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Abstract: CP non-invariance is strongly limited by present experiments, while extra

sources of CP -violation are needed for a successful baryogenesis. Motivated by those

observations we consider a model which predicts spontaneous violation of CP at high

temperature and restoration of CP at present temperature of the Universe. In addition we

propose a dark matter (DM) candidate that meets all known properties of DM. Looking

for a minimal model that satisfies the above conditions leads us to extending the Standard

Model (SM) of fundamental interactions by adding a complex singlet scalar S. We impose

the CP and Z2 symmetries on the scalar potential. With the complex vacuum expectation

value of S at the temperature higher than the EW phase transition, the CP symmetry

is spontaneously broken and a strong first-order electro-weak phase transition is easily

realized. Introducing a dimension-6 effective operator that gives new complex contributions

to the top quark mass, we show that it is easy to yield the observed baryon asymmetry in

our Universe. On the other hand, the CP and Z2 symmetries are recovered after the EW

phase transition so that the present strong constraints on CP violation can be satisfied

and the lighter of <S or =S can be the dark matter candidate. By scanning the parameter

space, we find regions where the model can explain the dark matter relic abundance and

the baryon asymmetry simultaneously while satisfying all other experimental constraints.

Finally, we discuss the explicit CP symmetry breaking in the scalar potential that can help

dynamically eliminate the domains producing the negative baryon asymmetry. It is found

that this can be achieved by a tiny explicit CP -violating phase of O(10−15).
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1 Introduction

In spite of the great success of the Standard Model (SM) of particle physics in explaining

the present visible Universe, there are still many puzzles awaiting to be understood. Among

them, two prominent mysteries are the observation of dark matter (DM) [1, 2] and the origin

of matter-antimatter asymmetry in the Universe [3]. On one hand, the existence of DM

has been firmly established by measurements of galaxy rotation curves [4], gravitational

lensing effects [5], and cosmic microwave background (CMB) [3]. However, the nature of

DM is still out of reach. On the other hand, the observed baryon asymmetry is usually

represented in terms of the following baryon-to-entropy ratio [3]

ηB ≡
nB
s

= (8.61± 0.09)× 10−11 , (1.1)

where nB and s are the densities of baryon number and entropy of the Universe. It is well-

known that a successful baryogeneis theory should satisfy the three Sakharov criteria [6]:

(1) baryon number violation; (2) C and CP violations; and (3) a departure from the ther-

modynamic equilibrium. One intriguing mechanism is provided by the electroweak (EW)

baryogenesis [7–13]. In this framework, when the strong first-order EW phase transition

(EWPT) occurs, the baryon-number-violating EW sphaleron processes [14–16] can bias the

CP asymmetry produced around the EWPT bubble wall into the baryon asymmetry. Un-

fortunately, in the SM, the EWPT is found to be a crossover [17–19], and the CP violation

provided by the CKM matrix is too small to account for the observed asymmetry [20–23].

Therefore, both the DM and EW baryogensis require new physics beyond the SM.

In the present work, we try to explain the observed DM relic density and the baryon

asymmetry simultaneously by extending the SM by a complex EW singlet scalar S [24–36].
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Note that one condition for the EW baryogenesis is that the first-order EWPT should be

strong enough, which is usually parametrized by [37]

vc
Tc

> 1 , (1.2)

where vc is the SM Higgs vacuum expectation value (VEV) at the critical temperature Tc.

This condition guarantees the produced baryon asymmetry in the EW symmetry-breaking

phase is not washed out by the EW sphalerons. Recently reliability and gauge invariance

of eq. (1.2) have been questioned in the literature [38]. Moreover, additional CP violating

(CPV) interactions required by the baryogenesis are severely constrained by the negative

results in the electric dipole moment (EDM) searches for electrons [39] and neutrons [1].

Both conditions can be easily satisfied by introducing an extra complex scalar singlet S

and imposing the Z2 and CP symmetries. In our model, the phase transition (PT) follows

a two-step pattern in which S firstly acquires a nonzero complex-valued VEV, and then

the EWPT goes from (0, wce
iα/
√

2) to (vc, 0) where the two values in the bracket represent

the VEVs of the SM Higgs and the singlet (〈h〉, 〈S〉). It will be shown that for the complex

scalar, like in the case of its real singlet cousin [36, 40–57], there is a large barrier at tree

level so that the EWPT can easily satisfy eq. (1.2). Furthermore, the complex 〈S〉, together

with the following dimension-6 effective operator

O6 =
S2

Λ2
Q̄3LH̃tR + H.c. , (1.3)

breaks the CP symmetry spontaneously, which is a necessary condition for the EW baryo-

genesis. Here Q3L and tR denote the third-generation left-handed quark doublet and right-

handed top quark fields, H̃ = iσ2H
∗, and Λ is a cutoff scale parametrizing the amplitude

of this effective operator. After the EWPT, the Z2 and CP symmetries are restored, so

that the lighter real component of S can be an ideal DM candidate stabilized by the Z2

symmetry, and strong constraints for CP violations are naturally avoided [24, 33]. This

model can be regarded as a realization of the finite-temperature spontaneous CPV EW

baryogenesis mechanism proposed in refs. [24, 33, 58]. Also, we would like to mention

that top-related effective operators similar to O6 for real and complex singlet scalars have

already been discussed in refs. [32, 51–53, 59–61].

