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Abstract: We investigate the Rényi entropy and entanglement entropy of an interval

with an arbitrary length in the canonical ensemble, microcanonical ensemble and primary

excited states at large energy density in the thermodynamic limit of a two-dimensional

large central charge c conformal field theory. As a generalization of the recent work [17],

the main purpose of the paper is to see whether one can distinguish these various large

energy density states by the Rényi entropies of an interval at different size scales, namely,

short, medium and long. Collecting earlier results and performing new calculations in

order to compare with and fill gaps in the literature, we give a more complete and detailed

analysis of the problem. Especially, we find some corrections to the recent results for the

holographic Rényi entropy of a medium size interval, which enlarge the validity region of

the results. Based on the Rényi entropies of the three interval scales, we find that Rényi

entropy cannot distinguish the canonical and microcanonical ensemble states for a short

interval, but can do the job for both medium and long intervals. At the leading order

of large c the entanglement entropy cannot distinguish the canonical and microcanonical

ensemble states for all interval lengths, but the difference of entanglement entropy for a long

interval between the two states would appear with 1/c corrections. We also discuss Rényi

entropy and entanglement entropy differences between the thermal states and primary

excited state. Overall, our work provide an up-to-date picture of distinguishing different

thermal or primary states at various length scales of the subsystem.
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B Derivation of long interval Rényi entropy in microcanonical ensemble

state 15

1 Introduction

Eigenstate thermalization hypothesis (ETH) [1–5] states that in a chaotic system local

operators cannot distinguish a highly excited energy eigenstate from a proper thermal state.

Then, the natural and complementary questions are whether some nonlocal measures can

distinguish the excited and thermal states, and how nonlocal they should be. A natural

set of nonlocal operators are the entanglement entropy SA and Rényi entropy S
(n)
A of a

subsystem A of volume VA in a system of volume V and state with density matrix ρ.

The reduced density matrix of A is obtained by tracing out the degrees of freedom of its

complement Ā, i.e. ρA = trĀρ. The Rényi entropy is defined as

S
(n)
A = − 1

n− 1
log trAρ

n
A, (1.1)

and in n→ 1 limit it becomes the entanglement entropy

SA = −trA(ρA log ρA). (1.2)

Based on these and other nonlocal quantities the subsystem ETH was proposed [6–8].

Moreover, the distinguishability of a thermal state from its microstates is related to the

black hole information loss paradox [9, 10] through gauge/gravity duality [11–13].

The above scheme of distinguishability can be extended to the states with finite energy

density, i.e. states of energy E with E/V fixed and finite in the thermodynamic limit V →
∞. For these states the Rényi entropy is expected to follow the volume law [14]. A related
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question is whether entanglement entropy or Rényi entropy can distinguish canonical and

microcanonical ensemble states even in the thermodynamic limit. As local operators cannot

distinguish the canonical and microcanonical ensemble states [7, 8, 15, 16], neither can the

short interval entanglement entropy or Rényi entropy. It was proposed in [7] that the Rényi

entropy of an interval with a length that is comparable to the length of its complement

can distinguish the canonical and microcanonical ensemble states, while the entanglement

entropy cannot. Recently, in this context it was shown by Dong in [17] (which is motivated

by [14] and [7, 18]) that the holographic Rényi entropy of a medium size subsystem, i.e. with

VA/V fixed and finite, can distinguish the canonical and microcanonical ensemble states of

large energy density, i.e. E/V ∝ c with c being the large central charge. Holographically,

one can evaluate the entanglement entropy by Ryu-Takayanagi formula [19–23], and the

Rényi entropy by relating it to the refined Rényi entropy [24]

S̃
(n)
A = n2∂n

(
n− 1

n
S

(n)
A

)
, (1.3)

which can be evaluated by the area of a bulk codimension-two cosmic brane.

Motivated by [17], in this paper we investigate Rényi entropy in two-dimensional (2D)

CFTs with a large central charge c in various states of large energy density in the thermo-

dynamic limit. The length of the circle where the CFT lives is L, and the length of the

subsystem A is `. For comparison, we consider three types of large density states: (i) the

canonical ensemble state at inverse temperature β; (ii) the microcanonical ensemble state

of energy E = πcL
6λ2

with λ being a constant; and (iii) a primary excited state of conformal

weights h = h̄ = c
24(L

2

µ2
+1), or, equivalently, energy E = πcL

6µ2
and spin s = 0, with constant

µ. Furthermore, for each kind of states, we will consider three different scales of `. For

the canonical ensemble state, we have (S) short interval with 0 < ` . β; (M) medium

interval with β . ` . L − β; and (L) long interval with L − β . ` . L. In the above we

have used “.” to indicate that we cannot find the sharp regime boundaries. It is similar

for the microcanonical ensemble state. For the primary excited state, we have (S) short

interval with 0 < ` . µ; (M) medium interval with µ . ` < L/2; and (L) long interval

with L/2 < ` . L.

