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1 Introduction

Double field theory (DFT) [1–4] and Exceptional Field Theory (ExFT) [5–15] have been

very effective tools to understand and clarify the relation between lower dimensional

(gauged) supergravities and their 10 or 11-dimensional counterpart. This is clearly im-

portant in the context of better understanding the possible landscape of effective theories

that have a string uplift. It is also instrumental to the identification of new consistent

truncations of string theory reductions to lower dimensions in order to gain control on the

vacua of the theory, their deformations and their relations, which are often evident in DFT

and ExFT because of their manifest duality covariance. A point that is especially impor-

tant is the realization that one can generalize Scherk-Schwarz (SS) reductions [16, 17] to

DFT and ExFT in a way that allows to make contact between supergravity gaugings and

10 and 11-dimensional backgrounds in an explicit fashion [19–23, 69].

In this work we focus on D = 4 maximal supergravity and its Minkowski vacua.

It was noted that there is a large class of Minkowski vacua of D = 4 gauged maximal

supergravities that are connected by singular limits along their moduli spaces [24]. In

particular, there is a gauging with gauge group [SO(4) × SO(2, 2)] n R16 that is known to

derive from the reduction of type IIB string theory on the S3×H2,2 manifold [25–27]. We

therefore decided to analyze singular limits along the moduli space of this 4-dimensional

model from the higher-dimensional perspective, by means of DFT, and provide a procedure

to construct the corresponding backgrounds and deformations. In the process, we give a

general procedure for these singular deformations, which goes beyond the specific examples

discussed in this work.

The first result that we are going to present is a general procedure by which singular

limits of a gauged supergravity that has a generalized SS uplift to 10 or 11 dimensions yield

novel gauged supergravities that also have a similar uplift. By means of our constructive

procedure, we find that the twist matrix of the limit model can be obtained from the

original twist matrix. This makes everything very explicit and allows us to write for each

limit the local functions describing the metric, the dilaton and all the other form fields

present in the theory.

As a working example, we took singular limits along the moduli space of Minkowski

vacua of the SO(4) × SO(2,2) gauging and its siblings identified in [24]. We discovered that

all such models result in new Minkowski4 solutions of 10-dimensional string theory with

an internal space some type of T -fold [28–32] admitting an interpretation as asymmetric

orbifolds, Q-flux backgrounds and combinations of the two.

We close our work with a presentation of the 11-dimensional uplift of all CSS gaug-

ings [33]. A three-parameter subclass of these models was originally found by Scherk and

Schwarz by dimensional reduction of eleven-dimensional supergravity [16], however the

origin of the fourth parameter was still missing and we now close this gap.

2 The moduli space of Minkowski vacua in N = 8 supergravity

Gauged N = 8 supergravity models are completely fixed once the embedding tensor Θ is

specified [34, 35]. The ΘM
α tensor declares which generators tα of the E7(7) duality group

– 2 –
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are made local by means of the vector fields (and their duals) AMµ present in the theory:

Dµ = ∂µ −AMµ XM , XM = ΘM
αtα. (2.1)

Different gauge groups Ggauge have different embedding tensors, but sometimes also the

same group Ggauge can be embedded in different ways in the duality group and the embed-

ding tensor provides the (different) resulting lagrangians. Also, the analysis of invariant

values of quantities constructed in terms of the embedding tensor discriminates equivalent

and inequivalent models [36, 37].

A very important term in the Lagrangian is the scalar potential, which is a quadratic

function of the embedding tensor and which determines the vacua of the theory and their

residual symmetry group Gres ⊂ Ggauge. For maximal supergravity the scalar manifold

is the quotient E7(7)/SU(8) and therefore one can perform the minimization of the scalar

potential required to establish the vacua for a given model by using directly the embedding

tensor Θ and scanning the values satisfying at the same time the extremum conditions and

the consistency conditions coming from the gauging procedure [38]. Such trick allowes to

determine systematically a large part of the spectrum of vacua of maximal supergravity

with various numbers of supersymmetries and values of the cosmological constant [24,

36, 38–42]. In particular, in the analysis presented in [24], many new marginally stable

Minkowski vacua were found for different gauge groups G and embeddings Θ, preserving

N = 0, 2, 4 and 6 supersymmetries. This analysis vastly generalized the sparse set of

previously known models having Minkowski vacua [33, 43].

An especially interesting aspect is given by the fact that all these vacua are obtained

by contractions of a single gauged supergravity model with Ggauge = SO∗(8) and a specific

dyonic choice of its embedding in the duality group [24]. This observation is at the basis of

the present work, because the contractions leading to new models with Minkowski vacua

could be interpreted as deformations of the background geometry leading to the original

model if one could uplift the original vacuum to 10- or 11-dimensional supergravity.

In detail, in the SO∗(8) gauged supergravity model analyzed in [24], there are 48

massless scalar fields at the maximally symmetric point. Only 20 of them are real moduli

fields, because the others are Goldstones or would-be Goldstone fields. However, after

giving an arbitrary vacuum expectation value to any of these fields one breaks Gres =

SO(6) × SO(2), maintaining always at least 6 massless fields. These are the real moduli of

the model and they parameterize a
[

SU(1,1)
U(1)

]3
scalar manifold, with fields labelled ei and

xi, for i = 1, 2, 3, in [24]. These moduli can be used to obtain new gaugings following the

procedure we now detail.

The approach of [24], which we now review, was already used in [43–45] to produce

the CSO(p, q, r) and CSO∗(2p, 2q) gaugings, but it was then applied in more generality

in [24] by employing the embedding tensor formalism, as in [46]. The idea is to introduce

a one-parameter deformation of the gauging, associated with the action on ΘM
α of some

(non-compact) E7(7) duality in order to fulfill the consistency constraints, and then take a

singular limit to produce an inequivalent gauging. Suppose we parametrize a geodesic in

E7(7)/SU(8) as G(ξ) = et log ξ, where ξ ∈ R∗+, for some generator t = tT of the coset space.

– 3 –
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Then the boundary of E7(7)/SU(8) is reached at ξ → 0,+∞. Starting from a gauged

model with embedding tensor Θ, we can then define a ξ-dependent embedding tensor by

the appropriate action of the fundamental and adjoint representations of G(ξ) on Θ:

Θ(ξ)M
α ≡ [G(ξ)Θ]M

α ≡ G(ξ)M
NΘM

βG(ξ)β
α. (2.2)

For ξ ∈ R∗+, Θ(ξ) still gauges a group isomorphic to the one defined by Θ. However, taking

the limit ξ → 0, G(ξ) becomes singular and Θ(ξ) diverges because some of its entries

depend on negative powers of ξ. We can still obtain a finite embedding tensor if we pair

the previous limit with a rescaling of the coupling constant

g → g′ξp, (2.3)

where p is chosen according to the most singular entries of Θ(ξ), proportional to ξ−p. Hence

we define:

g′gaugeΘcontr. ≡ lim
ξ→0

[
g′ ξp Θ(ξ)

]
. (2.4)

Now Θcontr defines a Ggauge which is generally not isomorphic to the original one.

Since the action of G(ξ) on Θcontr. commutes with the limit in (2.4), we see that the

contracted embedding tensor has a grading −p with respect to the generator along which

we performed the contraction:

G(ξ)Θcontr. = ξ−pΘcontr.. (2.5)

This implies that further contractions along t do not produce new gaugings.

The contraction procedure defined in (2.4) can be applied for any generic direction in

E7(7)/SU(8), but we now focus on singular limits along the moduli space [SU(1, 1)/U(1)]3,

hence preserving not only the embedding tensor constraints but also the vacuum condition.

This means that the parameter ξ in the following is going to be identified with one of

the moduli.

In order to perform these contractions, we start from the embedding tensor Θ
so∗(8)
0 of

SO∗(8), defined at the maximally symmetric point where Gres = SU(4)×U(1), and act on

it with the transformations:

Xi ≡ exp(`i log xi), Ei ≡ exp(λi log ei), i = 1, 2, 3, (2.6)

where `i = `Ti , λi = λTi generate each SU(1, 1)/U(1) factor. The three factors commute

with each other, but since [`i, λi] 6= 0, we need to fix the order in which they act on Θ
so∗(8)
0 :

Θso∗(8)(xi, ei) ≡
3∏
i=1

(XiEi)Θ
so∗(8)
0 . (2.7)

Of course, any other ordering or parametrization of the coset space is equivalent up to a

change of coordinates.

The combinations of the various limits that we can now perform in the xi and ei
directions give rise to several models with Minkowski vacua and spontaneously broken
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x1 → 0 x1, x2 → 0 x1, x2, x3 → 0

SO∗(8) [SO(4)× SO(2, 2)] n R16 [U(1)2 nN26]N=0 CSSN=0

e3 → 0 CSO∗(4, 4) [U(1)2 nN20]N=4 CSSN=4 CSSN=4

e2, e3 → 0 CSSN=6 CSSN=6 CSSN=6 CSSN=6

e−11 , e2, e3 → 0 CSO∗(6, 2) [SO∗(4)×U(1)] nN20 [U(1)2 nN24]N=2 CSSN=2

Table 1. Contractions along the moduli space of the SO∗(8). The shaded models are those for

which we find uplifts by taking singular limits of a S3 ×H2,2 internal geometry. The full class of

CSS gaugings is uplifted to eleven dimensions in section 6.

supersymmetry. We summarize the resulting contracted models in table 1. Taking the

singular limits in different orders always reproduces one of the gauge groups in table 1, and

the same mass spectra are obtained up to a reordering of the moduli.

As proved in [47], the SO∗(8) model described here does not admit a (globally or

locally) geometric uplift. As we will describe in the following, we will use instead the

S3×H2,2 reduction of [25–27] as the starting manifold, which corresponds to the [SO(4)×
SO(2, 2)] n R16 gauging of maximal supergravity first constructed in [38]. We will then

identify the geometric deformations corresponding to the moduli of the reduced theory.

From the 4-dimensional point of view this corresponds to the contractions denoted in

table 1 by a shaded background.

As explained in [24], contractions along a modulus xi generate families of inequivalent

gaugings parameterised by the vev assigned to ei before contraction. For instance, the

[SO(4) × SO(2,2)] nR16 entry in table 1 really corresponds to a one parameter family

of gauged supergravities parameterised by the value assigned to e1 in the SO∗(8) model,

before taking the x1 → 0 limit. Instead, changing the value of e1 after the limit will only

rescale the embedding tensor by an overall factor. It is important to stress that the only

member of this family of [SO(4) × SO(2,2)] nR16 gaugings that has been uplifted in [25–27]

is the one corresponding to leaving e1 = 1 in the SO∗(8) model before taking x1 → 0. As a

result, only a subset of the models appearing on table 1 can be reached starting from this

one [SO(4) × SO(2,2)] nR16 gauging and in particular the last row cannot be reached.

Finally, it is interesting to note that all the relevant moduli of the [SO(4) × SO(2,2)]

nR16 model are already contained in an N = 4 truncation and that therefore we can obtain

all the desired deformations in a simplified setup.