The paper is organized as follows. In section 2, we present our model and analyze

its strong first-order EWPT. Then we discuss the DM phenomenology and EW baryo-

genesis in the section 3 and 4, where a large-scale random scan of parameter space is

performed. Unfortunately, we were unable to find parameters which could accommodate

the DM relic abundance and EW baryogenesis simultaneously. In order to search for such

models, we perform a random scan again in section 5, by focusing on the region where DM

particles annihilate mainly through the SM Higgs resonance. One problem that always

plagued models with spontaneous CPV baryogenesis is the appearance of the domains of

EW symmetry-breaking vacua which give rise to the antibaryon number excesses during

the EW baryogenesis [24, 25, 33, 58]. In section 6, we show how to eliminate these domains

by introducing a very tiny explicit CPV phase in the scalar potential. Finally, we conclude

in section 7.
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2 The model and electroweak phase transition

The model extends the SM by addition of a complex scalar S = (s + ia)/
√

2 that is odd

under a Z2 symmetry in order to guarantee the stability of the lighter of S components.

We also assume the CP symmetry in the dark sector so that the couplings involving S

should be real. Thus, the extended scalar potential at zero temperature can be written as

follows:

V0(H,S) = λH

(
|H|2 − v2

0

2

)2

− µ2
1(S∗S)2 − µ2

2

2

(
S2 + S∗2

)
+λ1(S∗S)2 +

λ2

4

(
S2 + S∗2

)2
+
λ3

2
|S|2

(
S2 + S∗2

)
+|H|2

[
κ1 (S∗S) +

κ2

2

(
S2 + S∗2

)]
= −1

2
λHv

2
0h

2 +
1

4
λHh

4 − 1

2

(
µ2

1 + µ2
2

)
s2 − 1

2

(
µ2

1 − µ2
2

)
a2

+
1

4
(λ1 + λ2 + λ3) s4 +

1

4
(λ1 + λ2 − λ3) a4

+
1

4
(κ1 + κ2)h2s2 +

1

4
(κ1 − κ2)h2a2 +

1

2
(λ1 − λ2)s2a2 + const. (2.1)

where H = (0, h/
√

2)T represents the SM Higgs doublet written in the unitary gauge. In

order for the later convenience, we have expanded the Lagrangian in terms of the compo-

nents h, s and a. It is easy to see that the final potential is a function of h2, s2 and a2,

which can be traced back to the assigned Z2 and CP symmetries. Since we are interested in

the PT in this model, we need to calculate the leading-order finite-temperature corrections

in the high-temperature expansion, which is given by

VT =
1

2
chT

2h2 +
1

2
csT

2s2 +
1

2
caT

2a2 , (2.2)

where

ch =
3g2

16
+
g′2

16
+
y2
t

4
+
λH
2

+
κ1

12
,

cs =
1

6
(2λ1 + κ1 + κ2) +

λ3

4
,

ca =
1

6
(2λ1 + κ1 − κ2)− λ3

4
. (2.3)

Altogether, the total finite-temperature Lagrangian is Vtot = V0 + VT .

It has recently been pointed out in ref. [62] that one necessary condition for a theory

with a complex scalar S to achieve spontaneous CP violation is the U(1) symmetry related

to S is explicitly broken in the scalar potential by at least two terms different dimesnion.

It is obvious that the Lagrangian in eq. (2.1) satisfies this condition, which may break CP

symmetry by the complex VEV of S. In the present paper, we explore the possible EWPT

from a CPV EW-symmetric vacuum with (0, wce
iα/
√

2) to the CP -symmetric EW-broken

vacuum (vc, 0), in which the two entries in the bracket denote the VEVs of the SM Higgs
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〈h〉 and the singlet 〈S〉. In order to describe this PT, we follow the method in ref. [52] by

rewriting the finite-temperature potential as follows:

Vtot =
λhs
4

(
h2 − v2

c +
v2
cs

2

w2
c cos2 α

)2

+
λha
4

(
h2 − v2

c +
v2
ca

2

w2
c sin2 α

)2

+
λsa
4

(
s2 sin2 α− a2 cos2 α

)2
+
κhs
4
h2s2 +

κha
4
h2a2

+
1

2

(
T 2 − T 2

c

) [
chh

2 + css
2 + caa

2
]

= −1

2

[
(λhs + λha)v

2
c + chT

2
c

]
h2 − 1

2

(
λhsv

4
c

w2
c cos2 α

+ csT
2
c

)
s2

−1

2

(
λhav

4
c

w2
c sin2 α

+ caT
2
c

)
a2 +

T 2

2

(
chh

2 + css
2 + caa

2
)

+
1

4
(λhs + λha)h

4 +
1

4

(
λsa sin4 α+

λhsv
4
c

w4
c cos4 α

)
s4 +

1

4

(
λsa cos4 α+

λhav
4
c

w4
c sin4 α

)
a4

+
1

4

(
κhs +

2λhsv
2
c

w2
c cos2 α

)
h2s2 +

1

4

(
κha +

2λhav
2
c

w2
c sin2 α

)
h2a2 − λsa

2
sin2 α cos2 αs2a2 .

