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1 Introduction

M-theory is a quantum theory of interacting super-gravitons in 11 dimensions with no

dimensionless coupling constant [1]. While some of its dynamics can be understood through

a combination of its relation to superstring theories via compactification and the fact that

certain observables are protected by supersymmetry [2–5], there has not been a systematic

way to produce, for instance, the small momentum expansion of the graviton S-matrix in

11D Minkowskian spacetime. Neither has there been much understanding of the particle

spectrum of M-theory, or lack thereof, beyond super-gravitons.

Holographic dualities provide a window into M-theory through a dual quantum field

theory. There are three important examples of such holographic duals: the Banks-

Fischler-Shenker-Susskind (BFSS) matrix quantum mechanics [6–8], the 3-dimensional
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U(N)k ×U(N)−k Chern-Simons-matter theory of Aharony, Bergman, Jafferis, and Malda-

cena (ABJM) [9] in the large N , fixed k limit,1 and the 6-dimensional (2, 0) superconformal

field theories [11]. The ABJM theory, dual to M-theory on AdS4 × S7/Zk, is arguably the

easiest to understand because it has a Lagrangian description (unlike the 6D (2, 0) theory)

and because it has maximal superconformal symmetry when k = 1 or 2 (unlike BFSS

matrix theory).2 The existence of a Lagrangian description for ABJM theory allows for

powerful exact results (see, for instance, [12–14]) derived using supersymmetric localization

methods (see [15] for a collection of review articles and for references), which, in recent

years, have given rise to a number of precision tests of the AdS4/CFT3 duality: for ex-

ample, refs. [12, 16, 17] matched the large N limit of the S3 free energy of ABJM theory,

computed using the supersymmetric localization results of [18], to the same quantity com-

puted using 11D supergravity, thus providing an impressive check of AdS/CFT at leading

order in large N .

It has been long anticipated that the AdS/CFT correspondence allows for extracting

the full S-matrix of gravitons in the flat spacetime limit from correlation functions of the

CFT [19–24]. In practice, this approach has been hardly tractable. Recently the 4-graviton

S-matrix of tree level supergravity in AdS4 × S7 has been computed in Mellin space [25]

(see also [26–28] for similar computations in AdS5 and AdS7) and matched [29] with the

leading result of the large cT expansion3 of the stress-energy tensor 4-point function in

ABJM theory [14, 30, 31]. Naturally one may wish to extend this agreement to higher

orders in the large cT expansion, which amounts to going beyond supergravity in the bulk.

In this paper, we will outline a strategy for uncovering the small momentum expansion

of the 4-graviton S-matrix in M-theory from the CFT data. At low orders in the momentum

expansion, beyond the tree level terms, the S-matrix elements have local terms such as the

(supersymmetrized) R4 vertex, and nonlocal terms that are determined by lower order

terms through unitarity cuts. These nonlocal terms are what we loosely refer to as “loop

amplitudes” in M-theory. Concretely, the S-matrix element involving 4 super-gravitons is

constrained by supersymmetry Ward identities [32, 33] to be of the form

A = f(s, t)ASG,tree , (1.1)

where ASG,tree is the tree level scattering amplitude in 2-derivative supergravity, and f is

a symmetric function of the Mandelstam invariants s, t, and u = −s − t. The tree-level

1A generalization of ABJM theory is given by U(N)k×U(M)−k Chern-Simons matter theories discussed

by Aharony, Bergman, and Jafferis (ABJ) [10]. These theories are also dual to AdS4 × S7/Zk in the limit

when N −M and k are held fixed and N is taken to infinity.
2The same is true of the ABJ theories mentioned in the previous footnote. Due to various dualities, the

only maximally supersymmetric ABJ theory that is not dual to the k = 1 or k = 2 ABJM theories is the

U(N)2 ×U(N)−2 theory. We will not discuss this theory explicitly in this paper, although everything that

we will say about the k = 2 ABJM theory will also apply to the U(N)2 ×U(N)−2 ABJ theory.
3cT is the coefficient of the two-point function of the canonically-normalized stress-energy tensor, as

defined in section 4. It scales like N
3
2 in the large N , fixed k limit of ABJM theory. We prefer to think

about the expansion in 1/cT rather than 1/N , because the former is what is more closely related to the

expansion in Newton’s constant in the flat space limit. Note that the correlator in question is not analytic

in 1/cT , as fractional powers and logarithmic dependence will appear in the expansion.
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supergravity scattering amplitude ASG,tree carries dependence on the polarization as well

as the type of particles in the super-graviton multiplet. The function f admits a small

momentum expansion, or equivalently, an expansion in the 11D Planck length `11, of the

form

f(s, t) = 1 + `611fR4(s, t) + `911f1-loop(s, t) + `12
11fD6R4(s, t) + `14

11fD8R4(s, t) + · · · . (1.2)

Here, fD2nR4 refers to a local term which is a degree n + 3 symmetric polynomial in

s, t, u, whereas the loop terms are not analytic at zero momentum. In particular, fR4 ,

f1−loop, and fD6R4 are known exactly [3–5], as they are protected by supersymmetry and

can be determined by perturbative calculations either in type II string theory or in 11D

supergravity [34, 35]. For instance,

fR4(s, t, u) =
stu

3 · 27
, fD6R4(s, t, u) =

(stu)2

15 · 215
. (1.3)

Note that a term of the form `10
11fD4R4(s, t) in (1.2) would be allowed by the supersymmetric

Ward identity, but it is known to be absent by comparison with type II string scattering

amplitudes and supersymmetry renormalization properties. The term `14
11fD8R4(s, t), on

the other hand, is not protected by supersymmetry, and its existence is not known to the

best of our knowledge (although it was conjectured to be absent in [4]).

As mentioned above, our goal here is to reproduce the expansion (1.2) by taking the flat

space limit of the CFT correlators. We will carry out this strategy to the first nontrivial

order beyond two-derivative supergravity, and produce the R4 effective coupling of M-

theory from the large cT expansion of a known BPS OPE coefficient in ABJM theory, in

the following steps:

(1) We focus on the 4-point function of dimension ∆ = 1 scalar primaries SIJ in the stress

tensor supermultiplet that transform in the 35c representation of so(8) R-symmetry,

in ABJM theory with k = 1 or 2. Its Mellin transform, to be defined in section 2,

admits a large cT expansion of the form

M(s, t;σ, τ) = c−1
T Mtree + c

− 5
3

T MR4 + c−2
T M1−loop + · · · . (1.4)

Here, s, t are Mellin space kinetic variables (not to be confused with the Mandelstam

invariants), and σ, τ are so(8) invariants that will be defined in section 2. Mtree rep-

resents the tree-level supergravity contribution, recently computed in [25]. MR4 is a

polynomial expression in s, t, whose large s, t limit will be related to the 4-graviton

vertex that corresponds to the R4 effective coupling in flat spacetime. M1−loop is the

1-loop supergravity contribution in AdS4×S7, which is free of logarithmic divergences.

The higher order terms in the expansion may involve logarithmic dependence on cT ,

as we will discuss later.

(2) At each order in the 1/cT expansion, the Mellin amplitude is subject to the N = 8 su-

perconformal Ward identity. If the amplitude is a polynomial in s, t of known maximal

degree, e.g. MR4 is a degree 4 polynomial expression, then the Ward identity allows

– 3 –
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for finitely many solutions, thereby constraining the Mellin amplitude at this order

in terms of finitely many unknown coefficients. Some linear combinations of these

coefficients will be related to flat space amplitudes through the large s, t limit. The

“loop amplitudes” will be determined by lower order terms in the 1/cT expansion up

to residual polynomial terms. Note that the loop Mellin amplitudes involve sums over

poles that correspond to multi-trace operators in the OPE, and in the flat space limit

the poles turn into branch cuts.

(3) Transforming the Mellin amplitude back to the correlation function, one would recover

from (1.4) the 1/cT expansion of the OPE coefficients as well as the scaling dimensions

of various unprotected superconformal primaries. Some of these OPE coefficients,

namely those of certain 1/2-BPS and 1/4-BPS multiplets, are known exactly as a

function of cT from supersymmetric localization computations [14, 30, 31]. Other

OPE coefficients, as well as the scaling dimension of long multiplets, are not known

exactly but can be constrained by conformal bootstrap bounds.

(4) We will see that the OPE coefficient of the 1/4-BPS (B, 2) multiplet, expanded to

order c
− 5

3
T , determines the coefficient of MR4 in (1.4). Taking its large s, t limit then

determines the R4 effective coupling of M-theory in flat spacetime.4 Our result is

in perfect agreement with the known R4 coefficient in (1.3), previously derived by

combining toroidal compactification of M-theory, comparison to perturbative type II

string amplitudes, and protection by supersymmetry.

It is worth noting that previously, in the AdS/CFT context, the R4 coupling of M-

theory has been probed through the study of conformal anomaly of the 6D (2, 0) theory [36].

In this approach, one makes use of the bulk Lagrangian, including R4 coupling as well as

other terms related by supersymmetry. However, it is difficult to justify whether one has

accounted for all the relevant terms in the effective Lagrangian, which is further subject

to the ambiguity of field redefinitions. In contrast, our strategy produces from CFT data

terms in the flat space S-matrix element, it is not subject to complications of the bulk

effective Lagrangian, and all supersymmetries are manifest [37, 38].

A related comment concerns the structure of the derivative expansion of M-theory in

11D flat spacetime. Absent a dimensionless coupling constant, one could either speak of

a Wilsonian effective Lagrangian, which is subject to the ambiguity of a floating cutoff

scheme, or the 1PI/quantum effective Lagrangian, which amounts to a generating func-

tional for the graviton S-matrix and is nonlocal. It is accidental, thanks to supersymmetry,

that low order terms in the derivative expansion of the 1PI effective Lagrangian of M-theory

can be separated into local terms, such as t8t8R
4, and nonlocal terms that correspond to

4One may contemplate, in principle, a more powerful approach for determining the couplings in the

M-theory effective action, as follows. In principle, 11d SUSY determines the supersymmetric completion of

the D2kR4 terms (perhaps up to a few coefficients). One can then reduce the 11d action on S7 to obtain

an effective action in AdS4, which can then be used to calculate the CFT data via Witten diagrams. In

practice, none of these steps are currently achievable without a tremendous effort. We thank Ofer Aharony

for this comment.
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loop amplitudes. This distinction ceases to exist starting at 20-th derivative order, where

the supergravity 2-loop amplitude has a logarithmic divergence that is cut off at the Planck

scale and mixes with a local term of the schematic form D12R4 [39, 40]. As mentioned

above, it is clearer to phrase all of this directly in the language of the graviton S-matrix,

and its expansion at small momenta as given in eq. (1.2).

