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1 Introduction

Over the past fifteen years or so it has become increasingly clear that there are nontrivial

relations between the distribution of particles in the decay of a highly timelike current

and properties of high energy scattering processes. The first hint of such relations was the

fact that the BMS equation [1], an equation which was developed to describe nonglobal

properties of jet decays [2], is essentially identical to the BK equation [3, 4], an equation

describing high energy scattering. Shortly after the appearance of the BMS equation it was

discovered [5–7] that in certain kinematic regions of a jet decay the number of produced

heavy quarks, or minijets, is given by the BFKL equation [8, 9], an equation long used to

describe high energy hard scattering away from the unitarity limit.

The relationship between jet decays and high energy scattering became more inter-

esting when Hofman and Maldacena [10] and Hatta [11] recognized that in the AdS/CFT

correspondence the angular distribution of energy and charge in the decay of a highly virtual

current is directly related to the transverse coordinate distribution of these same quantities

in a high energy hadron. Hatta [11] then exhibited a stereographic projection relating the

angular distribution of these quantities in jet decays to their transverse coordinate distri-

butions in a high energy hadron, thus making the conformal relationship more explicit.

However, this is all a bit mysterious. Jet decays and the corresponding distribution of

energy and particle densities are physical while the wave function of a high energy hadron

is gauge and quantization dependent. To avoid this issue one could simply interpret the

spacelike-timelike equivalence as one of evolution, In [11] the equivalence of BMS evolution
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(timelike) to BK evolution (spacelike) was demonstrated while in [12] the double logarith-

mic resummations necessary to tame the NLO kernels in BMS and BK evolution were

shown to be related. However, the correspondence appears to be stronger than just an

equivalence of evolutions.

In this paper we compare the distribution of particles in the decay of a timelike current

into a quark-antiquark pair, along with an arbitrary number of gluons, with the distribution

of partons(gluons) in the lightcone wavefunction of a high energy dipole [13] and find a one

to one correspondence. More precisely, in the decay of a timelike current we suppose that

the quark and antiquark, initially produced by the current, have longitudinal momenta

much greater than that of the soft gluons subsequently emitted, and we fix θab to be the

angle between the quark and the antiquark in a highly boosted frame where θab ≪ 1. (For

simplicity we suppress additional quark-antiquark production.) On the hadron side we

suppose an initial quark-antiquark dipole with transverse coordinate separation x⊥ab and

we only consider gluons in the A+ = 0 lightcone wavefunction whose longitudinal momenta

are much less than that of the parent quark and antiquark dipole. Further, we suppose the

quark and antiquark longitudinal momenta are identical in the decay and in the high energy

dipole wavefunction. In the decay into soft gluons we do not suppose any strong ordering

among the longitudinal momenta of the gluons, but later we shall only explicitly consider

evolutions at NLO due to subtleties of coupling renormalization. The requirement that

the gluon momenta be soft compared to the parent quark-antiquark pair is, we believe,

an essential assumption. If a gluon had longitudinal momentum comparable to that of

the quark-antiquark dipole(spacelike case), then that gluon emission would be sensitive to

how the parent dipole was created and we believe that is beyond the correspondence we

are considering.

At a given order of perturbation theory we observe a graph by graph equivalence for

a timelike decay probability of γ∗(Q) → q(pa) + q̄(pb) + g1(θ1, k1+) + · · · + gm(θm, km+)

and the square of the dipole wavefunction of ψ(pa, pb, g1(θ1, k1+), · · · , gm(θm, km+)) when

we identify θi =
√
2ki/ki+ with xi. The timelike and spacelike quantities are written as

integrands over which integrations over the times at all the vertices present in a given graph

are to be done. The integrands of the two processes, with the θi ↔ xi identification, are

identical with no restriction on the gluon momenta except that the longitudinal momentum

of every gluon must be small compared to the parent quark and antiquark momentum.

However, there are divergences when the time integrations are done. In some cases,

when a time ti in the tinelike proess goes to infinity, corresponding to a time ti in the

spacelike process going to zero, there are other graphs which cancel these divergences.

These are “real-virtual” cancellations. (In the timelike case the cancellation will happen

when one measures a jet rather than an individual particle, while in the spacelike case the

cancellation will happen when the real and virtual configurations are not distinguished by

a scattering.) These cancellations are always of collinear singularities in the timelike case

and ultraviolet singularities in the spacelike case.

Other corresponding singularities do not cancel. They are ultraviolet singularities in

both spacelike and timelike cases and represent the necessity of coupling renormalization in

QCD. The introduction of the QCD Λ-parameter breaks the conformal invariance and with

– 2 –



J
H
E
P
0
8
(
2
0
1
8
)
1
3
9

it the spacelike-timelike correspondence. In section 4 we suggest a precise way of removing

the coupling divergences, much like that originally done by Gell-Mann and Low [14] for

QED, occurring only in self-energy graphs in our A+ = 0 gauge dynamics. This removal

does not introduce any new scale and leaves a “conformal QCD” and a correspondence

between spacelike and timelike processes. Howevver, we have only been able to demonstrate

this subtraction throughNLO in soft emissions.