(2.4)

By comparing the second lines in eqs. (2.1) and (2.4) at T = 0, we can read off the critical

temperature for the first-order EWPT

T 2
c = λH

(
v2

0 − v2
c

)
/ch , (2.5)

and the following relations among various parameters

λH = λhs + λha ,

κ1 =
1

2
(κhs + κha)+

v2
c

w2
c

(
λhs

cos2 α
+

λha

sin2 α

)
, κ2 =

1

2
(κhs − κha) +

v2
c

w2
c

(
λhs

cos2 α
− λha

sin2 α

)
,

λ1 =
λsa cos2(2α)

4
+

v4
c

4w4
c

(
λhs

cos4 α
+

λha

sin4 α

)
, λ2 =

λsa
4

+
v4
c

4w4
c

(
λhs

cos4 α
+

λha

sin4 α

)
,

λ3 =
λsa
2

(
sin4 α−cos4 α

)
+

v4
c

2w4
c

(
λhs

cos4 α
− λha

sin4 α

)
. (2.6)

We can also obtain the zero-temperature masses for the three scalars, h, s and a, as follows

m2
h = 2λHv

2
0 ,

m2
s =

1

2
κhsv

2
0 + λH

(
v2

0 − v2
c

)( λhsv
2
c

λHw2
c cos2 α

− cs
ch

)
,

m2
a =

1

2
κhav

2
0 + λH

(
v2

0 − v2
c

)( λhav
2
c

λHw2
c sin2 α

− ca
ch

)
. (2.7)

The advantage to introduce the critical-temperature Lagrangian in eq. (2.4) is that it

makes easier the analysis of the first-order EWPT. Here we assume that all the dimension-

less couplings in eq. (2.4) are positive, thus the potential are absolutely stable at Tc with
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(0, wce
iα/
√

2) and (vc, 0) the two vacua in the potential. Furthermore, the correct direction

of the EWPT requires

chv
2
c > csw

2
c cos2 α+ caw

2
c sin2 α . (2.8)

A further condition in eq. (1.2) is needed to ensure the EWPT strong enough in order to

suppress baryon number washout effects in the EW broken phase.

For simplicity, in our numerical scanning of parameter space, we use following 7 pa-

rameters in the Lagrangian of eq. (2.4) as free parameters

v0

vc
,
vc
wc

, α , λha , λsa , κha , κhs , (2.9)

while other parameters can be derived with relations in eqs. (2.5)–(2.7). It is seen from

eq. (2.5) that the critical temperature Tc exists as long as v0/vc > 1. Also, due to the Z2 in-

variance of the effective operator O6, the two vacua with 〈S〉 = wce
iα and −〈S〉 = wce

i(α+π)

lead to the same CPV and thus the same baryon asymmetry. Therefore, without loss of

generality, we can restrict the CPV phase α in the range of [−π/2, π/2). Finally, note that

the Lagrangian V0 in eq. (2.1) is very useful for our discussion of particle phenomenology

at zero temperature. In order to keep the perturbativity of the model at the EW scale, the

dimensionless parameters in eq. (2.1) cannot be too large. For the purpose of illustration,

we enforce these parameters to be |λ1,2,3, κ1,2| 6 5 [63].

3 Dark matter phenomenology

After the EWPT, the Z2 symmetry is recovered, so that the lightest Z2-odd particle can

be the DM candidate. In the present model, we denote the DM particle as X which is the

lighter scalar of s and a. Note that the dark sector couples to the SM sector only through

the interactions in the scalar potential, apart from the effective operator O6, so that the

DM phenomenology is mainly determined by its coupling to h. In terms of parameters in

eq. (2.4), we can rewrite this coupling to be λhXh
2X2/4 with

λhX =

 κhs + 2λhsv
2
c

w2
c cos2 α

, X = s

κha + 2λhav
2
c

w2
c sin2 α

, X = a
. (3.1)

After the spontaneous EW symmetry breaking, the above coupling can generate the triple-

scalar interaction (λhXv0)hS2.

With the above couplings, the DM X relic abundance can be obtained via its annihi-

lations into various SM particles by the SM Higgs exchange. In our numerical analysis, we

apply the code MicrOMEGAs [64, 65] to perform such calculations. In this and next sections,

we do not require the model to explain all of the DM relic density. Rather, we allow the

DM to be subdominant which is parametrized by the following DM density fraction [53]

fX =
ΩXh

2

ΩDM,obsh2
, (3.2)

in which ΩDM,obsh
2 = 0.1186 is the central value of the most recent DM abundance mea-

surement by the Planck Collaboration [3].
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The Higgs portal coupling in eq. (3.1) also induces the signals of DM direct and indirect

detections. For the DM direct detection, the SM Higgs mediation gives the following spin-

independent DM-nucleon (XN) scattering cross section

σXN =
λ2
hXf

2
N

4π

µ2
XNm

2
N

m2
Xm

4
h

, (3.3)

where fN = 0.3 denotes the Higgs-nucleon coupling [66–71], and µXN = mNmX/(mN +

mX) is the DM-nucleon reduced mass with mN being the nucleon mass. In the parameter

space of interest, the latest XENON1T experiments [72] set the most stringent constraint

up to now. In order to directly compare with the experimental upper bounds, we would

like to define the following effective DM-nucleon cross section [53]

σeff
XN ≡ fXσXN , (3.4)

in order to take into account the situation when X is subdominant as the DM relic density.

For the DM indirect detections, the DM annihilations through the Higgs portal also

give rise to the γ-ray excesses in the spheroidal dwarf galaxies, e± signals in our galaxy, and

modification of the ionization history of our Universe, which are strongly constrained by

the observations from Fermi-LAT [73], AMS-02 [74, 75] and Planck [3] satellites. It is seen

in ref. [76] that for DM mass above 1 GeV, the Fermi-LAT measurements of γ-rays from

spheroidal dwarfs gives the strongest upper bound on the DM annihilations. Moreover,

note that the final products in the DM annihilations via the Higgs portal consists of bb̄,

ZZ, W+W−, and light quark pairs. It is shown in ref. [73] that all of these channels

yield almost the universal upper bounds for the DM annihilations. Therefore, we apply

the Fermi-LAT constraints [73] on the bb̄ final state when mX > mb, while those on light

quarks for the case with mX < mb.

