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1 Introduction and motivation

The study of Coulomb branches of 3-dimensional N = 4 gauge theories has been proven

vital for the understanding of gauge theories with 8 supercharges in 5 and 6 dimensions. A

powerful tool for analysing Coulomb branches as algebraic varieties is the Hilbert series —

called monopole formula [1] — of the associated chiral ring. In the original 3-dimensional

set-up, the monopole formula has provided a large number of interesting results and geo-

metric insights [2–16], for instance in the geometry of nilpotent orbits.

The standard lore suggests that Higgs branches of theories with 8 supercharges in

dimensions 3, 4, 5, and 6 are classically exact. In 5-dimensional N = 1 theories, the Higgs

branch M5d
H

∣∣
g=∞ at infinite gauge coupling, however, grows as new massless degrees of

freedom appear in the form of instanton operators. As the Higgs branch is still a hyper-

Kähler space, M5d
H

∣∣
g=∞ has a 3-dimensional Coulomb branch counterpart, provided the

global symmetry is large enough [17, 18]. To be precise, this means that a 3-dimensional

N = 4 gauge theory exists such that its Coulomb branch agrees with M5d
H

∣∣
g=∞. Such a

quiver is further realised in the study of 5-brane webs and 7-branes.

Similarly, 6-dimensional N = (1, 0) theories exhibit a previously unappreciated rich

phase structure of the Higgs branch as recent developments have shown [19, 20]. As it turns

out, many interesting effects on the 6-dimensional Higgs branches can be described neatly
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by associated 3-dimensional N = 4 theories, whose Coulomb branchesM3d
C agree with the

6-dimensional Higgs branches M6d
H as algebraic varieties. In particular, the 3-dimensional

quiver gauge theory is understood as a tool that captures the geometry of the moduli space.

Besides the small E8-instanton transition [19], another interesting phenomenon is discrete

gauging [20]. For the latter, it is crucial to realise that the gauging of a discrete global

symmetry Γ on M6d
H corresponds to a quotient of M3d

C by Γ. In other words, restriction

to the Γ-invariant sector.

In this note we prove earlier conjectures and extend the concept of discrete quotients of

3-dimensional Coulomb branches to other scenarios. To begin with, we recall two examples.

Symmetric products of ALE spaces. Consider k D2 branes in the presence of n D6

branes in flat space. The worldvolume theory on the D2 branes is a 3-dimensional N = 4

U(k) gauge theory with one adjoint and n fundamental hypermultiplets. The corresponding

quiver theory is the A-type ADHM quiver

TA-type
k,n = U(k)

SU(n)

Adj

(1.1)

such that the Higgs branch is the moduli space Mk,SU(n),C2 of k SU(n)-instantons on C2.

Moreover, 3d mirror symmetry predicts that the Coulomb branch is the symmetric product

of k copies of the An−1 singularity [21, 22]. In detail,

MH

(
TA-type
k,n

)
=Mk,SU(n),C2 and MC

(
TA-type
k,n

)
= Symk

(
C2/Zn

)
. (1.2)

We recall that a 3-dimensional N = 4 U(1) gauge theory with n fundamentals has C2/Zn
as Coulomb branch; hence, we may write

MC

 U(k)

SU(n)

Adj

 = Symk

MC

 U(1)

SU(n)


 . (1.3)

These symmetry properties have been conjectured in two complementary studies: firstly,

by computing the quantum corrections to the Coulomb branch metric in [21] and, secondly,

by computing the Coulomb branch Hilbert series in [1].

Extending the above setting by an orientifold O6 plane changes the resulting 3-dimen-

sional N = 4 worldvolume theory to an USp(2k) gauge theory with one antisymmetric and

n fundamental hypermultiplets. The quiver theory is again an ADHM quiver

TD-type
k,n = USp(2k)

SO(2n)

Λ2

(1.4)
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such that the Higgs branch is the moduli space of k SO(2n)-instantons on C2. Again, 3d

mirror symmetry predicts that the Coulomb branch is the symmetric product of k copies

of the Dn singularity [21, 22]. In other words,

MH

(
TD-type
k,n

)
=Mk,SO(2n),C2 and MC

(
TD-type
k,n

)
= Symk

(
C2/Dn

)
. (1.5)

Recalling that the Coulomb branch of a SU(2) ∼= USp(2) gauge theory with n fundamentals

is the Dn-singularity, one may conclude

MC

 USp(2k)

SO(2n)

Λ2

 = Symk

MC

 USp(2)

SO(2n)


 . (1.6)

Again, this has been conjectured in [21] and [1] from different approaches.

Lastly, replacing the O6 plane by a hypothetical Õ6
+

plane [23, 24] implies that the

3-dimensional N = 4 worldvolume theory turns into a SO(2k + 1) gauge theory with one

symmetric and n fundamental hypermultiplets. The quiver is given by

TD′-type
k,n = SO(2k + 1)

USp(2n)

Sym2

(1.7)

and it has been conjectured in [1] that the Coulomb branch is again the k-th symmetric

product of a D-type singularity, i.e.

MC

(
TD′-type
k,n

)
= Symk

(
C2/Dn+3

)
. (1.8)

6d Higgs branches. Following [20], consider n separated M5-branes on a C2/Zk singu-

larity. The 6-dimensional N = (1, 0) worldvolume theory has (n − 1) tensor multiplets, a

SU(k)n−1 gauge group and bifundamental matter determined by a linear quiver

QA
n,k =

k k

. . .

k k

k k

(1.9)

where all nodes are special unitary gauge or flavour nodes. The corresponding 3-dimen-

sional N = 4 quiver gauge theory for n separated M5-branes is equipped with a bouquet

of n nodes with 1, i.e.

FA
n,k =

1 2

. . .

k

. . .

2 1

1 1. . .
n

(1.10)
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with all nodes being unitary gauge groups. It is important to appreciate the global discrete

Sn symmetry present in the problem of n identical objects. In particular, the Coulomb

branch quiver has an apparent Sn symmetry. Following [20], the system admits different

phases, in which ni of the n separated M5-branes become coincident at positions xi. These

phases are then obtained by gauging a discrete
∏
i Sni ⊂ Sn global symmetry in the 6-

dimensional theory. Let us summarise the main conjectures of [20]:

(i) At infinite gauge coupling, the 3-dimensional quiver gauge theory for n coinciding

M5-branes on a Ak−1-singularity is given by

IA
n,k =

1 2

. . .

k

. . .

2 1

n

Adj

(1.11)

where all nodes are unitary gauge groups.

(ii) The 6-dimensional Higgs branches and 3-dimensional Coulomb branches then satisfy

the following relations:

M6d
H (QA

n,k)
∣∣
g<∞ =M3d

C (FA
n,k) , M6d

H (QA
n,k)
∣∣
g=∞ =M3d

C (IA
n,k) , (1.12)

M3d
C (IA

n,k) =M3d
C (FA

n,k)/Sn . (1.13)

(iii) Suppose a partition {ni} of n describes that the nM5-branes coincide in a pattern of ni
coinciding branes at different locations. The case of all branes separated corresponds

to {1n}, while all of them coinciding corresponds to {n}, i.e. infinite gauge coupling.

Then the associated 3-dimensional quiver is conjectured to be

FA
{ni},k =

1 2

. . .

k

. . .

2 1

nln1

Adj Adj
. . .

(1.14)

with the relations

M6d
H (QA

n,k)
∣∣
{ni}

=M3d
C (FA

{ni},k) , M3d
C (FA

{ni},k) =M3d
C (FA

{1n},k)/
∏
i

Sni . (1.15)

Here,
∏
i Sni denotes the product of permutation groups which act on the sets of ni

coincident M5-branes.

Similarly, n M5-branes on a C2/Dk singularity have been considered in [19]. The 6-

dimensional N = (1, 0) worldvolume theory is comprised of (2n − 1) tensor multiplets as
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well as gauge groups and hypermultiplets determined by the quiver

QD
n,k =

U
Sp(2k−

8)

O
(2k)

U
Sp(2k−

8)

. . .

U
Sp(2k−

8)

O(2k) O(2k)

(1.16)

such that there are n USp(2k− 8) and (n− 1) O(2k) gauge nodes in total. The associated

3-dimensional quiver theory for n coincident M5 branes, i.e. infinite gauge coupling in the

6-dimensional theory, has been conjectured to be

ID
n,k =

O
(2)

U
Sp(2)

O
(4)

U
Sp(4)

. . .

