €k+n] 4o = €— [ 9 (nk €t — 77k 6k+)] 9p = Ej + zpk’
U Po 5n ~ 7 B 3 1 _
€rp [ . uZn(: B€Z+ + 26””’“6“&] do = €4p [_2 (e, — ’70#6£+)] G- (A.18)

and similarly for the coefficients of the derivatives with respect to the negative helicity

. ﬂkaipffas ,66# - . pa;me . 1 ( prgr o p ) (A.19)
—p 4ﬂk*’yfﬂ k=" 9 k—r| 4o —r |7y nm€g_—1n dp, .
[~ spoe _g . i 3
Uk 6,2 gh i 1 E,+q
— —H POUK = _ = _ = pp,—a The P _ g 2
€t+p ﬂk-’yﬁ;y €p_ — 26 €k—k | 4o = €4p [ 9 (7] -n ):| dp Ek—l-p%pk.
For a gauge invariant amplitude, we see that
0
9eyy

so that in a soft factor the action of the angular momentum operator is equivalent to

0 0 0 0
Y S S
JPO ~ pf s p° app + ( oc € 8€p> (A.21)

B Amplitudes and charge algebra for pions

In this appendix we review single- and double-soft pion amplitudes, and provide a dictio-
nary between the standard discussion and notation of [57, 58] and the analysis and notation
used in our paper.
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A current that corresponds to a spontaneously broken symmetry has non-trivial matrix
elements between 1-particle states that carry the same charges, i.e., pions. As a consequence
we can write it as

JE=JE, + T, with Jh, =—f0'n,, (B.1)

where 7, is the pion field.

In the standard discussion of soft pion theorems the central quantities are the Fourier
transforms of matrix elements of time ordered products of these currents. By Lorentz
invariance they must be of the form

/d4x1 . -/d4$n eiqml . ,eiqnxn <5|T(Jc/fll (931) .. Jé‘g(:cn))m)
o4 .
= (2m)%i6%(ps + ¢ — pa) METE (@, - an) - (B2)
Soft pion theorems for amplitudes in which n soft pions are emitted can be derived by
evaluating the matrix elements in (B.2), or rather its divergence, in two different ways. On
the one hand we can evaluate them using current conservation, and on the other hand we

can use decomposition of the currents into soft and hard pieces. Following [57], we will
denote the time ordered products of the hard parts of the current as

/ P / A, UL BT BIT (T (1) - Th (20))]a)
= (2m)%i6* (pg + g — pa) N1 (@1, ) - (B.3)

For a single current we simply have

(20)1i0" (5 + 4 — o) ME(@) = [ dt e (312 @)|). (B.4)
Decomposing the current into its soft and hard piece, we know that this is given by

fq"
Mﬁf(q) = _qTMﬁwa@[ +N5Ba (B5)
where Mgra o is the Feynman amplitude for a process o — 3 in which a single pion is
emitted. The current is conserved, and so ¢, M} = 0 implies that

1
f

So far this is exact. If N is regular as ¢ — 0, as in the case where the theory consists

Mprea = —guNE. . (B.6)

only of pions and there are no cubic vertices, then the amplitude for the process in which
a pion is emitted vanishes in the soft limit. This is known as “Adler’s zero.” If the theory
contains nucleons, or other fields that have a 3-point interaction with pions, the Fourier
transform of the hard part of the current contains poles associated with insertions of the
hard part of the current in external nucleon lines. In this case

1

lim Mgra o = —= =TI Mgo=—- TI M B.7
q—0 pm 0 f 7 Dj - q B f ; B.a ( )
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where the generator TV acts on the j% nucleon, and we see that the emission of a single
soft pion is dominated by emission from external lines in the diagram.
To make contact with the notation in the main text, let us also rewrite equation (B.6) as

i .
(87", qlo) = / dhwei® 9, (872 (2)]a) . (B.8)
As we take ¢ — 0, the integrand becomes a total divergence, and the equation becomes
: a { _
lim (8; 7%, gla) = ?<5|Q2a — Qpgla). (B.9)