One of the most ambitious, and interesting, programs using the spacelike-timelike

correspondence has been that of Caron-Huot [15] who showed that in N = 4 SYM the NLO

kernel for BK evolution [16–18] could be obtained purely from the evaluation of decays.

His procedure does not work when the β-function is not zero. However, in this case one

should be able to evaluate the timlike process with certain (see section 4) self-energy graphs

in A+ = 0 gauge removed, translate that to the contribution to the NLO BK kernel and

then add the self-energy contributions back in with the appropriate renormalization in the

spacelike process.

2 An example and its generalization

We start with a nontrivial example of a graph having a three gluon vertex as well as

couplings to the parent quarks in which the conformal correspondence of the graph as part

of the decay of a timelike photon to the graph as part of the lightcone wavefunction of a

high energy dipole will be exhibited.The graphs are illustrated in figure 1. We work in a

frame where the timelike virtuality Q of the photon, q, in figure 1a obeys Q/q+ ≪ 1 so

that the angle θab between the quark a and the antiquark b is very small. For the A+ = 0

lightcone wavefunction illustrated in figure 1b the lines will be labelled by a transverse

coordinate and a longitudinal momentum, although to begin we write the wavefunction

only in terms of gluon momenta. The correspondence will relate the decay rate(a), at

given time values ti at the vertices and fixed (ti, ki+) on each of the lines to the square

of the lightcone wavefunction(b), also for fixed times at each of the vertices but with the

corresponding lines labelled by (xi, ki+). In the correspondence xi and ki are related by

θi =

√
2ki
ki+

↔ xi. (2.1)

We begin by writing the graph, corresponding to a decay, of figure 1a in detail. Then we

shall write the corresponding graph for the square of the lightcone wavefunction, shown in

figure 1b, and observe that they are the same. We always assume that the fermion lines, a

and b, have a much larger longitudinal momentum than the gluon lines but there will be

no assumed ordering as to the relative magnitude of k1+ and k2+.

2.1 The decay graph of figure 1a

The decay rate of the virtual photon without radiative correction is W0. If W is the rate

with radiative corrections, then we are going to write an expression for w = W/W0 as

w =
−ig4

(2π)4
N2

c − 1

4

∫

AL(θ1, θ2, k1+, k2+) ·A∗

R(θ1, θ2, k1+, k2+)
dk1+
2k1+

dk2+
2k2+

k21+
2

d2θ1
k22+
2

d2θ2

(2.2)
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Figure 1. Sample graphs illustrating the conformal correspondence.
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for the graph of figure 1a. We shall then identify AL and AR with corresponding expressions

for the graph of figure 1b with the time integrations fixed in each expression. Further write

the part to the left of the cut, AL, as

AL = aLbL, (2.3)

with a similar separation for AR, where aL includes exponential factor and time integrations

while vertex factors are included in bL. Then

aL =

∫

∞

0
dt1

∫

∞

t1

dt2e
i∆E1t1+i∆E2t2 (2.4)

where

∆E1 =
(k1 + k2)

2

2(k1 + k2)+
+

p2
a

2pa+
−

(p
a
+ k1 + k2)

2

2(pa + k1 + k2)+
(2.5)

and

∆E2 =
k21

2k1+
+

k22
2k2+

− (k1 + k2)
2

2(k1 + k2)+
(2.6)

It is straightforward to get

∆E1 =
(k1 + k2)+

4
(θ − θa)

2 (2.7)

∆E2 =
k1+k2+

4(k1 + k2)+
(θ1 − θ2)

2 (2.8)

where

θ =
1

(k1 + k2)+
[k1+θ1 + k2+θ2]. (2.9)

Thus

aL =

∫

∞

0
dt1

∫

∞

t1

dt2 exp

{

i

4

[

(k1 + k2)+(θ − θa)
2t1 +

k1+k2+
(k1 + k2)+

(θ1 − θ2)
2t2

]}

(2.10)

Similarly

a∗R =

∫

∞

0
dt′1

∫

∞

0
dt′2 exp

{−i

4

[

k1+(θ1 − θb)
2t′1 + k2+(θ2 − θa)

2t′2
]

}

. (2.11)

Now turn to the vertex factors, the b term in (2.3). In the amplitude of the graph of 1a

there is a vertex at t1 and a three-gluon vertex at t2. Call bL = P1LP2L where the vertex

P1L is given by

P1L =
ū(pa)γ · ǫλ√

2pa+

u(pa + k1 + k2)
√

2(pa + k1 + k2)+
≃ ǫλ · (k1 + k2)

(k1 + k2)+
−

p
a
· ǫλ

pa+
(2.12)

or

P1L =
1√
2
[θ − θa] · ǫλ (2.13)

In reaching (2.13) we have assumed that pa+ ≫ k1+, k2+ but we suppose that θ, θ1 and θ2
may all be of comparable magnitude.
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The three gluon vertex, P2L, is given by

