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1 Introduction

M-theory is a quantum theory of interacting super-gravitons in 11 dimensions with no
dimensionless coupling constant [1]. While some of its dynamics can be understood through
a combination of its relation to superstring theories via compactification and the fact that
certain observables are protected by supersymmetry [2-5], there has not been a systematic
way to produce, for instance, the small momentum expansion of the graviton S-matrix in
11D Minkowskian spacetime. Neither has there been much understanding of the particle
spectrum of M-theory, or lack thereof, beyond super-gravitons.

Holographic dualities provide a window into M-theory through a dual quantum field
theory. There are three important examples of such holographic duals: the Banks-
Fischler-Shenker-Susskind (BFSS) matrix quantum mechanics [6-8], the 3-dimensional



U(N)g x U(N)_ Chern-Simons-matter theory of Aharony, Bergman, Jafferis, and Malda-
cena (ABJM) [9] in the large N, fixed k limit,* and the 6-dimensional (2,0) superconformal
field theories [11]. The ABJM theory, dual to M-theory on AdSy x S7/Zy, is arguably the
easiest to understand because it has a Lagrangian description (unlike the 6D (2,0) theory)
and because it has maximal superconformal symmetry when k& = 1 or 2 (unlike BFSS

2 The existence of a Lagrangian description for ABJM theory allows for

matrix theory).
powerful exact results (see, for instance, [12-14]) derived using supersymmetric localization
methods (see [15] for a collection of review articles and for references), which, in recent
years, have given rise to a number of precision tests of the AdS,/CFT3 duality: for ex-
ample, refs. [12, 16, 17] matched the large N limit of the S® free energy of ABJM theory,
computed using the supersymmetric localization results of [18], to the same quantity com-
puted using 11D supergravity, thus providing an impressive check of AdS/CFT at leading
order in large N.

It has been long anticipated that the AdS/CFT correspondence allows for extracting
the full S-matrix of gravitons in the flat spacetime limit from correlation functions of the
CFT [19-24]. In practice, this approach has been hardly tractable. Recently the 4-graviton
S-matrix of tree level supergravity in AdS; x S7 has been computed in Mellin space [25]
(see also [26-28] for similar computations in AdSs and AdS7) and matched [29] with the
leading result of the large cr expansion® of the stress-energy tensor 4-point function in
ABJM theory [14, 30, 31]. Naturally one may wish to extend this agreement to higher
orders in the large ¢y expansion, which amounts to going beyond supergravity in the bulk.

In this paper, we will outline a strategy for uncovering the small momentum expansion
of the 4-graviton S-matrix in M-theory from the CFT data. At low orders in the momentum
expansion, beyond the tree level terms, the S-matrix elements have local terms such as the
(supersymmetrized) R* vertex, and nonlocal terms that are determined by lower order
terms through unitarity cuts. These nonlocal terms are what we loosely refer to as “loop
amplitudes” in M-theory. Concretely, the S-matrix element involving 4 super-gravitons is
constrained by supersymmetry Ward identities [32, 33] to be of the form

A= f(svt)ASG,tree7 (11)

where Asq tree i the tree level scattering amplitude in 2-derivative supergravity, and f is
a symmetric function of the Mandelstam invariants s, ¢, and u = —s — t. The tree-level

' A generalization of ABJM theory is given by U(N)x x U(M)_;, Chern-Simons matter theories discussed
by Aharony, Bergman, and Jafferis (ABJ) [10]. These theories are also dual to AdS4 x S7/Zj, in the limit
when N — M and k are held fixed and N is taken to infinity.

2The same is true of the ABJ theories mentioned in the previous footnote. Due to various dualities, the
only maximally supersymmetric ABJ theory that is not dual to the £k = 1 or £ = 2 ABJM theories is the
U(N)2 x U(N)—2 theory. We will not discuss this theory explicitly in this paper, although everything that
we will say about the kK = 2 ABJM theory will also apply to the U(N)2 x U(N)_2 ABJ theory.

3¢r is the coefficient of the two-point function of the canonically-normalized stress-energy tensor, as
defined in section 4. It scales like N2 in the large N, fixed k limit of ABJM theory. We prefer to think
about the expansion in 1/cp rather than 1/N, because the former is what is more closely related to the
expansion in Newton’s constant in the flat space limit. Note that the correlator in question is not analytic
in 1/cr, as fractional powers and logarithmic dependence will appear in the expansion.



supergravity scattering amplitude Asq,iree carries dependence on the polarization as well
as the type of particles in the super-graviton multiplet. The function f admits a small
momentum expansion, or equivalently, an expansion in the 11D Planck length #;11, of the
form

f(S,t) =1+ gflilfR‘*(svt) + esl)lfl-loop(sat) + g%%fD6R4(57t) + E%LllfDSR‘l(&t) +oee (1'2)

Here, fp2npa refers to a local term which is a degree m + 3 symmetric polynomial in
s,t,u, whereas the loop terms are not analytic at zero momentum. In particular, fpa,
f1-100p, and fpegs are known exactly [3-5], as they are protected by supersymmetry and
can be determined by perturbative calculations either in type II string theory or in 11D
supergravity [34, 35]. For instance,

stu (stu)?

3.9277 fDGR4(S,t,u): - (1.3)

fra(s,t,u) = 15.915°

Note that a term of the form £19 fpaga(s,t) in (1.2) would be allowed by the supersymmetric
Ward identity, but it is known to be absent by comparison with type II string scattering
amplitudes and supersymmetry renormalization properties. The term (1{fpsga(s,t), on
the other hand, is not protected by supersymmetry, and its existence is not known to the
best of our knowledge (although it was conjectured to be absent in [4]).

As mentioned above, our goal here is to reproduce the expansion (1.2) by taking the flat
space limit of the CF'T correlators. We will carry out this strategy to the first nontrivial
order beyond two-derivative supergravity, and produce the R* effective coupling of M-
theory from the large ¢ expansion of a known BPS OPE coefficient in ABJM theory, in
the following steps:

(1) We focus on the 4-point function of dimension A = 1 scalar primaries Sy in the stress
tensor supermultiplet that transform in the 35, representation of s0(8) R-symmetry,
in ABJM theory with &k = 1 or 2. Its Mellin transform, to be defined in section 2,
admits a large cr expansion of the form

_3
M(Sa l;o, 7-) = C;lMtree + CTSMR4 + C;2M1—loop + e (14)

Here, s,t are Mellin space kinetic variables (not to be confused with the Mandelstam
invariants), and o, 7 are s0(8) invariants that will be defined in section 2. Mjyee rep-
resents the tree-level supergravity contribution, recently computed in [25]. Mpa is a
polynomial expression in s,t, whose large s,t limit will be related to the 4-graviton
vertex that corresponds to the R* effective coupling in flat spacetime. M _160p is the
1-loop supergravity contribution in AdSy x S7, which is free of logarithmic divergences.
The higher order terms in the expansion may involve logarithmic dependence on cr,
as we will discuss later.

(2) At each order in the 1/c¢r expansion, the Mellin amplitude is subject to the N/ = 8 su-
perconformal Ward identity. If the amplitude is a polynomial in s, ¢ of known maximal
degree, e.g. Mps is a degree 4 polynomial expression, then the Ward identity allows



for finitely many solutions, thereby constraining the Mellin amplitude at this order
in terms of finitely many unknown coefficients. Some linear combinations of these
coefficients will be related to flat space amplitudes through the large s, limit. The
“loop amplitudes” will be determined by lower order terms in the 1/¢p expansion up
to residual polynomial terms. Note that the loop Mellin amplitudes involve sums over
poles that correspond to multi-trace operators in the OPE, and in the flat space limit
the poles turn into branch cuts.

(3) Transforming the Mellin amplitude back to the correlation function, one would recover
from (1.4) the 1/cr expansion of the OPE coefficients as well as the scaling dimensions
of various unprotected superconformal primaries. Some of these OPE coefficients,
namely those of certain 1/2-BPS and 1/4-BPS multiplets, are known exactly as a
function of ¢y from supersymmetric localization computations [14, 30, 31]. Other
OPE coefficients, as well as the scaling dimension of long multiplets, are not known
exactly but can be constrained by conformal bootstrap bounds.

(4) We will see that the OPE coefficient of the 1/4-BPS (B,2) multiplet, expanded to
5

order c¢,.°, determines the coefficient of Mpa in (1.4). Taking its large s,¢ limit then
determines the R?* effective coupling of M-theory in flat spacetime.? Our result is
in perfect agreement with the known R* coefficient in (1.3), previously derived by
combining toroidal compactification of M-theory, comparison to perturbative type II
string amplitudes, and protection by supersymmetry.

It is worth noting that previously, in the AdS/CFT context, the R* coupling of M-
theory has been probed through the study of conformal anomaly of the 6D (2, 0) theory [36].
In this approach, one makes use of the bulk Lagrangian, including R* coupling as well as
other terms related by supersymmetry. However, it is difficult to justify whether one has
accounted for all the relevant terms in the effective Lagrangian, which is further subject
to the ambiguity of field redefinitions. In contrast, our strategy produces from CFT data
terms in the flat space S-matrix element, it is not subject to complications of the bulk
effective Lagrangian, and all supersymmetries are manifest [37, 38].

