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1 Introduction

F-theory [1–3] is a geometrical way to describe non-perturbative backgrounds of type IIB

string theory, whose transition functions include S-duality in addition to the more usual

symmetries. Supersymmetric backgrounds of F-theory describe a spacetime which includes

the base of an elliptic Calabi-Yau variety, with a variable axio-dilaton field whose value

is specified by the elliptic fibration. The degeneration loci of the fibration, called the

irreducible components of the discriminant locus, are interpreted as seven-branes on which

various gauge algebras are realized. Among these, one finds as particular examples the

ordinary D7-branes and O7-planes of perturbative IIB theory.

The perturbative definition of O-planes, however, allows for several different variants.1

In particular, we have two types of O7-planes called the O7−-plane and the O7+-plane,

whose charge in units where a (full) D7-brane has charge 1 equals −4 and +4, respectively.

As was pointed out in the early days of F-theory, the one reproduced in conventional F-

theory is the O7−-plane [9]. At a fixed total D7-charge, an object with O7+ allows for fewer

deformations than an object with O7−. For example, an O7− with 8 D7s on top, with total

charge 4, can be deformed in various ways by pulling the D7s away, while a single O7+

with the same charge does not allow for such a possibility. The F-theory description of the

latter should hence involve a divisor which for some reason cannot be deformed. This was

analyzed and called a frozen singularity in [10], where this was also discussed in several

dual frames. This phenomenon was then further investigated in [11].

Thus it was known for a long time that F-theory includes O7+-planes but they were

basically ignored in the vast existing literature on the compactifications of F-theory. One

motivation for revisiting this issue at present rests in the classifications of six-dimensional

superconformal theories (SCFTs). In a series of works initiated in [12], and in particu-

lar in [13], it was shown that almost all known 6d SCFTs at that time and a lot more

were realizable using 6d compactifications of F-theory. (For a recent comprehensive re-

view, see [14].) However, if one compares this classification against the known examples

constructed using massive IIA brane constructions [15–18] and the purely-field theoretical

analyses [19, 20], one recognizes that there are indeed cases not realized by conventional

F-theory constructions.

A typical feature of these cases is that their massive IIA brane construction involves

O8+s. By a T-duality, this is mapped to a IIB brane construction involving O7+s. This mo-

tivated us to look at F-theory compactifications to six-dimensions in the presence of O7+s.

At this point, it is natural to worry if there could be frozen singularities other than O7+-

planes which have not been studied in conventional F-theory. This question was settled, at

least for supersymmetric seven-branes, in a recent re-analysis of 7-branes in F-theory [21]

1That the Chan-Paton indices can carry u, so and sp indices was originally pointed out by Schwarz in [4]

and that they were the only possibilities was soon showed by Marcus and Sagnotti in [5], both in 1982;

see also section 1.3 of Schwarz’s review [6]. That the choice of so and sp is reflected in the sign of the

RR-charge of the O9-plane was already essentially noticed in the seminal paper by Green and Schwarz on

the anomaly cancellation in Type I superstring theory [7] in 1984. That one can have a consistent T 2/Z2

compactification of type IIB theory with three O7−s and one O7+ was originally noted in [8] in 1991.
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which concluded that the O7+ is in fact the only type of frozen singularity in F-theory.2

Therefore, the only ingredient missing in conventional F-theory compactifications to six-

dimensions is the inclusion of O7+-planes, and indeed including them we find F-theory

realizations of ‘missing’ 6d SCFTs, as we will see later in the paper.3

Once we are convinced that O7+-planes can be included in the F-theory construction,

we realize that we need to revisit every part of the standard F-theory machinery, such

as the assignment of the gauge algebras and of the matter content to the components of

the discriminant and to their intersections, and the way the 6d anomalies cancel via the

Green-Schwarz-West-Sagnotti effect [25, 26], derived geometrically for F-theory by Sadov

in [27]. This paper is the authors’ first attempt to provide such generalizations.

One unexpected consequence of the introduction of O7+-planes is the following. To

appreciate it, let us first recall the situation without O7+-planes. In a conventional F-theory

compactification without O7+-plane, once one is given the geometry of the elliptically-

fibered Calabi-Yau, there is a standard method to assign a unique set of gauge algebras

and matter content to the geometry. In particular, under this standard assignment, each

simple factor in the gauge algebra is associated to a single component of the discriminant

divisor, and each component has at most one simple factor of gauge algebras associated

to it. This choice corresponds to having zero holonomies of the gauge fields on these

divisors themselves. We have the option of turning on the non-trivial gauge configurations,

including the effects often called the T-branes [28], but we also have the standard option

of not turning them on at all.

With O7+-planes, however, we will often be forced to have at least some nontrivial

gauge configurations on some of the components. More precisely, we even lose the concept

of a unique, standard assignment of gauge algebras and matter content, since we do not even

have a natural origin in the space of the all possible holonomies. Because of this, we often

have multiple simple factors of gauge algebras on a single component of the discriminant

locus, and also a single simple factor of gauge algebra shared across multiple components,

as we will see later.

Unfortunately, at present, we do not have any algorithmic method to find consistent

assignments given an elliptic Calabi-Yau and a specification of where the O7+-planes are;

we do not even have a method to tell if there are any consistent assignments at all. There-

fore we are forced to rely on consistency checks via anomaly cancellation and dualities to

backgrounds that are better understood.

The rest of the paper is organized as follows. In section 2, we study the properties of

O7+-planes in the context of F-theory, using string theory and M-theory dualities. This

will let us figure out how to assign gauge algebras and matter content. In section 3, we

study the anomaly cancellation of F-theory models with O7+-planes. We will see that the

2There are various other less-studied types of higher-codimension singularities one can incorporate in F-

theory, such as the ones used by Garćıa-Etxebarria and Regalado [22] to construct 4d N=3 SCFTs. Frozen

versions of singularities also occur in M-theory [10, 11], where they play an important role in M5-brane

fractionation [11, 23, 24].
3We will find F-theory realizations for certain examples, but we defer a general treatment of the classi-

fication problem formulated in [12, 13] to future work.
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analysis of Sadov [27] can be naturally generalized by introducing a divisor which represents

where O7+-planes lie. Then in section 4, we discuss some 6d SCFTs which can be realized

only with O7+-planes in F-theory construction, and in section 5, we study the massless

spectrum of a couple of compact six-dimensional models with O7+-planes.

In appendix A, we review the 8d compactifications with O7+-planes, which is simpler

than the 6d examples discussed in the main text. Finally in appendix B, we give an

alternative derivation, using intersecting brane models, of the spectrum of some compact

models discussed in section 5.

2 Frozen seven-branes and their properties

In this section, we use perturbative string techniques to obtain some properties of frozen

singularities.

We start in section 2.1 with a lightning review of O-planes. We then discuss the

basics of O7+-planes in F-theory in section 2.2, and in section 2.3 we study the physics at

individual intersection points of O7+-planes and other seven-branes. To prepare ourselves

for the analysis of an O7+-plane which intersects with more than one seven-brane, we then

need to have short digressions, on the T-duals of NS5- and D6-branes in section 2.4 and on

the phenomenon of shared gauge algebras in section 2.5. We then come back to the case

with O7+-planes in section 2.6. In the final subsection 2.7, we see that with O7+-planes a

shrunken divisor does not necessarily signify any singularity in the low energy physics.

2.1 Basics of orientifold planes

Let us start by a quick review of the basics of the orientifolds.4

Action on the closed strings: an orientifold is usually defined as a Z2 symmetry Π

that includes world-sheet parity Ω. It can also include a spacetime involution σ. It is often

necessary to also include an extra factor (−)FL (where FL is the left-moving spacetime

fermion number) so that Π2 acts as the identity. If locally σ is the reflection of 9 − p

coordinates, so that the orientifold plane Op (the fixed locus of σ)5 has (spatial) dimension

p, one needs to include (−)FL if p = 2, 3 mod 4.6 To summarize, locally the orientifold

action is
O9 O8 O7 O6 O5 · · ·
Ω ΩR9 ΩR8R9(−1)FL ΩR7R8R9(−1)FL ΩR6R7R8R9 · · ·

, (2.1)

4A good review of the basics can also be found in [29]. More detailed and rigorous analysis of perturbative

orientifolds were done e.g. in [30, 31], but we stick to the traditional, ad hoc approach in this paper. The

name orientifold itself was introduced in [32] by Dai, Leigh and Polchinski. The concept of the orientifold

goes back further in history, see e.g. [33, 34] and references therein.
5We will also consider actions that include translations and thus have no fixed locus as in (2.5); the

conclusions in (2.1) below also apply.
6To check this, one first uses the fact that a reflection RI of the I-th spatial coordinate acts by ΓI on

the 10d Majorana spinor, which satisfies (ΓI)2 = +1. Therefore, R2
I1···Ip = 1 or (−1)FL+FR depending

on whether p = 0, 1 or 2, 3 mod 4, respectively. Then one compensates this (−1)FL+FR by the fact that

Ω(−1)FLΩ = (−1)FR and therefore (Ω(−1)FL)2 = (−1)FL+FR .
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where Rp denotes a reflection of the p-th coordinate. This specifies the orientifold’s action

on closed strings. In this paper, we will be interested in particular in O7s, with O6s and

O8s making occasional appearances.

Action on the open strings: in presence of open strings, one also needs to decide its

action on the Chan-Paton matrix λ, which appears in a superposition
∑

i,j λij |ij〉 of the

states |ij〉, that in turn can be interpreted as going from the i-th to the j-th brane in a stack

(omitting other quantum numbers). Since the world-sheet parity Ω reverses orientation, it

acts by transposing λ, but it may also mix the states with a change of basis M : namely,

λ→MλtM−1. Imposing that this action is an involution leads to the condition that

M−1M t = ∓1 . (2.2)

This sign choice leads to two different types of O-plane, which we call Op±.7

The RR-charge: the RR charge can be computed through a one-loop computation,

which contains − trM−1M t in its Möbius strip contribution (see for example the re-

views [29, 35]). In the end one concludes that the charge is ±2p−5 that of a full Dp-brane:8

explicitly,

p 9 8 7 6 5 4 3 · · ·
±2p−5 ±16 ±8 ±4 ±2 ±1 ±1

2 ±1
4 · · ·

(2.3)

Thus, the Op− has negative charge and the Op+ has positive charge, as the name implies.

The gauge group: the gauge group is also influenced by the sign (2.2). If a stack of

N Dp-branes is parallel to the Op-plane but not on top of it, the action will relate the

strings ending on them to strings ending on an image stack in a different locus; the gauge

group will be the usual U(N). On the other hand, if the stack is on top of the Op-plane,

the action will relate the open string states to themselves, projecting out some of them.

To read off the gauge group, we can consider the gauge field states λijα
µ
−1/2|0; ij〉. Since

Ωα−1/2Ω = −α−1/2, the surviving states will be those with Chan-Paton factors λ such

that λ = −MλtM−1. If the sign in (2.2) is −1, M is antisymmetric; by a change of basis

(λ→ C−1λC, M → CMCt) it can be chosen to be of the form J ≡ ( 0 1N
−1N 0 ), and thus λ

will be in the spN algebra.9 If on the other hand the sign in (2.2) is +1, then M can be

chosen to be 12N , and λ ∈ so2N .

Summarizing, the choice (2.2) leads to two different orientifolds:

• Op−, with so2N gauge algebra and charge −2p−5, and

• Op+, with spN gauge algebra and charge +2p−5.

7In [10] and other older papers, Op±-planes are called planes of type O∓, with the opposite sign. We

stick to the more modern conventions which are now standard.
8Naively the fractional charge of the Op-plane for p ≤ 4 contradicts the Dirac quantization. For a

resolution, see [36].
9We follow the standard convention that sp1 = su2.
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Figure 1. A model with two Op-planes with opposite sign is turned by T-duality.

Dq-branes intersecting Op-planes: more generally, if we also have a stack of Dq-

branes which intersect our Op, there are subtle signs [37] coming from the fact that the

strings from the Op- to the Dq-branes needed to be expanded to both integer and half-

integer modes. In flat space (and vanishing B field), the number #ND of Neumann-

Dirichlet directions (the number of directions transverse to the Dp and parallel to the Dq,

or vice versa) has to be a multiple of 4, for unbroken supersymmetry. The result for the

gauge algebra on the Dq-branes is then as follows:10

Op+ Op−

#ND = 0, 8 symplectic orthogonal

#ND = 4 orthogonal symplectic

. (2.4)

T-duality: let us next discuss the T-duality of orientifolds, since we often need to perform

T-duality of the setup on S1/Z2 where two fixed points support Op-planes, possibly of

different types. Two most straightforward cases are when both fixed points have Op− or

both fixed points have Op+. The T-dual is then simply O(p+ 1)− or O(p+ 1)+ wrapped

around S1.