P2L = ǫλαǫ
λ1
γ ǫλ2

β [−gαγ(2k1 + k2)β + gαβ(2k2 + k1)γ − gαγ(k2 − k1)α] (2.14)

or

P2L =
√
2(θ2 − θ1) ·

[

k1+ǫ
λ2(ǫλ · ǫλ1) + k2+ǫ

λ1(ǫλ · ǫλ2)− k1+k2+
(k1 + k2)+

ǫλ(ǫλ1 · ǫλ2)

]

(2.15)

In (2.12)–(2.15) we imagine using real polarization vectors in order to avoid a proliferation

of complex conjugate symbols. An abbreviated notation is being used where ǫλi = ǫλi(ki)

and ǫλ = ǫλ(k1 + k2). bL is obtained as

bL =
∑

λ

P1LP2L = (θ − θa)i(θ2 − θ1)j

[

k1+ǫ
λ1
i ǫλ2

j + k2+ǫ
λ2
i ǫλ1

j − δij
k1+k2+

(k1 + k2)+
ǫλ1 · ǫλ2

]

.

(2.16)

bR is easily found to be

bR =
1

2
(θ2 − θa) · ǫλ2(θ1 − θb) · ǫλ1 . (2.17)

Thus the integrand in (2.2) is given by

ALA
∗

R =

∫

∞

0

dt1

∫

∞

t1

dt2

∫

∞

0

dt′1

∫

∞

0

dt′2

×exp

{

i

4

[

(k1+k2)+(θ−θa)
2t1−k1+(θ1−θb)

2t′1−k2+(θ2−θa)
2t′2+

k1+k2+
(k1+k2)+

(θ1−θ2)
2t2

]}

× 1

2

∑

λ1,λ2

bL ·bR. (2.18)

Equation (2.18) with bL and bR given by (2.16) and (2.17) respectively is a convenient form

for the decay to compare to the high energy dipole wavefunction which we turn to next.

2.2 The high energy wave function graph of figure 1b

Our goal is to express the square of the high energy wavefunction contained in figure 1b in

terms of an integration over coordinates d2x1d
2x2 and to identify the integrand with (2.18).

We begin in momentum space and write the vertices as

V1 = e
ik

2
t1

2k+
ǫλ · k
k+

e−ik·x
a (2.19)

V ′∗

1 = e
−

i(k′1)
2
t
′
1

2k1+
ǫλ1 · k′1
k1+

eik
′

1·xb (2.20)

V ′∗

2 = e
−

i(k′2)
2
t
′
2

2k2+
ǫλ2 · k′2
k2+

eik
′

2·xa (2.21)

V2 = e
i

[

k
2
1

2k1+
+

k
2
2

2k2+
−

(k1+k2)
2

2k+

]

t2
ǫλαǫ

λ1
γ ǫλ2

β [−gαγ(2k1 + k2)β + gαβ(2k2 + k1)γ − gγβ(k2 − k1)α]

(2.22)
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where k+ = k1+ + k2+, k1+ = k′1+, k2+ = k′2+ but where, for the moment, we do not

take k1 and k′1 or k2 and k′2 to be equal. Instead we put a coordinate on each line with

phase factors which, after the coordinates are integrated, given transverse momentum

conservation. Then in addition to the factors above we include the factors L1, L2, L where

L1 =
d2x1
(2π)2

ei(k1−k′1)·x1 (2.23)

L2 =
d2x2
(2π)2

ei(k2−k′2)·x2 (2.24)

L =
d2x

(2π)2
ei(k−k1−k2)·x. (2.25)

Clearly the integrations over x, x1 and x2 give transverse momentum conservation.

In analogy with the previous section, we group the factors together as

ĀL =

∫ 0

−∞

dt1

∫ 0

t1

dt2V1V2Ld
2kd2k1d

2k2. (2.26)

The various k-integrals in (2.26) are easily done

Ṽ1 =

∫

d2kV1e
ik·x =

−2πiǫλ · (x− xa)(k1 + k2)+
t21

e
−i(x−xa)2(k1+k2)+

2t1 (2.27)

Ṽ2 =

∫

d2k1d
2k2V2e

−i(k1+k2)·x+ik1·x1+ik2·x2 . (2.28)

Using (2.22) one finds

Ṽ2 =
−2i(x2 − x1)

t22
·
[

k1+ǫ
λ2(ǫλ · ǫλ1) + k2+ǫ

λ1(ǫλ · ǫλ2)− ǫλ(ǫλ2 · ǫλ1)
k1+k2+

(k1 + k2)+

]

× (2π)3
k1+k2+

(k1 + k2)+
δ

(

x− k1+
(k1 + k2)+

x1 −
k2+

(k1 + k2)+
x2

)

e
−i(x1−x2)

2
k1+k2+

2t2(k1+k2)+ (2.29)

