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1 Introduction

Quantum chromodynamics (QCD) is a part of the Standard Model of particle physics

that describes the fundamental law of quarks and gluons. It is the vector-like SU(Nc)

gauge theory coupled to Dirac fermions in the defining representation Nc, and provides

the complete foundation for strong interaction of nuclear physics. Therefore, solving QCD

is the ultimate goal of nuclear and hadron physics, but it is quite a difficult task because the

theory becomes strongly coupled at low-energies E . ΛQCD due to the asymptotic freedom.

In order to understand properties of QCD, symmetry has been playing a pivotal role. In

our universe, the up and down (also strange) quarks are light compared with ΛQCD, and the

theory has an approximate chiral symmetry SU(Nf)L×SU(Nf)R with Nf = 2 (or 3). Nambu

and Jona-Lasinio showed in a model of four-fermion interaction that if the interaction

between quarks are sufficiently strong then this chiral symmetry is spontaneously broken

to the diagonal subgroup [1, 2],

SU(Nf)L × SU(Nf)R → SU(Nf)V. (1.1)
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Assuming the symmetry breaking pattern, the method of phenomenological Lagrangian

tells us that the low-energy behavior of the (pseudo) Nambu-Goldstone bosons is deter-

mined without knowing details of dynamics [3–6], and it has been confirmed that light

pseudo-scalar mesons π (and K, η) are Nambu-Goldstone bosons of chiral symmetry break-

ing. This is a great success of hadron physics by paying attention to chiral symmetry of

QCD, while it remains an open question why QCD vacuum breaks chiral symmetry.

The question is partly solved by ’t Hooft anomaly matching argument [7–9], so let

us review it using modern terminologies [10, 11]. We consider QCD with Nf massless

quarks, then it has chiral symmetry SU(Nf)L×SU(Nf)R and this symmetry is well-defined

as global symmetry, i.e. not broken by quantum anomaly or QCD instantons. We put the

theory on a closed four-manifold M4 and introduce the background SU(Nf)L,R gauge fields,

L,R, to define the partition function ZM4 [L,R]. However, ZM4 [L,R] breaks the gauge

invariance in terms of L and R, and this violation of the background-field gauge invariance

is recently called ’t Hooft anomaly. The descent procedure on Stora-Zumino chain [12–14]

says that gauge-invariance for L,R is established by adding 5-dimensional Chern-Simons

action CSM5 [L,R] of the background gauge field L,R. Therefore, we have to introduce the

auxiliary 5-dimensional spacetime M5 with ∂M5 = M4, and the combined system

ZM4 [L,R] exp [iNc (CSM5 [L]− CSM5 [R])] , (1.2)

is gauge invariant. Making our spacetime M4 sufficiently large, the partition function

ZM4 [L,R] is effectively described only by massless states of the physical Hilbert space.

The anomaly inflow [15] from the auxiliary 5-dimensional bulk requires that the low-energy

effective theory of massless particles reproduce the same ’t Hooft anomaly. That is, ’t Hooft

anomaly is invariant under the renormalization-group flow, and this is the ’t Hooft anomaly

matching condition. In order to match the anomaly in the infrared limit, the unique and

gapped ground state is ruled out from possible vacuum structures, and we conclude

• the low-energy effective theory is conformal, or

• chiral symmetry is spontaneously broken and massless pions exist.

In the second scenario, the low-energy Lagrangian of pions must contain the Wess-Zumino

term [16, 17] to match the ’t Hooft anomaly, and this is crucial for correct description of

neutral pion decays, which historically determines Nc = 3 [18, 19]. The above argument

elucidates that chiral symmetry breaking is partly required by the topological nature of chi-

ral symmetry when massless fermions exist in the ultraviolet theory, i.e. QCD Lagrangian.

In this paper, we shall derive a new ’t Hooft anomaly by looking more carefully at

the symmetry of massless QCD, and put a stronger constraint on the possible low-energy

dynamics. This becomes possible thanks to the recent development about understanding

of ’t Hooft anomaly matching as a nontrivial surface state of symmetry-protected topolog-

ical (SPT) orders [10, 11, 20–23], which elucidates the deep connection between ’t Hooft

anomaly matching [7–9] in high-energy physics and the Lieb-Schultz-Mattis theorem [24–

27] in condensed matter physics. This enables us to apply ’t Hooft anomaly matching
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condition for various symmetries, including discrete symmetries, symmetries with projec-

tive realizations, higher-form symmetries, and so on, and many nonperturbative aspects of

quantum field theories are newly discovered [28–58].

For our purpose, it is important to identify the internal symmetry with the faithful

representation correctly, and the symmetry of massless QCD is given by the quotient group,

G =
SU(Nf)L × SU(Nf)R ×U(1)V × (Z2Nf

)A
ZNc × (ZNf

)L × (ZNf
)R × Z2

(1.3)

=
SU(Nf)L × SU(Nf)R ×U(1)V

ZNc × (ZNf
)V

, (1.4)

which meaning shall be explained in section 2. When properly gauging the quotient group

G, we have to introduce not only ordinary one-form gauge fields but also the two-form

gauge fields, and both of them become equally important. The original ’t Hooft anomaly

matching is only sensitive to the infinitesimal part of G around identity, and we show that

non-trivial topology of G provides a new anomaly matching condition. In this paper, we

especially consider the subgroup,

Gsub =
SU(Nf)V ×U(1)V
ZNc × (ZNf

)V
× (ZNf

)L ⊂ G, (1.5)

and discuss the consequence of the ’t Hooft anomaly of Gsub.

The main outcome of our computation in section 3 is that massless QCD has a new

’t Hooft anomaly, characterized by 5-dimensional topological action,

SSPT =
Nf

(2π)2

∫
M5

A(1)
χ ∧ dAB ∧B(2)

f + · · · . (1.6)

Here, A
(1)
χ is the (ZNf

)L gauge field, AB is the U(1)B = U(1)V/ZNc gauge field, and B
(2)
f is

the (ZNf
)V two-form gauge field. This is the mixed ’t Hooft anomaly involving the discrete

chiral symmetry (ZNf
)L, the baryon-number symmetry U(1)B, and the projective nature

of the vector-like flavor symmetry [SU(Nf)V × U(1)B]/(ZNf
)V. The anomaly matching

condition claims that the low-energy effective theory of massless QCD must reproduces the

same anomaly. The related anomaly is partly discussed in some recent studies [36, 40, 43,

45–47], but all of them require nontrivial common divisor of Nc and Nf , gcd(Nc, Nf) > 1,

such as Nc = Nf . In this paper, we remove this constraint, which is important since our

universe is closest to the case Nc = 3 and Nf = 2, and also clarify the physical meaning.

In section 4, we first consider the ordinary scenario of chiral symmetry breaking by

the quark bilinear condensate 〈ψψ〉 6= 0, and discuss how the anomaly matching can be

satisfied. We can check that the most term of the anomaly is matched by the Wess-

Zumino term, but the anomaly of SSPT cannot be matched only by it because pions do

not have the baryon charge but SSPT requires the nontrivial action under U(1)B. We show

that the solution is given by the unified description of nucleons and pions proposed by

Skyrme [59, 60]. Indeed, Skyrme noticed, even before the establishment of QCD, that

the nonlinear sigma model unifies the theory of mesons and baryons, where baryons are
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given by topologically stable configuration of the nonlinear field. Since chiral symmetry is

broken as

G→ H =
SU(Nf)V ×U(1)V
ZNc × (ZNf

)V
, (1.7)

the target space of the nonlinear sigma model is G/H ' SU(Nf). The topologically stable

soliton is characterized by π3(G/H) = Z, and this integer is nothing but the baryon

number of U(1)B. Heuristically, this can be understood that the theory is still described

only by pions when taking the low-energy limit under non-zero baryon numbers and the

baryons can be seen as the topological defect of the pion fields. Since our anomaly matching

condition requires the nontrivial action of U(1)B to the Hilbert space of low-energy effective

theory, this heuristic argument is promoted to the rigorous consequence for the chiral-

symmetry broken phase of massless QCD: nontrivial homotopy, π3, of the vacuum manifold

is designated by anomaly matching. Here, let us remind that the corresponding Noether

current JB is given by three-dimensional Wess-Zumino term, and its minimal coupling to

AB is important to reproduce the U(1)B-SU(Nf)L-SU(Nf)L triangle anomaly, as pointed

out by Witten [17]. Our anomaly further requires that JB must correctly transform under

the discrete chiral symmetry, and we show that this is indeed the case for the ordinary

chiral broken phase.

