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1 Introduction

The proposal [1] by Nekrasov and Shatashvili (NS) to associating quantum integrable sys-

tems to N = 2 4d Super Yang-Mills (SYM) theories in a particular regime of the Omega

background has led numerous new insights in gauge theories. But also the possibility of

applying the correspondence to solve some peculiar relativistic quantum integrable sys-

tems [2–6]. The Omega background is known to depend on two parameters ε1 and ε2 that

regularise the infinite volume of Euclidean space-time while preserving supersymmetry.

Importantly, the ordinary background R4 is recovered in the limit ε1, ε2 → 0 and yields the

celebrated Seiberg-Witten (SW) theory [7, 8], whose BPS sector is described by a classical

integrable system (cf. for instance [9] and references therein). Furthermore, Nekrasov and

Shatashvili investigated the regime ε2 → 0 while ε1 stays fixed and observed a quantisation

of the SW integrable systems with ε1 as Planck constant [1].

In fact, it is important to distinguish two different integrable structures in the NS

regime of Super Yang-Mills theories. The first one describes the moduli space of quantum
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vacua of the gauge theory. It is obtained by minimising with respect to the Higgs field

vacuum expectation values (vevs) the full prepotential: the latter, in fact, is formed by

a perturbative (one loop) part and a non-perturbative part (sum on instantons). On the

Coulomb branch, the Higgs field is given by the scalar field of the N = 2 gauge vector

multiplet, and the corresponding vevs are usually denoted by al (the index l running over

the number of colors). In the SW limit, the minimisation reproduces their fundamental

period relations [7, 8], linked to classical integrable systems [9]. These are the systems

quantized in the proposal of Nekrasov and Shatashvili [1, 10] where the Coulomb branch

vevs play the role of Bethe roots.

Yet, here we are interested in a second integrable structure, involving only the non-

perturbative instanton contribution to the prepotential. In [1], this contribution is written

in terms of an integral equation,1 of the same form as a Thermodynamic Bethe Ansatz

(TBA) equation as initially obtained with temperature by Yang and Yang [11] or with

finite size of a relativistic field theory (upon mirror transformation) by Al. B. Zamolod-

chikov [12].2

In this paper, we aim at providing a microscopic description of the degrees of freedom

giving rise to this equation. In this description, the Coulomb branch vevs al will be

considered as free parameters, playing the role of inhomogeneities. On the other hand,

Bethe roots will appear as the heights of the instanton stacks, more precisely as the heights

of the columns of the Young diagrams describing these stacks.

One of the interesting aspects of this second type of integrable structure is its intricate

connection with the further affinization of the algebras behind standard quantum integrable

models [20–23]. In the present case of 4d N = 2 gauge theories, the relevant algebraic struc-

ture has been constructed by Vasserot and Schiffmann in [24]. It is built upon the Double

Degenerate Affine Hecke algebra, and is called Spherical Hecke central (SHc) algebra. It

really corresponds to the affinization of the Yangian algebra of non-relativistic/isotropic

integrable systems like the XXX spin chain [25].3

The results presented in this paper were largely inspired by the work of Poghossian

et al. [33–35] in which the NS regime is described by a TQ-like equation (in fact the hv

equation below4). Until now, the relation between this TQ-like equation and the TBA-like

equation of Nekrasov and Shatashvili remained unclear. This is one of the main questions

that motivated the present work. The two key ingredients of the answer are the presence

of a genuine (with Q entire) TQ equation and of a reflection symmetry leading to its

‘dual’ TQ-equation. The corresponding hv equations are obtained by sending the cut-off

to infinity in the thermodynamical limit upon suitable regularisation (which introduces

1In the gauge theory context, the explicit derivation of this equation has been given in [16, 17] (see

also [18, 19] for the sub-leading terms).
2Cf. also [13–15] for a general (non-relativistic) extension.
3A quantum deformation of this structure arise in the five dimensional uplifts of these theories, namely

5d N = 1 quiver Super Yang-Mills theories. The corresponding algebra is called quantum toroidal algebra

of gl(1), or Ding-Iohara-Miki algebra [26, 27]. Its realization in the BPS sector of the gauge theories has

been studied in [28–32].
4Actually, h is an entire function here, as it should be, but v is not: this is the reason why we called this

a TQ-like equation.
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the pole structure in v). Then, the TBA-like equation is recovered by taking the quantum

Wronskian relation of these two equations. Eventually, its second determinations [36] in

the upper and lower half-planes, respectively, do coincide with the counting functions of

the non-linear integral equations (nlies) derived from the two dual sets of Bethe Ansatz

equations (cf. for instance [37–39]). In conclusion, the NS non-linear integral equation is

given a physical meaning very different from a thermodynamic set-up. Of course, the Bethe

equations can be associated to the two dual TQ-equations.

The paper is organised as follows. Starting from the instanton partition function of the

gauge theory localised in the Omega-background, we observe an invariance under the de-

formation of integration contours. This invariance provides alternative expressions for the

instanton partition function, and the qq-character. The later is defined as a correlator of the

gauge theory, it is a polynomial of degree equal to the number of colors. These quantities

will be defined in section two. Then, the NS limit ε2 → 0 will be performed in section three

using a minimization procedure, namely a saddle point approximation of the sum over in-

stanton configurations. In this limit, the qq-character reproduces the Baxter T-polynomial

of the TQ-equation. The dual TQ-equation is obtained from the reflection symmetry men-

tioned previously. In this procedure, we will introduce some cut-offs interpreted as the

number of roots in each Bethe string. Then, we will perform the thermodynamical limit,

sending these cut-offs to infinity. In this limit, the Baxter TQ-equations are replaced by

some equations, here called ‘hv’ equations, involving non-polynomial quantities. Finally, we

will show that the quantum Wronskian relation of these equations reproduces the NS TBA-

like equation. In addition, the section three also contains a brief discussion on non-linear

integral equations and the second determinations of the TBA-like equation. The latter is

definitively associated to nlies equivalent to some Bethe Ansatz equations rather than to a

thermodynamic procedure on Bethe Ansatz equations, a fully different physical meaning.

2 Instanton partition function and qq-characters

2.1 Instanton partition function

In this paper, we will provide a description of the NS regime for 4d N = 2 Super Yang-

Mills theories with a gauge group U(Nc), and Nf matter fields in the fundamental (or

anti-fundamental) representation. For technical reasons, our analysis is restricted to the

cases Nf < 2Nc for which the theories are asymptotically free. In the NS regime, the

theories depend on the Omega background parameter ε1 while the second parameter ε2

is sent to zero. The gauge theory is taken on the Coulomb branch, and the vacuum

expectation values (vevs) of the scalar field in the gauge multiplet are denoted al with the

index l running over the number of colors Nc. Masses of the matter fields are denoted mf

with f running over the number of flavors Nf . These parameters al and mf are encoded

in the roots of the gauge and matter polynomials defined respectively as

A(z) =

Nc∏
l=1

(z − al), M(z) =

Nf∏
f=1

(z −mf ), Q(z) =
M(z)

A(z)A(z + ε+)
. (2.1)
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We have also introduced the rational potential Q(z) that plays an essential role in the

integral formulation of the instanton partition function.

The instanton partition function is obtained after localization as an instanton expan-

sion in terms of the (renormalized) exponentiated gauge coupling q [40].5 It takes the form

of a sum over the n-instantons sectors of coupled integrals,

Zinst. =

∞∑
n=0

qn

n!