O
(2k−

2)

U
Sp(2k−

2)

O
(2k)

U
Sp(2k−

2)

O
(2k−

2)

. . .

U
Sp(4)

O
(4)

U
Sp(2)

O
(2)

USp(2n)

Λ2

(1.17)

where Λ2 denotes the traceless rank-2 antisymmetric representation of USp(2n). The the-

ories are related via

M6d
H (QD

n,k)
∣∣
g=∞ =M3d

C (ID
n,k) . (1.18)

One can argue, as shown below, thatM3d
C (ID

n,k) is the Sn-quotient of the Coulomb branch of

FD
n,k =

O
(2)

U
Sp(2)

O
(4)

U
Sp(4)

. . .

O
(2k−

2)

U
Sp(2k−

2)

O
(2k)

U
Sp(2k−

2)

O
(2k−

2)

. . .

U
Sp(4)

O
(4)

U
Sp(2)

O
(2)

USp(2)
. . .
n

USp(2)

(1.19)

which is a quiver with a bouquet of n nodes of USp(2). Physically, FD
n,k captures the phase

in which all n M5-branes are separated. The discrete gauging on the Higgs branch is

reflected by the relation of the Coulomb branches

M3d
C (ID

n,k) =M3d
C (FD

n,k)/Sn . (1.20)

As shown below, one can generalise the setting to the analogue of (1.15).
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Outline. From the above examples, there is an apparent action of an Sn group on a

Coulomb branch quiver, which appears to be a local operation on the quiver. These

examples serve as guideline to prove exact statements on the Coulomb branch Hilbert

series upon the action of an Sn group.

The remainder is organised as follows: the generalisations of the examples discussed

in the introduction are the focus of section 2. In detail, the generalisation to an arbitrary

quiver coupled to either a bouquet of U(1), USp(2), or SO(3) nodes is considered and

the statements of discrete Sn-quotients are proven on the level of the monopole formula.

In section 3, applications to other types of bouquets, composed of (different) USp(2),

SO(3), and O(2) nodes, are considered and proven. Thereafter, section 4 summarises and

concludes. Appendix A provides some background on the cycle index and a proof of an

auxiliary identity.

As a remark, a complementary perspective of discrete gauging and its manifestation

as discrete quotients on Coulomb branches is presented in [25].

2 A and D-type

This section focuses on generic good 3-dimensional N = 4 quiver gauge theories that

are coupled to bouquets of either U(1), USp(2), or SO(3) nodes. Upon Sn-quotient, the

bouquet is replaced by a single U(n), USp(2n), or SO(2n + 1) node supplemented by an

additional hypermultiplet that transforms as in the corresponding ADHM quiver.

2.1 A-type — U(1)-bouquet

Taking (1.3) as well as (1.13) and (1.15) as motivation, one can generalise the statement to

a generic quiver with one (or many) bouquet(s) attached and provide a proof on the level

of the monopole formula.

Consider an arbitrary quiver, denoted by •, coupled to either a U(n) gauge node with

one additional adjoint hypermultiplet or a bouquet of n U(1) nodes. I.e. define the two

quiver theories

T{n},• = U(n)

Adj

and T{1n},• =
U(1) U(1)· · ·

n

. (2.1)

To be precise, the U(n) as well as all of the U(1) nodes couple to the same single node in •
via bifundamental matter. Viewed from the U(n) or U(1) nodes, the quiver • is considered

as providing background charges ~k = (k1, . . . , ks) for some s ∈ N, i.e. the magnetic charges

from the single node they couple to. To see this, consider this single node in • as flavour

node with background charges ~k as, for example, in [4, 5, 16]. Thus, there are two Hilbert

series to compute: (i) the monopole formula H(t,~k) of • with the single node turned into a

flavour node with fluxes ~k, and (ii) the monopole formula of T{n},� (or T{1n},�) where the

flavour node � provides fluxes ~k. The Hilbert series of T{n},• (or T{1n},•) can be obtained

via gluing the Hilbert series H(t,~k) with that of T{n},� (or T{1n},�) along the common

– 6 –
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flavour node, which turns it into a gauge node. Since the Hilbert series with background

charges for • is same in both cases and is not affected by the Sn-quotient, it will henceforth

be ignored. Now, the above conjecture (1.13) is generalised by

Proposition 1. Let the quiver gauge theories T{n},• and T{1n},• be as defined in (2.1),

then their Coulomb branches satisfy

MC

(
T{n},•

)
=MC

(
T{1n},•

)
/Sn . (2.2)

Preliminaries. In order to prove Proposition 1, one defines

f(t, z) = HSMC


U(1)

 ≡ HSMC(T{1},•) (2.3)

as Hilbert series of the 3-dimensional N = 4 U(1) gauge theory with background charges
~k. In detail, the conformal dimension and dressing factor read

∆(q;~k) =
1

2
|q − ~k| , P (t; q) =

1

1− t
(2.4)

for q ∈ Z. Then (2.2) can be expressed via the following generating series:

F [ν; t, z] = PE[ν · f(t, z)] =
∞∑
n=0

νn HSn(t, z) (2.5)

such that Proposition 1 becomes

HSn(t, z) ≡ HSMC(T{n},•)
Prop. 1

=
1

n!

dn

dνn
PE
[
ν ·HSMC(T{1},•)

]∣∣∣∣
ν=0

≡ HSMC(T{1n},•)/Sn
.

(2.6)

In order to compute HSn(t, z) explicitly from the symmetrisation of f(t, z), one employs

the cycle index (A.1).

To compare the result, recall the ingredients for the monopole formula of an U(n)

gauge node with one adjoint hypermultiplet and background charges. The conformal di-

mension reads

∆(q1, . . . , qn;~k) =
1

2

n∑
i=1

|qi − ~k| =
n∑
i=1

∆(qi;~k) (2.7)

wherein the contributions from the adjoint hypermultiplet cancel the vector multiplet con-

tributions entirely. The magnetic charges appearing in the monopole formula are ordered

q1 ≥ q2 ≥ . . . ≥ qn. The U(n) dressing factors have been defined in [1]. The shorthand

notation |qi − ~k| ≡
∑s

l=1 |qi − kl| summarises the contributions from the magnetic charges

kl of the single node in • the U(n) couples to via bifundamental matter.

– 7 –
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Proof. The recursive formula (A.2) suggests to prove (2.2) by induction. One explicitly

verifies the claim for n = 1, 2; thereafter one proceeds to HSn(t, z) with general n, i.e.

HSn(t, z) =
1

n

n∑
k=1

ak ·HSn−k(t, z) , ak = f(tk, zk) , (2.8)

assuming the validity for all HSk(t, z) with k<n. To begin with, one verifies the base case:

(i) n = 1: trivial. Returns the U(1) case.

(ii) n = 2: the two contributions read

a2
1 =

1

(1− t)2

∑
q1,q2

zq1+q2t∆(q1)+∆(q2)

=
2

(1− t)2

∑
q1>q2

zq1+q2t∆(q1)+∆(q2) +
1

(1− t)2

∑
q1=q2

zq1+q2t∆(q1)+∆(q2) , (2.9)

a2 =
1

1− t2
∑
q

z2qt2∆(q) . (2.10)

Combining both, one obtains

HS2(t, z) =
1

(1− t)2

∑
q1>q2

zq1+q2t∆(q1)+∆(q2)

+
1

2

(
1

(1− t)2
+

1

1− t2

) ∑
q1=q2

zq1+q2t∆(q1)+∆(q2)

=
1

(1− t)2

∑
q1>q2

zq1+q2t∆(q1)+∆(q2)

+
1

(1− t)(1− t2)

∑
q1=q2

zq1+q2t∆(q1)+∆(q2) , (2.11)

which coincides with the monopole formula for the quiver • coupled to a U(2) gauge

node with an adjoint hypermultiplet.

Thereafter, one proceeds with the inductive step (n − 1) → n for (2.8). The strategy of

the proof is to consider the different contributions for the distinct summation regions of

the magnetic charges qi in detail and show that these agree with the monopole formula

of T{n},•.