A related comment concerns the structure of the derivative expansion of M-theory in
11D flat spacetime. Absent a dimensionless coupling constant, one could either speak of
a Wilsonian effective Lagrangian, which is subject to the ambiguity of a floating cutoff
scheme, or the 1PI/quantum effective Lagrangian, which amounts to a generating func-
tional for the graviton S-matrix and is nonlocal. It is accidental, thanks to supersymmetry,
that low order terms in the derivative expansion of the 1PI effective Lagrangian of M-theory
can be separated into local terms, such as tgtgR*, and nonlocal terms that correspond to

4One may contemplate, in principle, a more powerful approach for determining the couplings in the
M-theory effective action, as follows. In principle, 11d SUSY determines the supersymmetric completion of
the D**R* terms (perhaps up to a few coefficients). One can then reduce the 11d action on S7 to obtain
an effective action in AdS4, which can then be used to calculate the CFT data via Witten diagrams. In
practice, none of these steps are currently achievable without a tremendous effort. We thank Ofer Aharony
for this comment.



loop amplitudes. This distinction ceases to exist starting at 20-th derivative order, where
the supergravity 2-loop amplitude has a logarithmic divergence that is cut off at the Planck
scale and mixes with a local term of the schematic form D'2R* [39, 40]. As mentioned
above, it is clearer to phrase all of this directly in the language of the graviton S-matrix,
and its expansion at small momenta as given in eq. (1.2).

Finally, we should note that the idea that a large N CFT has a finite number of
solutions to the conformal Ward identities at each order in N was first stated in [41]. In
subsequent work [42, 43], this idea was generalized to maximally supersymmetric SCFTs
in 4D and 6D, respectively, where the superconformal Ward identities further constrain
the number of solutions. In 4D, [44] related the flat space limit of the Mellin amplitude
to the S-matrix of type IIB string theory in 10D, but a precise reconstruction of the
10D S-matrix was not possible because of a lack of known CFT data that can fix the
undetermined parameter in the CFT 4-point function. In the present work, we provide the
first application of these ideas to 3D, and, as mentioned above, we can further recover the
R* term in 11D from the CFT correlators by making use of nontrivial CFT data that can
be computed using supersymmetric localization.?

The rest of this paper is organized as follows. In section 2 we start with a brief review
of the properties of the four-point function of the scalar operators Syj in the stress tensor
multiplet of a local ' =8 SCFT. For ABJM theory, we also summarize the known exact
results on OPE coefficients derived using supersymmetric localization. In section 3 we
use the superconformal Ward identity as well as the asymptotic growth conditions on the
Mellin amplitude in order to determine, up to a few constants, the Mellin amplitude order
by order in 1/¢p in the case of the M2-brane theory. In section 4 we explain how to extract
various scaling dimensions and OPE coefficients from the Mellin amplitude constructed in
section 3, and show how to reproduce the known correction to the supergravity scattering
amplitude of four super-gravitons in 11D. Lastly, we end in section 5 with a brief summary
as well as a discussion of future directions.

2 Four point function of stress-tensor

Let us start by reviewing some general facts about 3D N = 8 local SCFTs and of the
constraints imposed by the osp(8|4) algebra. The discussion in this section is quite general;
it does not rely on the Lagrangian of a particular 3D N = 8 SCFT, nor does it assume
such a theory has a holographic dual.

As mentioned in the Introduction, all N/ = 8 local SCFTs have a stress energy tensor
which belongs to the same half-BPS multiplet as a scalar operator of scaling dimension
A = 1 transforming, by convention, in the 35, representation of the s0(8) R-symmetry. (We
choose the eight supercharges also by convention to transform in the 8,.) Since analyzing
correlation functions of scalar operators is easier than analyzing correlators of the stress
tensor, we will focus on these scalar operators.

®In 4D and 6D there exists a protected part of the 4-point function of the 1/2-BPS scalar in the stress
tensor multiplet that can be computed exactly [45, 46]. This sector, however, is completely fixed at order
1/er, i.e. supergravity, for the stress tensor four point function.



We can view the 35, representation as the rank-two symmetric traceless product of
the 8., and so our scalar operators are traceless symmetric tensors S7;(Z), where I,J =
1,...8 are 8. indices. In order to not carry around the SO(8) indices, it is convenient
to contract them with an auxiliary polarization vector Y/ that is constrained to be null
V.Y =35, (Y2 =0, thus defining

S(@,Y) =S @)Yy, (2.1)

Conformal symmetry and so(8) symmetry imply that the four point function of S(Z,Y")
takes the form

(Y1 - Ys)2(Y3 - Yy)?

ERREE

<S(f1,Y1)S(fQ,Y2)S(f3,}%)5(54,}/4» = g(UaV;GvT) ) (22)
where U and V' are conformally-invariant cross ratios, and ¢ and 7 are so0(8) invariants
formed out of the polarizations

14755 (Y1 -¥3)(Ys - Ya) (Y1-Y4)(Ys - V3)

T AT AR AT e AR

=2 =2
L19L34

U= V=

—»2 —»2 b —»2 —»2 b
L13L94 L1324

Because (2.2) is a quadratic polynomial in each Y; separately, the quantity G(U, V;o,7) is
a quadratic function of ¢ and 7.

By performing the OPE between the first two and last two operators in (2.2), one can
decompose G(U, V; 0, 7) into superconformal blocks &,

g(U,V;U,T) = Z )\3\46/\/1([]) Vﬂ OaT) ) (24)
MeEosp(8|4)

where M runs over all osp(8|4) multiplets appearing in the S x S OPE, and the A3, are
the squared OPE coefficients for each such supermultiplet M. In table 1, we list the
multiplets M that appear in the OPE S x S, the dimension, spin, and s0(8) representation
of their primaries, along with the possible values of their Lorentz spins. In our notation,
the (B, +) [0020] multiplet with (A, 7) = (1,0) is the stress tensor multiplet itself. Unless
otherwise noted, the (B, +) [0040] multiplet in the S x .S OPE will be simply be referred
to as the “(B,+) multiplet”.5 Its OPE coefficient will be denoted AB,4)- Likewise the
OPE coefficient of the (B,2) multiplet will be denoted A(B,2)- The semi-short multiplets
are denoted (A4,2); and (A, +); where j is the spin.

Perturbatively in 1/N, the long multiplets that appear in the OPE will be denoted
(A,0)p jq, where n = 0,1,... labels the leading order twist 2n + 2, and ¢ = 0,...n is
an index that labels distinct operators with the same leading order quantum numbers.
Subleading corrections in 1/N will lift the degeneracy among these long multiplets. In the
n = 0 case, we will omit the label ¢(= 0) and denote the multiplet by (A4, 0)o ;.

®Note that for the interacting ABJ(M) theories, there are two degenerate (B,-+) [0040] multiplets,
corresponding to a single trace (a super-graviton KK mode) as well as a double trace operator. The one
that enters the S x S OPE is a specific linear combination of the two, and is dominated by the double trace
operator in the large N limit. All other multiplets appearing in table 1 involve multi-trace operators in the
large N limit, barring the possibility of stable Planckian particles that could show up as single trace long
multiplets, whose scaling dimensions would be of order N 5.



Type (A, 5) 50(8) irrep | spin j | BPS
(B,+) (2,0) 294, = [0040) 0 1/2
(B,2) (2,0) 300 = [0200] | O 1/4
(B,+) (1,0) 35. = [0020] 0 1/2
(A, +) | (j+2,5) | 35.=[0020] | even | 1/4
(A,2) | (7+2,9) 28 = [0100] | odd | 1/8
(A,0) | A>j+1 1 =1[0000] | even | Long

Table 1. The possible superconformal multiplets in the S x S OPE. The s0(3,2) @ s0(8) quantum
numbers are those of the superconformal primary in each multiplet.

The superconformal block & »¢ corresponding to each of the multiplets listed in table 1
receives contributions from conformal primaries with different spins j/, scaling dimensions
A’ and s0(8) irreps [0 (a—b) (2b) 0] for a = 0,1,2 and b = 0, ..., a that appear in the tensor
product [0020] ® [0020]. The superconformal block can thus be written as a linear combi-
nation of the conformal blocks G as ; corresponding to the conformal primaries in M as

SMm(U,Vio,7) ZZYab o,1) Y AN (DG (U V). (2.5)
a=0 b=0 (A5 eEM

Here, the quadratic polynomials Yy;(o,7) are eigenfunctions of the so(8) Casimir corre-
sponding to the various irreducible so(8) representations appearing in the product 35.®35.,
and are given by [47, 48]

1 = [0000] : Yoo(o,7) =1,
28:[0100] }/10(0"7'):0'_7-’
35, =[0020]:  Yiu(o,7)=o+7— <,
4
1 1
800 =[0200]:  Yao(o.7) =0’ + 77— 207 — S(0 4+ 7) + 5, (26)
2
567.=[0120]:  Yai(o,7) =02 — 7% — “(o-7),
2 1
294, = [0040] : YQz(O'T)—O' + 72 +4UT—§(J—|—T)+1—5

The A%A/ j,(A, j) are rational function of A and j. For the list of conformal primaries that
appear in each &, as well as the explicit coefficients AM, see [30].