As written here fo . are the integral over the hard part of the current over space as
t — 400, but for massless states this is the same as the integrals of *Jg, over .#*. In the
main text we also denote this as

lim (8: 7 gl0) = = (][ Qura. Slla). (B.10)
q— f

which is, of course, equivalent to equation (B.7). We can go slightly further by formally
defining the soft charge

, -
&= = Lr M out _ . tout
e = /J-&- We=o I | i (a2 (a) — a} (@) - (B.11)

and similarly for Qg,. Of course, as usual for spontaneously broken symmetries these
charges create states whose norm diverges like the volume, and they are not well-defined
operators of the theory. However, since their commutators with local operators are well
defined operators, they are still of some use. Making use of crossing symmetry to relate
the matrix element for the process in which a pion is absorbed to the matrix element in
which it is emitted, we will here use these charges to write the S-matrix element as

i [ L9085 gla) = — L (8][Qsr Slla) (B.12)
40 An T, q - f Sas ; .

so that the soft theorem formally simply becomes

(B][Qa, S|a) = 0. (B.13)

Note that in the case of the BMS symmetry the integral of the amplitude over the angular
directions is further weighted by functions ¥ of T, Y“ on the 2-sphere, the explicit form
of which is given in the text, and involves a sum over graviton helicities as well.

Our main interest here is the double-soft pion theorem. In this case, the decomposition
into soft and hard pieces implies

a5

My (a1, 42) = M LY L YV (B.14)
ab L 2 Q%qz premta q% bBme, 0 q% afrl,a abB,a :
We can eliminate the factors N lf B with the help of
K fai "
M(zﬁwb,a(ql) = 7?/\457#‘775,& +Na67rb,a s (B15)
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and we then have

Qa2 M (41, @2) = 1420 N2 (a1, 42) = P M prags o - (B.16)

The traditional way to evaluate the left hand side is to note that it corresponds to taking
derivatives of the matrix element with two current insertions and evaluating one of the
derivatives. Because the currents are conserved, the only non-zero contribution arises
when derivatives act on the theta functions associated with the time ordering. We see that
the left hand side then becomes

Q1920 / dzdy e (BT (J) (2) Ty (y)]er)

— gt [ dtaaty e 515G - o) ), Jiw)] o)

(B.17)
— g [t o 5] @) o)
= —if " quMbs (@1 + q2)(2m) 5 (D + @1 + g2 — pa)
so that
PP Moo = if""quMby (@1 + 62) + quga N (a1, ¢2) (B.18)

= —i " My (@1 + a2) + q1u420 N0 o (@1, 42)

where we can use the first or the second expression without loss of generality. So far this
is exact, and we see that the matrix element for two soft pions knows about the current
commutator [57]. Using (B.5) to expand the current My , we have

f2M67ra7rb,oc = _%
_if
2

FMpre o1 + @2) + i f " quNlpo (@1 + a2) + quugan Nl o (a1, ¢2)
FMpre o(@1 + @2) = 1 f*q2uNlso (@1 + a2) + quuaao Nl o (a1, q2) - (B.19)

Here we have taken ¢; and g2 to be on-shell. As both ¢; and ¢2 are taken to zero, this will be
dominated by diagrams in which the current is inserted in external lines, which shows that
the amplitude in which two soft pions are emitted is given in terms of the amplitude for the
underlying hard process with external lines rotated by the commutator of the generators
associated with the soft pions. Taking the antisymmetric double consecutive soft limit
limg, 0 limg, ) of both sides of (B.19), we find

. . 2 _ abc 1: . - rabe s i
[t}iIEOqlli&)]f Moz o = —if [ lim Mgre a(g) + 26" limy g, N7, (4)

+ Jim T Q2N 0 (01, 62) (B.20)

[¢1—0 g2—0

— jfabe éi_rf(l) 0uNYpo (@) + lim lim q1,020 N0 (a1, 62)