(
ε+

ε1ε2

)n ∮
Γ

n∏
i,j=1
i<j

K(φij)

n∏
i=1

Q(φi)
dφi
2iπ

, (2.2)

where we denoted ε+ = ε1+ε2. We have also employed the shortcut notation φij = φi − φj .
The integration contour Γ goes on (−∞,+∞) and circles the upper half-plane while avoid-

ing the infinity. In this expression, the background parameters ε1 and ε2 have a positive

imaginary part, and the Coulomb branch vevs are assumed to be real with a small positive

imaginary part, as in al + i0, so that poles at φi = al are taken inside the contour, but

not those at φi = al − ε+. The kernel K that couples the integration variables depends

only on the background parameters, it is a rational function that can be written in a

factorized form,

K(z) =
z2(z2 − ε2

+)

(z2 − ε2
1)(z2 − ε2

2)
= S(z)−1S(−z)−1, S(z) =

(z + ε1)(z + ε2)

z(z + ε+)
. (2.3)

The scattering factor S(z) plays a key role in the quantum algebra behind the qq-

characters [23], it obeys the property S(−z) = S(z − ε+). Finally, the variables φi are

assumed to be real in the kernels K(φij), so that poles φi = φj + εα (α = 1, 2) are inside

the contours, but not the poles at φi = φj − εα.

The contour integrals in the expression (2.2) can be evaluated using Cauchy theorem as

a sum of residues. The poles in the instanton sector n are in one-to-one correspondence with

the box configurations of Nc Young diagrams ~Y = (Y (1), · · · , Y (Nc)) having a total number

of boxes |~Y | = n. Precisely, the poles are located at the positions φx = al+(i−1)ε1+(j−1)ε2

associated to the boxes x = (l, i, j) of coordinates (i, j) in the lth Young diagram Y (l). The

corresponding residue can be factorized into contributions of gauge and matter multiplets,

and the instanton partition function written formally as

Zinst. =
∑
~Y

(−q)|
~Y |Zvect.(~a, ~Y )Zfund.(~m, ~Y ), (2.4)

where ~Y are Nc-tuples Young diagrams, and ~a, ~m vectors of dimension Nc and Nf re-

spectively, encoding the dependence in Coulomb branch vevs and fundamental multiplets

masses.

The vector and fundamental contributions to the residues obey a set of recursion

equations that describes the insertion or removal of an instanton in the stack described by

the configuration ~Y ,

Zvect.(~a, ~Y + x)

Zvect.(~a, ~Y )
= − 1

ε1ε2

∏
y∈R(~Y ) φxy(φxy − ε+)∏
y∈A(~Y )

y 6=x

φxy(φxy + ε+)
,
Zfund.(~m, ~Y + x)

Zfund.(~m, ~Y )
= M(φx). (2.5)

5The sign of the gauge coupling parameter q has been reversed with respect to the convention used

in [23], but it coincides with the notation employed in [17].
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Here, ~Y + x (resp ~Y − x) denotes the Young diagram ~Y with the box x added (removed).

Accordingly, the sets A(~Y ) and R(~Y ) contains the boxes that can be added to or removed

from the Young diagrams ~Y . These equation have been referred to as discrete Ward

identities, they first appeared in the study [20] of the representation of the Spherical Hecke

central algebra [24] on instanton partition functions. They were written in the form (2.5)

in [22, 23] where a short derivation can also be found.

The original expressions for the contributions Zfund. and Zvect. are fairly complicated.

Yet, it is possible to write simpler expressions by solving the discrete Ward identities. The

fundamental contribution is simply the product of matter polynomials evaluated at the

location of the residues. The vector contribution is slightly more complicated,

Zfund.(~m, ~Y ) =
∏
x∈~Y

M(φx), Zvect.(~a, ~Y ) =
∏
x∈~Y

[
A(φx + ε+)Y~Y (φx)

]−1
, (2.6)

it involves the function Y~Y (z) defined as

Y~Y (z) =

∏
x∈A(~Y )(z − φx)∏

x∈R(~Y )(z − ε+ − φx)
. (2.7)

In the following, we will not need these expressions, but only work at the level of the Ward

identities (2.5).

2.2 Definition of the qq-character

In addition to the partition function, another quantity will be helpful to characterize the

NS regime of the theory. Actually, this quantity has been introduced by Nekrasov in

full generality [41, 42] (see also [21, 43]) under the name of qq-character. It provides a

generalization of the quantum group q-characters defined in [44] for Yangians, and in [45] for

quantum affine algebras. This quantity possesses the crucial property of being a polynomial

in the spectral variable z, which derives by implementing the non-perturbative Schwinger-

Dyson equations (as loop equations on a suitable resolvent). In fact, the qq-character is

defined as a trace over the instanton configurations,

χ(z) =

〈
Y~Y (z + ε+)− q

M(z)

Y~Y (z)

〉
gauge

with
〈
O~Y
〉

gauge
=

1

Zinst.

∑
~Y

(−q)|
~Y |Zvect.(~a, ~Y )Zfund.(~m, ~Y )O~Y ,

(2.8)

where the function Y~Y (z) defined in (2.7) depends on the detailed content of the Young

diagrams.

Moreover, it enjoys another expression in terms of contour integrals,

χ(z) =
A(z + ε+)

Zinst.

∞∑
n=0

qn

n!

(
ε+

ε1ε2

)n ∮
Γ−Cz+ε+

n∏
i,j=1
i<j

K(φij)

n∏
i=1

S(z − φi)Q(φi)
dφi
2iπ

. (2.9)

This expression of the qq-character reproduces the initial definition (2.8) after an evaluation

of the contour integral by Cauchy theorem. The prescription for the integration is to
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consider z with a small positive imaginary part, so that it is inside the integration contour

Γ, but to exclude the point z+ε+ by circulating it (clock-wise) with the small circle Cz+ε+ .

In this way, we take only the extra pole at φi = z in the integration contour, not the one at

φi = z + ε+. Evaluation of the residues brings two different types of terms, corresponding

to the sum of the two terms in the r.h.s. in the first equation of (2.8). The first term

is obtained when no variable φi takes the extra pole value φi = z, so that the residues

contribute as

A(z + ε+)

Zinst.

∑
~Y

(−q)|
~Y |Zvect.(~a, ~Y )Zfund.(~m, ~Y )

∏
x∈~Y

S(z − φx) =
〈
Y~Y (z + ε+)

〉
gauge

. (2.10)

When n > 1, the second possibility is that one of the variables φi takes the value φi = z,

bringing the residue

− ε1ε2

ε+
Q(z)

∮
Γ

n−1∏
i,j=1
i<j

K(φij)
n−1∏
i=1

Q(φi)

S(z − φi − ε+)

dφi
2iπ

. (2.11)

New poles appear at φi = z− εα for α = 1, 2, but they are outside the contour Γ since z is

assumed to be slightly above the real axis. Hence, the remaining pole configurations are in

one-to-one correspondence with the |~Y | = n− 1 boxes in the Nc-tuple of Young diagrams.

Summing over the instanton sectors gives the second term in the r.h.s. of the first equation

in (2.8):

A(z + ε+)

Zinst.

∞∑
n=1

qn

n!