The medium interval regime for canonical and microcanonical ensemble states was

recently investigated in [17] for holographic CFTs in general dimensions, and the 2D results

for holographic Rényi entropy and refined Rényi entropy in this regime are

S
(n)
CE,M(`) =

πc(n+ 1)`

6nβ
, S̃

(n)
CE,M(`) =

πc`

3nβ
,

S
(n)
ME,M(`) =

πcnL

3(n− 1)λ

(
1−

√
1− `

L
+

`

n2L

)
,

S̃
(n)
ME,M(`) =

πc`

3nλ
√

1− `
L + `

n2L

. (1.4)

In the above equation we have used “CE” to denote the canonical ensemble state and

“ME” to denote the microcanonical ensemble state, and later in this paper we will also
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use “PE” to denote the primary excited state. It was argued in [14, 17] that the above

results for microcanonical ensemble state also apply to the primary excited state as long as

` < L/2. Note that, the primary excited state is a pure state so that S
(n)
PE (`) = S

(n)
PE (L− `)

relating the short and long interval ones, and the short interval expansion has been obtained

in [6, 25–27]. Rényi entropy in canonical ensemble state for all three scales of ` have been

obtained in [28, 29] by field theory method. However, Rényi entropy in microcanonical

ensemble haven’t been explored before. This is one of the concrete results of our paper.

Combining all the results, we obtain the piecewise Rényi entropies in canonical ensemble,

microcanonical ensemble and primary excited states for arbitrary subsystem size.

Using these piecewise Rényi entropies, we find that the short interval Rényi entropy

cannot distinguish a canonical ensemble state from a microcanonical ensemble one as ex-

pected, but the medium and long interval ones can. In contrast, at the leading order of

c the entanglement entropy of any length ` cannot distinguish the canonical and micro-

canonical ensemble states. With the 1/c corrections, however, the entanglement entropy of

long interval regime can distinguish these two ensembles. Our findings are consistent with

and generalize the holographic results in [17]. The results are summarized in table 1.

In the calculations we will use the powerful method of twist operators [28, 30] and their

operator product expansion (OPE) [31–34] to calculate the Rényi entropies of 2D CFTs

for short interval [25–27, 35] and long interval [36, 37]. The result for canonical ensemble

state in [29] will also be useful to us.

The remaining part of the paper is arranged as follows. In sections 2, 3, 4, we investi-

gate the Rényi entropies in, respectively, the canonical ensemble state, the microcanonical

ensemble state and primary excited state. We investigate the distinguishabilities of the

various states by the Rényi entropy and entanglement entropy in section 5. We conclude

with discussion in section 6. In appendix A, we review the Rényi mutural information of

two intervals on a plane in the ground state. In appendix B, we collect some calculation

details in section 3.

2 Canonical ensemble state

Most of the results in this section are not new, and we collect the results in literature for

completeness and comparison.

We first consider the canonical ensemble state in 2D CFT at inverse temperature β.

Rényi entropy of a length ` interval in the thermodynamic limit is well-known [28]

S
(n)
CE,S(`) =

c(n+ 1)

6n
log

(
β

πε
sinh

π`

β

)
, (2.1)

with ε being the UV cutoff. Note that this formula holds as long as ` . L − β, and was

obtained by using the method of twist operators [28, 30]. The long interval Rényi entropy

has also been investigated in [36, 37] and [29], and we just adopt the result in [29] that was

obtained using conformal transformations. In the thermodynamic limit, the result is

S
(n)
CE,L(`) =

c(n+ 1)

6n
log

(
β

πε
sinh

π(L− `)
β

)
+
πc(n+ 1)L

6nβ
− In

(
1− e

− 2π(L−`)
β

)
. (2.2)
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This formula holds as long as ` & β. In the above, we have introduced In(x) with 0 < x < 1,

which is the Rényi mutual information of two disjoint intervals on a complex plane with

cross ratio x, see a brief review in appendix A. Note that In(x) satisfies the property [31]

In(x) =
c(n+ 1)

6n
log

x

1− x
+ In(1− x). (2.3)

For x� 1 it has been calculated up to order x8 [34, 38–41]. In this paper we use the small

x expansion up to x8 as the approximation of In(x) for 0 < x < 1/2. When ` approaches

L− ε, the long interval Rényi entropy approaches the Rényi entropy of the entire system

S
(n)
CE(L) =

πc(n+ 1)L

6nβ
. (2.4)

Both (2.1) and (2.2) work for the medium interval, i.e, β . ` . L− β. From either of

them we get the medium interval Rényi entropy in the thermodynamic limit

S
(n)
CE,M(`) =

c(n+ 1)

6n
log

β

2πε
+
πc(n+ 1)`

6nβ
. (2.5)

The medium interval refined Rényi entropy is

S̃
(n)
CE,M(`) =

c

3n
log

β

2πε
+
πc`

3nβ
. (2.6)

Comparing (2.6) with the holographic result in [17], i.e. S̃
(n)
CE,M(`) in (1.4), we find an extra

term, i.e. the first term on the r.h.s. of (2.6). Holographically, the refined Rényi entropy

is given by the area of a codimension-2 cosmic brane homologous to the interval A in a

backreacted bulk geometry, which is denoted by Bn(β,A) in [17]. The second term on the

r.h.s. of (2.6), is the contribution from the part of the cosmic brane parallel to the black

hole horizon, and the first term is the part extending along the radial direction of the bulk

geometry. For the second term to dominate the r.h.s. of (2.6), we need

`

β
� log

β

ε
. (2.7)

This is consistent with the validity regime of the result in [17]

L

β
� log

β

ε
. (2.8)

Note that for a medium interval case, by construction L are at the same scale as `, i.e.,

` ∼ L so that in the thermodynamic limit we have `/β � 1, L/β � 1. The require-

ments (2.7) and (2.8) are equivalent for a medium interval in the thermodynamic limit.