In section 4, we also examine and rule out an exotic scenario of chiral symmetry

breaking, originally proposed by Stern [61–64]. This can be characterized by the symmetry

breaking pattern,

G→ Gsub, (1.8)

so the target space is given by G/Gsub ' PSU(Nf) = SU(Nf)/ZNf
. The most striking

difference from the ordinary scenario is that the vacuum is invariant under the discrete

chiral symmetry (ZNf
)L, and thus quark bilinear condensate must disappear, 〈ψψ〉 = 0.

This exotic phase has been ruled out by QCD inequality [63], but it is still an open problem

whether it appears at finite-density massless QCD, because the QCD inequality cannot be

applied with the sign problem. In this work, we rule out this exotic phase from possible

zero-temperature QCD vacua since the Noether current JB of U(1)B does not obey the

required transformation law under the discrete axial symmetry (ZNf
)L. As the argument

relies only on symmetry and anomaly, our no-go theorem applies to much wider region of

the QCD phase diagram, especially the zero-temperature finite-density QCD.

In section 5, we consider the anomaly matching condition for N = 1 supersymmetric

QCD with Nf ≥ Nc + 1. When Nf ≥ Nc + 2, SU(Nc) SQCD is mapped to SU(Nf − Nc)

SQCD by Seiberg duality, and we can explicitly check that these theories have the same

new ’t Hooft anomaly. We also consider the s-confining phase at Nf = Nc + 1, and we see

that the massless baryons correctly satisfy the new anomaly matching. These examples

give a good lesson about how the new anomaly matching condition can be satisfied in chiral

symmetric phases.
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2 Symmetry of massless QCD

We consider the four-dimensional gauge theory with the gauge group SU(Nc) coupled to

Nf massless Dirac fermions in the fundamental representation (Nf -flavor massless QCD).

The classical action of this theory is given by

S =
1

2g2

∫
trc(Fc(a) ∧ ?Fc(a)) +

∫
ψγµDµ(a)ψ. (2.1)

Here, a is the SU(Nc) gauge field (a† = −a),1 D(a) = d + a is the covariant derivative,

Fc(a) = D(a) ∧D(a) = da+ a ∧ a is the SU(Nc) gauge field strength, ψ is the quark field

realized as Nc×Nf Grassmannian variables, ψ is the conjugate field of ψ, and trc represents

the trace over color indices in the defining representation. When it is evident, we simply

write D = D(a) and Fc = Fc(a).

2.1 Symmetry group of massless Nf -flavor QCD

The (internal) global symmetry of this theory is given by

G =
SU(Nf)L × SU(Nf)R ×U(1)V × (Z2Nf

)A
ZNc × (ZNf

)L × (ZNf
)R × Z2

. (2.2)

This is the correct global symmetry of massless QCD, in the sense that G has the faithful

representation on the physical Hilbert space.2 For our purpose, it is an important step to

identify the division by the discrete subgroup in (2.2) in a correct manner, and thus we will

explain it in detail. There are several equivalent expressions of the symmetry group (2.2),

and each of them has pros and cons. Later in this section, we shall also discuss it.

Since quark fields are massless, we can rotate left- and right-handed quarks, ψL,R =
1∓γ5
2 ψ, separately. Quark fields form Nf -dimensional complex vectors, and they are in the

faithful representation of U(Nf)L×U(Nf)R. When writing the unitary matrix as a product

of a special unitary matrix and U(1) phase factor, there is a redundancy related to the

center element of the SU(Nf) matrix, so U(Nf) = [SU(Nf) × U(1)]/ZNf
. As a result, the

flavor symmetry of the classical Lagrangian (2.1) is

G
(quark)
classical = U(Nf)L ×U(Nf)R

=
SU(Nf)L ×U(1)L

(ZNf
)L

× SU(Nf)R ×U(1)R
(ZNf

)R
. (2.3)

We can rewrite U(1)L ×U(1)R by vector and axial U(1) symmetries:

eiαL(1−γ5)/2eiαR(1+γ5)/2 = ei(αL+αR)/2eiγ5(αR−αL)/2. (2.4)

1Throughout this paper, we follow the convention that the dynamical gauge fields are denoted by low-

ercases a, b, . . ., and the background gauge fields are by uppercases, A,B, . . .. The gauge fields in our

convention are realized locally as anti-Hermitian matrix-valued one-forms.
2For any different g, g′ ∈ G, there exists a gauge-invariant local operator O(x) such that g · O(x) 6=

g′ ·O(x).
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Here, we should notice that the angles of vector and axial U(1) rotations are both divided

by 2. As a consequence, U(1)L × U(1)R = [U(1)V × U(1)A]/Z2, which can be understood

by finding the π rotations of the U(1)V and U(1)A symmetries are the same element;

eiπ = eiπγ5 = −1. The classical flavor symmetry is now written as

G
(quark)
classical =

SU(Nf)L × SU(Nf)R ×U(1)V ×U(1)A
(ZNf

)L × (ZNf
)R × Z2

. (2.5)

Now, we must take into account the effect of the fermion measure. Quantum mechanically,

U(1)A is explicitly broken, and the measure DψDψ changes under the chiral transformation,

ψ 7→ exp(iαAγ5)ψ and ψ 7→ ψ exp(iαAγ5), as

DψDψ 7→ DψDψ exp

(
2iαA

Nf

8π2

∫
trc(Fc ∧ Fc)

)
. (2.6)

Since the topological charge Q = 1
8π2

∫
trc(Fc ∧ Fc) is always an integer on any orientable

closed manifolds, the transformation is a symmetry only if αA is quantized to 2π/(2Nf).

As a result, G(quark) is explicitly broken down to

G(quark) =
SU(Nf)L × SU(Nf)R ×U(1)V × (Z2Nf

)A
(ZNf

)L × (ZNf
)R × Z2

. (2.7)

G(quark) acts on the quark field ψ faithfully, but the quark field is not gauge invariant.

There is still redundancy in G(quark) on the physical Hilbert space. Since physical operators

must be singlet under the SU(Nc) gauge group, the U(1)V charges of any gauge-invariant

local operators are quantized to Nc because of Nc-ality. For instance, gluon operator

trc(Fc∧?Fc), meson fieldM∼ ψψ, baryon field B ∼ ψNc have charge 0, 0, Nc, respectively.

Therefore, the vector rotation by e2πi/Nc must be regarded as the identity, and the faithful

flavor symmetry has to be divided by ZNc . We obtain the physical symmetry group as

G = G(quark)/ZNc , (2.8)

and this gives (2.2).