2.1 Potential and moduli of half-maximal supergravity

The relevant truncation of half-maximal supergravity has a potential dependent on 37

scalar fields, which can be determined by the structure constants XAB
C , truncated to the

SO(6,6) generators of the scalar σ-model R× SO(6, 6)/[SO(6)× SO(6)]:

V (x) =
1

12
e2ϕ(x)XAB

CXDE
FMAD(x)

(
MBE(x)MCF (x) + 3 δEBδ

C
F

)
. (2.8)

Here MAB(x) is an SO(6,6) matrix satisfying MT ηM = η, where η =
( 06 16

16 06

)
is the SO(6,6)

invariant metric. It is immediately clear that such potential can only produce Minkowski

vacua because of the overall dependence on the dilaton ϕ(x).
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In order to assess the structure of the vacua we will find, it is useful to give an explicit

expression for the SO(6,6) generators in this basis. We will split the generators in 5 sets,

labeled by indices i, j = 1, . . . , 6. The compact generators are antisymmetric and either

block diagonal

(Aij)A
B =

1

2

(
δiAδ

jB − δjAδ
iB
)

+
1

2

(
δi+6
A δj+6B − δj+6

A δi+6B
)
, (2.9)

or block off-diagonal

(Cij)A
B =

1

2

(
δiAη

jB − δjAη
iB
)

+
1

2

(
δi+6
A ηj+6B − δj+6

A ηi+6B
)
. (2.10)

The non-compact generators are symmetric and block diagonal

(di)A
B =

1√
2

(
δiAδ

iB − δi+6
A δi+6B

)
, (2.11)

(Sij)A
B =

1

2

(
δiAδ

jB + δjAδ
iB
)
− 1

2

(
δi+6
A δj+6B + δj+6

A δi+6B
)
, (2.12)

or block off-diagonal

(T ij)A
B =

1

2

(
δiAη

jB − δjAη
iB
)
− 1

2

(
δi+6
A ηj+6B − δj+6

A ηi+6B
)
. (2.13)

Altogether we have tα = {A,C, d, S, T} satisfying tr(tαtβ) = ∓ δαβ , depending on their

being compact or not.

The truncation of the N = 8 model with Ggauge = SO(4)× SO(2, 2) to N = 4 gives a

gauged supergravity model with Ggauge = SO(4) × SO(2, 2). The corresponding gauging

follows from fixing the gauge generators XAB
C = ΘA

α(tα)B
C by choosing

X1 =
√

2C23, X2 = −
√

2C13, X3 =
√

2C12,

X4 = −
√

2T 56, X5 =
√

2T 46, X6 = −
√

2C45,

X7 =
√

2A23, X8 = −
√

2A13, X9 =
√

2A12,

X10 =
√

2S56, X11 = −
√

2S46, X12 =
√

2A45,

(2.14)

so that the corresponding Ggauge ×Ggauge invariant Cartan-Killing form has entries

κAB =
1

2
XAC

DXBD
C , (2.15)

normalized to ±1. The resulting potential has a critical point where Gres = SU(2)×SU(2)×
U(1)×U(1) and the mass spectrum can be arranged according to the Gres representations

mass irrep generators

0 (3, 3)0,0 S12, S13, S23, T 12, T 13, T 23, d1, d2, d3

0 (1, 1)0,0 d6

0 (1, 3)0,0 + (3, 1)0,0 S16, S26, S36, T 16, T 26, T 36

2 (1, 3)±,∓ + (3, 1)∓,± S14, S15, S24, S25, S35, T 14, T 15, T 24, T 25, T 35

2 2(1, 1)±,∓ S46, S56, T 46, T 56

4 (1, 1)0,±2 + (1, 1)±2,0 S45, T 45, d4, d5

(2.16)

– 6 –
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where we arbitrarily fixed the overall scale, determined by the dilaton, which is also an

overall modulus in the potential. Among the moduli we recognize the [SU(1,1)/U(1)]2

factor, generated by λ2 = S36, `2 = d3 − d6 and λ3 = T 36, `3 = d3 + d6. The contractions

leading to the deformed vacua will follow by introducing the moduli dependence in the

embedding tensor and taking their limit to the boundary.

3 Ten dimensional origin

3.1 Extended field theories and generalized Scherk-Schwarz reductions

Double and exceptional field theories (DFT and ExFT) [1–4, 13–15, 48–52] encode the

10- and 11-dimensional supergravity theories in a framework formally covariant under

O(d, d) × R+
Φ and En(n) groups, respectively. These groups are the global symmetries of

the lower-dimensional supergravities obtained upon Kaluza-Klein reducing on tori, but

crucially appear in DFT and ExFT as generalized structure groups before any truncation.

More generally, duality groups other than O(d, d) × R+
Φ and En(n) can be also encoded in

a similar formalism (see in particular [53–56]). We shall hence denote the generic duality

group G. In these frameworks, fields depend on an ‘external’ spacetime with coordinates

xµ, as well as an internal space whose coordinates ym are formally extended to YM , fill-

ing a representation Rv of G.1 The theories are formally invariant under rigid G × R+

transformations, where R+ is the trombone symmetry that also acts on the external Ein-

stein frame metric. Consistency requires to impose a ‘strong’ or ‘section’ constraint on the

dependence of fields on the extended coordinates YM , which effectively reduces them to

only depend on a set of physical internal coordinates and breaks the global G × R+ in-

variance. Upon solving the section constraint, DFT and ExFT reproduce the dynamics of

ten- and eleven-dimensional supergravities phrased in terms of the associated (exceptional)

generalized geometries [10, 12].

The bosonic field content of DFT/ExFT is constituted by an external metric gµν(x, Y ),

scalar fields parameterizing a coset space G/K(G), vector fields AMµ (x, Y ), and so on for

higher p-forms in other representations of the duality groups. The gauge symmetries

of DFT and ExFT along the internal space are encoded in terms of generalized vectors

ΛM (x, Y ), acting on fields by means of a generalized Lie derivative which is most easily

defined by its action on another generalized vector2 VM :

LΛV
M = ΛN∂NV

M − V N∂NΛM + YMP
QN∂PΛQ V N . (3.1)

The invariant tensor YMN
PQ depends on the theory and encodes the projection of the

matrix ∂MΛN onto the algebra of generators of the generalized structure group [11]. Finally,

closure of the generalized Lie derivative and consistency of the dynamical theory require

the partial derivatives ∂M = ∂ /∂Y M to satisfy the section constraint

YMN
PQ∂M ⊗ ∂N = 0 (3.2)

1Double field theory can be formulated by doubling the coordinates of the entire spacetime, but for our

purposes we prefer its formulation including a non-doubled external spacetime [57], which is more useful to

perform dimensional consistent truncations and closely follows the structure of ExFTs.
2We shall henceforth exclude theories that require covariantly constrained gauge parameters [15, 51, 56].
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when acting on any field or product of fields, effectively restricting the coordinate depen-

dence of all fields on a set (xµ, ym) of physical coordinates. There are two separate orbits

of maximal solutions of the section constraint for ExFTs, corresponding to eleven dimen-

sional and IIB supergravity respectively. In the case of DFT, only one maximal solution of

the section constraint is available, corresponding to minimal 10-dimensional supergravity.3

DFT and ExFT are effective frameworks to study consistent dimensional truncations of

supergravity theories. We shall focus here on generalized Scherk-Schwarz reductions, which

are determined by a twist matrix or generalized frame ÊA
M (Y ) (which we will always as-

sume to satisfy the section constraint) taking values in G×R+ and defining the factorization

of the internal coordinate dependence for covariant fields according to their representation

under the duality group (as we will show explicitly in the next section). Upon factorization

of the YM dependence, the theory reduces to a lower-dimensional gauged supergravity.

Consistency of the truncation requires the twist matrix to satisfy a differential equation

LÊAÊB
M = −X C

AB ÊC
M , (3.3)

where XAB
C is the embedding tensor of the resulting gauged supergravity.

3.2 [SO(4)× SO(2, 2)] n R16 uplift

We now review the results of [25–27], where the uplift of the [SO(4)×SO(2, 2)]nR16 gauging

has been provided. We will actually mainly focus on the half-maximal truncation and

therefore on the uplift of the common sector of 10-dimensional supergravities as in [26]. The

main point of the construction in [26] is the fact that consistent truncations of the common

sector of 10-dimensional supergravities are easily obtained and described by generalized

Scherk-Schwarz reductions of DFT. We will employ the formulation of [57], in which the

SO(6,6) duality is manifest, provided the 10-dimensional degrees of freedom, the metric,

the dilaton and the 2-form are combined in the SO(6,6) covariant fields Φ, B, HMN and

AMµ , where the SO(6,6) indices split as YM = {ym, ym}, as follows:

Amµ = GmnGµn, Aµm = −Bµm +AnµBnm, (3.4)

Bµν= Bµν + 2Am[µBν]m +Am[µA
n
ν]Bmn +Am[µAν]m, (3.5)

gµν = e
φ
2
(
Gµν −Amµ AnνGmn

)
(3.6)

Hmn = e−
φ
2Gmn, Hmn = e−

φ
2GnkBkm, (3.7)

Hmn = e−
φ
2GklBkmBln + e

φ
2Gmn, (3.8)

eΦ = e
φ
4 (detGmn)−1/4 . (3.9)

From these fields one can write down an O(6,6) covariant action, which can be found

in [57]. In order to solve the section constraint and reproduce the supergravity equations

of motion, we take all fields to depend only on xµ and ym.

3Vector couplings for heterotic supergravity can be also encoded in DFT by extending O(d, d) to O(d, d+

n) [59], and massive IIA supergravity is encoded in ExFT through a deformation of the generalized Lie

derivative [60, 61].
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What is interesting for us is that it has been shown that one can obtain consistent

truncations of the bosonic string sector to 4 dimensions by means of a generalized Scherk-

Schwarz reduction. Let us discuss how this works. In our current formulation, DFT

exhibits an O(6, 6) × R+
Φ × R+ symmetry, where the first factor is a shift of the O(6,6)

invariant dilaton Φ and the second factor is the four-dimensional trombone symmetry. A

generic twist matrix is thus valued in this group. The general expressions for a generalized

Scherk-Schwarz reduction were derived in [62], see also section 4 of [54] for a derivation that

includes the SL(2) part of the four-dimensional duality group, as well as trombone gaugings.

Generalized vectors have opposite weights with respect to the two scaling symmetries. The

twist matrix thus reads

Ê(y)A
M = e−τ(y)ed(y)U−1(y)A

M , U(y)M
A ∈ O(6, 6) , e−τ(y) ∈ R+ , e−d(y) ∈ R+

Φ .

(3.10)

There is no evident distinction between τ(y) and d(y) in the twist matrix, but they play

a different role in the reduction ansatz for the fields, where they appear with powers

proportional to their R+ and R+
Φ charges. We are only interested in twist matrices giving

rise to gaugings valued in SO(6,6), which requires to identify these two factors in the twist

matrix into a single function ρ(y) so that we have (possibly up to a constant factor that

can be reabsorbed in a redefinition of the four dimensional fields)

eτ(y) = ed(y) = ρ(y)1/2 . (3.11)

Then, Ê(y)A
M = U−1(y)A

M takes values in SO(6,6).