Finally, we should note that the idea that a large N CFT has a finite number of

solutions to the conformal Ward identities at each order in N was first stated in [41]. In

subsequent work [42, 43], this idea was generalized to maximally supersymmetric SCFTs

in 4D and 6D, respectively, where the superconformal Ward identities further constrain

the number of solutions. In 4D, [44] related the flat space limit of the Mellin amplitude

to the S-matrix of type IIB string theory in 10D, but a precise reconstruction of the

10D S-matrix was not possible because of a lack of known CFT data that can fix the

undetermined parameter in the CFT 4-point function. In the present work, we provide the

first application of these ideas to 3D, and, as mentioned above, we can further recover the

R4 term in 11D from the CFT correlators by making use of nontrivial CFT data that can

be computed using supersymmetric localization.5

The rest of this paper is organized as follows. In section 2 we start with a brief review

of the properties of the four-point function of the scalar operators SIJ in the stress tensor

multiplet of a local N = 8 SCFT. For ABJM theory, we also summarize the known exact

results on OPE coefficients derived using supersymmetric localization. In section 3 we

use the superconformal Ward identity as well as the asymptotic growth conditions on the

Mellin amplitude in order to determine, up to a few constants, the Mellin amplitude order

by order in 1/cT in the case of the M2-brane theory. In section 4 we explain how to extract

various scaling dimensions and OPE coefficients from the Mellin amplitude constructed in

section 3, and show how to reproduce the known correction to the supergravity scattering

amplitude of four super-gravitons in 11D. Lastly, we end in section 5 with a brief summary

as well as a discussion of future directions.

2 Four point function of stress-tensor

Let us start by reviewing some general facts about 3D N = 8 local SCFTs and of the

constraints imposed by the osp(8|4) algebra. The discussion in this section is quite general;

it does not rely on the Lagrangian of a particular 3D N = 8 SCFT, nor does it assume

such a theory has a holographic dual.

As mentioned in the Introduction, all N = 8 local SCFTs have a stress energy tensor

which belongs to the same half-BPS multiplet as a scalar operator of scaling dimension

∆ = 1 transforming, by convention, in the 35c representation of the so(8) R-symmetry. (We

choose the eight supercharges also by convention to transform in the 8v.) Since analyzing

correlation functions of scalar operators is easier than analyzing correlators of the stress

tensor, we will focus on these scalar operators.

5In 4D and 6D there exists a protected part of the 4-point function of the 1/2-BPS scalar in the stress

tensor multiplet that can be computed exactly [45, 46]. This sector, however, is completely fixed at order

1/cT , i.e. supergravity, for the stress tensor four point function.

– 5 –
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We can view the 35c representation as the rank-two symmetric traceless product of

the 8c, and so our scalar operators are traceless symmetric tensors SIJ(~x), where I, J =

1, . . . 8 are 8c indices. In order to not carry around the SO(8) indices, it is convenient

to contract them with an auxiliary polarization vector Y I that is constrained to be null

Y · Y ≡
∑8

I=1(Y I)2 = 0, thus defining

S(~x, Y ) ≡ SIJ(~x)Y IY J . (2.1)

Conformal symmetry and so(8) symmetry imply that the four point function of S(~x, Y )

takes the form

〈S(~x1, Y1)S(~x2, Y2)S(~x3, Y3)S(~x4, Y4)〉 =
(Y1 · Y2)2(Y3 · Y4)2

|~x12|2 |~x34|2
G(U, V ;σ, τ) , (2.2)

where U and V are conformally-invariant cross ratios, and σ and τ are so(8) invariants

formed out of the polarizations

U ≡ ~x2
12~x

2
34

~x2
13~x

2
24

, V ≡ ~x2
14~x

2
23

~x2
13~x

2
24

, σ ≡ (Y1 · Y3)(Y2 · Y4)

(Y1 · Y2)(Y3 · Y4)
, τ ≡ (Y1 · Y4)(Y2 · Y3)

(Y1 · Y2)(Y3 · Y4)
. (2.3)

Because (2.2) is a quadratic polynomial in each Yi separately, the quantity G(U, V ;σ, τ) is

a quadratic function of σ and τ .

By performing the OPE between the first two and last two operators in (2.2), one can

decompose G(U, V ;σ, τ) into superconformal blocks GM,

G(U, V ;σ, τ) =
∑

M∈osp(8|4)

λ2
MGM(U, V ;σ, τ) , (2.4)

where M runs over all osp(8|4) multiplets appearing in the S × S OPE, and the λ2
M are

the squared OPE coefficients for each such supermultiplet M. In table 1, we list the

multipletsM that appear in the OPE S×S, the dimension, spin, and so(8) representation

of their primaries, along with the possible values of their Lorentz spins. In our notation,

the (B,+) [0020] multiplet with (∆, j) = (1, 0) is the stress tensor multiplet itself. Unless

otherwise noted, the (B,+) [0040] multiplet in the S × S OPE will be simply be referred

to as the “(B,+) multiplet”.6 Its OPE coefficient will be denoted λ(B,+). Likewise the

OPE coefficient of the (B, 2) multiplet will be denoted λ(B,2). The semi-short multiplets

are denoted (A, 2)j and (A,+)j where j is the spin.

Perturbatively in 1/N , the long multiplets that appear in the OPE will be denoted

(A, 0)n,j,q, where n = 0, 1, . . . labels the leading order twist 2n + 2, and q = 0 , . . . n is

an index that labels distinct operators with the same leading order quantum numbers.

Subleading corrections in 1/N will lift the degeneracy among these long multiplets. In the

n = 0 case, we will omit the label q(= 0) and denote the multiplet by (A, 0)0,j .

6Note that for the interacting ABJ(M) theories, there are two degenerate (B,+) [0040] multiplets,

corresponding to a single trace (a super-graviton KK mode) as well as a double trace operator. The one

that enters the S×S OPE is a specific linear combination of the two, and is dominated by the double trace

operator in the large N limit. All other multiplets appearing in table 1 involve multi-trace operators in the

large N limit, barring the possibility of stable Planckian particles that could show up as single trace long

multiplets, whose scaling dimensions would be of order N
1
6 .
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Type (∆, j) so(8) irrep spin j BPS

(B,+) (2, 0) 294c = [0040] 0 1/2

(B, 2) (2, 0) 300 = [0200] 0 1/4

(B,+) (1, 0) 35c = [0020] 0 1/2

(A,+) (j + 2, j) 35c = [0020] even 1/4

(A, 2) (j + 2, j) 28 = [0100] odd 1/8

(A, 0) ∆ ≥ j + 1 1 = [0000] even Long

Table 1. The possible superconformal multiplets in the S×S OPE. The so(3, 2)⊕ so(8) quantum

numbers are those of the superconformal primary in each multiplet.

The superconformal block GM corresponding to each of the multiplets listed in table 1

receives contributions from conformal primaries with different spins j′, scaling dimensions

∆′, and so(8) irreps [0 (a−b) (2b) 0] for a = 0, 1, 2 and b = 0, . . . , a that appear in the tensor

product [0020]⊗ [0020]. The superconformal block can thus be written as a linear combi-

nation of the conformal blocks G∆′,j′ corresponding to the conformal primaries in M as

GM(U, V ;σ, τ) =

2∑
a=0

a∑
b=0

Yab(σ, τ)
∑

(∆′,j′)∈M

AMab∆′j′(∆, j)G∆′,j′(U, V ) . (2.5)

Here, the quadratic polynomials Yab(σ, τ) are eigenfunctions of the so(8) Casimir corre-

sponding to the various irreducible so(8) representations appearing in the product 35c⊗35c,
and are given by [47, 48]

1 = [0000] : Y00(σ, τ) = 1 ,

28 = [0100] : Y10(σ, τ) = σ − τ ,

35c = [0020] : Y11(σ, τ) = σ + τ − 1

4
,

300 = [0200] : Y20(σ, τ) = σ2 + τ2 − 2στ − 1

3
(σ + τ) +

1

21
,

567c = [0120] : Y21(σ, τ) = σ2 − τ2 − 2

5
(σ − τ) ,

294c = [0040] : Y22(σ, τ) = σ2 + τ2 + 4στ − 2

3
(σ + τ) +

1

15
.

(2.6)

The AMab∆′j′(∆, j) are rational function of ∆ and j. For the list of conformal primaries that

appear in each GM as well as the explicit coefficients AM, see [30].

2.1 The Mellin amplitude

Any 4-point function of scalar operators can be equivalently expressed in Mellin space.

We will find it useful to separate out the disconnected piece of the correlator, which in a

convenient normalization for SIJ takes the form

Gdisc(U, V ;σ, τ) = 1 + Uσ2 +
U

V
τ2 , (2.7)

– 7 –
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and then define the Mellin transform just for the connected part Gconn ≡ G − Gdisc:

Gconn(U, V ;σ, τ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

t
2
−∆M(s, t;σ, τ)Γ2

[
∆− s

2

]
Γ2

[
∆− t

2

]
Γ2
[
∆− u

2

]
.

(2.8)

Here, the Mellin space variables s, t, and u satisfy the constraint s + t + u = 4∆, and

recall that for our 4-point function ∆ = 1. The two integration contours run parallel to the

imaginary axis, such that all poles of the Gamma functions are on one side or the other of

the contour.

2.2 Localization results for short operators in ABJ(M)

The OPE coefficients of all short B-type operators in table 1 have been computed in [14]

for all 3D N = 8 theories, making use of a topological subsector of these theories studied

in [31, 49, 50].7 For ABJM with gauge group U(N)k×U(N)−k and ABJ with U(N + 1)2×
U(N)−2, the result is known perturbatively to all orders in the large N limit, or exactly at

small values of N . To compare to gravity, it is more convenient to reorganize the large N

expansion in terms of an expansion in the inverse of cT , the coefficient of the canonically

normalized stress tensor two-point function

〈Tµν(x)Tρσ(0)〉 =
cT
64

(PµρPνσ + PνρPµσ − PµνPρσ)
1

16π2x2
, (2.9)

where Pµν ≡ ηµν∇2 − ∂µ∂ν . Our convention in (2.9) is such that cT = 1 for a 3D (non-

supersymmetric) theory of a real massless scalar or of a Majorana fermion. In this conven-

tion cT is related to the stress tensor OPE coefficient as

cT =
256

λ2
S

. (2.10)

For U(N)k ×U(N)−k ABJM theory, the large N expansion of cT is

cT =
64

3π

√
2kN3/2 +

32
√

2

π
√
k
N1/2 +O(N0) . (2.11)

The large N expansion of the OPE coefficients of the (B,+) and (B, 2) operators can then

be rewritten as an expansion in large cT to all orders. The first few terms are8

λ2
(B,2) =

32

3
−
(

4096

9
− 5120

3π2

)
c−1
T + 40960

(
2

9π8k2

) 1
3

c
− 5

3
T +O(c−2

T ) ,

λ2
(B,+) =

16

3
−
(

4096

45
− 1024

3π2

)
c−1
T + 8192

(
2

9π8k2

) 1
3

c
− 5

3
T +O(c−2

T ) ,

(2.12)

7The generalization of the methods of [51] to non-Abelian theories would allow for a more direct com-

putation of these OPE coefficients, without relying on the approach of [14].
8It can be argued that the 1/cT expansion of these OPE coefficients is perturbatively the same for the

U(N + 1)2 × U(N)−2 ABJ theory and the U(N)2 × U(N)−2 ABJM theory. From the M-theory point of

view, the two theories differ by a torsion flux, i.e. a discrete holonomy of the 3-form field on a torsion 3-cycle

of S7/Z2 [10]. This torsion flux affects the CFT data only through non-perturbative effects.
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where note that the k-dependence begins at order c
−5/3
T , and all higher order terms appear

at orders c
− 2

3
n

T and c
−( 2

3
n+1)

T for integer n. In fact, it can be argued that only one of the

OPE coefficients in (2.12) is independent, because the relation [31]

1024

cT
− 5λ2

(B,+) + λ2
(B,2) + 16 = 0 (2.13)

is a consequence of crossing symmetry and must hold exactly.