2.2 Other equivalent expressions of the flavor symmetry

There are several equivalent expressions of the symmetry group (2.2), and some of them

makes its physical meaning more apparent. First, we explain that the expression (2.2) can

be simplified as

G =
SU(Nf)L × SU(Nf)R ×U(1)V

ZNc × (ZNf
)V

. (2.9)

This is because the discrete axial symmetry (Z2Nf
)A is a subgroup of continuous axial

symmetry,

(Z2Nf
)A ⊂ SU(Nf)L × SU(Nf)R ×U(1)V. (2.10)

Indeed, the discrete axial symmetry is generated by exp
(

2πi
2Nf

γ5

)
, but this generator can

be written as

exp

(
2πi

2Nf
γ5

)
= exp

(
2πi

Nf

1 + γ5
2

diag[1, . . . , 1, 1−Nf ]

)
· exp

(
− 2πi

2Nf

)
∈ SU(Nf)R ×U(1)V. (2.11)
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This redundancy is already taken into account in (2.2), because the discrete axial rotation

can always be canceled by the denominator of (2.2) so that [U(1)V × (Z2Nf
)A]/[(ZNf

)L ×
(ZNf

)R×Z2] = U(1)V/ZNf
. This expression clarifies that the flavor symmetry group for the

fundamental quark is connected. This is a special feature of the defining representation,

and the symmetry group of a matter fields in a higher representation typically contains dis-

connected component related to the anomaly free subgroup of U(1) axial symmetry. In this

paper, we prefer to use (2.2) because the discrete axial symmetry plays an important role.

We can further simplify the expression by introducing the U(1) baryon symmetry by

U(1)B = U(1)V/ZNc . (2.12)

As we have explained, the physical local operator always have the charge in NcZ under

U(1)V because it defines the quark number. By changing the normalization of the generator,

we can define the baryon charge, which is given by U(1)B. As a result, we obtain the flavor

symmetry group as

G =
SU(Nf)L × SU(Nf)R ×U(1)B

ZNf

. (2.13)

This expression is the most useful expression when discussing the physical spectrum of

massless QCD. On the other hands, quarks in the QCD Lagrangian have fractional charges

with this representation. In order to discuss anomaly matching, we have to introduce the G-

gauge field and examine its gauge invariance, but the existence of fractional charges makes

this examination more difficult. For derivation of our new anomaly matching condition,

the expression (2.2) turns out to be more useful. After derivation, we make connection

with (2.13) to understand the physical meaning of our result.

2.3 Background gauge fields and two-form gauge fields

In order to find the ’t Hooft anomaly of massless QCD, we introduce the background gauge

field for the global symmetry G, and examine the gauge-invariance of the partition function.

Because of the nontrivial topology of G, its gauge field consist not only of the one-form

gauge field but also of the two-form gauge field. In this subsection, we explain why such

unconventional gauge field appears by taking U(1)V/ZNc ⊂ G as a simple example. Full

description of G-gauge field will be given in section 3.

First, let us describe the mathematical data of massless QCD before gauging

U(1)V/ZNc . Massless QCD is an SU(Nc) gauge theory, so it is given by the principal

SU(Nc) bundle with fundamental quarks. Therefore, we introduce the open cover {Ui} of

the Euclidean spacetime M4. The SU(Nc) gauge field a is the collection of su(Nc)-valued

one-forms ai on Ui and SU(Nc)-valued transition functions gcij on Uij = Ui ∩ Uj , with

aj = (gcij)
−1aig

c
ij + (gcij)

−1dgcij . (2.14)

We define gcji = (gcij)
−1, and require the cocycle condition on the triple overlaps Uijk =

Uij ∩ Ujk ∩ Uki,
gcijg

c
jkg

c
ki = 1. (2.15)

– 7 –
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Whether or not the fundamental matter exists in the theory, we call the theory as an

SU(Nc) gauge theory if the cocycle condition (2.15) is satisfied. In our case, the quark field

in the fundamental representation requires (2.15) as a consistency condition: the quark

field ψ is also given as the collection of Grassmannian field ψi on each open set Ui, with

the connection formula

ψj = (gcij)
−1 · ψi (2.16)

on the double overlaps Uij . Uniqueness of ψi on the triple overlap Uijk requires (2.15).

Let us perform the gauging of U(1)V/ZNc . Now, the gauge group becomes [SU(Nc)×
U(1)V]/ZNc . The one-form gauge fields are su(Nc)-valued one-form ai and u(1)-valued

one-form AV,i on Ui with the connection formula on double overlaps Uij ,

aj = (gcij)
−1aig

c
ij + (gcij)

−1dgcij , (2.17)

AV,j = (gVij)
−1AV,ig

V
ij + (gVij)

−1dgVij , (2.18)

and gcij and gVij are SU(Nc)- and U(1)-valued transition functions, respectively. Since the

quark field ψ is in the defining representation of SU(Nc) and has charge 1 under U(1)V, its

connection formula is given by

ψj = (gcij · gVij)−1ψi. (2.19)

Now, the consistency on the triple overlap does not require the naive cocycle condition

given in (2.15). Instead, the consistency only requires

gcijg
c
jkg

c
ki = exp

(
2πi

Nc
nijk

)
, gVijg

V
jkg

V
ki = exp

(
−2πi

Nc
nijk

)
(2.20)

with nijk ∈ ZNc . When setting nijk ≡ 0 mod Nc, the gauge group becomes SU(Nc)×U(1)V,

and it corresponds to gauging of U(1)V. However, such a requirement is too strong, because

the violation of the cocycle condition for gcij by the center ZNc can be compensated by gVij
as in (2.20). We argue in the above that there is a freedom to introduce additional data

{nijk} since the global symmetry with the faithful representation on physical spectrum

is U(1)V/ZNc .

This additional data {nijk} is specified by the ZNc two-form gauge field ∈ H2(M4,ZNc).

We can see this by noticing that consistency of (2.20) on the quadruple overlap Uijk` =

Uijk ∩ Uij` ∩ Uik` ∩ Ujk` requires

nijk − nij` + nik` − njk` = 0 mod Nc. (2.21)

Redefinition of transition functions, gcij 7→ gcij exp
(
2πi
Nc
nij

)
and gVij 7→ gVij exp

(
−2πi
Nc
nij

)
,

changes

nijk 7→ nijk + nij + njk + nki, (2.22)

without affecting the connection formula of gauge fields and quark fields. Therefore, we

can introduce the identification, {nijk} ∼ {nijk + nij + njk + nki}. The equivalence class

[{nijk}] satisfying (2.21) is nothing but the mathematical definition of B
(2)
c ∈ H2(M4,ZNc).

The equivalence relation {nijk} ∼ {nijk + nij + njk + nki} says that the gauged theory is

invariant under the ZNc one-form gauge transformations.

– 8 –
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There is a useful description for continuum field theories to take into account the effect

of B
(2)
c ∈ H2(M4,ZNc). Let us explain it by extending the discussion of ref. [65]. We can

realize the ZNc two-form gauge field as a pair of U(1) two-form and one-form gauge fields,

(B
(2)
c , B

(1)
c ), satisfying the constraint,

NcB
(2)
c = dB(1)

c . (2.23)

We then consider the U(Nc) × U(1)V gauge theory by embedding SU(Nc) connection a

into the U(Nc) connection: we describe the corresponding U(Nc) connection by ã, which

is locally consist of SU(Nc) connection a and U(1) connection B
(1)
c :

ã = a+
1

Nc
B(1)

c 1Nc . (2.24)

Since we are now considering the U(Nc) principal bundle instead of the SU(Nc) principal

bundle, the gauge transformation is parametrized by U(Nc)-valued functions gc(x) ∈ U(Nc)

instead of SU(Nc)-valued functions:

ã 7→ g†c(ã+ d)gc, ψ 7→ g†cψ, ψ 7→ ψgc. (2.25)

Therefore, each term on the right hand side of (2.24), a and 1
Nc
B

(1)
c , does not have a gauge-

invariant meaning globally. What (2.24) implies is that the path integral
∫
Dã sums up all

U(Nc) gauge connections, ã, satisfying

B(1)
c = trc[ã]. (2.26)

Now, ψγµDµ(ã)ψ is invariant under this local U(Nc) gauge transformation. What we want

to do is to put the theory on [SU(Nc)× U(1)V]/ZNc principal bundles. For that purpose,

we postulate the invariance under the U(1) one-form gauge transformation [65], defined by

B(2)
c 7→ B(2)

c + dλ(1)c , B(1)
c 7→ B(1)

c +Ncλ
(1)
c ,

ã 7→ ã+ λ(1)c , AV 7→ AV − λ(1)c , (2.27)

where λc is the gauge parameter and the U(1) gauge field. The transformation law for ã

is determined so that it is consistent with the local expression (2.24). The transformation

law for U(1)V is chosen so that the covariant derivative with the U(1)V gauge field,

D(ã, AV)ψ = (d + ã+AV)ψ, (2.28)

is invariant under this one-form gauge transformation. By keeping the invariance under this

transformation (2.27), we can eliminate the double counting of the gauge group elements.