For the validity of (2.5) and (2.6), we do not require (2.7) or (2.8). The results (2.5)

and (2.6) are generalizations of the results in [17] with a larger validity regime.

Due to the aforementioned regions of validity for the short and long interval formu-

las (2.1) and (2.2), we can infer that the medium interval formula (2.2) should also exits a
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validity region, say `CE
1 . ` . `CE

2 for some critical lengths `CE
1,2 . We cannot determine the

precise values of the critical lengths and just adopt the approximate values

`CE
1 ≈ β, `CE

2 ≈ L− β

2π
log 2. (2.9)

Note that the above `CE
2 is just the critical point for the minimal surface of the holographic

entanglement entropy [42–44].

In summary, the piecewise Rényi entropy for the canonical ensemble state is

S
(n)
CE(`) =


S

(n)
CE,S(`) ε < ` < `CE

1

S
(n)
CE,M(`) `CE

1 < ` < `CE
2

S
(n)
CE,L(`) `CE

2 < ` < L− ε

. (2.10)

Note that in the above we have put back the UV cutoff ε. We plot the short interval,

medium interval, long interval, and piecewise Rényi entropies of the canonical ensemble

state (2.1), (2.5), (2.2), (2.10) in figure 1.

3 Microcanonical ensemble state

We then consider a large energy density microcanonical ensemble state with energy E =
πcL
6λ2

. For the short interval we use the OPE of twist operators [31–34] to calculate Rényi

entropy, and the result can be written as a sum of the products of one-point functions [25–

27, 35]. It was recently shown in [16] that in the thermodynamic limit and with the

identification β = λ, the canonical and microcanonical ensemble states have the same one-

point functions so that the resultant short interval Rényi entropies are the same as long

as the short interval expansion converges. We thus get the short interval Rényi entropy in

microcanonical ensemble state

S
(n)
ME,S(`) =

c(n+ 1)

6n
log

(
λ

πε
sinh

π`

λ

)
. (3.1)

Note that it is only valid for ε < ` . λ.

For a long interval, we can still use the OPE of twist operators [36, 37], and we give

the calculation details in appendix B. The long interval Rényi entropy in microcanonical

ensemble state is

S
(n)
ME,L(`) =

c(n+ 1)

6n
log

(
λ

πε
sinh

π(L− `)
λ

)
+
πcL

3λ
. (3.2)

It is only valid for L − λ . ` < L − ε. As ` approaches L − ε, it approaches the Rényi

entropy of the total system

S
(n)
ME(L) =

πcL

3λ
. (3.3)

Unlike the canonical ensemble case (2.4), the r.h.s. of (3.3) does not depend on the Rényi

index n.
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Figure 1. In the first four rows, we plot the Rényi entropy of short interval (2.1), medium inter-

val (2.5), long interval (2.2) for canonical ensemble state, and we also plot the Rényi entropy of the

total system (2.4). In the last row, we plot the piecewise Rényi entropy (2.10). To draw the figures,

we have set the central charge c = 30, the length of the entire system L = 100, and UV cutoff of

the CFT ε = 0.1.
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The Rényi entropy of a medium interval can be calculated holographically as in [17].

The backreacted geometry Bn(βn, A) caused by the cosmic brane for a microcanonical

ensemble state of dual CFT is approximately the same as Bn(β,A) for a canonical ensemble

state with the parameter βn given by [17]

βn = λ

√
1− `

L
+

`

n2L
. (3.4)

Using this fact and the result for a canonical ensemble state (2.6), we can get the medium

interval refined Rényi entropy for the corresponding microcanonical ensemble state

S̃
(n)
ME,M(`) =

c

3n
log

λ
√

1− `
L + `

n2L

2πε
+

πc`

3nλ
√

1− `
L + `

n2L

. (3.5)

The medium interval Rényi entropy in microcanonical ensemble state can thus be obtained

from (3.5),

S
(n)
ME,M(`) =

c(n+ 1)

6n
log

λ

2πε
− cnL

12(n− 1)`

(
1− `

L
+

`

n2L

)
log

(
1− `

L
+

`

n2L

)
−c(n+ 1)

12n
+

πcnL

3(n− 1)λ

(
1−

√
1− `

L
+

`

n2L

)
. (3.6)

Again, comparing with the results in [17], i.e. S̃
(n)
ME,M(`) and S

(n)
ME,M(`) in (1.4), we find

some additional terms. This is similar to the canonical ensemble case, as we discussed

below (2.6). In the refined Rényi entropy (3.5), the extra term is due to the edge effect

of the cosmic brane, and this also leads to extra terms in the Rényi entropy (3.6). Our

results are consistent with and generalize the results in [17]. The validity of the results

in [17] requires
L

λ
� log

λ

ε
. (3.7)

Our results with the extra terms do not need such a requirement, and the validity region of

the results is enlarged. As we will see in section 5, the extra terms we find are subleading

and do not affect the distinguishabilities of the canonical and microcanonical states from

the Rényi entropy.