2.1 The Mellin amplitude

Any 4-point function of scalar operators can be equivalently expressed in Mellin space.
We will find it useful to separate out the disconnected piece of the correlator, which in a
convenient normalization for S7; takes the form

GuelU,V;0,7) = 1+ Uo® + 72, 27)



and then define the Mellin transform just for the connected part Geonn = G — Gaisc:

0 dsd
100 (47Ti)2

gconn(Uu V7 g, T) = /

USVEAM(s, t;0,7)2 [A - g] 2 [A _ ;] 2 [A _ %] .

(2.8)

Here, the Mellin space variables s, t, and u satisfy the constraint s + ¢t + v = 4A, and
recall that for our 4-point function A = 1. The two integration contours run parallel to the
imaginary axis, such that all poles of the Gamma functions are on one side or the other of
the contour.

2.2 Localization results for short operators in ABJ(M)

The OPE coefficients of all short B-type operators in table 1 have been computed in [14]
for all 3D N = 8 theories, making use of a topological subsector of these theories studied
in [31, 49, 50].” For ABJM with gauge group U(N);, x U(N)_ and ABJ with U(N +1)g x
U(N)_q, the result is known perturbatively to all orders in the large N limit, or exactly at
small values of N. To compare to gravity, it is more convenient to reorganize the large N
expansion in terms of an expansion in the inverse of cr, the coefficient of the canonically
normalized stress tensor two-point function

cr 1

= 64 (PMpPVU—i_PVpPMU_PMVPpJ)W, (29)

(T (2)Tps (0))
where P, = nw,V2 — 0,0,. Our convention in (2.9) is such that ¢y = 1 for a 3D (non-
supersymmetric) theory of a real massless scalar or of a Majorana fermion. In this conven-
tion cp is related to the stress tensor OPE coefficient as

cr = @ 2.10
T = )\% . (2.10)
For U(N)i x U(N)_; ABJM theory, the large N expansion of cr is
64 32v/2
= —V2EN3? + ZZXENY2 L O(N?). 2.11
or = + > + O(N") (2.11)

The large N expansion of the OPE coefficients of the (B, +) and (B, 2) operators can then

be rewritten as an expansion in large cr to all orders. The first few terms are®

1
32 4096 5120\ _ 2 3 _3 _
A%B,Q) = ? — (9 — 37T2> CTl -+ 40960 (971'8]{}2) CT3 + O(CTQ) s
2.12
) 16 (4096 1024\ _, 2 \5 _s L 212
)\(B,+):§_ T5—W CT +8192 W CT +O(CT ),

"The generalization of the methods of [51] to non-Abelian theories would allow for a more direct com-
putation of these OPE coefficients, without relying on the approach of [14].

8Tt can be argued that the 1/cr expansion of these OPE coefficients is perturbatively the same for the
U(N + 1)2 x U(N)—_2 ABJ theory and the U(N)z x U(N)_2 ABJM theory. From the M-theory point of
view, the two theories differ by a torsion flux, i.e. a discrete holonomy of the 3-form field on a torsion 3-cycle
of S7/Zs [10]. This torsion flux affects the CFT data only through non-perturbative effects.



5/3

where note that the k-dependence begins at order ¢,

_2 (241
at orders CTSn and CT(3n+ ) for integer n. In fact, it can be argued that only one of the
OPE coefficients in (2.12) is independent, because the relation [31]

1024
cr

, and all higher order terms appear

—5\(p4) + A{pg +16=0 (2.13)

is a consequence of crossing symmetry and must hold exactly.

3 The holographic four-point function

Let us now discuss the 4-point correlator of the operators Syy in the particular case of
ABJM theory at CS level £ = 1 or 2. In this section, we will use the AdS/CFT duality
to study this correlator from the bulk side of the duality, without making any reference to
the ABJM Lagrangian. We will use, however, that this theory is the low-energy theory on
N coincident M2-branes placed at a C*/Z;, singularity, and that perturbatively at large N
the back-reacted geometry is AdS, x S7/Z. The radius L of AdSy is given by

Nk
E?l 8

2
+O(N?) = <37;ffk> S Lo, (3.1)
where ¢17 is the 11D Planck length [9].” At leading order in 1/N, the radius of S7/Z is
equal to 2L.

Note that the subleading corrections in (3.1) depend on the precise definition of L
beyond the supergravity solution. This ambiguity will not be important for us, as the
precise large radius expansion will be performed in 1/¢p rather than in ¢4, /L.

3.1 Holographic correlator in tree level supergravity

The main advantage of the Mellin space representation mentioned in section 2.1 is that in
a theory with a holographic dual one can easily write down the tree level expression for the
connected part of the four-point function. Indeed, the simplicity comes about as follows.
At tree level, the relevant Witten diagrams are contact diagrams and exchange diagrams, so

Miree = Ms—exchange + Mt—exchange + Mu—exchange + Meontact y (32)
while the ¢- and u-channel exchange diagrams are related to the s-channel one as

Mt-exchange(sa t;o, T) = 7—2]\4s-exchange (t, S; U/Tv 1/7_) )

9 (3.3)
Mu—exchange(sa t; 0, 7—) =0 Ms—exchange (ua t; 1/07 T/U) .

In Mellin space, the contact diagrams corresponding to vertices with n derivatives are or-
der n polynomials in s, t, u. The exchange diagrams are slightly more complicated. An

°In the ABJM paper [9], the radius of AdS is L is denoted by R/2. Eq. (4.2) in that paper then
implies L°/¢5 = n°Nk/2. The scattering amplitudes in the main text were written in the convention
2k3, = (2m)°¢7, whereas the ABJM paper uses the Polchinski [52] convention 2x3; = (27)%¢). Thus,
by = £11(2m) 3 s0 LE/1$, = Nk/8.



exchange diagram for a bulk field ¢ dual to a boundary conformal primary operator O of
dimension Ay and spin £» has a meromorphic piece whose form is fixed up to an overall
constant by the requirement that the residue at each pole agrees with the residue of the
conformal block corresponding to the exchange of the operator O, as well as a polynomial
piece in s, t, u. The degree of the polynomial is given by p; + ps — 1, where p; and ps
are half the numbers of derivatives in the two vertices connecting the ¢ internal line to
the external lines. The meromorphic piece is independent of the vertices, and it has poles
at s = 2m + 70, where 7o = Ap — {p is the twist of the conformal primary O, and
m=0,1,2,.... For example, if we denote

Mjexchange = Miexchange + (a‘na‘lytic) ) (34)
then the meromorphic pieces for various bulk fields that will be of interest to us can be
taken to be:'Y

7 rgraviton t2+u2—6tu—|—6(t+u)—8 <_(S+4) MA*l scalar) _ (38—4)

s-exchange — ( s +2) 8 s-exchange ] )
7 reauge field l—u 1 | A7A=1 scalar 3.5
s-exchange — 3 9 s-exchange ) ( . )
1—s
MA =1 scalar __ r 7)

s-exchange 2\/7?1“ (21_%) .

In addition, we note that the contribution from any bulk field ¢ dual to an even-twist
conformal primary must vanish:

7 reven twist ¢ ( t)
s-exchange )

=0, (3.6)

because a non-zero meromorphic piece for such an exchange would have poles at even values
of s, and that would produce third order poles when inserted in (2.8).

Going back to the situation of interest to us, i.e. the four-point function of the Sy;
operators in the k = 1 ABJM theory,!! we should think about which exchange and contact
diagrams we should write down. The scalar operators S7; are dual to certain components
of the 11D graviton and 3-form in the S” directions. As is well known, the spectrum of
fluctuations around AdS, x S” organizes into representations of the supersymmetry algebra
0sp(8]4) [53] (which is the same as the 3D N = 8 superconformal algebra). As shown in

These expressions are just rescaled versions of (3.31) of [25]. In particular, we have

Jperaviton i cos(nm)I'(—3 —n) 4n? —8ns+8n+4s> +8st — 205+ 8t> —32t435 _ Ms);zrg%lllton
s-exchange 4\/7?71!1-‘(1/2_” 2 5_(2n+1) 3 y
JEauee field _ Z cos(n 7T) 2ts—4 Mz,

s exchange f 1+2n )F(1+n) 37(2n+1) A ’
B 1 MZhou
MA 1 scalar — COS nﬂ— _ scalar .
s-exchange Z fn'F 1 —TL) S— (2n+ 1) T

"The computation for the k = 2 ABJ(M) theory is identical at leading order in the 1/cr expansion.
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table 1, the S x .S OPE contains two half-BPS operators: the stress tensor multiplet whose
bottom component is S itself, and the (B, +) multiplet whose component operators all have
even twist. From the discussion above, it follows that the only bulk fields that contribute
a meromorphic piece in the exchange diagrams are those in the stress tensor multiplet: the
scalar fields dual to S, the s0(8) gauge fields, and the graviton.'?> Consequently, M exchange

is (up to an overall normalization that we will introduce later) a linear combination '3

Ms-exchange — Y35c (U’ T)MA =1 Scalar+bY28 (0_7 7_)JWgauge +cYh (U’ 7_)]ngviton (3.7)

s-exchange s-exchange s-exchange ’

for some constants b and c. To determine the relative coefficients one can use the super-
conformal Ward identity (see appendix A), which, as shown in [25], implies b = —4 and
c=4,so

Ms—exchange — Y35c (U, T)MA =1 scalar —4Yog (0, 7_)]wgauge +4Y; (O_7 7_)Jwgrawiton (3.8)

s-exchange s-exchange s-exchange *

Consequently, we can write a general tree-level Mellin amplitude as

Miyee = C Mexchange + Miesidual | > (3-9)
where Mexchange = M/s;exchange + Mt—exchange + Mu—exchangey Ms—exchange is given by (3'8) with
all M’s replaced by M’s, and C' is an overall normalization factor.