Using (2.27) and (2.29) in (2.26) along with τ1 =
2
t1
, τ1 = − 2

t2
gives

ĀL = −
∫

∞

0
dτ1

∫

∞

τ1

dτ2e
i(x−x

a
)2(k1+k2)+

τ1
4
+

i(x1−x2)
2
k1+k2+

4(k1+k2)+
τ2
2π2d2x(k1+k2+)

× (x− xa)i(x2 − x1)j

[

k1+ǫ
λ1
i ǫλ2

j + k2+ǫ
λ1
j ǫλ2

i − δij
k1+k2+

(k1 + k2)+
ǫλ1 · ǫλ2

]

× δ

(

x− k1+
(k1 + k2)+

x1 −
k2+

(k1 + k2)+
x2

)

. (2.30)

Similarly Ā∗

R defined by

Ā∗

Rd
2x1d

2x2 =

∫ 0

−∞

dt′1

∫ 0

−∞

dt′2V
′∗

1 V ′∗

2 L1L2d
2k′1d

2k′2 (2.31)

is easily evaluated to be

Ā∗

Rd
2x1d

2x2 = −
∫

∞

0
dτ ′1

∫

∞

0
dτ ′2e

−i(x1−x
b
)2k1+

τ
′
1
4
−i(x2−x

a
)2k1+

τ
′
2
4
d2x1d

2x2k1+k2+
4(2π)2

× ǫλ1 · (x1 − xb)ǫ
λ2 · (x2 − xa). (2.32)
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Multiplying (2.30) and (2.32) and doing the sum over λ1,λ2 gives, in analogy with (2.18),

ĀLĀ
∗

Rd
2x1d

2x2

=

∫

∞

0

dτ1

∫

∞

τ1

dτ2

∫

∞

0

dτ ′1

∫

∞

0

dτ ′2

×exp

{

i

4

[

(k1+k2)+(x−xa)
2τ1−k1+(x1−xb)

2τ ′1−k2+(x2−xa)
2τ ′2+

k1+k2+
(k1+k2)+

(x1−x2)
2τ2

]}

× 1

8

∑

λ1,λ2

b̄L ·b̄R(k1+k2+)2d2x1d
2x2 (2.33)

where b̄L and b̄R are identical the bL and bR, in (2.16) and (2.17), with the replacement

θi, θ → xi, x. To make the correspondence precise write w in (2.2) as

w=
−ig4(N2

c −1)

4(2π)4

∫

∞

0
dt1

∫

∞

t1

dt2

∫

∞

0
dt′1

∫

∞

0
dt′2I

dk1+
2k1+

dk2+
2k2+

k21+
2

d2θ1
k22+
2

d2θ2 (2.34)

and write the amount of probability that graph 1b contributes to the square of the dipole

wavefunction as

w̄=
−ig4(N2

c −1)

4(2π)4

∫

∞

0
dτ1

∫

∞

τ1

dτ2

∫

∞

0
dτ ′1

∫

∞

0
dτ ′2Ī

dk1+
2k1+

dk2+
2k2+

k21+
2

d2x1
k22+
2

d2x2 (2.35)

then I = Ī when the ti, θi variables of the I are identified with the τi, xi variables of Ī.

Although we are identifying variables with different dimension in the correspondence we

note that both w and w̄ are dimensionlesss so that one could always introduce a (fictitious)

dimensional parameter to scale xi, ti and τi to dimensionless varaibles.

In dealing with the graphs of figure 1 we have separated the graphs into vertices and

lines, as for example in (2.19)–(2.21) and (2.23)–(2.25). It should be clear that for any

graph built out of three-gluon vertices and causal propagation the procedure we have used

here will work and lead to a correspondence between the probability of a given configu-

ration of gluons appearing in the decay of a timelike photon and the probability that the

corresponding gluons appear in the square of the lightcone wavefunction. It is straight-

forward to see that the correspondence continues to be valid when four-gluon vertices and

instantaneous propagation is included, but we omit the details here for simplicity.

Our result might seem to be too strong. After all, we expect the decay-wavefuntion

correspondence to reflect conformal symmetry and it is known that running coupling cor-

rections will break conformal symmetry. So how does the breaking of conformal symmetry

come into our discussion? The correspondence identifying I in (2.34) with Ī in (2.35), once

ti, θi variables in I have been changed to τi, xi variables to get Ī is for fixed times. We

believe this correspondence to be exact. However, the integrations over dti and dτi have

divergences when two times approach each other. In some circumstances these divergences

can be removed simply by considering a more appropriate “jet” variable. In other circum-

stances these divergences must be removed by renormalization. Renormalization requires

introducing a scale which breaks the conformal symmetry and that breaking corresponds to

the running of the coupling in QCD. The graphs we have considered in this section have no

divergences when the time integrations are done and so the correspondence survives time

– 8 –
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integration. In the next section of this paper we consider graphs which include running

coupling effects.