(
ε+

ε1ε2

)n
· n ·

(
−ε1ε2

ε+

)
Q(z)

×
∑
~Y

|~Y |=n−1

(
−ε1ε2

ε+

)|~Y |
Zvect.(~a, ~Y )Zfund.(~m, ~Y )

∏
x∈~Y

1

S(z − φx − ε+)
=

= −qA(z + ε+)

Zinst.
Q(z)

∑
~Y

(−q)|
~Y |Zvect.(~a, ~Y )Zfund.(~m, ~Y )

∏
x∈~Y

1

S(z − φx − ε+)
=

= −q
〈
M(z)

Y~Y (z)

〉
gauge

.

(2.12)

2.3 Reflection symmetry

The instanton partition function Zinst. turns out to be invariant under a Z2-symmetry that

can be seen from a deformation of contours in the integral expression (2.2). Explicitly,

the contour Γ is deformed on the Riemann sphere into the contribution of the point at

infinity and the contour Γ̂ that circles the lower half-plane (excluding infinity). Defining

the following quantity6

Ẑinst. =
∞∑
n=0

qn

n!

(
− ε+

ε1ε2

)n ∮
Γ̂

n∏
i,j=1
i<j

K(φij)
n∏
i=1

Q(φi)
dφi
2iπ

, (2.13)

6The extra minus sign (−1)n comes from the inversion of the orientation of the contours, so that Γ̂ is

oriented anti-clock-wise.
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we have Zinst. = Ẑinst. by contour deformation, except in the case Nf = 2Nc−1 where poles

at φi = ∞ appear. The corresponding residues can be easily worked out, they factorize

in front:

Zinst. = eqε+/(ε1ε2)Ẑinst. for Nf = 2Nc − 1. (2.14)

The quantity Ẑinst. can also be evaluated by Cauchy theorem, with poles still in bijection

with the boxes of the Nc-tuple Young diagrams ~Y , but now located at the dual positions

φ̂x = al − iε1 − jε2 for each x = (l, i, j) ∈ ~Y . As a result, we find the weak coupling

expansion

Ẑinst. =
∑
~Y

(−q)|
~Y | ̂Zvect.(~a, ~Y )

̂Zfund.(~m, ~Y ),

with:
̂Zfund.(~m, ~Y ) =

∏
x∈~Y

M(φ̂x),
̂Zvect.(~a, ~Y ) =

∏
x∈~Y

[
A(φ̂x)Ŷ~Y (φ̂x)

]−1
.

(2.15)

Here we have denoted Ŷ~Y (z) the Z2-dual of the function Y~Y (z):

Ŷ~Y (z) =

∏
x∈A(~Y )(z − φ̂x)∏

x∈R(~Y )(z + ε+ − φ̂x)
. (2.16)

It turns out that the dual quantities Ẑinst.,
̂Zfund.(~m, ~Y ) and

̂Zvect.(~a, ~Y ) can be ob-

tained from the original ones using a simple Z2-symmetry. This symmetry consists in a

sign flip of the Omega-background parameters ε1, ε2, followed by a shift of the Coulomb

branch vevs al → al − ε+. As a result, the poles located at z = φx in the upper half-plane

are mapped to the dual position z = φ̂x in the lower half-plane. Under this symmetry, the

gauge polynomials A(z) and A(z + ε+) are exchanged, and the argument of the scattering

factor is shifted/reversed: S(z) → S(z − ε+) = S(−z), effectively sending
̂Zvect.(~a, ~Y ) to

Zvect.(~a, ~Y ) and vice versa. Note that in the case of a U(1) gauge theory, it is possible to

show that
̂Zvect.(~a, ~Y ) = Zvect.(~a, ~Y ), but this is no longer true for a higher number of colors.

The deformation of the contour can also be applied to the integral expression (2.9)

of the qq-character. The new contour does not contain the pole at φi = z, but instead it

includes the extra pole at φi = z + ε+ that had been subtracted from Γ previously:

χ(z) =
A(z + ε+)

Ẑinst.

∞∑
n=0

qn

n!

(
ε+

ε1ε2

)n ∮
Γ̂+Cz+ε+

n∏
i,j=1
i<j

K(φij)

n∏
i=1

S(z − φi)Q(φi)
dφi
2iπ

. (2.17)

In the case Nf = 2Nc − 1, the contribution of poles at infinity is the same as in the case

of the instanton partition function, and the extra factors cancel. The evaluation using the

Cauchy theorem follows the same lines as what was done in the previous section, and

χ(z) =

〈
Ŷ~Y (z)− q

M(z + ε+)

Ŷ~Y (z + ε+)

〉
ĝauge

,

with
〈
O~Y
〉

ĝauge
=

1

Ẑinst.

∑
~Y

(−q)|
~Y |Ẑvect.(~a, ~Y )Ẑfund.(~m, ~Y ) O~Y

(2.18)
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where the average is taken with respect to configurations of poles ~Y located in the lower

half-plane. Shifting the spectral parameter z → z− ε+, it is possible to rewrite this second

expression of the qq-character in a form that makes the Z2-symmetry more explicit:

χ(z − ε+) =

〈
Ŷ~Y (z − ε+)− q

M(z)

Ŷ~Y (z)

〉
ĝauge

. (2.19)

Thus, the Z2-symmetry described previously simply exchanges χ(z) and χ(z − ε+).

In the limit β = 1 of the background where ε+ = 0, the instanton positions are given by

the simplified expression φx = al + ε1(i− j) and the Z2-symmetry corresponds to exchange

Young diagrams with their transposed. In the Seiberg-Witten limit ε1, ε2 → 0, the Z2-

symmetry is trivially realized, so that φx and φ̂x condense to form the same branch cut.

Before ending this discussion on the Z2-symmetry, we would like to mention that it is

closely related to another reflection symmetry that consists in the following transformation:

al → ε+ − al, q→ (−1)Nf q, mf → −mf . (2.20)

In the SU(2) case, this symmetry coincides with the reflection symmetry of Liouville theory

that exchanges the operators of charge α and Q − α. This second symmetry exchanges

A(z) ↔ (−1)NcA(−z + ε+) but the scattering factor S(z) remains invariant. It acts on

the poles location by sending φx → −φ̂x and φ̂x → −φx, which leads to the following

transformation for the instanton contributions:

Zfund.(~m, ~Y )→ (−1)Nf |~Y | ̂Zfund.(~m, ~Y ), Zvect.(~a, ~Y )→ ̂Zvect.(~a, ~Y ), (2.21)

so that the instanton partition function Zinst. is again sent to Ẑinst. (it is invariant if

Nf < 2Nc − 1). The functions Y~Y (z) and (−1)NcŶ~Y (−z) are exchanged so that the qq-

character χ(z) transforms into (−1)Ncχ(−z−ε+). Hence we observe that the action of this

second Z2-symmetry is very similar to the previous one, up to extra minus sign factors and

a reflection of the spectral variable z. Although the physical interpretation of the second

Z2-symmetry is more straightforward, it is in fact more convenient to work with the first

one because of the absence of these extra signs.

3 The structures of integrability in the Nekrasov-Shatashvili limit

3.1 Minimization procedure

It is now well-known how to perform the Nekrasov-Shatashvili limit ε2 → 0 on the expres-

sion (2.4) of the partition function as a sum over Young diagrams [21–23]. However, for a

matter of completeness, we will recall it here. The justification of this procedure has been

given in [21]. The main idea behind it is that the sum over Young diagrams becomes dom-

inated by a single (Nc-tuple) diagram ~Y ∗, in a sort of discrete saddle point. This diagram

contains infinitely many boxes, arranged in columns of infinite height, but keeping a fixed

number nl of columns in each diagram Y ∗(l). The critical diagram must obey the saddle

– 8 –
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point equation expressing that the small variation corresponding to add (or remove) a box

has no cost at first order in ε2:

(−q)|
~Y ∗+x|Zvect.(~a, ~Y

∗ + x)Zfund.(~m, ~Y
∗ + x) = (−q)|

~Y ∗|Zvect.(~a, ~Y
∗)Zfund.(~m, ~Y

∗) +O(ε2).