The superconformal Ward identity also partly determines M egiqual Under the assump-
tion that M esiqual has a certain polynomial growth. For instance, if we require that M .esidual
has at most linear growth, as would be the case in a bulk theory of supergravity, then the
analytic term is completely fixed in terms of (3.7) to be [25]

1
MBUGRA — 5 (s +uo® +tr* —4d(t +u)or —4(s +u)o —4(s +)7) . (3.10)

residual

Thus, the supergravity tree level amplitude takes the form

tree residual

MSUGRA _ ~ [ﬁmhaﬂge i MSUGRA} . (3.11)

For future reference, the linear growth at large s, ¢, u is given by!*

MSUGRA ~C

tree

(3.12)

stu

(tu + sto + su7)2]

The value of the overall coefficient C' depends on the normalization of the operators St
whose 4-point function we are considering. It is customary to normalize these operators

2There is no bulk coupling between three scalars in the gravity multiplet, but there exists a bound-
ary term that couples them (see for instance [54]). Therefore in the scalar exchange diagram the two
intermediate points are located on the boundary.
3Tn the notation of [25], we have A\s = —1/7, A, = —b/m, and Ay = —c/(37).
At large s, t, u, we have
— 1[4 +u? 52+t202 2+ u?

Mcxchangc ~ _5 s + w + n T
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such that their 2-point function is O(c%) at large c¢r, and then the connected 4-point
function scales as c;l. In particular, if the normalization of O is such that the disconnected
piece of the 4-point function is given precisely by (2.7), then the overall coefficient C' is
fixed to be [25]'°

32 3

wler  24/2kmN3/2 ( ) (3.13)

3.2 Contribution from higher derivative local terms

Now suppose the 11D supergravity Lagrangian is deformed by a local term of higher than 2-
derivative order. The supersymmetric completion of higher derivative couplings are difficult
to write off-shell, but are easily classified through local terms in the flat S-matrix elements
of higher momentum powers. In AdS; x S7, they give rise to a contribution to the Mellin
amplitude that is a polynomial expression in s, t, of the form

(tu + sto + sut)? F(s* +t2 4+ u?, stu) + ... (3.14)

where F' is a homogeneous polynomial in s, ¢, u, determined by the corresponding flat
space vertex, and --- represents lower degree terms in s,t. One can check that the ex-
pression (3.14) solves the superconformal Ward identity written in appendix A, after the
latter is expanded to leading non-trivial order in large s and ¢. The number of polynomial
solutions to the superconformal Ward identities of degree p > 0 is thus equal to the number
of monomials in P and @,

P=s?4+t2+u?, Q = stu (3.15)

of degree dp > 0 in P and degree dg > 0 in () such that p > 2dp +3dg +4. This number is

n(p) = L“(Z_WJ . (3.16)

See the first two lines of table 2, where for each degree p < 10 in s, ¢, u we listed the
number of local solutions of the Ward identity with that growth at large s, ¢, u.

Thus, the most general local term in the Mellin amplitude that solves the Ward identity
is of the form

n(p)—n(p—1)
Mlocal =C Z Z prle(ocal) ’ (317)

p>4

where Ml(ocal) is a polynomial solution to the Ward identity of degree p, labeled by the
index k. We left out the overall constant C' by convention. A well defined flat space limit

would require the coefficients B, ;, to scale with the AdS radius L like

Bpp ~ L7207V as L — o0, (3.18)

5In the notation of [25], we have C' = —\, /.

- 12 —



degree < p 31 4 |5 6 7 8 9 10

# of solutions 0 1 1 2 3 4 5 7
11D vertex R* D*R* | DSR* | D8R* | D''R* | D¥2R* (2 types)
_5 _19 _7 _2 _2
scaling in M-theory cp® (0x)ep ? cp® cp® cp’® 0}3, 0}3 log cp

spin truncation 0 2 3 4 5 6

Table 2. Number of solutions to the Ward identity of degree p polynomial growth at large s, ¢, u.
At each order we can always have the solutions from previous orders. The solution corresponding
to p = 1 is non-analytic; all other new solutions are purely polynomial in s, ¢, u and their number is
given by n(p) in (3.16). Spin truncation refers to the maximum spin of operators that receive contri-
butions at this order. In the second to last row, we indicate the order of appearance of the mazximal
degree solution in the large cr expansion of the Mellin amplitude of M-theory on AdS, x S7. Note
that D*R* is expected to be absent in M-theory, while one specific linear combination of the two
possible D2 R* terms mixes with the 2-loop logarithmic divergence which is cut off at Planck scale.

Beyond the leading large s, ¢, u asymptotics, the polynomial solutions are quite com-
plicated. To simplify their form a bit, let us first note that any function M(s,¢;0,7) that
is crossing invariant can be written as

M= (140> +7)f1+ (s+uo® +17%) fo + (s* + u’0” + *7%) f3

R (3.19)
+(c+74+07)fs+ (to +ur + sor) fs + (t°0 +u T + s°07) fs ,

where the f; are symmetric functions of s,¢,u, or equivalently functions of P and @ as
defined in (3.15). The first purely polynomial solution to the Ward identity, which is the
unique solution of degree 4 we denoted by MED iy (3.17), can then be written as

local
2

a1 P 6 22 96

= — — —7P —_—
h 4 +7Q 5 + 57
(4,1) 736

= oP —
2 Q+ 35 )
pan _ P 228
3 1204 . z;o 4672 (3.20)
@1 _ 194, 40, 4672
fa 7 @ 70 g
(1) _ oy 185 496
5 @ 7 7
(41) _ 832
6 35

In this normalization, the solution MY has the asymptotic form (3.14) with F(P,Q) = 1.

local
For explicit expressions of all polynomial solutions up to degree 10, see appendix B.

3.3 Loop contributions

While the large cr expansion of the M-theory Mellin amplitude in AdSy x S” contains local
terms that correspond to higher derivative vertices in the flat space limit, there must also
be “loop terms” that are required by unitarity. The loop terms are determined, up to local
terms, in terms of lower order terms in the large ¢y expansion [24, 55-57].
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Unlike the loop terms in the flat spacetime S-matrix, a loop term in the Mellin ampli-
tude involves an infinite series of poles rather than a branch cut in the s, ¢, u variables. For
instance, the supergravity 1-loop Mellin amplitude can be expressed as a sum over poles in
sat s =2A+2n,n=0,1,2,---, whose residues are polynomials in ¢, together with cross
terms related by permutation on s, t,u. In the flat space limit, the sum of poles turns into
an integral, which is nothing but a representation of the supergravity 1-loop S-matrix in
the form of a dispersion relation.

The flat space loop amplitudes can typically be expressed as loop integrals that are UV
divergent; the UV divergence can be renormalized by local counter terms up to logarithmic
divergences. Similarly, the Mellin loop amplitudes typically involve a divergent sum over
poles, that can be regularized by subtracting off polynomials in s,¢ term by term in the
sum, up to logarithmic divergences. The log divergence is physical and is cut off at Planck
scale in M-theory, resulting in a log ¢ dependence in the Mellin amplitude. In this paper,
we will not compute the M-theory loop Mellin amplitudes explicitly, but illustrate the
general structure in a few examples, as follows.

The 1-loop 4-super-graviton amplitude in 11D supergravity has only power divergences
that can be renormalized away, resulting in a contribution to the S-matrix element that
scales with energy like /13(1/s)!!. The 1-loop supergravity contribution to the Mellin
amplitude likewise can be written as a convergent sum over double trace poles. It comes
with an overall coefficient that scales like (£11/L)'® ~ c;.2.

In the flat space S-matrix of M-theory, there is a higher momentum order 1-loop ampli-

17
tude that scales like £21(y/s) 2 , whose unitarity cut factorizes into a tree level supergravity
amplitude and an R* vertex. It gives rise to another 1-loop Mellin amplitude that sums

up double trace poles, with an overall coefficient that scales like (¢11/L)* ~ C;%

The 2-loop 4-super-graviton amplitude of 11D supergravity has a log divergence of the
form [39] (log A)%Zﬁstu [438(56 + 10 +u) — 5382t2u2] AsG tree- The cutoff A is taken
to be at Planck scale in M-theory. This gives rise to a local term in the Mellin amplitude
of degree 10 in s,t,u, whose coefficient scales like (¢11/L)'*®log(L/l11) ~ c;*loger, as

indicated in table 2.