3 Graphs with running coupling divergences

We now turn to graphs having running coupling corrections, in particular the two graphs

shown in figure 2. We begin with graph 2b. For fixed t1, t2, t3, t4 it is straightforward to

write the graph as

w̄ =
−g4(N2

c − 1)

2(2π)4

∫

dk1+
2k1+

dk2+
2k2+

d2kd2k′

(2k+)2
V λ
1 (V λ′

4 )∗V λλ1λ2
2 (V λ′λ1λ2

3 )∗

× LL1L2(L
′)∗

2
∏

i=1

d2kid
2k′idt1dt2dt3dt4 (3.1)

where L, L1 and L2 are as in (2.23)–(2.25) while L′ is the same as (2.25) after the replace-

ment k, ki, x ↔ k′, k′i, x
′. A sum over all λ’s is understood in (3.1), while V2 is as in (2.22)

and V3 is obtained from V2 by the replacements t2, ki, λ ↔ t3, k
′

i, λ
′. The limits on the

dti-integrations will be given later.

Call

Iλλ
′

=

∫ 2
∏

i=1

d2kid
2k′ie

ik1·(x1−x)+ik2·(x2−x)−ik′1·(x1−x′)−ik′2·(x2−x′)
∑

λ1λ2

V λλ1λ2
2 (V λ′λ1λ2

3 )∗.

(3.2)

Then, using (2.28) and (2.29), it is straightforward to get

Iλλ
′

=
4(2π)6(k1+k2+)

2

t22t
2
3(k1 + k2)2

δ(x− x′)δ(x− zx1 − (1− z)x2)e
−i(x1−x2)

2 1
2
k+z(1−z)( 1

t2
−

1
t3

)

× k2+

{

[z2 + (1− z)2](x1 − x2)
2δλλ′ + 2[z(1− z)]2ǫλ · (x1 − x2) · ǫλ

′ · (x1 − x2)
}

(3.3)

where z = k1+
(k1+k2)+

≡ k1+
k+

. Write

d2x1d
2x2 = d2x12d

2x̃ (3.4)

with x12 = x1 − x2 and x̃ = zx1 + (1− z)x2. Using (2.27), and a similar expression for the

Fourier transform of L′ one finally gets

w̄ =
−g2(N2

c − 1)

8(2π)4

∫

dt1dt2dt3dt4
(t1t2t3t4)2

dk+
k+

k4+e
−i(x−xa)2k+

2t1
+

i(x−xb)
2
k+

2t4
−ix2

12
1
2
k+z(1−z)( 1

t2
−

1
t3

)

× [z(1− z)]2ǫλ · (x− xa)ǫ
λ′ · (x− xb)d

2xd2x12x
2
12

×
[

(

z

1− z
+

1− z

z

)

δλλ′ + 2z(1− z)
ǫλ · x12ǫλ

′ · x12
x212

]

. (3.5)

Now

2d2x12
ǫλ · x12ǫλ

′ · x12
x212

→ d2x12δλλ′ (3.6)
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
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
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
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Figure 2. Running coupling graphs.
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since the rest of (3.5) depends only on x212 but not on the orientation of x12. Now write

ti = −2/τi to get

w̄=
−g2(N2

c −1)

256(2π)4

∫

∞

0
dτ4

∫

∞

0
dτ1

∫

∞

τ1

dτ3

∫

∞

τ1

dτ2e
i(x−x

a
)2k+τ1/4−i(x−x

b
)2k+τ4/4d2xd2x12x

2
12

eix
2
12k+z(1−z)(τ2−τ3)/4dk+

k+
dzk4+[z(1−z)]2(x−xa)·(x−xb)

[(

1

z
+

1

1−z

)

+(−2+z(1−z))

]

.

(3.7)

In arriving at (3.7) we have taken dτ2dτ3θ(τ2 − τ1)θ(τ3 − τ2) =
1
2dτ2dτ3θ(τ2 − τ1)θ(τ3 − τ1),

which corresponds to taking the real part of w̄. (Taking the graph where the self energy is

in the complex conjugate amplitude along with the graph 2b automatically leads to a real

contribution.)

(3.7) has several divergences which are most clearly seen by doing the dτi integrals

in (3.7),

w̄=
−g2(N2

c −1)

(2π)4

∫

dk+
k+

∫ 1

0
dzd2x

d2x12
x212

(x−xa)·(x−xb)

(x−xa)
2(x−xb)

2

[(

1

z
+

1

1−z

)

+(−2+z(1−z))

]

.

(3.8)

The singularity in d2x12

x2
12

at x212 = 0 comes from τ2, τ3 → ∞(t2, t3 → 0), and it is an

ultraviolet divergence which is cancelled by the graph of figure 3b. The divergence in d2x12

x2
12

at x212 = ∞ comes from τ2, τ3 → τ1 and it is also an ultraviolet divergence. The (1z + 1
1−z )

parts of the divergence are cancelled by vertex and fermion self energy corrections (see

appendix A), while the
∫

dz(2− z(1− z)) = 11
6 coefficient of the x212 → ∞ divergence must

be removed by coupling renormalization. It is the only actual divergence encountered at

the one loop level.