3 The holographic four-point function

Let us now discuss the 4-point correlator of the operators SIJ in the particular case of

ABJM theory at CS level k = 1 or 2. In this section, we will use the AdS/CFT duality

to study this correlator from the bulk side of the duality, without making any reference to

the ABJM Lagrangian. We will use, however, that this theory is the low-energy theory on

N coincident M2-branes placed at a C4/Zk singularity, and that perturbatively at large N

the back-reacted geometry is AdS4 × S7/Zk. The radius L of AdS4 is given by

L6

`611

=
Nk

8
+O(N0) =

(
3πcTk

211

) 2
3

+O(c0
T ) , (3.1)

where `11 is the 11D Planck length [9].9 At leading order in 1/N , the radius of S7/Zk is

equal to 2L.

Note that the subleading corrections in (3.1) depend on the precise definition of L

beyond the supergravity solution. This ambiguity will not be important for us, as the

precise large radius expansion will be performed in 1/cT rather than in `11/L.

3.1 Holographic correlator in tree level supergravity

The main advantage of the Mellin space representation mentioned in section 2.1 is that in

a theory with a holographic dual one can easily write down the tree level expression for the

connected part of the four-point function. Indeed, the simplicity comes about as follows.

At tree level, the relevant Witten diagrams are contact diagrams and exchange diagrams, so

Mtree = Ms-exchange +Mt-exchange +Mu-exchange +Mcontact , (3.2)

while the t- and u-channel exchange diagrams are related to the s-channel one as

Mt-exchange(s, t;σ, τ) = τ2Ms-exchange(t, s;σ/τ, 1/τ) ,

Mu-exchange(s, t;σ, τ) = σ2Ms-exchange(u, t; 1/σ, τ/σ) .
(3.3)

In Mellin space, the contact diagrams corresponding to vertices with n derivatives are or-

der n polynomials in s, t, u. The exchange diagrams are slightly more complicated. An

9In the ABJM paper [9], the radius of AdS is L is denoted by R/2. Eq. (4.2) in that paper then

implies L6/`6p = π2Nk/2. The scattering amplitudes in the main text were written in the convention

2κ2
11 = (2π)5`911 whereas the ABJM paper uses the Polchinski [52] convention 2κ2

11 = (2π)8`9p. Thus,

`p = `11(2π)−1/3, so L6/`611 = Nk/8.
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exchange diagram for a bulk field φ dual to a boundary conformal primary operator O of

dimension ∆O and spin `O has a meromorphic piece whose form is fixed up to an overall

constant by the requirement that the residue at each pole agrees with the residue of the

conformal block corresponding to the exchange of the operator O, as well as a polynomial

piece in s, t, u. The degree of the polynomial is given by p1 + p2 − 1, where p1 and p2

are half the numbers of derivatives in the two vertices connecting the φ internal line to

the external lines. The meromorphic piece is independent of the vertices, and it has poles

at s = 2m + τO, where τO = ∆O − `O is the twist of the conformal primary O, and

m = 0, 1, 2, . . .. For example, if we denote

Mφ
s-exchange = M̂φ

s-exchange + (analytic) , (3.4)

then the meromorphic pieces for various bulk fields that will be of interest to us can be

taken to be:10

M̂graviton
s-exchange =

t2+u2−6tu+6(t+u)−8

s(s+2)

(
−(s+4)

8
+M̂∆ = 1 scalar

s-exchange

)
− (3s−4)

8
,

M̂gauge field
s-exchange =

t−u
s

(
−1

2
+M̂∆ = 1 scalar

s-exchange

)
,

M̂∆ = 1 scalar
s-exchange =

Γ
(

1−s
2

)
2
√
πΓ
(
1− s

2

) .
(3.5)

In addition, we note that the contribution from any bulk field φ dual to an even-twist

conformal primary must vanish:

M̂ even twist φ
s-exchange (s, t) = 0 , (3.6)

because a non-zero meromorphic piece for such an exchange would have poles at even values

of s, and that would produce third order poles when inserted in (2.8).

Going back to the situation of interest to us, i.e. the four-point function of the SIJ
operators in the k = 1 ABJM theory,11 we should think about which exchange and contact

diagrams we should write down. The scalar operators SIJ are dual to certain components

of the 11D graviton and 3-form in the S7 directions. As is well known, the spectrum of

fluctuations around AdS4×S7 organizes into representations of the supersymmetry algebra

osp(8|4) [53] (which is the same as the 3D N = 8 superconformal algebra). As shown in

10These expressions are just rescaled versions of (3.31) of [25]. In particular, we have

M̂graviton
s-exchange =−

∞∑
n=0

cos(nπ)Γ(− 3
2
−n)

4
√
πn!Γ(1/2−n)2

4n2−8ns+8n+4s2+8st−20s+8t2−32t+35

s−(2n+1)
=−

MZhou
graviton

3π
,

M̂gauge field
s-exchange =−

∞∑
n=0

cos(nπ)√
π(1+2n)Γ( 1

2
−n)Γ(1+n)

2t+s−4

s−(2n+1)
=−M

Zhou
vector

π
,

M̂∆ = 1 scalar
s-exchange =−

∞∑
n=0

cos(nπ)√
πn!Γ( 1

2
−n)

1

s−(2n+1)
=−M

Zhou
scalar

π
.

11The computation for the k = 2 ABJ(M) theory is identical at leading order in the 1/cT expansion.
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table 1, the S×S OPE contains two half-BPS operators: the stress tensor multiplet whose

bottom component is S itself, and the (B,+) multiplet whose component operators all have

even twist. From the discussion above, it follows that the only bulk fields that contribute

a meromorphic piece in the exchange diagrams are those in the stress tensor multiplet: the

scalar fields dual to S, the so(8) gauge fields, and the graviton.12 Consequently, Ms-exchange

is (up to an overall normalization that we will introduce later) a linear combination13

Ms-exchange =Y35c(σ,τ)M∆ = 1 scalar
s-exchange +bY28(σ,τ)Mgauge

s-exchange+cY1(σ,τ)Mgraviton
s-exchange , (3.7)

for some constants b and c. To determine the relative coefficients one can use the super-

conformal Ward identity (see appendix A), which, as shown in [25], implies b = −4 and

c = 4, so

Ms-exchange =Y35c(σ,τ)M∆ = 1 scalar
s-exchange −4Y28(σ,τ)Mgauge

s-exchange+4Y1(σ,τ)Mgraviton
s-exchange . (3.8)

Consequently, we can write a general tree-level Mellin amplitude as

Mtree = C
[
M̂exchange +Mresidual

]
, (3.9)

where M̂exchange = M̂s-exchange + M̂t-exchange + M̂u-exchange, M̂s-exchange is given by (3.8) with

all M ’s replaced by M̂ ’s, and C is an overall normalization factor.

The superconformal Ward identity also partly determines Mresidual under the assump-

tion that Mresidual has a certain polynomial growth. For instance, if we require that Mresidual

has at most linear growth, as would be the case in a bulk theory of supergravity, then the

analytic term is completely fixed in terms of (3.7) to be [25]

MSUGRA
residual =

1

2

(
s+ uσ2 + tτ2 − 4(t+ u)στ − 4(s+ u)σ − 4(s+ t)τ

)
. (3.10)

Thus, the supergravity tree level amplitude takes the form

MSUGRA
tree = C

[
M̂exchange +MSUGRA

residual

]
. (3.11)

For future reference, the linear growth at large s, t, u is given by14

MSUGRA
tree ≈ C

[
(tu+ stσ + suτ)2

stu

]
. (3.12)

The value of the overall coefficient C depends on the normalization of the operators SIJ
whose 4-point function we are considering. It is customary to normalize these operators

12There is no bulk coupling between three scalars in the gravity multiplet, but there exists a bound-

ary term that couples them (see for instance [54]). Therefore in the scalar exchange diagram the two

intermediate points are located on the boundary.
13In the notation of [25], we have λs = −1/π, λv = −b/π, and λg = −c/(3π).
14At large s, t, u, we have

M̂exchange ≈ −
1

2

[
t2 + u2

s
+
s2 + t2

u
σ2 +

s2 + u2

t
τ2

]
.
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such that their 2-point function is O(c0
T ) at large cT , and then the connected 4-point

function scales as c−1
T . In particular, if the normalization of O is such that the disconnected

piece of the 4-point function is given precisely by (2.7), then the overall coefficient C is

fixed to be [25]15

C =
32

π2cT
=

3

2
√

2kπN3/2
+O(N−5/2) . (3.13)

3.2 Contribution from higher derivative local terms

Now suppose the 11D supergravity Lagrangian is deformed by a local term of higher than 2-

derivative order. The supersymmetric completion of higher derivative couplings are difficult

to write off-shell, but are easily classified through local terms in the flat S-matrix elements

of higher momentum powers. In AdS4 × S7, they give rise to a contribution to the Mellin

amplitude that is a polynomial expression in s, t, of the form

(tu+ stσ + suτ)2 F (s2 + t2 + u2, stu) + . . . , (3.14)

where F is a homogeneous polynomial in s, t, u, determined by the corresponding flat

space vertex, and · · · represents lower degree terms in s, t. One can check that the ex-

pression (3.14) solves the superconformal Ward identity written in appendix A, after the

latter is expanded to leading non-trivial order in large s and t. The number of polynomial

solutions to the superconformal Ward identities of degree p ≥ 0 is thus equal to the number

of monomials in P and Q,

P ≡ s2 + t2 + u2 , Q ≡ stu (3.15)

of degree dP ≥ 0 in P and degree dQ ≥ 0 in Q such that p ≥ 2dP +3dQ+4. This number is

n(p) =
⌊6 + (p− 1)2

12

⌋
. (3.16)

See the first two lines of table 2, where for each degree p ≤ 10 in s, t, u we listed the

number of local solutions of the Ward identity with that growth at large s, t, u.