Before going to the explanation on other background gauge fields, we still need to look

at the invariance of the kinetic term trc(Fc ∧ ?Fc) under the U(Nc) gauge transformation

and U(1) one-form gauge transformation. In order to make it invariant under the U(Nc)

gauge transformation, we need to replace Fc(a) by

F̃c ≡ Fc(ã) = dã+ ã ∧ ã. (2.29)
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Under the U(Nc) gauge transformation (2.24), this field strength changes as Fc(ã) 7→
gFc(ã)g†, and thus the kinetic term becomes invariant. Under the U(1) one-form gauge

transformation (2.27), it changes as

Fc(ã) 7→ Fc(ã) + dλ(1)c . (2.30)

The gauge invariant combination is Fc(ã)−B(2)
c , and thus the gauge-invariant kinetic term

for the gauge field is now given by

1

2g2

∫
trc
[
(Fc(ã)−B(2)

c ) ∧ ?(Fc(ã)−B(2)
c )
]
. (2.31)

In order to judge whether we obtain the [SU(Nc)×U(1)V]/ZNc gauge theory by this pro-

cedure, we should look at the spectrum of the gauge-invariant genuine line operators [65]:

all the genuine line operators must have zero charge under the ZNc one-form transforma-

tion. In our case, the U(1) one-form gauge invariance (2.27) establishes this condition,

and examples of the gauge-invariant line genuine operators along the closed line L are

trc
[
P exp(

∫
L ã)

]
exp(

∫
LAV),

(
trc
[
P exp(

∫
L ã)

])Nc exp(−
∫
LB

(1)
c ), and so on, which have

indeed charge zero under the diagonal center, ZNc ⊂ SU(Nc)×U(1)V.

The two-form gauge field B
(2)
c has a striking effect on the topological charge [66]. The

index theorem of the Dirac operator in the defining representation tells that the SU(N)

topological charge is quantized to integers,

1

8π2

∫
M4

trc[Fc ∧ Fc] ∈ Z, (2.32)

but it becomes fractional after introducing B
(2)
c :

1

8π2

∫
M4

trc

[(
F̃c −B(2)

c

)2]
∈ 1

Nc
Z. (2.33)

To see it, we expand the left hand side while the expansion hides the manifest one-form

gauge invariance, and we get

1

8π2

∫
M4

trc

[(
F̃c −B(2)

c

)2]
=

1

8π2

∫
M4

(
trc

[
F̃ 2
c

]
− 2trc

[
F̃c

]
∧B(2)

c +NcB
(2)
c ∧B(2)

c

)
=

1

8π2

∫
M4

trc

[
F̃ 2
c

]
− Nc

8π2

∫
M4

B(2)
c ∧B(2)

c . (2.34)

The first term on the right-hand-side is the topological charge of the U(Nc) gauge field

strength, F̃c, and gives an integer. The second term is quantized to 1/Nc, because NcB
(2)
c =

dB
(1)
c , and we get the result. A more explicit proof on hypertorus is given in [66].

Lastly, it would be useful to discuss the baryon charge U(1)B. Since the baryon operator

B ∼ ψNc has the charge Nc of U(1)V, the covariant derivative on it should look like

DB ∼ (d + NcAV)B. However, this derivative is not invariant under the U(1) one-form

gauge transformation, so the correct one must be

DB = (d +NcAV +B(1)
c )B. (2.35)

– 10 –



J
H
E
P
0
8
(
2
0
1
8
)
1
7
1

This tells us that the gauge field AB of U(1)B is identified as

AB = NcAV +B(1)
c . (2.36)

Its field strength is given as

dAB = NcdAV + dB(1)
c = Nc(dA

(1)
V +B(2)

c ). (2.37)

Because of the appearance of dB
(1)
c (= NcB

(2)
c ) in this expression, AB is canonically nor-

malized as a U(1) gauge field:

1

2π

∫
dAB =

Nc

2π

∫
(dAV +B(2)

c ) ∈ Z. (2.38)

Therefore, the ZNc two-form gauge field (B
(2)
c , B

(1)
c ) has an important physical meaning in

massless QCD.

3 Discrete ’t Hooft anomaly of massless QCD

’t Hooft anomaly of the global symmetry G is defined by the absence of G-gauge invariance

when the G-background gauge fields are introduced. To detect the anomaly, we need

introduce the G-gauge field for (2.2). In order to emphasize the role of discrete axial

symmetry (Z2Nf
)A, we will consider a subgroup Gsub ⊂ G and introduce the Gsub-gauge

field instead. After that, we examine the gauge invariance of the partition function and

derive the ’t Hooft anomaly by using the Stora-Zumino descent procedure.

3.1 Background gauge fields and UV regularization of quark fields

We introduce the G-gauge field in order to detect the ’t Hooft anomaly. In this paper, we

would like to clarify the role of the discrete axial symmetry (Z2Nf
)A, and for that purpose

we especially consider the subgroup,

Gsub ≡ SU(Nf)V ×U(1)V × (Z2Nf
)A

ZNc × (ZNf
)V × Z2

⊂ G. (3.1)

It is useful to rewrite Gsub as

Gsub =
SU(Nf)V ×U(1)V
ZNc × (ZNf

)V
× (ZNf

)L, (3.2)

since this expression has less redundancy and simplifies the computation. The background

Gsub gauge field consists of

• Af : SU(Nf)V one-form gauge field,

• AV: U(1)V one-form gauge field,

• A(1)
χ : (ZNf

)L one-form gauge field,

• B(2)
c : ZNc two-form gauge field,

• B(2)
f : (ZNf

)V two-form gauge field.
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As we have done in the previous section, we realize the ZN p-form gauge field A(p) as a

pair (A(p), A(p−1)) of U(1) p-form and (p − 1)-form gauge fields, satisfying the constraint

NA(p) = dA(p−1) [67].3

We embed the SU(Nc,f) gauge fields into U(Nc,f) gauge fields, locally given as

ã = a+
1

Nc
B(1)

c 1Nc , Ãf = Af +
1

Nf
B

(1)
f 1Nf

. (3.3)

In order to describe the correct quotient of Gsub, we must postulate the invariance under

one-form gauge transformations,

B(2)
c 7→ B(2)

c + dλ(1)c , B(1)
c 7→ B(1)

c +Ncλ
(1)
c , (3.4)

B
(2)
f 7→ B

(2)
f + dλ

(1)
f , B

(1)
f 7→ B

(1)
f +Nfλ

(1)
f , (3.5)

where the gauge parameter λ
(1)
c,f are canonically normalized U(1) gauge fields. The ordinary

gauge fields transform under this one-form symmetry as

ã 7→ ã+ λ(1)c 1Nc , (3.6)

Ãf 7→ Ãf + λ
(1)
f 1Nf

, (3.7)

AV 7→ AV − λ(1)c − λ
(1)
f , (3.8)

and A
(1)
χ is invariant under one-form symmetry.