(i) q1 > q2 > . . . > qn can only originate from one term: a1HSn−1, in which one denotes

the magnetic charge in a1 by q and those of HSn−1 by qi, i = 1, . . . , n−1. Then there

are exactly n contributing cases:

q > q1 > . . . > qn−1 ,

q1 > q > q2 > . . . ,

. . . ,

q1 > . . . > q > qn−1 ,

q1 > . . . > qn−1 > q ,

(2.12)

– 8 –
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but these can all be relabelled to a single case. Then one finds

1

n
a1HSn−1 ⊃

1

(1− t)n
∑

q1>...>qn

z
∑n

j=1 qj t
∑n

j=1 ∆(qj) (2.13)

and observes the dressing factor for a residual U(1)n gauge symmetry, which is in fact

the correct stabiliser of q1 > q2 > . . . > qn in U(n).

(ii) q1 > q2 > . . . qi > qi+1 = . . . = qi+l > . . . > qn. The relevant contributions can

only arise from a1HSn−1 to alHSn−l. Then a1HSn−1 has two different contributions:

firstly,

a1HSn−1 ⊃
∑
q

1

1− t
zqt∆(q)

∑
l equal qi

out of n−1

1∏l
a=1(1− ta)

1

(1− t)n−1−l z
∑n−1

j=1 qj t
∑n−1

j=1 ∆(qj),

(2.14)

but recall that the qi in HSn−1 are already ordered. Then there are exactly (n − l)
possible ways to arrange q in between the qi. However, a simple relabelling makes

them all identical and one obtains:

a1HSn−1 ⊃ (n− l) ·
∑

l equal qi
out of n

1∏l
a=1(1− ta)

1

(1− t)n−l
· z

∑n
j=1 qj t

∑n
j=1 ∆(qj) . (2.15)

Secondly, there is the contribution where (l− 1) qi are equal in HSn−1 and one has to

align the q from a1 with those (l − 1) equal magnetic charges. This yields precisely

one case

a1HSn−1 ⊃
∑

l equal qi
out of n

1∏l−1
a=1(1− ta)

1

(1− t)n−l
1

(1− t)
· z

∑n
j=1 qj t

∑n
j=1 ∆(qj) . (2.16)

Similarly, there exists exactly one matching contribution for ajHSn−j , where the q

from aj has to match the (l − j) equal qi from HSn−j . One obtains

ajHSn−j ⊃
∑

l equal qi
out of n

1∏l−j
a=1(1− ta)

1

(1− t)n−l
1

(1− tj)
· z

∑n
j=1 qj t

∑n
j=1 ∆(qj) . (2.17)

The total contribution becomes

l∑
j=1

ajHSnj (t) ⊃

 (n− l)∏l
a=1(1− ta)

1

(1− t)n−l
+

l∑
j=1

1∏l−j
a=1(1− ta)

1

(1− t)n−l
1

(1− tj)


·
∑

l equal qi
out of n

z
∑n

j=1 qj t
∑n

j=1 ∆(qj)

=
1∏l

a=1(1− ta)
1

(1− t)n−l
(n− l +Ql(t))

∑
l equal qi
out of n

z
∑n

j=1 qj t
∑n

j=1 ∆(qj)

(2.18)

with Ql(t) :=

l∑
j=1

1

(1− tj)

l∏
a=l−j+1

(1− ta) . (2.19)

– 9 –
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As proven in appendix A.2, Ql(t) satisfies

Ql(t) = l ∀t . (2.20)

Such that one obtains the contribution:

1

n

l∑
j=1

ajHSnj (t) ⊃
1∏l

a=1(1− ta)
1

(1− t)n−l
∑

l equal qi
out of n

z
∑n

j=1 qj t
∑n

j=1 ∆(qj) (2.21)

and one recognises the correct dressing factor for the residual S(U(l)×U(1)n−l) gauge

symmetry of l equal magnetic charges.

(iii) Now, one can easily generalise to any partition (l1, . . . , lp),
∑i

j=1 li = n (not neces-

sarily ordered) that describes the set-up of

q1 = . . . = ql1 > ql1+1 = . . . = ql1+l2 > . . . > ql1+l2+...+lp−1+1 = . . . = ql1+l2+...+lp .

(2.22)

The total contribution becomes

1

n

max (li)∑
j=1

ajHSnj (t) ⊃
1

n

1∏p
j=1

∏lj
aj=1(1− taj )

(
n+

p∑
j=1

(
Qlj (t)− lj

)︸ ︷︷ ︸
=0

)

·
∑

l equal qi
out of n

z
∑n

j=1 qj t
∑n

j=1 ∆(qj)

=
1∏p

j=1

∏lj
aj=1(1− taj )

∑
l equal qi
out of n

z
∑n

j=1 qj t
∑n

j=1 ∆(qj) , (2.23)

which is the correct contribution with a dressing factor reflecting the residual

S(
∏p
j=1 U(lj)) gauge symmetry. Again, the factor n is cancelled by the 1

n pre-factor

in the cycle index.

Consequently, one has addressed all possible {qi}, i = 1, . . . , n, summation regions that

appear in (2.8) and, most importantly, one has proven that these correspond exactly to

the definition of the fully refined monopole formula for a U(n) gauge node with one adjoint

hypermultiplet and background charges. This concludes the proof of Proposition 1.

Comments. The proof shows that given the Coulomb branch of an arbitrary quiver •
with a U(1)-bouquet of size n, one may quotient by Sn. The result is the same as the

Coulomb branch of • coupled to a U(n)-node with one additional adjoint hypermultiplet.

From the nature of the proof, i.e. the Sn-quotient is a local operation on the Coulomb

branch, there exist two immediate corollaries:

(i) Similarly to (1.15), one can consider a generic partition {ni} of n which corresponds

to the quotient by
∏
i Sni on T{1n},•. Since • has been arbitrary, one can repeat the

proof by subdividing the size n bouquet, focusing on the sub-bouquet of size ni, while
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treating the remaining U(1)-nodes as part of the background quiver. In other word,

the quiver

T{ni},• = U(n1) U(nl)
· · ·

Adj Adj

(2.24)

has a Coulomb branch which satisfies

MC

(
T{ni},•

)
=MC

(
T{1n},•

)
/
∏
i

Sni . (2.25)

(ii) Furthermore, one may consider quivers where multiple bouquets are attached to dif-

ferent nodes. Then one can repeat the process of discrete quotients to any of the

bouquets individually, as the operation is entirely local.

2.2 D-type — USp(2)-bouquet

Next, one can generalise (1.6) by considering an arbitrary quiver coupled to one (or many)

bouquet(s) of USp(2) ∼= SU(2) gauge nodes and provide a proof at the level of the monopole

formula.

Again, consider an arbitrary quiver, labelled by •, coupled to either an USp(2n) gauge

node with one additional anti-symmetric hypermultiplet or a USp(2)-bouquet of size n.

Again, the following notation is employed:

T{n},• = USp(2n)

Λ2

and T{1n},• =
USp(2) USp(2)· · ·

n

. (2.26)

As above, the USp(2n) as well as all of the USp(2) nodes couple to the same single node

in • via bifundamental matter. From the USp(2n) or USp(2) point of view, the quiver •
contributes background charges ~k = (k1, . . . , ks) for some s ∈ N, i.e. the magnetic charges

from the single node they couple to. All other contributions from • could be summarised

in a function of the fugacity, which is not affected by the Sn-quotient and is henceforth

ignored, cf. the discussion below (2.1).

Proposition 2. Let the theories T{n},• and T{1n},• be as defined in (2.26), then the Coulomb

branches satisfy

MC

(
T{n},•

)
=MC

(
T{1n},•

)
/Sn . (2.27)
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Preliminaries. To begin with, define the basic ingredient:

f(t) = HSMC


USp(2)

 ≡ HSMC(T{1},•) , (2.28)

which is the Coulomb branch Hilbert series in the presence of background charges. Note

that there is no extra topological fugacity for USp(2). The relevant conformal dimension is

∆(q;~k) =
1

2
(|q − ~k|+ |q + ~k|)− 2|q| (2.29)

for the magnetic charge q ∈ N and background fluxes ~k. The dressing factors associated to

USp(2) are

P (t, q) =

{
1

1−t , q > 0 ,
1

1−t2 , q = 0 .
(2.30)

The USp(2n) gauge node with a hypermultiplet transforming in Λ2([1, 0, . . . , 0]) has the

following conformal dimension:

∆(q1, . . . , qn;~k) =
1

2

n∑
i=1

(
|qi − ~k|+ |qi + ~k|

)
− 2

n∑
i=1

|qi| =
n∑
i=1

∆(qi;~k) (2.31)

because Λ2([1, 0, . . . , 0]) = [0, 1, 0, . . . , 0]⊕ [0, 0, . . . , 0] has non-trivial weights ei±ej , −(ei±
ej) for 1 ≤ i < j ≤ n such that [0, 1, 0, . . . , 0] cancels the vector multiplet contribution

partially. In the monopole formula, the magnetic charges qi are restricted to q1 ≥ q2 ≥
. . . ≥ qn ≥ 0. Moreover, the dressing factors for a USp(2n) gauge node have been presented

in [1]. The shorthand notation |qi ±~k| ≡
∑s

l=1 |qi ± kl| summarises the contributions from

the magnetic charges kl of the single node in • the USp(2n) couples to via bifundamental

matter.