(3.1)

Obviously, this equation can only be satisfied by infinitely large diagrams. Using the

discrete Ward identity (2.5), this condition takes the form

q

ε1ε2
M(φx)

∏
y∈R(~Y ∗) φxy(φxy − ε+)∏
y∈A(~Y ∗)

y 6=x

φxy(φxy + ε+)
= 1. (3.2)

Next, we assume that a box x can be added to every column of ~Y ∗. The associated pole

locations are φx = al + (i − 1)ε1 + λ
(l)
i ε2 where λ

(l)
i is the length of the column to which

x is added, here the ith column of the lth diagram. We will denote these quantities ur
with the double index r = (l, i). They will later play the role of Bethe roots. Under

this assumption, below each box in A(~Y ) is a box in R(~Y ) that can be removed, with

approximately the same pole location (up to a negligible ε2 shift). This is true, except

for a subset of boxes in A(~Y ) that are located at the extreme right of the diagram, i.e. in

the nearest empty column of each diagram Y ∗(l). The pole location corresponding to these

boxes will be denoted ξl = al + nlε2. Then, the product in the saddle point equation (3.2)

can be replaced by

qM(ur)

Ξ(ur)Ξ(ur + ε1)

M∏
s=1

ur − us − ε1

ur − us + ε1
= 1, Ξ(z) =

Nc∏
l=1

(z − ξl). (3.3)

We recognize here a set of Bethe equations, with a total number M =
∑

l nl of Bethe

roots. These are well-defined Bethe equations and they can be solved exactly in q for a

small number of Bethe roots.

Although the previous system of Bethe equation is well-defined for a finite number

of roots M , and finite cut-offs ξl, one should keep in mind the perturbative aspect of the

problem in the application to the NS regime of the gauge theory. By construction, in the

relevant solution, the Bethe roots are arranged in Nc strings, each of length nl and spaced of

ε1. Hence, in the limit q→ 0, the solution becomes trivial as ur tends to u
(0)
r = al+(i−1)ε1

for r = (l, i).7 Formally, the prepotential in the NS limit FNS can be reconstructed from

the solution of the Bethe equations using the formula

q
∂FNS

∂q
= lim

ε2→0
ε1ε2|~Y | = lim

nl→∞
ε1

M∑
r=1

(ur − u(0)
r ), with FNS = lim

ε2→0
ε1ε2 logZinst. (3.4)

Employing an argument due to Poghossian [33], it is shown in appendix A that the sub-

leading correction to ur is of order O(qi) for r = (l, i). It implies that solutions with nl
or nl + 1 roots in the lth string will only differ at the order O(qnl+1). Thus, in order to

recover the exact prepotential, it is necessary to consider the thermodynamical limit where

7Effectively as if ~Y ∗ were empty, but one should be careful with the order of limits.
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the number nl of roots in each string (i.e. the number of columns in each Young diagram

composing ~Y ∗) is infinite. More precisely, in order to compute the prepotential at the

order O(qN ), it is necessary and sufficient to consider N roots in each string, in which case

M = NcN . This fact is illustrated in appendix A in the simple case of a pure U(1) gauge

theory. In a sense, the integer variables nl play the role of cut-offs that must be sent to

infinity at the end of our computation. The thermodynamic limit will be discussed in more

details in the next subsection.

A Baxter TQ-equation can be written for the set of Bethe equations (3.3)8

t(z)q(z) = Ξ(z)Ξ(z + ε1)q(z + ε1)− qM(z)q(z − ε1), q(z) =
M∏
r=1

(z − ur). (3.6)

The derivation is done in appendix A. This equation is well-defined for a finite number

of roots: both t(z) and q(z) are polynomials, and the expansion in z provides enough

constraints to determine them from the knowledge of M(z) and Ξ(z). Actually, the TQ-

equation (3.6) can also be derived from the definition (2.8) of the qq-character by taking

its NS limit [23]. In this limit, the trace of well-behaved operators is dominated by a single

term,
〈
O~Y
〉

gauge
' O~Y ∗ , where ~Y ∗ is the solution to the saddle point equation described

previously. In particular, the operator Y~Y (z) defined in (2.7), and its inverse, produce

ratios of the Baxter Q-polynomial,

〈
Y~Y (z)

〉
gauge

' q(z)Ξ(z)

q(z − ε1)
,

〈
1

Y~Y (z)

〉
gauge

' q(z − ε1)

q(z)Ξ(z)
. (3.7)

Denoting χ̄(z) the polynomial of degree Nc obtained by taking the NS limit of χ(z), we

find from (2.8),

χ̄(z) =
q(z + ε1)Ξ(z + ε1)

q(z)
− qM(z)

q(z − ε1)

q(z)Ξ(z)
, (3.8)

leading to identify t(z) = χ̄(z)Ξ(z). This identification is in agreement with the q-

perturbative study of the TQ-equation (3.6) done in appendix A where it is shown that

t(z) = h(z)Ξ(z) +O(q1+minl nl). Terms of order O(q1+minl nl) are negligible in the thermo-

dynamical limit where all nl are sent to infinity, and we will later identify χ̄(z) = h(z).

8Taking the pure gauge case Nf = 0, it is possible to send ξl to infinity while keeping the number of

roots fixed (although it doesn’t make much sense in our model). The divergent factors ξl can be absorbed

by the introduction of an essential singularity at the infinity for the Q-polynomial: t(z) →
∏

l ξlt(z) and

q(z)→
∏

l ξ
−z/ε1
l q(z). Then, this equation reduces to the Baxter TQ-equation relevant for the Toda system

with twisted periodic boundary conditions,

t(z)q(z) = q(z + ε1)− qq(z − ε1). (3.5)

We will not take this approach here. The connection between the Toda chain and the NS NLIE has been

studied in [46].
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3.2 Thermodynamical limit

In order to regularize the infinite product of Bethe roots defining the Q-polynomial, we

introduce the function q0(z) that corresponds to the limit q→ 0 of q(z),

q0(z) =

M∏
r=1

(z − u(0)
r ) =

Nc∏
l=1

nl∏
i=1

(z − al − (i− 1)ε1). (3.9)

It obeys the important property

q0(z − ε1)

q0(z)
=

Ξ(z)

A(z)
. (3.10)

This polynomial q0(z) can be used to define the ratio v̄(z) = q(z)/q0(z) that tends to

v(z) in the thermodynamic limit. As a consequence of the TQ equation (3.6) and the

property (3.10), it obeys the following difference equation:

t(z)

Ξ(z)
v̄(z) = A(z + ε1)v̄(z + ε1)− q

M(z)

A(z)
v̄(z − ε1). (3.11)

It is shown in the appendix A that the T-polynomial in the nl →∞ limit behaves as

t(z)

Ξ(z)
→ h(z), (3.12)

where h(z) is a monic polynomial of degree Nc that coincides with the limit of the qq-

character. In this limit, the functions h and v obey a difference equation that is reminiscent

of a TQ-equation,9

h(z)A(z)v(z) = A(z)A(z + ε1)v(z + ε1)− qM(z)v(z − ε1). (3.14)