The quark kinetic term is now given by

ψγµDµψ = ψγµ

(
∂µ + [ã+ Ãf +AV +A(1)

χ ]µ

)
PLψ

+ψγµ

(
∂µ + [ã+ Ãf +AV]µ

)
PRψ, (3.9)

where PL,R = (1 ∓ γ5)/2 are chiral projectors. Since the Dirac operator is chiral, there is

a possibility for the chiral anomaly. For computation of the anomaly, it is useful to rely

on the fact that the above chiral Dirac operator is manifestly invariant under one-form

gauge symmetry. Therefore, if we show that we can regularize the theory that keeps this

manifest invariance under one-form gauge symmetry, then all we have to do is to use the

standard technique for computing the non-Abelian consistent anomaly.4 Let us show that

this is indeed the case.

3Since A(p−1) is the phase function of (p − 1)-form Higgs field, we can introduce some external flux by

defects, at which the Higgs vacuum expectation value disappears, and A(p) should be regarded as an almost

flat connection but not completely flat (see ref. [23]). In this paper, it is enough to know that dA
(1)
χ 6= 0 and

it still satisfies the quantization
∫
A

(1)
χ ∈ 2π

Nf
Z on closed manifolds. For more details on the mathematical

side, see ref. [11].
4When we are only interested in the anomaly linear in A

(1)
χ , we can use the knowledge of Abelian anomaly

after introducing the gauge fields of vector-like symmetries. Since this is a useful check of the result below,

we give its result in the appendix A.
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Following section 3 of ref. [68],5 we first double the number of quark fields ψ`, ψr, and

replace the quark kinetic term as

ψγµDµψ ⇒ ψ`γµ

(
∂µ + [ã+ Ãf +AV +A(1)

χ ]µPL

)
ψ`

+ψrγµ

(
∂µ + [ã+ Ãf +AV]µPR

)
ψr, (3.10)

so that we have a well-defined eigenvalue problem for each left- and right-Dirac operators.

Using the eigenvalues of this new left- and right-Dirac operators, we regularize the fermionic

path-integral measure Dψ`Dψ`DψrDψr by using the Fujikawa method [70–72]. At each step

of the above ultraviolet regularization, we keep the manifest invariance under the one-form

symmetry. Under this regularization scheme, it is known that the anomaly of ordinary

gauge symmetry is given by the consistent anomaly [68], and we will compute below.

3.2 Computation of anomaly via Stora-Zumino chain

The most convenient way to compute the consistent anomaly is to solve the Wess-Zumino

consistency condition by using the descent procedure. We shall show the 5-dimensional

SPT action of the Stora-Zumino chain [12–14, 68] is given by

SSPT =
Nc

8π2

∫
A(1)
χ ∧ trf

[
F̃ 2
f

]
+

Nf

(2π)2

∫
A(1)
χ ∧ dAB ∧B(2)

f

∈ 2π

Nf
Z. (3.11)

Here, we introduce the U(1)B gauge field AB by (2.36). Since this topological action is

nontrivial mod 2π, it gives ’t Hooft anomaly matching condition. The first term says that

there is a mixed anomaly between SU(Nf)V and (Z2Nf
)A when Nf 6= Nc , and the second

term says that there is a mixed anomaly between [SU(Nf)×U(1)B]/(ZNf
)V and (Z2Nf

)A.

We now derive (3.11). The Stora-Zumino chain starts from the 6-dimensional Abelian

anomaly A6, which is given by

A6 =
2π

3!(2π)3

∫
trc,f

[
(dL+ L2)3 − (dR+R2)3

]
, (3.12)

where L and R are the gauge fields coupled to left-handed and right-handed quarks,

L = ã+ Ãf +AV +A(1)
χ , R = ã+ Ãf +AV. (3.13)

Since L = R+A
(1)
χ , we get

A6 =
1

8π2

∫
dA(1)

χ ∧ trc,f
[
(dR+R2)2

]
+O

(
(dA(1)

χ )2
)
. (3.14)

In this paper, we only pay attention to the anomaly polynomial linear in A
(1)
χ and neglect

higher order terms, but it is straightforward to compute them. We shall see that the linear

5There is a possibility that a more subtle anomaly exists that cannot be captured by this procedure.

To get it, one needs to introduce a five dimensional space X so that ∂X = M4, and introduce the bundle

structure on X whose restriction to M4 gives four-dimensional chiral Dirac operators (see refs. [29, 69]).
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term in A
(1)
χ already gives interesting consequences on possible low-energy dynamics of

massless QCD. The descent procedure says that the 5-dimensional parity anomaly is given

by the boundary term of A6, and it defines the 5-dimensional topological action SSPT:

SSPT =
1

8π2

∫
A(1)
χ trc,f [(dR+R2)2]

=
1

8π2

∫
NfA

(1)
χ ∧

(
trc

[
F̃ 2
c

]
+Nc(dAV)2

)
+
Nc

8π2

∫
A(1)
χ ∧ trf

[
F̃ 2
f

]
+

1

(2π)2

∫
A(1)
χ ∧

(
NcdAV + trc

[
F̃c

])
∧ trf

[
F̃f

]
+

1

(2π)2

∫
NfA

(1)
χ ∧ trc

[
F̃c

]
∧ dAV. (3.15)

By construction, SSPT is manifestly invariant under the one-form gauge transformation,

and the Stora-Zumino procedure says that the gauge-dependence of the boundary term

cancels the ’t Hooft gauge anomaly of massless QCD. Recalling that NfA
(1)
χ = dA

(0)
χ , the

first and the last term of (3.15) vanish modulo 2π, and thus we can drop them. Let us

demonstrate it for some of them:

1

8π2

∫
NfA

(1)
χ ∧ trc

[
F̃ 2
c

]
= 2π

∫
dA

(0)
χ

2π
∧ 1

8π2
trc

[
F̃ 2
c

]
= 0 mod 2π, (3.16)

1

(2π)2

∫
NfA

(1)
χ ∧ trc[F̃c] ∧ dAV = 2π

∫
dA

(0)
χ

2π
∧ dB

(1)
c

2π
∧ dAV

2π

= 0 mod 2π. (3.17)

For the first one, we use the index theorem for U(Nc) gauge field strength, F̃c. We now

obtain (3.11) from (3.15) by using the U(1)B gauge field AB introduced as (2.36).

The second term of (3.11) is very interesting because this anomaly contains the gauge

field for baryon charge AB. Therefore, in any zero-temperature phase of massless QCD,

the baryon charge must be defined with only massless fields and it must act nontrivially

on the Hilbert space of the low-energy effective theory.

4 Anomaly matching in chiral-symmetry broken phases

In this section, we discuss the consequence of anomaly matching when chiral symmetry

breaking occurs. The ordinary perturbative chiral anomaly is matched by the Wess-Zumino

term of the pion Lagrangian, but we shall see that (3.11) contains a term that cannot

be produced by the Wess-Zumino term. We will find that the nontrivial topology of the

vacuum manifold plays an important role in order to match the anomaly, and this is exactly

the reason why nucleons can be described as skyrmions.

We also critically examine an exotic chiral-symmetry broken phase without quark

bilinear condensate, and the naive Stern phase is ruled out by anomaly matching argument.
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4.1 Chiral symmetry breaking and Skyrmions

We consider the ’t Hooft anomaly matching condition in the chiral symmetry broken phase

with quark bilinear condensate. The symmetry breaking pattern is

G =
SU(Nf)L × SU(Nf)R ×U(1)B

ZNf

→ H =
SU(Nf)V ×U(1)B

ZNf

. (4.1)

The low-energy effective theory is given by the non-linear sigma model of Nambu-Goldstone

bosons, and the target space is given by the coset,

G/H =
SU(Nf)L × SU(Nf)R

SU(Nf)V
' SU(Nf). (4.2)

The sigma model field is described as U : M4 → SU(Nf), and U = exp(iπaT a/fπ). The

left- and right-rotations (gL, gR) ∈ [SU(Nf)L × SU(Nf)R]/(ZNf
)V act on U as

(gL, gR) : U 7→ gLUg
†
R, (4.3)

so we have a rough correspondence Uff ′ ∼
∑

c(ψL)cf (ψR)cf ′ and the order parameter 〈ψψ〉
is proportional to

〈
tr[U ] + tr[U †]

〉
. It is important to notice that U(1)B acts trivially on U .