Thus, the most general local term in the Mellin amplitude that solves the Ward identity

is of the form

Mlocal = C
∑
p≥4

n(p)−n(p−1)∑
k=1

Bp,kM
(p,k)
local , (3.17)

where M
(p,k)
local is a polynomial solution to the Ward identity of degree p, labeled by the

index k. We left out the overall constant C by convention. A well defined flat space limit

would require the coefficients Bp,k to scale with the AdS radius L like

Bp,k ∼ L−2(p−1), as L→∞ . (3.18)

15In the notation of [25], we have C = −λs/π.
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degree ≤ p 3 4 5 6 7 8 9 10 · · ·
# of solutions 0 1 1 2 3 4 5 7 · · ·

11D vertex R4 D4R4 D6R4 D8R4 D10R4 D12R4 (2 types) · · ·

scaling in M-theory c
− 5

3
T (0×)c

− 19
9

T c
− 7

3
T c

− 23
9

T c
− 25

9
T c−3

T , c−3
T log cT · · ·

spin truncation 0 2 3 4 5 6 · · ·

Table 2. Number of solutions to the Ward identity of degree p polynomial growth at large s, t, u.

At each order we can always have the solutions from previous orders. The solution corresponding

to p = 1 is non-analytic; all other new solutions are purely polynomial in s, t, u and their number is

given by n(p) in (3.16). Spin truncation refers to the maximum spin of operators that receive contri-

butions at this order. In the second to last row, we indicate the order of appearance of the maximal

degree solution in the large cT expansion of the Mellin amplitude of M-theory on AdS4 × S7. Note

that D4R4 is expected to be absent in M-theory, while one specific linear combination of the two

possible D12R4 terms mixes with the 2-loop logarithmic divergence which is cut off at Planck scale.

Beyond the leading large s, t, u asymptotics, the polynomial solutions are quite com-

plicated. To simplify their form a bit, let us first note that any function M(s, t;σ, τ) that

is crossing invariant can be written as

M = (1 + σ2 + τ2)f1 + (s+ uσ2 + tτ2)f2 + (s2 + u2σ2 + t2τ2)f3

+ (σ + τ + στ)f4 + (tσ + uτ + sστ)f5 + (t2σ + u2τ + s2στ)f6 ,
(3.19)

where the fi are symmetric functions of s, t, u, or equivalently functions of P and Q as

defined in (3.15). The first purely polynomial solution to the Ward identity, which is the

unique solution of degree 4 we denoted by M
(4,1)
local in (3.17), can then be written as

f
(4,1)
1 =

P 2

4
+

6

7
Q− 22

5
P +

96

5
,

f
(4,1)
2 = Q+ 2P − 736

35
,

f
(4,1)
3 = −P

2
+

228

35
,

f
(4,1)
4 = −104

7
Q− 40

7
P +

4672

35
,

f
(4,1)
5 = 2Q− 18

7
P − 496

7
,

f
(4,1)
6 =

832

35
.

(3.20)

In this normalization, the solution M
(4,1)
local has the asymptotic form (3.14) with F (P,Q) = 1.

For explicit expressions of all polynomial solutions up to degree 10, see appendix B.

3.3 Loop contributions

While the large cT expansion of the M-theory Mellin amplitude in AdS4×S7 contains local

terms that correspond to higher derivative vertices in the flat space limit, there must also

be “loop terms” that are required by unitarity. The loop terms are determined, up to local

terms, in terms of lower order terms in the large cT expansion [24, 55–57].
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Unlike the loop terms in the flat spacetime S-matrix, a loop term in the Mellin ampli-

tude involves an infinite series of poles rather than a branch cut in the s, t, u variables. For

instance, the supergravity 1-loop Mellin amplitude can be expressed as a sum over poles in

s at s = 2∆ + 2n, n = 0, 1, 2, · · · , whose residues are polynomials in t, together with cross

terms related by permutation on s, t, u. In the flat space limit, the sum of poles turns into

an integral, which is nothing but a representation of the supergravity 1-loop S-matrix in

the form of a dispersion relation.

The flat space loop amplitudes can typically be expressed as loop integrals that are UV

divergent; the UV divergence can be renormalized by local counter terms up to logarithmic

divergences. Similarly, the Mellin loop amplitudes typically involve a divergent sum over

poles, that can be regularized by subtracting off polynomials in s, t term by term in the

sum, up to logarithmic divergences. The log divergence is physical and is cut off at Planck

scale in M-theory, resulting in a log cT dependence in the Mellin amplitude. In this paper,

we will not compute the M-theory loop Mellin amplitudes explicitly, but illustrate the

general structure in a few examples, as follows.

The 1-loop 4-super-graviton amplitude in 11D supergravity has only power divergences

that can be renormalized away, resulting in a contribution to the S-matrix element that

scales with energy like `18
11(
√
s)11. The 1-loop supergravity contribution to the Mellin

amplitude likewise can be written as a convergent sum over double trace poles. It comes

with an overall coefficient that scales like (`11/L)18 ∼ c−2
T .

In the flat space S-matrix of M-theory, there is a higher momentum order 1-loop ampli-

tude that scales like `24
11(
√
s)

17
2 , whose unitarity cut factorizes into a tree level supergravity

amplitude and an R4 vertex. It gives rise to another 1-loop Mellin amplitude that sums

up double trace poles, with an overall coefficient that scales like (`11/L)24 ∼ c−
8
3

T .

The 2-loop 4-super-graviton amplitude of 11D supergravity has a log divergence of the

form [39] (log Λ) 7
5·28·13!

`18
11stu

[
438(s6 + t6 + u6)− 53s2t2u2

]
ASG,tree. The cutoff Λ is taken

to be at Planck scale in M-theory. This gives rise to a local term in the Mellin amplitude

of degree 10 in s, t, u, whose coefficient scales like (`11/L)18 log(L/`11) ∼ c−3
T log cT , as

indicated in table 2.

3.4 The large radius expansion of the Mellin amplitude of M-theory

on AdS4 × S7

As shown in [22, 24], the relation between the large s, t limit of the Mellin amplitude

M(s, t) and the flat spacetime scattering amplitude A(s, t) takes the form

lim
L→∞

(2L)7V7M(L2s̃, L2t̃) =
1√
π

∫ ∞
0

dβ β−1/2e−βA
(
2βs̃, 2βt̃

)
, (3.21)

where V7 = π4/3 is the volume of the unit S7. The amplitude A appearing on the r.h.s. is

the 11D flat spacetime amplitude of four supergravitons, with momenta restricted to a 4D

sub-spacetime, integrated against four supergraviton Kaluza-Klein mode wave functions

on the S7, normalized by multiplying with an S7 volume factor so that the L → ∞ limit

is finite. Indeed, the scaling in (3.18) is such that only the most divergent term in each

M
(p,k)
local contributes to the limit on the l.h.s. of (3.21).
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More precisely, if we label by i, j, k, ` the four supergraviton KK modes, then the

amplitude Aijk`(s, t) appearing on the r.h.s. of (3.21) is related to the 11D scattering

amplitude A11D
αβγδ(s, t) by

Aijk`(s, t) =
∑
α,β,γ,δ

A11D
αβγδ(s, t)V7

∫
S7

d7x
√
gΨα

i (x)Ψβ
j (x)Ψγ

k(x)Ψδ
`(x). (3.22)

Here A11D
αβγδ(s, t) is an invariant tensor in the supergraviton polarizations α, β, γ, δ. Ψα

i (x)

is the normalized KK mode wave function for the particle i on a unit S7.

Since on the 3D SCFT side we are studying scalar operators transforming as the

35c of so(8), the flat space limit of the 4-point function of these operators corresponds

to the scattering amplitude A(s, t) of the 11D gravitons in their lowest KK modes, with

momenta concentrated in a 4-dimensional sub-spacetime and polarization in the transverse

directions. After contraction with so(8) polarization vectors and rewriting in terms of the

so(8) invariants σ, τ (after stripping out a factor of (Y1 · Y2)2(Y3 · Y4)2), the scattering

amplitude will be denoted by A(s, t;σ, τ). Rather than evaluating the integral in (3.22)

directly, we can obtain the answer by reducing the tree level amplitude of the lowest KK

modes on AdS4 × S7 to that of the N = 8 gauged supergravity in AdS4 [58] (see also [53],

as well as [59] for a review), whose flat spacetime limit gives the tree amplitude in 4D

ungauged N = 8 supergravity [60–62]. The details are explained in appendix C. The result

takes the form

A(s, t;σ,τ) = `911

(tu+stσ+suτ)2

stu

[
1+`611fR4(s, t)+`911f1−loop(s, t)+`12

11fD6R4(s, t)

+`14
11fD8R4(s, t)+`15

11f1−loop,R4(s, t)+`16
11fD10R4(s, t)+`18

11f2−loop(s, t)+`18
11fD12R4(s, t)+· · ·

]
,

(3.23)

with fR4 = stu
3·27 and fD6R4(s, t, u) = (stu)2

15·215 as given in (1.3). f1−loop and f2−loop are

known 11D supergravity loop amplitudes. The latter comes with a log divergence, whose

counter term can be absorbed into fD12R4(s, t). f1−loop,R4(s, t) is the 1-loop amplitude,

whose unitarity cut involves an R4 vertex and a tree amplitude, as already mentioned; it is

given by a known loop integral with only power divergences that can be regularized in the

standard way. The coefficients of the local terms fD8R4 , fD10R4 , fD12R4 are not protected

by supersymmetry and are unknown.

At each order in c−1
T , the large s, t limit of the Mellin amplitude (at this specific order)

is determined by the flat space limit, i.e. by a corresponding term in the small momentum

expansion of A(s, t). As such, the large cT expansion of the Mellin amplitude is expected

to be of the form

M(s, t;σ,τ) = c−1
T MSUGRA

tree +c
− 5

3
T MR4 +c−2

T M1−loop+c
− 7

3
T MD6R4(s, t)

+c
− 23

9
T MD8R4 +c

− 8
3

T M1−loop,R4 +c
− 25

9
T MD10R4 +c−3

T M2−loop+c−3
T MD12R4 +· · · .