[q1—0 g2—0]

where we have used current conservation in going from the first to the second equality. Note
that there is an order of limits issue here, and had we kept the soft momenta off shell, so
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that ¢?,¢3 # 0 and put them on-shell only after taking the soft limits, the result would be

Hm lim f2Mgram o = —2if f éi% Mgre o(q) + 2 fb° g% 0uN!5,(q)

[q1—0 g2—0]

+ lim hm] qquyNgjﬁ,a(qh 2) (B.21)

[q1—0 g2—0

= lim lim NEY ,q2) -
S0 guty D2 N, (01, 2)

In symmetric spaces, if the generators 7% and T correspond to broken symmetries,
their commutators f*¢ are only nonzero with unbroken generators 7¢. In this case we can
replace M’; o, With V. chi o» and using the pion-nucleon vertex from before, we can find

: i (0 — q2)
ql}tggﬁ Mﬁwawb’a 2f2 fabc pj (1 + @) (Te)iM 7 e f2 Z { }M@
(B.22)
using Feynman diagrams. (See also [59].) Here the notation (7.); means that the generator
with index ¢ acts on the hard mode with index j. The momentum prefactor means that
the limit depends on the order in which the soft momenta are taken to zero, and the
antisymmetrized consecutive double-soft limit picks out the commutator.
For a non-symmetric space, however, the commutator can contain a broken generator,
fabCMgﬂ o+

M,Bﬂ“ﬂb,a (Q17 q2) f fabCQ1uN(%7a (fh + Q2)

: 12 (B.23)
- FQI#QQVN;Z;;,&(QM Q2) )

which contributes an additional piece

. 1 abc abc M .
ql};gri)()/\/lgwaﬂb,a szf Ej (Te) Mg+ 2f2f pi (@ +q2)(TC)]M/37a
1 1
- } 5 {0 f M (B.24)

up to terms arising from collinear divergences. Taking the antisymmetric double soft
consecutive limit, we find that the first and second terms separately know about the com-
mutator, and will cancel.

To relate this to the notation in the main text, we will evaluate the double-soft limit of
this expression differently, just like we evaluated equation (B.8). If we first take the limit
q1 — 0 and then g2 — 0, we find

— lim lim d4md4yeiq1$6iq2yau3u<5’T(J5($)Jé/(y))|a>

q2—0 q1—0

= — lim [ d*ye"®Y9,(B1Q}J; (y) — J¢ (y)Q |a)

q2—0

= —(BlQ7Qy —QaQy —Qy Qs +Q, Qg ). (B.25)
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Taking the limits in the opposite order, we see that the anti-symmetric consecutive double-
soft limit of this expression is simply

lim lim [ ded'ye' e V0,0, (B|T (1} (2)J; ()le) = (Bl[[Qa, Qs], Slla) . (B.26)

[g2—0 g1 —0]

The Fourier transform of the divergence of the time ordered product of the hard parts of
the current can be evaluated in the same way, so that the consecutive double-soft limit of
the S-matrix element is given by

o d*gy & Q2 b
lim lim — —=(0; 7 q1, 7, @2|
dim g / Ir dp ST el (B.27)

= (Bl[[Qsa,Qst) + [R5a; Qup] + [Qras Qsb), S)lar) .

The first term can at most contribute a Schwinger term, but for pions this contribution
vanishes on-shell. The consecutive anti-symmetrized double-soft limit then simplifies to

d*q1 d*Gs
lim lim f2 [ TNTR
J L P

(B; 7 q1, 7, gale) = (B|[[Qsar Q] + [Qrrar Qsp], Sl|e) -

(B.28)
Applying the same soft limits to (B.19), we have

lim lim f L @ L (e
[2—0 g1 —0] 4 4w

(B: 7, q1, 7", gl = (Bl[iQap)s + 2iQapjr — [Qrar Qrn], S|ev)

(B.29)
and equating the two expressions (B.28) and (B.29) and comparing the soft and hard parts
of the charges, we have that

(B [[Qua, Qspls — [Qrp: Qsal g+ S|
(Bl [[Qras Qsplyr — [Qub: Qsalr » S

Oé> = i(ﬂ”@[a,b]S?S”a) )
) = (B]2iQuyr — [QHas Qmo), Sl|a) (B.30)
= i<ﬁ|[Q[a,b]H7 S] ’O[>

where the charge algebra for the hard operators is guaranteed by considering their action

on other operators.