Similar to the canonical ensemble case, due to the limited regimes of validity for the

short and long interval formulas (3.1) and (3.2), the medium interval formula (3.6) should

also have a validity region, say `ME
1 . ` . `ME

2 for some critical lengths `ME
1,2 . Thus, the

piecewise Rényi entropy for a microcanonical ensemble state is

S
(n)
ME(`) =


S

(n)
ME,S(`) ε < ` < `ME

1

S
(n)
ME,M(`) `ME

1 < ` < `ME
2

S
(n)
ME,L(`) `ME

2 < ` < L− ε

. (3.8)

However, we do not know how to obtain the precise forms of the critical lengths `ME
1,2 . Given

n and λ, we can get the approximate value of `ME
1 by requiring S

(n)
ME,S(`ME

1 ) ≈ S(n)
ME,M(`ME

1 ),
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Figure 2. In the first four rows, we plot the Rényi entropy of short interval (3.1), medium inter-

val (3.6), long interval (3.2) for microcanonical ensemble state in the thermodynamic limit, and we

also plot the Rényi entropy of the total system (3.3). In the last row, we plot the piecewise Rényi

entropy (3.8). To draw the figures, we have set c = 30, L = 100, and ε = 0.1.

and the approximate `ME
2 by S

(n)
ME,M(`ME

2 ) ≈ S
(n)
ME,L(`ME

2 ). As expected, both `ME
1 and

L − `ME
2 are the same order of λ. In fact, by setting λ = β, `ME

1,2 are, respectively, close

to `CE
1,2 . We plot the short interval, medium interval, long interval, and piecewise Rényi

entropies in the microcanonical ensemble state (3.1), (3.6), (3.2), (3.8) in the figure 2.
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4 Primary excited state

We finally consider a large energy density primary excited state with conformal weights

h = h̄ = c
24(L

2

µ2
+ 1) and energy E = πcL

6µ2
. The short interval Rényi entropy for a primary

excited state was calculated in [6, 25–27], and in the thermodynamic limit it is

S
(n)
PE,S(`) =

c(n+ 1)

6n
log

`

ε
+
π2c(n+ 1)`2

36nµ2
− π4c(n+ 1)(n2 + 11)`4

12960n3µ4

−π
6c(n+ 1)(n2 − 4)(n2 + 47)`6

2449440n5µ6

+
π8c(n+ 1)`8

1175731200(5c+ 22)n7µ8
[c(13n6 − 1647n4 + 33927n2 − 58213)

−88(n2 − 4)(n2 − 9)(n2 + 119)] +O

(
`

µ

)10

. (4.1)

No closed form of the short interval Rényi entropy in primary excited state is known,

and we use the above expansion as an approximation. The expansion breaks down as `

approaches µ.

It was argued in [14, 17] that the medium interval Rényi entropy in the primary excited

state is the same as that in the microcanonical ensemble state as long as ` < L/2. If so,

this would lead to the medium interval Rényi entropy in primary excited state

S
(n)
PE,M(`)

?
=
c(n+ 1)

6n
log

µ

2πε
− cnL

12(n− 1)`

(
1− `

L
+

`

n2L

)
log

(
1− `

L
+

`

n2L

)
− c(n+ 1)

12n
+

πcnL

3(n− 1)µ

(
1−

√
1− `

L
+

`

n2L

)
. (4.2)

We use the symbol “
?
=” to remind the reader that there is no rigorous justification. We

do not know whether the conjecture is true at the leading order of c, but in the next

section we will show that even if it is true at the leading order of c there must be some

corrections at order O(c0). In [17] the author commented that the conjecture may likely fail

for 2D CFTs, which are special compared to their higher dimensional cousins because of

the infinite number of commuting conserved quantum Korteweg-de Vries charges [45, 46].

In fact, a different result of the Rényi entropy in the primary excited state from (4.2) was

obtained in [15], and one can also see an earlier proposal in [7]. The medium interval Rényi

entropy in primary excited state is an open question, as emphasized in both [15] and [17],

however we will plot the figures using the conjecture (4.2).

There should exist a critical length `PE so that the short interval formula (4.1) holds

only for ε < ` . `PE and the medium interval formula (4.2) holds only for `PE . ` < L/2.

Given n, µ, we can determine the approximate value of `PE from S
(n)
PE,S(`PE) ≈ S(n)

PE,M(`PE).

By setting λ = β = µ, we find `PE is close to `CE
1 and `ME

1 . For the long interval regime

L/2 < ` < L− ε, we can use S
(n)
PE (`) = S

(n)
PE (L− `) to get the long interval Rényi entropy.
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In summary, we get the piecewise Rényi entropy for a primary excited state

S
(n)
PE (`) =


S

(n)
PE,S(`) ε < ` < `PE

S
(n)
PE,M(`) `PE < ` < L/2

S
(n)
PE (L− `) L/2 < ` < L− ε

. (4.3)

We plot the short interval, medium interval, and piecewise Rényi entropies in the primary

excited state (4.1), (4.2), (4.3) in the figure 3.