(3.24)

While MR4 , for instance, is proportional to the unique solution to the superconformal Ward

identity of degree 4 in s, t, the term MD6R4 is a linear combination of three independent
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solutions to the Ward identity, of degree 7, 6, and 4 respectively. We must be careful

about the interpretation of the loop terms on the r.h.s. . M1−loop is determined by the tree

level supergravity Mellin amplitudes16 up to the ambiguity of a term proportional to MR4 .

M1−loop,R4 and M2−loop are subject to similar ambiguities. Note that c−3
T M2−loop contains

a log divergence that is cut off at Planck scale, resulting in a local term proportional to

c−3
T log(cT ) that is of the same degree as MD12R4 .

Based on superconformal Ward identities and the flat space limit, a priori one may

expect that other terms suppressed by further powers of (`11/L)2, such as terms of the form

c
− 17

9
T MR4 or c

− 19
9

T MR4 , would be allowed on the r.h.s. of (3.24). As we will see later, such

terms are ruled out by comparison with the known CFT data, namely the 1/cT expansion

of the OPE coefficient λ2
(B,+). At low derivative orders, this can be understood from the

supersymmetry protected terms in the bulk effective action as follows. A term suppressed

by extra powers of (`11/L)2 in comparison to those that survive the flat space limit should

come from the reduction of higher-than-4-point effective coupling of the super-graviton on

AdS4×S7, e.g. terms in the effective action of the schematic form R5, R6, etc. As explained

in [63], the R5 type coupling is not compatible with supersymmetry, whereas an R6 coupling

should be tied to D4R4 by supersymmetry Ward identities, but the latter is absent in the

M-theory effective action. This leaves R7, which is tied to D6R4, and its reduction on

AdS4 × S7 may lead to a contribution to the 4-super-graviton Mellin amplitude that is

down by (`11/L)6 ∼ c
− 2

3
T in comparison to the R4 contribution. This is indeed consistent

with the powers of c−1
T appearing in the expansion of λ2

(B,+) on the CFT side.17

Comparing (3.21), (3.23), and (3.24), we can determine, up to an overall normalization

constant,

M(s, t;σ,τ)

=C
[
M̂exchange+MSUGRA

residual +B4,1M
(4,1)
local +(1−loop)+B6,1M

(6,1)
local +B7,1M

(7,1)
local +· · ·

] (3.25)

where with the normalizations F (P,Q) = 1 and F (P,Q) = Q for M
(4,1)
local and M

(7,1)
local ,

respectively, we have

B4,1 ≈
35

27

`611

L6
, B6,1 = o

(
`10
11

L10

)
, B7,1 ≈

9009

215

`12
11

L12
(3.26)

in the large radius limit. Using the relation (3.1) given by the AdS/CFT dictionary, we

can write (3.26) as

B4,1 ≈
70

(6πcTk)
2
3

, B6,1 = o(c
−10/9
T ) , B7,1 ≈

1001

27

(
3

2πcTk

) 4
3

. (3.27)

In the normalization of SIJ in which the disconnected piece of the 4-point function is given

precisely by (2.7), the overall coefficient C is given by (3.13), which is exact in 1/cT . This

16To determine the polar part of M1−loop, we need not only the 4-super-graviton amplitude in AdS4, but

also the amplitudes involving 2 gravitons and 2 KK modes in AdS4.
17Beyond order c

− 7
3

T , however, it is not clear from the bulk why the contributions from, say c
− 23

9
T MD8R4 ,

to λ2
(B,+) should vanish. We will return to this point in section 5.

– 16 –



J
H
E
P
0
8
(
2
0
1
8
)
1
1
5

is essentially because the exchange of the stress tensor multiplet only appears in MSUGRA
tree ,

and hence the coefficient of the latter in the Mellin amplitude is exactly proportional to

c−1
T . All other terms on the r.h.s. of (3.25) involve exchange of multi-trace operators.

So far, using the known part of the M-theory effective action, we have determined

the following terms in the large cT expansion of the super-graviton Mellin amplitude in

AdS4 × S7: order c−1
T (tree level supergravity), order c

− 5
3

T (degree 4 in s, t, related to R4

coupling), and the coefficient of the maximal degree 7 polynomial in s, t at order c
− 7

3
T (how-

ever, we cannot fix the three other coefficients, of degree 6, 5, 4 polynomials in c
− 7

3
T MD6R4).

In principle, one can fix the non-analytic part of M1−loop and M1−loop,R4 in terms of the

lower order Mellin amplitude (that involves super-gravitons as well as KK modes in AdS4).

We also know the order c−3
T log cT term that is fixed by the logarithmic divergence of 2-loop

amplitude in 11D supergravity. Other coefficients, such as those appearing in MD8R4 , are

entirely unknown due to our ignorance of the higher order terms in the small momentum

expansion of the M-theory S-matrix.

In the next section, we show how to relate these coefficients to CFT data, namely the

OPE coefficients and scaling dimensions. Thus, if one has an independent way of computing

those CFT data, one can reconstruct the corresponding part of the Mellin amplitude.

4 Comparison with CFT data

We will now extract CFT data from the tree-level Mellin amplitudes computed above. We

will focus on the OPE coefficients squared aM of the protected multiplets M in table 1,

as well as the scaling dimension ∆A(0,j)
of the lowest twist long multiplet with spin j. The

supergravity contribution to these quantities was computed in [25, 29], and by definition is

order c−1
T . The higher derivative Mellin amplitudes M

(p,d)
local discussed above will contribute

starting at order c
− 7+2p

9
T , and then will generically include all subleading powers of c

−2/9
T

corresponding to powers of `211 in the flat space limit.

As discussed in [41, 42, 64], a flat space vertex with 2p derivatives for p > 1, which

corresponds to an AdS4 Mellin amplitude of maximal degree p, contributes to operators

with spin j ≤ p− 4. From the list of conformal primaries for (A,+)j and (A, 2)j in tables

6 and 7 in [30], respectively, we see that these supermultiplets contain a superconformal

descendent with spin j + 2 that is the only operator with these quantum numbers, so

these multiplets receives contribution only for p ≥ j + 6. We will now show how to fix

the n(p)− n(p− 1) coefficients Bp,d, indexed by d, of each degree p tree level term M
(p,d)
local

in (3.25) by extracting at least n(p) − n(p − 1) different pieces of CFT data from these

amplitudes, following the algorithm in [29].

We begin by writing the position space G(p,d) corresponding to a given M
(p,d)
local as

G(p,d)(U, V ;σ, τ) =
∑
M∆,j

[
a

(p,d)
M GM(U, V ;σ, τ) + a

(0)
M∆

(p,d)
M ∂∆GM(U, V ;σ, τ)

]
∆

(0)
M

, (4.1)

where the subscript ∆
(0)
M denotes that the blocks for the unprotected operators should be

evaluated with the leading order scaling dimension. Note that this expression only holds
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for tree level amplitudes that scale as some fraction of c−1
T ; for loop terms there would

be additional terms. The superblocks GM(U, V ;σ, τ) can be further expanded into so(8)

structures Yab(σ, τ) and conformal blocks G∆′,j′(U, V ) as in (2.5). To compare to the Mellin

space amplitude, we will furthermore take the lightcone expansion U � 1 for fixed V , so

that the conformal blocks can be written as

G∆,j(U, V ) =

∞∑
k=0

U
∆−j

2
+kg

[k]
∆,j(V ) , (4.2)

where the lightcone blocks g
[k]
∆,j(V ) are labeled by the k + 1-th lowest twist, and are only

functions of V . For instance, the k = 0 block in the normalization of [29] is

g
[0]
∆,j(V ) =

Γ(j + 1/2)

4∆
√
πj!

(1− V )j 2F1

(
∆ + j

2
,

∆ + j

2
,∆ + j, 1− V

)
. (4.3)

Note that g
[k]
∆,j(V ) goes like (1− V )j−2k in the V → 1 limit.

Putting these ingredients together, we can now expand G(p,d) to get the final expression

G(p,d)(U,V ;σ,τ) =
2∑

a=0

a∑
b=0

Yab(σ,τ)
∑
M∆,j

∑
(∆′,j′)∈M

∞∑
k=0

U
∆′−j′

2
+k

[
a

(p,d)
M AMab∆′j′(∆, j)g

[k]
∆′,j′(V )+a

(0)
M∆

(p,d)
M

[
∂∆+

logU

2

][
AMab∆′j′(∆, j)g

[k]
∆′,j′(V )

]]
∆

(0)
M

.

(4.4)

The utility of the lightcone expansion is that the U -dependence corresponds to the twist

∆− j of a conformal primary, and the logU term distinguishes between the scaling di-

mension and the OPE coefficient of that primary. In the Mellin transform (2.8), one can

isolate the U
∆′−j′

2
+k factor by taking the residue of the pole s = ∆′−j′+2k. The t-integral

can then be performed by summing all the poles, which yields a function of V . We can

then extract the coefficients of a set of lightcone block using the orthogonality relations for

hypergeometric functions [41]

δr,r′ = −
∮
V=1

dV

2πi
(1− V )r−r

′−1Fr(1− V )F1−r′(1− V ) ,

Fr(x) ≡ 2F1(r, r, 2r, x) ,

(4.5)

where the integration contour is chosen to encircle only the pole V = 1. For instance,

by multiplying G(p,d)(U, V ;σ, τ) with −(1 − V )−1−j̃F
1−∆′+j̃

2

(1 − V ) and then evaluating

the residue at V = 1, we will collect contributions from all terms in G(p)(U, V ;σ, τ) that

involve the lightcone blocks g
[k]
∆′,j′(V ) with j′ = j̃, j̃+2, . . . , j̃+2k, as well as those involving

∂∆′g
[k]
∆′,j′(V ) with j′ < j̃+ 2k−1. Combined with our ability to select the twist ∆′− j′ and

R-symmetry structure Yab(σ, τ), as well as our knowledge of how each conformal primary

contributes to the superconformal multiplet, this is enough to recursively solve for all ∆
(p)
M

and a
(p)
M for each superconformal multiplet M∆,j .

Recall that there are n+1 long multiplets (A, 0)n,j,q appearing in the OPE with leading

order twist 2n+ 2, labeled by q = 0, · · · , n. For n > 0, ∆
(p,d)
(A,0)n,j,q

extracted from the local

– 18 –



J
H
E
P
0
8
(
2
0
1
8
)
1
1
5

Spin j Leading order OPE coefficient squared a
(0)
(A,0)0,j

0 32/35≈ 0.911

2 2048/693≈ 2.955

4 1048576/225225≈ 4.656

6 67108864/10669659≈ 6.290

8 34359738368/4350310965≈ 7.899

10 2199023255552/231618204675≈ 9.494

12 2251799813685248/203176892887605≈ 11.083

Table 3. Values of leading order OPE coefficients squared a
(0)
(A,0)0,j

for spin j.

term in the Mellin amplitude is actually the average of all q = 0, . . . , n operators with

the same leading order quantum numbers. To avoid this ambiguity, we will only discuss

the n = 0 case (where the label q = 0 will be omitted in the notation). To extract the

anomalous dimension ∆
(p,d)
(A,0)0,j

, we will also need the leading order OPE coefficient squared

a
(0)
(A,0)(0,j)

, which we list from [29] in table 3.