From the discussion in section 2 it should be clear that the graph of figure 2a, the

decay graph, will be given by (3.7), or (3.8), with the replacements

x, xa → θ, θa; d2x, d2x12 → d2θ, d2θ12. (3.9)

Here the d2θ12
θ12

divergences, as θ212 → 0, is a collinear divergence which is cancelled, when

one agrees not to distinguish 2 nearly parallel moving gluons from the parent gluon, by

the graph of figure 3a. The divergence at large θ12 is a genuine ultraviolet divergence

which must be removed by renormalization. (Recall that we work in a frame where θab is

extremely small so that the ultraviolet divergence here corresponds to θ212 ≫ θ2ab.)

Formally, the spacelike-timelike correspondence is exact. In the case of divergences

in d2x12
x12

and d2θ12
θ12

when x212, θ
2
12 → 0 the correspondence remains exact because there

are cancelling divergences between graphs in figure 2 and in figure 3 which eliminate the

divergences so that in fact there are no divergences coming from t2, t3 → ∞(timelike) or

t2, t3 → 0(spacelike). On the other hand the divergences in the (−2+z(1−z)) part of (3.8)

coming from the t2, t3 → t1, x
2
12 → ∞ region of (3.8) and from the corresponding θ212 → ∞

part of the timelike graphs are real divergences and must be removed by renormalization,

and the renormalization will destroy the correspondence.
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(a)

(b)

Figure 3. Real graphs corresponding to the graphs of figure 2.
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It might seem that (3.8) also has a divergence in the d2x integration at |x| → ∞, but

when all corrections to the xa and xb lines are taken the dipole kernel

x2ab
(x− xa)

2(x− xb)
2

(3.10)

emerges rather than the
(x− xa) · (x− xb)

(x− xa)
2(x− xb)

2
(3.11)

appearing in (3.8) so that in fact there is no d2x divergence.

Let me summarize the various collinear and ultraviolet divergences in the graphs of

figure 2 and figure 3.

1. Graph 2a has a collinear divergence at t2, t3 → ∞ corresponding to an ultraviolet

divergence in graph 2b at t2, t3 → 0. These divergences are cancelled by corresponding

divergences in graphs 3a and 3b if one uses graphs 2a and 3a in a jet measurement

and graphs 2b and 3b in a scattering.

2. Graphs 2a and 2b also have ultraviolet divergences coming at t2, t3 → t1 in each case.

The (1z + 1
1−z ) parts of these graphs cancel with other corrections, vertex and quark

self energies, around t1. However, the (−2 + z(1 − z)) divergences in these graphs

need renormalization which breaks the spacelike-timelike correspondence.

3. In graph 2a there is an ultraviolet divergence coming from (x1−x2)
2 → 0 at t2, t3 → 0,

cancelled by a similar divergence in graph 2b, and another ultraviolet divergence

coming from (x1 − x2)
2 → ∞ at t2, t3 → t1. In appendix B we show that both of

these divergences correspond to large transverse momentum divergences.

4 “Conformal” QCD; using the correspondence

4.1 “Conformal” QCD

The fact that field theories with coupling renormalization are immensely more difficult to

deal with than theories without coupling renormalization is well illustraded in the classic

paper of Gell-Mann and Low [14]. They developed the renormalization group in the context

of QED and found it difficult to get explicit results because of coupling renormalization.

However, they observed that by dropping all photon self energy graphs the theory became

much simpler because the coupling was not renormalized. This conformal QED remains a

nontrivial theory, although it does lack unitarity. While in many ways the renormalization

of QED and QCD are similar, coupling renormalization in QCD is not associated with a

particular set of graphs in any known gauge. In section 3 and in appendix A we have

seen that coupling renormalization breaks the spacelike-timelike correspondence between

the lightcone wavefunction and decay probabilities. We will explore that breaking a little

farther on, but here we focus on a way to define a conformal QCD similar to what was

done in QED.

– 13 –
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Refer back to (3.8). There are divergences in the d2x12 integration both at x212 = 0

and at x212 = ∞. The divergence at x212 = 0 in (3.8) corresponding to graph 2b is cancelled

by a similar divergence in graph 3b as we have already discussed while the divergence at

x212 = ∞ cancels, for the (1z + 1
1−z ) part of (3.8), as we shall see in appendix A. Thus

only the (−2 + z(1− z)) part of the x212 = 0 divergence of (3.8) is uncancelled, and this is

the coupling renormalization divergence which must be removed in order to evaluate the

lightcone wavefunction, and high energy scattering, in QCD.