When one fixed point has Op− and the other fixed point has Op+, the T-dual is known

to be a shift-orientifold, namely an orientifold whose spacetime action σ not only flips the

coordinates transverse to the orientifold, but also translates a circle by half its radius

σ : (xp+1, xp+2, · · · , x9) ∼
(
xp+1 +

R

2
,−xp+2, · · · ,−x9

)
. (2.5)

See figure 1 for a pictorial representation. Note that this action fixes no point.

The derivation of this fact can be found e.g. in [10, p. 41] or [38]. A rough argument

goes as follows. We start from the shift-orientifold background (2.5), and T-dualize the

xp+1 direction. Its T-dual should be a compactification on S1/Z2. Therefore this should

result in a combination of two Op-planes at two fixed points. The original shift-orientifold

10The fields on the Dq stack get mapped to fields on another point of the stack, unless the Dq stack

is completely embedded in the Op-plane. A priori this only restricts the behavior as a function of the

coordinates of the gauge field, which would then locally remain of u(2m) type. However, in situations

where the divisor wrapped by the stack is compact, in most applications we want to keep only the zero-

modes of the gauge field under its equation of motion, and this restricts the gauge group as in (2.4).
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background did not have any D(p + 1)-charge. Therefore, in the T-dual, we should have

zero Dp-plane charge. This is only possible if one fixed point is Op− and the other is Op+.

Another intuitive argument is as follows. The shift operator s : xp+1 → xp+1 + R/2

can be thought of as ei
R
2
p̂, where p̂ is the momentum operator. Its T-dual is s̃ = ei

1
2R
ŵ,

where ŵ is the “winding operator”, which measures the length of the string. s̃ gives 1 on

strings of total length zero, such as those that begin and end on the same Op, but it gives

−1 on the strings that begin and end on different Op’s, signaling the fact that the two have

different signs.

Other types of orientifolds: it is also known that there are Õp±-planes when p ≤ 6,

distinguished from the more ordinary Op±-planes by the RR-torsion flux. As we will not

use them heavily, we will not discuss them further.

2.2 Frozen divisors in F-theory

Our main interest lies in seven-branes in Type IIB theory and F-theory. An ordinary

O7− without any D7-branes on top is known to lift to two I1 divisors, due to quantum

effects [9]. Similarly, with n < 4 D7-branes on top, the F-theory realization is given by

(n + 2) I1 divisors. With at least 4 D7-branes, it is interpreted in F-theory as an I∗n−4

divisor (where n is the number of D7-branes). Since string theory also has O7+-planes, it

is natural to ask how these are described in F-theory.

First of all, from (2.3) we see that O7± have charge equal to that of ±4 full D7-branes.

So an O7+ has the same charge and tension as an O7− with 8 full D7-branes on top. In F-

theory, they will give rise to the same monodromy [10, 39]; we expect both to be described

by an I∗4 divisor. However, the O7− with 8 D7 gives rise to an so16 gauge algebra, while the

O7+ gives rise to none. A related difference is that the O7− with 8 D7 can be deformed by

pulling the D7s away (which corresponds in F-theory to a complex structure deformation),

while the O7+ cannot. Thus an O7+ is described by a I∗4 singularity which for some reason

cannot be deformed; we will call this a frozen singularity, and denote it by Î∗4 .

More generally, an O7− with n D7s has the same charge and tension as an O7+ with

(n − 8) D7s; both are described by an I∗n−4 singularity, but in the latter case the gauge

algebra is spn−4 rather than so2n, and the deformations are correspondingly reduced. In

this case too we say that the singularity is frozen, and we denote by Î∗n−4.

To be more expicit, an F-theory vacuum is typically described by the “Weierstrass

coefficients” f and g which are sections of the line bundles OB(−4KB) and OB(−6KB) on

the F-theory base B, and which lead to the equation

y2 = x3 + fx+ g (2.6)

for the total space of the elliptic fibration. Along a divisor D with a Î∗n−4 singularity, f

vanishes to order 2, g vanishes to order 3, and the equation 4f3 + 27g2 of the discriminant

locus vanishes to order (n − 8) + 10, for a configuration with n − 8 D7-branes on top

of an O7+. Although the “freezing” mechanism is not understood, it must prevent any

deformation which lowers the order of vanishing of either f or g at all, or which lowers the

order of vanishing of 4f3 + 27g2 below 10.

– 7 –
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Note that the Weierstrass coefficients are accompanied by periods of type IIB two-forms

over appropriate two-cycles in B; for compactifications to 6d, the complex moduli provided

by Weierstrass coefficients are paired with these periods of two-cycles to provide the two

complex scalars in a hypermultiplet. In particular, by activating a vev represented by one

of these two-form periods we may disturb the gauge group assigned to a divisor without

changing the geometry of the divisor (which would have required a change of complex

modulus). Such deformations are often described in the language of T-branes [28], for

which a number of geometric tools have been developed [40–42].

As an exercise in using the rule (2.4), let us consider D3-branes embedded in the

worldvolume of O7±. Since #ND = 4, the gauge group on the embedded D3-branes is so

for O7+ and sp for O7−. In particular, the smallest gauge algebra allowed is so1 and sp1,

with one and two Chan-Paton indices, respectively. A bulk D3-brane has two Chan-Paton

indices. Therefore, a bulk D3-brane can fractionate into two separate objects on O7+ but

not on O7−. These D3-branes can be considered as point-like instantons of the gauge fields

on O7±, and therefore the D3-charges of the minimal-charge instanton on O7± differ by a

factor of 2. This fact becomes important in the anomaly analysis in section 3.1.

2.3 Intersections: perturbative analysis

As mentioned in the introduction, O7+s are the only frozen F-theory singularities [21]. As

our main interest lies in the compactification to 6d, we now want to understand their be-

havior when they intersect other singularities, namely, how they modify the gauge algebras

of neighboring divisors and the matter representations at intersections with them. We will

do so by using perturbative string techniques, and dualities.

Some readers might want to study the simpler situation in 8d summarized in ap-

pendix A, before considering the more interesting but complicated examples of 6d com-

pactifications discussed here.

2.3.1 Î∗–I intersection

Let us now start working out what happens when the frozen divisors intersect ordinary

divisors. We will begin with the intersections of frozen Î∗n with Im divisors.

Let us first recall what this intersection gives in the unfrozen case, i.e. an I∗–I inter-

section. The intersection with the I∗ induces on the I a so-called “Tate” monodromy, a

nontrivial automorphism of the gauge algebra that reduces it [43].11 This is expressed by

saying that the divisor is non-split, and denoted by a superscript ns. Its effect on the gauge

algebra is that it reduces from u2m to spm. We summarize this situation by writing

so2n+8 spm
I∗n Ins

2m .
(2.7)

As a warm-up, let us also see how it is reproduced by orientifolds. Consider an intersection

of an O7−+(n+4) D7 along directions 01256789 with m full D7s along directions 03456789.

11This is not to be confused with the “Kodaira” monodromy, describing how the geometry changes when

one goes around a singular divisor.
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Figure 2. An O7-D7 intersection, interpreted in F-theory as an intersection between an Î∗n+4 and

an Ins2m.

From (2.4) we see again that the gauge algebra on the m D7s is reduced to spm; see also

footnote 10. We thus recover (2.7). Notice that the spacetime action of the orientifold

projection can be interpreted as the Tate monodromy we mentioned above.

We can similarly work out what happens if the I∗ divisor is replaced by its frozen Î∗

counterpart: the configuration now involves an O7+ + (n− 4) D7s, and 2m transverse D7s

(see figure 2, where only directions 6789 are depicted). Looking again at (2.4), we see that

the gauge algebra on the m D7s is reduced this time to so2m. We conclude

spn−4 so2m

Î∗n Ins
2m .

(2.8)

Thus, an Ins divisor intersecting a frozen divisor has an so gauge algebra, rather than an

sp gauge algebra. In both cases (2.7) and (2.8) there is a bifundamental at the intersection,

due to the strings from one set of branes to the other.

2.3.2 I∗–I∗, I∗–Î∗, Î∗–Î∗ intersections

We will now consider intersections between two I∗ divisors, both frozen and unfrozen. We

will see that using perturbative O7s we will have only partial success in understanding the

full possibilities. This will lead us in section 2.6 to consider T-dual configurations.

I∗-I∗ intersection: let us again start by recalling what F-theory gives in the ordinary

unfrozen case. The intersection of two I∗ divisors actually falls outside Kodaira’s classi-

fication. To cure this, one can blow-up the base; this reveals a new divisor that touches

both I∗’s, and that behaves like in (2.7):

so2k+8 so2`+8

I∗k • I∗`
← so2k+8 sp(k+`)/2 so2`+8

I∗k Ins
k+` I∗`

(2.9)

where we assumed k+ ` to be even, and the • denotes the bad singularity that we blew up.

Physically, it signals a six-dimensional superconformal sector which is sometimes called

– 9 –
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Dk+4–D`+4 conformal matter ;12 the blow-up represents moving along its tensor branch,

namely the part of its moduli space where we give a vev to the scalar in the tensor multiplet.

Let us now try to engineer an I∗–I∗ intersection using O7s. The most natural gener-

alization of figure 2 consists of two O7s that intersect transversally. This can be achieved

by an orientifold projection in flat space that has more than one generator of the type we

recalled in (2.1). For an intersection of two O7s, locally one takes the two generators

ΩR6R7(−1)FL , ΩR8R9(−1)FL . (2.10)

We can see that in this situation there is an O7 on the locus x6 = x7 = 0, and another

on the locus x8 = x9 = 0. (Notice that one is then also quotienting by their product

R6R7R8R9, so that at the intersection between the O7s there is in fact also a Z2 orbifold

singularity.) Choosing the ± type of these two orientifold planes affects their charge and

their action on Chan-Paton indices in the way we reviewed earlier; we will see shortly what

their combined effect amounts to.

Another ingredient is that the projection on the closed Z2-twisted sector is reversed

if two orientifolds of different type intersect [44]. This comes about by considering the

exchange of closed strings between two crosscaps, one from one O7 and another from

another O7. The sign of this diagram is reversed when two orientifolds are of different type,

and the modular transformation of this diagram determines the orientifolding projection

on the closed string Z2 twisted sector. In the end, one finds that an O7−-O7+ intersection

has a six-dimensional tensor multiplet, while O7−-O7− or O7+-O7+ intersection has a

hypermultiplet:

O7− O7+

O7− hyper tensor

O7+ tensor hyper

. (2.11)

As we mentioned, if D-branes are present, they will now feel the effect of both projec-

tions. Consider for example choosing both planes to be O7−, with k + 4 and ` + 4 D7s

present on the x6 = x7 = 0 and x8 = x9 = 0 loci respectively. The first set of D7s, say,

would be projected to so2k+8 by the O7− parallel to it; but, recalling (2.4), it would also be

projected to spk+4 by the O7− transverse to it. This means that it actually gets projected

to the intersection of the two, uk+4. In the language of F-theory branes, this gives

uk+4 u`+4

I∗k · I∗`
, (2.12)

12In fact this superconformal theory depends only on k+` and has so(2k+2`+16) flavor symmetry. Thus

we will simply call it Dk+`+8 conformal matter in what follows. We use the blackboard letter D since the

notation Di denotes an i-th divisor in this paper. One can also define D2n as the 6d superconformal theory

which has a one-dimensional tensor branch on which it becomes an spn−4 theory with 4n fundamentals

with at least so4n flavor symmetry. For example, then, the D8 theory is the E-string theory.
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where the · now represents the hypermultiplet found in (2.11).13 This hypermultiplet is

neutral under uk+4 ⊕ u`+4. The presence of this neutral hypermultiplet signals that the

configuration (2.12) is obtained by moving along a particular direction in the Higgs branch

of Dk+4–D`+4 conformal matter whose tensor branch was depicted in (2.9). This partic-

ular direction in the Higgs branch is parametrized by vevs of the neutral hypermultiplet

in (2.12). Another well-known direction in the Higgs branch, distinct from the one repre-

sented by (2.12), is provided by brane recombination, where the two I∗ divisors merge.