3.4 The large radius expansion of the Mellin amplitude of M-theory
on AdS, x S7

As shown in [22, 24], the relation between the large s, ¢ limit of the Mellin amplitude
M (s,t) and the flat spacetime scattering amplitude A(s,t) takes the form

o
LILH;O(QL)7V7M(L2§, L) = \/17?/0 dp B~2e P A (285, 2p1) , (3.21)
where V7 = 7#/3 is the volume of the unit S”. The amplitude A appearing on the r.h.s. is
the 11D flat spacetime amplitude of four supergravitons, with momenta restricted to a 4D
sub-spacetime, integrated against four supergraviton Kaluza-Klein mode wave functions
on the S7, normalized by multiplying with an S” volume factor so that the L — oo limit
is finite. Indeed, the scaling in (3.18) is such that only the most divergent term in each
MPH) contributes to the limit on the Lh.s. of (3.21).

local
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More precisely, if we label by i, j, k, £ the four supergraviton KK modes, then the
amplitude A;ji¢(s,t) appearing on the r.h.s. of (3.21) is related to the 11D scattering
amplitude Agﬁgé(s, t) by

Auals.t) = Y A0V [ da U @) @) @)W (a). (3.22)
a,B,7v,0

Here ./45325(5, t) is an invariant tensor in the supergraviton polarizations a, 5,7,6. U¥(z)
is the normalized KK mode wave function for the particle i on a unit S”.

Since on the 3D SCFT side we are studying scalar operators transforming as the
35, of s0(8), the flat space limit of the 4-point function of these operators corresponds
to the scattering amplitude A(s,t) of the 11D gravitons in their lowest KK modes, with
momenta concentrated in a 4-dimensional sub-spacetime and polarization in the transverse
directions. After contraction with s0(8) polarization vectors and rewriting in terms of the
50(8) invariants o, 7 (after stripping out a factor of (Vi - Y5)2(Y3 - Y4)?), the scattering
amplitude will be denoted by A(s,t;0,7). Rather than evaluating the integral in (3.22)
directly, we can obtain the answer by reducing the tree level amplitude of the lowest KK
modes on AdS; x S7 to that of the N' = 8 gauged supergravity in AdS, [58] (see also [53],
as well as [59] for a review), whose flat spacetime limit gives the tree amplitude in 4D
ungauged N = 8 supergravity [60-62]. The details are explained in appendix C. The result
takes the form

(tu+sto+sur)
stu

+011 fpspa(s,t) +€ﬁf1—1oop,34 (8,8)+015 Fpr0ga(5,8) +013 Fa—toop (8, 1) +015 fp12 ga(s,) + - } ;

(3.23)

2
A(Sv t7 g, T) = E?l 1 +£?1fR4 (87 t) +£?1 flfloop(& t) +€%%fD6R4 (Sa t)

2
with fpa = % and fpoga(s,t,u) = gsstgzo

known 11D supergravity loop amplitudes. The latter comes with a log divergence, whose

as given in (1.3). fi_joop and fa_joop are

counter term can be absorbed into fpi2pi(s,t). fi_joop r4(S,t) is the 1-loop amplitude,
whose unitarity cut involves an R* vertex and a tree amplitude, as already mentioned; it is
given by a known loop integral with only power divergences that can be regularized in the
standard way. The coefficients of the local terms fpsga, fpiogs, fpi2gs are not protected
by supersymmetry and are unknown.

At each order in c}l, the large s, t limit of the Mellin amplitude (at this specific order)
is determined by the flat space limit, i.e. by a corresponding term in the small momentum
expansion of A(s,t). As such, the large ¢ expansion of the Mellin amplitude is expected
to be of the form

_s 7
M(s,t;0,7) = e MEUSRA 4 e3 Mpa e My 100p ¢ Mps pa(s, 1)

tree

_23 _8 _25
+ep ® Mpspatep® My_joop patcp ® Mprogs +C}3Mg_1oop+c%3MD12R4+- .
(3.24)

While M4, for instance, is proportional to the unique solution to the superconformal Ward
identity of degree 4 in s,t, the term Mpsps is a linear combination of three independent
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solutions to the Ward identity, of degree 7, 6, and 4 respectively. We must be careful
about the interpretation of the loop terms on the r.h.s.. Mj_jop, is determined by the tree
level supergravity Mellin amplitudes'® up to the ambiguity of a term proportional to Mga.
M, _io0p,rt and My_160p are subject to similar ambiguities. Note that C;3M2_100p contains
a log divergence that is cut off at Planck scale, resulting in a local term proportional to
¢’ log(cr) that is of the same degree as Mpiapa.

Based on superconformal Ward identities and the flat space limit, a priori one may
ex;l);act that oth?g terms suppressed by further powers of (¢11/L)?, such as terms of the form

¢ Mpa or cg ° Mpa, would be allowed on the r.h.s. of (3.24). As we will see later, such
terms are ruled out by comparison with the known CFT data, namely the 1/cp expansion
of the OPE coefficient )\%B’ 4 At low derivative orders, this can be understood from the
supersymmetry protected terms in the bulk effective action as follows. A term suppressed
by extra powers of (¢£11/L)? in comparison to those that survive the flat space limit should
come from the reduction of higher-than-4-point effective coupling of the super-graviton on
AdS4 x S7, e.g. terms in the effective action of the schematic form R®, R%, etc. As explained
in [63], the R® type coupling is not compatible with supersymmetry, whereas an R® coupling
should be tied to D*R?* by supersymmetry Ward identities, but the latter is absent in the
M-theory effective action. This leaves R, which is tied to D®R*, and its reduction on
AdSs x S7 may lead to2 a contribution to the 4-super-graviton Mellin amplitude that is
down by (¢11/L)® ~ ¢® in comparison to the R* contribution. This is indeed consistent
with the powers of c;l appearing in the expansion of )\%37 +) on the CFT side.!”

Comparing (3.21), (3.23), and (3.24), we can determine, up to an overall normalization
constant,

M(s,t;o,7)
v SUGRA (4,1) (6,1) (7.1) (3.25)
=C Mexchange“‘Mr +B4,1M ’ +(1—100p)+Bﬁ’1M ] —|—B7’1M S EP

esidual local local local

where with the normalizations F(P,Q) = 1 and F(P,Q) = Q for MY and MY

local local »
respectively, we have

35 08, 019 9009 ¢12
4,1 =~ ? ﬁv B6,1 =0 ( ) B?,l ~ Wﬁ (3-26)

in the large radius limit. Using the relation (3.1) given by the AdS/CFT dictionary, we
can write (3.26) as

4
70 _ 1001 3 3
Bism —0 Byy—o(c"), 371%< ) S @an)
(6merk)s

In the normalization of Sy in which the disconnected piece of the 4-point function is given
precisely by (2.7), the overall coefficient C' is given by (3.13), which is exact in 1/cp. This

1676 determine the polar part of M _i00p, We need not only the 4-super-graviton amplitude in AdSy4, but

also the amplitudes involving 2 gravitons and 2 KK modes in AdSy.
_z _23
1"Beyond order ¢ ?, however, it is not clear from the bulk why the contributions from, say ¢, * Mpsga,

to )‘?B,Jr) should vanish. We will return to this point in section 5.
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MSUGRA

is essentially because the exchange of the stress tensor multiplet only appears in Moo,

and hence the coefficient of the latter in the Mellin amplitude is exactly proportional to
cp'. All other terms on the r.h.s. of (3.25) involve exchange of multi-trace operators.

So far, using the known part of the M-theory effective action, we have determined
the following terms in the large cr expansion of the suger—graviton Mellin amplitude in

AdSs x S7: order c}l (tree level supergravity), order c¢.® (degree 4 in s, ¢, related to R*
_7
coupling), and the coefficient of the maximal degree 7 polynomial in s,¢ at order ¢,* (how-

ever, we cannot fix the three other coefficients, of degree 6, 5,4 polynomials in c;gM D6R4)-
In principle, one can fix the non-analytic part of Mj_ 150, and M;_joop, ps in terms of the
lower order Mellin amplitude (that involves super-gravitons as well as KK modes in AdSy).
We also know the order c}?’ log cr term that is fixed by the logarithmic divergence of 2-loop
amplitude in 11D supergravity. Other coefficients, such as those appearing in Mpsga, are
entirely unknown due to our ignorance of the higher order terms in the small momentum
expansion of the M-theory S-matrix.

In the next section, we show how to relate these coefficients to CFT data, namely the
OPE coefficients and scaling dimensions. Thus, if one has an independent way of computing
those CF'T data, one can reconstruct the corresponding part of the Mellin amplitude.

4 Comparison with CFT data

We will now extract CF'T data from the tree-level Mellin amplitudes computed above. We
will focus on the OPE coeflicients squared apq of the protected multiplets M in table 1,
as well as the scaling dimension A A of the lowest twist long multiplet with spin j. The

supergravity contribution to these quantities was computed in [25, 29], and by definition is

order c}l. The higher derivative Mellin amplitudes MIE)IZZI)

_T+2p
starting at order ¢, ° , and then will generically include all subleading powers of ¢,

discussed above will contribute
2/9

corresponding to powers of 2, in the flat space limit.