With this preliminaries at hand, the statement of Proposition 2 becomes

HSn ≡ HSMC(T{n},•)
Prop. 2

=
1

n!

dn

dνn
PE
[
ν ·HSMC(T{1},•)

]∣∣∣∣
ν=0

≡ HSMC(T{1n},•)/Sn
.

(2.32)

Proof. As before, the cycle index (A.1) can be employed to realise the symmetrisation

in (2.32) such that the proof proceeds by induction in n

HSn(t) =
1

n

n∑
k=1

ak ·HSn−k(t) , ak = f(tk) . (2.33)

To begin, one verifies the base case:

(i) n = 1: trivial, as Λ2[1] = 0.
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(ii) n = 2: the proposal reads

HS2(t) =
1

2

(
a2 + a2

1

)
(2.34)

where the two contributions are treated as follows:

a2
1 =

∑
q1,q2≥0

P (t, q1)P (t, q2)t∆(q1)+∆(q2)

= 2
∑

q1>q2>0

1

(1− t)2
t∆(q1)+∆(q2) + 2

∑
q1>0=q2

1

(1− t)(1− t2)
t∆(q1)+∆(0)

+
∑

q1=q2>0

1

(1− t)2
t2∆(q1) +

1

(1− t2)2
t2∆(0) , (2.35)

a2 =
∑
q≥0

P (t2, q)t2∆(q)

=
∑
q>0

1

1− t2
t2∆(q) +

1

1− t4
t2∆(0) . (2.36)

Adding them up yields

HS2(t) =
∑

q1>q2>0

1

(1− t)2
t∆(q1)+∆(q2) +

∑
q1>0=q2

1

(1− t)(1− t2)
t∆(q1)+∆(0)

+
1

2

(
1

(1− t)2
+

1

1− t2

) ∑
q1=q2>0

t2∆(q1) +
1

2

(
1

(1− t2)2
+

1

1− t4

)
t2∆(0)

=
∑

q1>q2>0

1

(1− t)2
t∆(q1)+∆(q2) +

∑
q1>0=q2

1

(1− t)(1− t2)
t∆(q1)+∆(0) (2.37)

+
1

(1− t)(1− t2)

∑
q1=q2>0

t2∆(q1) +
1

(1− t2)(1− t4)
t2∆(0) .

Comparing this to the Hilbert series of USp(4) with a Λ2[1, 0] hypermultiplet

and background charges, one has the conformal dimension (2.31) and the dressing

factors [1]

P (t, q1, q2) =



1
(1−t)2 , q1 > q2 > 0 ,

1
(1−t)(1−t2)

, q1 = q2 > 0 ,

1
(1−t)(1−t2)

, q1 > 0 = q2 ,

1
(1−t2)(1−t4)

, q1 = q2 = 0 .

(2.38)

Consequently, Proposition 2 is true for n = 2.

Next, one proceeds as in the A-type case of section 2.1, i.e. the inductive step (n− 1)→ n.

Since there is a slight complication when considering q1 ≥ . . . ≥ qn ≥ 0, the details of the

proof need to be elaborated.
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(i) q1 > . . . > qn > 0 can only originate from a1HSn−1 via

1

n
a1HSn−1 ⊃

1

n

∑
q>0

1

1− t
t∆(q)

∑
q1>...>qn−1>0

1

(1− t)n1
t
∑n−1

i=1 ∆(qi)

⊃ 1

(1− t)n
∑

q1>...>qn>0

t
∑n

i=1 ∆(qi) , (2.39)

where the n different possibilities to place q between the (n − 1) qi eliminated the

pre-factor 1
n . Moreover, the dressing factor correctly reproduces the stabiliser of

q1 > . . . > qn > 0 inside USp(2n), i.e. U(1)n.

(ii) q1 > . . . > qn−l > 0 = qn−l+1 = . . . = qn for which contributions arise from a1HSn−1

to alHSn−l. To start with, a1HSn−1 provides two contributions

a1HSn−1 ⊃
∑
q>0

1

1− t
t∆(q)

∑
l vanishing qi
out of n−1

1

(1− t)n−l−1
∏l
a=1(1− t2a)

t
∑n−1

i=1 ∆(qi)

⊃ 1

(1− t)n−l
n− l∏l

a=1(1− t2a)

∑
l vanishing qi

out of n

t
∑n

i=1 ∆(qi) (2.40)

and arranging q between the non-vanishing qi gives a multiplicity of (n − l). The

other term is

a1HSn−1 ⊃
∑
q=0

1

1− t2
t∆(0)

∑
(l−1) vanishing qi

out of n−1

1

(1− t)n−l
∏l−1
a=1(1− t2a)

t
∑n−1

i=1 ∆(qi)

⊃ 1

(1− t)n−l
1

(1− t2)
∏l−1
a=1(1− t2a)

∑
l vanishing qi

out of n

t
∑n

i=1 ∆(qi) , (2.41)

which has multiplicity one. Similarly, the contribution form ajHSn−j is

ajHSn−j ⊃
∑
q>0

1

1− t2j
tj∆(q)

∑
(l−j) vanishing qi

out of n−j

1

(1− t)n−l
1∏l−j

a=1(1− t2a)
t
∑n−j

i=1 ∆(qi)

⊃ 1

(1− t)n−l
1

(1− t2j)
∏l−j
a=1(1− t2a)

∑
l vanishing qi

out of n

t
∑n

i=1 ∆(qi) . (2.42)
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Summing up all contributions, one obtains

1

n

l∑
j=1

ajHSn−j ⊃
1

n

1

(1− t)n−l
∏l
a=1(1− t2a)

·

(
n− l +

l∑
m=1

1

(1− t2m)

l∏
b=l−m+1

(1− t2b)

) ∑
l vanishing qi

out of n

t
∑n

i=1 ∆(qi)

⊃ 1

n

1

(1− t)n−l
∏l
a=1(1− t2a)

(
n− l +Ql(t

2)
) ∑
l vanishing qi

out of n

t
∑n

i=1 ∆(qi)

⊃ 1

(1− t)n−l
∏l
a=1(1− t2a)

∑
l vanishing qi

out of n

t
∑n

i=1 ∆(qi) (2.43)

and one recognises the dressing factor of U(1)n−l × USp(2l). Note in particular the

use of the results of appendix A.2, but this time for Ql(t
2) = l.

(iii) q1 = . . . = ql > ql+1 > . . . > qn > 0 for which contributions arise from a1HSn−1 to

alHSn−l. To start with, a1HSn−1 provides two contributions

a1HSn−1 ⊃
∑
q>0

1

1− t
t∆(q)

∑
l equal qi

out of n−1

1

(1− t)n−l−1
∏l
a=1(1− ta)

t
∑n−1

i=1 ∆(qi)

⊃ 1

(1− t)n−l
n− l∏l

a=1(1− ta)

∑
l equal qi
out of n

t
∑n

i=1 ∆(qi) (2.44)

and arranging q between the non-equal qi gives a multiplicity of n − l. The other

term is

a1HSn−1 ⊃
∑
q>0

1

1− t
t∆(q)

∑
(l−1) equal qi

out of n−1

1

(1− t)n−l
∏l−1
a=1(1− ta)

t
∑n−1

i=1 ∆(qi)

⊃ 1

(1− t)n−l
1

(1− t)
∏l−1
a=1(1− ta)

∑
l equal qi
out of n

t
∑n

i=1 ∆(qi) (2.45)

which has multiplicity one. Similarly, the contribution form ajHSn−j is

ajHSn−j ⊃
∑
q>0

1

1− tj
tj∆(q)

∑
(l−j) equal qi

out of n−j

1

(1− t)n−l
1∏l−j

a=1(1− ta)
t
∑n−j

i=1 ∆(qi)

⊃ 1

(1− t)n−l
1

(1− tj)
∏l−j
a=1(1− ta)

∑
l equal qi
out of n

t
∑n

i=1 ∆(qi) . (2.46)
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Summing up all contributions, one finds

1

n

l∑
j=1

ajHSn−j ⊃
1

n

1

(1− t)n−l
∏l
a=1(1− ta)

·

(
n− l +

l∑
m=1

1

(1− tm)

l∏
b=l−m+1

(1− tb)

) ∑
l equal qi
out of n

t
∑n

i=1 ∆(qi)

⊃ 1

n

1

(1− t)n−l
∏l
a=1(1− ta)

(n− l +Ql(t))
∑

l equal qi
out of n

t
∑n

i=1 ∆(qi)

⊃ 1

(1− t)n−l
∏l
a=1(1− ta)

∑
l equal qi
out of n

t
∑n

i=1 ∆(qi) (2.47)

and one recognises the dressing factor of U(1)n−l ×U(l).