The reader may be puzzled why the charge algebra is realized by the commutator of
(Qra, Qsy] — [Qup, @sa] With the S-matrix, instead of by the commutator [[Qq4, Q] ,S].
We can repeat the derivation above while keeping the soft momenta ¢, ¢ off-shell and
setting them on shell only at the end. In this case, we indeed recover the result
(Bl 1[Qa, Qp) , S] |y = if™(B][Q¢, S]|a). Since the charges are formally undefined for
spontaneously broken symmetries, it is perhaps not surprising that there are order of limits
issues when computing their commutator. We work with scattering amplitudes involving
physical on-shell gravitons in the main text, and therefore it is [Qga, Qsp] — [Qrb, @Sal
that contains the commutator. Had we tried working with the off-shell amplitude instead,
calculating the antisymmetrized double soft limit would involve the subtraction of two
divergent quantities.

If the coset is a symmetric space, the inversion symmetry guarantees that the broken
generators consist of an odd number of creation- and annihilation operators. As a conse-
quence their commutators contain an even number of creation and annihilation operators
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and the commutator does not contain a soft piece. This implies that the double-soft pion
amplitude is related to the amplitude of the underlying hard process with external lines
rotated by an infinitesimal amount.

For cosets that are not symmetric spaces, as in the BMS case, the commutators of
the soft and hard parts of the charges will contain contributions that are soft and create a
single soft pion, as well as hard parts that rotate the external lines. The information about
the charge algebra is entirely contained in the infinitesimal rotations of the external lines
of the underlying hard process, but to extract it one must then take appropriate linear
combinations of single and double-soft limits.

The case of two soft pions makes it clear that the backreaction terms in the Dirac
brackets are not surprising — they appear simply because the space is not symmetric and
the Goldstone bosons are charged under the broken symmetry. This is easy to see from the
Noether current, since the currents both create the soft pion and perform the linear rota-
tion on the hard modes. The extension is absent in the case of soft pions. Working with the
currents is more straightforward from the perspective of quantum field theory for several
reasons. Firstly, the charges do not, strictly speaking, exist when the symmetries are bro-
ken, since their matrix elements with physical states are not always normalizable (though
the matrix elements of their commutators with local operators are). Second, the matrix ele-
ment with multiple currents may have Schwinger terms as two insertion points approach one
another. These correspond to derivatives acting on delta functions in the current algebra
and will disappear when we work with the integrated charges. In typical field theory exam-
ples the Schwinger terms are canceled by the seagull diagrams. We do not have a general
proof that these terms always cancel in linearized gravity, but if there are uncanceled terms
present they could be analyzed in a diagrammatic calculation of two local current insertions.

C Single and double-soft gluons

Although the focus of the present work is on the structure of the BMS charges, the same
formalism applies to other asymptotic theories as well. The reader may prefer to see the
calculation for soft gluons and asymptotic Yang-Mills charges as a warm-up, before wading
through the heavy algebra of section 4. The connection between the single-soft gluon
theorems and asymptotic gauge charges is derived in [13, 14]. The asymptotic Yang-Mills
charge at future null infinity is given by

1 _
Q = >3 / sz ’YzZeFru
e ]I

1
= d?zdue(z, %) [&(@Ag +0:A,) + €27255u] -
e ) +

(C.1)