However, it is noted that v(z) is no longer an entire function here, it exhibits some poles

at z = al + (i− 1)ε1 with l = 1 · · ·Nc and i ∈ Z>0. Introducing the rational potential Q(z)

defined in (2.1) (with ε+ → ε1), we can write the “hv” equation:

h(z)

A(z + ε1)
v(z) = v(z + ε1)− qQ(z)v(z − ε1). (3.15)

3.3 Dual TQ and hv equations

The same saddle point procedure can be applied to the dual expression of the qq-character

given in (2.19). In the NS limit, the vev of the function Ŷ~Y (z) becomes〈
Ŷ~Y (z)

〉
ĝauge

' q̂(z)Ξ̂(z)

q̂(z + ε1)
,

〈
1

Ŷ~Y (z)

〉
ĝauge

' q̂(z + ε1)

q̂(z)Ξ̂(z)
,

with: q̂(z) =

Nc∏
l=1

nl∏
i=1

(z − al + iε1 + ε2λ̂
(l)
i ), Ξ̂(z) =

Nc∏
l=1

(z − al + (n̂l + 1)ε1)

(3.16)

9A similar equation has been obtained in a seemingly different manner in [33, 34]. In order to make a

precise connection, one can introduce the function ω(z) = v(z − ε1)/(v(z)A(z)) and show that it obeys

qM(z − ε1)ω(z)ω(z − ε1) + h(z − ε1)ω(z) = 1. (3.13)
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Note however that the Nc-tuple Young diagram extremizing the summations of the gauge

and ĝauge brackets will be different. Thus, the Bethe roots ur and the dual ones

ûr=(l,i) = al − iε1 − ε2λ̂
(l)
i will be unrelated. From the expression (2.19) of the qq-character,

we deduce a new (dual) tq-equation, related to the previous one under the Z2-symmetry

described above,

t̂(z − ε1)q̂(z) = Ξ̂(z)Ξ̂(z − ε1)q̂(z − ε1)− qM(z)q̂(z + ε1), (3.17)

with t̂(z) = χ̄(z)Ξ̂(z+ε1). This is again a well-defined TQ-equation, where all the quantities

are polynomials. Interestingly, it takes a form similar to the original TQ-equation (3.6),

with the sign of the pseudo-period ε1 reversed, and the polynomial Ξ(z) replaced by Ξ̂(z).

In fact, the minimization procedure would provide a set of Bethe equations in which the

same replacement occurs.

The procedure to perform the thermodynamical limit is the same as in the case of the

original TQ-equation. We introduce the function q̂0 obtained in the q→ 0 limit of q̂,

q̂0(z) =

Nc∏
l=1

n̂l∏
i=1

(z − al + iε1),
q̂0(z + ε1)

q̂0(z)
=

Ξ̂(z)

A(z + ε1)
, (3.18)

and write (3.17) for the ratio q̂/q̂0 → v̂. As nl is sent to infinity, we obtain the dual

hv equation
h(z − ε1)

A(z)
v̂(z) = v̂(z − ε1)− qQ(z)v̂(z + ε1). (3.19)

The resemblance with the original hv-equation strikes even more: the ratio h(z)/A(z+ ε1)

has been shifted by −ε1 while the sign of the pseudo-period has been reversed in the

arguments of the function v(z).

3.4 Quantum Wronskian and non-linear integral equation

The relation between the NS TBA-like equation and a quantum Wronskian has already

been mentioned in [46]. However, it appears that the underlying quantum systems are dif-

ferent. Furthermore, the presence of a reflection symmetry bringing a second TQ-equation

is essential in our derivation, and this ingredient seems to be missing in [46].

In order to establish the invariance of the quantum Wronskian, we start from the two

hv-equations derived previously,

h(z)

A(z + ε1)
v(z) = v(z + ε1)− qQ(z)v(z − ε1),

h(z − ε1)

A(z)
v̂(z) = v̂(z − ε1)− qQ(z)v̂(z + ε1).

(3.20)

These two equations can be solved for h(z), and we find the two equalities

h(z) =A(z+ε1)
v(z+ε1)

v(z)
−qM(z)

A(z)

v(z−ε1)

v(z)
=A(z+ε1)

v̂(z)

v̂(z+ε1)
−qM(z+ε1)

A(z+2ε1)

v̂(z+2ε1)

v̂(z+ε1)
.

(3.21)
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After multiplication of both sides by v(z)v̂(z + ε1)/A(z + ε1), the second equality can be

written in the form

v(z+ε1)v̂(z+ε1)−qQ(z)v(z−ε1)v̂(z+ε1) = v(z)v̂(z)−qQ(z+ε1)v(z)v̂(z+2ε1). (3.22)

Defining the quantum Wronskian to be

W (z) = v(z)v̂(z) + qQ(z)v(z − ε1)v̂(z + ε1), (3.23)

we have thus shown that W (z) = W (z+ ε1). By construction, v(z) and v̂(z) are perturba-

tive series in q, and meromorphic in z at each order of q. It implies that W (z) is a constant

that can be determined from the fact that v(z) ∼ 1 and v̂(z) ∼ 1 while Q(z) ∼ zNf−2Nc at

infinity. Hence, we have W (z) = 1, i.e.

v(z)v̂(z) + qQ(z)v(z − ε1)v̂(z + ε1) = 1. (3.24)

In order to make contact with the NLIE derived by Nekrasov and Shatashvili [1] (see

also [16, 17]), we need to introduce the kernel function

G(z) =
1

z + ε1
− 1

z − ε1
, (3.25)

and the integration contour Γ which is the one involved in the integral expression of the

Nekrasov partition function [40]. This contour circles the upper half-plane, including the

real axis but excluding the point at infinity. In the evaluation of contour integrals, the

Omega-background parameters ε1 and ε2 are considered with a positive imaginary part.

In general, the result takes the form of a rational function of these parameters and it can

be easily analytically continued. In addition, the Coulomb branch vevs are assumed to

possess a small imaginary part so that al belong to the contour Γ while al − ε1 do not. As

a result, the Bethe roots ur and the string positions u
(0)
r are inside the integration contour

Γ, while the dual roots ûr and positions û
(0)
r belong to the deformed contour Γ̂ circling the

lower half-plane and such that Γ ∪ Γ̂ = {∞}. This trick is used in appendix B to show

perturbatively in q that∮
Γ
G(z − w) log(v(w)v̂(w))

dw

2iπ
= − log(v(z − ε1)v̂(z + ε1)), (3.26)

where the spectral parameter z has a small positive imaginary part as above. Introducing

the function

e−ε(z) = 1− v(z)v̂(z), (3.27)

the quantum Wronskian equation can be written in the form of a non-linear integral

equation,

e−ε(z) = qQ(z) exp

(
−
∮

Γ
G(z − w) log(1− e−ε(w))

)
, (3.28)

which is exactly the one proposed by Nekrasov and Shatashvili. By construction, its

solution is Z2-symmetric and because of the analogy with Yang-Yang-Zamolodchikov TBA

equation (except for the integration contour), it has been called pseudo-energy.
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3.5 The NLIE procedure and the second determination

A procedure based on the Cauchy theorem [38, 39] can be applied to the TQ-equation (3.6),

defining the counting function η̄(z) and the associated resolvent r(z)

e2iπη̄(z) =
qM(z)

Ξ(z)Ξ(z + ε1)

q(z − ε1)

q(z + ε1)
, r(z) = ∂z log(1− e2iπη̄(z)). (3.29)