(iv) In general, consider a (not necessarily ordered) partition (l1, . . . , lp; l0) such that∑p
j=1 lp + l0 = n. Here, l0 counts the number of vanishing fluxes, i.e.

q1 = . . . = ql1 > ql1+1 = . . . = ql1+l2 > . . . > ql1+...+lp−1+1 = . . . = ql1+...+lp > 0

0 = ql1+...+lp+1 = . . . = ql1+...+lp+l0 ≡ qn . (2.48)

Then from the cases consider above, one obtains

1

n

max({lj},l0)∑
j=1

ajHSn−j ⊃
1

n

1∏p
j=1

∏lj
aj=1(1− taj ) ·

∏l0
a0=1(1− t2a0)

·

(
n+

p∑
j=1

(Qlj (t)− lj) + (Ql0(t2)− l0)

)∑
q′s

t
∑n

i=1 ∆(qi)

⊃ 1∏p
j=1

∏lj
aj=1(1− taj ) ·

∏l0
a0=1(1− t2a0)

∑
q′s

t
∑n

i=1 ∆(qi) (2.49)

from which one recognises the dressing factor of
(∏p

j=1 U(lj)
)
×USp(2l0).

Therefore, the pieces together form exactly the Hilbert series for the n-th step. This

concludes the proof of Proposition 2.

Comments. The proof establishes that the Coulomb branch of an arbitrary quiver •
with a USp(2)-bouquet of size n coincides upon quotient by Sn with the Coulomb branch

of the quiver • where the bouquet is replaced by a USp(2n) gauge node with an additional

anti-symmetric hypermultiplet.

The nature of the proof allows to draw two immediate corollaries, as in the A-type case:

(i) One may consider an arbitrary partition {ni} of n such that one quotients T{1n},•
by
∏
i Sni .

(ii) In addition, one may consider quivers with more multiple bouquets, as the operation

is local on the Coulomb branch.
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2.3 D-type — SO(3)-bouquet

Next, consider a SO(3)-bouquet in which each SO(3)-node is equipped with a loop cor-

responding to a hypermultiplet in the second symmetric representation. The reason for

this will become clear below. The starting point is again an arbitrary quiver • coupled

either to an SO(2n + 1) gauge node with one additional hypermultiplet transforming in

Sym2([1, 0, . . . , 0]) or an SO(3)-bouquet of size n. Note that the SO(3) nodes on the bou-

quet also have one additional symmetric hypermultiplet. Define the following two sets of

quivers:

T{n},• = SO(2n+ 1)

Sym2

and T{1n},• = SO(3) SO(3)
· · ·
nSym2 Sym2

. (2.50)

To clarify, the SO(2n + 1) as well as all of the SO(3) nodes couple to the same single

node in • via bifundamental matter. From the view point of the SO(2n + 1) or SO(3)

nodes, the quiver • contributes background charges ~k = (k1, . . . , ks) for some s ∈ N, i.e.

the magnetic charges from the single node they couple to. All other contributions from •
could be summarised in a function of the fugacity, which is not affected by the Sn-quotient

and is henceforth ignored, cf. the discussion below (2.1).

Proposition 3. Let T{n},• and T{1n},• be as defined in (2.50) then their Coulomb branches

satisfy

MC

(
T{n},•

)
=MC

(
T{1n},•

)
/Sn . (2.51)

Preliminaries. For the proof below, one defines the basic ingredient:

f(t) = HSMC

 SO(3)

Sym2

 ≡ HSMC(T{1},•) (2.52)

which is the Coulomb branch Hilbert series. Here, the conformal dimension reads

∆(q;~k) =
1

2

(
|q − ~k|+ |q + ~k|

)
+ |q| (2.53)

for the magnetic charge q ∈ N and background fluxes ~k. The dressing factors associated to

SO(3) are those of USp(2), i.e.

P (t, q) =

{
1

1−t , q > 0 ,
1

1−t2 , q = 0 .
(2.54)
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The SO(2n + 1) gauge node with one hypermultiplet transforming in Sym2([1, 0, . . . , 0])

and background charges ~k has conformal dimension

∆(q1, . . . , qn;~k) =
1

2

n∑
i=1

(
|qi − ~k|+ |qi + ~k|

)
+

n∑
i=1

|qi| =
n∑
i=1

∆(qi;~k) , (2.55)

because Sym2([1, 0, . . . , 0]) = [2, 0, . . . , 0]⊕ [0, . . . , 0] with non-trivial weights ei±ej , −(ei±
ej) for 1 ≤ i < j ≤ n and ±2ei for 1 ≤ i ≤ n such that [2, 0, . . . , 0] cancels the vector multi-

plet contribution. In the monopole formula, the magnetic charges qi are restricted to q1 ≥
q2 ≥ . . . ≥ qn ≥ 0. Moreover, the dressing factors of SO(2n+1) are those of USp(2n), see [1].

The shorthand notation |qi±~k| ≡
∑s

l=1 |qi±kl| summarises the contributions from the mag-

netic charges kl of the single node in • the SO(2n+1) couples to via bifundamental matter.

Proof. To prove Proposition 3, one needs to verify the Hilbert series relations (2.6)

or (2.32) for the case of a SO(3)-bouquet. As before, the proof relies on the recursive

formula (A.2) of the cycle index and proceeds by induction as in (2.33). As a first step,

one considers the base case.

(i) n = 1: trivial.

(ii) n = 2: the proposal reads

HS2(t) =
1

2

(
a2 + a2

1

)
with ak := f(tk) , (2.56)

where the two contributions are treated as follows:

a2
1 =

∑
q1,q2≥0

P (t, q1)P (t, q2)t∆(q1)+∆(q2)

= 2
∑

q1>q2>0

1

(1− t)2
t∆(q1)+∆(q2) + 2

∑
q1>0=q2

1

(1− t)(1− t2)
t∆(q1)+∆(0)

+
∑

q1=q2>0

1

(1− t)2
t2∆(q1) +

1

(1− t2)2
t2∆(0) , (2.57)

a2 =
∑
q≥0

P (t2, q)t2∆(q)

=
∑
q>0

1

1− t2
t2∆(q) +

1

1− t4
t2∆(0) . (2.58)

Adding them up, yields

HS2(t) =
∑

q1>q2>0

1

(1− t)2
t∆(q1)+∆(q2) +

∑
q1>0=q2

1

(1− t)(1− t2)
t∆(q1)+∆(0)

+
1

2

(
1

(1− t)2
+

1

1− t2

) ∑
q1=q2>0

t2∆(q1) +
1

2

(
1

(1− t2)2
+

1

1− t4

)
t2∆(0)

=
∑

q1>q2>0

1

(1− t)2
t∆(q1)+∆(q2) +

∑
q1>0=q2

1

(1− t)(1− t2)
t∆(q1)+∆(0) (2.59)

+
1

(1− t)(1− t2)

∑
q1=q2>0

t2∆(q1) +
1

(1− t2)(1− t4)
t2∆(0) .
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Comparing this to the monopole formula of SO(5) with one Sym2[1, 0] hypermultiplet

and background charges, the conformal dimension follows from (2.55) and the dressing

factors read

P (t, q1, q2) =



1
(1−t)2 q1 > q2 > 0 ,

1
(1−t)(1−t2)

q1 = q2 > 0 ,

1
(1−t)(1−t2)

q1 > 0 = q2 ,

1
(1−t2)(1−t4)

q1 = q2 = 0 .