5 Distinguishabilities of various states

As stated in [17], to investigate ETH, it is interesting to use the Rényi entropy and en-

tanglement entropy to distinguish various large energy density states. We use the re-

sults (2.10), (3.8), and (4.3) to calculate the differences of the the Rényi entropies and

entanglement entropies among the canonical ensemble, microcanonical ensemble, and pri-

mary excited states, and plot the results in figure 4. Note that since we cannot calculate

the precise various critical lengthes, i.e. `CE
1,2 , `ME

1,2 , `PE, the figures around these critical

lengthes are just suggestive. We also remind the reader that the medium interval Rényi

entropy in the primary excited state (4.2) is a conjecture, and so the corresponding Rényi

entropy and entanglement entropy differences are also conjectures and thus suggestive.

The leading order c part of the entanglement entropy for the primary excited state

with length 0 < ` < L/2 was calculated in [47, 48], and it is the same as the entanglement

entropy in canonical ensemble state with the identification β = µ

SPE(`) =
c

3
log

(
µ

πε
sinh

π`

µ

)
+O(c0). (5.1)

No closed form of the 1/c corrections is known, and it was calculated by short interval

expansion to `8 in [26, 27] and to `12 in [49]. Let us denote the reduced density matrices of

the interval A for the canonical ensemble and primary excited states by ρCE(`) and ρPE(`),

respectively. Using the fact that in the thermodynamic limit the modular Hamiltonian of

ρCE(`) is a local integral of the energy density [50, 51], the relative entropy will be reduced

to the difference of the entanglement entropies, i.e., [6]

S(ρPE(`)‖ρCE(`)) = trA[ρPE(`) log ρPE(`)]− trA[ρPE(`) log ρCE(`)] = SCE(`)− SPE(`).

(5.2)

Note that this formula holds as long as ` is not comparable to L. Moreover, if we set λ = µ

and use the result in (2.1) and (4.1), we can get the entanglement entropy difference of the

short interval

SCE,S(`)− SPE,S(`) = S(ρPE(`)‖ρCE(`)) =
121π8c`8

510300(5c+ 22)λ8
+O

(
`

λ

)10

. (5.3)

Since the entanglement entropy difference SCE(`)−SPE(`) inherits the non-negativity and

monotonicity of the corresponding relative entropy [52], this yields that the medium interval
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Figure 3. In the first four rows, we plot the Rényi entropy of short interval (4.1) and medium

interval (4.2), and for the long interval L/2 < ` < L we use S
(n)
PE (`) = S

(n)
PE (L− `). In the last row,

we plot the piecewise Rényi entropy (4.3). We remind the reader that the medium interval Rényi

entropy for the primary excited state (4.2) is a conjecture. To draw the figures, we have set c = 30,

L = 100, and ε = 0.1.
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Figure 4. The differences of Rényi entropies (in upper row) and entanglement entropies (in

lower row) in the canonical ensemble, microcanonical ensemble, and primary excited states

from (2.10), (3.8), and (4.3). As we cannot calculate the precise various critical lengthes, i.e.

`CE
1,2 , `ME

1,2 , `PE, the figures around these critical lengthes are just suggestive. We also remind the

reader that the medium interval Rényi entropy in the primary excited state (4.2) is a conjecture,

and so the corresponding Rényi entropy and entanglement entropy differences are also conjectures

and thus suggestive. Especially, the medium interval regime of entanglement entropy difference

SCE(`)− SPE(`) (middle of the 2nd row) should be nonvanishing. To draw the figures we have set

c = 30, L = 100.

entanglement entropy difference must be nonvanishing and be of at least order O(c0) in

the large c limit. Thus the entanglement entropy of a medium interval can distinguish the

canonical ensemble and primary excited states at least at the order of O(c0).

Finally, combining the above statement with the fact that the medium interval en-

tanglement entropies of the canonical and microcanonical ensemble states are the same at

all orders of c, we can conclude that the entanglement entropy of a medium interval can

also distinguish the microcanonical ensemble and primary excited states at least at the

order of O(c0). Since the entanglement entropy is just a special case of Rényi entropy, this

conclusion should also hold for Rényi entropy, i.e., S
(n)
ME,M(`)− S(n)

PE,M(`) = O(c0).

We summarize the distinguishabilities of the canonical ensemble, microcanonical en-

semble, and primary excited states in table 1. Especially, the Rényi entropy cannot dis-

tinguish the canonical and microcanonical ensemble states for a short interval, but can

distinguish the two states for a medium interval and a long interval at the leading order of

c. At the leading order of c the entanglement entropy cannot distinguish the canonical and

microcanonical ensemble states for any length interval, but the difference of entanglement

entropy between the two states would appear with 1/c corrections for a long interval. Both

Rényi entropy and entanglement entropy can easily distinguish the thermal states and the

primary excited state for a long interval. The Rényi entropy is more powerful than the

entanglement entropy to distinguish different states. Our findings are consistent with and

generalize the holographic medium interval results in [17], and are also consistent with the

conjecture in [7].
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states interval
leading order of c all orders of c

entanglement Rényi entanglement Rényi

canonical short × [16] × [16] × [16] × [16]

VS medium × [17] � [17] × [17] � [17]

microcanonical long × � � �

canonical short × [47, 48] � [6, 25] � [26, 27] � [6, 25]