Using the TQ-equation, the resolvent is expressed in the form

r(z) = ∂z log

(
t(z)q(z)

Ξ(z)Ξ(z + ε1)q(z + ε1)

)
. (3.30)

We deduce from this expression that the resolvent has poles with residues +1 at z = ur
(Bethe roots) and at the zeros of t(z) (holes) that were denoted e↓l , e

↑
l in appendix A. In

addition, poles with residues −1 are present at z = ur − ε1, z = ξl and z = ξl − ε1. Taking

the integral with a contour C(ur, ur − ε1) that the surrounds the Bethe roots and their

shifted value, we can write

M∑
r=1

[log(z − ur − ε1)− log(z − ur + ε1)] =

∮
C(ur,ur−ε1)
log ((z − w − ε1)(z − w)) r(w)

dw

2iπ
. (3.31)

Here we will assume Im z < −Im ε1 in order to avoid the branch cut singularities of the

logarithm. Taking the log of the definition (3.29) and replacing the r.h.s. of the previous

equation, we find

2iπη̄(z) = log

(
qM(z)

Ξ(z)Ξ(z + ε1)

)
+

∮
C(ur,ur−ε1)
log ((z − w − ε1)(z − w)) r(w)

dw

2iπ
. (3.32)

The next step is to take the thermodynamic limit in order to write an integral equation

for the quantity 2iπη(z) obtained as the limit of 2iπη̄(z):

e2iπη̄(z) → e2iπη(z) = qQ(z)
v(z − ε1)

v(z + ε1)
. (3.33)

The equality in the r.h.s. has been obtained after the introduction of q0(z) in (3.29) to

turn Ξ(z) into the gauge polynomial A(z). Then, the ratios q(z)/q0(z) have been replaced

by v̄(z) that tends to v(z) in the thermodynamic limit. In this limit, the holes e↑l =

ξl + O(qnl+1) will tend to coincide with the singularities of r(z) at z = ξl. Likewise, the

holes e↓l will become very close to the Bethe roots ul,1 − ε1 that are inside the integration

contour. In order to avoid the integration contour being pinched between poles, it is

necessary to include the holes within the integration contour. At the same time, it will be

more convenient to also add the singularities at z = ξl and z = ξl + ε1 in order to modify

the driving term, and write

2iπη̄(z) = log

(
qM(z)Ξ(z)Ξ(z−ε1)

t(z)t(z−ε1)

)
+

∮
Γ−ε1

log [(z−w−ε1)(z−w)]r(w)
dw

2iπ
, (3.34)

where the new integration contour, denoted formally Γ − ε1, corresponds to the contour

Γ shifted downward by −Im ε1 so that it encompass all the singularities of the resolvent
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r(z). It is now possible to take the thermodynamic limit both in the driving term and in

the contour integral. Using an integration by part, the resulting integral equation for the

thermodynamical counting function 2iπη(z) reads

2iπη(z) = log

(
qM(z)

h(z)h(z − ε1)

)
+

∮
Γ−ε1

k(z−w) log
(

1− e2iπη(w)
) dw

2iπ
, k(z) =

1

z
+

1

z − ε1
,

(3.35)

where the spectral parameter is assumed to satisfy Im z < −Im ε1, i.e. it lies outside the

contour Γ− ε1.

The same procedure can be applied to the dual TQ-equation, and we find that the

thermodynamical counting function defined as

e2iπη̂(z) = qQ(z)
v̂(z + ε1)

v̂(z − ε1)
, (3.36)

obeys the integral equation

2iπη̂(z) = log

(
qM(z)

h(z)h(z + ε1)

)
−
∮

Γ̂+ε1

k̂(z−w) log
(

1− e2iπη̂(w)
) dw

2iπ
, k̂(z) =

1

z
+

1

z + ε1
,

(3.37)

where Γ̂ surrounds the lower half-plane, and Γ̂ + ε1 is shifted upward by Im ε1.

The NLIE established by Nekrasov and Shatashvili is defined for the range −Im ε1 <

Im z < Im ε1 of the spectral parameter. It is possible to consider the second determina-

tion of the function ε(z) in the half-planes Im z < −Im ε1 and Im z > Im ε1, denoted

respectively ε−(z) and ε+(z). They are obtained by considering the r.h.s. of the integral

equation (3.28) for a spectral parameter z outside of the principal domain |Im z| < Im ε1.

Accordingly, the integral kernel of NLIE G(z−w) picks up an extra pole, either at w = z+ε1

or at w = z − ε1:

e−ε−(z) =
e−ε(z)

1− e−ε(z+ε1)
, e−ε+(z) =

e−ε(z)

1− e−ε(z−ε1)
. (3.38)

In the r.h.s. of these two formulas, the pseudo-energy ε(z) is analytically continued to the

lower or upper half planes Im z < −Im ε1 and Im z > Im ε1 respectively. The analytic

continuation is provided using the definition (3.27) expressed in terms of the function v(z)

and v̂(z) satisfying the quantum Wronskian equation (3.24). When expressed in terms of

the function v(z) and v̂(z), the r.h.s. of the two formulas in (3.38) reproduce the formulas

obtained in (3.33) and (3.36), and expressing η(z) and η̂(z) in terms of v(z) and v̂(z)

respectively. It shows that the two thermodynamical counting functions η(z) and η̂(z)

are equal to the two second determinations of the pseudo-energy (modulo 2iπ), namely

2iπη(z) = −ε−(z)[2iπ] and 2iπη̂(z) = −ε+(z)[2iπ].

We would like to end this section with a practical remark. After deformation of the

integration contour for the NLIE (3.35) the counting function η(z) is seen to satisfy the

following functional equation,

e2iπη(z) = qM(z)
1− e2iπη(z)

h(z)

1− e2iπη(z−ε1)

h(z − ε1)
, (3.39)
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where h(z) is the limit of the qq-character χ(z). Thus, once the qq-character is known,10

these equations can be solved perturbatively in the gauge coupling parameter q,11

e2iπη(z) =
∞∑
n=1

qnHn(z), H1(z) =
M(z)

h(z)h(z−ε1)
, Hn+1(z) =H1(z)

n∑
k=0

Hk(z)Hn−k(z−ε1),

(3.41)

and H0(z) = −1. Inverting the relation between η(z) and the second determination ε−(z),

this method provides one of the most efficient way to compute the pseudo energy ε(z):

e−ε(z) =
∞∑
n=1

En(z), E0(z) = −1, En+1(z) = −
n∑
k=0

Hk+1(z)En−k(z − ε1). (3.42)

4 Summary and discussion

In this paper, we have presented the integrable structure behind the TBA-like equation by

Nekrasov and Shatashvili [1], which arises when evaluating the ε2 → 0 limit of the sum

over instanton configurations. In fact, this regime is a natural quantisation/regularisation

of SW theory [7, 8] as ε1 is still finite and is characterised by a set of Bethe equations

with a polynomial Baxter TQ equation. Exploiting the reflection symmetry realised as

a deformation of the integration contours, a dual TQ equation has been written. In the

thermodynamical limit, the two TQ equations produce a dual pair of difference equations

respectively, the hv-equations, albeit the v functions are no longer entire. Yet, their quan-

tum Wronskian reproduces the TBA-like equation above [1] for a sort of pseudo-energy.

In addition, we have investigated the non-linear integral equations obeyed by the counting

functions for the Bethe roots. Very interestingly, these counting functions coincide with

the two second determinations of the NS pseudo-energy.