(2.60)

Consequently, Proposition 3 is true for n = 2.

The argument proceeds as in the D-type case of section 2.2, one proves the inductive step

(n− 1)→ n. As the dressing factors as well as the lattice of magnetic charges are identical

to the USp(2n) case, it is unnecessary to spell out the details of the proof. The only point

to appreciate is that the conformal dimension is the sum of the individual SO(3) conformal

dimensions.

Comments. Again, the same corollaries are in order: (i) one can generalise to arbitrary

partitions, and (ii) one can consider multiple bouquets.

Moreover, note that the Coulomb branch of

TD′-type
1,n =

USp(2n)

SO(3)

Sym2

with HS
TD′-type
1,n

=
1− t2n+4

(1− t2)(1− tn+1)(1− tn+2)
(2.61)

is the Dn+3-singularity. Hence, Proposition 3 provides the missing analogue of (1.3), (1.6)

for (1.7), i.e.

MC


USp(2n)

SO(2k + 1)

Sym2

 = Symk

MC


USp(2n)

SO(3)

Sym2



 . (2.62)

3 Other applications

After establishing the generalisations underlying the A and D-type singularities, one may

wonder if there are other types of bouquets that can be considered. One could ask what are

sufficient conditions such that a Gn gauge node, which may be supplemented by additional

matter, can be obtained from an Sn-quotient of a certain G1-bouquet. To be precise, the

Gn node as well as all nodes of the G1-bouquet are coupled to the same single node in a

given quiver gauge theory via bifundamental matter. From the aforementioned cases one

formulates three conditions:
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g W adjoint of G

An Sn+1 [1, 0, . . . , 0, 1]

Bn Sn n (Z2)n Λ2([1, 0, . . . , 0])

Cn Sn n (Z2)n Sym2([1, 0, . . . , 0])

Dn Sn n (Z2)n−1 Λ2([1, 0, . . . , 0])

Table 1. Classical algebras and their Weyl groups.

(i) Additivity of the conformal dimension: i.e. ∆ of Gn is the sum of the conformal

dimensions of the G1 nodes.

(ii) Compatibility of the GNO lattices.

(iii) Compatibility of the dressing factors.

While the first statement is concise, the second and third are less precise. However, by

recalling [7, 8] the interpretation of the dressing factors P (t, qi) as Hilbert series of C[g]G ∼=
C[t]WG , with t a Cartan sub-algebra of g and WG the Weyl group, one can identify all

classical groups that allow for a Sn factor in WG.

Suppose WGn = Sn n (Γ)n and denote the chosen Cartan sub-algebra as t ∼= V n, for

some 1-dimensional vector space V , then

C[Lie(Gn)]Gn ∼= C[V n]Snn(Γ)n ∼= Symn
(
C[V ]Γ

) ∼= Symn
(
C[Lie(G1)]G1

)
(3.1)

and a similar argument is valid for the summation ranges in the monopole formula of Gn
and G1. By inspecting classical Weyl groups in table 1 one concludes that choosing Gn to

be either U(n), SO(2n + 1), USp(2n), or O(2n) together with one adjoint hypermultiplet

leads to possible Sn-quotients on the Coulomb branch. All the different cases are elaborated

on in the subsequent sections. The only exception is U(n) as it agrees with Proposition 1.

3.1 SO(3)-bouquet

Specifying the above to a SO(2n+ 1) gauge node with one adjoint hypermultiplet coupled

to an arbitrary quiver •, one finds:

Corollary 1. Let T{n},• and T{1n},• be defined as

T{n},• = SO(2n+ 1)

Adj

and T{1n},• = SO(3) SO(3)
· · ·
nAdj Adj

, (3.2)

then their Coulomb branches satisfy

MC

(
T{n},•

)
=MC

(
T{1n},•

)
/Sn . (3.3)

To prove Corollary 1 one follows all the steps of the proof of Proposition 3. The only

point the take care of is that the conformal dimensions add up, which is not difficult to see.

– 20 –



J
H
E
P
0
8
(
2
0
1
8
)
1
5
7

3.2 USp(2)-bouquet

Next, consider a USp(2n) gauge node with one adjoint hypermultiplet coupled to an arbi-

trary quiver • via bifundamental hypermultiplets.

Corollary 2. Let T{n},• and T{1n},• be defined as

T{n},• = USp(2n)

Adj

and T{1n},• = USp(2) USp(2)
· · ·
nAdj Adj

, (3.4)

then their Coulomb branches satisfy

MC

(
T{n},•

)
=MC

(
T{1n},•

)
/Sn . (3.5)

The proof of Corollary 2 follows from the proof of Proposition 2, by verifying that the

conformal dimensions add up appropriately.

3.3 O(2)-bouquet

Finally, let an arbitrary quiver • be coupled either to an O(2n) gauge node with one

additional anti-symmetric hypermultiplet or to a O(2)-bouquet of size n.

Corollary 3. For the quiver gauge theories T{n},• and T{1n},•, defined as

T{n},• = O(2n)

Λ2

and T{1n},• =
O(2) O(2)· · ·

n

(3.6)

the Coulomb branches satisfy

MC

(
T{n},•

)
=MC

(
T{1n},•

)
/Sn . (3.7)

Since this is the first time O(2n) gauge nodes appear, some remarks on the proof are

in order. Analogous to section 2, define the basic ingredient:

HSMC


O(2)

 ≡ HSMC(T{1},•) (3.8)

which is the Coulomb branch Hilbert series. Here, the conformal dimension reads

∆(q;~k) =
1

2
(|q − ~k|+ |q + ~k|) (3.9)
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for the magnetic charge q ∈ N and background fluxes ~k. Following [3], the dressing factors

associated to O(2) are those of SO(3), i.e.

P (t, q) =

{
1

1−t , q > 0 ,
1

1−t2 , q = 0 .
(3.10)

Note that there is no extra topological fugacity for O(2).

The O(2n) gauge node with one hypermultiplet transforming as Λ2([1, 0, . . . , 0]) and

background charges has conformal dimension

∆(q1, . . . , qn;~k) =
1

2

n∑
i=1

(
|qi − ~k|+ |qi + ~k|

)
=

n∑
i=1

∆(qi;~k) (3.11)

because Λ2([1, 0, . . . , 0]) = [0, 1, 0, . . . , 0] with non-trivial weights ei ± ej , −(ei ± ej) for

1 ≤ i < j ≤ n such that [0, 1, 0, . . . , 0] cancels the vector multiplet contribution partially.

Again, the magnetic charges qi satisfy q1 ≥ q2 ≥ . . . ≥ qn ≥ 0 in the monopole formula.

The dressing factors for O(2n) have been discussed in [3]. The shorthand notation |qi±~k| ≡∑s
l=1 |qi±kl| summarises the contributions from the magnetic charges kl of the single node

in • the O(2n) couples to via bifundamental matter.

As the dressing factors and GNO lattice for O(2n) originate from SO(2n + 1), which

are the same as for USp(2n), the proof of Corollary 3 is consequence of the proofs of

Propositions 2 and 3.

3.4 Remarks and example

With Corollaries 1–3 at ones disposal, one can immediately generalise to the following:

Corollary 4. Let Gn be either U(n), SO(2n+1), USp(2n), or O(2n) and {ni} be a partition

of n. The Coulomb branch of the quiver gauge theory

T{ni},• = Gn1 Gnl

· · ·
Adj Adj

(3.12)

satisfies

MC

(
T{ni},•

)
=MC

(
T{1n},•

)
/
∏
i

Sni . (3.13)

Likewise, one could consider quiver gauge theories coupled to various bouquets at

different nodes.
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Example. Before closing, it is interesting to study an example of Corollary 3. This

highlights the use of the monopole formula as very fortunate because the corresponding

statements on rational functions would have been very cumbersome to prove. To begin

with, one readily computes (3.8) for • being a flavour node and obtains

HSMC(T{1},�)(t) =
1− t2k+2

(1− t2)(1− tk)(1− tk+1)
for T{1},� =

USp(2k)

O(2)
. (3.14)

A similar computation can be performed for O(6) with one adjoint hypermultiplet and k

flavours. In detail:

HSMC(T{3},�)(t) =
f(t)

g(t)
for T{3},� =

USp(2k)

O(6)

Λ2

, (3.15)

f(t) = 1 + tk+1(1 + t+ t2 + t3 + t4) + t2k+1(1 + 2t+ 2t2 + 2t3 + 2t4 + t5 + t6)

+ t3k+1(1 + t+ 3t2 + 2t3 + 2t4 + 3t5 + t6 + t7)

+ t4k+2(1 + t+ 2t2 + 2t3 + 2t4 + 2t5 + t6) + t5k+4(1 + t+ t2 + t3 + t4) + t6k+9 ,

g(t) =
(
1− t2

) (
1− t4

) (
1− t6

) (
1− tk

)(
1− t2k

)(
1− t3k

)
.