Further constraints on our DM model are provided by collider searches. In particular,

when mX < mh/2, the DM particle would lead to the invisible decay of the SM Higgs

boson. The predicted Higgs invisible width is

Γ(h→ XX) =
λ2
hXv

2
0

32πmh

√
1−

4m2
X

m2
h

, (3.5)

which should be compared with the current upper bound Br(h → XX) 6 0.24 [1]. More-

over, the CMS monojet search [77] can provide another test of the present model. We use

the code incorporated in MicrOMEGAs [78] to exclude the parameter points at the 95% C.L.

with the CLs method [79, 80].

In our numerical study, we apply the random scan over the whole parameter space

by taking into account all of the above constraints from the DM physics and the strong

first-order PT. After a random scan over 2× 108 model parameter points where the input

parameters vary in the following ranges:

v0/vc = 1.0 ∼ 10.0 , vc/wc = 0.1 ∼ 10.0, α = −π/2 ∼ π/2 ,
λha = 0 ∼ λH , λsa = 0 ∼ 10.0 , κhs,ha = 0 ∼ 10.0 , (3.6)

– 6 –
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we find 388 points consistent with the DM searches and the strong first-order PT require-

ment. The distributions of the surviving points for various physical parameters of interest

are shown in figure 1. One observes that the distribution of DM masses can be divided into

two regions: (I) 55 ∼ 65 GeV, and (II) 120 ∼ 170 GeV. The DM-Higgs coupling are dis-

tributed in the range 10−3 < λhX < 3 with the largest peak around 2 and a relatively small

one at 0.03. We find that all models can only give a subdominant DM relic density, with

its typical fraction around 10−4 ∼ 10−5. The values of vc lie in the range 90 ∼ 210 GeV

with the peak at 190 GeV, while the critical temperature Tc is found to be between 63 GeV

and 115 GeV. The parameter vc/Tc signalling the strength of the EWPT is found to be

evenly distributed between 1 and 3, which means that it is easy for this model to generate

strong first-order PTs. Finally, the normalised histogram for the modulus of the complex

scalar VEV wc ≡ |S| is strongly peaked around 100 GeV, while its phase α ≡ arg(S) is

seen to be distributed almost symmetric about the origin with two peaks at ±π/4.

We now turn to the DM physics in this complex singlet model. We show in figure 2 the

scatter plot of the accepted parameter points in the mX -λhX (left panel) and the mX -fX
(right panel) planes. The gray points represent the models ruled out by the DM direct

detection experiment XENON1T, while the other color (cyan+pink+red) points denote

those consistent with the DM constraints and the baryon-asymmetry washout bound in

eq. (1.2). As a result, it is observed that the aforementioned two DM mass regions actually

correspond to two different mechanisms to generate the DM relic density. When the DM

mass mX is in the narrow region (I), the DM annihilation during its thermal freeze-out is

enhanced greatly by the SM Higgs resonance effect, even though the DM-Higgs coupling

λhX is always smaller than 1 and can be as small as 10−3. In contrast, the models in the

DM mass region (II) yield their subdominant DM relic densities with fX ∼ O(10−5) by

taking λhX larger than 1.

Moreover, we find that the strongest constraint on the DM properties is given by

the XENON1T upper limits on the spin-independent DM-nucleon cross sections, which is

clearly shown in mX versus σeff
XN plot in figure 3. The experiments from the DM indirect

detections and collider searches do not provide any additional useful constraints to the

models. This feature can be understood as follows. The DM physics in the present model

is essentially controlled by two parameters, the DM mass mX and its Higgs portal coupling

λhX . For a given DM mass, all of the experimental constraints can only limit λhX . Due to

the extreme accuracy of DM direct detections, other kinds of experiments cannot provide

competitive sensitivity.

Finally, note that none of models left in our random scan can give rise to the observed

DM relic abundance. As shown in the mX -fX plane in figure 2, the fraction of DMs in

the high-mass region (II) is constrained to be less than 10−4 by the DM direct detections,

while the DMs in the Higgs-resonance region (I) can have the fraction of O(0.1) even with

relatively small couplings λhX . 1.

4 Electroweak baryogenesis

In the present model, when the complex scalar S acquires a complex VEV 〈S〉 = wce
iα/
√

2,

the CP symmetry is broken spontaneously, which, assisted by the dimension-6 effective

– 7 –
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Figure 1. The distributions of the parameters for the points satisfying the strongly first-order PT

conditions and all the DM constraints. Note that since s and a are equivalent in the scalar potential,

the distributions for the couplings λhs and λha are essentially the same, so are for couplings κhs
and κha. Thus, we only show one plot for either pair of couplings.
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Figure 2. The projected parameter space in the mX -λhX plane (left) and in the mX -fX plane

(right). The cyan, pink, red, and blue points are those satisfying the strongly first-order PT

conditions and the DM constraints, while the gray points are excluded by the DM direct detection

experiment XENON1T. The cyan points are excluded by the conditions LwTc > 3 and α < 0, while

the pink points by the cutoff scale conditions Λ > 500 GeV and w2
c/Λ

2 < 0.5. The red points satisfy

all the constraints.
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Figure 3. The projected parameter space in the mX -σeff
NX plane. The color coding of the points

is the same as that in figure 2. The blue solid curve represents the most recent XENON1T upper

limits on the spin-independent DM-nucleon cross sections.
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operator O6 in eq. (1.3) can generate a new complex-valued contributions to the top-quark

Yukawa coupling

w2
ce
i2α

2Λ2
Q̄3LH̃tR + H.c. . (4.1)

The first-order EWPT proceeds via the nucleation of EW-symmetry-breaking bubbles

in the high-temperature EW symmetric phase. Due to the spontaneous breaking of the Z2

and CP symmetries in the EW symmetric phase, it is expected that the whole Universe can

be divided by many domains characterised by four distinct vacua, 〈S〉 = ±wce±iα/
√

2, each

of which occupy the same volume [24, 25, 58]. However, it is evident from eq. (4.1) that the

CPV phase induced by the vacua ±wceiα/
√

2 is opposite of that in the vacua ±wce−iα/
√

2.