Î∗-Î∗ intersection: for an O7+-O7+ projection, for the same reason we get

uk−4 u`−4

Î∗k · Î∗`
. (2.13)

In analogy with our discussion below (2.12), it is natural to think that this is the Higgsing

of a “frozen conformal matter”

spk−4 sp`−4

Î∗k • Î∗`
, (2.14)

and that upon blowing up (moving along the tensor branch) an Ins
k+` with so(k + `) gauge

algebra would be created, which would behave as in (2.8). We will see later that this

expectation is borne out.

Î∗-I∗ intersection: for an O7+-O7− intersection, on each set of D7s the two projections

will be of the same type. For example, on the D7s on the O7−, we have λ = −M1λ
tM−1

1 =

−M2λM
−1
2 , with both Mi symmetric. We can make M1 = 1 as in section 2.1; with the

residual freedom in change of basis we can diagonalize M2, but a priori it could have any

number of positive and negative eigenvalues. If we also impose that the D7s can move off

the O7−, we obtain that M2 =
(

1`+4 0
0 −1`+4

)
, and the gauge symmetry is so`+4 ⊕ so`+4.

Similar considerations apply to the O7+ + (k − 4)D7s; hence we get

spk/2−2 ⊕ spk/2−2 so`+4 ⊕ so`+4

Î∗k ◦ I∗`
(2.15)

where we assumed k to be even. Notice that in this case there is no neutral hypermultiplet

at the origin, according to (2.11); we have included the symbol ◦ to mark this. So in

this case we do not expect this configuration to be a Higgsing of a conformal one. This

might look surprising, but it will become clearer in section 2.7 below, where we will see an

alternative realization of the same setup (in the case k = ` is even).

13A warning is in order. The orientifold projection leaves the gauge algebra u on I∗, but the u1 part

usually gets Higgsed and becomes massive by the Green-Schwarz mechanism, each u1 eating a neutral

hypermultiplet. This point was carefully analyzed in [45, section 2]. In our case, the diagonal u1 of uk+4

and u`+4 will be gone. In a compact model, we usually expect every u1 part to be eliminated in this

manner, agreeing with the usual expectation that only the su algebras are realized on the 7-branes, not the

u algebras.
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Figure 3. NS5-branes, D6-branes, and T-duality. The compact and noncompact directions of the

cylinder are called respectively directions 4 and 3 in the text.

2.4 NS5- and D6-branes

To go beyond the results in section 2.3.2, we will need to consider configurations which are

dual to IIA in presence of NS5-branes. To set the stage, in this subsection we will discuss

a situation without orientifolds.

We consider IIA on R9 × S1; let us say the S1 corresponds to direction 4, and has

periodicity R. Let us have a single NS5 whose worldvolume is in directions 056789, localized

at xα = x4 = 0, α = 1, 2, 3. T-dualizing it along direction 4 turns it into an Euclidean

Taub-NUT geometry. The space transverse to the NS5 is R3 × S1; T-duality turns the H

flux of the NS5 into a Chern class that signals the S1 is now Hopf-fibred over the S2s at

xαxα = r2. The inverse images of these S2s are thus copies of S3. These shrink smoothly

at xα = 0, so that locally around this point the fibration is S1 ↪→ R3 → R4. One way to

realize this fibration in coordinates is

H ∼= C2 → R3 (2.16)

q =

(
z

w

)
7→ xα = q†σαq (2.17)

where σα are the Pauli matrices. So

x1 + ix2 = zw , x3 = |z|2 − |w|2 . (2.18)

If we have several NS5s localized at several positions in the 3 direction (x3 = x3
i ,

x1 = x2 = x4 = 0), T-duality turns the geometry into a multi-Taub-NUT geometry where

the S1 shrinks at the x3 = x3
i . The inverse image under the S1 fibration of a path between

two of these points is an S2. We represent this in figure 3.

Let us now suppose some D6s are also stretched along the 0356789 directions. First

let us imagine there are n D6s stretched along the entire 3 axis, i.e. when n D6s are placed

at x1 = x2 = x4 = 0. Under T-duality along direction 4, they will turn into n D7s. More

precisely, as figure 3 suggests, they will turn into a sequence of D7s wrapping the various
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S2 on the Taub-NUT with multiplicity n. What the picture does not show is that these

S2s are holomorphic cycles. Locally around an NS5 at xα = x4 = 0, for example, the locus

xα = 0 is turned into x1 = x2 = 0. From (2.18) we see this to be zw = 0, which is the

union of the curve z = 0 and of w = 0. In F-theory terms, this is a chain of intersecting

In curves.

In the presence of a Romans mass, parameterized conventionally by an integer 2πF0 ≡
n0 6= 0, the number of D6s ending on an NS5 from the left minus the number of D6s from

the right is n0. Focusing on an NS5 on which a D6 ends from the right and does not

continue to the left, we see again from (2.18) that T-duality turns it into the single curve

z = 0. This would be one of the S2s in figure 3. We then have a chain of intersecting

curves supporting In, In+n0 , In+2n0 , . . . .

Another possible generalization is to move the D6s in the x4 direction, so that there

is now a stack of nj D6s at x4 = x4
j . On the IIB side, this corresponds to Wilson lines for

the gauge field on the D7s.

2.5 Shared gauge algebras

From the setup of figure 3, we can also wonder what happens if we move only some of the

D6s away from the NS5s in direction 4; say from an initial stack of n D6s we move m to the

position x4 = x4
0. These D6s recombine: they no longer end on the NS5s. In field theory,

this corresponds to a partial Higgsing

sun ⊕ sun → sun−m ⊕ sum ⊕ sun−m (2.19)

where the sum at the middle is the diagonal subalgebra of two copies of sum ⊂ sun.

Since the displacement has happened along the 4 direction, it is not immediately

apparent on the IIB side: the T-dual still consists of two stacks of m + n D7-branes

meeting at a point, as in section 2.4. The only consequence of the displacement is the

presence of a Wilson line: there is a worldvolume gauge field with non-zero holonomy, a =
x40
l2s

diag(0, . . . , 0, 1, . . . , 1)dx̃4. Since direction 4̃ shrinks at the intersection point, on both

D7s there is a worldvolume da = f field strength proportional to a δ-function supported

on the intersection point.

By comparing with the IIA picture, we conclude that a Wilson line can partially break

the gauge algebra on two intersecting D7s, as in (2.19): part of the gauge algebra can

recombine. The sum algebra is now shared between the two intersecting divisors; this

is summarized in figure 4. In what follows, we fill find other examples of such shared

gauge algebras.

If we move all the D6s off the NS5 (i.e. if n = m), only the shared gauge algebra is

present. In this case, one might be puzzled by the fact that on the IIB side the Wilson line

is now proportional to the identity. This would not seem to cause a Higgsing, while from

the IIA picture it is clear that it does, since the D6s are away from the NS5.

To clarify this point, we need to identify the T-dual of the NS5 position in IIB. Since the

NS5 position in IIA is shifted by a diffeomorphism in the x4 position, its T-dual should be

shifted in IIB by a gauge transformation for the NS-NS two-form field, namely B → B+dΛ,
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Figure 4. On the IIA side, we can move m of the D6s off the NS5s and make them recombine. On

the IIB side, this corresponds to a gauge algebra sum that is shared between two curves meeting at

a point. We denote this with a double-sided arrow.

for Λ a one-form. In fact this one-form was identified in [46, section 2.2] explicitly. More

generally we conclude that, in the intersection between two curves C1, C2, there is a shared

gauge algebra if on either curve there is an eigenvalue ai of the Wilson line α on the curves

that does not match with the pullback of Λ at large distance from the intersection:14

ai 6= Λ|C1 or ai 6= Λ|C2 . (2.20)

In F-theory language, we could consider a deformation of the Weierstrass coefficients

which “recombined” two branes, i.e., smoothed the two divisors out into a single divisor.

If instead of this deformation, the corresponding periods of two-forms are activated, the

gauge theory will recombine without any change in the geometry.

2.6 Intersections: via T-duality

Having made a detour in the last two subsections, we now reintroduce O-planes in our story.

First we need to review the behavior of NS5s in presence of orientifolds. Like any other

brane, any NS5 must come with a mirror image under the orientifold action. Each copy

is usually called a half-brane to emphasize that it can become full if the two copies are

brought to the O-plane. It turns out [47] that when this is done the two half-NS5s can be

separated again: this time along the O-plane worldvolume, while staying on it. When this

happens, the orientifold type changes between the two half-NS5s.

The situation relevant for our purposes consists in having an O6 defined by a reflection

inverting directions 124, and for example two half-NS5s at two values of x3. (Thus the O6-

plane and the half-NS5s are stretched along the same directions as the D6 and NS5 in the

14To see more clearly what (2.20) gives, our Λ in (2.20) is equal to a number x̃ (the dual of the NS5

displacement) times the Λ in [46, (2.3)]. Going at large distance from the intersection, the pullback Λ will

just look like x̃dθ, and it makes sense to compare it with the ai.
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(a) (b)

Figure 5. Two configurations with O7±-planes, and their T-duals. The dots now represent

half-NS5s.

previous subsection.) If the O6 is taken to be an O6− outside the two half-NS5s, its type

will change to O6+ inside. This leads to a sequence of gauge algebras

so2n+8 , spn , so2n+8 . (2.21)

Actually, since direction 4 is compact, a reflection involving 124 will have a fixed point

both at x4 = 0 and at x4 = R/2, the opposite locus on the circle. The O6-plane on that

locus can be of both O6− and O6+ type. We show both those cases in figure 5. In both

cases the gauge algebras are still as in (2.21), since the difference with the case of figure 5(a)

happens in a region where no D6s are present.

Upon T-duality, we again find a chain of curves. To see what type of curves we have,

we need to use the rules reviewed in section 2.1; see in particular figure 1. We learn from

there that an orientifold with O6±-planes on both sides of a circle gets T-dualized to an

orientifold with an O7±-plane, while a circle which has an O6+ on one side and an O6−
on the other gets T-dualized to a shift-orientifold. This is another realization of Tate

monodromy, which we discussed at the beginning of section 2.3.1.

Thus, in the case of figure 5(a), after T-duality we end up with a curve Ins
2n between

two ordinary I∗n curves. This is familiar from (2.9) with m = n, and is in agreement with

the sequence of gauge algebras (2.21) we found in IIA.

In the case of figure 5(b), we have a frozen Î∗n+4 curve touching two Ins
2n+8 ones. The

presence of the frozen singularity alters the usual F-theory rules: from the IIA picture, we

see that as expected an Î∗n+4 curve supports an spn gauge algebra; moreover, we also see

that an Ins
2m touching a frozen curve supports an so2m. This can be generalized to

spk−4 sok+` sp`−4

Î∗k Ins
k+` Î∗`

(2.22)

(with k = n + 4). This is the theory on the tensor branch of (2.14), thus realizing the

expectation discussed there.
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Figure 6. Two different ways of Higgsing Dm+4–Dn+4 conformal matter. (a) reproduces (2.12);

(b) corresponds to brane recombination.

If we put the half-NS5s back on top of each other, we recover a full NS5. We can now

split it again by moving the two halves along the periodic 4 direction, together with some

of the D6s, or by moving them in another direction, so that the degeneration induced by T-

dualizing the NS5s no longer happens on the O6-D6 system. These two new configurations

represent respectively the Higgsing in (2.12), and the one mentioned below it involving

brane recombination. These two possibilities are depicted in figure 6.

The setup of this section can also be decorated by adding m D6-branes at the bottom

orientifold plane; this would add a gauge algebra so2m to figure 5(a), and spm to figure 5(b).

On the F-theory side, this would correspond to the presence of a Wilson line, and to a gauge

algebra that is shared among the three curves, in the language of section 2.5. Again, this

can be realized through the T-brane-like phenomena of activating the two-form-period

partner of a geometric deformation.

2.7 Smooth transitions

In the chains of curves considered so far, shrinking one or more of the curves leads to

some strongly coupled physics. This is clear from the IIA picture, where it corresponds to

making two or more NS5-branes coincide. In an effective field theory description, this often

manifests itself in a gauge coupling becoming infinite. The positions of the NS5s parame-

terize the tensor branch of a six-dimensional effective theory; these situations correspond

to non-generic loci of the tensor branch.