4.1 Matching the R4 term

We begin by extracting the CFT data that receives corrections from the degree 4 polynomial

Mellin amplitude M
(4,1)
local that corresponds to the R4 term. From the discussion above, the

multiplets that receive corrections at this order are (B,+), (B, 2), and (A, 0)n,0,q. Since

λ2
(B,+) and λ2

(B,2) are related by (2.13), we will only discuss the former.

For a
(4,1)
(B,+), we take the s = 2 pole in the Mellin transform (2.8) of M

(4,1)
local given in (3.20)

and find that the UY22 coefficient is

G(4)
∣∣
UY22

[V ] = −8π2

35

∫
dt

2πi
V t/2−1 csc(πt/2)2

= −16

35

log V

1− V
,

(4.6)

where we closed the contour to include all positive poles in t. From the expansion (4.4),

we then extract the coefficient of g
[0]
2,0(V ) by integrating against 16F0(1−V )

V−1 = 16
V−1 to find

a
(4,1)
(B,+) = CB4,1

∮
V=1

dV

2πi

16G(5/3)
∣∣
UY22

V − 1
=

256

35
CB4,1 , (4.7)

where we used A
(B,+)
2220 (2, 0) = 1 for the superconformal primary. We now compare to the

localization result (2.12), and using the SUGRA normalization (3.13) we find that the

leading c
−5/3
T term in B4,1 precisely agrees with the result (3.27) obtained from the R4

effective coupling in 11D.
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We can similarly extract the anomalous dimension at order c
− 5

3
T for the lowest j = 0

(A, 0) long multiplet by taking the s = 2 pole in the SO(8)R singlet channel and using the

leading order OPE coefficient a
(0)
(A,0)0,0

= 32
35 from table 3. We obtain

∆
(4,1)
(A,0)0,0

= −192CB4,1 = −71680

(
6

π8k2

)1/3

c
−5/3
T +O(c

−17/9
T ) , (4.8)

where we inputted the value of CB4,1 determined above.

4.2 Higher derivative corrections

We now show how to extract CFT data from higher degree Mellin amplitudes M
(p,d)
local in

terms of their coefficents Bp,d for p = 6, 7, 8, 9, 10, where d = 1 except for p = 10 where

d = 1, 2. For p < 10 the leading order in 1/cT contributions can be unambiguously

extracted from these terms, as they do not mix with loop contributions. For p = 10, the

c−3
T contribution is affected by the as yet unknown 2-loop term, but there is a c−3

T log cT
that one could unambiguously extract. For all higher terms, the tree level contribution is

indistinguishable from the 2-loop and higher contributions.

Since λ2
(B,+) has already been used to fix B4,1 in (4.7), and λ2

(B,2) is related to λ2
(B,+)

by crossing symmetry, we will use the semi-short λ2
(A,2)j

and λ2
(A,+)j

as well as the lowest

twist unprotected ∆(A,0)0,j
for the allowed spin. These calculations will closely follow the

SUGRA calculations in [29], except that we use M
(p,d)
local in appendix B. As such we will only

briefly sketch the calculations; for more details see [29].

For (A,+)j , we extract its OPE coefficient using the superconformal descendent

(j + 4, j + 2)[0040], which has the advantage of being the only conformal primary in M
with these quantum numbers for any j. If we had chosen the superconformal primary

(j + 2, j)[0020], then for j = 2 this primary would have appeared in both (A,+)0 and

(A,+)2. Using the explicit coefficients in appendix C of [30] and the formula for M
(p,d)
local in

appendix B, we can compute a
(p,d)
(A,+)j

in terms of CBp,d, which we list in table 4.

The calculation for (A, 2)j is more subtle, because there is no longer a twist 2 conformal

primary that only appears in (A, 2)j . We choose the conformal primary (j + 4, j + 2)[0120],

which overlaps with superconformal descendents of (A,+)j±1. Since we have already com-

puted a
(p,d)
(A,+)j

, we can remove them to find the answers for a
(p,d)
(A,2)j

as given in table 4.

For (A, 0)0,j , since we are considering its anomalous dimension, we only need to worry

about mixing with other superconformal descendents of (A, 0)0,j′ for some other j′. If we

choose the superconformal primary (j + 2, j)[0000], then from table 8 in [30] we see that a

superconformal descendent of (A, 0)0,j mixes with (A, 0)0,j+4. We can take into account

this mixing by computing each j starting from j = 0, which yields the answers in table 4.

Note that all the OPE coefficients and anomalous dimensions in table 4 receive con-

tributions from non-local terms in the Mellin amplitude, such as the tree level amplitude

at order c−1
T , the 1-loop amplitude at order c−2

T , etc.
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)
lo
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M
(6
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)
lo
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M
(7
,1

)
lo

ca
l

M
(8
,1

)
lo

ca
l

M
(9
,1

)
lo

ca
l

M
(1

0
,1

)
lo

ca
l

M
(1

0
,2

)
lo

ca
l

a
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,+

) 0
0
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1
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9
5
0
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2
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1
3
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6
7
9
6
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1
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6
7
1
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7
1
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4
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5 Discussion

In this paper, we outlined a strategy to recover the M-theory effective action, i.e. the small

momentum expansion of the flat spacetime S-matrix, from the CFT data of ABJM theory

using the large cT expansion of the Mellin amplitude. We determined certain low order

terms in the latter expansion using the OPE coefficient of the (B,+) multiplet, previously

computed exactly as a function of cT via the supersymmetric localization method. The

known CFT data are enough for us to recover the correct R4 effective coupling of M-

theory, but not enough for a nontrivial check against the next two known coefficients of

the M-theory effective action allowed by supersymmetry, namely D4R4 (whose coefficient

is zero) and D6R4. It is plausible that there may be other protected OPE coefficients, say

of semi-short multiplets, in the S ×S OPE that could be determined using CFT methods,

and tested against the absence of the D4R4 term and the coefficient of the D6R4 term in

M-theory.

More importantly, our hope is that bootstrap bounds on unprotected OPE coefficients

or anomalous dimensions at large cT could be used to bound the coefficients of higher order

terms in the M-theory effective action, such as D8R4, D10R4, etc. It has been suggested [4],

based on naive power counting arguments, that the independent local terms in the M-

theory effective action only arise at momentum order D6kR4 for non-negative integer k.

It is not clear to us why this should be the case beyond D6R4, where supersymmetry no

longer constrains the moduli dependence of the higher derivative couplings upon toroidal

compactifications of M-theory [63]. Nonetheless, we saw that a certain cancelation in

the contribution from local terms in the Mellin amplitude of the form c
− 23

9
T MD8R4 and

c
− 25

9
T MD10R4 to the (B,+) OPE coefficient is required, and we do not have an explanation

of this from the bulk perspective. This does not imply the absence of D8R4 or D10R4

terms in M-theory, however, since the local Mellin amplitudes MD8R4 and MD10R4 are not

entirely fixed by their flat space limits. An intriguing possibility is that perhaps such terms

are absent in the Mellin amplitude altogether (which would imply the absence of D8R4

and D10R4 in the flat space limit). It would be extremely interesting to understand if this

is the case.

In [14], it was noticed that the (B, 2) (or (B,+)) OPE coefficients of ABJ(M) theory,

as computed using supersymmetric localization, come close to saturating the numerical

bootstrap bounds on these quantities obtained for general N = 8 SCFTs. Such a bound

saturation would imply that one may extract numerically all the CFT data encoded in the

〈SSSS〉 4-point function,18 thus allowing us in principle to recover the entire M-theory

super-graviton S-matrix using the procedure outlined in this paper. However, as was

pointed out in [14], the values of the (B, 2) OPE coefficients as a function of 1/cT start to

depend on k at order 1/c
5/3
T , with the value for the k = 2 ABJ and ABJM theories being

closer to the numerical bound.19 So it is possible that one of these k = 2 theories could

18If the numerical bounds are only close to being saturated, then we cannot reconstruct the 〈SSSS〉
4-point function, but we can still obtain stringent bounds on the CFT data.

19As already mentioned, the OPE coefficients of k = 2 ABJM and k = 2 ABJ theories have identical

perturbative expansions in 1/cT . See footnote 8.
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in fact saturate the bootstrap bound for all values of cT , and the strategy of determining

the CFT data numerically and feeding it into the procedure described in this paper could

work. As far as the k = 1 ABJM theory is concerned, while (at least at large cT ) this

theory certainly does not saturate the bootstrap bound discussed in [14], it is possible that

an improved bootstrap analysis could generate different stronger bounds that apply only

to the k = 1 theory. For instance, a mixed correlator study of the lowest dimension scalars

in the (B,+) [0020] and [0030] multiplets would single out the k = 1 theory because the

(B,+) [0030] multiplet does not exist in the k = 2 theories. It would be very interesting

to investigate these issues in the future.

So far we have focused entirely on 4-particle S-matrix elements. Our strategy based

on the flat space limit of ABJM correlators allows us, in principle, to recover the M-theory

S-matrix elements of n supergravitons, provided that their momenta are aligned within a

4D sub-spacetime of the 11D Minkowskian spacetime. This determines all n-point S-matrix

elements for n ≤ 5, but not for n ≥ 6. To recover the (n ≥ 6)-point S-matrix elements for

general 11D momenta from the Mellin amplitudes of ABJM theory would be much more

difficult, as it would require taking a flat space limit of the Mellin amplitudes for operators

of large so(8) quantum numbers.

It would also be useful to extend the arguments of this paper to other cases of maxi-

mally supersymmetric SCFTs with holographic duals, such as N = 4 SYM in 4D, which

is dual to Type IIB String theory, and the AN−1 series of (2, 0) theories in 6D, which is

dual to M-theory. As mentioned before, none of the CFT data in the stress tensor four

point functions in these cases is known analytically beyond 1/cT order, but it is possible

that numerical bounds could be translated into bounds on M-theory and String theory. In

6D, the OPE coefficients of certain protected operators that appear in four point function

half-BPS multiplets other than the stress tensor are known in an expansion to all orders

in 1/cT using the protected 2D chiral algebra. In an upcoming work [65], this data will be

used to derive the M-theory R4 from 6D CFT, analogous to the 3D derivation in this work.