Instead of renormalizing (3.8), coming from graph 2b, suppose we just drop the

x212 → ∞ divergence in the (−2 + z(1 − z)) part of (3.8). Would this give a conformal

theory? The problem here is that the x212 → ∞ divergence and the x212 → 0 divergence

of (3.8) cannot be separated without introducing a separation scale and then dropping the

x212 → ∞ divergence would depend on that scale as would the resulting lightcone wavefunc-

tion. However, there is a procedure which does not introduce any scale, and that consists

in dropping the (−2 + z(1 − z)) terms in both graph 2b and in graph 3b. In terms of

singularities we are dropping the x212 → 0 singularities of the (−2+x(1− z)) parts of these

graphs, which cancel in any case, as well as the x212 → ∞ singularity of the (−2+x(1− z))

part of graph 2b, the only genuine divergence at this order. This same rule for dropping

the (−2+z(1−z)) part of self-energy grphs can also be applied to decay graphs, graphs 2a

and 3a in the current discussion. The remaining graphs, including the (1z + 1
1−z ) parts of

the self-energy contribution will be conformal and obey the spacelike-timelike correspon-

dence. We emphasize, however, that we have demonstrated this correspondence, and the

confromality, only at NLO level. At NNLO one must deal with coupling renormalization

of a three gluon vertex where the three gluons share longitudinal momentum more or less

equally, and that is beyond what has been considered in appendix A.

4.2 Possible uses of the correspondence

Our purpose in this paper is to see how the spacelike-timelike correspondence works graph-

ically and pinpoint exactly where and how it breaks down. We have also seen that it is

possible to discard a well-defined part of self-energy graphs in order to maintain the confor-

mality and the correspondence. While our purpose is not here to use the correspondence

to do calculations it is, perhaps, useful to see how this could come about and to make

connection with previous work.

The earliest discussions [5–7], observing that the BFKL equation governs certain ob-

servables in jet decay, in addition to determining high energy scattering, did not suggest a

general relationship between decay and high energy scattering. That came in the paper of

Hofman and Maldacena, in the context of AdS/CFT calculation, and by Hatta [11] who

extended the discussion to N = 4 SYM perturbation theory. Hatta and collaborators [12]

extended the discussion to a comparison of resummed kernels in the BK and BMS equa-

tions. In all these cases running coupling effects do not enter, or were not considered. The

most ambitious attempt to use the spacelike-timelike correspondence has been by Caron-

Huot [15] who was able to get all the non β-function dependent parts of the NLO kernel of

Balitsky and Chirili [16] by transforming decay calculations into wavefunction caculations.

– 14 –



J
H
E
P
0
8
(
2
0
1
8
)
1
3
9

The general problem is that β-function terms will not obey the correspondence. How-

ever, in lightcone gauge the number of self-energy graphs that occur, for example, in the

NLO kernel for the BK equation is very small compared to the total sum of graphs. We

believe that the full NLO BK kernel could be obtained by doing the corresponding time-

like calculation without the (−2 + z(1 − z)) parts of the self-energy graphs, transforming

that calculation to the spacelike case and then adding the (−2 + z(1 − z)) parts of the

self-energy graphs to the lightcone wavefunction including the renormalization of these

self-energy graphs.

Of course Balitsky and Chirilli have already done the NLO calculation of the BK

kernel, including the very difficult Fourier transforms to get from momentum to coordi-

nate space which Fourier transforms are not necessary when using the spacelike-timelike

correspondence, so there is not so much motivation for doing the calculation the way we

suggest in the previous paragraph. However, it may well be that there are other calcula-

tions which are more easily done in, say, the timelike case and then transforming to the

spacelike case. If such a calculation has many parts it could well be easier to separate out

the (−2+z(1−z)) parts of the self-energy graphs in the timelike calculation and add them

back in the spacelike calculation.

Finally, it would be interesting to understand if there is any relationship between the

present work to that of Vladimirov [19] where the ǫ-dependence, in dimensional regulariza-

tion, is used to relate spacelike and timelike quantities which have ultraviolet divergences.
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A Singular terms in running coupling renormalization

The purpose of this appendix is to see that the
(

1
z + 1

1−z

)

terms (see for example (3.8))

appearing in self-energy graphs cancel with vertex and other self-energy graphs. We limit

our discussion to an example and in this example we use a very physical argument rather

than a detailed computation. This example should make clear how the cancellation occurs

in a more general setting.

The graphs we analyze are for the renormalization of the quark gluon coupling and

are shown in figure 4, and grouped into a, b and c components. Graph 4g is the same as

appears as parts of the graphs in figure 2. We always assume that q+ obeys q+/p+ ≪ 1.

The variable z is given as k+/q+ = z and in graph 4g it is clear that 0 < z < 1 and the

z = 0 singularity occurs when the line k+ → 0 while the z = 1 singularity occurs when

(q − k)+ → 0 so in each case it is a soft longitudinal momentum. It is, perhaps, clear that

such singularities cannot be present in a running coupling renormalization but let’s see in

detail how the cancellation comes about. The lifetime of the k-gluon fluctuation is

τk ≃ 2k+
k2
⊥

(A.1)
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Figure 4. Running coupling graphs.
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and k2
⊥
goes large for a divergent term corresponding to a potential coupling renormaliza-

tion. We take t = 0 to be the time at the quark, q-gluon vertex. Then the maximum time

t, that k can be emitted or absorbed is |t| . τk. During the time τk the separation of the

q-gluon from the quark is

∆x⊥ ∼ τk ·
q⊥
q+

=
2

k⊥
· z · q⊥

k⊥
≪ 1

k⊥
(A.2)

while the transverse wavelength of the k-gluon is 1/k⊥. Thus the k-gluon does not resolve

the quark-q-gluon pair so that the contribution of c1 + c2 + c3 + c4 is exactly the same as

the contribution of a and the sum of a+ c is just the negative of the probability that the

quark p emit a gluon. b is the probability that quark p emit a soft gluon so b+ (a+ c) = 0

by probability conservation.