For example, in the situations depicted in figures 3 and 5, there is a one-dimensional

tensor branch, parameterized by a 6d tensor multiplet whose scalar φ corresponds to the

distance between the two NS5s, and which in the 6d theory also plays the role of the inverse

square of the gauge coupling. At the origin φ = 0, the gauge coupling diverges. At this

strong coupling point it is expected that a CFT arises, describing two coincident NS5s on

top of a D6 stack.
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Figure 7. A smooth transition, in IIA and in F-theory.

n 6 (n+ 4) 6

6+ 6−

6−6+

(m+ 4) 6m 6

I2(m+n+4)

so2m+8

so2n+8spn

spm

n 6 (n+ 4) 6

6+ 6−

6−6+

(m+ 4) 6m 6

I∗m+n+4I2(m+n+4)

so2m+8

so2n+8spn

spm

Î∗m+n+4I∗m+n+4Î∗m+n+4

Figure 8. A configuration that produces a curve touching both an I∗ and an Î∗. The gauge

algebras spn and so2m+8 are shared between the first two and the second two curves respectively.

However, on the IIA side we can also consider placing the NS5s at different values of

x9 (the compact direction). In this case, bringing the NS5s at the same value of x9 does

not actually put them on top of each other; now we do not expect strong coupling physics

at the origin φ = 0 of the tensor branch. A first example not involving orientifolds is shown

in figure 7. In this case without frozen seven-branes, we can of course put all NS5-branes

on the same stack of D6-branes so that this smooth transition does not happen.

When we start involving orientifolds, we can engineer more interesting situations. The

example in figure 8 has a non-split Ins
2n touching both a frozen and a non-frozen I∗. In this

case there is no way to put all NS5-branes on the same side of the O6-planes. Note also

that in both sides of the figure the overall gauge algebra remains the same, but the roles

of localized and shared simple subalgebras are exchanged.

When the two NS5s are aligned, for m = n we are in fact in the situation of (2.15), with

k = ` = 2n + 4. This is in agreement with our observation made there (motivated by the

absence of a hypermultiplet) that there is no conformal point at that intersection; in this

case the transition is completely smooth, and there is no special point on the tensor branch.

In 6d compactifications of F-theory, we are accustomed to getting conformal theories

when a divisor shrinks. One reason for this is that one can engineer string states from

D3-branes, and these strings become tensionless when we shrink a curve. In the situations
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of figure 7 and 8, in fact we cannot wrap a D3-brane on the middle curve: this is made

clear by T-dualizing back to IIA, where it would become a D2-brane, which can terminate

on either one or the other half-NS5, but not on both.

The situation in figure 8 is a simple illustration of the fact mentioned in the introduction

that in the presence of O7+ we lose the notion of a canonical assignment of gauge algebras

and matter content. In this situation, this happens for two reasons. First, we can only

take m D6-branes from bottom to top of the cylinder. After doing that, we are still left

with 4 D6-branes ending on half-NS5-brane. This implies that there is no canonical ‘zero’

for the Wilson lines. Second, the half-NS5s are stuck at fixed values of x4. This implies

that there are fixed non-zero periods of NS-NS 2-form potential on the curves.

2.8 Tangential intersections and O8-planes

The discussion of I∗–I and Î∗–I intersections in section 2.3.1 has an interesting exception,

that occurs when the intersection is tangential. We discuss it now because T-duality helps

in the analysis, as we will now see.

We start by considering O7s and D7s that again share the directions 056789, but which

are extended in the remaining directions in a more complicated fashion than in section 2.3.1.

Define z = x1 +ix2, w = x3 +ix4, and let the orientifold act on the spacetime by σ : z ↔ w.

The O7∓ will then be on the locus z = w; place again n ± 4 D7s on top of it. Now also

place m half-D7s on the locus z = 0; their m images will be on the locus w = 0. In this

case, the gauge fields on the D7s on z = 0 will have a U(m) gauge field, which the O7

maps to a gauge field on the D7s on w = 0. To see why this is related to a tangential

intersection, consider the invariant coordinates v = z + w, u = zw. The configuration we

are considering is then mapped to an O7∓ + (n± 4) D7s on the locus v2 = 4u, and m D7s

on u = 0. These two loci intersect tangentially. We can summarize this as follows:

so2n+8 sum
I∗n || Im ;

spn−4 sum
Î∗n || Im ,

(2.23)

where we have used || to denote tangency as in [48]. This coordinate change is illustrated

in the top part of figure 9, in the O7+ case.

An additional subtlety concerns the matter content in (2.23). One can in principle

work this out directly in the original setup on the left of figure 9, but it is instructive to do

it instead in a dual frame. First of all we change coordinates, using again (2.18); only this

time we take z = x1 + ix2, w = x3 + ix4 introduced earlier, and define new coordinates

x̃1 + ix̃2 = zw, x̃3 = |z|2 − |w|2, with a fourth periodic coordinate eix̃
4

= zw̄
z̄w . We are once

again rewriting R4 as a fibration S1 ↪→ R4 → R3. The orientifold is now defined by the

involution σ : x̃3 → −x̃3, x̃4 → −x̃4; the O7-plane then sits at x̃3 = x̃4 = 0, while the D7s

are on the locus x̃1 = x̃2 = 0. (Notice that the x̃4 circle shrinks at x̃3 = 0.) If we now

T-dualize along direction 4, we end up with an O8 at x̃3 = 0 with a half-NS5 stuck on it,

and with D6s crossing it.

All this is depicted on the lower part of figure 9, again for the O8+ case. At this

point we can read off the matter content from a perturbative string computation similar

to the one leading to (2.4), as already done in [16, 17]; the result is that in the tangential
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Figure 9. Various equivalent ways of seeing a tangential Î∗–I intersection. As in recent figures,

the dot on the bottom-right frame is a half-NS5.

intersection (2.23) the um has a hypermultiplet in the antisymmetric in the unfrozen case,

and in the symmetric in the frozen case.

We can deform a tangential intersection into two transverse intersections. This cor-

responds to giving a vev to the hypermultiplet in the antisymmetric or symmetric repre-

sentation, and breaks the gauge algebra to sp or so respectively. We will study an explicit

example in section 4.2.

3 Anomaly analysis

In this section we discuss the cancellation of one-loop anomalies and the Green-Schwarz

contributions in 6d compactifications with frozen seven-branes.

3.1 Anomaly cancellation with frozen singularities

A compactification of F-theory on an elliptically fibered Calabi-Yau threefold gives rise to

an effective 6d gauge theory with N = (1, 0) supersymmetry at low energies. When there

are no frozen singularities present, it is possible to turn off the holonomies of gauge fields on

stacks of seven-branes, and the periods of 2-form NS-NS and R-R potentials. Then, each

simple summand gi of the 6d gauge algebra is associated to a single irreducible component

Di of the discriminant locus of the elliptic fibration, and can be determined from the

knowledge of the type of singular fiber over Di along with the data of the monodromy

of the elliptic fiber around Di [3, 43, 49]. The matter content [50, 51] and the coupling

of tensor multiplets [27] is encoded in the intersection numbers of various divisors in the

base of the elliptic fibration. These data allow us to compute both the 1-loop contribution

I8
1-loop to the anomaly polynomial, as well as the Green-Schwarz contribution I8

GS to the
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anomaly polynomial. Combining these two, one finds that I8 = I8
1-loop + I8

GS vanishes for

any smooth elliptically fibered Calabi-Yau threefold [51, 52].

Now let us include frozen singularities in the geometry. In this situation, it is not

always possible to tune the above mentioned holonomies to zero. We do not have any

canonical nonzero choice either. Because of the nonzero holonomies, one is forced to con-

sider situations in which simple summands of the 6d gauge algebra are realized on divisors

which are positive linear combinations of irreducible components of discriminant locus. We

will call the divisors associated to simple summands of gauge algebra as gauge divisors.

In this paper, we will not be able to list down all the possible 6d spectra that could

result from a geometry, as that will require a systematic understanding of holonomies

and fluxes in F-theory compactifications, which we do not have at present. Therefore, we

suppose that an assignment of gauge algebras on the components of the discriminant is

given, and study the Green-Schwarz contribution to the anomaly. We follow the work of

Sadov [27] but we include the effects from the frozen singularities.

The 6d tensor multiplets descend from Kaluza-Klein reduction of the chiral 4-form C(4)

of type IIB string theory. To determine the coupling of 6d tensor multiplets, we need to

look at two couplings of C(4) in ten-dimensional type IIB string theory, namely the coupling

to the gauge theory living on seven-branes and the coupling to gravity in the bulk.

Gauge Green-Schwarz terms: we start with the coupling of the gauge fields to the

RR 4-form field C(4). When there are no O7+-planes, the stack of seven-branes on Da has

a ten-dimensional coupling given by

∫
C(4)ν(Fa)Da (3.1)

where Fa is the field strength valued in the “Kodaira” 8d gauge algebra ka on the Da

component of the discriminant, and ν(Fa) is the instanton number density,15 normalized so

that it integrates to one on the standard BPST instanton embedded into ka with embedding

index 1. This normalization reflects the familiar fact that an instanton in the worldvolume

of a seven-brane has D3-charge 1.

When the component Da carries an Î∗n+4 singularity, i.e. when it corresponds to an

O7+-plane with n D7-branes on top, the local 8d gauge algebra is ka = spn, and the

ten-dimensional coupling is ∫
C(4)

(
1

2
ν(Fa)

)
Da. (3.2)

Note a factor-of-two difference in the coefficient between (3.1) and (3.2). This is due to the

fact that a bulk D3-brane can fractionate into two on O7+, as reviewed in section 2.2, and

15In the literature many different conventions have been used; trF 2 is defined variously as the trace

in the smallest nontrivial representation (e.g. [20]), or in the adjoint representation divided by the dual

Coxeter number (e.g. [36]), or by twice the dual Coxeter number (e.g. [51, 52]), with or without (2π)4 in

the denominator implicitly included. We follow the physical convention introduced by Intriligator in [53],

where the notation c2(F ) was used. This choice has the virtue that the coefficient in the resulting anomaly

polynomial of the term ν(Fa)ν(Fb) have a direct physical meaning, i.e. the Dirac pairing of two instanton-

strings.
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the gauge instanton in the standard normalization corresponds to the D3-brane of minimal

possible charge.

Let us now write the 6d gauge algebra in the form ⊕igi where gi is simple. Each gi is

shared on some of the Da; we let µi,a = 1 or 0 depending on whether gi is on Da or not.

An embedding ρi,a : gi ↪→ ka must exist whenever µi,a = 1, and otherwise we let ρi,a be the

zero map. These embeddings have the properties

1.
⊕

i ρi,a(gi) ⊂ ka, and

2. gi is the diagonal in
⊕

a ρi,a(gi).

The Green-Schwarz coupling for the gauge fields is given in terms of the field strenghs Fi
valued in gi by

∫
C(4)

∑

i

ν(Fi)Σi :=
∑

i,a

∫
C(4)

(∑

i

µi,aoi,aν(Fi)

)
Da (3.3)

where we defined the i-th gauge divisor to be

Σi =
∑

a

µi,aoi,aDa, (3.4)

and oi,a is the embedding index16 of gi ⊂ ka, multiplied by 1/2 when ka = spn is supported

on a frozen singularity.

Note that even when there is no “sharing” (so the gauge divisors are Σa = Da) and

no O7+-planes, ga could still be different from ka, due to the “Tate monodromy” phe-

nomenon [43].

Before proceeding, we point out here that the inverse square of the gauge coupling of

gi is given by
∑

a µi,aoi,aAa where Aa is the area of Da. This follows from the fact that the

scalar Aa and the 2-form
∫
Da
C(4) are the bosonic components of a single supermultiplet,

and therefore Green-Schwarz coupling
∫
C(4)

∑
a µi,aoi,aν(Fi)Da comes with the coupling∫ ∑

aAaµi,aoi,a trFi ∧ ∗Fi. This means in particular that when the gauge algebra gi is

shared on multiple components, the gauge theory does not become singular when a single

component Da involved in the gauge divisor shrinks to zero size.