Lastly, it would be interesting to generalize the construction in this paper to theories

with lower amounts of supersymmetry. In particular, it should be possible to extend the

arguments of this paper to the full family of ABJM theories, which have only N = 6

supersymmetry for CS level k > 2. The supersymmetric localization calculations extend

to this case too, and one can perform both an expansion in large N at fixed k, as we did

in this paper, or at large N and fixed λ = N/k [12]. The latter expansion would allow us

to probe scattering amplitudes in type IIA string theory directly.
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A Supersymmetric Ward identity

In position space, the supersymmetric Ward identity takes the form

(
z∂z −

1

2
α∂α

)
G(U, V ;σ, τ)

∣∣
α=z−1 =

(
z̄∂z̄ −

1

2
α∂α

)
G(U, V ;σ, τ)

∣∣
α=z̄−1 = 0 , (A.1)

where we defined

U ≡ zz̄ , V ≡ (1− z)(1− z̄) , σ ≡ αᾱ , τ ≡ (1− α)(1− ᾱ) . (A.2)

To implement the Ward identities in Mellin space, we first expand G(U, V ;σ, τ) into the

R-symmetry polynomials Yab(σ, τ) as

G(U, V ;σ, τ) =
2∑

a=0

a∑
b=0

Yab(σ, τ)Gab(U, V ) , (A.3)

which has Mellin transform (2.8)

M(s, t;σ, τ) =

2∑
a=0

a∑
b=0

Yab(σ, τ)Mab(s, t) . (A.4)

If we add up the two equations in (A.1), and expand in powers of ᾱ, then z and z̄ always

appear in the combination zm + z̄m for some integer m, which can then be turned into

rational functions of U, V . The resulting equation involves a set of differential operators in

U, V acting on Gab(U, V ), organized in powers of ᾱ. Finally, we convert the Ward identity

to Mellin space by setting

Gab(U, V )→Mab(s, t), U∂U → Û∂U , V ∂V → V̂ ∂V , UmV n → ÛmV n, (A.5)

where the hatted operators act on Mab(s, t) as

Û∂UMab(s, t) =
s

2
Mab(s, t) ,

V̂ ∂VMab(s, t) =

[
t

2
− 1

]
Mab(s, t) ,

ÛmV nMab(s, t) = Mab(s− 2m, t− 2n)
(

1− s

2

)2

m

(
1− t

2

)2

n

(
1− u

2

)2

−m−n
,

(A.6)

where u = 4 − s − t and we will have independent constraints on each coefficient in the

expansion in powers of ᾱ.
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B Polynomial solutions of degree p ≤ 10

Here we record the purely polynomial solutions Mp,d to the superconformal Ward identity

with maximal degree p. For p = 6, 7, 8, 9 we find one new solution for each p, while for

p = 10 we find two new solutions. We will write these polynomials in the notation of (3.15)

and (3.19), so that in the large s, t limit they take the form

(tu+ stσ + suτ)2 Fp,d(P,Q) ,

P ≡ s2 + t2 + u2 , Q ≡ stu ,
(B.1)

where they are normalized so that

F6,1 = P , F7,1 = Q , F8,1 = P 2 , F9,1 = QP , F10,1 = P 3 , F10,2 = Q2 . (B.2)

The full polynomials are then

M
(6,1)
local :

f
(6,1)
1 =

P 3

4
− 102P 2

11
− 10PQ

11
+

1152P

11
+

608Q

77
− 4096

11
,

f
(6,1)
2 = 2P 2+PQ− 544P

11
−16Q+

21760

77
,

f
(6,1)
3 =−P

2

2
+

180P

11
+

40Q

11
− 8192

77
,

f
(6,1)
4 =−64P 2

11
− 208PQ

11
+

14912P

77
− 8000 Q

77
− 1536

7
,

f
(6,1)
5 =−50P 2

11
+2PQ− 11904P

77
+

592 Q

11
+

44416

77
,

f
(6,1)
6 = 56P− 40Q

11
− 16320

77
.

(B.3)

M
(7,1)
local :

f
(7,1)
1 =

13P 3

4
+
P 2Q

4
− 1326P 2

11
− 2074P Q

143
+

14976P

11
+

36Q2

13
+

15344 Q

143
− 53248

11
,

f
(7,1)
2 = 26P 2+15PQ− 7136P

11
+Q2− 2592Q

11
+

40960

11
,

f
(7,1)
3 =−13P 2

2
−PQ

2
+

31172P

143
+

8500 Q

143
− 204032

143
,

f
(7,1)
4 =−11568P 2

143
− 37288PQ

143
+

394816 P

143
− 296Q2

13
− 97664Q

143
− 820736

143
,

f
(7,1)
5 =−8460P 2

143
+

278PQ

13
− 22256P

11
+2 Q2+

58368Q

143
+

1271936

143
,

f
(7,1)
6 =

105056P

143
+

2720Q

143
− 40704

13
.

(B.4)
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M
(8,1)
local :

f
(8,1)
1 =

P 4

4
− 118906P 3

8775
− 303226P 2 Q

114075
+

779296P 2

2925
+

123799376P Q

1482975
− 6478336P

2925

+
893008 Q2

54925
− 776857216Q

1482975
+

57749504

8775
,

f
(8,1)
2 = 2P 3+P 2Q− 635168P 2

8775
− 214816P Q

7605
+

96849664P

114075
+

64736 Q2

114075
+

7101056Q

38025

− 74051584

22815
,

f
(8,1)
3 =−P

3

2
+

219092P 2

8775
+

819392P Q

114075
− 482840128P

1482975
− 16172032 Q

296595
+

1918862848

1482975
,

f
(8,1)
4 =−88P 3

15
− 344P 2Q

15
+

92261504 P 2

494325
− 807268288PQ

1482975
+

669270016 P

1482975
+

20749184Q2

1482975

+
246585856Q

1482975
+

3609677824

1482975
,

f
(8,1)
5 =−98P 3

15
+2P 2Q− 11447968P 2

32955
+

257584528 PQ

1482975
+

22751488P

8775
+

129472 Q2

114075

+
638850176Q

494325
− 15066962944

1482975
,

f
(8,1)
6 =

6768P 2

65
− 112PQ

15
− 883842304 P

1482975
− 116637824Q

296595
+

305705984

164775
.

(B.5)

M
(9,1)
local :

f
(9,1)
1 =− 4P 4

182699
+
P 3Q

4
+

256 P 3

182699
− 1470246P 2Q

215917
− 6144 P 2

182699
+

16PQ2

17
+

2169915952P Q

30876131

+
65536P

182699
+

13084704 Q2

30876131
− 7754383488Q

30876131
− 245760

182699
,

f
(9,1)
2 =− 32P 3

182699
+

365382P 2Q

182699
+

814496 P 2

182699
+PQ2− 77230848PQ

2375087
− 250089728 P

2375087

− 14173656Q2

2375087
+

246246272Q

2375087
+

1292496896

2375087
,

f
(9,1)
3 =

8P 3

182699
−P

2Q

2
+

991112 P 2

182699
+

49147600PQ

2375087
− 2231011968 P

30876131
+

64Q2

17

− 3759586080 Q

30876131
+

7327562240

30876131
,

f
(9,1)
4 =−90136P 3

16609
− 2773792P 2 Q

182699
+

7526374144P 2

30876131
− 456P Q2

17
+

21774069376PQ

30876131

− 53524939264 P

30876131
− 14438168832Q2

30876131
+

996369408 Q

165113
− 561678131200

30876131
,

f
(9,1)
5 =−9926P 3

182699
− 1203696P 2Q

182699
− 175354688 P 2

30876131
+2PQ2− 16185059776P Q

30876131

+
248339584P

182699
+

237662432 Q2

2375087
− 77421998592 Q

30876131
+

24500873216

2806921
,

f
(9,1)
6 =

1265488P 2

182699
+

20966800P Q

182699
− 13022172672P

30876131
− 64 Q2

17
+

1028671104Q

1816243

− 57606243328

30876131
.

(B.6)
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M
(10,1)
local :

f
(10,1)
1 =

P 5

4
− 15560102282570 P 4

788812391521
− 1352721664990P 3 Q

46400728913
+

488239952498560 P 3

788812391521

+
761509603801472P 2 Q

788812391521
− 7568372894878720 P 2

788812391521
− 36285564992176P Q2

788812391521

− 8944052927693568P Q

788812391521
+

56120322339061760 P

788812391521
− 93811894726016 Q2

788812391521

+
34293760356859904 Q

788812391521
− 157293341281452032

788812391521
,

f
(10,1)
2 = 2P 4+P 3Q− 86930417851808 P 3

788812391521
− 193714236162928P 2 Q

788812391521
+

1555772227023104 P 2

788812391521

− 4531714954240P Q2

46400728913
+

3584920148835072P Q

788812391521
− 737911375243264 P

46400728913

+
660575198396864 Q2

788812391521
− 17697616105197568 Q

788812391521
+

2575160352276480

46400728913
,

f
(10,1)
3 =−P

4

2
+

29459546898780 P 3

788812391521
+

2793360500552P 2 Q

46400728913
− 100360584961920 P 2

71710217411

− 1858335910889184P Q

788812391521
+

13493643403236352 P

788812391521
− 15338759568448 Q2

41516441659

+
12456326461020928 Q

788812391521
− 53235484975194112

788812391521
,

f
(10,1)
4 =−112P 4

19
− 512P 3Q

19
+

560077576316736 P 3

788812391521
+

206913777028736P 2 Q

788812391521

− 1708367914422272 P 2

71710217411
+

2132575731403584P Q2

788812391521
− 53535047508136448P Q

788812391521

+
15759894134800384 P

71710217411
+

3255946003526144 Q2

71710217411
− 54552662836060160 Q

112687484503

+
937350835787825152

788812391521
,

f
(10,1)
5 =−162P 4

19
+2P 3Q− 73978710764208 P 3

112687484503
+

781824468030880P 2 Q

788812391521

+
7762246710240640 P 2

788812391521
− 9063429908480P Q2

46400728913
+

45210666149624576P Q

788812391521

− 157261767221821440 P

788812391521
− 7746117391574656 Q2

788812391521
+

132057277767493632 Q

788812391521

− 30032651544567808

71710217411
,

f
(10,1)
6 =

54328P 3

323
− 216P 2Q

19
− 1729256379496320 P 2

788812391521
− 538093588640640P Q

41516441659

+
39075972258892288 P

788812391521
+

15338759568448 Q2

41516441659
− 31559299392227840 Q

788812391521

+
75001766595411968

788812391521
.