VS medium ×(?)[14, 17] �(?)[14, 17] � �

primary long � � � �

microcanonical short × [16, 47, 48] � [6, 16, 25] � [16, 26, 27] � [6, 16, 25]

VS medium ×(?)[14, 17] ×(?)[14, 17] � �

primary long � � � �

Table 1. The distinguishabilities of the canonical ensemble, microcanonical ensemble, and primary

excited states for a short, medium, and long interval in terms of the entanglement entropy and

Rényi entropy. We mark “�” for distinguishable states, and mark “×” otherwise. For some cases

we give the references where the results were firstly derived or could be easily inferred from. Note

that for “canonical VS primary” and “microcanonical VS primary”, we refer to µ . ` < L/2 for a

medium interval and refer to L/2 < ` < L for a long interval. The medium interval Rényi entropy

in the primary excited state (4.2) is a conjecture, and we mark “(?)” for the corresponding cases.

The other cases are derived in this paper.

In table 1, there is a puzzle, and it is related to that the medium interval Rényi

entropy for the primary excited state (4.2) is a conjecture in [14, 17]. Generally, the states

become more distinguishable as the length of the interval increases. When two states can

be distinguished for a short interval, one may expect that they can also be distinguished

for a medium interval. In table 1 there is one case that this rule does not apply, which

is using the leading order Rényi entropy to distinguish the microcanonical ensemble and

primary excited states. Generally, there is no theorem to guarantee that the Rényi entropy

difference must be nondecreasing with respect to `. As we have discussed above, the

conjecture (4.2) at least at the order of O(c0), but we cannot conclude whether it is true

at the leading order of c.

In the thermodynamics limit, using directly the definition of the relative entropy and

the density matrices of the entire system, with β = λ we get the vanishing relative entropy

of the entire system in the microcanonical and canonical ensemble states, i.e.,

S(ρME(L)‖ρCE(L)) = 0. (5.4)

From (2.4) and (3.3), we see that two infinitely closed states in terms of the relative entropy

can have different Rényi entropies. From the monotonicity of the relative entropy [52], we

further get for an arbitrary length interval

S(ρME(`)‖ρCE(`)) = 0. (5.5)

The reduced density matrices of the medium and long intervals in the microcanonical and

canonical ensemble states are the extra examples that two infinitely closed states in terms
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of the relative entropy have different Rényi entropies. From the modular Hamltonian [6,

50, 51], we get for the short and medium intervals

SCE(`) = SME(`). (5.6)

This is a direct proof in the CFT that the canonical and microcanonical ensemble states

have the same short and medium interval entanglement entropies. This is consistent with

the holographic results in [17] and the previous results in this paper.

With β = µ, it is also easy to get the relative entropy of the entire system in the

primary excited and canonical ensemble states

S(ρPE(L)‖ρCE(L)) =
πcL

3β
. (5.7)

This is consistent with the result in this paper. We cannot extract any additional useful

information from this relative entropy.

6 Conclusion and discussion

Motivated by the recent work [17], we investigate the distinguishabilities of three high

energy density states in a 2D large c CFT using the Rényi entropy and entanglement

entropy. Our work provides an up-to-date picture of distinguishing the different types of

thermal states or primary states at various length scales of the subsystem. To achieve this,

we make some new calculations and collect some known results in literature for comparison

with our findings. Our new findings are the Rényi entropy of the long interval and the Rényi

entropy of the medium interval in the microcanonical ensemble state, which complements

and enlarges the validity region of the holographic result in [17]. We proved generally

in CFT that the canonical and microcanonical ensemble states have the same short and

medium interval entanglement entropies. While the long interval entanglement entropies

in the canonical and microcanonical ensemble states are the same at the leading order of

c, we showed explicitly that they are different at order O(c0). With some argument we

conclude the conjecture for the medium interval Rényi entropy in the primary excited state

should be corrected at least at order O(c0).

If ETH works, it should apply not only to the primary states but also the descendant

states in the 2D large c CFT. The short interval entanglement entropy for some special

descendant states was recently studied in [49, 53], and they generally behave differently

from the canonical ensemble, microcanonical ensemble, or primary excited states, especially

when the descendant states are highly excited above the corresponding primary states. It

would be nice if Rényi entropy and entanglement entropy for general descendant states

could be calculated and compared with the thermal states.

The nonvanishing differences of the short interval Rényi entropies and entanglement

entropies for the primary excited state and the canonical ensemble or microcanonical en-

semble state indicate the failure of ETH in context of canonical ensemble or microcanonical

ensemble. A possible solution is to consider the generalized Gibbs ensemble (GGE) [54],
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instead of the canonical ensemble or microcanonical ensemble. The ETH in context GGE

has been studies in [8, 26, 27, 55–61], and whether it works is still an open question.