The y dependence of the DFT fields is factorized according to the following ansatz

HMN (x, y) = UM
A(y)MAB(x)UN

B(y), eΦ(x, y) = ρ(y)eϕ(x), (3.12)

AMµ (x, y) = (U−1)A
M (y)AAµ (x), (3.13)

Bµν(x, y) = bµν(x), (3.14)

gµν(x, y) = eϕ(x)/2gµν(x), (3.15)

where AAµ (x), bµν(x), ϕ(x) and MAB(x) are the vector, tensor and scalar fields of the

resulting 4-dimensional half-maximal supergravity. In particular, ϕ(x) is the 4-dimensional

dilaton and MAB(x) coincides with the scalar matrix described in the previous section.

Consistency of the reduction requires to impose (3.3) (with YMN
PQ = ηMNηPQ).

After a bit of algebra, restricting to SO(6, 6) gaugings these conditions reduce to the ones

exhibited in [26]:

ηD[A(U−1)B
M (U−1)C]

N∂MUN
D = fABC = const., (3.16)

ρ−1∂Mρ = −1

2
(U−1)A

N∂NUM
A, (3.17)

where fABC determine the gauging by means of the embedding

XAB
C = fABDη

DC . (3.18)
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In the special case at hand we can exploit the fact that the compactification manifold is

also a product of groups and use group related quantities to construct the twist matrices

U(y). This can be described by a product of matrices

UM
A = [U0R(θ2, ψ2, θ3, ψ3)]M

A, (3.19)

where

U0 =

(
D 06

Z D−1

)
, (3.20)

with

D =
√

2 diag {1, 1, tan θ1, 1, 1, tanhψ1} (3.21)

and

Z =
1√
2



0

0 tan θ1

−1 0

0

0 tanhψ1

−1 0


(3.22)

contains all the local information on the 10-dimensional geometry at the maximally sym-

metric point MAB = δAB, while R is a rotation matrix belonging to the SO(6) × SO(6)

subgroup of the duality group and has the following explicit form:

R = exp

[
−2θ2C

13 + 2

(
ψ2 +

π

2

)
C46

]
exp

[
2

(
θ3 +

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)]
.

(3.23)

We can already pause here for a comment that is going to be extremely important in the

following. At the vacuum where MAB(x) = δAB, U and U0 generate the same O(6,6)

matrix HMN , from which the 10-dimensional metric, 2-form and dilaton follow via (3.4)–

(3.9). However the SO(6) × SO(6) matrix R is crucial to obtain a twist matrix U that

satisfies the consistency constraints required to give a consistent truncation to 4 dimensions.

Only U gives constant fABC elements via (3.16), while U0 produces coordinate dependent

structure constants, which are unacceptable for our reduction procedure. Using the uplift

formulae above, the twist matrix generates a background with metric

ds2 = 2e−φ/2[dθ2
1 + cos2 θ1 dθ

2
2 + sin2 θ1 dθ

2
3 + dψ2

1

+(1 + sech(2ψ1))dψ2
2 + (1− sech(2ψ1)) dψ2

3

]
,

(3.24)

dilaton

eφ =
2√

cosh(2ψ1)
(3.25)

and B-field

B = 4eφ/2
[
sin2 θ1 dθ2 ∧ dθ3 +

sinhψ1

cosh2(2ψ1)
dψ2 ∧ dψ3

]
(3.26)

It is therefore clear that the starting point of our analysis is a regular differentiable manifold

that is the product of a sphere and a hyperboloid.
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4 Going to the boundary of the moduli space

Now that we have all the formulas and ingredients to relate the bosonic sector of N = 4,

d = 4 gauged supergravity to 10-dimensional supergravity and we reviewed the construction

of the S3×H2,2 background found in [26, 27], we proceed to the analysis of the deformations

obtained by taking to the boundary any modulus of the corresponding Minkowski4 solution.

First we prove that singular limits of gauged supergravities admitting a generalized Scherk-

Schwarz uplift are themselves upliftable. This guarantees that our procedure gives a regular

background of 10-dimensional supergravity. Then we give a simple example of a singular

limit for the GL+(4) generalized parallelization of S3, where the limit procedure can be

followed explicitly step by step, In the next section we then apply it to the S3 × H2,2

vacuum describing in detail the new limit vacua.

4.1 Generalized Scherk-Schwarz uplifts of gauged supergravities

The first part of our discussion is a quick review of the general construction of [47] (see

also [63] for earlier work) that provides the conditions for the existence of a generalized

Scherk-Schwarz uplift of a gauged supergravity theory.

Given a supergravity theory with global symmetries G × R+, broken by a gauging

defined by an embedding tensor X C
AB , one can uplift the theory to a higher-dimensional

supergravity by means of an extended field theory (such as DFT and ExFT) based on the

same duality group G × R+, if certain conditions are met which we now describe. The

internal space will necessarily be a coset space Ĝ/Ĥ constructed in terms of the centrally

extended gauge group Ĝ, defined by formal generators X̂A satisfying

X C
(AB) X̂C = 0 , [X̂A, X̂B] = −X C

AB X̂C . (4.1)

We can then associate to these formal generators X̂A a centrally extended embedding

tensor Θ̂A
â satisfying X C

(AB) Θ̂C
â = 0, where â runs along the Ĝ coadjoint representation.

For the uplift to exist, the projection Θ̂A
m onto a set of coset generators {t̂m} must satisfy

the section condition

Y AB
CDΘ̂A

mΘ̂B
n = 0 (4.2)

and the physical internal derivatives of ExFT are then identified as4

∂M ≡ Θ̂M
m ∂

∂ym
. (4.3)

This choice of section breaks the global symmetry group G × R+ of ExFT down to the

semidirect product of the GL(d) structure group of the internal manifold, the global sym-

metries G0 × R+
0 of the higher dimensional theory (R+

0 being its trombone symmetry), and

4There is an extra ‘C-like’ condition that needs to be imposed for general extended field theories, but it

does not play any role in the proof and it is redundant for double and exceptional field theories as long as we

uplift to ten and/or eleven dimensions and the gauging does not involve the higher dimensional trombone

symmetry R+
0 .
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shifts of the internal p-form potentials, forming a unipotent subgroup we denote by P.5

Using equations:

AM
N Θ̂N

m = Θ̂M
ngn

m , AM
N ∈ (GL(d)× G0 × R+

0 ) n P , gn
m ∈ GL(d) . (4.4)

In particular, GL(d)nP is the (split) structure group of the extended generalized tangent

bundle associated with the choice of section (4.3). The generalized Scherk-Schwarz uplift for

this gauged supergravity is then encoded into a generalized frame/twist matrix Ê(y)A
M ∈

G × R+ satisfying (3.3). The latter has the universal form

Ê(y)A
M = L(y)−1

A
B e̊(y)B

NC(y)N
M , (4.5)

where L(y) is a coset representative6 for Ĝ/Ĥ (embedded into G × R+, so that the central

extensions are trivially represented), e̊(y)B
N is the inverse reference vielbein obtained by

projection of the Cartan-Maurer form dLL−1 onto the coset generators t̂m, (embedded in

the duality group as a GL(d) matrix ⊂ G × R+, where GL(d) is the structure group of the

internal manifold), and C(y)N
M satisfies

C(y)N
M Θ̂M

m = Θ̂N
m , (4.6)

and encodes in particular the information on the p-form potentials in the generalized

Scherk-Schwarz reduction. Crucially, a suitable C(y)N
M such that (4.5) solves (3.3) can

always be constructed and (4.5) can be proven to define a global generalized Leibniz par-

allelisation of the generalized tangent bundle [47].

4.2 Singular limits of generalized Scherk-Schwarz reductions

Given these conditions, we now want to modify the embedding tensor defining a given con-

sistent background by introducing appropriate rescalings related to the expectation value

of certain moduli fields and check under which conditions the result remains a consistent

background, also in the limit of an infinite deformation. We start by introducing the

deformed embedding tensor

Xξ
AB

C ≡ ξpG D
A G E

B X F
DE G−1C

F , (4.7)

It will be more convenient to reabsorb ξp as a trombone component for G(ξ), so that

we define

Vξ ≡ ξpG(ξ) ∈ G × R+ , Xξ
AB

C = VξA
DVξB

EX F
DE Vξ

−1
F
C (4.8)

As long as ξ is finite, Xξ sits in the same duality orbit as X and we can uplift it by a twist

matrix that is simply VξÊ. However, when we take the value of ξ to its boundary limit,

5In general the GL(1) centre of the structure group, corresponding to overall rescalings of the internal

coordinates, does not belong to G but is rather a linear combination of some GL(1)′ ⊂ G and the trombone

R+. See e.g. [64].
6Despite the notation, we take the coset space as a left coset: L ' hL with h ∈ Ĥ.
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this twist matrix becomes singular and does not define a generalized Scherk-Schwarz uplift

for Xcontr.

We will now prove that the twist matrix VξÊ can be rendered non-singular in the

limit sending ξ to the boundary of the moduli space by performing a change of coordinates

and by making an appropriate gauge choice for the p-form potentials encoded within it,

combined with a constant, ξ dependent action of the global symmetries G0 × R+
0 of the

higher dimensional theory. To do so, we shall use the universal form (4.5) of the generalized

frame. First of all, let us stress that we consider the limit in ξ to really be a limit along

the scalar manifold G/H, which means that Vξ can be parameterised in any H gauge and

any two gauge choices must be related by an H transformation with a well-defined (non

oscillating) limit. In particular, this means that we can always pick Vξ to belong to the

(block) triangular subgroup of G × R+ that preserves the choice of section:

VξA
BΘ̂B

m = Θ̂A
ngξm

n , (4.9)

Which means that Vξ ∈ (GL(d)×G0 ×R+
0 )nP. This gauge choice simplifies the following

proof, but we will see that we can drop it at the very end.

We now decompose the embedding tensor in terms of coset and H generators (denoted

tm and ti respectively):

X C
AB = Θ m

A t C
mB + Θ i

A t
C

iB . (4.10)

These generators are embedded in the duality algebra and hence the central extension is

represented trivially. If we now look at the deformed embedding tensor, we can write

Xξ C
AB = Θ m

A gξm
n(VξtnV

−1
ξ )B

C + V D
ξA Θ i

D (VξtiV
−1
ξ )B

C . (4.11)

The first term in this expansion is separately finite in the ξ limit, at least for a special

choice of coset generators. Indeed, introducing the orthogonal projector Π onto the image

of Θ̂A
m and its complement Π (so that ΠA

BΘ̂B
m = Θ̂A

m, ΠA
BΘ̂B

m = 0), we notice that

they are invariant under the action of Vξ satisfying (4.9). For any ξ, there is a choice

of coset generators7 gξm
nt̂ξn such that ΠA

BX̂B = Θ̂A
mgξm

nt̂ξn and in particular this will

match with the first term (4.11) when embedded into G ×R+, with tmA
B = t̂ξ=1

m A
B. Being

this the contraction of two objects both finite under the ξ limit, the first entry of (4.11)

is finite.