The reflection symmetry introduced here is very close to the reflection symmetry of

Liouville vertex operators. But it is possible to give it another algebraic interpretation. Lift-

ing up the theory to a five dimensional background compactified on S1, the corresponding

N = 1 gauge theory is covariant under the action of the Ding-Iohara-Miki algebra [26, 27]

in the instanton sector [28–32]. This q-deformation of the SHc algebra simplifies the iden-

tification of the action of symmetries by lifting some degeneracies. In this context, the

Z2-symmetry presented here is expected to coincide with the reflection σH defined in [47],

and that acts on the Drinfeld currents as follows:12

x±(z)→ x±(1/z), ψ±(z)→ ψ∓(1/z), γ̂ → γ̂. (4.1)

This symmetry maps the algebra DIMq1,q2 to DIMq−1
1 ,q−1

2
, the inversion of the parameters

q1, q2 corresponding to a sign flip of the parameters ε1, ε2 in the degenerate case. Similarly,

10For Nc = 2 Nf = 0 a1 = a2 = a, the expression of the qq-character is known at all orders in q [23]:

χ(z) = (z + ε+)2 − a2 + ε1ε2q∂q logZinst.. (3.40)

11This expansion is taken with h(z) finite although it does also depend on q.
12This expectation is partially based on the property Y~Y (−z) = −Ŷ~Y (z − ε+) for Nc = 1 and a1 = 0.
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the inversion of the spectral parameter becomes a change of sign z → −z as the radius of

S1 is set to zero. In the correspondence with (p, q)-web diagrams of IIB string theory, the

symmetry σH acts as a reflection of the diagram with the axis in the direction associated

to D5-branes. This fact seems coherent with the interpretation as a reflection in Liouville

theory. Yet, some further investigations are required to properly establish all these claims.

We hope to address this issue in a near future.

In a companion paper [48], we investigated the double deformation of the Seiberg-

Witten relations: at finite ε1 and ε2, we managed to identify the symmetry exchanging

the two ‘sheets’ of the Seiberg-Witten curve. This symmetry is different from the one

described here, and the solutions v(z) and v̂(z) of the two dual hv-equations reproduce

the same solution of the SW curve equation in the limit ε1 → 0. In fact, the difference

between these two reflection symmetries is more easily understood in the five dimensional

uplift theory. In this case, the exchange of the two SW sheets has been identified with the

action of another reflection symmetry of the DIM generators, denoted by σV in [47].13 In

the (p, q)-brane language, σV may be interpreted as a reflection with axis in the direction

associated to NS5-branes.

In this paper, we have confined our discussion to the TBA-like and the non-linear

integral equations, second determinations of the former. Still, it should be also possible

to relate the prepotential in the limit ε2 → 0 to the Yang-Yang functionals associated to

our systems of Bethe roots. Importantly, the prepotential obeys some ~-deformed Seiberg-

Witten relations (with ~ = ε1) [49, 50], which, in their turn, shall be obtainable as NS

limit of the ‘doubly-quantised’ qqSW relations (ε2 6= 0) found in [48] in the full omega

background. Therefore (and with crucial importance), the rôle of the Seiberg-Witten dif-

ferential upon quantisation seems to be played by the counting function η(z): this very

intriguing point is currently under investigation.

Finally, if we have found a system of Bethe equations underlying the TBA-like equation,

yet a physical model is still missing. The question of finding an Hamiltonian (and a more

complete transfer-matrix) describing this system is still open. In fact, this quantum system

could be obtained using the R-matrix found in [51], after taking the limit ε2 → 0. We hope

to come back to this point soon.
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A Analysis of the Bethe equations

A.1 Order of the corrections to the Bethe roots

To show that the deviation of the Bethe roots from the string solution is of the form

u(l,i) = u
(0)
(l,i) + O(qi), we will work by induction on k and assume the hypothesis δl,i =

u(l,i) − u
(0)
(l,i) = O(qi) for i ≤ k and δl,i = o(qk) for i > k. For this purpose, we also need to

write the Bethe equations in the form

Ξ(u(l,i))Ξ(u(l,i) + ε1)q(u(l,i) + ε1) = qM(u(l,i))q(u(l,i) − ε1). (A.1)

where q(z) is the Q-polynomial defined in (3.6). We first need to show that our hypothesis is

true for k = 1. By definition, δl,i = o(1) so that for i > 1 the r.h.s. of the Bethe equations is

qM(u(l,i))q(u(l,i) − ε1) = qM(u(l,i))(δl,i − δl,i−1)
∏

s 6=(l,i−1)

(u(l,i) − us − ε1) = o(q), (A.2)

since δl,i − δl,i−1 is of order o(1) and the remaining terms are of order one. Then, we

examine the l.h.s. . Taking i = nl, we have

Ξ(u(l,nl) + ε1) = δl,nl

∏
l′ 6=l

(u(l,nl) + ε1 − ξl′), (A.3)

which implies, expanding in q,

Ξ(u(l,nl))Ξ(u(l,nl)+ε1)q(u(l,nl)+ε1) = δl,nl
Ξ
(
u

(0)
(l,nl)

)∏
l′ 6=l

(
u

(0)
(l,nl)

+ε1−ξl′
)
q0

(
u

(0)
l,nl

+ε1

)
+O(q).

(A.4)

Thus the Bethe equations imply δl,nl
= o(q). Then, we take l and i such that 1 ≤ i < nl,

and consider the expansion of

q(u(l,i) + ε1) = (δl,i − δl,i+1)
∏

s 6=(l,i+1)

(u(l,i) − us + ε1)

= (δl,i − δl,i+1)
∏

s 6=(l,i+1)

(
u

(0)
(l,i) − u

(0)
s + ε1

)
+O(q)

(A.5)

Since Ξ(u(l,i))Ξ(u(l,i) +ε1) remains finite, by the equality (A.1), and (A.2) that gives the or-

der of the r.h.s. , we deduce that δl,i = δl,i+1 +o(q). By recursion, since δl,nl
= o(q), we have

δl,i = o(q) for all l, i with i > 1. For i = 1, the r.h.s. of the Bethe equation is of order O(q)

since the product Mq remains finite, while the l.h.s. is proportional to δl,i−δl,i+1 according

to (A.5). It implies that δl,1 = O(q). Thus, the induction hypothesis is true for k = 1.

Assuming the hypothesis true at rank k, the induction follows the same steps. Using

the decomposition of the product (A.2), it is shown that when i > k + 1, the r.h.s. of the

Bethe equations is of order o(qk+1) and it is of order O(qk+1) when i = k + 1:

qM(u(l,i))q(u(l,i) − ε1) = q(δl,i − δl,i−1)M
(
u

(0)
(l,i)

) ∏
s 6=(l,i−1)

(
u

(0)
(l,i) − u

(0)
s − ε1

)
+O(q)

 .

(A.6)
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Taking i = nl, due to (A.3) the l.h.s. of the Bethe equations is equal to δl,nl
times a function

of order one which is non-vanishing. It implies that δl,nl
= o(qk+1). Then, we consider

k + 1 < i < nl and use the property (A.5) to show that the l.h.s. of the Bethe equation

is equal to (δl,i − δl,i+1) times a non-vanishing function of order one. This shows that

δl,i = δl,i+1 + o(qk+1) and by induction δl,i = o(qk+1) for all l and i > k + 1. Finally, we

take i = k+ 1 and due to the same property (A.5) the l.h.s. of the Bethe equation is again

equal to (δl,k+1− δl,k+2) times a non-vanishing function of order one. But now the r.h.s. is

of order O(qk+1), implying δl,k+1 = δl,k+2 +O(qk+1) = O(qk+1). This finishes the proof of

the hypothesis at rank k + 1 and the induction.