The Lagrangian of this theory is

S =
f2π
2

∫
trf [(U

−1dU) ∧ ?(U−1dU)] +NcΓWZ[U ], (4.4)

where the second term is the Wess-Zumino term and it is necessary to match the pertur-

bative anomaly [16, 17]:

ΓWZ =
1

240π2

∫
M5

trf [(U
−1dU)5], (4.5)

with ∂M5 = M4. The coefficient is defined so that ΓWZ does not depend on the extension

of U to M5 up to 2πZ. It is straightforward (but a bit lengthy) to check that the Wess-

Zumino term matches not only the perturbative non-Abelian anomaly but also the first

term of (3.11). However, NcΓWZ cannot match the second term of (3.11) because U(1)B
acts trivially on U , so this must not be the whole story.

Our anomaly matching condition says that we must be able to construct baryons

using the low-energy effective field theory of the pion field U . This is indeed possible

thanks to the topologically stable configuration,6 and such topological solitons are called

skyrmions [59, 60]. Let us remind the basic facts about skyrmions: since the target space

of the nonlinear sigma model is [SU(Nf)L × SU(Nf)R]/SU(Nf)V, the topologically stable

configurations are characterized by

π3 (G/H) = π3(SU(Nf)) ' Z. (4.6)

6The topological stability does not necessarily leads the energetic stability. Indeed, Derick’s theorem

shows that the topologically stable configuration is unstable against the scale transformation within the

lowest chiral Lagrangian. One necessarily adds a higher order term to evade this energetic instability, and

such a term is known in this context as the Skyrme term.
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Correspondingly, there exists the U(1) symmetry that characterizes this topological num-

ber, and its Noether current is given by

JB =
1

24π2
trf [(U

−1dU)3]. (4.7)

The conservation law can be checked that dJB = − 1
24π2 trf [(U

−1dU)4] = 0 because of

anti-commutation of the wedge product. The coefficient is normalized so that
∫
S3 JB is

quantized to integers. We identify this U(1) symmetry as U(1)B, and when gauging this

symmetry we add the minimal-coupling term,∫
M4

AB ∧ JB, (4.8)

to the Lagrangian. Indeed, it is pointed out by Witten [17] that this is the necessary term

in order to reproduce the U(1)V-SU(2)L-SU(2)L triangle anomaly.

Let us now gauge Gsub = [SU(Nf)V × U(1)B]/(ZNf
)V × (ZNf

)L, and explicitly check

that (4.8) leads to the anomaly matching for the second term of (3.11). Naively, we

would like to define JB with the background field by 1
24π2 trf [(U

−1DU)3] with the covariant

derivative, but such current does not obey the conservation law. To minimize this violation

so that it is independent of the pion fields U , we add the counter term and define the gauge-

invariant current as (see, e.g., ref. [73])

JB[Ãf , A
(1)
χ ] =

1

24π2
trf [(U

−1DU)3] +
1

8π2
trf [(UDU

−1)(F̃f + dA(1)
χ )− (U−1DU)F̃f ], (4.9)

where the covariant derivative is given by

U−1DU = U−1
[
dU + (Ãf +A(1)

χ )U − UÃf

]
. (4.10)

Indeed, we find that

dJB[Ãf , A
(1)
χ ] =

Nf

(2π)2
dA(1)

χ ∧B
(2)
f . (4.11)

The easiest way to obtain this result would be to use the fact that JB is the three-

dimensional Wess-Zumino term. Since it solves the consistency condition, its derivative

is given by the four-dimensional Abelian anomaly, dJB = 1
2!(2π)2

trf

[
(F̃f + dAχ)2 − F̃ 2

f

]
,

which gives (4.11). The gauge variation of (4.8) gives

δ

∫
M4

AB ∧ JB =

∫
M4

dλB ∧ JB = − Nf

(2π)2

∫
M4

λB ∧ dA(1)
χ ∧B

(2)
f , (4.12)

and this is the ’t Hooft anomaly characterized by the 5-dimensional topological action

− Nf

(2π)2

∫
M5

AB ∧ dA(1)
χ ∧B

(2)
f . (4.13)

This topological action is nothing but the second term of (3.11) after integration by parts.

This shows that the new discrete anomaly of massless QCD is matched thanks to the

nontrivial property of skyrmion charges under background gauge fields.
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4.2 Ruling out chiral symmetry breaking without quark bilinear condensate

In this section, we examine an exotic scenario of the chiral-symmetry broken phase of QCD,

proposed by Stern [61, 62] based on symmetries and anomalies. In a previous study [63], this

phase has been ruled out based on QCD inequalities, so it cannot be realized as the QCD

vacuum at the zero baryon density. However, QCD inequality cannot be applied when

there exists a sign problem in the path integral, so it is still an open problem whether

it appears, for example, at non-zero baryon densities or non-zero theta angles. We will

negatively answer this question for the naive Stern phase, and our argument applies to

much wider class of theories since it relies only on symmetries and anomalies.

The conventional order parameter of chiral symmetry breaking is the chiral condensate

〈ψψ〉 = 〈ψRψL〉+ 〈ψLψR〉, and the pion decay constant fπ is another important parameter.

Stern pointed out that the condition fπ 6= 0 does not necessarily require that 〈ψψ〉 6= 0,

and suggested the exotic chiral-symmetry broken phase with fπ 6= 0 and 〈ψψ〉 = 0 [61].

The local order parameter for this phase is the four-quark condensate [63], such as

N2
f −1∑
a=1

〈
(ψT af PLψ)(ψT af PRψ)

〉
=

N2
f −1∑
a=1

〈
(ψRT

a
f ψL)(ψLT

a
f ψR)

〉
, (4.14)

where T af is the generator of the flavor symmetry. Under SU(Nf)L × SU(Nf)R, the con-

densate transforms as the bi-adjoint representation, (N2
f − 1,N2

f − 1). This condensate,

therefore, breaks the continuous axial symmetry but keeps the discrete axial symmetry,

G→ Gsub. (4.15)

This gives a natural explanation why the quark-bilinear condensate vanishes under this

chiral-symmetry broken phase, since ψψ 7→ e2πi/Nfψψ under the discrete chiral transfor-

mation (Z2Nf
)A.

In the method of phenomenological Lagrangian, the low-energy effective theory is

described by the nonlinear sigma model with the target space

G/Gsub =
SU(Nf)L × SU(Nf)R
SU(Nf)V × (ZNf

)L
' SU(Nf)

ZNf

. (4.16)

We can realize this SU(Nf)/ZNf
nonlinear sigma model as the usual SU(Nf) nonlinear sigma

model with ZNf
gauge symmetry, and thus the only thing we have to do is to promote the

background gauge field A
(1)
χ to a dynamical (ZNf

)L gauge field a
(1)
χ . As a result, U ∼ ψLψR

is no longer a gauge invariant operator. Then, gauge invariance says that tr[U ] cannot have

non-zero expectation values, and one must construct an operator, such as tr[T af U
†]tr[T af U ].