Gravitational Green-Schwarz terms: we turn our attention to the gravitational cou-

pling. When there are no O7+s, the stack of seven-branes on Da has a ten-dimensional

coupling to gravity given by
∫
C(4)

(
Na

12

p1(T )

4

)
Da (3.6)

16The embedding indices we often encounter in this paper can be summarized in the following diagram:

u2n

spnso2n

un
1

2

2

1

(3.5)

where the numbers beside the arrow show the indices.
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where Na is the order of vanishing of discriminant ∆ on Da, p1(T ) is the Pontryagin class

of the tangent bundle of the worldvolume. We also slightly abuse notation and use Da

within the integral to represent the two-form determined by the divisor.17 In particular, a

D7-brane contributes Na = 1 and an O7−-plane contributes Na = 2.

Now, the contribution of O7+ to this gravitational coupling is opposite to that of O7−;

the “effective Na” is −2. Since an Î∗n singularity corresponds to O7+ + (n− 4)D7-branes,

its “effective Na” is −2 + (n− 4) = n− 6. In comparison, Na of I∗n is n+ 6. Hence, in the

presence of O7+ we need a correction term to the coupling, which be written as

∫
C(4)

((
Na

12
− sa

)
p1(T )

4

)
Da (3.7)

where sa = 1 when the curve Da carries an O7+ and sa = 0 when it does not.

The cancellation: combining (3.3) and (3.7), the full six-dimensional coupling relevant

for the Green-Schwarz mechanism is

∫

B
C(4)

(
− (K + F )

p1(T )

4
+
∑

i

Σiν(Fi)

)
, (3.8)

where C(4) has two legs on the base B and

F =
∑

a

saDa (3.9)

is the frozen divisor, signifying the divisor along which we find the frozen singularities. We

have also used the condition for unbroken supersymmetry (the Calabi-Yau condition) to

substitute the canonical divisor K in place of − 1
12NaDa.

The contribution to anomaly polynomial is then a square of the coefficient of C(4),

with a factor of 1/2 in front, to take into account that the RR 4-form field is self-dual:

I8
GS = −1

2

(
− (K + F )

p1(T )

4
+
∑

i

Σiν(Fi)

)2

. (3.10)

It is a standard result (see e.g. [27, 45, 55–57]) that the one-loop anomaly of the 6d system

is given by18

I8
1-loop =

9− nT
32

p1(T )2 − Ni

4
ν(Fi)p1(T ) +

Mij

2
ν(Fi)ν(Fj) (3.11)

17The couplings (3.1) and (3.6) follow in the case of Na D7-branes by starting from the coupling

(
∑

p C
(p))Â(T )1/2 tr eF determined in [54] and extracting the necessary parts, using Â(T )|4 = −p1(T )/24

and tr eF |4 = −ν(F ).
18Again there are various different normalizations in the literature. We follow the convention that 2πiI8ours

yields the anomalous phase variation via the descent formalism; in particular I8 should have rational

coefficients when expressed in terms of geometrically-defined characteristic classes. The early paper by

Erler [55] used I8Erler = 2πiI8ours. Another common convention during the early years of the second revolution,

apparently introduced by Schwarz [56], was to normalize I8 to contain (trR2)2 with coefficient 1, for a model

with one tensor multiplet. We have I8Schwarz = 16(2π)4I8ours.
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where nT is the number of tensor multiplets, and Ni, Mij are some numerical coefficients,

assuming that the coefficient of trR4 vanishes, i.e.

nV − nH − 29nT + 273 = 0 . (3.12)

At the end of this subsection, we comment on how to obtain the numerical values

Ni and Mij .

We see that cancellation of gauge and gauge-gravity anomalies requires the following:

Ni = (K + F ) · Σi, Mij = Σi · Σj . (3.13)

Here, K ·Σi = K ·(∑µi,aoi,aDa) can be computed from the adjunction formula 2(ga−1) =

(K +Da) ·Da, where ga is the genus of the curve Da.

If the 6d theory contains dynamical gravity and satisfies (3.12), then we obtain the

following condition as well, from the vanishing of the coefficient of (trR2)2:

9− nT = (K + F )2 (3.14)

This condition (3.14) follows just from geometry, as we now demonstrate. If Da carries

a frozen singularity, then the singular fiber over Da has Kodaira type I∗n≥4. For these

Kodaira fibers, it is known that Da · (−2K − Da) = 0 [51]. Moreover, any two distinct

components Da and Db of F must not intersect each other because two I∗n≥4 singularities

cannot intersect each other(in the absence of conformal matter). From these two facts, it

follows that

(K + F )2 = K2 +
∑

a

saDa · (2K +Da) = K2, (3.15)

and the equality K2 = 9− nT .19

By now, the cancellation of the Green-Schwarz anomaly and of the one-loop anomaly

in the conventional F-theory compactification without O7+ is well-established. This allows

us to read off Ni and Mij for almost all the cases. First, for i 6= j, we have Mij = 1 for a

bifundamental of su-su or a half-bifundamental of so-sp. To read off Ni and Mii (without

suming over i), let us say that the given algebra is gi and the total set of hypermultiplets

for gi is ρ. One then looks up the pair of (gi, ρ) e.g. in eqs. (2.10)–(2.14) of [58], to find

a conventional F-theory realization of the 6d gauge theory on a sphere of self-intersection

−n. Then Mii = −n and Ni = n − 2. Essentially the only case not covered by this

procedure is when gi = su(n), with one sym and n − 8 fundamentals. For this, one first

Higgses the hypers in sym, to give so(n) with n− 8 fundamentals. This has a well-known

anomaly polynomial, which can be determined in the method just described above. Then

one can convert it back to the anomaly polynomial of the original su(n) theory by using

ν(so(n)) = 2ν(su(n)).

19Compactification of C(4) on a base B produces h1,1(B) anti-symmetric 2-form potentials. One of

them goes into the supergravity multiplet and the remaining h1,1(B) − 1 go into tensor multiplets; hence

nT = h1,1(B)− 1. Since B is the base of Calabi-Yau, h1,0(B) = h2,0(B) = 0 and it follows from Noether’s

formula that K2 = 10− h1,1(B) = 9− nT .
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3.2 Matter content with frozen singularities

Transversal intersections: in the situation when there are no frozen singularities and

each simple factor of gauge algebra ga is associated to a single irreducible component of

discriminant locus Da, Grassi and Morrison [51] wrote down the matter content charged

under ga in terms of intersection numbers of combinations of Da and K, assuming that

every intersection among Da and Db is transversal. The geometry underlying the derivation

of those formulas, analyzed in the M-theory dual (and therefore on the Coulomb/tensor

branch of the theories), consists of finding the curves in the total space upon which M2-

branes can be wrapped, and finding the intersection numbers of those curves with the

divisors which represent the Cartan subgroup of the original nonabelian gauge group, since

those intersection numbers specify gauge charges. This was carried out in a number of

works [43, 49, 50, 59, 60] which [51] relied upon.

Now we would like to understand the matter content in the presence of the frozen

singularities. We do not have a geometric derivation for our proposed answer, since the

M-theory geometry of frozen singularities is not well understood. However, as we have seen

in detail, the effect of the frozen singularity in the anomaly contribution from the Green-

Schwarz effect is summarized by the replacement of individual components Da by the gauge

divisor Σi, and of the canonical class K by K ′ = K+F . The one-loop contribution should

then be able to exactly cancel this contribution. We thus propose that the corect answer

for the matter content is to perform the same replacement in the results of [51].

We tabulate the results of this replacement, i.e., of our precise proposal for matter

content, in table 1. A few comments on the table are in order:

• The number associated to adjoint representation in the table is nadjH − 1 where nadjH

is the number of hypermultiplets charged in the adjoint representation. The −1

incorporates the contribution to the anomaly of a vector multiplet, which indeed

comes with the opposite sign with respect to an adjoint hypermultiplet.

• For soeven, the number of hypers in spin∗ denotes the combined sum of the number

of hypers in the two irreducible spinor representations spin±. For soodd, the number

of hypers in spin∗ denotes the number of hypers in the unique irreducible spinor

representation.

• For a generic soeven we can choose the number of hypers in spin+ and spin− arbitrarily

as long as their sum equals the number of hypers required in spin∗. However, for so8,

the number of hypers in spin+ must equal the number of hypers in spin−, because

there are two linearly-independent Casimirs of degree 4. See [51] for more details on

this requirement.

• The entry for so7 in our table contains a refinement over [51], in which only the

spinor representation was considered. But the coefficient of the spinor representation

is negative whenever (−2K ′ − Σi) · Σi < 0. In this case, a different representation
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ga ρ Number of hypers in ρ

su2 adj 1
2(K ′ + Σi) · Σi

fund (−8K ′ − 2Σi) · Σi

su3 adj 1
2(K ′ + Σi) · Σi

fund (−9K ′ − 3Σi) · Σi

sun, adj 1
2(K ′ + Σi) · Σi

n ≥ 4 fund (−8K ′ − nΣi) · Σi

asym2 −K ′ · Σi

spn, adj 1
2(K ′ + Σi) · Σi

n ≥ 2 fund (−8K ′ − 2nΣi) · Σi

asym2
irr

1
2(−K ′ + Σi) · Σi

so7, adj 1
2(K ′ + Σi) · Σi

(−2K ′ − Σi) · Σi ≥ 0, vect 1
2(−3K ′ − Σi) · Σi

spin (−4K ′ − 2Σi) · Σi

so7, adj 1
8(−2K − 2F + Σi) · Σi

(−2K ′ − Σi) · Σi ≤ 0, vect 1
4(−16K ′ − 7Σi) · Σi

sym2
irr

1
8(2K ′ + Σi) · Σi

son, adj 1
2(K ′ + Σi) · Σi

8 ≤ n ≤ 14, vect 1
2((4− n)K ′ + (6− n)Σi) · Σi

spin∗
1

dim(spin∗)
(−32K ′ − 16Σi) · Σi

son, adj 1
2(K ′ + Σi) · Σi

n ≥ 15 vect (−4K ′ − n
4 Σi) · Σi

e6 adj 1
2(K ′ + Σi) · Σi

27 (−3K ′ − 2Σi) · Σi

e7 adj 1
2(K ′ + Σi) · Σi

56 1
2(−4K ′ − 3Σi) · Σi

e8 adj 1
2(K ′ + Σi) · Σi

f4 adj 1
2(K ′ + Σi) · Σi

26 1
2(−5K ′ − 3Σi) · Σi

g2 adj 1
2(K ′ + Σi) · Σi

7 (−5K ′ − 2Σi) · Σi

Table 1. Number of hypermultiplets for each relevant representation of each simple gauge algebra

when frozen singularities are present. This includes the contribution of vector multiplet as a −1

hypermultiplet in adjoint. By definition, K ′ = K + F . spin∗ denotes the sum of number of hypers

in two irreducible spinors spin± for soeven, and the number of hypers in the unique irreducible

spinor for soodd. For so8, number of hypers in spin+ must equal number of hypers in spin−. The

two different proposals for so7 coincide when (−2K ′ − Σi) · Σi = 0. For son≥15 we have a further

constraint that Σi ·(−2K ′−Σi) = 0, and for e8 we have a further constraint that (6K ′+5Σi)·Σi = 0.
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with the same contribution to the anomaly needs to be used. One finds sym2
irr does

the job.20

• For ga = son≥15, we have the additional constraint Σi ·(−2K ′−Σi) = 0. The physical

meaning of this constraint is that the intersection points of Σi and −2K ′ − Σi carry

spinor representations, but it is impossible to satisfy anomaly cancellation for son≥15

if we have hypermultiplets transforming as spinors. There is a similar constraint for

e8 which states that (6K ′ + 5Σi) · Σi = 0.

Tangential intersections: we know that this simple replacement cannot be the full

story. We saw at the end of section 2.8 that if a curve carrying frozen singularities intersects

a curve carrying In singularity tangentially, then it traps a hypermultiplet in the two-index

symmetric representation of sun. In light of this, for gi = sun we define ta to be the number

of tangential intersections of F with Da. Let ti =
∑

a µi,ata, in terms of which we write

our modified proposal for sun as

ρ =

[
1

2
(K + F + Σi) · Σi − ti

]
adj + (−8K − 8F − nΣi) · Σi fund

+ [(−K − F ) · Σi + ti] asym
2 + ti sym

2 . (3.19)

This still satisfies anomaly cancellation because σ = −adj + asym2 + sym2 has the prop-

erty that trσF
2 and trσF

4 are both zero. This proposal gives correct predictions for

models which have a perturbative dual for which the spectrum can be determined by

other methods.