This choice of coset generators allows us to construct a twist matrix for Xξ that is

finite in the limit and matches the original twist matrix (4.5) for ξ = 1. We begin by

making a specific choice for the coset representative of G/H:

Lξ(y) ≡ exp(ymgξ m
nt̂ξn)

ξ→1−→ [L(y)] = exp
(
ymt̂m

)
(4.12)

Notice that on the right hand side we have made a special choice of coordinates and H gauge

for the original twist matrix. Embedding into G × R+, we can rewrite this definition as

[Lξ(y)]A
B = [VξL(y · gξ)V −1

ξ ]A
B . (4.13)

7The factorised gξ is there so that t̂ξm satisfy the same commutation relations for any finite ξ.
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Notice how gξ, defined in (4.9) as the GL(d) component of Vξ, appears as a change of co-

ordinates. Computing a reference vielbein by projecting dLξL
−1
ξ onto the coset generators

(gξ)m
nt̂ξn, we find

e̊ξ(y) = gξ e̊(y · gξ)g−1
ξ , (4.14)

where the right action of gξ is due to the redefinition of the coset generators, while its other

appearances can be interpreted as a change of coordinates y → y · gξ. At this point we

construct a tentative twist matrix following [47] as

Eξ, tent.(y)A
M ≡ [Lξ(y)−1]A

B [̊eξ(y)]B
M , (4.15)

which is finite in the ξ limit and reduces to Ê(y)A
NC−1(y)N

M (defined in (4.5)) if we set

ξ = 1. Notice that we are keeping our choice of section fixed to Θ̂M
m. Expanding Lξ and

e̊ξ, we arrive at

Eξ, tent.(y)A
M = [VξL

−1(y · gξ)]AB [̊e(y · gξ)g−1
ξ ]B

NRξ(y)N
M

= VξA
B[Ê C−1](y · gξ)BN [g−1

ξ ]N
PRξ(y)P

M
(4.16)

with Rξ(y) ∈ (G0×R+
0 )nP being equal to V −1

ξ gξ conjugated with e̊(y · gξ)g−1
ξ . In general,

Eξ, tent.(y) does not satisfy the generalized Scherk-Schwarz conditions, neither before nor

after the ξ limit. However, the general construction in [47] tells us that there always exists

some matrix Cξ(y) ∈ (G0×R+
0 )nP that completes Eξ, tent.(y) to the correct twist matrix,

just like in (4.5). This can be computed by integrating the generalized flux defined as the

difference between Xξ and the generalized torsion of Eξ, tent.(y). We will not need any

explicit expression. We only stress that since Eξ, tent.(y) is finite in the limit, Cξ(y) is as

well, at least for some choice of gauge. We therefore conclude that there exists a twist

matrix Eξ, tent.(y)Cξ(y) that correctly reproduces Xξ. However, at finite ξ, for our choice

of section and of coset space we have already found such a twist matrix: it is just VξÊ(y)!

We conclude that the two can only differ by a finite generalized diffeomorphism and by

a global symmetry transformation in the higher dimensional theory, as anticipated. The

generalized diffeomorphism is composed of the change of coordinates y → y · gξ and of

p-form gauge transformations encoded into the P component of

Λ(y) ≡ gξC−1(y · gξ)g−1
ξ Rξ(y)Cξ(y) , (4.17)

which is therefore pure gauge, i.e. has vanishing generalized torsion. The global symmetry

transformation corresponds to the G0 × R+
0 component of Λ(y), which is indeed constant.

The resulting twist matrix

Êξfinite(y)A
M ≡ [VξÊ(y · gξ)g−1

ξ Λ(y)]A
M (4.18)

therefore reproduces Xξ and is finite in the limit, where it reproduces the contracted

embedding tensor. It differs from the natural deformed twist matrix VξÊ(y) only by a

change of coordinates, p-form gauge transformations and constant, ξ dependent global

symmetry transformations of the higher dimensional theory.
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We stress that the proof above is constructive: given the choice of coordinates specified

in (4.12), (4.13), the change of coordinates is just the GL(d) component of Vξ, while (4.17)

can be computed by integration of the generalized flux described in [47]. In practice, how-

ever, it can be more convenient to reconstruct such coordinate and gauge transformations

on a case-by-case basis, knowing that they must exist.

A final comment is in order on the rescaling of the gauge coupling associated with the

R+ trombone component ξp of Vξ = ξpG(ξ). Whenever p 6= 0, Λ(y) contains necessarily a

constant component in R+
0 that descends from V −1

ξ gξ in the definition of Rξ. We remind

the reader that R+
0 is the trombone symmetry of the higher dimensional theory and it is

a linear combination of R+ (the lower-dimensional trombone) and of some GL(1)′ ⊂ G.

The linear combination is such that the internal derivatives are invariant just like in (4.9).

We can therefore decompose Vξ on the left of (4.18) into ξpG(ξ), and bring the trombone

component to the right, where it will combine with the R+
0 component of Λ(y) to give rise

to a constant GL(1)′ trasformation. We thus write

Êξfinite(y)A
M = [G(ξ)Ê(y · gξ)g−1

ξ Λ′(y)Tξ]A
M (4.19)

where G(ξ) ∈ G represents a curve in scalar field space, Λ(y)′ is Λ(y) stripped of its R+
0

component, and Tξ ∈ GL(1)′ ⊂ G acts on internal derivatives (on section) as

(Tξ)M
N∂N = ξp∂M , (4.20)

therefore reproducing the rescaling of the gauge coupling in the deformed embedding tensor.

Finally, we now notice that we do not need G(ξ) on the left hand side of (4.19) to be

in the H gauge defined by (4.9). This is so because we are taking a singular limit along the

scalar field space G/H, and thus the choice of H gauge must not matter in the limit. This

implies that any other choice of gauge is related to (4.9) by an H transformation that has

a well-definite (not oscillating) ξ limit.

Summarizing, we find that contractions of a gauging obtained through singular limits

in scalar field space always admit an uplift if the original gauging does. The twist matrix

for the contracted model is obtained from the following steps:

1. multiply from the left by the modulus transformation G(ξ) parameterizing a path to

the boundary of G/H;

2. perform a ξ dependent change of coordinates;

3. implement a ξ dependent gauge transformations for the p-forms;

4. employ a constant, ξ dependent action of the higher dimensional symmetry group

G0 × R+
0 ;

5. perform a constant, ξ dependent GL(1)′ transformation to reproduce the rescaling of

the gauge coupling constant.

The above result is fully general. Specialising now to O(6,6) DFT, the constant ξp

scaling should be always regarded as a 4d trombone transformation in order to reproduce
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the correct (finite) limits for all fields. Because we are regarding the twist matrix to

be O(6,6) valued, it is simpler to rely on (4.19) and regard the GL(1)′ scaling as being

generated by 16 ⊕ −16. In fact, ρ(y) is also affected by the GL(1)′ scaling as well as by

the change of coordinates, but instead of looking at its transformation explicitly, we can

define it by integration of (3.17) and it will be automatically finite in the limit. We also

find that step 4 is unnecessary in our examples, as the only G0 transformation that would

be needed is a shift of the ten-dimensional dilaton which is however automatically taken

into account by the integration of (3.17). Furthermore, step 5 boils down to the SO(6,6)

transformation
(
ξp16

ξ−p16

)
acting on U−1

A
M from the right.

4.3 A simple example: S3 generalized Scherk-Schwarz reduction and

CSO(2,0,2) limit

In order to make things concrete, we now apply the general limit procedure described in the

previous section to the simple example of the O(3,3) generalized Scherk-Schwarz reduction

on a three-sphere and its singular limit to a twist matrix giving a CSO(2,0,2) gauging.

The first step is the construction of the generalized parallelization of the three-sphere,

based on an SL(4) ' SO(3,3) twist matrix [22]. S3 can be defined by embedding coordinates

in R4 satisfying
∑4

a=1(Y a)2 = 1:

Y 1 = cos θ1 cos θ2 , Y 2 = cos θ1 sin θ2 ,

Y 3 = sin θ1 cos θ3 , Y 4 = sin θ1 sin θ3 .
(4.21)

The reference metric on S3 is (we use θi = (θ1, θ2, θ3))

g̊ij = ∂iY
a∂jY

a , d̊s2 = dθ2
1 + cos θ1dθ2

2 + sin θ1dθ2
3 . (4.22)

Coordinate ranges are 0 < θ1 < π/2, 0 ≤ θ2,3 < 2π. We also have g̊1/4 =
√

cos θ1 sin θ1.

To construct the twist matrix we also need Bi ≡ 1
2ε
ijkBjk. It is crucial to make a gauge

choice that is non-singular in the limits we want to take. For the moment let us take

Bi =

(
1

2
sin2θ1 , 0 , 0

)
. (4.23)

We will need to tune this gauge choice depending on the singular limit we want to take, in

order to avoid diverging pure-gauge terms.

The twist matrix in the 4 of SL(4) can be written as (m = i, 4)

U−1
a
m =

(̊
g1/4g̊ij∂jYa + g̊−1/4Bi , g̊−1/4Ya

)
. (4.24)

where Ya = ηabY
b and ηab = δab. We can then define the twist matrix in the 6 of SL(4) by

tensoring:

U−1
ab
mn ≡ U−1

[a
[mU−1

b]
n] . (4.25)

In this representation the SL(4)'SO(3,3) invariant is ηab,cd = εabcd. We can reorder the

indices to switch to more common conventions for SO(3,3). Define EA
M with A, M =

– 16 –



J
H
E
P
0
8
(
2
0
1
9
)
0
1
4

1, . . . , 6 in three-by-three blocks

U−1
A
M ≡

(
U−1m4

a4
1
2U
−1np

a4εnpm4

1
2ε
a4bcU−1m4

bc
1
4ε
a4bcU−1np

bc εnpm4

)
. (4.26)

The associated SO(3,3) invariant is now ηAB = ηMN =
(

13
13

)
. The twist matrix U−1

A
M

satisfies (3.16) with nonvanishing embedding tensor components

f C
AB ∼ εABC for A,B,C = 1, 2, 3 , or A,B,C = 4, 5, 6 . (4.27)

As a warm-up, let us investigate the limiting procedure to CSO(2,0,2). We start by

acting with the SO(3,3) transformation

Λ B
A = diag

(
1, 1, 1

ξ , 1, 1, ξ
)

(4.28)

which, in the 4 of SL(4), is diag(
√
ξ,
√
ξ, 1/

√
ξ, 1/

√
ξ). The singular limit on the embed-

ding tensor is obtained by the action of Λ combined with an overall rescaling

lim
ξ→+∞

f
(ξ)
AB

C ≡ lim
ξ→+∞

1

ξ
Λ D
A Λ E

B f F
DE Λ−1C

F . (4.29)

To implement this limit in terms of the twist matrix, we define

U−1
(ξ)A

M = ΛA
BU−1

B
PT M

P (4.30)

where T N
M = diag(1/ξ, 1/ξ, 1/ξ, ξ, ξ, ξ) is the GL(1)′ transformation discussed in the

previous section, implementing the overall gauge coupling scaling. Notice that detU =

detU(ξ) = 1. The string frame metric (i, j are the first three entries of the indices M, N)

is then easily derived from U(ξ) by

g
(ξ)
ij = (Hij(ξ))

−1 = (U−1
(ξ)A

iU−1
(ξ)A

j)−1 ,

ds2 = ξ2

[
dθ2

1 + (ξ2 − 1 + cos−2θ1)−1dθ2
2 +

(
1

ξ2
− 1 + sin−2θ1

)−1

dθ2
3

]
(4.31)

and the B-field is identified with

B(2) = −ξ2(ξ2 − 1 + cos−2θ1)−1 tan2 θ1 dθ2 ∧ dθ3 . (4.32)

The overall ξ2 factors are due to the T rescaling in both the metric and B field. Reading

these expressions one notes immediately that the ξ → +∞ limit is singular, unless one

combines it with simultaneous change of coordinates θ1 → θ1/ξ, whose associated Jacobian

is embedded into SO(3,3) as follows:

j ν
µ =

∂θ′ν

∂θµ
= diag(1/ξ, 1, 1) , J N

M =

(
j ν
µ

j−1µ
ν

)
. (4.33)

Note that J and T commute. Under the change of coordinates U−1
(ξ) therefore transforms as

U−1
(ξ) (θ1, θ2, θ3)→ U−1

(ξ) (θ1/ξ, θ2, θ3) J−1 . (4.34)
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Note also that the change of coordinates has no effect on the associated torsion f
(ξ)
AB

C , but

guarantees that the twist matrix remains non-singular in the limit.