Thus, the yielded baryon asymmetries obtained in these two pairs of vacua should be also

opposite, and would annihilate with each other when different bubbles collide. As a result,

the net baryon asymmetry left after the EW phase transition would vanish. One simple

way to avoid such annihilation of baryon asymmetry is to introduce an explicit CPV phase

in the scalar potential eq. (2.1) [24, 25, 58], which will be discussed in section 6. In this and

next sections, we only consider the baryon asymmetry obtained with the bubble nucleation

from one specific EW symmetric vacuum with 〈S〉 = wce
iα/
√

2. Note that the effective

operator O6 respects the Z2 symmetry, so that the CPV effects in eq. (4.1) from ±wceiα/
√

2

are the same. This indicates that the phase α can be restricted between −π/2 and π/2

without any loss of generality.

With the new complex contribution to the top-quark Yukawa coupling in eq. (4.1), the

top quark mass inside the bubble wall becomes spatially varying, which is given by

mt(z) =
yt√

2
h(z)

(
1 +

S(z)2

ytΛ2

)
≡ |mt(z)|eiθ(z) , (4.2)

where S(z) and h(z) denote the field profiles of S and the SM Higgs around the bubble wall

with z the coordinate transverse to it. Here we assume that the bubble wall has already

been large enough so that we can ignore the wall curvature and approximate it as planar.

Now we follow the procedure given in ref. [52] to approximate the bubble wall profile

analytically. Firstly, we assume that the field configurations in the vicinity of the wall is

given by

S(z) ≡ wce
iα

2
√

2
[1 + tanh(z/Lw)] , (4.3)

h(z) ≡ vc
2

[1− tanh(z/Lw)] , (4.4)

where Lw represents the width of the bubble wall. Next we approximate the wall width

with the thin-wall approximation. The tunnelling path can be obtained by extremizing the

following Euclidean action [52]

SE =

∫ ∞
−∞

dτ

[
1

2
(∂τh)2 +

1

2
(∂τs)

2 + (∂τa)2 + VT (h, s, a)

]
, (4.5)
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with the boundary conditions

h(−∞) = vc , h(∞) = 0 , h′(±∞) = 0 ,

s(−∞) = 0 , s(∞) = wc cosα , s′(±∞) = 0 ,

a(−∞) = 0 , a(∞) = wc sinα , a′(±∞) = 0 . (4.6)

where VT is the finite-temperature effective scalar potential in eq. (2.4). We have rewritten

S = (s+ ia)/
√

2 as its real and imaginary components, and the asymptotic values of s and

a approach to their values at the vacua 〈S〉. It is expected that the final path would pass

or be very close to the scalar potential saddle point, whose potential value is given by

V× =
N×
D×

, (4.7)

where

N× = v4
cw

2
c

(
κha + κhs + (κhs − κha) cos(2α)

)2(
128λhsλhav

4
c + 3(λhs + λha)λsaw

4
c

+(λhs + λha)λsaw
4
c

(
cos(8α)− 4 cos(4α)

))
,

D× = 4096λhsλha(κhs + κha)v
6
c + 768

(
κ2
hsλha + κ2

haλhs
)
v4
cw

2
c

+96(κhs + κha)(λha + λhs)λsav
2
cw

4
c + 2λsa(7κ

2
ha + 10κhaκhs + 7κ2

hs)w
6
c

−8 cos(2α)
(

512(κha − κhs)λhsλhav6
c + 128(κ2

haλhs − κ2
hsλha)v

4
cw

2
c

+4(κha − κhs)(λha + λhs)λsav
2
cw

4
c +

(
κ2
ha − κ2

hs

)
λsaw

6
c

)
−w2

c cos(4α)
(
− 256(κ2

hsλha + κ2
haλhs)v

4
c + 128(κha + κhs)(λha + λhs)λsav

2
cw

2
c

+
(
17κ2

ha + 30κhaκhs + 17κ2
hs

)
λsaw

4
c

)
+λsaw

4
c

(
12 cos(6α)(κha − κhs)

(
4(λha + λhs)v

2
c + (κhs + κha)w

2
c

)
+ cos(8α)

(
32(κha + κhs)(λha + λhs)v

2
c + 2

(
κ2
ha + 6κhaκhs + κ2

hs

)
w2
c

)
+8 cos(10α)(κha − κhs)

(
4(λha + λhs)v

2
c + (κha + κhs)w

2
c

)
−2 cos(12α)(κha − κhs)2w2

c

)
. (4.8)

Note that, if we replace the coordinate z with the Euclidean time τ , eq. (4.3) satisfies

the boundary conditions in eq. (4.6), which means that it is a good estimation of the

true solution to the tunnelling path. Therefore, the parametric dependence of Lw of the

Euclidean action SE can be estimated as follows:

SE =
1

6Lw

(
v2
c + w2

c

)
+ LwV× , (4.9)

where the first term is obtained by putting solution of eq. (4.3) into the kinetic terms of

three scalars in the action eq. (4.5), while the second term is from the potential term by

taking into account that the dominant contribution comes from the potential barrier part
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within the spatial extension of Lw. By extremizing the action in eq. (4.9), we can obtain

the following approximate expression for Lw

Lw =
v2
c + w2

c

6V×
. (4.10)

We have checked that this bubble wall width formula is consistent with the real scalar one

in ref. [52].