In investigations of the Rényi entropies, we have considered three regimes according

to the length of the interval. This is necessary as in different regimes the Rényi entropies

are derived in different methods. In (1+1)D CFTs to calculate the Rényi entropy of one

interval one needs to evaluate the two-point function of local twist operators in CFTn,

which are the heavy operators with the conformal dimension hn ∼ c. Of course it is

also interesting to use the two-point function of more general local operators to study the

distinguishabilities of the three kinds of high energy density states.1 For a short interval,

we can use the OPE to reduce the two-point function into the combination of one-point

functions, then one can see that the two-point function cannot distinguish the canonical

and microcanonical ensemble states as the two states have exactly the same one-point

functions in the thermodynamic limit. It would be nice to see if a two-point function with

a larger length can distinguish the two states.
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A Rényi mutual information

On a complex plane the Rényi mutual information of two disjoint intervals A = [z1, z2] and

B = [z3, z4] is defined as

I
(n)
A,B = S

(n)
A + S

(n)
B − S(n)

A∪B. (A.1)

It is a function of the cross ratio x = (z1−z2)(z3−z4)
(z1−z3)(z2−z4) , and one can write it as In(x). For the

2D large c CFT, we only include the contributions from the vacuum conformal family. The

Rényi mutual information satisfies the property [31]

In(x) =
c(n+ 1)

6n
log

x

1− x
+ In(1− x). (A.2)

No closed form of In(x) is known, and for a small x� 1 it has been calculated up to order

x8 [34, 38–41]. One can see the result in [41]. We plot it in figure 5.

B Derivation of long interval Rényi entropy in microcanonical ensemble

state

We derive the long interval Rényi entropy (3.2) for the high energy density microcanonical

ensemble state with energy E = πcL
6λ2

in the thermodynamic limit in the 2D large c CFT.

1We thank the anonymous referee for pointing this out to us. The two-point function of the stress tensor

was used recently in [62] to find typical states that is accurately thermal.
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Figure 5. The Rényi mutual information of two disjoint intervals on a complex plane with cross

ratio x in the 2D large c CFT. To draw the figure we have set c = 30.

The density matrix of the entire system of the microcanonical ensemble state and the

partition function are

ρ(E) =
1

Ω(E)

∑
i

δ(E − Ei)|i〉〈i|, Ω(E) =
∑
i

δ(E − Ei). (B.1)

The density matrix of canonical ensemble state with inverse temperature β and the canon-

ical ensemble partition function are

ρ(β) =
1

Z(β)

∑
i

e−βEi |i〉〈i|, Z(β) =
∑
i

e−βEi . (B.2)

There is the relation

Ω(E) =

∫ γ+i∞

γ−i∞

dβ

2πi
eβEZ(β). (B.3)

We have a short interval A with length ` and its complement Ā, and a long interval with

length L− `. Note that S
(n)
ME,S(`) = S

(n)
A and S

(n)
ME,L(L− `) = S

(n)

Ā
.

From OPE of twist operators [31–34], for the short interval reduced density matrix

ρA(E) = trĀρ(E) we get [25–27, 35]

trA[ρA(E)n] = cn

(
`

ε

)−4hσ
(

1 +
n∑
k=1

∑
{X1,··· ,Xk}

`∆X1+···∆Xk bX1···Xk〈X1〉ρ(E) · · · 〈Xk〉ρ(E)

)
,

(B.4)

with hσ = c(n2−1)
24n and the one-point function of a general quasiprimary operator X in the

2D CFT being defined as

〈X 〉ρ(E) =
1

Ω(E)

∑
i

δ(E − Ei)〈i|X |i〉. (B.5)

The coefficients bX1···Xk were defined in [35] and are related to the OPE coefficients of the

twist operators, and their explicit forms are not important to us in this paper. In the

thermodynamic limit the one-point function w.r.t. microcanonical ensemble state is the

– 16 –
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same as the expectation value w.r.t. the canonical ensemble state with inverse temperature

β that equals λ [16]

〈X 〉ρ(E) = 〈X 〉ρ(β)|β→λ. (B.6)

The short interval expansion converges for 0 < ` . β = λ. We derive the short interval

Rényi entropy for microcanonical ensemble state (3.1).

For the long interval reduced density matrix ρĀ(E) = trAρ(E) we get [36, 37]

trĀ[ρĀ(E)n] = cn

(
`

ε

)−4hσ( δ(0)

Ω(E)

)n−1
[

1 +
n∑
k=1

∑
{X1,··· ,Xk}

(
`∆X1+···∆Xk bX1···Xk

× 1

δ(0)k−1Ω(E)

∑
i1,··· ,ik

δ(E − Ei1) · · · δ(E − Eik)〈i1|X1|i2〉 (B.7)

× · · · 〈ik−1|Xk−1|ik〉〈ik|Xk|i1〉
)]

.

We define

JX1···Xk(E;ω1, · · · , ωk−1)

=
1

δ(0)k−1Ω(E)

∑
i1,··· ,ik

[
δ(E − Ei1) (B.8)

× δ(ω1−Ei1 +Ei2) · · · δ(ωk−1−Eik−1
+Eik)〈i1|X1|i2〉 · · · 〈ik−1|Xk−1|ik〉〈ik|Xk|i1〉

]
,

and it can be expressed as a series of Fourier transformations plus an inverse Laplace

transformation of a multi-point function in the canonical ensemble state

JX1···Xk(E;ω1, · · · , ωk−1)

=
1

δ(0)k−1Ω(E)

∫ γ+i∞

γ−i∞

dβ

2πi

∫ +∞

−∞

dt1
2π
· · ·
∫ +∞

−∞

dtk−1

2π
(B.9)

×
[
eβE−i(ω1t1+···+ωk−1tk−1)Z(β)〈X1(t1) · · · Xk−1(tk−1)Xk(0)〉ρ(β)

]
.