Then Corollary 3 becomes equivalent to the claim

HSMC(T{3},�)(t) =
1

3!

((
HSMC(T{1},�)(t)

)3
+ 3 ·HSMC(T{1},�)(t

2) ·HSMC(T{1},�)(t)

+ 2 ·HSMC(T{1},�)(t
3)

)
,

(3.16)

which can be verified explicitly by inserting the rational functions.

4 Discussion and conclusions

In this note we have shown that discrete Sn-quotients on Coulomb branches of quivers

with various bouquets are entirely local operations. By this we mean that the geometric

Sn-quotient on MC is realised on the quiver (and the monopole formula) as an operation

on the bouquet alone; the remainder of the quiver is untouched by the Sn action.

We provided the A and D-type Propositions 1–3 in section 2 and proved them via the

cycle index for Sn. Subsequently, we explore various other possibilities in section 3 and

derived Corollaries 1–4. In comparison, the gauge nodes in section 2 are supplemented

by loops corresponding to matter as in the ADHM quivers, whereas the gauge nodes in

section 3 are equipped with one additional adjoint hypermultiplet. The A-type case of

U(n) nodes is the only scenario for which both notions coincide.

The results are important for a number of reasons: firstly, it allows to deduce if certain

3-dimensional N = 4 Coulomb branches are Sn orbifolds of one another. For instance, the

– 23 –



J
H
E
P
0
8
(
2
0
1
8
)
1
5
7

sub-regular nilpotent orbit of G2 is an S3 quotient of the minimal nilpotent orbit of SO(8),

cf. [26]. Due to the discrete quotient proposition, the statement follows immediately by

inspecting the 3-dimensional N = 4 quivers

T{13},�—◦ =

U(1) U(2)

U(1)
U(1)

U(1)
S3−−−−−→

quotient
T{3},�—◦ =

U(1) U(2)

U(3)

Adj

(4.1)

OG2

subreg =MC

(
T{3},�—◦

)
=MC

(
T{13},�—◦

)
/S3 = OSO(8)

min /S3 . (4.2)

Secondly, the propositions allow to systematically study the different phases of 6-dimen-

sional Higgs branches as put forward by [20]. For instance, Proposition 2 allows to conclude

a similar statement to (1.15) on the different phases of the Higgs branches of multiple M5-

branes on a C2/Dk singularity [19]. The conjecture becomes that for a partition {ni} of n,

such that the M5-branes coincide in a pattern of ni, the 3-dimensional quiver reads

FD
n,k =

O
(2)

U
Sp(2)

O
(4)

U
Sp(4)

. . .

O
(2k−

2)

U
Sp(2k−

2)

O
(2k)

U
Sp(2k−

2)

O
(2k−

2)

. . .

U
Sp(4)

O
(4)

U
Sp(2)

O
(2)

USp(2n1)
. . .

USp(2nl)

Λ2 Λ2

(4.3)

and its Coulomb branch satisfies

M6d
H (QD

n,k)
∣∣
{ni}

=M3d
C (FD

{ni},k) , M3d
C (FD

{ni},k) =M3d
C (FD

{1n},k)/
∏
i

Sni . (4.4)

Thirdly, the discrete quotient procedure establishes another operation on quiver gauge the-

ories solely through their associated Hilbert series. This highlights the diverse applicability

of the Hilbert series and adds to the catalogue of quiver operations such as the ideas of

quiver subtraction [27] and Kraft-Procesi small instanton transition [19].

In view of other approaches to 3-dimensional N = 4 Coulomb branches, like the

abelianisation method [28, 29] or the attempt to define the Coulomb branch mathemati-

cally [30–32], it would be interesting to understand whether these can reproduce the discrete

quotients.
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A Background material

A.1 Cycle index

The cycle index of a permutation group Γ of degree n is defined as average of the cycle

index monomials of all permutations g ∈ Γ. Every g ∈ Γ can be decomposed into disjoint

cycles c1c2c3 · · · . Let jk(g) be the number of cycles in g of length k, then

Z(Γ) =
1

|Γ|
∑
g∈Γ

n∏
k=1

a
jk(g)
k . (A.1)

If one considers the symmetric group Sn then cycle index can be cast into a recursive

relation:

Z(Sn) =
1

n

n∑
l=1

alZ(Sn−l) (A.2)

where one defines Z(S0) = 1. The first recursions yield:

Z(S1) = a1 , Z(S2) =
1

2!
(a2 + a2

1) , Z(S3) =
1

3!
(a3

1 + 3a1a2 + 2a3) . (A.3)

A.2 q-theory

To prove the auxiliary identity

Ql(t) :=

l∑
j=1

1

1− tj
j−1∏
a=0

(1− tl−a) = l ∀t , (A.4)

one recalls the following definitions from q-theory:

q-bracket [k]q =
1− qk

1− q
, (A.5a)

q-factorial [k]q! =

{
1 , k = 0

[k]q · [k − 1]q · . . . · [1]q , k = 1, 2, . . .
, (A.5b)

q-binomial coefficient

[
k

j

]
q

=
[k]q!

[j]q![k − j]q!
. (A.5c)

For the q-binomial coefficient exists a q-version of the Pascal identities; for instance[
k

j

]
q

= qj

[
k − 1

j

]
q

+

[
k − 1

j − 1

]
q

, (A.5d)
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for j = 1, 2, . . . , k − 1. Then, one can rewrite

Ql(t) =

l∑
j=1

1

1− tj
(1− tl)(1− tl−1) · . . . · (1− tl−(j−1))

=
l∑

j=1

(1− tl)(1− tl−1) · . . . · (1− tl−(j−1))

(1− tj)(1− tj−1) · . . . · (1− t)
· (1− tj−1) · . . . · (1− t)

=

l∑
j=1

[
l

j

]
t

· (1− t)j−1 · [j − 1]t! . (A.6)

Having expressed (A.4) as in (A.6) has the benefit that one can follow an argument of [33].

The proof proceeds by induction over l employing (A.5d). Firstly, the base case is verified

easily

Q1(t) =

[
1

1

]
t

· (1− t)0 · [0]t! = 1 , (A.7a)

Q2(t) =

[
2

1

]
t

+

[
2

2

]
t

· (1− t) · [1]t! = (1 + t) + (1− t) = 2 . (A.7b)

Secondly, the inductive step is shown via

Ql(t) =

l∑
j=1

[
l

j

]
t

· (1− t)j−1 · [j − 1]t!

=

l−1∑
j=1

[
l − 1

j

]
t

tj · (1− t)j−1 · [j − 1]t! +

l−2∑
j=0

[
l − 1

j

]
t

· (1− t)j · [j]t!

=

l−1∑
j=1

[
l − 1

j

]
t

tj · (1− t)j−1 · [j−1]t! + 1 +

l−1∑
j=1

[
l − 1

j

]
t

· (1− t)j−1 · (1− tj) · [j−1]t!

=

l−1∑
j=1

[
l − 1

j

]
t

· (1− t)j−1 · [j − 1]t! + 1

= Ql−1(t) + 1 = (l − 1) + 1 (A.8)

where the induction hypothesis has been used in the last step.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 26 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
8
(
2
0
1
8
)
1
5
7

References

[1] S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb

branches of 3d N = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

[2] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli

Space of Instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].

[3] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, T σρ (G) theories and their Hilbert

series, JHEP 01 (2015) 150 [arXiv:1410.1548] [INSPIRE].

[4] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and

Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].

[5] S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and

Three Dimensional Sicilian Theories, JHEP 09 (2014) 185 [arXiv:1403.2384] [INSPIRE].

[6] A. Hanany and R. Kalveks, Construction and Deconstruction of Single Instanton Hilbert

Series, JHEP 12 (2015) 118 [arXiv:1509.01294] [INSPIRE].