4 Noncompact models

Now let us analyze how the anomaly cancellation works out in a few examples. We are par-

ticularly interested in 6d SCFTs which supplement the lists given in [12, 13]. As in [12, 13],

we expect to be able to realize the tensor branch of a 6d SCFT by means of a contractible

collection of curves in the F-theory base, with the difference that we will now allow frozen

branes as well.

4.1 so-sp chains

We first come back to the setup discussed in section 2.6. In the type IIA frame, we consider

the following chain:

O6− O6+ O6− O6+

(n+ 4) D6s n D6s (n+ 4) D6s n D6s
(4.1)

20Similar modifications are unnecessary for son≥8. Suppose (2K′ + Σi) ·Σi ≥ 8, so that we have at least

one sym2
irr. Combining this inequality with the inequalities that the number of vectors are non-negative

and the number of adjoints are ≥ −1, we obtain:

(−2K′ + Σi) · Σi ≥ −8, (3.16)(
−4K′ − n

4
Σi

)
· Σi ≥ 0, (3.17)

(2K′ + Σi) · Σi ≥ 8. (3.18)

Combining the first and third inequalities, we find that Σ2
i ≥ 0. Combining the second and third inequalities,

we find that (8− n)Σ2
i ≥ 32. These two together imply that n < 8.
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separated by half-NS5-branes. The leftmost and the rightmost stacks are semi-infinite.

This realizes the 6d quiver theory with the structure

[so2n+8] spn so2n+8 [spn] (4.2)

where the bracketed algebras are flavor symmetries.

We perform a T-duality to bring this setup into F-theory. The result depends on

whether we have O6− or O6+ on the other fixed locus, see figure 5. The first case is a

familiar setup without frozen singularities:

[so2n+8] spn so2n+8 [spn]

1 4

I∗n Ins
2n I∗n Ins

2n

(4.3)

where the first, the second, the third row shows the gauge algebra, the negative of the

self-intersection number, and the singularity type, respectively. Denoting the two CP1’s in

the middle by D1 and D2, the Green-Schwarz contribution to the anomaly is

− 1

2

(
−p1(T )

4
·K + (ν(Fsp)D1 + ν(Fso)D2)

)2

. (4.4)

In the second case we obtain a setup with frozen singularities:

[so2n+8] spn so2n+8 [spn]

4 1

Ins
2n+8 Î∗n+4 Ins

2n+8 Î∗n+4.

(4.5)

Note that the gauge group, matter content, and flavor symmetry group of (4.5) are identical

to those of (4.3): only the F-theory realization is different.

Denoting the two middle CP1’s by D̃1 and D̃2 this time, and the canonical class by K̃

to distinguish it from the case above, the Green-Schwarz contribution is now

− 1

2

(
−p1(T )

4
· (K̃ + F̃ ) + (ν(Fsp) ·

1

2
D̃1 + ν(Fso) · 2D̃2)

)2

. (4.6)

where the factor 1/2 in front of D̃1 is due to the fractionation of D3-branes on O7+, and

the factor 2 in front of D̃2 is due to the embedding index 2 of so2n+8 ⊂ su2n+8. The frozen

divisor F̃ is D̃1 + D̃3, where D̃3 is the noncompact divisor on the far right.

The terms with trF 2
sp and trF 2

so in the two expressions (4.4) and (4.6) should agree,

since they cancel the same 1-loop anomalies. Indeed, we can easily check that



K

D1

D2


 · (D1, D2) =



K̃ + F̃

1
2D̃1

2D̃2


 ·

(
1

2
D̃1, 2D̃2

)
=



−1 2

−1 1

1 −4


 . (4.7)

In addition, as observed earlier, K2 = (K̃ + F̃ )2.
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before after

O−

n D6s

NS5½NS5
O8−+ 16 D8s

n − 8 D6s

NS5

n − 16 D6s n D6s

NS5½NS5
O8−+ 16 D8s

n − 8 D6s

NS5

n − 16 D6s

O+

n D6s

NS5½NS5
O8+

n − 8 D6s

NS5

n − 16 D6s n D6s

NS5½NS5
O8+

n − 8 D6s

NS5

n − 16 D6s

Table 2. Four type IIA configurations.

before after

O− [su16], sun + asym, sun−8, [sun−16] [so32], spn/2, sun−8, [sun−16]

O+ sun + sym, sun−8, [sun−16] son, sun−8, [sun−16]

Table 3. Quivers. On the upper right corner, we assumed that n is even.

before after

O−

O+

Table 4. F-theory duals.

4.2 su-su chains

Let us next consider the IIA configurations shown in table 2. The top row and the bottom

row are distinguished by the type of the O8-plane; we add 16 D8-branes for the top row

to have the same Romans mass for the both rows. The configurations on the left column

contain tangential intersections of the type discussed in section 2.8. The configurations

on the right column are obtained by moving the half-NS5-brane at the intersection of the

6-branes and the 8-branes away from the intersection. Gauge theoretically, this operation

corresponds to giving a vev to hypermultiplets.

Using the discussion in section 2.8 and following [16, 17], we find that these configura-

tions realize 6d quivers whose structures are summarized in table 3. (We did not explicitly

write in that figure the standard bifundamental matter hypermultiplets between two con-
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secutive gauge factors.) The type of the O8-plane is correlated to the type of the two-index

tensor representation of the sun gauge algebra. Higgsing is done by giving a vev to the

hypermultiplet in the antisymmetric or symmetric two-index tensor representations of sun,

breaking it to spn/2 or son. Here for simplicity n is assumed to be even in the former case;

if n is odd, the gauge algebra is spbn/2c and one needs to add a flavor to sun−8.

We note that the gauge symmetry so32 on the O8−-plane with 16 D8-branes on top

becomes a flavor symmetry in the theory on the top right of table 3, as expected. The

flavor symmetry is su16 in the theory on the top left instead. We do not know how to

derive this from the perspective of the string theory; it should be due to the existence of a

half-NS5-brane at the intersection of the O8−-plane and the D6-branes.

We can discuss the F-theory duals by T-dualizing the original IIA configurations along

the lines of section 2.8; the results are shown in table 4. The top row and the bottom

row are distinguished by whether we have the ordinary I∗4 singularity or the frozen Î∗4
singularity. For the left column, this noncompact divisor of I∗4 or Î∗4 is tangent to the

divisor with In singularity. To go to the right column, we deform the divisors so that the

tangent point is split to two transversal intersection points. This operation in turn changes

the singularity type from In to Ins
n . The two models on the bottom row realizes 6d quiver

gauge theories (the tensor branches of 6d SCFTs) which were not previously possible in an

ordinary F-theory compactification without frozen singularities.

Let us name the four divisors in each model as C1, D1, D2, C2 from the left to the

right; C1,2 are non-compact and D1,2 are compact. The Green-Schwarz contribution to the

anomaly can be written down as follows.

For the top row with the non-frozen I∗4 singularity, we have

− 1

2

(
−Kp1(T )

4
+D1ν(F1) +D2ν(F2)

)2

(4.8)

both before and after the Higgsing. For the bottom row with the frozen Î∗4 singularity, we

have

− 1

2

(
−(K + C1)

p1(T )

4
+D1ν(F1) +D2ν(F2)

)2

(4.9)

where we used the fact that the frozen divisor is C1. After the Higgsing, the Green-Schwarz

contribution is

− 1

2

(
−(K + C1)

p1(T )

4
+ 2D1ν(F1) +D2ν(F2)

)2

(4.10)

where the factor in front of D1 is due to the embedding index of son ⊂ sun.21 It is a

straightforward exercise to show that these Green-Schwarz contributions correctly cancel

the gauge squared and the gauge-gravity part of the one-loop anomalies.

The construction discussed here gives a first indication of how the classification results

of [12, 13] need to be modified in order to include frozen branes. We leave a thorough

consideration of the effect of frozen branes on this classification to future work.

21In particular it explains the superficially funny-looking ηO8+ in [61, (3.23)].
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Figure 10. In (a), the compact model of [62] on the Hirzebruch surface F−4. In (b), a frozen

version.

5 Compact models

In this section we discuss some compact models with O7+-planes in F-theory language.

They are obtained from very classic F-theory models by flipping some of the O7− to O7+.

Our current understanding of the compact models is rather incomplete. In this paper we

will be content with presenting some of the consistent assignments of gauge algebras and

hypermultiplet matter content, leaving systematic studies in the future.

5.1 The F−4 model and its flip

Without frozen 7-brane: Aspinwall and Gross considered the following model [62]: the

F-theory base is the Hirzebruch surface F−4, which is a CP1 bundle over CP1 such that the

base is a −4 curve. We have the I∗12 singularity along the −4 curve C and a fiber Φ hosts

an Ins
48 singularity; see figure 10(a).

This model has the following massless matter content:

• so32 on C and sp24 on Φ,

• a half-hypermultiplet in 32⊗ 48,

• a hypermultiplet in ∧248, together with

• one supergravity multiplet, one tensor multiplet and 20 neutral hypermultiplets.

Let us remind ourselves how this spectrum can be understood in a dual frame. We

start from the heterotic or type I so32 on a K3, realized as an elliptic fibration over CP1.

The Green-Schwarz mechanism in ten dimensions requires that the instanton number of

the gauge bundle over K3 is 24. To keep the whole so32 gauge algebra unbroken, we use 24

point-like instantons. We then collapse the whole 24 instantons to a point. This is known

to generate sp24 on the heterotic side [63]. The spectrum as written above can be found

perturbatively on the type I side.

Assuming that the elliptic fiber has small area, we perform fibre-wise the duality

between heterotic on T 2 and F-theory on an elliptically-fibered K3. This converts the

whole to an elliptically-fibered K3 fibered over CP1. The so32 gauge algebra is now realized

on the base C as the I∗12 singularity, and the point-like instanton is on the fiber Φ as the

Ins
48 singularity.
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With a frozen 7-brane: now, let us flip I∗12 to Î∗12. The anomaly cancellation suggests

the following matter content:

• sp8 on 1
2C and su24 on 2Φ,

• a hypermultiplet in 16⊗ 24,

• two hypermultiplets in ∧224, together with

• one supergravity multiplet, one tensor multiplet and 20 neutral hypermultiplets.

This model is shown in figure 10(b). It can be Higgsed to

• sp8 on 1
2C and sp12 on 2Φ,

• a hypermultiplet in 16⊗ 24,

• a hypermultiplet in ∧224, together with

• one supergravity multiplet, one tensor multiplet and 21 neutral hypermultiplets.

Here and below, we mean by the sentence “a gauge algebra g on D” that the gauge divisor

associated to g is D, in the language of section 3.

Let us give a derivation of these spectra, using the same duality as in the unfrozen

case shown above. We again start from the heterotic or type I so32 on a K3, realized as an

elliptic fibration over CP1, but with the generalized Stiefel-Whitney class of Spin(32)/Z2

being nonzero along the fiber, destroying the vector structure [10]. The maximal possible

gauge algebra is now sp8. We now need a gauge configuration of instanton number 12 on

the K3 surface, since the embedding index of sp8 ⊂ so32 is two. We choose to put all 12

point-like instantons at the same place.

The spectrum can be determined perturbatively using the type I description.22 We

find that when the point-like instanton is on a generic point, the spectrum is as in the

Higgsed case above, while when it is on a singularity of the form C2/Z2, the spectrum is

the one before the Higgsing.

To go to the F-theory frame, we perform the fiber-wise duality as before. This time

we use the frozen version reviewed in appendix A, which relates heterotic or type I so32 on

T 2 without vector structure to F-theory on K3 with one frozen singularity. We now have

the Î∗12 singularity on C and the Ins
48 singularity on Φ. The Higgsing distinguishing the two

versions is related to how the residual part of the discriminant with the I1 type singularity

intersects with the fiber Φ.

5.2 The unfrozen CP1 × CP1

The next compact model we consider was first considered at a perturbative level by Bianchi

and Sagnotti [64] before the second superstring revolution, during which these models were

revisited by many others, including by Gimon and Polchinski [37]. In this subsection we

22An analysis after a T-dual along one direction in the T 2 without vector structure is given around

equation (B.3) of appendix B.2.
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will consider its F-theory realization in the case where all O7-planes are O7−; in section 5.3

we will consider what happens by changing one or both of them to O7+.