It is shown in refs. [53, 81–84] that the spatially-varying top mass in eq. (4.2) would

generate CPV sources on the top and anti-top quarks when they pass through the wall.

The produced CP violation on the wall would transport to the region far inside the sym-

metric phase, where it biases the anomalous EW sphaleron process to produce the baryon

asymmetry. In the literature, this picture is realized by solving the transport equations for

chemical potentials µi and velocity perturbations ui of various SM particles i [81–83]. In

particular, the most relevant SM particles in our case involve the left-handed top tL, the

left-handed bottom bL, the right-handed top tR. In our work, we make use of the trans-

port equations derived in ref. [84], which were obtained with the semiclassical baryogenesis

framework [81–83]. We solve these transport equations by the shooting method [85], and

obtain the left-handed baryon chemical potential with the following formula:

µBL
=

1

2
(1 + 4K1,tL)µtL +

1

2
(1 + 4K1,bL)µbL + 2K1,tRµtR , (4.11)

where the definitions of the coefficients K1,i (mi(z)/T ) are given in refs. [84, 86]. After

integrating µBL
over the symmetric phase with z > 0, the baryon asymmetry is given by

ηB =
nB
s

=
405Γsph

4π2vwg∗T

∫ ∞
0

dzµBL
(z)e−45Γsph|z|/(4vw) , (4.12)

where Γsph ' 10−6T is the anomalous sphaleron rate in the EW symmetric phase [87], and

g∗ = 106.75 is the effective degrees of relativistic freedom in the plasma. Here we take the

bubble wall velocity to be vw = 0.1. It is shown [53] that the predicted baryon asymmetry

does not depend on the value of vw in the range 0.01 ≤ vw ≤ 0.1, since for a small vw,

µBL
∝ vw which is cancelled by the factor vw in the denominator of eq. (4.12). Figure 4

shows one prototypical solution to the transport equations, as well as its predicted left-

handed baryon chemical potential µBL
, which can give rise to a baryon asymmetry equal

to the observed value.

Of the models passing through all of the DM and strong first-order PT constraints in

section 3, they should satisfy two further conditions. Note that the transport equations are

derived with the semiclassical framework, so that the consistency requires that Lw � 1/Tc.

In the literature, it is usually assumed to have LwTc > 3 [53]. The distribution of LwTc for

all the surviving models is shown in the upper left plot of figure 5, from which we know that

nearly half of the models can be allowed by the above bound. Also, it is found that only

the negative α can give rise to the correct sign of baryon asymmetry. Therefore, we firstly

pick up the models consistent with both conditions, which are shown in the left panel of

figure 6 as the points with red and pink colors.
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Figure 4. An example of solutions to the transport equations and its obtained left-handed baryon

chemical potential µBL
as functions of the coordinate z transverse to the bubble wall. All of the

chemical potentials µi and velocities ui are noralized with respect to the critical temperature Tc,

while the coordinate z is normalized with respect to the bubble wall width Lw. The corresponding

parameters are vc = 155.9 GeV, wc = 525.3 GeV, α = −1.225, Tc = 93.85 GeV, LwTc = 5.111 and

Λ = 1131 GeV, which can give the observed baryon asymmetry.
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Figure 5. Distributions of the bubble wall thickness Lw multiplied by Tc, the logarithm of baryon

asymmetry ηB normalized by its observed value ηB0 with a fixed cutoff scale Λ = 1 TeV, the cutoff

Λ by rescale the ηB to its observed value, and w2
c/Λ

2.
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Figure 6. Scatter plots in CPV phase α vs. bubble wall width LwTc (left) and in Λ vs. LwTc
(right) for the models which satisfy all of the DM and strong first-order PT constraints. The cyan

points are excluded by the validity of the semiclassical framework LwTc ≥ 3 and the correct sign of

baryon asymmetry α < 0, while the pink and red points satisfy both conditions. The pink points

are further ruled out by the large cutoff condition Λ > 500 GeV and w2
c/Λ

2 < 0.5.

For the selected models, we calculate the baryon asymmetry produced during the first-

order EWPT. We first calculate the baryon asymmetry ηB for each model by taking the

cutoff scale in O6 to be fixed at Λ = 1 TeV. We display the distribution of the yielded ηB
in units of the observed value ηB0 = 8.61× 10−11 in the upper right plot of figure 5, which

shows that nearly 10% of models surpass ηB0.

We can represent the same information by rescaling the cutoff scale Λ so that ηB
corresponds to its measured value. The distribution of the obtained cutoff scales is shown

in the lower right plot of figure 5. Note that the cutoff scale Λ cannot be arbitrarily small for

the reliable use of O6. Here we restrict Λ > 500 GeV [53], which also singles out about 15%

models. Moreover, we find that large values of the baryon asymmetry are mostly positively

correlated to large values of wc, which can be easily understood from eqs. (4.2) and (4.3)

in that the top quark mass contribution from O6 is proportional to w2
c . In order that the

dimension-6 operator does not change the top quark mass too much compared with the

SM Yukawa couplings [53], we further make the additional constraint w2
c/Λ

2 < 0.5. The

distribution of w2
c/Λ

2 in the lower right plot of figure 5 demonstrates that most models do

satisfy this limit. The right panel of figure 6 shows the constraining power of these two

conditions in the Λ-LwTc plane, which indicates that it is relatively easy for the present

model to generate the observed baryon asymmetry. We also illustrate the impact of the EW

baryogenesis constraints on the DM parameter space in figures 2 and 3. It is evident that

the models which are capable of explaining the cosmological matter-antimatter asymmetry

are only located in the Higgs resonance region (I), while the DM high-mass region (II) is

completely ruled out.
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Figure 7. The same distributions as in figure 5 but for the second scan of models which tries to

explain the DM relic abundance and the baryon asymmetry in the Universe simultaneously.