However, there are two problems about this Stern phase. The first is the mismatch

of symmetry. In general, when dynamically gauging the ZN p-form symmetry in d-

dimensional field theories, gauged theories acquire the dual ZN (d − p − 2)-form sym-

metry. Therefore, the four-dimensional SU(Nf)/ZNf
nonlinear sigma model does not have

the (ZNf
)L 0-form symmetry but instead has the ZNf

2-form global symmetry, which does

not exist in QCD. The appearance of this two-form symmetry is related to the fact that
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π1(SU(Nf)/ZNf
) ' ZNf

, and thus there exist topologically stable (2 + 1)D walls with the

ZNf
charge. This mismatch of symmetry itself does not lead inconsistency, because it is

possible that all particles with nontrivial (ZNf
)L charge have mass gap and new symmetry

often emerges at low energies.

The second one is mismatch of anomaly, which is a more serious problem. Since there

does not exist ZNf
0-form symmetry, the anomaly given by SSPT in (3.11) does not exist.

The theory instead has a mixed ’t Hooft anomaly between SU(Nf)V/ZNf
and U(1)B, but

it is not of Dijkgraaf-Witten type in the terminology of refs. [11]. That is, anomalous

violation of JB does not take the form (4.11) but takes

dJB =
Nf

(2π)2
da(1)χ ∧B

(2)
f , (4.17)

where a
(1)
χ is the auxiliary dynamical gauge field introduced above, and this difference

causes the mismatch of anomaly. Therefore, the new anomaly matching condition by (3.11)

rules out the Stern phase even at finite densities although it can match the anomaly match-

ing of perturbative non-Abelian anomalies. It is remarkable that we are now able to con-

strain not only the infinitesimal part of the target manifold of the nonlinear realization but

also its topology by anomaly matching.

We point out that our result is consistent with that of the previous study with QCD

inequalities [63]. Furthermore, our result gives the nontrivial extension because the QCD

inequality is valid only if the path integral measure is positive definite, but the anomaly

matching does not care about the sign problem. Therefore, we now find that the naive

Stern phase cannot appear for the finite-density zero-temperature QCD by considering the

background manifold as M4 = S1 ×M3 in order to introduce the chemical potential and

taking the infinite volume limit for the zero-mode projection.

A possible detour evading this mismatch is to add additional massless excitations like

color-singlet chiral fermions charged under (ZNf
)L, topological order, etc. It is an interesting

study to examine this possibility from our anomaly matching condition, but let us stop here

in this paper. We just point out that one should carefully design the contents of additional

massless fields so that it does not produce additional perturbative anomaly because it is

already matched by the Wess-Zumino term of pion fields.

4.3 Discussions on the large-Nc limit

In this section, we give discussions to combine our no-go theorem on chiral symmetry

breaking without quark bilinear condensates and the large-Nc limit.

In the large-Nc limit, Coleman and Witten [74] have shown that chiral symmetry

breaking is given by the orthodox one, G→ H, under the following assumptions:7

1. Existence of asymptotic 1/Nc expansions.

2. QCD shows confinement in the large-Nc limit.

7In the large-Nc limit, anomalous breaking U(1)A → (Z2Nf )A is subleading in the 1/Nc expansion, so it

is more correct to write U(Nf)L ×U(Nf)R → U(Nf)V.
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3. Order parameter of chiral symmetry breaking is a quark-bilinear operator.

4. The ground state is the minimum of the effective potential V of the order parameter.

5. No accidental symmetry appears in the effective potential V .

Let us now consider whether the discrete axial symmetry can be unbroken in the

large-Nc QCD. To study such a possibility, we must replace the assumption 3: instead

of assuming that the order parameter is the quark-bilinear operator U that transforms as

(gL, gR) : U → gLUg
†
R, let us consider the case that the order parameter is given by the

quark-quartic operator, O, that transforms as

O 7→ (Ad(gL))O(Ad(gR))−1. (4.18)

We repeat the logic of ref. [74] with this assumption. The effective potential is given by

the invariant functional of O. Furthermore, the large-Nc counting shows that it must be

an operator with the minimal number of trace,8 so the possibility is

V (O) = Tr(F (O†O)), (4.19)

where F is an Nc-independent function. This says that the minimum O∗ can be conjugated

to a matrix λ∗1. The anomaly matching for perturbative chiral anomaly shows that λ∗ 6=
0 [74], and then the chiral-symmetry breaking pattern is given by G → Gsub. We have

however shown that this symmetry breaking is inconsistent with anomaly, at least at finite

Nc. Since we are assuming the smoothness of the large-Nc limit, the unbroken (ZNf
)L

symmetry is ruled out from the large-Nc QCD.

This gives the argument why we can take the quark bilinear operator as an order

parameter for the chiral symmetry breaking of large-Nc QCD, so a part of the assumptions

in [74] can be shown by discrete anomaly matching. We therefore conclude that our no-go

theorem is nicely consistent with the theorem of chiral symmetry breaking in the large-

Nc limit.

5 Consistency check for Seiberg duality of SUSY QCD

In this section, we wish to discuss consistency of our anomaly matching condition with

Seiberg duality of N = 1 supersymmetric QCD (SQCD) with Nf ≥ Nc + 2 [75, 76]. We

also discuss the anomaly matching for s-confining phase at Nf = Nc + 1.

The N = 1 SQCD is the N = 1 SU(Nc) super Yang-Mills theory coupled to Nf

flavor of chiral multiplet Q in the Nc representation and Q̃ in the Nc representation. In

addition to the global symmetry G discussed in this paper, N = 1 SQCD also has the

U(1) R-symmetry, but we will not discuss it here; the charges are assigned so that only the

8The operator O is in the adjoint representation, so the minimal trace operation is given by the adjoint

trace, and it corresponds to the double trace in the defining representation. Since we have assumed that

the quark bilinear operator vanishes, the 1/Nc expansion starts from the subleading order.
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U(1)A symmetry is broken by quantum anomaly and becomes (Z2Nf
)A. The list of charge

is summarized as

SU(Nc) SU(Nf)L SU(Nf)R U(1)B (ZNf
)L

Q Nc Nf 1 1/Nc 1

Q̃ Nc 1 Nf −1/Nc 0

(5.1)

For Nf ≥ Nc+2, N = 1 Seiberg duality proposes that this theory is dual to the SU(Nf−Nc)

gauge theory with the matter content,

SU(Nf −Nc) SU(Nf)L SU(Nf)R U(1)B (ZNf
)L

q Nf −Nc Nf 1 1/(Nf −Nc) −1

q̃ Nf −Nc 1 Nf −1/(Nf −Nc) 0

(5.2)

Therefore, under this duality, Nc is mapped to Nf − Nc and the chiral and flavor gauge

fields are charge conjugated.

Let us check how SSPT in (3.11) is affected under this duality map. It is changed as

SSPT =
Nc

8π2

∫
A(1)
χ ∧ trf

[
F̃ 2
f

]
+

Nf

(2π)2

∫
A(1)
χ ∧ dAB ∧B(2)

f

7→ Nf −Nc

8π2

∫
(−A(1)

χ ) ∧ trf

[
(−F̃ tf )2

]
+

Nf

(2π)2

∫
(−A(1)

χ ) ∧ dAB ∧ (−B(2)
f )

= SSPT −
Nf

8π2

∫
A(1)
χ ∧ trf

[
F̃ 2
f

]
= SSPT mod 2π. (5.3)

Therefore, we have confirmed that the anomaly matching of (3.11) is also satisfied in

Seiberg duality of N = 1 SU(Nc) SQCD. This adds the additional evidence for the validity

of Seiberg duality. This has been checked in a previous study [40] but the discrete anomaly

there exists only if gcd(Nc, Nf) > 1. We have extended the discrete anomaly for generic

Nc and Nf , so Seiberg duality passes more severe test.

It is also interesting to consider the case Nf = Nc + 1, at which the s-confining occurs.