The ξ → +∞ limit now gives a regular result, with a vanishing B-field and

a frame metric

(ds(∞))2 = dθ2
1 + dθ2

2 + θ2
1 dθ2

3 , (4.35)

which is a flat metric in cylindrical coordinates.

Let us also look at the explicit form of the twist matrix before and after the limit:

E
(ξ)
S3 (θ1/ξ, θ2, θ3) J−1 (4.36)

=


− cos θ2 sin θ3 − 1

ξ
sin θ2 sin θ3 tan

θ1
ξ
− 1
ξ

cos θ2 cos θ3 cot
θ1
ξ
− sin θ2 cos θ3 0 ξ sin θ2 sin θ3 tan

θ1
ξ

− sin θ2 sin θ3 − 1
ξ

cos θ2 sin θ3 tan
θ1
ξ
− 1
ξ

sin θ2 cos θ3 cot
θ1
ξ

cos θ2 cos θ3 0 −ξ cos θ2 sin θ3 tan
θ1
ξ

0 0 − 1
ξ2

0 −1 0

− sin θ2 cos θ3
1
ξ

cos θ2 cos θ3 tan
θ1
ξ

1
ξ

sin θ2 sin θ3 cot
θ1
ξ
− cos θ2 sin θ3 0 −ξ cos θ2 cos θ3 tan

θ1
ξ

− cos θ2 cos θ3
1
ξ

cos θ2 sin θ3 tan
θ1
ξ
− 1
ξ

cos θ2 sin θ3 cot
θ1
ξ
− sin θ2 sin θ3 0 −ξ sin θ2 cos θ3 tan

θ1
ξ

0 −1 0 0 0 0



ξ→+∞−→


− cos θ2 sin θ3 0 − 1

θ1
cos θ2 cos θ3 − sin θ2 cos θ3 0 θ1 sin θ2 sin θ3

− sin θ2 sin θ3 0 − 1
θ1

sin θ2 cos θ3 cos θ2 cos θ3 0 −θ1 cos θ2 sin θ3

0 0 0 0 −1 0
− sin θ2 cos θ3 0 1

θ1
sin θ2 sin θ3 − cos θ2 sin θ3 0 −θ1 cos θ2 cos θ3

− cos θ2 cos θ3 0 − 1
θ1

cos θ2 sin θ3 − sin θ2 sin θ3 0 −θ1 sin θ2 cos θ3

0 −1 0 0 0 0

 .

The coordinate change crucially modified the twist matrix so that the result after the

limit is regular and non-trivial. We shall see for the full examples in the next section that

upon switching to Cartesian coordinates, such a twist matrix is orthogonal and can be

interpreted in terms of an asymmetric orbifold.

5 New background limits

We now apply the procedure described in the previous section to the S3×H2,2 compactifi-

cation described in section 3 performing limits to the boundary of the moduli space for all

the moduli of the corresponding 4-dimensional gauged supergravity. In general, assigning a

finite value to a modulus ei when taking the singular limit along the associated x1 can yield

inequivalent gaugings [24]. In studying the ten-dimensional solutions arising from such se-

tups we have found that they are qualitatively analogous to the cases where one leaves

ei = 1 in the xi limit. We therefore choose to present only this smaller class of solutions.

We will focus on the twist matrix U , which is at the basis of the 10-dimensional uplift. We

especially remind that the background 10-dimensional internal metric and 2-form B are

specified by

HMN (y) = UM
A(y)δABUN

B(y) (5.1)

and their deformations follow the appearance of non-trivial vevs to MAB(x), which can

in turn be defined in terms of SO(6,6)/(SO(6) × SO(6)) scalar σ-model representatives L

as M = LLT . This means that we can introduce the moduli-dependent twist U(x, y) =
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U(y)L(x) and study its limits. For the [SU(1,1)/U(1)]2 moduli space described in section 2,

the representative is

L = exp [2λ2 log e2] exp [2λ3 log e3] exp
[√

2 `2 log x2

]
exp

[√
2 `3 log x3

]
, (5.2)

where we fixed the coefficients such that the boundary of the moduli space is at zero and

the fields e2,3, x2,3 appear with integer powers in the expressions for U(x, y), Θ(x) etc.

We can summarize the results that we are going to detail in the following in terms of

a general structure for the twist matrix and of two classes of metric, B-field and dilaton

solutions. The twist matrix can always be represented as the product of two matrices:

U = U0R. (5.3)

R is a SO(6) × SO(6) rotation matrix, which has no effect on the local background geom-

etry, but fixes the non-trivial patching conditions that define the global space. U0 is the

matrix that contains the information on the local background. In our examples it is always

lower-triangular

U0 =

(
D 06

A D−1

)
, (5.4)

where A is non-zero only when there is a non-trivial B-field.

The local geometries we obtain are of two types: flat space (with non-trivial patching

conditions coming from asymmetric orbifolds) or Q-flux geometries. While this might not

be always immediately clear after the limit, a simple change of coordinates makes this

structure explicit.

5.1 Contractions along `i

The first series of limits we consider are the limits along the x2, x3 field directions. We first

consider their limits to the boundary of the moduli space separately and then combined.

By doing this, we will produce the uplift of the gaugings listed in the first line of table 1.

5.1.1 x3 → 0 limit

Following the procedure outlined in section 4, the first regular limit can be obtained by

sending x3 → 0, while rescaling the coordinates

ym → {x3 θ1, θ2, θ3, x3 ψ1, ψ2, ψ3} (5.5)

and the coupling constant

g → g√
2x3

. (5.6)

The resulting twist matrix is of the form (5.3)–(5.4), where A = 0,

R = exp

[
−2θ2C

13 + 2

(
ψ2 +

π

2

)
C46

]
exp

[
2

(
θ3 +

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)]
.

(5.7)
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and

D = diag {1, 1, θ1, 1, 1, ψ1} . (5.8)

The background local geometry produced by this solution is that of a flat metric in

cylindrical coordinates

ds2 = dθ2
1 + dθ2

2 + θ2
1 dθ

2
3 + dψ2

1 + dψ2
2 + ψ2

1 dψ
2
3, (5.9)

with constant dilaton eφ = 1, and vanishing 2-form B = 0. Still, the global patching

conditions imply that the global solution produces a non-trivial N = 8 effective theory

with supersymmetry-breaking vacua and mass terms generated by a [U(1) nT 4]2 gauging:

[T0, TI ] = MI
JTJ , [T ′0, TI ] = NI

JTJ , [TI , TJ ] = 0, [T0, T
′
0] = 0, (5.10)

where

M =
1 + σ3

2
⊗ 1⊗ iσ2, N =

1− σ3

2
⊗ 1⊗ iσ2. (5.11)

The non-trivial patching conditions become clear once we introduce the coordinates

y1 = θ1 sin θ3, y2 = θ1 cos θ3, y3 = ψ1 sinψ3, y4 = ψ1 cosψ3. (5.12)

In these coordinates the metric is

ds2 = dy2
1 + dy2

2 + dy2
3 + dy2

4 + dθ2
2 + dψ2

2 , (5.13)

and the twist matrix (in the basis {y1, y2, θ2, y3, y4, ψ2}) becomes

U = R = exp

[
2θ2C

12 − 2

(
ψ2 −

π

2

)
C45

]
. (5.14)

It is now clear that all coordinates can be taken compact and that U is globally well-

defined only if there is an asymmetric orbifold acting on the xi coordinates and their duals,

whenever we perform a rotation in θ2 or ψ2. Introducing z = y1 + i y2, w = y3 + i y4:
θ2 ∼ θ2 + α,

zL ∼ e−iαzL,
zR ∼ eiαzR,


ψ2 ∼ ψ2 + β,

wL ∼ i e−iβwL,
wR ∼ −i eiβwR.

(5.15)

We have here an explicit realization of the connection between gauged supergravities and

asymmetric orbifold suggested in [65]. The vacuum generated by the orbifold (5.15) allows

for a consistent truncation of the string spectrum such that it describes a spontaneously

broken phase of a maximally supersymmetric theory. This is not guaranteed for any orb-

ifold, nor it is clear that one is always allowed to obtain a consistent truncation to any

gauged supergravity theory, especially when supergravity is fully broken like in this case.

In fact we do not have at this stage enough maximal gauged supergravities with Minkowski

vacua that could correspond to the string theory vacuum on an (asymmetric) orbifold for

any consistent choice of the orbifold action.
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5.1.2 x3 → +∞ limit

The limit to the opposite boundary point in moduli space, namely x3 → +∞, gives the same

effective theory, with the same gauge group, though involving different combinations of the

SO(6,6) generators. It is however interesting that the resulting background is different from

the one just presented. In order to obtain a regular geometry, one has to send x3 → +∞
while rescaling the coordinates

ym →
{
θ1/x3, θ2/x

2
3, θ3, ψ1/x3, ψ2/x

2
3, ψ3

}
, (5.16)

and the coupling constant

g → g
x3√

2
. (5.17)

The twist matrix now has the same D as above,

R = exp
(
π C46

)
exp

[
2

(
θ3 +

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
exp

[
π
(
A23 +A56

)]
, (5.18)

and

A =



0

θ1

−1

0

ψ1

−1


, (5.19)

so that the resulting local geometry

ds2 = e−φ/2
[
dθ2

1 +
1

1 + θ2
1

(dθ2
2 + θ2

1 dθ
2
3) + dψ2

1 +
1

1 + ψ2
1

(dψ2
2 + ψ2

1 dψ
2
3)

]
(5.20)

has non-zero curvature and a non-trivial dilaton

eφ = [(1 + θ2
1)(1 + ψ2

1)]−1/2 (5.21)

and B-field:

B = 2
θ2

1

1 + θ2
1

dθ2 ∧ dθ3 + 2
ψ2

1

1 + ψ2
1

dψ2 ∧ dψ3. (5.22)

Also in this case the global patching conditions become explicit if we perform the (5.12)

coordinate change. After this coordinate change we see that the background is the sum

of two copies of Q-flux backgrounds, one in the (y1, y2, θ2) coordinates and one in the