As discussed in [41, 42, 64], a flat space vertex with 2p derivatives for p > 1, which
corresponds to an AdS; Mellin amplitude of maximal degree p, contributes to operators
with spin j < p — 4. From the list of conformal primaries for (A,+); and (A4, 2); in tables
6 and 7 in [30], respectively, we see that these supermultiplets contain a superconformal
descendent with spin j + 2 that is the only operator with these quantum numbers, so
these multiplets receives contribution only for p > j 4+ 6. We will now show how to fix
the n(p) — n(p — 1) coefficients B, 4, indexed by d, of each degree p tree level term Ml(o%:l)
in (3.25) by extracting at least n(p) — n(p — 1) different pieces of CFT data from these
amplitudes, following the algorithm in [29]. )

We begin by writing the position space G9 corresponding to a given Ml(féal as

GPNU Vo, 1) = Z [a%d)®M(U, Vio,T)+ QS&)A%{d)aA@M(Ua & U:T)}A

© >
Ma,; M

(4.1)

where the subscript Agg? denotes that the blocks for the unprotected operators should be
evaluated with the leading order scaling dimension. Note that this expression only holds
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for tree level amplitudes that scale as some fraction of c;l; for loop terms there would
be additional terms. The superblocks B (U, V;0,7) can be further expanded into s0(8)
structures Yy, (o, 7) and conformal blocks Gas j(U, V') as in (2.5). To compare to the Mellin
space amplitude, we will furthermore take the lightcone expansion U <« 1 for fixed V, so
that the conformal blocks can be written as

Ga,(UV) = ZU kgl vy, (4.2)

where the lightcone blocks g[ ] (V) are labeled by the k + 1-th lowest twist, and are only
functions of V. For instance, the k = 0 block in the normalization of [29] is

0] I'(j+1/2) : A+j A+j ,
gn; (V) = e (1=V)YoF (== =5 A+ 1=V ). (4.3)

Note that g[ ] (V) goes like (1 — V)7=2% in the V — 1 limit.

Putting these ingredients together, we can now expand G®9) to get the final expression

GP (U, V;0,7) EZY

a=0b=0 MAJ(A’ j')eM k=0 (4‘4)

i d logU N[k
AM

The utility of the lightcone expansion is that the U-dependence corresponds to the twist
A — j of a conformal primary, and the logU term distinguishes between the scaling di-
mension and the OPE coefficient of that primary. In the Mellin transform (2.8), one can

isolate the U¥+k factor by taking the residue of the pole s = A’ — 5’ 4+ 2k. The t-integral
can then be performed by summing all the poles, which yields a function of V. We can
then extract the coefficients of a set of lightcone block using the orthogonality relations for
hypergeometric functions [41]

dv '
5M,:_7§ 1-V)Y " RA-V)F_.(1-V),
: . 127m( ) ( )1 ( ) (4.5)

F.(z) = oFi(r,7,2r, ),

where the integration contour is chosen to encircle only the pole V' = 1. For instance,
by multiplying GP(U,V;o,7) with —(1 — V)_l_jF1 a45(1 — V) and then evaluating
—Tz

the residue at V = 1, we will collect contributions from all terms in Q(p)(U, V;o,7) that
involve the lightcone blocks g[Akl j/(V) with j = 7,7 +2,...,j+2k, as well as those involving

O g[Al (V) with j' < j+ 2k — 1. Combined with our ability to select the twist A’ — j/ and

R—Symmetry structure Yy, (o, 7), as well as our knowledge of how each conformal primary

contributes to the superconformal multiplet, this is enough to recursively solve for all A(p )

(»)

and ay, for each superconformal multiplet M4 ;.
Recall that there are n+1 long multiplets (A, 0),, j , appearing in the OPE with leading

order twist 2n + 2, labeled by ¢ =0, --- ,n. For n > 0, AP

(AO)msa extracted from the local

~ 18 —



Spin j | Leading order OPE coefficient squared agg) 0os
) sJ

0 32/35~0.911
2 2048/693 =~ 2.955
4 1048576/225225 ~ 4.656
6 67108864/10669659 ~ 6.290
8 34359738368 /4350310965 ~ 7.899
10 2199023255552/231618204675 ~ 9.494
12 2251799813685248/203176892887605 ~ 11.083

Table 3. Values of leading order OPE coefficients squared a&) 0o.; for spin j.

J

term in the Mellin amplitude is actually the average of all ¢ = 0,...,n operators with
the same leading order quantum numbers. To avoid this ambiguity, we will only discuss
the n = 0 case (where the label ¢ = 0 will be omitted in the notation). To extract the

anomalous dimension A(p )
(A,O)(),j

0 . . .
aEA),O)(o,j)’ which we list from [29] in table 3.

, we will also need the leading order OPE coefficient squared

4.1 Matching the R* term

We begin by extracting the CFT data that receives corrections from the degree 4 polynomial
Mellin amplitude M, (D at corresponds to the R* term. From the discussion above, the

local
multiplets that receive corrections at this order are (B, +), (B,2), and (A,0),0,4. Since
)\?B,-i-) and )\%372) are related by (2.13), we will only discuss the former.
For a%}i), we take the s = 2 pole in the Mellin transform (2.8) of M1(04C’;1) given in (3.20)

and find that the UY5, coefficient is

872 dt _
g(‘l)‘UY22 V] = —35 %Vt/2 Lesc(nt/2)?
4.6
_ 16 log V' (46)
- 3B1-V’

where we closed the contour to include all positive poles in ¢. From the expansion (4.4),

we then extract the coefficient of gg?g)(V) by integrating against 16F“}(_11_V) = Vlfl to find

v 16G0/3)| 256
4.1 _ d UYay _ 4.7
=CB — - Y"» "R .
g+ = OB f{,l 2mi V-1 35 C et o

where we used Aggz’g)(Q, 0) = 1 for the superconformal primary. We now compare to the
localization result (2.12), and using the SUGRA normalization (3.13) we find that the
leading c;5/ % term in By precisely agrees with the result (3.27) obtained from the R4
effective coupling in 11D.
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_5
We can similarly extract the anomalous dimension at order c¢;.*® for the lowest j = 0
(A, 0) long multiplet by taking the s = 2 pole in the SO(8)p singlet channel and using the

leading order OPE coefficient aggl) Moo = % from table 3. We obtain

6 1/3 3 B
A = —192CBy1 = ~T1680 (WS k:2> e+ 0", (4.8)

where we inputted the value of C'By 1 determined above.

4.2 Higher derivative corrections

pvd) 3

We now show how to extract CFT data from higher degree Mellin amplitudes M, ( | in

loca
terms of their coefficents B), 4 for p = 6,7,8,9,10, where d = 1 except for p = 10 where
d = 1,2. For p < 10 the leading order in 1/c¢p contributions can be unambiguously
extracted from these terms, as they do not mix with loop contributions. For p = 10, the
6;3 contribution is affected by the as yet unknown 2-loop term, but there is a 6}3 log cr
that one could unambiguously extract. For all higher terms, the tree level contribution is

indistinguishable from the 2-loop and higher contributions.

Since /\%B,-‘r) has already been used to fix By in (4.7), and )‘%B,2) is related to )\%B,-‘r)

by crossing symmetry, we will use the semi-short )\% A,2); and )\% A, 3 well as the lowest
twist unprotected A4 ), , for the allowed spin. These calculations will closely follow the

SUGRA calculations in [29], except that we use M, @d) 4y appendix B. As such we will only

local
briefly sketch the calculations; for more details see [29].

For (A,+);, we extract its OPE coefficient using the superconformal descendent
(j+4,5+ 2)[0040], which has the advantage of being the only conformal primary in M
with these quantum numbers for any j. If we had chosen the superconformal primary
(J + 2,7)j0020), then for j = 2 this primary would have appeared in both (A,+)o and

(A, +)2. Using the explicit coef(ﬁc;;ents in appendix C of [30] and the formula for Ml((i’:l)
p7

(A+);
The calculation for (A, 2); is more subtle, because there is no longer a twist 2 conformal

in

appendix B, we can compute a in terms of CB,, 4, which we list in table 4.

primary that only appears in (A,2);. We choose the conformal primary (j + 4, j + 2)[0120]»
which overlaps with superconformal descendents of (A, +);+1. Since we have already com-

puted aPd , we can remove them to find the answers for P as given in table 4.
(A+) )

. (A,2);

For (A, (J))o,j, since we are considering its anomalous dimensic])n, we only need to worry
about mixing with other superconformal descendents of (A, 0)q ;» for some other j'. If we
choose the superconformal primary (j + 2,7)(0000], then from table 8 in [30] we see that a
superconformal descendent of (A,0)p; mixes with (A,0)g j+4. We can take into account

this mixing by computing each j starting from j = 0, which yields the answers in table 4.

Note that all the OPE coefficients and anomalous dimensions in table 4 receive con-

tributions from non-local terms in the Mellin amplitude, such as the tree level amplitude

2

at order c;l, the 1-loop amplitude at order c.”, etc.
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5 Discussion

In this paper, we outlined a strategy to recover the M-theory effective action, i.e. the small
momentum expansion of the flat spacetime S-matrix, from the CFT data of ABJM theory
using the large cr expansion of the Mellin amplitude. We determined certain low order
terms in the latter expansion using the OPE coefficient of the (B, +) multiplet, previously
computed exactly as a function of ¢y via the supersymmetric localization method. The
known CFT data are enough for us to recover the correct R* effective coupling of M-
theory, but not enough for a nontrivial check against the next two known coefficients of
the M-theory effective action allowed by supersymmetry, namely D*R* (whose coefficient
is zero) and DSR*. Tt is plausible that there may be other protected OPE coefficients, say
of semi-short multiplets, in the S x S OPE that could be determined using CFT methods,
and tested against the absence of the D*R* term and the coefficient of the DSR* term in
M-theory.