[7] A. Hanany and M. Sperling, Coulomb branches for rank 2 gauge groups in 3d N = 4 gauge

theories, JHEP 08 (2016) 016 [arXiv:1605.00010] [INSPIRE].

[8] A. Hanany and M. Sperling, Algebraic properties of the monopole formula, JHEP 02 (2017)

023 [arXiv:1611.07030] [INSPIRE].

[9] A. Hanany and R. Kalveks, Quiver Theories for Moduli Spaces of Classical Group Nilpotent

Orbits, JHEP 06 (2016) 130 [arXiv:1601.04020] [INSPIRE].

[10] A. Hanany and R. Kalveks, Quiver Theories and Formulae for Nilpotent Orbits of

Exceptional Algebras, JHEP 11 (2017) 126 [arXiv:1709.05818] [INSPIRE].

[11] S. Cabrera and A. Hanany, Branes and the Kraft-Procesi Transition, JHEP 11 (2016) 175

[arXiv:1609.07798] [INSPIRE].

[12] S. Cabrera, A. Hanany and Z. Zhong, Nilpotent orbits and the Coulomb branch of T σ(G)

theories: special orthogonal vs orthogonal gauge group factors, JHEP 11 (2017) 079

[arXiv:1707.06941] [INSPIRE].

[13] S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP 04

(2018) 127 [arXiv:1711.02378] [INSPIRE].

[14] G. Cheng, A. Hanany, Y. Li and Y. Zhao, Coulomb Branch for A-type Balanced Quivers in

3d N = 4 gauge theories, arXiv:1701.03825 [INSPIRE].

[15] A. Hanany and A. Pini, HWG for Coulomb branch of 3d Sicilian theory mirrors,

arXiv:1707.09784 [INSPIRE].

[16] A. Hanany and M. Sperling, Resolutions of nilpotent orbit closures via Coulomb branches of

3-dimensional N = 4 theories, arXiv:1806.01890 [INSPIRE].

[17] S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton Operators and the Higgs

Branch at Infinite Coupling, JHEP 04 (2017) 042 [arXiv:1505.06302] [INSPIRE].

[18] G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch

at infinite coupling, JHEP 07 (2018) 061 [arXiv:1712.06604] [INSPIRE].

[19] A. Hanany and N. Mekareeya, The small E8 instanton and the Kraft Procesi transition,

JHEP 07 (2018) 098 [arXiv:1801.01129] [INSPIRE].

– 27 –

https://doi.org/10.1007/JHEP01(2014)005
https://arxiv.org/abs/1309.2657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2657
https://doi.org/10.1007/JHEP12(2014)103
https://arxiv.org/abs/1408.6835
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6835
https://doi.org/10.1007/JHEP01(2015)150
https://arxiv.org/abs/1410.1548
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1548
https://doi.org/10.1007/JHEP09(2014)178
https://arxiv.org/abs/1403.0585
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0585
https://doi.org/10.1007/JHEP09(2014)185
https://arxiv.org/abs/1403.2384
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2384
https://doi.org/10.1007/JHEP12(2015)118
https://arxiv.org/abs/1509.01294
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.01294
https://doi.org/10.1007/JHEP08(2016)016
https://arxiv.org/abs/1605.00010
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.00010
https://doi.org/10.1007/JHEP02(2017)023
https://doi.org/10.1007/JHEP02(2017)023
https://arxiv.org/abs/1611.07030
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.07030
https://doi.org/10.1007/JHEP06(2016)130
https://arxiv.org/abs/1601.04020
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.04020
https://doi.org/10.1007/JHEP11(2017)126
https://arxiv.org/abs/1709.05818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.05818
https://doi.org/10.1007/JHEP11(2016)175
https://arxiv.org/abs/1609.07798
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.07798
https://doi.org/10.1007/JHEP11(2017)079
https://arxiv.org/abs/1707.06941
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.06941
https://doi.org/10.1007/JHEP04(2018)127
https://doi.org/10.1007/JHEP04(2018)127
https://arxiv.org/abs/1711.02378
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02378
https://arxiv.org/abs/1701.03825
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.03825
https://arxiv.org/abs/1707.09784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09784
https://arxiv.org/abs/1806.01890
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.01890
https://doi.org/10.1007/JHEP04(2017)042
https://arxiv.org/abs/1505.06302
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.06302
https://doi.org/10.1007/JHEP07(2018)061
https://arxiv.org/abs/1712.06604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06604
https://doi.org/10.1007/JHEP07(2018)098
https://arxiv.org/abs/1801.01129
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01129


J
H
E
P
0
8
(
2
0
1
8
)
1
5
7

[20] A. Hanany and G. Zafrir, Discrete Gauging in Six Dimensions, JHEP 07 (2018) 168

[arXiv:1804.08857] [INSPIRE].

[21] J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge

theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

[22] M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge

theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201] [INSPIRE].

[23] A. Hanany and B. Kol, On orientifolds, discrete torsion, branes and M-theory, JHEP 06

(2000) 013 [hep-th/0003025] [INSPIRE].

[24] B. Feng and A. Hanany, Mirror symmetry by O3 planes, JHEP 11 (2000) 033

[hep-th/0004092] [INSPIRE].

[25] A. Hanany and A. Zajac, Discrete Gauging in Coulomb branches of Three Dimensional

N = 4 Supersymmetric Gauge Theories, arXiv:1807.03221 [INSPIRE].

[26] R. Brylinski and B. Kostant, Nilpotent orbits, normality, and Hamiltonian group actions, J.

Am. Math. Soc. 7 (1994) 269 [math/9204227].

[27] S. Cabrera and A. Hanany, Quiver Subtractions, arXiv:1803.11205 [INSPIRE].

[28] M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of 3d N = 4 Theories,

Commun. Math. Phys. 354 (2017) 671 [arXiv:1503.04817] [INSPIRE].

[29] M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn and H.-C. Kim, Vortices and Vermas,

arXiv:1609.04406 [INSPIRE].

[30] H. Nakajima, Questions on provisional Coulomb branches of 3-dimensional N = 4 gauge

theories, arXiv:1510.03908 [INSPIRE].

[31] H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional

N = 4 gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 [arXiv:1503.03676]

[INSPIRE].

[32] A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of

Coulomb branches of 3-dimensional N = 4 gauge theories, II, arXiv:1601.03586 [INSPIRE].

[33] C. Quesne, Jackson’s q-exponential as the exponential of a series, math/0305003.

– 28 –

https://doi.org/10.1007/JHEP07(2018)168
https://arxiv.org/abs/1804.08857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.08857
http://dx.doi.org/10.1016/S0550-3213(97)00125-9
https://arxiv.org/abs/hep-th/9611063
https://inspirehep.net/search?p=find+EPRINT+hep-th/9611063
http://dx.doi.org/10.1016/S0550-3213(97)00061-8
https://arxiv.org/abs/hep-th/9611201
https://inspirehep.net/search?p=find+EPRINT+hep-th/9611201
https://doi.org/10.1088/1126-6708/2000/06/013
https://doi.org/10.1088/1126-6708/2000/06/013
https://arxiv.org/abs/hep-th/0003025
https://inspirehep.net/search?p=find+EPRINT+hep-th/0003025
https://doi.org/10.1088/1126-6708/2000/11/033
https://arxiv.org/abs/hep-th/0004092
https://inspirehep.net/search?p=find+EPRINT+hep-th/0004092
https://arxiv.org/abs/1807.03221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.03221
https://arxiv.org/abs/math/9204227
https://arxiv.org/abs/1803.11205
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.11205
http://dx.doi.org/10.1007/s00220-017-2903-0
https://arxiv.org/abs/1503.04817
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04817
https://arxiv.org/abs/1609.04406
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.04406
https://arxiv.org/abs/1510.03908
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03908
http://dx.doi.org/10.4310/ATMP.2016.v20.n3.a4
https://arxiv.org/abs/1503.03676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03676
https://arxiv.org/abs/1601.03586
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.03586
https://arxiv.org/abs/math/0305003

	Introduction and motivation
	A and D-type
	A-type — U(1)-bouquet
	D-type — USp(2)-bouquet
	D-type — SO(3)-bouquet

	Other applications
	SO(3)-bouquet
	USp(2)-bouquet
	O(2)-bouquet
	Remarks and example

	Discussion and conclusions
	Background material
	Cycle index
	q-theory