(B.7)
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M
(10,2)
local :

f
(10,2)
1 =

299520P 4

112687484503
− 195812761P 3 Q

26514702236
− 23003136P 3

112687484503
+
P 2 Q2

4
+

28123710360P 2Q

112687484503

+
705429504 P 2

112687484503
− 111982834408P Q2

112687484503
+

741648981488P Q

112687484503
− 11777605632P

112687484503

+
90 Q3

19
+

284961517968Q2

112687484503
− 7688398979328 Q

112687484503
+

59624128512

112687484503
,

f
(10,2)
2 =

2396160P 3

112687484503
− 350338726P 2 Q

5930920237
+

521837758752 P 2

112687484503
+

13061538357P Q2

6628675559

− 78313654944P Q

112687484503
− 12715684780800 P

112687484503
+Q3− 3295800890632 Q2

112687484503

− 3955386769280 Q

112687484503
+

69834972106752

112687484503
,

f
(10,2)
3 =− 599040P 3

112687484503
+

195812761P 2Q

13257351118
+

47804861328P 2

10244316773
−P Q2

2
+

2089851982888PQ

112687484503

− 6420168418176 P

112687484503
+

2447753248668 Q2

112687484503
− 14510922184416 Q

112687484503
+

16952863051776

112687484503
,

f
(10,2)
4 =−525817052976P 3

112687484503
− 2126292211816P 2 Q

112687484503
+

3829309249536 P 2

10244316773
− 3084100585440P Q2

112687484503

+
158246717908608P Q

112687484503
− 101933809566720P

10244316773
− 584 Q3

19
+

21726894668416 Q2

10244316773

− 2789434673572352 Q

112687484503
+

461843423772672

5930920237
,

f
(10,2)
5 =−3406879532P 3

112687484503
+

7280563630P 2 Q

112687484503
− 234903259776 P 2

112687484503
− 44350210808P Q2

6628675559

− 1631675597600P Q

112687484503
+

278557348028672P

112687484503
+2 Q3− 80859508899296Q2

112687484503

+
1258912624870784 Q

112687484503
− 403649143517184

10244316773
,

f
(10,2)
6 =

624467978240P 2

112687484503
+

2192783584032P Q

112687484503
− 78555860196864 P

112687484503
+

14514678629152 Q2

112687484503

− 294378521704192 Q

112687484503
+

1144844596080640

112687484503
.

(B.8)

C Scattering amplitude in 4D N = 8 supergravity

In this appendix we show how to obtain the flat space limit of the tree-level scattering

amplitude of the 35c scalars of N = 8 gauged supergravity, thus deriving the leading term

in (3.23). In the flat space limit, the tree N = 8 gauged supergravity amplitude reduces

to the tree amplitude in ungauged N = 8 supergravity, which we now review.

The 4D N = 8 gravity multiplet consists of 128 bosonic and 128 fermionic massless

states that can be conveniently represented as anti-symmetric tensors of the SU(8) R-

symmetry as follows: the helicity h = +2 and h = −2 states of the graviton can be

represented as SU(8) singlets h+ and h− = hABCDEFGH ; the helicity h = +3/2 and

h = −3/2 states of the gravitino can be represented as ψA and ψABCDEFG; the helicity

h = +1 and h = −1 states of the gravi-photon can be represented as vAB and vABCDEF ;

the helicity h = +1/2 and h = −1/2 states of the gravi-photino can be represented as
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χABC and χABCDE ; and the scalars, of helicity h = 0, can be represented as SABCD. Here

A = 1, . . . 8 are SU(8) fundamental indices.

The 4-point scattering amplitude of any four particles from the gravity multiplet can

be succinctly described by first introducing auxiliary Grassmann variables ηA and grouping

all the particles of the gravity multiplet into an N = 8 superfield (see for example [33])

Φ = h+ + ηAψ
A − 1

2
ηAηBv

AB − 1

6
ηAηBηCψ

ABC +
1

4!
ηAηBηCηDS

ABCD + · · · . (C.1)

The expression for Φ is designed such that one can extract a state of a given helicity by

taking derivatives with respect to the auxiliary Grassmann variables ηA. For the 70 scalars,

we have

SABCD =
∂

∂ηA
∂

∂ηB
∂

∂ηC
∂

∂ηD
Φ . (C.2)

The tree-level 4-point scattering amplitude in supergravity can then be written as

(see [33])20

Atree, SG(s, t; ηi) =
1

256

8∏
A=1

 4∑
i,j=1

〈ij〉ηiAηjA

 [34]4

〈12〉4
1

stu
. (C.3)

Here, ηiA, i = 1, . . . 4, are the auxiliary polarization variables associated with the ith

particle. The scattering amplitude of 4 scalars can be extracted by acting with derivatives

on (C.3):

Atree, SG(SSSS)A1···D4(s, t) = ∂A1B1C1D1
1 ∂A2B2C2D2

2 ∂A3B3C3D3
3 ∂A4B4C4D4

4 Atree, SG(s, t; ηi) ,

(C.4)

where ∂ABCDi ≡ ∂
∂ηiA

∂
∂ηiB

∂
∂ηiC

∂
∂ηiD

.

To obtain the flat space limit of the scattering amplitude of the 35c scalars in gauged

supergravity, we should identify which of the 70 scalars SABCD of ungauged supergravity

correspond to the 35c ones. To do so, note that the SO(8) R-symmetry in AdS4 is embedded

into the SU(8) flat space R-symmetry in such a way that the supercharges, transforming

in the 8 of SU(8), should also transform as the 8v of SO(8) according to the convention we

use in this paper. The 70 SABCD scalars transform then as an irreducible representation of

SU(8), namely the 70, which decomposes as 35s⊕35c under SO(8) — the 35s and 35c can

be identified with self-dual and anti-self-dual rank-4 anti-symmetric tensors, respectively.

To connect this discussion to our notation, we should convert between the represen-

tation of the 35c as a rank-4 anti-self-dual tensor of the 8v and its representation as a

rank-2 symmetric traceless tensor of the 8c that we have been using. The conversion is

realized through a tensor EIJABCD, which is symmetric traceless in the 8c indices I, J and

anti-symmetric in the 8v indices obeying the anti-self-duality condition

EIJABCD = − 1

24
εABCD

A′B′C′D′EIJA′B′C′D′ . (C.5)

20For the scattering amplitudes corresponding to higher derivative interactions in 4D, see [37, 38, 66].
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Here, ε is the totally anti-symmetric tensor defined such that ε12345678 = 1, and all indices

are raised and lowered with the Kronecker symbol.

To obtain EIJABCD, one can start with the Clebsch-Gordan coefficients EIaA for

obtaining an SO(8) singlet out of the product 8v ⊗ 8c ⊗ 8s: the coefficients EIaA have

the property that for any three quantities uI , v
a, and wA transforming as 8v, 8s, and 8c,

respectively, the product uIv
awAEIaA is an SO(8) singlet. As is well-known, the EIaA

can be identified with the coefficients in the multiplication table of the generators eα
(α = 1, . . . 8) of the octonion algebra: eα · eβ = Eγβαe

γ , where e1 = 1 and eα · eα = 1 for

any given α. Explicit formulas for the EIaA are given in (A.12) of [67]. From the EIaA,

we can construct

EIJAB = E[I
a[AE

J ]a
B] , (C.6)

which is a tensor that converts between the adjoint representation of SO(8) written as

either an anti-symmetric tensor of the 8v or as an anti-symmetric tensor of the 8c. Then,

using EIJAB, we can further construct our desired tensor

EIJABCD = EIKABE
JK

CD + EJKABE
IK

CD −
1

4
δIJEKLABE

KL
CD , (C.7)

which has all the properties we required.

From any anti-self-dual anti-symmetric tensor TABCD we can obtain a symmetric trace-

less tensor EIJABCDT
ABCD, which can be further contracted with the null polarizations

Y I to obtain a quadratic function of Y :

T (Y ) = YIYJE
IJ
ABCDT

ABCD . (C.8)

Using this procedure for the amplitude (C.4), we can extract

Atree, SG(SSSS)(s, t;Yi) =

(
4∏
i=1

YiIYiJE
IJ
AiBiCiDi

)
Atree, SG(SSSS)A1···D4(s, t) . (C.9)

Due to the SO(8) R-symmetry, this expression can be written as (Y1 · Y2)2(Y3 · Y4)2 times

a function of the SO(8) invariants σ and τ introduced in (2.3). To uncover this form, it is

easier to set Yi to some particular values, for instance

Yi =
(

1−~y2
i

2 ~y i
1+~y2

i
2

)
, (C.10)

for some 6-vectors ~yi that we can further take to be

~y1 =
(

1 0 0 0 0 0
)
,

~y2 =
(
∞ 0 0 0 0 0

)
,

~y3 =
(

0 0 0 0 0 0
)
,

~y4 =
(
x y 0 0 0 0

)
,

(C.11)
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for some parameters x and y. Plugging these expressions in (C.9) one finds that

Atree, SG(SSSS)(s, t;Yi)

(Y1 ·Y2)2(Y3 ·Y4)2
=

1120

stu
〈34〉4[34]4

[
1−4xA+4(1−x)B+2(3x2+y2)A2

+
(
4x(x−1)+12y2

)
AB+

(
7(x−1)2+2y2

)
B2−4x(x2+y2)A3

+4
(
x2(x−1)+(x−3)y2

)
A2B+4

(
x(x−1)2+(2+x)y2

)
AB2

+4(1−x)
(
(x−1)2+y2)

)
B3−4(x2+y2)

(
x(x−1)+y2

)
A3B

+(x2+y2)2A4+2
(
y2+3

(
y2+x(x−1)

)2)
A2B2

−4
(
(x−1)2+y2

)(
x(x−1)+y2

)
AB3+

(
(x−1)2+y2

)2
B4

]
,

(C.12)

where

A ≡ 〈13〉〈24〉
〈12〉〈34〉

, B ≡ 〈14〉〈23〉
〈12〉〈34〉

. (C.13)

Making use of the SO(8) symmetry, the x and y dependence can be rewritten in terms of

σ and τ through

x =
1 + σ − τ

2
, y2 =

2σ(1 + τ)− σ2 − (1− τ)2

4
. (C.14)

Using that

s = (p3 + p4)2 = −〈34〉[34] , t = (p2 + p3)2 = −〈23〉[23] ,

u = (p2 + p4)2 = −〈24〉[24] ,
(C.15)

as well as the relations

〈12〉[24] = −〈13〉[34] , 〈12〉[23] = 〈14〉[34] (C.16)

that follow from momentum conservation, it can be shown that

A = −u
s
, B =

t

s
. (C.17)

Plugging (C.14) and (C.17) into (C.12) and using that s + t + u = 0, it can be shown

that (C.12) can be rewritten as

Atree, SG(SSSS)(s, t;Yi)

(Y1 · Y2)2(Y3 · Y4)2
= 1120

(tu+ stσ + suτ)2

stu
. (C.18)

Up to an overall constant, we have thus derived the form of the first term in (3.23).
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