(y3, y4, ψ2) coordinates. The metric is

ds2 = e−φ/2
[

1

1 + y2
1 + y2

2

(
dy2

1 + dy2
2 + dθ2

2 + (y1dy2 + y2dy1)2
)

+
1

1 + y2
3 + y2

4

(
dy2

3 + dy2
4 + dψ2

2 + (y3dy4 + y4dy3)2
)]
,

(5.23)

with B-field

B =
2

1 + y2
1 + y2

2

(y1dy2 − y2dy1) ∧ dθ2 +
2

1 + y2
3 + y2

4

(y3dy4 − y4dy3) ∧ dψ2 (5.24)
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and dilaton

eφ = (1 + y2
1 + y2

2)−1/2(1 + y2
3 + y2

4)−1/2. (5.25)

The twist matrix in these coordinates becomes

U =



1

1

1

1

−1

1

−y2 1

x1 1

y2 −y1 1

1 −y4

−1 y3

y3 y4 1



, (5.26)

which makes evident that we are dealing with a Q-flux and that the patching conditions are

β transformations. We can indeed once more take the coordinates to be compact, provided

that whenever we send yi → yi + 1 we perform a β transformation:{
y1 ∼ y1 + 1

βy2ψ2 = 1
,

{
y2 ∼ y2 + 1

βy1ψ2 = −1
,

{
y3 ∼ y3 + 1

βy4ψ2 = 1
,

{
y4 ∼ y4 + 1

βy3ψ2 = −1
. (5.27)

5.1.3 x2 → 0 limit

The limits x2 → 0 and x2 → +∞ produce mixtures of the previous results. They produce

the same effective theory, with [U(1) nT 4]2 gauging, but now deriving from either a Q-flux

in the ψi sector and an asymmetric orbifold in the θi sector, when x2 → 0, or a Q-flux in

the θi sector and an asymmetric orbifold in the ψi sector, when x2 → +∞. In detail, the

limit x2 → 0 gives a finite result if we rescale

ym →
{
x2 θ1, θ2, θ3, x2 ψ1, x

2
2 ψ2, ψ3

}
(5.28)

and

g → g√
2x2

. (5.29)

The twist matrix has D as above,

A =

 04 0 0

0 0 ψ1

0 −1 0

 (5.30)

and R as in (3.23), but with ψ2 = 0.

The local geometry is flat in the θi sector and displays a Q-flux in the ψi sector. These

are the corresponding metric

ds2 = e−φ/2
[
dθ2

1 + dθ2
2 + θ2

1 dθ
2
3 + dψ2

1 +
1

1 + ψ2
1

(
dψ2

2 + ψ2
1 dψ

2
3

)]
, (5.31)
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dilaton

eφ =
1√

1 + ψ2
1

(5.32)

and B-field

B = 2
ψ2

1

1 + ψ2
1

dψ2 ∧ dψ3. (5.33)

Note that while the background is not locally flat, it is T-dual to a flat background if we

perform a duality along the ψ2 direction. In flat coordinates, the metric is

ds2 = e−φ/2
[
dy2

1 + dy2
2 + dθ2

2

+
1

1 + y2
3 + y2

4

(
dy2

3 + dy2
4 + dψ2

2 + (y3dy4 + y4dy3)2
)]
,

(5.34)

with B-field

B =
2

1 + y2
3 + y2

4

(y3dy4 − y4dy3) ∧ dψ2 (5.35)

and dilaton

eφ = (1 + y2
3 + y2

4)−1/2. (5.36)

The non-trivial coordinate identifications are then
θ2 ∼ θ2 + α,

zL ∼ e−iαzL,

zR ∼ eiαzR,

,

{
y3 ∼ y3 + 1

βy4ψ2 = 1
,

{
y4 ∼ y4 + 1

βy3ψ2 = −1
. (5.37)

5.1.4 x2 → +∞ limit

The limit x2 → +∞ gives

R = exp

[
2

(
ψ2 +

π

2

)
C46

]
exp

[
2

(
θ3 +

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)] (5.38)

and

A =


0 0 0 0

0 0 θ1 0

0 −1 0 0

0 0 0 03

 (5.39)

and corresponds to the following metric

ds2 = e−φ/2
[
dθ2

1 +
1

1 + θ2
1

(dθ2
2 + θ2

1 dθ
2
3) + dψ2

1 + dψ2
2 + ψ2

1 dψ
2
3

]
, (5.40)

dilaton

eφ =
(
1 + θ2

1

)−1/2
(5.41)

and B-field

B = 2
θ2

1

1 + θ2
1

dθ2 ∧ dθ3. (5.42)

The flat space local geometry and its global identifications are analogous to the one pre-

sented above, but switching the first 3 and the second 3 coordinates.
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5.1.5 x2, x3 → 0 limit

The combined limit x2, x3 → 0 gives again an asymmetric orbifold, with R as in (3.23),

but with ψ2 = 0, A = 0, and thefore flat metric, vanishing B-field and dilaton. The

corresponding gauge algebra reduces is a single U(1) nT 4 factor.

5.2 Contractions along λi

The contractions along the λi generators are trickier. As expected, sending the correspond-

ing scalar e→ 0 or e→ +∞ produces the same gauge group. For the e3 contractions it is

U(1)2 n T 8, with algebra

[T0, TI ] = MI
JTJ , [T ′0, TI ] = NI

JTJ , [TI , TJ ] = 0, [T0, T
′
0] = 0, (5.43)

where

M = 14 ⊗ iσ2, N = 12 ⊗ σ1 ⊗−iσ2, (5.44)

while for the contractions along e2 it is U(1) nT 8, with algebra

[T0, TI ] = MI
JTJ , [TI , TJ ] = 0, (5.45)

where

M = 14 ⊗−iσ2. (5.46)

The background geometries are different, though.

5.2.1 e3 → 0 limit

In order to get a finite limit for e3 → 0 we need to perform the change of coordinates

ym →
{
e3 θ1,

1√
2

(e2
3 ψ2 + θ2), θ3, e3 ψ1, x

2
2

1√
2

(−e2
3 ψ2 + θ2), ψ3

}
, (5.47)

rescaling the coupling constant as

g → g√
2 e3

. (5.48)

The resulting twist matrix has

A2 =
1√
2


02 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 −θ1 0 0 ψ1

0 0 0 −1 0

 , (5.49)

and

R = exp
[
−
√

2θ2C
13 + (

√
2ψ2 + π)C46

]
exp

[
2

(
θ3 +

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)]
exp

(
π

2
A36

)
.

(5.50)
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The corresponding local geometry is described by the metric

ds2 = e−φ/2
[
dθ2

1 + dθ2
2 + dψ2

1 +
2ψ2

1

2 + ψ2
1

dψ2
3

+
1

2 + θ2
1 + ψ2

1

(
2dψ2

2 + θ2
1

(√
2 + ψ2

1 dθ3 +
ψ2

1√
2 + ψ2

1

dψ3

)2)]
,

(5.51)

dilaton

eφ =

√
2√

2 + θ2
1 + ψ2

1

(5.52)

and B-field

B = e2φ
√

2
(
θ2

1dθ3 ∧ dψ2 + ψ2
1 dψ2 ∧ dψ3

)
. (5.53)

This background is not locally flat, though it is T-dual to a flat background if we perform

the duality along the θ3 and ψ3 directions.

Also in this case we have a Q-flux geometry that is evident if we perform the change

of coordinates

y1 = θ1 sin θ3, y2 = θ1 cos θ3, θ =
θ2√

2
y3 = ψ1 sinψ3, y4 = ψ1 cosψ3, ψ =

√
2ψ2.

(5.54)

The twist matrix in flat coordinates is

U =



cos θ 0 0 0 0 0 0 sin θ 0 0 0 0

0 cos θ 0 0 0 0 − sin θ 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 sin θ 0 0 0 0 0 0 cos θ 0

0 0 0 0 sin θ 0 0 0 0 − cos θ 0 0

0 0 −1
2 0 0 1

2 0 0 0 0 0 0

0 sin θ −y2
2 0 0 y2

2 cos θ 0 0 0 0 0

− sin θ 0 y1
2 0 0 −y1

2 0 cos θ 0 0 0 0

0 0 0 0 0 0 0 0 1
2 0 0 1

2

0 0 y4
2 0 cos θ −y4

2 0 0 0 sin θ 0 0

0 0 −y3
2 − cos θ 0 y3

2 0 0 0 0 sin θ 0

−y2 cos θ y1 cos θ 0 y4 sin θ −y3 sin θ 0 −y1 sin θ −y2 sin θ −1 y3 cos θ y4 cos θ 1



,

(5.55)

which produces the metric

ds2 = e−φ/2
[
2 dθ2

2 + dy2
i +

1

2 + y2
i

(
dψ2 − (y1dy2 − y2dy1 − y3dy4 + y4dy3)2

)]
, (5.56)

the B-field

B = e2φ
√

2 (−y1dy2 + y2dy1 + y3dy4 − y4dy3) ∧ dψ2 (5.57)

and the dilaton

eφ =
√

2(2 + y2
i )
−1/2. (5.58)
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We can see that this local geometry corresponds to a Q-flux, because a shift in the xi
coordinates is compensated by a β deformation:{

y1 ∼ y1 + 1

βy2ψ2 = −1
,

{
y2 ∼ y2 + 1

βy1ψ2 = 1

{
y3 ∼ y3 + 1

βy4ψ2 = 1

{
y4 ∼ y4 + 1

βy4ψ2 = −1
(5.59)

The identification of the remaining coordinate is that of a freely acting orbifold:{
θ ∼ θ + π

yi ∼ −yi
. (5.60)

5.2.2 e3 → +∞ limit

The limit e3 → +∞ produces the same background, only with the exchange of θ2 and ψ2.

5.2.3 e2 → 0 limit

A different background is obtained if we take the limits of e2 to the boundary. When

e2 → 0 we get a finite result if we also perform a gauge transformation for the B-field,

summarized by the following matrix action on the twist matrix U

K =

(
16 W

06 16

)
, W2

5 = −W5
2 = 2, (5.61)

together with the coordinate transformation

ym → {e2 θ1, θ2, θ3, e2 ψ1, ψ2, ψ3} (5.62)

and the gauge coupling rescaling

g → g√
2 e2

. (5.63)

The outcome is the flat metric

ds2 = e−φ/2
[
dθ2

1 + 2 dθ2
2 + dψ2

1 + 2 dψ2
2 + θ2

1 (dθ3 − dψ2)2 + ψ2
1 (dθ2 + dψ3)2

]
, (5.64)

with constant dilaton

eφ =
√

2 (5.65)

and vanishing B-field. The twist matrix has A = 0 and interestingly a D that is

not diagonal:

D =



1 0 0 0 0 0

0
√

2 0 0 0 ψ1

0 0 θ1 0 0 0

0 0 0 1 0 0

0 0 −θ1 0
√

2 0

0 0 0 0 0 ψ1


. (5.66)
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The full matrix is then obtained by acting with the rotation

R = exp

[
−2θ2C

13 + 2

(
ψ2 +

π

2

)
C46

]
exp

[
2

(
θ3 −

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)]
exp

(
π

2
C36

)
.