The s-confinement is the confinement without chiral symmetry breaking, and the dual

theory is described only by gauge-singlet particles, mesons M and chiral baryons B, B̃:

SU(Nf)L SU(Nf)R U(1)B (ZNf
)L

M Nf Nf 0 1

B Nf 1 1 −1

B̃ 1 Nf −1 0

(5.4)

Let us check that the massless chiral baryons B, B̃ produces the correct mixed anomaly

involving U(1)B and (ZNf
)L. The covariant derivative acting on B with the background

gauge field is

DB = (d− Ãf +AB +B
(1)
f −A

(1)
χ )B, (5.5)

DB̃ = (d + Ãf −AB −B(1)
f )B̃. (5.6)
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We introduce the auxiliary gauge field B
(1)
f in order to make these covariant derivatives

invariant under one-form gauge transformations. This produces the anomaly polynomial

1

(2π)2

∫
(−A(1)

χ ) ∧ dAB ∧ trf

[
−F̃f + dB

(1)
f

]
=
Nf −N2

f

(2π)2

∫
A(1)
χ ∧ dAB ∧B(2)

f

=
Nf

(2π)2

∫
A(1)
χ ∧ dAB ∧B(2)

f mod 2π.

(5.7)

Therefore, the chiral baryons correctly reproduce the new anomaly matching condition in

the s-confining phase.

6 Conclusion

In this paper, we derive the ’t Hooft anomaly of massless QCD that involves U(1)B gauge

field, (ZNf
)L gauge field, and (ZNf

) two-form gauge field. In order to properly gauge the

symmetry, we have to introduce both one-form and two-form gauge fields in order to take

into account the quotient structure of the symmetry group. This is important to obtain

our ’t Hooft anomaly, partly because quark fields in the QCD Lagrangian have fractional

charges under the baryon number symmetry U(1)B. By keeping the manifest one-form

invariance in UV regularization, we can obtain the anomaly polynomial by applying the

descent procedure to the Stora-Zumino chain.

We discuss how the new anomaly matching condition is satisfied in the ordinary chiral-

symmetry broken phase with quark bilinear condensate. Since our ’t Hooft anomaly in-

volves U(1)B, it cannot be matched by the Wess-Zumino term of the pion Lagrangian. We

find that the nontrivial topology of the vacuum manifold, π3(SU(Nf)) = Z, is important

to match the anomaly, and this is nothing but the unified description of nucleons and

mesons by Skyrme. Furthermore, conservation of the baryon number current JB must be

anomalously broken under the background gauge fields for (ZNf
)L and SU(Nf)V/ZNf

in

order to match the new ’t Hooft anomaly. This is indeed satisfied for the ordinary chiral

broken phase.

We also examine the exotic chiral-symmetry broken phase proposed by Stern, and

the naive Stern phase is ruled out due to the mismatch of our ’t Hooft anomaly. This

phase is characterized by unbroken discrete chiral symmetry, and the vacuum manifold is

PSU(Nf) = SU(Nf)/ZNf
. Although one can construct the skyrmion current JB because

π3(PSU(Nf)) = π3(SU(Nf)) = Z, anomalous violation of JB does not take the appropriate

form because of the absence of discrete chiral symmetry (ZNf
)L in the phenomenological

Lagrangian. A previous study rules out this phase by QCD inequalities, and it is consistent

with our result. We would like to emphasize that our result applies to much wider regions of

QCD phase diagrams such as finite-density zero-temperature QCD, because the argument

relies only on symmetry and anomaly.

Since many phases of finite-density QCD have been proposed [77, 78], it is useful to

consider about the consistency with the anomaly matching condition in order to restrict

possible phases. This problem has been discussed in the context of the original ’t Hooft
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anomaly matching [79], and it is an interesting problem to apply the new discrete ’t Hooft

anomaly. In a previous study [46], the color-flavor locked phase for Nc = Nf = 3 is shown

to satisfy the discrete anomaly matching by breaking the (Z2Nf
)A in the context of QCD

with symmetry-twisted boundary conditions, and we can now consider the similar problem

at generic numbers of Nc and Nf for zero-temperature finite-density QCD. This is an

important future work.

Lastly, we checked the anomaly matching between the dual descriptions of N = 1

SQCD with Nf ≥ Nc + 1. For Nf ≥ Nc + 2, Seiberg duality claims that SU(Nc) gauge

theory is mapped to SU(Nf − Nc) gauge theory, and explicit computation of the new

’t Hooft anomaly of both sides gives the same result. When Nf = Nc + 1, the s-confining

phase is realized, i.e. confinement occurs without chiral symmetry breaking. The massless

excitations are color-singlet mesons and chiral baryons, and the new anomaly is matched

by massless chiral baryons. We do not discuss the case Nf ≤ Nc in this paper, so let us just

give a brief comment: for Nf = Nc, we expect that the anomaly is matched as in the case

of non-SUSY QCD discussed in this paper, when we choose the chiral-symmetry broken

phase of quantum moduli. For Nf < Nc, SQCD has a runaway vacuum, and we are not

sure whether the anomaly matching makes sense in such a situation.

In this paper, we only consider the ’t Hooft anomaly of internal symmetry but we can

extend this argument using the spacetime symmetry by including the background gravity.

For example, since the internal symmetry include U(1)V, we can consider the structure

group as [Spin(4) × U(1)V]/Z2, where Spin(4) is the spacetime symmetry group. This is

a Spinc structure, and it allows us to put massless QCD on non-spin manifolds to detect

discrete gauge-gravitational anomalies if they exist. Studying such anomaly matching gives

a new constraint on possible QCD vacua, and it must be an interesting future study.
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A Alternative derivation of the anomaly linear in A(1)
χ

In this section, we give an alternative derivation of the linear term (3.11) in A
(1)
χ of SSPT.

Here, we only introduce the background gauge field (Af , AV, B
(2)
c , B

(2)
f ) of the vector-like

symmetry [SU(Nf)V ×U(1)V]/[ZNc × ZNf
]. After that, we will find that the discrete axial

symmetry (Z2Nf
)A, or (ZNf

)L, is broken by Abelian anomaly. This strategy is useful to

find the mixed ’t Hooft anomaly, and used in some previous studies [34, 36, 38, 40, 46] etc.

Introducing the vector-like background gauge fields, we obtain the quark kinetic term as

ψγµDµψ ⇒ ψγµ

(
∂µ + [ã+ Ãf +AV]µ

)
ψ. (A.1)
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We then define the partition function Z[Af , AV, B
(2)
c , B

(2)
f ]. Let us perform the discrete

axial transformation, ψ 7→ e2πi/(2Nf)γ5ψ and ψ 7→ ψe2πi/(2Nf)γ5 , then the action is invariant,

but the path integral measure changes as

DψDψ 7→ DψDψ exp

(
2πi

2Nf

2

8π2

∫
trc,f

[
(F̃c + F̃f + dAV)2

])
= DψDψ exp i

(
Nc/Nf

4π

∫
trf

[
F̃ 2
f

]
+

1

2π

∫
dAB ∧B(2)

f

)
. (A.2)

Since the extra phase is independent of the dynamical field, this is an extra phase of the

partition function after performing the discrete axial symmetry. This ’t Hooft anomaly is

nothing but the one given by (3.11).
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[47] A. Cherman and M. Ünsal, Critical behavior of gauge theories and Coulomb gases in three

and four dimensions, arXiv:1711.10567 [INSPIRE].

[48] M. Yamazaki, Relating ’t Hooft Anomalies of 4d pure Yang-Mills and 2d CPN−1 model,

arXiv:1711.04360 [INSPIRE].

[49] M. Guo, P. Putrov and J. Wang, Time reversal, SU(N) Yang-Mills and cobordisms:

interacting topological superconductors/insulators and quantum spin liquids in 3 + 1D,

Annals Phys. 394 (2018) 244 [arXiv:1711.11587] [INSPIRE].
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