The argument given above is subtle, however. Let me list the singular z-integrals for

the divergent parts of the graphs and then comment on why the argument given above

does lead to the correct result. The values of the graphs are, taking the divergent quantity
∫ dp2

⊥

p2
⊥

= L:

(a) =
−αCF

2π
L

∫

∞

0

dz

z

(b1) + (c2) =
+3αNc

8π
L

∫ 1

0
dz

(

1

z
+

1

1− z

)

(b2) =
+α

π

(

CF − Nc

2

)

L

∫

∞

0

dz

z

(c1) =
−αCF

2π
L

∫

∞

0

dz

z
(A.3)

(c3) =
+αNc

4π
L

∫

∞

1
dz

(

1

z
+

1

z − 1

)

(c4) =
−αNc

4π
L

∫ 1

0
dz

(

1

z
+

1

1− z

)

The CF terms cancel between (a), (b2) and (c1). If we identify the
∫

∞

1
dz
z−1 integration in

(c3) as equal to
∫

∞

0
dz
z the sum of the contributions in (A.3) vanish. We could also write

Z2 − 1 = a+ c1,
Z3 − 1

2
= c4

1

Z1
− 1 = b1 + c2 + b2 + c3 (A.4)

in which case the cancellation is a Z1 cancellation with Z2, Z3.

The subtlety in the above argument is that we take exactly
(

1
z + 1

1−z

)

and not
(

1
z + 1

1−z + const.
)

in our expectation of the vertex-self-energy cancellation. The rea-

son for expecting the cancellation in the pole-terms alone is that only graph c4 has other

than pole terms. Thus in (3.8) we separate the gluon self-energy terms into pole terms

and all the rest. The pole terms cancel as demonstrated above while the remaining
∫ 1
0 dz(−2 + z(1− z)) = −11

6 , the gluonic contribution to the β-function.
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B Seeing the ultraviolet divergences

In section 3 we have seen that in the correspondence between the graphs in figure 2a and

figure 2b there are two different ultraviolet divergences which occur in graph 2b, one with

(x1 − x2)
2 → 0 and t2, t3 → 0 and the other with (x1 − x2)

2 → ∞ and t2, t3 → t1. In

terms of the correspondence with graph 2a the (x1 − x2)
2 → 0 divergence corresponds to

a collinear singularity of graph 2a while the (x1 − x2)
2 → ∞ divergence corresponds to

an ultraviolet divergence of graph 2a. In this appendix we demonstrate that in terms of

momentum variables the (x1 − x2)
2 → 0 and (x1 − x2)

2 → ∞ divergence correspond to

k21(or k
′2
1 ) → ∞ and hence are genuine ultraviolet divergences.

The phase factors centered around the vertex at t2 in graph 2b are eiε where

(see (2.22)–(2.25))

ε =

(

k21
2k1+

+
k22

2k2+
− (k1 + k2)

2

2k+

)

t2 + k1 · x1 + k2 · x2 − (k1 + k2) · x. (B.1)

Call (k1 + k2) = p, then d2k1d
2k2 = d2k1d

2p and our object is to see what values of k1
and k2 = p − k are dominant in the integration in (3.2) leading to the coordinate space

formula (3.3).

One easily finds

ε =
t2

2k+z(1− z)

[

k1 − zp− (x2 − x1)
k+z(1− z)

t2

]2

+ p · [−x+ zx1 + (1− z)x2]−
(x1 − x2)

2

2t2
k+z(1− z). (B.2)

1. When (x1 − x2)
2 is small and t2 ∼ (x1 − x2)

2k+ the first term on the right hand side

of (B.2) is of order

ε ∼ (x1 − x2)
2

(

k1 − zp−O
(

1
√

(x1 − x2)
2

))2

so that

|k1 − zp| ∼ 1
√

(x1 − x2)
2
±O

(

1
√

(x1 − x2)
2

)

or since p2 will not be large,

k21 ∼
1

(x1 − x2)
2

(B.3)

the expected relationship for an ultraviolet divergence.

2. When (x1 − x2)
2 is large and t2 ∼ t1 + O

(

t21
(x1−x2)

2k+

)

the first term on the right

hand side of (B.2) becomes

ε ≃ t1
2k+z(1− z)

(

k1 − zp− (x2 − x1)k+z(1− z)

t1

)2

(B.4)
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so that

k1 − zp ≃ (x2 − x1)k+z(1− z)

t1
±O





√

2k+z(1− z)

t1



 . (B.5)

k21 is again very large although the relationship between k1(or k2) and x2 − x1 is not

so familiar as the one given in (B.3).
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