More importantly, our hope is that bootstrap bounds on unprotected OPE coefficients
or anomalous dimensions at large ¢ could be used to bound the coefficients of higher order
terms in the M-theory effective action, such as D8R*, D9R*, etc. It has been suggested [4],
based on naive power counting arguments, that the independent local terms in the M-
theory effective action only arise at momentum order D%*R?* for non-negative integer k.
It is not clear to us why this should be the case beyond DSR*, where supersymmetry no
longer constrains the moduli dependence of the higher derivative couplings upon toroidal
compactifications of M-theory [63]. Nonetheless, we saw that a certain cancelation in

_23
the contribution from local terms in the Mellin amplitude of the form c, ® Mpspsa and
25

cr ® Mpioga to the (B, +) OPE coefficient is required, and we do not have an explanation
of this from the bulk perspective. This does not imply the absence of D8R* or DOR*
terms in M-theory, however, since the local Mellin amplitudes Mpsps and Mpioga are not
entirely fixed by their flat space limits. An intriguing possibility is that perhaps such terms
are absent in the Mellin amplitude altogether (which would imply the absence of D8R*
and D°R* in the flat space limit). It would be extremely interesting to understand if this
is the case.

In [14], it was noticed that the (B,2) (or (B,+)) OPE coefficients of ABJ(M) theory,
as computed using supersymmetric localization, come close to saturating the numerical
bootstrap bounds on these quantities obtained for general N' = 8 SCFTs. Such a bound
saturation would imply that one may extract numerically all the CFT data encoded in the
(SSSS) 4-point function,'® thus allowing us in principle to recover the entire M-theory
super-graviton S-matrix using the procedure outlined in this paper. However, as was
pointed out in [14], the values of the (B,2) OPE coefficients as a function of 1/cp start to
depend on k at order 1/ c;/ 3, with the value for the £k = 2 ABJ and ABJM theories being
closer to the numerical bound.!? So it is possible that one of these k = 2 theories could

181f the numerical bounds are only close to being saturated, then we cannot reconstruct the (SSSS)
4-point function, but we can still obtain stringent bounds on the CFT data.

19As already mentioned, the OPE coefficients of k = 2 ABJM and k = 2 ABJ theories have identical
perturbative expansions in 1/cr. See footnote 8.
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in fact saturate the bootstrap bound for all values of ¢p, and the strategy of determining
the CFT data numerically and feeding it into the procedure described in this paper could
work. As far as the £ = 1 ABJM theory is concerned, while (at least at large cr) this
theory certainly does not saturate the bootstrap bound discussed in [14], it is possible that
an improved bootstrap analysis could generate different stronger bounds that apply only
to the £ = 1 theory. For instance, a mixed correlator study of the lowest dimension scalars
in the (B,+) [0020] and [0030] multiplets would single out the £ = 1 theory because the
(B,+) [0030] multiplet does not exist in the k = 2 theories. It would be very interesting
to investigate these issues in the future.

So far we have focused entirely on 4-particle S-matrix elements. Our strategy based
on the flat space limit of ABJM correlators allows us, in principle, to recover the M-theory
S-matrix elements of n supergravitons, provided that their momenta are aligned within a
4D sub-spacetime of the 11D Minkowskian spacetime. This determines all n-point S-matrix
elements for n < 5, but not for n > 6. To recover the (n > 6)-point S-matrix elements for
general 11D momenta from the Mellin amplitudes of ABJM theory would be much more
difficult, as it would require taking a flat space limit of the Mellin amplitudes for operators
of large s0(8) quantum numbers.

It would also be useful to extend the arguments of this paper to other cases of maxi-
mally supersymmetric SCFTs with holographic duals, such as N' =4 SYM in 4D, which
is dual to Type IIB String theory, and the Ay_; series of (2,0) theories in 6D, which is
dual to M-theory. As mentioned before, none of the CFT data in the stress tensor four
point functions in these cases is known analytically beyond 1/cr order, but it is possible
that numerical bounds could be translated into bounds on M-theory and String theory. In
6D, the OPE coefficients of certain protected operators that appear in four point function
half-BPS multiplets other than the stress tensor are known in an expansion to all orders
in 1/cp using the protected 2D chiral algebra. In an upcoming work [65], this data will be
used to derive the M-theory R* from 6D CFT, analogous to the 3D derivation in this work.

Lastly, it would be interesting to generalize the construction in this paper to theories
with lower amounts of supersymmetry. In particular, it should be possible to extend the
arguments of this paper to the full family of ABJM theories, which have only NV = 6
supersymmetry for CS level £ > 2. The supersymmetric localization calculations extend
to this case too, and one can perform both an expansion in large N at fixed k, as we did
in this paper, or at large N and fixed A\ = N/k [12]. The latter expansion would allow us
to probe scattering amplitudes in type IIA string theory directly.
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A Supersymmetric Ward identity

In position space, the supersymmetric Ward identity takes the form
1 _ 1
(zﬁz — 2a8a) G(U,V;o, 7')’01:2_1 = <z£9z — 20[(%) G(U,Vv; U,T)‘azg_l =0, (A1)
where we defined
U=zz, V=>01-201-2), o= aa, r=(1-a)(1—-a). (A.2)

To implement the Ward identities in Mellin space, we first expand G(U,V;0,7) into the
R-symmetry polynomials Yy, (0, 7) as

NE

GU,V;o,1) = Yor(o, 7)Gap (U, V), (A.3)
a=0 b=0
which has Mellin transform (2.8)
2 a
(s,t;0,7T) Z Yo (o, 7) Map(s, t) . (A.4)
a=0 b=0

If we add up the two equations in (A.1), and expand in powers of &, then z and z always
appear in the combination z™ 4 z™ for some integer m, which can then be turned into
rational functions of U, V. The resulting equation involves a set of differential operators in
U,V acting on G,(U, V'), organized in powers of a. Finally, we convert the Ward identity
to Mellin space by setting

Gun(U, V) = Muy(s,t), Udy — Udy, Voy —Voy, U™V —Tmyn,  (A5)
where the hatted operators act on My(s,t) as
000 Ma(s.t) = 5 Man(s.1).
VO Mas(s,0) = | = 1] Mas(s.0), (A.6)

_— S 2 t 2 u 2
TV My(s,t) = Muy(s — 2m, t — 2n) (1 — 5) <1 - 2) (1 - 5) ,

where © = 4 — s — t and we will have independent constraints on each coefficient in the
expansion in powers of a.
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B Polynomial solutions of degree p < 10

Here we record the purely polynomial solutions M, 4 to the superconformal Ward identity
with maximal degree p. For p = 6,7,8,9 we find one new solution for each p, while for
p = 10 we find two new solutions. We will write these polynomials in the notation of (3.15)
and (3.19), so that in the large s, limit they take the form

(tu + sto + sur)? Fpa(P, Q)
P=sd+¢2+u?, Q=stu,

where they are normalized so that
Fs1=P, Fii=Q, Fa1=P>, Fo1=QP, Fo1=P, Fo2=Q°. (B2)

The full polynomials are then

6,1
Ml(ocal)

61 P* 102P* 10PQ 1152P+ 608Q 4096
L7y 11 11 11 77 11
©6.1) ) 544 P 21760

=2P24+PQ-"" 1 i

2

(6,1)__5 180P 40@_8192
L R TR TR (B.3)
00 _ _64P? 208PQ 14912P 8000 Q 1536
4T 11 11 77 77 7
6.1) 50 P2 11904P 592 Q 44416

=— 2PQ—
Is 11+Q77+11+77’
6,1) B 40Q B 16320
fo) =56P TR
7,1) .

Mlgacal)'

f(771)_13P3 P2Q 1326P% 2074P Q 14976P 36Q° 15344 Q 53248
L7 g 4 11 143 11 13 143 11
(7)o CTI36P |, 2592Q 40960
£ =26P*+15PQ o +Q h T
P 13P?  PQ  31172P 8500 Q 204032
3. T T3 T 113 113 143 (B.4)
P 11568P%  37288PQ 394816 P 296Q* 97664Q 820736
4 143 143 143 13 143 143
(7.1) 8460P2 278PQ 22256P , 58368Q 1271936

=— — 2
I5 143 13 " @+ 143 143
P 105056 P N 2720Q 40704
6 7 143 143 13
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M(Srl) .