Note that t1, · · · , tk−1 are the Minkowski time, and in the multi-point function w.r.t. the

canonical ensemble state the quasiprimary operators X1, · · · ,Xk are inserted at the same

spatial position x = 0 but different temporal positions. For ω1 = · · · = ωk−1 = 0, it is just

the second line of (B.7)

JX1···Xk(E; 0, · · · , 0) =
1

δ(0)k−1Ω(E)

∫ γ+i∞

γ−i∞

dβ

2πi

∫ +∞

−∞

dt1
2π
· · ·
∫ +∞

−∞

dtk−1

2π

×
[
eβEZ(β)〈X1(t1) · · · Xk−1(tk−1)Xk(0)〉β

]
. (B.10)

We have used the Dirac delta function for the energy δ(E−Ei), and we can also define

the Dirac delta function for the scaling dimension δ̃(∆−∆i). From E = 2π
L (∆− c

12), we get

δ(E − Ei) =
L

2π
δ̃(∆−∆i). (B.11)

– 17 –
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Especially, we have

δ(0) =
L

2π
δ̃(0). (B.12)

Note that L→∞ in the thermodynamic limit and δ̃(0) =∞. We find that the only term

in (B.10) that survive in the thermodynamic limit is

JX1···Xk(E; 0, · · · , 0) =
1

δ(0)k−1Ω(E)

∫ γ+i∞

γ−i∞

dβ

2πi

∫ +∞

−∞

dt1
2π
· · ·
∫ +∞

−∞

dtk−1

2π

×
[
eβEZ(β)〈X1(t1)〉ρ(β) · · · 〈Xk−1(tk−1)〉ρ(β)〈Xk(0)〉ρ(β)

]
. (B.13)

Noting that the one-point functions w.r.t. the canonical ensemble state are constants, we get

JX1···Xk(E; 0, · · · , 0) = 〈X1〉ρ(β) · · · 〈Xk〉ρ(β)|β→λ. (B.14)

We obtain the relation of the partition functions

trĀ[ρĀ(E)n] =

(
δ(0)

Ω(E)

)n−1

trA[ρA(E)n], (B.15)

and the relation of the Rényi entropies

S
(n)

Ā
= S

(n)
A +

πcL

3λ
. (B.16)

We have discarded the divergent term − log δ(0). We derive the long interval Rényi entropy

for microcanonical ensemble state (3.2).
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two-dimensional CFT, JHEP 11 (2016) 116 [arXiv:1610.01362] [INSPIRE].

[26] S. He, F.-L. Lin and J.-j. Zhang, Subsystem eigenstate thermalization hypothesis for

entanglement entropy in CFT, JHEP 08 (2017) 126 [arXiv:1703.08724] [INSPIRE].

[27] S. He, F.-L. Lin and J.-j. Zhang, Dissimilarities of reduced density matrices and eigenstate

thermalization hypothesis, JHEP 12 (2017) 073 [arXiv:1708.05090] [INSPIRE].

– 19 –

https://doi.org/10.1007/JHEP03(2018)070
https://arxiv.org/abs/1710.10458
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.10458
https://doi.org/10.1007/BF02345020
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,43,199%22
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevD.14.2460
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D14,2460%22
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
https://doi.org/10.1103/PhysRevE.99.032111
https://doi.org/10.1103/PhysRevE.99.032111
https://arxiv.org/abs/1709.08784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.08784
https://doi.org/10.1007/JHEP06(2018)123
https://arxiv.org/abs/1712.03464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.03464
https://doi.org/10.1103/PhysRevLett.121.251603
https://arxiv.org/abs/1808.02873
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.02873
https://doi.org/10.1103/PhysRevLett.122.041602
https://doi.org/10.1103/PhysRevLett.122.041602
https://arxiv.org/abs/1811.04081
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.04081
https://doi.org/10.1103/PhysRevX.8.021026
https://doi.org/10.1103/PhysRevX.8.021026
https://arxiv.org/abs/1503.00729
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.00729
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016
https://doi.org/10.1007/JHEP05(2011)036
https://arxiv.org/abs/1102.0440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0440
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
https://doi.org/10.1007/JHEP11(2016)028
https://arxiv.org/abs/1607.07506
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07506
https://doi.org/10.1038/ncomms12472
https://arxiv.org/abs/1601.06788
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06788
https://doi.org/10.1007/JHEP11(2016)116
https://arxiv.org/abs/1610.01362
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.01362
https://doi.org/10.1007/JHEP08(2017)126
https://arxiv.org/abs/1703.08724
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.08724
https://doi.org/10.1007/JHEP12(2017)073
https://arxiv.org/abs/1708.05090
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.05090


J
H
E
P
0
8
(
2
0
1
9
)
0
1
0

[28] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.

0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[29] B. Chen, Z. Li and J.-j. Zhang, Corrections to holographic entanglement plateau, JHEP 09

(2017) 151 [arXiv:1707.07354] [INSPIRE].

[30] J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in

quantum integrable models and entanglement entropy, J. Statist. Phys. 130 (2008) 129

[arXiv:0706.3384] [INSPIRE].
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