A.2 Explicit solution in the case N = 1, Nf = 0

In the case of a pure U(1) gauge theory, the NS prepotential has the simple form FNS = q.

The Bethe equations can be solved explicitly for a small number of roots. For two roots,

we find after a bit of algebra,

u1 = a+
3

2
ε1 +

2qε1

α
− 1

2

√
α+ ε2

1, u2 = a+
3

2
ε1 +

2qε1

α
+

1

2

√
α+ ε2

1, (A.7)

with α(q) solving the following cubic equation,

α3 + 4qα2 + 8qε2
1α+ 16ε2

1q
2 = 0. (A.8)

It can be solved order by order in q, thus providing a series for α(q) which leads to

u1(q) = a+
q

ε1
+

q2

2ε3
1

+
q3

2ε5
1

+
3q4

4ε7
1

+
11q5

8ε9
1

+
85q6

32ε11
1

+O(q7),

u2(q) = a+ ε1 −
q2

2ε3
1

− 3q3

4ε5
1

− q4

ε7
1

− 23q5

16ε9
1

− 79q6

32ε11
1

+O(q7).

(A.9)

Taking the sum of ε1(ur−u(0)
r ) as in (3.4), we recover the expansion of the exact prepotential

up to the order O(q2).

The solution of the Bethe equations involving three roots can be obtained perturba-

tively in q,

u1(q) = a+
q

ε1
+

q2

2ε3
1

+
7q3

12ε5
1

+O(q4),

u2(q) = a+ ε1 −
q2

2ε3
1

− 2q3

3ε5
1

+O(q4),

u3(q) = a+ 2ε1 +
q3

12ε5
1

+O(q4).

(A.10)

We observe that the expansion of u1(q) and u2(q) coincide with the two-roots solution

up to the order O(q2), and differ at the order O(q3). And now, the sum of ε1(ur − u(0)
r )

reproduces the expansion of the exact prepotential up to the order O(q3).
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A.3 Derivation of the TQ-equation

The Bethe equations (3.3) can be rewritten in the following form,

Ξ(ur)Ξ(ur + ε1)
∏
s 6=r

ur − us + ε1

ur − us
= −qM(ur)

∏
s 6=r

ur − us − ε1

ur − us
. (A.11)

Consider the decomposition of the following functions over their poles at z = ur and z =∞,

Ξ(z)Ξ(z+ε1)
∏
r

z−ur+ε1
z−ur

= ε1

∑
r

Ξ(ur)Ξ(ur+ε1)

z−ur

∏
s 6=r

ur−us+ε1
ur−us

+
[
Ξ(z)Ξ(z+ε1)

q(z+ε1)

q(z)

]
+
,

qM(z)
∏
r

z−ur−ε1
z−ur

=−qε1

∑
r

M(ur)

z−ur

∏
s 6=r

ur−us−ε1
ur−us

+
[
qM(z)

q(z−ε1)

q(z)

]
+
, (A.12)

where q(z) denotes Baxter’s Q-polynomial and the subscript + the positive powers of z

in the expansion at infinity. We observe that the two functions have the same poles, and

the same residues at z = ur. They only differ by their singularities at z = ∞, which

is a polynomial of degree 2Nc that we denote t(z). Thus, we have obtained the TQ-

equation (3.6), with the T-polynomial given by

t(z) =

[
Ξ(z)Ξ(z + ε1)

q(z + ε1)

q(z)

]
+

−
[
qM(z)

q(z − ε1)

q(z)

]
+

. (A.13)

A.4 Perturbative analysis of the T-polynomial

The T-polynomials is a monic polynomial of degree 2Nc, and we denote the roots e↑↓l with

l = 1 · · ·Nc. In the limit q → 0, q(z) tends to q0(z) and due to the property (3.10), t(z)

tends to the product Ξ(z)A(z + ε1). This provides the position of the holes at first order

in q,

e↑l = ξl +O(q), e↓l = al − ε1 +O(q). (A.14)

These holes may be interpreted as the companion roots of the strings corresponding to

u(l,i) with l fixed. Actually, it is possible to show that ξl is a zero of t(z) with a much

better approximation, that is t(ξl) = O(qnl+1). This is due to the fact that ξl is an exact

zero of Ξ(z), and since u(l,nl) = ξl − ε1 + δl,nl
and δl,nl

is of order O(qnl) we have also

q(ξl − ε1)

q(ξl)
=

δl,nl

δl,nl
− ε1

∏
s 6=(l,nl)

ξl − us − ε1

ξl − us
= O(qnl). (A.15)

Thus, the r.h.s. of (A.13) for z = ξl is indeed of order O(qnl+1). Setting n = minl nl, we

define h(z) as the monic polynomial with roots at z = e↓l , so that t(z) = Ξ(z)h(z)+O(qn+1).
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B Analytic properties of the v-functions and contour integration

We will work perturbatively in q. At first order, v(z) = 1 +O(q) and the logarithm can be

expanded formally as

log(v(z)) =
∞∑
n=1

qnln(z). (B.1)

By construction, each function ln(z) has poles only at the values z = al + (i − 1)ε1 for

i ∈ Z>0, so that they all lie in the contour of integration Γ. Consider the integral∮
Γ
G(z − w) log(v(w))

dw

2iπ
=

∞∑
n=1

qn
[∮

Γ

ln(w)

z − w + ε1

dw

2iπ
−
∮

Γ

ln(w)

z − w − ε1

dw

2iπ

]
. (B.2)

We can deform the integration contour on the sphere. At z = ∞, v(z) = 1 + O(1/z),

taking the logarithm and expanding, we deduce that ln(z) = O(1/z) and there is no pole

at infinity. The integrals can be written with a contour Γ̂ that surrounds the lower-half

plane, avoiding the real axis and the point at infinity,∮
Γ
G(z − w) log(v(w))

dw

2iπ
= −

∞∑
n=1

qn
[∮

Γ̂

ln(w)

z − w + ε1

dw

2iπ
−
∮

Γ̂

ln(w)

z − w − ε1

dw

2iπ

]
. (B.3)

The variable z is assumed to lie slightly above the real axis, and the first integral has no

pole inside the new integration contour. The second integral has only one pole, located at

w = z − ε1, and with the residue −ln(z − ε1):∮
Γ
G(z − w) log(v(w))

dw

2iπ
= −

∞∑
n=1

qnln(z − ε1) = − log(v(z − ε1)). (B.4)

A similar argument can be employed to treat v̂(z). We decompose

log(v̂(z)) =
∑
n=1

qn l̂n(z), (B.5)

where the functions l̂n(z) have poles at z = al − iε1 for i ∈ Z>0, i.e. nowhere in the

integration contour Γ. Considering∮
Γ
G(z − w) log(v̂(w))

dw

2iπ
=

∞∑
n=1

qn

[∮
Γ

l̂n(w)

z − w + ε1

dw

2iπ
−
∮

Γ

l̂n(w)

z − w − ε1

dw

2iπ

]
, (B.6)

the first integral has only one pole inside Γ at w = z+ ε1, while the second integral has no

pole at all. As a result,∮
Γ
G(z − w) log(v̂(w))

dw

2iπ
= −

∞∑
n=1

qn l̂n(z + ε1) = − log(v̂(z + ε1)). (B.7)
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