Here e is the Yang-Mills charge, and €(z, z) is an arbitrary test function. Following the
discussion in [14], we work in retarded radial gauge, and in the second line we have used
the Maxwell equations VHF),, = e2j,, rescaled by an overall factor of r? so the integral
over the sphere will be finite.
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Expressing the asymptotic field in terms of creation and annihilation operators and
using the stationary phase approximation, we have
7 V2e o0 )
A, =——— dwqw [a wed)e @t 4 a_(w,i)le 'H“’q“} C.2
e | dne[a(d) (w42) (©2)

and similarly for As. The soft charge operator insertion is then

(out] [Qs, S] |in)

=" lim [ d®ze(z, %) [@ <(1_:Zz)w(out|a+(wi‘)8|m>> +

e w—0 (C.3)
+ 0, ({w(outa(w:%)5|in>> ] :
(14 22)
Applying the soft gluon theorem,
lim e M,.(q, a;p1,iv;- -+ i pnyin)
i (C.4)

Dp - € Tk]k
—Z(m)q)M(pl,h,“' s Phs Jk3 " i Do in)

where all the momenta are taken to be outgoing, and we assume that the hard particles
transform in the fundamental representation. In holomorphic coordinates, the soft factor
becomes
SO (q) = —eMTa _ —LMTG, (C.5)
(pk - q) V2w (2 — 2k)

and integrating by parts, we have

(out| [Qg,S] |in) = Z €(z) Ty (out|S|in) = —(out| [Qp, S] |in) , (C.6)

k
where the symmetry generator T}, acts on the k' particle and a is the color index. Note that
similar to the case of supertranslations in gravity, keeping both helicities was important for
the factors of two to come out correctly. In the case of QED, the factor Tikik ig replaced
by Qj, where eQy, is the charge of the k" particle.
We can also study the charge algebra, by checking the expressions

(out] [([Q1s, Qas] + [Q1m, Q2s]g — [Qam, Q1s]g), S |in)
= i{out] [Qp s, S] |in),

(out| [([Q11, Qenly — [Q21, Q1s]y), S] lin)
= i{out| [Q[172}H,Sj| lin) .

The terms [Q15, Q2s] will vanish, and the rest are contained in the antisymmetrized con-

(C.7)

secutive limit of the double-soft amplitude. The antisymmetric double-soft factor for Yang-
Mills is
ﬂ”@nﬂm<>—5@mﬁ$m@n

2 (P
(p

) (pk : 62) aiazc

q1) (px - qz)f Lo (C.8)

- €1 ) (pk : 62) arazep ieQ (q:l : 62) (pk : El) aiazc
e M e e M

:ZG

Pk -
2l
“
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The first term will be associated with ([Q1x, Q2s|y + [Q1s, @21]y and the last two terms

will be associated with ([Q1m,Q2s]g + [Q1s,Q2m]g. Starting with the ([Qm,Q2s]y +
(@15, Q2m] terms, the amplitude becomes

(out| [([Qm, Q25 + (@15, Qarrl ), S] lin)
7 1
~ 1672 (21 — 2z1) (22 — 2x)

=iy en(z)ea(z) 7T (out|Slin)
k

= i(out| [Q[l,Q]H78] |in)

d221d222 651 61852 €9 fabcTC (0ut|$\m) + -

(C.9)

where the symmetry generator acts on the index of the k*" particle, and the first line on the
right hand side contains a sum over helicities, of which we have written out only the (1,2 )
term. This is the same as a single asymptotic gauge transformation with parameter €;es,
and charge given by the commutator. Note that this was much simpler than for gravity
because the charge algebra is already reflected in the leading order soft factors.

For the ([Q1#,Q2s]g + @15, Q21]g terms, we have

(out| [([Qm, Q2s]s + [Q1s, Q2m]g), S lin)

1 2 2 1 b )
= 1 €10z wr,
162 /d z1d” 29 Oz, €10z, €2 o =) = zk)f (out|S|in) +
1 1
=5 g 61(21)62162(21)7(21 ~ ) + - (C.10)

= —i Y er(z)ea(zk) [T out|Sin)
k

= i{out| [Q[I,Q]Svs} |in)

where in going from the second to the third line we have taken the sum over helicities and
collected the terms proportional to 0z, (e1€2) and 9., (€1€2).