(5.67)

If we perform the change of coordinates

y1 = θ1

(
cos

ψ√
2

sin θ3 − sin
ψ√
2

cos θ3

)
,

y2 = θ1

(
sin

ψ√
2

sin θ3 + cos
ψ√
2

cos θ3

)
,

y3 = ψ1

(
cos

θ√
2

sin θ3 + sin
θ√
2

cos θ3

)
,

y4 = ψ1

(
cos

θ√
2

cos θ3 − sin
θ√
2

sin θ3

)
,

θ =
√

2θ2, ψ =
√

2ψ2,

(5.68)

we get a fully flat metric with vanishing dilaton and B-field:

ds2 = dy2
1 + dy2

2 + dy2
3 + dy2

4 + dθ2
2 + dψ2

2 , (5.69)

but with a non-trivial twist matrix

U = exp
[√

2 θ (C12 +A45)
]

exp
[
−
√

2ψ(A12 + C45) + πC45
]

exp

(
π

2
C36

)
. (5.70)

The space is therefore a product of an asymmetric and a regular orbifold (z = y1 + i y2,

w = y3 + i y4): 

θ ∼ θ + α,

zL ∼ e
−i α√

2 zL,

zR ∼ e
i α√

2 zR,

w ∼ ei
α√
2w,



ψ ∼ ψ + β,

wL ∼ i e
−i β√

2wL,

wR ∼ −i e
i β√

2wR,

z ∼ ei
β√
2 z,

(5.71)

5.2.4 e2 → +∞ limit

Also in this case the limit to the other boundary does not produce anything new, but the

same background with the exchange of the θi with ψi.

5.2.5 e2, e3 → 0 limit

The double limit e2, e3 → 0 produces an effective CSS gauging, related to the flat metric

ds2 = e−φ/2
[
dθ2

1+2dθ2
2+θ2

1

(
dθ3 −

1√
2
dθ2

)2

+dψ2
1 +2dψ2

2 +ψ2
1

(
dψ3 +

1√
2
dθ2

)2 ]
, (5.72)

with

eφ =
√

2 (5.73)
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and vanishing B-field. The twist matrix is now determined by

D =



1 0 0 0 0 0

0
√

2 − θ1√
2

0 0 ψ1√
2

0 0 θ1 0 0 0

0 0 0 1 0 0

0 0 0 0
√

2 0

0 0 0 0 0 ψ1


, (5.74)

A = 0 and

R = exp

[
−
√

2θ2C
13 + 2

(
ψ2√

2
+
π

2

)
C46

]
exp

[
2

(
θ3 −

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)]
exp

[
π

2

(
A36 + C36

) ]
. (5.75)

Using again flat coordinates as before

y1 = θ1

(
cos

ψ√
2

sin θ3 − sin
ψ√
2

cos θ3

)
,

y2 = θ1

(
sin

ψ√
2

sin θ3 + cos
ψ√
2

cos θ3

)
,

y3 = ψ1

(
cos

θ√
2

sin θ3 + sin
θ√
2

cos θ3

)
,

y4 = ψ1

(
cos

θ√
2

cos θ3 − sin
θ√
2

sin θ3

)
,

θ =
√

2θ2, ψ =
√

2ψ2,

(5.76)

we get a fully flat metric with vanishing dilaton and B-field:

ds2 = dy2
1 + dy2

2 + dy2
3 + dy2

4 + dθ2
2 + dψ2

2 , (5.77)

The twist matrix is again non-trivial

U = exp
[
θ (C12 +A45)

]
exp

[
−θ(A12 + C45) + πC45

]
exp

(
π

2
(C36 +A36)

)
(5.78)

and therefore the space is an asymmetric orbifold (z = y1 + i y2, w = y3 + i y4):

θ ∼ θ + α,

zL ∼ zL,
zR ∼ eiαzR,
wL ∼ wL,
wR ∼ e−iαwR.

(5.79)

5.3 Mixed contractions

To complete the uplift of table 1, we need to take mixed contractions between ei and xi.

The results are always flat metrics with twist matrices corresponding to CSS gaugings.
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5.3.1 x3, e2 → 0 limit

For instance, if we first take the limit x3 → 0 and then e2 → 0 we get the local metric

ds2 = 2 e−φ/2
[
dθ2

1 + 2dθ2
2 + θ2

1dθ
2
3 + dψ2

1 + 2dψ2
2 + ψ2

1 (dψ3 + dθ2)2
]
, (5.80)

with constant dilaton eφ = 4 and vanishing B-field. The corresponding twist matrix is

determined by

D =



√
2 0 0 0 0 0

0 2 0 0 0
√

2ψ1

0 0
√

2θ1 0 0 0

0 0 0
√

2 0 0

0 0 0 0 2 0

0 0 0 0 0
√

2ψ1


, (5.81)

A = 0 and

R = exp
(
−2θ2C

13
)

exp

[
2

(
θ3 −

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)]
exp

(
π

2
C36 − π C45

)
.

(5.82)

The resulting gauge group is the usual CSS group U(1) nT 8, with algebra

[T0, TI ] = MI
JTJ , [TI , TJ ] = 0, (5.83)

where

M = 14 ⊗−iσ2. (5.84)

This flat space is brought to the standard parameterization, with vanishing B-field and

dilaton, by means of the change of coordinates

y1 =
√

2 θ1 sin θ3,

y2 =
√

2 θ1 cos θ3,

y3 =
√

2ψ1 (cos θ2 sinψ3 + sin θ2 cosψ3) ,

y4 =
√

2ψ1 (− sin θ2 sinψ3 + cos θ2 cosψ3) ,

θ = 2θ2, ψ = 2ψ2.

(5.85)

The twist matrix is non-trivial

U = exp
[
θ (C12 +A45)

]
exp

[
πC45

]
exp

(
π

2
(C36)

)
(5.86)

and leads to the asymmetric orbifold identifications
θ ∼ θ + α,

zL ∼ e−iα/2zL,
zR ∼ eiα/2zR,
w ∼ e−iα/2w

(5.87)
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5.3.2 x2, x3, e3 → 0 limit

The further limit x2, x3 → 0 and e3 → 0 gives again a flat metric in cylindrical coordinates

ds2 = dθ2
1 + dθ2

2 + θ2
1 dθ

2
3 + dψ2

1 + dψ2
2 + ψ2

1 dψ
2
3, (5.88)

with constant dilaton eφ = 1, and vanishing 2-form B, for a twist matrix where A = 0, D

as in (5.8) and

R = exp
(
−2θ2C

13
)

exp

[
2

(
θ3 −

π

2

)
A13 + 2

(
ψ3 +

π

2

)
A46

]
· exp

[
π
(
A23 +A56

)]
exp

(
π

2
A36 − π C45

)
.

(5.89)

The gauge group is U(1) nT 4, with algebra

[T0, TI ] = MI
JTJ , [TI , TJ ] = 0, (5.90)

where

M =

(
12 02

02 02

)
⊗−iσ2. (5.91)

This is once more an asymmetric orbifold, once one introduces flat coordinates like in (5.12)
θ ∼ θ + α,

zL ∼ e−iαzL,
zR ∼ eiαzR.

(5.92)

5.4 Supersymmetry

Each of the four-dimensional Minkowski vacua uplifted in the previous section preserve a

certain amount of supersymmetry, according to table 1. One should be careful, though, of

the compatibility of the uplift procedure with the boundary conditions one is imposing to

make the background compact.

The 32 supercharges of the ten-dimensional maximal supergravities are encoded in our

current DFT setup in terms of two four-dimensional Majorana-Weyl spinors transforming

in the (4, 1) and (1, 4) of the local symmetry8 SO(6)L × SO(6)R ' SU(4)L × SU(4)R.

The expression for the Killing spinors for the DFT solutions we have found depends on

the choice of SO(6)L × SO(6)R gauge. One possibility is to identify the DFT generalized

vielbein with the twist matrix used in the generalized Scherk-Schwarz ansatz. The twist

matrix defines a generalized identity structure on the internal space, such that no local

SO(6)L×SO(6)R transformations are needed in patching the internal space. This holds true

also after the freely acting orbifold procedure that yields the T -folds of the previous section,

as the constant O(6, 6) identifications are introduced precisely so that the combination of

their action with the coordinate identifications leave the twist matrix invariant. With this

8For our DFT setup with an external spacetime the easiest way to identify the representations and

transformation properties of fermions is to decompose the ones of supersymmetric E7(7) ExFT [66].
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choice, the Killing spinors of the D = 4 maximal supergravity solutions are lifted as scalar

densities as in [23]. Namely, the uplift of the D = 4 Killing spinors will depend on the

internal coordinates only through a power of ρ(y) and will therefore survive the orbifolding

if ρ(y) is invariant under the coordinate identifications. In fact, we have found that this is

respected in all our limit geometries, and therefore we can state that the supersymmetries

of the D = 4 solutions summarized in table 1 uplift to supersymmetries of the asymmetric

orbifolds and Q-flux solutions we have found.9

Finally, one may look for other supersymmetries of our DFT solutions that are trun-

cated away in the reduction procedure and therefore did not appear in the four-dimensional

models. One way to approach this is to begin by looking for local solutions of the DFT

Killing spinor equations [58, 67, 68], possibly keeping the gauge choice determined by the

twist matrix, and then investigating whether any such solutions survive the coordinate

identifications. Clearly, the results might depend on the precise periodicities imposed on

these coordinates, and we may then also need to be careful in guaranteeing that the asym-

metric orbifold identifications as well as the β transformations of our T-fold solutions lie

within O(6, 6,Z). The amount of residual supersymmetries will depend on the specific

conjugacy class of the T-fold monodromies. A very simple example of this fact is the ge-

ometry found for x3 → 0, which gives the twist matrix (5.14). Clearly, if we impose the

periodicity θ2 ∼ θ2 + 2πk no asymmetric orbifold identification is needed and the solution

is in fact just a torus compactification of ten-dimensional flat space, which is of course fully

supersymmetric.

6 Uplift of general CSS gaugings

The uplift of the various Minkowski vacua presented in the previous section includes many

different CSS gaugings [33] with various supersymmetries. However, we fail to reproduce

the most general class of such gaugings, as one of the mass parameters appearing in these

models cannot be tuned when reaching them from limits along the moduli space of the

[SO(4)× SO(2, 2)] n R16 model we analyzed [24].10 If we focus on uplifts to eleven dimen-

sions, then a sub-class of the CSS models (depending on three mass parameters) admits

standard Scherk-Schwarz uplifts in terms of a twisted T 7 [33]. In this last part of our work

we show how to perform the uplift of the general CSS gaugings, depending on all 4 mass

parameters introduced in [33], in terms of a generalized Scherk-Schwarz ansatz.