The model is obtained by considering the T 2/Z2×T 2/Z2 compactification in type IIB

theory, with O7− at each Z2 singularity, together with 16 mobile D7-branes along the first

T 2/Z2 and another 16 mobile D7-branes along the second T 2/Z2. We give the perturbative

derivation of the spectrum of these models in appendix B. The aim here is to understand

the spectrum from the F-theory point of view.23

Conformal matter point: since T 2/Z2 ' CP1, we take the F-theory base to be CP1 ×
CP1. We pick divisors C and D wrapping each of the CP1 above. We let each divisor host

an I∗12 singularity. At the intersection we expect to have the conformal matter theory (see

footnote 12) D32, where so32 × so32 ⊂ so64 is gauged.

Let us see this in more detail. We choose coordinates ([s, t], [u, v]) on CP1 ×CP1, and

consider bihomogenous polynomials. We want to engineer I∗12 along t = 0 and also along

v = 0. Doing so is quite constrained. The equation defining the elliptic fibration was

derived in [66] but we follow the notation of [67, eq. (42)]:

y2 = x3 + tvp3,3(s, t, u, v)x2 + t8v8x, (5.1)

where p3,3 is bihomogeneous of degree (3, 3). (We shall usually suppress the variables in

writing polynomials such as p3,3.)

This equation is not in Weierstrass form. By completing the cube, we find

f = t2v2

(
t6v6 − 1

3
p2

3,3

)
, (5.2)

g = t3v3p3,3

(
−1

3
t6v6 +

2

27
p2

3,3

)
, (5.3)

∆ = t18v18(2t3v3 + p3,3)(2t3v3 − p3,3). (5.4)

By the Kodaira vanishing criteria, we indeed see I∗12 along t = 0 and v = 0. Therefore we

have D32 conformal matter at t = v = 0.

The discriminant has components t = 0 and v = 0 along which I∗12 fibers are located,

as well as two components

2t3v3 = ±p3,3 (5.5)

which comprise the “residual discriminant” (the part with no gauge algebra or type II

enhancement). We denote these by ∆±, and note that the defining equation of each

has bidegree (3, 3). Both of these components intersect with t = 0 at the three points

t = p3,3 = 0, and similarly intersect with v = 0 at the three points v = p3,3 = 0. The

multiplicities of f , g, and ∆ at all six intersection points are (4, 6, 20) so there is conformal

matter at those points as well.

23Analyses of unfrozen compact models with conformal matter will also be provided in [65] by other

authors, where a detailed analysis of the CP1 × CP1 model with four D7-branes per O7−-plane is given,

among others.
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I12*

I12*
C

D

Δ+

Δ−

Figure 11. The model with conformal matter points. Note that ∆+ and ∆− have a third order

contact with each other at their intersections with C or D.

We can roughly see how this F-theory setup corresponds to the perturbative model

reviewed in appendix B.1. The I∗12 curves are the counterpart of the O7−-planes with 16

D7s on top. The residual discriminant corresponds to the O7−-planes without D7s. As is

customary, such planes are realized in F-theory by a pair of I1 curves.

We illustrate this initial model, which is at its transition point between tensor and

Higgs branches, in figure 11. We have marked the seven CFT points with red dots. The

curves ∆+ and ∆− have a third order contact with each other at each point of intersection,

and also pass transversally through one of the I∗12 curves (labeled C and D) at each such

point. Key mathematical features not found in the illustration include the intersection

data: C2 = D2 = 0, C · D = 1, K · C = K · D = −2, ∆2
+ = ∆2

− = ∆+ · ∆− = 18, and

K · ∆+ = K · ∆− = −12. It follows that ∆+ and ∆− each have genus 4. The matter

content is then

• so32 on C and so′32 on D,

• the conformal matter D32 gauged by so32 × so′32 ⊂ so64

• three copies of D16 gauged by so32,

• three copies of D16 gauged by so′32,

• one supergravity multiplet, one tensor multiplet and 13 neutral hypermultiplets.

Higgsed model: to obtain the standard perturbative massless spectrum of the model,

we can Higgs the conformal matter theories. From (2.12) and figure 6(a), we see that at
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the collision point of two I∗ curves there is a hypermultiplet which, when activated, breaks

the global symmetry from24 so2n+8 ⊕ so′2n+8 to sun+4 ⊕ su′n+4.

Doing this for the conformal matter theories in the model of figure 13(b), one repro-

duces the perturbative spectrum:

• u16 on C and u′16 on D,

• a hypermultiplet in 16⊗ 16′,

• two hypermultiplets in ∧216,

• two hypermultiplets in ∧216′,

• one supergravity multiplet, one tensor multiplet and 20 neutral hypermultiplets,

as can be found in the original papers [37, 45, 64], and reviewed in appendix B.1. The

F-theory interpretation of this Higgsed spectrum was given in [9, 68]; this study eventually

led to a refined understanding of the relation between F-theory and O7− [69].25

So far we used the process of figure 6(a), which is non-geometric in F-theory, to realize

the Higgsed spectrum. We also expect that giving vevs to other scalars in the same hyper-

multiplet would have the same effect. We thus seek a geometric deformation of the original

equation (5.1) in which the Kodaira fibers I∗12 become Kodaira fibers Is16. The deformation

involves a new polynomial q2,2 of bidegree (2, 2) and takes the form

y2 + ε q2,2(s, t, u, v)xy = x3 + tvp3,3(s, t, u, v)x2 + t8v8x. (5.6)

When we complete the square and then complete the cube, we find the data for Weier-

strass form:

f =

(
t8v8 − 1

3
(tvp3,3 +

1

4
εq2

2,2)2

)
, (5.7)

g =

(
tvp3,3 +

1

4
εq2

2,2

)(
−1

3
t8v8 +

2

27

(
tvp3,3 +

1

4
εq2

2,2

)2
)
, (5.8)

∆ = t16v16

(
2t4v4 + tvp3,3 +

1

4
εq2

2,2

)(
2t4v4 − tvp3,3 −

1

4
εq2

2,2

)
. (5.9)

This is Kodaira type Is16 on each curve; it is split because (g/f)|t=0 = − 1
18εq

2
2,2|t=0 is a

perfect square, and likewise for v = 0.

This time, the intersection of t = 0 with the residual discriminant is at two points

t = q2,2, each of which has multiplicities of (f, g,∆) being (2, 3, 18). Such an intersection

24The u1 part of both u16 are known to get Higgsed by the Green-Schwarz mechanism, eating one neutral

hypermultiplet each, and becoming massive [45, section 2]. Here we follow the older perturbative string

terminology.
25Let us note that the T-duality between Type IIB on T 2/Z2 × T 2/Z2, which we used here, and Type

I on T 4/Z2, as originally considered, was first discussed in [70]. Let us also mention that when each O7−
has four D7s on top of it, then the perturbative orientifold construction can be subtly modified so that the

system is slightly on the tensor branch side, rather than on the Higgs branch side, of the conformal point,

as noticed early in the study of orientifolds [71, 72].
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C

D
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I16s

Figure 12. A geometrical realization of the Higgsed model. Note that ∆+ and ∆− have a second

order contact with each other at their intersections with C or D.

point is associated to a matter representation Λ2 rather than to conformal matter, so

the corresponding points should not be blown up. The same is true of the two points

v = q2,2 = 0.

Similarly, the intersection of t = 0 with u = 0 is ordinary bifundamental mat-

ter, and this point should not be blown up either. The geometry is illustrated in fig-

ure 12. This model reproduces the perturbative spectrum again, but this time with a

geometrical Higgsing.

Tensor deformation: we will now consider the tensor branch deformation of the model

with conformal matter in figure 11.

The blowup of the collision point t = v = 0 is straightforward and produces an excep-

tional curve E along which the Kodaira type is Ins24 .

Let us study the intersection points of p3,3 = 0 with t = 0 in more detail. By a change

of coordinates, we may locate one of the intersection points at t = u = 0. In that case, we

can write p3,3 = up̂3,2 + tp̃2,3. Multiplicities of f , g, and ∆ at t = u = 0 are easily seen to

be 4, 6, and 20 so we have a conformal fixed point and we need to blow up. To perform the

blowup, we work in the affine coordinate chart v = s = 1. In one coordinate chart of the

blowup, we have t1 = t, u1 = u/t, and the Weierstrass coefficients and discriminant become

f1 = t41 −
1

3
(u1p̂+ p̃)2, (5.10)

g1 = (u1p̂+ p̃)

(
−1

3
t41 +

2

27
(u1p̂+ p̃)2

)
, (5.11)

∆1 = t81(2t21 + u1p̂+ p̃)(2t21 − u1p̂− p̃). (5.12)
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The exceptional divisor t1 = 0 supports an I8 fiber, since the orders of vanishing are (0, 0, 8),

and there is monodromy: the usual branch divisor (g1/f1)|t1 = 0 vanishes at u1 = t1 = 0

in this chart and has a single order of vanishing. Thus, this is Ins
8 and the gauge algebra is

sp4. No matter is visible in this chart. Note that this branch point is the point at which

the residual discriminant meets the exceptional divisor. The multiplicities at this point

are 2, 3, 10 which is consistent with the enhancement from A7 to D8 which is expected at

such a point. In the other coordinate chart of the blowup, we have t2 = t/u, u2 = u. The

Weierstrass coefficients and discriminant become

f2 = t22

(
u4

2 −
1

3
(p̂+ t2p̃)

2

)
, (5.13)

g2 = t32(p̂+ t2p̃)

(
−1

3
u4

2 +
2

27
(p̂+ t2p̃)

2

)
, (5.14)

∆2 = t18
2 u

8
2(2u2

2 + p̂+ t2p̃)(2u
2
2 − p̂− t2p̃) (5.15)

and we indeed see the exceptional divisor u2 = 0 meeting the original I∗12 at t2 = 0. This

intersection point also provides the second branch point defining the monodromy.

This same analysis applies at all six points t = p3,3 = 0 and v = p3,3 = 0 so six

additional blowups need to be done. All in all, we have blown up CP1 × CP1 at seven

points, and we obtain a model with no conformal matter and with eight tensor multiplets.

This model is illustrated in figure 13(a) and figure 13(b). The curves ∆+ and ∆− are

now simply tangent at each of their points of intersection, which occur at a point of one of

the new exceptional divisors Cj or Dj . The intersection data this time are: C2 = D2 = −4,

C2
j = D2

j = E2 = −1, ∆2
+ = ∆2

− = 12; K · C = K ·D = 2, K · Cj = K ·Dj = K · E = −1,

K ·∆+ = K ·∆− = −6. Note that because of the tangencies we now have ∆+ ·∆− = 12.

The massless matter content is:

• so32 on C, sp12 on E, so′32 on D, and a copy of sp4 on each Cj and on each Dj ,

• a half-hypermultiplet in 32 ⊗ 24, a half-hypermultiplet in 24 ⊗ 32′, three half-

hypermultiplets in 32 ⊗ 8 (corresponding to (C,Cj)) and three half-hypermultiplets

in 8⊗ 32′ (corresponding to (Dj , D)), together with

• one supergravity multiplet, eight tensor multiplets and 13 neutral hypermultiplets.

5.3 Frozen CP1 × CP1 models

We will now consider what happens in the CP1×CP1 model of section 5.2 when one changes

the type of one or both O7− to O7+.

With two frozen seven-branes: let us first consider what happens when one changes

both O7− to O7+.

In the original geometry without blowups in figure 11, the two I∗12 curves are now

changed into Î∗12. Since the residual discriminant represents O7−-planes, we do not expect

conformal matter at the its intersection with the Î∗12 curves, which represent O7+-planes.
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Figure 13. An F-theory description of the tensor branch of the perturbative model with two

O7− [37, 64]. In (a) a traditional depiction more similar to the one in figure 11 is given; note that

∆+ and ∆− are tangent at their intersections with Ci and Di. In (b) is a depiction more similar

the other figures in the paper, which does not include the residual discriminant. Upon shrinking E

as well as C1, C2, C3, D1, D2, D3, we obtain figure 11; by Higgsing the resulting conformal matter

theories, one recover the original perturbative model.

We have not analyzed this situation before, but we expect it to be similar to the one in

figure 8 and (2.15), thus with no conformal matter and a tensor.

We do not venture to guess the field theory content at this point. It is easier to follow

a tensor deformation by blowing up all curves. The result lives again on the geometry

illustrated in figure 13, I∗12 → Î∗12. A possible choice of gauge divisors that cancels all

gauge anomalies gives the following model:

• (sp2)1,2,3,4, supported on C+C1 +C2 +E, C+C1 +C2 + 2C3 +E, D+D1 +D2 +E,

D +D1 +D2 + 2D3 + E respectively,

• so8 supported on 2E,

• hypermultiplets in 4i ⊗ 4j for i < j,

• one supergravity multiplet, 8 tensor multiplets, and 13 neutral hypermultiplets.