We should emphasize that this prescription is different from that of [50]: we are taking
the antisymmetrized consecutive double-soft limit of the soft gravitons instead of sending
the soft momenta of gravitons with one helicity to zero first, and our definition of the
charge contains an integral over local currents of both helicities.

D Double-soft photons

The calculation in the previous appendix also applies to photons. Since QED is an abelian
gauge theory, the commutator of two soft photon charges vanishes at leading order. We
can calculate the subleading piece from the contact terms,

Jim lim &M (q15 i1, pa) = [Sm(ql) {59} - 5D (@) {San)} ] M,
(D.1)
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which corresponds to a commutator between the charge operator and a dipole charge oper-
ator of the kind described in [60 61]. The dipole operator is built out of the subleading fac-

€ €
tor SW(g) = — >k O p*;q;' . Since this can receive non-universal corrections due to the

anomalous magnetic moment, the resulting charge commutator will be sensitive to quantum
corrections; however, we are free to perform the calculation and see the result at tree level.
The subleading soft charge at future null infinity is given by

1
Q= ) d*z ’YzzDAYAAu
e j;
1
== d>zduuD YA Ou(0,Az + 0:A,) + 62’)’z2ju] )
e? ) g+

and the corresponding operator insertion (at tree level and for charged scalar hard opera-

(D.2)

tors) is
(in| [Qs, S] lin)
_ V2 2 vea (1 ol
= o1J1£%(1 + wd,, )/d 2 | DY 7?05 <(1 pe <0ut!a+(wa:)8\m>> +
z 1 5 ;
+ D.Y?0, (M<0ut\a_(wx)8]m)>
| (D.3)
- <“/§> /d% D:Y*
4
(1+ zz) (2 —=2Z) (1 + 2p2k) )
O, + E_ "0z | +h.c.
XZQk( V2(z — zi) (1 + 22) & V2(z—z) (1 +22) F F ‘
x (out|S|in) ,
which integrates by parts to
. 1
(in] [Qs,S] lin) = —i Z Qk (DAY Op, — EYABA) (out|S|in) . (D.4)

To calculate the charge commutator, we need only to consider the terms

(out| [([Qur, Qs + [Qus, Qanlpr), S]lin) (D.5)

and the terms [Q g, Qs|g will be absent at tree level because the photon is not itself charged,
which means that the combination [Qf, Qs]| does not commute with the S-matrix. Focusing
first on the terms proportional to 1/g9, the soft factor is given by the contact terms

S(l)(ql) {S(O)(QQ)} — 26262% [(pk : El) ((% : EQ) . (pk : E2)2 ((I1 . QQ))

% (or-@1) \(pr-a2)  (Pr-q2)

- <(61-62) _ @) o .qz)”

(Pk " q2) (Pk : 612)

=0 (1424)
Z e?Qi(z1 — z1) (1 + 2121)

2(1+4 z121) (21 — 21) (22 — Z)?

(142-)
k
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and calculating the (1.2_) terms first, we have

Adding back the other helicities and antisymmetrizing, we find that the commutator of the

(out| [([Q1H, Q2sly + [Qis, Q2m] ), S |in)
. o _
D) ( ! )/d221d22’2 822€2D§1Y'122§ 2( Qk(zl Zk)(l +Zkzk)

472 1+ 2121) (21 — 21) (%2 — Z1)2

([ 2 2 v % 24 - m(Z1 — Z) (1 + 2 %k) (D.7)
= <4W2> /d z1 D3 Yy ;Qk@kQ 0t 212)(01 — 22)

1 _
=3 > QY056 .
k

dipole and monopole charges generates the linear shift

This is not fixed by symmetry, since the dipole operator can receive quantum corrections,

i(out| [Quou, S) lin) = —% > Q7 (Y'0a& — Yi'0ae) (D-8)
P

and is therefore sensitive to the full dynamics of the theory.
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