5 Models with the correct dark matter relic density

In previous sections, after performing the large-scale scan of parameter space, only when

the DM mass is nearly half of the SM Higgs mass can we find the models to accommodate

baryon asymmetry. Unfortunately, all of allowed models cannot give rise to the observed

DM relic density. Therefore, the problem we are concerned with in this section is if it

is possible to find models which can explain the observed DM relic density and baryon

asymmetry simultaneously while they are consistent with all experimental constraints. In

order to achieve this, we make a dedicated parameter scan by fixing the DM mass in the

Higgs-resonance region mX = 55 ∼ 65 GeV and allowing the DM relic abundance within

the 1σ range of the Planck measured value ΩDMh
2 = 0.1186± 0.0020 [3]. We also restrict

the DM to be the pseudoscalar a without loss of generality since s and a are equivalent in

the scalar potential in eq. (2.1). Furthermore, the CPV phase is required to be in the range

−π/2 ≤ α ≤ 0 in order to achieve the correct sign of baryon asymmetry, and the bubble

wall width satisfies LwTc ≥ 3 for the validity of semiclassical treatment of the transport

equations.

As a result, with the scanning of about 2× 107 models, we can find 30 models in total

to satisfy all of the above requirements. For the remaining models, we then calculate the

baryon asymmetry for each of them. Following section 4, the results can be represented

in terms of either the predicted baryon asymmetry ηB by fixing Λ = 1 TeV or the cutoff

scale Λ by fixing the asymmetry to be the observed one. The final distributions of various

physical quantities are shown in figures 7. If we further impose the conditions Λ > 500 GeV

and w2
c/Λ

2 < 0.5 to guarantee the appropriate use of the effective operator O6, we finally

select 8 models which can meet these two extra limits. The distribution of these points are

shown as the red and blue points in the left panel of figure 8, from which it is seen that
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Figure 8. Scatter plots of Λ vs. LwTc (left) and mX vs. λhX (right) according to the data

obtained by the second scan. The pink, red and blue points represent models which can explain

the DM relic abundance and the baryon asymmetry at the same time. The red and blue points

are allowed by Λ > 500 GeV and w2
c/Λ

2 < 0.5 for the validity of the effective operator O6, while

the pink points are excluded. The bigger blue points represent the benchmark models which can

even satisfy w2
c/Λ

2 < 0.2. The gray points on the right plot shows those which are ruled out by the

current DM direct detection upper bounds.

these conditions favor the models with relatively small bubble wall with LwTc . 8. We also

plot as bigger blue dots the models which can be in accord with more stringent constraints

w2
c/Λ

2 < 0.2, which further reduce the wall width to LwTc . 5. We can also show the

baryon asymmetry constraints on the DM properties in the selected models by making the

plot in the plane of the DM mass mX vs. its Higgs portal coupling λhX , which is given

by the right panel of figure 8. As a result, the DM mass is predicted in the small range

of 55.5 GeV . mX . 58 GeV, and the coupling to be λhX ∼ O(10−3). It is interesting

to note that the allowed DM mass is a little smaller than the half of the SM Higgs mass

mh = 62.5 GeV. In this situation, the DM thermal kinetic energies at the freeze-out time

increase the center-of-mass energy of two-DM system so that the total energy approaches

to the SM Higgs pole mass more closely, which makes the Higgs resonance enhancement

more pronounced. It turns out that the DM-Higgs coupling λhX can be reduced greatly,

which is further helpful for the model to escape the severe DM direct detection bound.

6 Domain walls and explicit CP violation

In the previous sections, we simply assumed that at the time just before the EWPT, the

Universe should be filled with only one EW symmetric vacuum with (0, wce
iα/
√

2) where

the two entries represent the VEVs of the SM Higgs and the complex scalar, respectively.

However, the Universe should experience a two-step PT in the present model. In the first

step, the EW symmetry is kept while the VEV of S breaks Z2 and CP symmetries in
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the scalar potential. Thus, there is expected to be four distinct vacua, parametrized by

〈S〉 = ±wde±iα. Here we take wd to be positive, which should be distinguished from its

critical temperature value wc. We also define the phase in the range 0 ≤ α ≤ π/2, which

is different from that in the previous sections. These four vacua are expected to occupy

the same spatial volume in the whole Universe, and they are separated by different kinds

of domain walls. When the temperature drops down to the EW critical temperature Tc,

the EWPT occurs when the bubbles of the unique EW breaking phase with (vc, 0) begin

to nucleate inside every vacuum patch. On the other hand, the transitions from the vacua

(0,±wceiα/
√

2) should generate the negative value of the baryon asymmetry, which is in

contrast to the vacua (0,±wce−iα/
√

2) leading to the positive baryon number. Eventually,

when all of the EW breaking bubbles collide, the produced baryon asymmetries in different

patches would be neutralized with each other due to their opposite signs. Therefore, it is

generically regarded that the models with exact CP symmetry cannot generate the net

baryon asymmetries [24, 25, 58].