The sp groups living on the Î∗12 curves have been shared with the Ins
8 curves, just like

in figure 8, where O7-planes of different types meet. The so8 has appeared on the E curve

just like in a usual tensor-Higgs transition. Indeed the field content is related to the one

for the perturbative model in appendix B.3 by such a transition.

With one frozen seven-brane: we now consider what happens if only one of the I∗12

is changed to Î∗12 (say D).

As in the previous case, we don’t try to write the field content at the singular locus;

we instead follow the tensor deformations. Here we encountered a problem: we have not

found a credible model that cancels all anomalies after blowing up all those singular points,

perhaps because of some global constraint.
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Figure 14. Tensor branch models obtained by changing in the CP1 × CP1 model one of the I∗12
curves to Î∗12. As discussed in the main text, we were not able to find a consistent assignment when

we have I∗12 on C instead.

What we were able to achieve is the following. We consider the geometry in a situation

intermediate between figure 12 and figure 13(a), namely, we tune the Kodaira type on D

to be Î∗12, but we deform the Kodaira type on C to be I16. Then, the intersections of D

with others are still conformal points and need to be blown up, but the intersections of C

with others are smooth. We then only need to blow up the intersection of C and D, and

the intersections of the residual discriminant and D.

This gives us the geometry in figure 14, and the following spectrum:26

• u8 on 2(C + E),

• sp′4 on E + 1
2D +D1 and sp′′4 on 1

2D +D2 +D3,

• hypermultiplets in 8⊗ 8′, and 8′ ⊗ 8′′, 8′′ ⊗ 8,

• two hypermultiplets in ∧28,

• one supergravity multiplet, 5 tensor multiplets and 16 neutral hypermultiplets.

This is exactly the spectrum of the perturbative model described in appendix B.2.

Note that we chose to blow up the intersections of D with other discriminant loci, while

we decided to deform other intersections. In other words, we chose to go to the tensor

branch side for the conformal points on D whereas we went to the Higgs branch side for

the conformal points on C. This is in accord with our analysis in section 2.3.2, since the

perturbative construction naturally gives a tensor at an O7+-O7− intersection whereas it

gives a hyper at an O7−-O7− intersection.
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A Dimension eight

There are three families [10] of vacua with 16 supercharges in dimension eight. The standard

one has gauge algebra of rank 20, the next one has gauge algebra of rank 12, and the final

one has gauge algebra of rank 4.

The rank-12 case was found in the perturbative type I frame by Bianchi, Prasidi and

Sagnotti in [8] in 1992 and then in the context of heterotic string by Chaudhuri, Hockney

and Lykken in [73] in 1995; the latter construction is known under the name of the CHL

string. An easy generalization of either construction leads to the rank-4 case. The moduli

space of these systems and the possible enhancements of gauge algebras are studied in

detail in [74].

In this appendix, we give an F-theory description of three cases: they are models on

elliptically-fibered K3 with 0, 1, or 2 frozen seven-branes.

A.1 IIB with seven-branes

Let us start by the perturbative IIB setup on the orientifold T 2/Z2. We can either have

zero O7+, one O7+ or two O7+:

−

− −

− , +

− −

− , +

− −

+ (A.1)

with 16, 8 or 0 D7-branes, respectively. The first one, under T-duality, maps to 2 O8− in

type IIA, and then 1 O9− in type IIB. The last one, under T-duality, maps to O8− and

O8+, or to a shift-orientifold of type IIA, and then a shift-orientifold of type IIB, without

any D9-brane.

The second one is more peculiar. One T-duality should combine a pair of two O7−s to

O8−, while the other pair of O7− and O7+ to a shift orientifold. The resulting geometry
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is shown below:
−O8

shift

−O8 . (A.2)

Namely, we consider a T 2 whose complex structure modulus is of the form τ ∈ 1
2+iR,

and take the Z2 flip along the horizontal axis. Then we have just one O8− locus and a

shift-orientifold locus. Another T-duality leads to the Spin(32)/Z2 bundle without vector

structure [10].

A.2 F-theory interpretation

The F-theory representation of the rank-20 case is the standard F-theory compactification

on the elliptically-fibered K3 surface.

The F-theory representation of the rank-12 case is given by an elliptic K3 compactifi-

cation with a single frozen seven-brane.27 We use projective coordinates [z, w] on CP1 and

locate the frozen brane at z = 0:

y2 = x3 + u3(z, w)zx2 + v4(z, w)z4x+ w5(z, w)z7. (A.3)

Here we have used the “Tate form” [43, 77] to present the equation, which involves arbitrary

homogeneous polynomials u3, v4, and w5 of the labeled degrees. By a change of variables,

the equation can be put into Weierstrass form:

y2 = x̂3 + z2

(
− 1

3
u3

3 + z2v4

)
x̂+ z3

(
2

27
u3

3 −
1

3
z2u3v4 + z4w5

)
, (A.4)

from which we can read off the equation of the discriminant locus

∆ = z10
(
4u3

3w5 − u2
3v

2
4 − 18z2u3v4w5 + 4z2v3

4 + 27z4w2
5.
)

(A.5)

Generically, in addition to the frozen seven-brane of type Î∗4 at z = 0, which makes

no contribution to enhanced gauge symmetry, there are 14 additional zeros of the discrim-

inant, which correspond to 14 seven-branes of type I1 (i.e., 14 individual D7-branes) also

contributing no enhanced gauge symmetry. Tuning the coefficients can lead to enhanced

gauge symmetry.

The brane counting becomes clear if we explicitly include a Kodaira fiber of type

I∗0 supporting an so8 gauge algebra: this “uses up” 6 of the 14 D7-branes, but can be

interpreted as an O7−-plane on top of a stack of 4 D7-branes, which is the quantum

splitting of the O7−-plane [9]. Then eight mobile D7-branes remain.

The F-theory representation of the rank-4 8D vacuum with 16 supercharges involves

two frozen seven-branes, which we can locate at z = 0 and w = 0, respectively. The

equation for these models (in Tate form) is

y2 = x3 + u2(z, w)zwx2 + v0(z, w)z4w4x (A.6)

27Note that this is a substantially different description than the ones proposed in [75] and [76], where a

torsion flux on the base CP1 was proposed. It is possible that they are all dual descriptions.
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with frozen brane-locus δ = zw. Note that v0(z, w) is constant, and the x0 term in the

equation vanishes due to degree considerations. This implies that (x, y) = (0, 0) is a section

which has order 2 in the Mordell-Weil group, and suggests a subtle modification of the F-

theory gauge group.28

B CP1 × CP1 model and its flips via branes

B.1 Unflipped case

The original model considered by Bianchi-Sagnotti and Gimon-Polchinski was given in

terms of Type I on T 4/Z2. It has O9− with 16 D9s in the bulk, with 16 O5− at the Z2

fixed points, and 16 D5s.29

Let us determine its massless spectrum. From the bulk closed string modes, we have

one supergravity multiplet, one tensor, and four neutral hypermultiplets. From the Z2

twisted closed strings, one neutral hypermultiplet arises from each Z2 singularity.

As for the open strings, O9− wants to make the gauge algebra on D9 orthogonal.

Therefore the bulk of the 9-brane has Spin(32)/Z2 as the gauge group. But O5− wants to

make the gauge algebra on D9 symplectic. This gives a localized Spin(32)/Z2 holonomy

around the intersection point, and the massless gauge algebra on D9 that can remain is

u16, the intersection of sp16 and so32. This will keep charged hypermultiplets in 2 · ∧216.

One can do the same analysis on the D5-branes, and get the same answer, when all the

D5s are on a single O5−. Finally, the 5-9 strings give hypermultiplets in 16 × 16. The

spectrum is then

• gauge algebras u16 × u′16,

• charged hypermultiplets in 2 · ∧216⊕ 16× 16′ ⊕ 2 · ∧216′,

• one supergravity multiplet, one tensor multiplet, and 20 neutral hypermultiplets.

Anomalies correctly cancel, and u1 parts are eaten [45].

We can take T-duality along two directions and bring this model to the type IIB T 4/Z2

orientifolds with seven-branes, with the structure below:

−

− −

− × −

− −

− (B.1)

where the first T 2 has the coordinate u, the second has the coordinate v, with the orien-

tifolding action sending u→ −u and v → −v individually. The spectrum above are when

all 16 D7s along v are on u = 0 and when all 16 D7s along u are on v = 0.

28We are assuming here that the torsion in the Mordell-Weil group is calculated for frozen F-theory models

in the same way it is calculated for conventional F-theory models [78]. We leave detailed investigations of

this for the future.
29Here the number of D-branes is counted in terms of Type IIB or Type IIA RR-charge, in a way invariant

under T-duality. In simple orientifold models, this number equals the number of mobile D-branes or the

rank of the gauge groups, but in more complicated models such as those discussed in this note, they can

be different.
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B.2 Singly-flipped case

For this, we consider the setup

−

− −

− × +

− −

− (B.2)

with 16 D7s perpendicular to the first T 2 and 8 D7s perpendicular to the second T 2.

To deduce the open string spectrum on the 8 D7s perpendicular to the second T 2, we

just T-dualize one direction of the first T 2 and apply the rules of [18]. When the 8D7s are

on a generic point, one gets sp4 with a full antisymmetric tensor (both the traceless part

and a singlet), and with 16 fundamentals. If they are on O7−, it gets enhanced to u8 with

2 · ∧28, and if they are on O7+, it gets enhanced to sp4 × sp4 with a bifundamental.

For the 16 D7s on the first T 2, we can take the T-dual of the second T 2:

shift

−O6
−O8

−O8

−O6

. (B.3)

This T-duality was derived from the worldsheet point of view in [79].

When 16 D7s are on a single generic point on T 2, the T-dual is just 8 D6s suspended

between two D8s that are in fact the same due to the funny geometry. This is sp4 with one

asym and 16 flavors. When they are all on an O7−, this gets enhanced to u8 with 2 · ∧28.

Although we started from 32 Chan-Paton indices but we got just u8. We give two other

explanations to this somewhat unexpected fact:

• If we T-dualize the second torus twice, this describes instantons (or 5-branes) in

the Spin(32)/Z2 gauge fields on T 2 without vector structure. As discussed in [10], a

minimal flat Spin(32)/Z2 configuration without vector structure is in SU(2) embedded

in so32 as sp1× sp8. Then the instanton needs to be embedded into this sp8; a single

such instanton counts as two instantons in the original Spin(32)/Z2. In other words,

two small instantons of Spin(32)/Z2 need to move together.

• In the original 7-brane description, there are four intersections with transverse O7s;

one is with O7+ and three are with O7−. The former has a monodromy that squares

to −1 and the latter has a monodromy that squares to 1. But one cannot embed

them into O(1): they are not consistent, since the four monodromies need to multiply

to one. To compensate this, one needs an additional flat SO(3) background on the

7-brane.

Summarizing, when 16 D7s perpendicular to the first T 2 are on a single O7− and 8

D7s perpendicular to the second T 2 are on a single O7+, the spectrum is
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• gauge algebras u8 ×
∏
i=1,2(sp4)i,

• charged hypermultiplets in 2 · ∧28⊕ (
⊕

i=1,2 8⊗ 8i)⊕ 81 ⊗ 82,

• one supergravity multiplet, 5 tensor multiplets, and 16 neutral hypermultiplets.

B.3 Doubly-flipped case

Let us finally consider

+

− −

− × +

− −

− (B.4)

with 8 D7-branes on each T 2. Using the analysis as in case II, we see that when 8 D7s

are on a single O7+, the gauge algebra is sp2 × sp2. Considering D7s on both T 2, we have

(sp2)4 in total. The matter spectrum can be worked out as before:

• gauge algebras
∏4
i=1(sp2)i,

• charged hypermultiplets in
⊕

i<j 4i ⊗ 4j ,

• one supergravity multiplet, 7 tensor multiplets, and 14 neutral hypermultiplets.

The anomaly cancels; although there are 8 additional tensors, they do not participate in

the gauge anomaly cancellation. This is as it should be, since they are localized on the

intersections of O7− and O7+, and bifundamentals are supported away from them.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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