We start by recalling the interpretation of the 4 mass parameters in terms of fluxes of

M-theory. Following the description in the appendix of [24], 3 of the parameters can be

interpreted as torsions on a torus background while the fourth is the flux of the 7-form and

9If a non-constant ρ(y) were to jump by constant values under the orbifold action, one could choose

to allow for patchings of the fields and Killing spinors involving not just a T-duality but also a trombone

rescaling and a shift of the dilaton. We do not encounter this situation here.
10That mass parameter can be tuned if one starts from the SO∗(8) gauging, or by starting from the other

elements of the one-parameter family of [SO(4)×SO(2, 2)]nR16 gaugings found in [24] (the parameter being

denoted r1 there), whose only known uplift is in terms of section constraint violating twist matrices [54].
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an additional parameter θ77 that we are going to interpret later:

ω71
2 = −ω72

1 = m̃1 ,

ω73
4 = −ω74

3 = m̃2 ,

ω75
6 = −ω75

5 = m̃3 ,

θ77 = −g7 = m̃4 .

(6.1)

The gravitino masses of the gauged supergravity theory, up to an overall factor of some

modulus, are given by m1,2,3,4 such that

m̃1 = m1 +m2 −m3 −m4 ,

m̃2 = m1 −m2 +m3 −m4 ,

m̃3 = m1 −m2 −m3 +m4 ,

m̃4 = m1 +m2 +m3 +m4 .

(6.2)

The embedding tensor of D = 4 maximal supergravity sits in the 912 E7(7) representation.

Under the SL(8) subgroup, this splits as 912→ 36 + 36′+ 420 + 420′. The CSS gaugings

are parameterized by some components of the 36′ and 420′ irreps. Using underlined indices

A,B, . . . for the 8 of SL(8) we denote such irreps by θAB and BA
BCD respectively, and the

CSS gaugings are defined by (6.1) with θ88 = −g7 and Bp
mn8 = ωmn

p, m = 1, . . . , 7. In

particular, the part of the CSS generators that is contained in SL(8) are parameterized by

ΘAB
C
D = δC [AθB]D +BC

DAB . (6.3)

When m̃4 = 0 we only have geometric fluxes. We can thus uplift to eleven-dimensional

supergravity using a standard Scherk-Schwarz ansatz with internal vielbein

e1 = dy1 + m̃1 y
2dy7 , e2 = dy2 − m̃1 y

1dy7 ,

e3 = dy3 + m̃2 y
4dy7 , e4 = dy4 − m̃2 y

3dy7 ,

e5 = dy5 + m̃3 y
6dy7 , e6 = dy6 − m̃3 y

5dy7 ,

e7 = dy7 .

(6.4)

We then embed the inverse vielbein into SL(8) as (notice that e = 1)

(U)A
B =

(
ea
m 0

0 1

)
, (6.5)

and finally obtain the twist matrix

(ECSS
m̃1, m̃2, m̃3

)A
M =

(
(U)AB

CD 0

0 (U−T )CDAB

)
. (6.6)

This twist matrix solves the generalized Scherk-Schwarz condition (3.3) for E7(7) ExFT.11

The extended internal coordinates are YM , M = 1, . . . , 56 which decompose as (Y AB, YAB)

under SL(8). The physical internal coordinates are then embedded as

ym=1...7 = Y m8 . (6.7)

11We follow the conventions of [14, 23]. In particular, YMN
PQ = −12t MN

α tαPQ − 1
2
ΩMNΩPQ.
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The interpretation of embedding tensor components in terms of fluxes in equation (6.1)

assumed this choice of solution of the section constraint.

The parameter θ77 is usually considered to be a locally geometric flux on a torus (see

for instance [69] and more recently [70]). However, notice that the combination of θ(mn) flux

with seven-form flux can also be interpreted geometrically as curvature of an internal sphere

or hyperboloid [23]. In our case, this would be just an S1, so that in fact θ77 together with

g7 can have a fully geometric interpretation on a torus. For instance, CSO(2,0,6) gauged

supergravity, corresponding to the CSS model with m̃1,2,3 = 0, m̃4 6= 0, has been uplifted

in [23]. The twist matrix in the fundamental of SL(8) is just a rotation along the 78 plane:

ECSO =


1

. . .

1

cos m̃4y
7 sin m̃4y

7

− sin m̃4y
7 cos m̃4y

7

 . (6.8)

Because the twist matrix is compact, without imposing any periodicity conditions the

CSO(2,0,6) supergravity uplifts to eleven-dimensional supergravity with flat internal space.

We can impose arbitrary periodicities for y1 . . . y6 and the frame is globally well-defined

provided y7 has periodicity multiple of 2π/m̃4. In this case the N = 0 Minkowski vacuum

of this gauged supergravity lifts to the torus compactification of the fully supersymmetric

vacuum of the eleven-dimensional theory. If we impose other periodicities to y7, we can

regard the solution as a U-fold type geometry analogous to the asymmetric orbifold class

of T-folds of the previous section.

Both uplifts discussed above can now be motivated using the general procedure of [47].

All CSS gauge groups can be written as

U(1) n R24 , (6.9)

whose generators are

X78 = m̃1t[12] + m̃2t[34] + m̃3t[56] + m̃4t[78] ,

Xa7 = +
1

2
m̃(a)εabt

8
b −

1

2
m̃4t

7
a , a = 1, . . . , 6 ,

Xa8 = −1

2
m̃(a)εabt

7
b −

1

2
m̃4t

8
a ,

Xaa′ = m̃(a)εabt
ba′78 + m̃(a′)εa′b′t

ab′78 , a, a′ in different couples .

(6.10)

Here tAB are a basis of SL(8) generators, tAB generate its SO(8) subgroup and tABCD
generate the rest of E7(7), in a basis defined e.g. in [24]. We also write m̃(a) = m̃1, m̃2 or

m̃3 depending on the couple to which a belongs (12, 34 or 56). For special values of the

masses some of these generators become linearly dependent. We can still regard the gauge

group to be (6.9), simply some of the R transformations become neutral under U(1) and

ungauged, thus becoming a (trivial) central extension of the non-Abelian gauge algebra.12

12The fully centrally extended gauge algebra as defined in (4.1) would in fact be even larger, but we do

not need it.
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As reviewed earlier, all generalized Scherk-Schwarz uplifts of a gauged supergravity are

obtained from coset spaces constructed from the centrally extended version of the gauge

group. The section constraint must then be solved by the projection ΘA
m of the embedding

tensor on the coset space generators.13 In our case, we already know that we want our

choice of section to be (6.7). We thus choose

Minternal =
U(1) n R24

R18
(6.11)

where the R18 include all the ones generated by Xaa′ and an extra R6 ⊂ SL(8) tailored so

that the projection of ΘA
α onto coset generators is indeed ΘA

m =
(
δ
m8
AB

0

)
, as requested.

Such a choice of quotient is always possible, even when some of the R’s become neutral and

ungauged, because they are still part of the centrally extended gauge group. This means

that not only we have found an interpretation for the uplifts above, but also we can see

that there is no obstruction to uplifting all CSS gaugings with arbitrary masses. The final

twist matrix is remarkably simple, being just the product of those described above:

ECSS
m̃1, m̃2, m̃3, m̃4

= ECSO · ECSS
m̃1, m̃2, m̃3

. (6.12)

We can prove that (6.12) is the correct twist by using an observation also exploited

in [25]. Let us define the generalized torsion T(Ê)AB
C of an arbitrary y-dependent matrix

Ê as the coefficients on the right hand side of (3.3), so that the generalized Scherk-Schwarz

condition becomes T(Ê)AB
C = XAB

C . The generalized torsion associated with (6.12) reads

T[ECSS
m̃1, m̃2, m̃3, m̃4

] = ECSO · T[ECSS
m̃1, m̃2, m̃3

]

+ T[ (ECSO)A
M (ECSO)B

N (ECSS
m̃1, m̃2, m̃3

)N
Q∂Q(E−1

CSO)M
C ] ,

(6.13)

but now we notice that T[ECSS
m̃1, m̃2, m̃3

] = XCSS
m̃1, m̃2, m̃3

is invariant under the rotation generator

t78, that ECSO only depends on y7 ≡ Y 78, and finally that ECSS
m̃1, m̃2, m̃3

leaves ∂78 invariant,

so that the complete torsion is just the sum of the torsions of ECSS
m̃1, m̃2, m̃3

and ECSO. The

latter two are equal to the embedding tensors of the respective gaugings, so that in total

we have (with self-explanatory notation)

T[ECSS
m̃1, m̃2, m̃3, m̃4

] = XCSS
m̃1, m̃2, m̃3

+XCSO
m̃4

= XCSS
m̃1, m̃2, m̃3, m̃4

. (6.14)

It is instructive to look at the vector components KAB
m ≡ EAB

m8 of (6.12), and

see that they indeed satisfy a U(1) nR12 algebra relations (the R12 outside of SL(8) are

trivially represented), and that these vectors are still non-trivial even when the associated

R generator becomes a central charge. The non-vanishing vectors are

Ka7 = sin(m̃4y
7)∂a ,

Ka8 = cos(m̃4y
7)∂a ,

K78 = ∂7 + m̃1(y2∂1 − y1∂2) + m̃2(y4∂3 − y3∂4) + m̃3(y6∂5 − y5∂6) .

(6.15)

13As already stressed in section 4, there is also a second constrain which is redundant in everything we

discuss here.
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These are the vectors generating the transitive action of the gauge group on the internal

space. It is straightforward to check that, for instance, when m̃4 = m̃1 the vector K18−K28

becomes central while still being non-vanishing, consistently with the mass dependence of

the gauge group structure constants. Something analogous happens whenever |m̃4| = |m̃i|
for at least one i = 1, 2, 3, again consistently with the gauge group structure constants.

Finally, we notice that the patching of the y1,...,6 coordinates can be taken to be the

same as for m̃4 = 0, while the periodicity of y7 determines whether the uplift is globally

geometric of of U-fold type.

7 Outlook

There are various natural directions of development of this work. First, while we chose

to focus on contractions along the moduli spaces of Minkowski vacua of gauged maximal

supergravities, it is worth stressing that the limiting procedure we describe is much more

general and can be applied along any direction along the scalar manifold of a gauged

supergravity, regardless of whether it corresponds to a modulus of some vacuum solution

or not. This is true for both the contraction procedure in gauged supergravity and for its

uplift to a higher dimensional theory. This means that we could for instance apply our

procedure to vacua of maximal supergravity with non-vanishing cosmological constant, also

when the original vacuum has no moduli. Actually, we could even apply our procedure

to supergravity theories with no vacua at all, provided we know their uplift. In these

cases one is not guaranteed to obtain a vacuum after the limit, but will generate a new

reduction space where one can carry the generalized SS procedure to relate other gauged

supergravities to 10 or 11 dimensions.

Another interesting aspect to be explored is the systematic classification of the flat

backgrounds like the ones obtained here to answer the question: which freely acting (asym-

metric) orbifolds of superstring theory admit a truncation to gauged supergravity where

supersymmetry is spontaneously broken? One could also fully analyze the string spectrum

of the solutions we discussed to understand whether their 4-dimensional supergravity de-

scription is a consistent truncation of the full spectrum or also an effective theory in some

regime of validity.

Finally, we still lack the higher-dimensional description of the gauged supergravity

models of table 1 with higher rank gauge groups like those of the first column. It would be

interesting to see if a generalization of the procedure described in section 6 can be applied

to some of these gaugings to obtain a consistent reduction space, with a local geometry

that can be described in terms of generalized twist matrices, like in this work.
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