In the literature, one easy way to avoid such an exact baryon-number cancellation is

to introduce a explicit CPV phase in the scalar potential V0 to dynamically remove the

vacua (0,±wceiα/
√

2) with the wrong sign of baryon asymmetry [24, 25, 58]. We follow

this line of thinking in the present section and focus on the case in which the explicit CP

violation takes place through the quartic term S4. In particular, we try to estimate the

required size of the corresponding CPV phase. Note that S4 appears only through the term

λ2(S2 +S∗2)2/4 in eq. (2.1). Thus, we would like to rewrite this term in the following way

V4 =
λ2e

iδ

4
S4 +

λ2e
−iδ

4
S∗4 +

λ2

2
|S|4 , (6.1)

in which we have introduced a small phase δ while still kept λ2 as a real parameter. With

this explicit CP violation, the vacua (0,±wdeiα/
√

2) at T > Tc would have the potential

density

V +
T =

1

8
λ2w

4
d cos(δ + 4α) + V CP

T , (6.2)

while the potential density for (0,±wde−iα/
√

2) is

V −T =
1

8
λ2w

4
d cos(δ − 4α) + V CP

T , (6.3)

where V CP
T denotes other terms which is invariant under the CP transformation. Therefore,

the potential difference between two pairs of vacua is given by

∆VT = −1

4
λ2w

4
d sin(4α) sin δ . (6.4)

If ∆VT > 0, then it indicates that the vacua (0,±wde−iα/
√

2) with the right-sign baryon

asymmetry is more energetically favored against the wrong-sign vacua (0,±wdeiα/
√

2).

It is shown in refs. [25, 88] that the disappearance of the wrong-sign vacua can proceed

via the movement of the domain walls interpolating between the wrong-sign and right-

sign vacua. In this process, the volume originally occupied by the wrong-sign vacua is

transferred into the right-sign counterparts. Note that a domain wall begin to move when
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the energy scale of the potential difference between the adjunct vacua approaches that of

its surface energy density ηDW, which is usually of order of ηDW ∼ w3
d. Thus, we can

estimate the time for the bubble wall movement as follows:

tDW ≈
ηDW

|∆VT |
∼ 1

|λ2 sin(4α) sin δ|wd
. (6.5)

The consistency of our picture for EW baryogenesis requires to eliminate the wrong-sign

domains at least before the EWPT, which takes place at the time tEW ∼MPl/T
2
c with MPl

the Planck mass and Tc the critical temperature. Therefore, we should have tDW < tEW,

which can be translated into the following constraint

| sin δ| > T 2
c

|λ2 sin(4α)|wdMPl
∼ T 2

c

|λ2 sin(4α)|wcMPl
, (6.6)

where we have approximate wd with its critical temperature value wc in the second rela-

tion. If we take the PT parameters as their typical values Tc ∼ 100 GeV, wc ∼ 100 GeV,

| sin(4α)| ∼ 0.1 and |λ2| ∼ O(0.1), the CPV phase are only needed to be larger than

O(10−15). In other words, as long as the CPV phase is chosen to satisfy this bound, the

wrong-sign vacuum domains would shrink rapidly and disappear totally when the associ-

ated domain walls collide and annihilate. Obviously, such a small phase cannot provide

any visible CPV effects under the current experimental status. The above estimation of

the CPV phase in the scalar potential agrees with that in ref. [25].

Until now, we have focused on the elimination of the domain walls involving the wrong-

sign vacua ±wdeiα/
√

2. However, due to the Z2 symmetry breaking, there is still another

kind of domain walls which divide the two right-sign vacua (0,±wde−iα/
√

2). However, it

is well known that we do not need to worry about them since they would decay after the Z2

symmetry is restored almost at the EW critical temperature Tc ∼ 100 GeV, which is well

before they could dominate the energy density of the Universe at T ∼ 10−7 GeV [52, 53].

7 Conclusions

We have investigated a new connection between the DM physics and the EW baryogenesis

in a simple extension of the SM by introducing an additional complex EW singlet scalar

S and imposing the CP and Z2 symmetries. On one hand, at the temperature just above

the EWPT, S acquires a complex-valued VEV, which generate a tree-level barrier between

the EW symmetric and broken phases at the EW critical temperature Tc. The EWPT can

be of strongly first order, and, assisted by the effective operator O6, the CP symmetry

is spontaneously broken at finite temperatures, both of which are of great importance to

the successful EW baryogenesis. On the other hand, after the EWPT, the Z2 and CP

symmetries are restored, so that a DM candidate arises as the lighter component of S

which is stabilized by the Z2 symmetry, and the severe constraints on CP violations from

low-energy EDM measurements can be evaded. As a result, it has been shown that we

can simultaneously generate the observed DM relic density and the baryon asymmetry in

the Universe only when the DM mass is in the SM Higgs resonance region and the Higgs
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portal coupling is of O(10−3). Furthermore, as for the vacuum domains which produce the

excesses of antibaryon number and cancel the baryon asymmetries in the right-sign vacua,

we have shown that it is sufficient to introduce a tiny explicit CPV phase of O(10−15) in

the scalar potential so that such wrong-sign domains could disappear before the EWPT.

Here we would like to emphasize different roles played by the spontaneous and explicit

CPV phases in this scenario. The former is the true source of the CP violation necessary

to generate the baryon asymmetry, while the later just lifts the degeneracy in potential

between the right-sign and wrong-sign vacua to achieve the net baryon asymmetry.

Note that our model can easily generate a strong first-order EWPT. It has been argued

in refs. [51, 89, 90] that such a strong PT can also produce a strong gravitational wave

signal, which could be detected by the near-future gravitational wave experiments such

as LISA [91] or BBO [92] interferometers. It is intriguing that our model can be further

tested by the gravitational wave observations, which is, however, beyond the scope of the

current work.
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