local -

P74 _ 118906 P3 _ 303226P? Q  779296P? 123799376 P Q _ 6478336P

8,1
1 = 4 8775 114075 2925 1482975 2925
893008 Q2 776857216Q 57749504
54925 1482975 8775
f(&l)::2})34F})26247635168}’247214816}3<Q 96849664 64736 Q2 7101056Q
2 8775 7605 114075 114075 38025
74051584
- 22815
s PP 219092P% 819392P Q 482840128P 16172032 Q 1918862848
3. T Ty 8775 114075 1482975 296595 1482975 (B.5)
&1 S8P3  344P2Q 92261504 P? 807268288PQ 669270016 P 2074918400
4 T 15 15 494325 1482975 1482975 1482975
246585856(Q) 3609677824
1482975 1482975
f(g’l)__98P3+2P2 Q_11447968P2 257584528 PQ 22751488P 129472 Q2
> 15 32955 1482975 8775 114075
638850176Q 15066962944
494325 1482975
8,1 6768P2 112PQ 883842304 P 116637824Q 305705984
6 7 65 15 1482975 296595 164775
Ml(ogéil):
o1 AP*  P3Q 256 P® 1470246P2Q 6144 P> 16PQ?  2169915952P Q
N =" Ts2600 T T T1s2600 215017 182699 17 30876131
65536 13084704 Q2 7754383488Q 245760
182699 ' 30876131 30876131 182699’
00 _ 32P3  365382P%(Q 814496 P? }%92__77230848?%2__250089728<P
27182699 1 182699 182699 2375087 2375087
14173656Q2  246246272Q 1292496896
2375087 2375087 2375087
o1 8P3  P2Q 991112 P? 49147600PQ 2231011968 P 64Q?
37182699 2 182699 2375087 30876131 17
3759586080 Q 7327562240
T 30876131 30876131 (B.6)

(0.)  90136P° 2773792P% Q | 7526374144P% 456P Q*  21774069376PQ

Ja 16609 182699 30876131 17 30876131
53524939264 P 14438168832Q2 996369408 Q 561678131200
30876131 30876131 165113 30876131
f@JL:_9%wP3_1%B&MFQQ_}7&%MBSP2+2PQ2_1&8MBW7M9Q
5 182699 182699 30876131 30876131
248339584P 237662432 Q2 77421998592 Q 24500873216
182699 2375087 30876131 2806921
(90.1)  1265488P2 20966800P Q 13022172672P 64 Q> 1028671104Q
o™= 153609 182699 30876131 17 1816243
57606243328
30876131
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M(lO,l) .

local

(0.1) P 15560102282570 P*  1352721664990P° Q  488239952498560 P°
h T4 788812391521 46400728913 788812391521
761509603801472P2 Q  7568372894878720 P?  36285564992176P ()
788812391521 788812391521 788812391521
8944052027693568P @  56120322339061760 P  93811894726016 (2
788812391521 788812391521 788812391521
34293760356859904 Q  157293341281452032
788812391521 788812391521
.fuoi)::2fﬂ_%}ﬁ(2_>86930417851808AP3__193714236162928}’2(2 1555772227023104 P2
2 788812391521 788812391521 788812391521
4531714954240P Q2  3584920148835072P Q  737911375243264 P
© 46400728913 788812391521 46400728913
660575198396864 Q2 17697616105197568 Q)  2575160352276480
788812391521 788812391521 46400728913
(o) P* . 29459546898780 P®  2793360500552P% Q  100360584961920 P?
EEY 738812391521 | 46400728913 71710217411
1858335910889184P )  13493643403236352 P 15338759568448 (2
© 788812391521 788812391521 41516441659
12456326461020928 Q  53235484975194112
788812391521 788812391521
(o) 112P* 512P3Q  560077576316736 P?  206913777028736P2 Q
4 T 1919 788812391521 | 788812391521
1708367914422272 P2 2132575731403584P Q2  53535047508136448P Q
B 71710217411 + 788812391521 B 788812391521
15759894134800384 P 3255946003526144 Q2  54552662836060160 Q
71710217411 T 021741 C 112687484503
937350835787825152
788812391521
100 _ _ 162P4 Y 73978710764208 P3 N 781824468030880P2
5 719 112687484503 788812391521
7762246710240640 P2 9063429908480P Q2  45210666149624576P Q
788812391521 46400728913 788812391521
157261767221821440 P 7746117391574656 Q2  132057277767493632 Q
B 788812391521 © 788812391521 788812391521
30032651544567808
71710217411
(10,1)  54328P%  216P%Q  1729256379496320 P2  538093588640640P Q
Jo =T33 T 19 T 7sssizsolsal | 41516441659
39075972258892288 P 15338759568448 Q2  31559209392227840 Q
788812391521 | 41516441659 788812391521
75001766595411968
788812391521
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M(10,2) .

local

(10,2) 299520 P* 195812761P3 @ 23003136P% P2 Q% 28123710360P2%Q

h T 112687484503 26514702236 112687484503 4 112687484503
705429504 P?  111982834408P Q% 741648981488P Q) _ 11777605632P
112687484503 112687484503 112687484503 112687484503

90 @3 284961517968Q% 7688398979328 Q 59624128512
19 112687484503 112687484503 112687484503 °
(10,2) 23961603 _ 350338726 P? Q 521837758752 P2 " 13061538357P Q?
2 112687484503 5930920237 112687484503 6628675559
78313654944P @  12715684780800 P . 3295800890632 Q?

112687484503 112687484503 * 112687484503
3955386769280 7  69834972106752

112687484503 112687484503

(102)  599040P3  195812761P%Q  47804861328P% P Q®  2089851982888PQ
5 =~ Tio6s7asa503 T 13257351118 10244316773 2 112687484503
6420168418176 P 2447753248668 Q2 14510922184416 Q 16952863051776
T 112687484503 | 112687484503 112687484503 112687484503
(102) 525817052976 P% 2126292211816P% Q 3829309249536 P2  3084100585440P Q>
S =~ 10687484503 112687484503 10244316773 112687484503
158246717908608P Q  101933809566720P 584 Q3  21726894668416 Q2
112687484503 10244316773 19 10244316773
2789434673572352 Q  461843423772672
© 112687484503 5930920237
(10.2)  3406879532P3 7280563630P% Q 234903259776 P2  44350210808P Q>
5 7 112687484503 = 112687484503 112687484503 6628675559
_ 1631675597600P Q | 278557348028672P Q3_80859508899296Q2
112687484503 112687484503 112687484503
1258912624870784 Q  403649143517184
112687484503 10244316773
(10.2) 624467978240P2 2192783584032P 78555860196864 P 14514678629152
Jo = o6s7asa503 T 112687484503 112687484503 | 112687484503
204378521704192 Q  1144844596080640
© 112687484503 112687484503
(B.8)

C Scattering amplitude in 4D N = 8 supergravity

In this appendix we show how to obtain the flat space limit of the tree-level scattering
amplitude of the 35, scalars of N' = 8 gauged supergravity, thus deriving the leading term
in (3.23). In the flat space limit, the tree N/ = 8 gauged supergravity amplitude reduces
to the tree amplitude in ungauged N = 8 supergravity, which we now review.

The 4D N = 8 gravity multiplet consists of 128 bosonic and 128 fermionic massless
states that can be conveniently represented as anti-symmetric tensors of the SU(8) R-
symmetry as follows: the helicity h = +2 and h = —2 states of the graviton can be
represented as SU(8) singlets h™ and h~ = RABCPEFGH. the helicity h = +3/2 and
h = —3/2 states of the gravitino can be represented as A and YpABCPEFG. the helicity
AB gnd yABCDEF,

the helicity h = +1/2 and h = —1/2 states of the gravi-photino can be represented as

h = 41 and h = —1 states of the gravi-photon can be represented as v
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YABC and yABCPE. and the scalars, of helicity h = 0, can be represented as SABCP . Here

A=1,...8 are SU(8) fundamental indices.

The 4-point scattering amplitude of any four particles from the gravity multiplet can
be succinctly described by first introducing auxiliary Grassmann variables 14 and grouping
all the particles of the gravity multiplet into an A" = 8 superfield (see for example [33])

1 1 1
& =ht +nap? — inAnBvAB - gnAanchBC + EUAUBWCWDSABCD +--. (C1)

The expression for ® is designed such that one can extract a state of a given helicity by
taking derivatives with respect to the auxiliary Grassmann variables n4. For the 70 scalars,
we have

o 9 9 0
ABCD __
S S F 3T DY (C.2)

The tree-level 4-point scattering amplitude in supergravity can then be written as
(see [33])2°

A (st = 5 24:<"> 344 1 ©3)
r s,tm) = — 17)NiAN; —_—. .
tree, SG u 256 Z JI)TiAT A <12>4 stu

A=1 \i,j=1
Here, m;4, ¢ = 1,...4, are the auxiliary polarization variables associated with the ith

particle. The scattering amplitude of 4 scalars can be extracted by acting with derivatives
on (C.3):

Atree, Sc,(SSSS)AlmD‘l (S,t) — 8lAlBlch18542B202D28§3B303D38:144B4C4D4Atree7 SG(S,t§ m)j
(C.4)

where 9ABCD = _0__0 __0 _0
t Inia Onip Onic Onip
To obtain the flat space limit of the scattering amplitude of the 35, scalars in gauged
supergravity, we should identify which of the 70 scalars SABCP of ungauged supergravity
correspond to the 35, ones. To do so, note that the SO(8) R-symmetry in AdS, is embedded
into the SU(8) flat space R-symmetry in such a way that the supercharges, transforming
in the 8 of SU(8), should also transform as the 8, of SO(8) according to the convention we
use in this paper. The 70 SABCD gcalars transform then as an irreducible representation of
SU(8), namely the 70, which decomposes as 35, @ 35, under SO(8) — the 35, and 35, can
be identified with self-dual and anti-self-dual rank-4 anti-symmetric tensors, respectively.
To connect this discussion to our notation, we should convert between the represen-
tation of the 35. as a rank-4 anti-self-dual tensor of the 8, and its representation as a
rank-2 symmetric traceless tensor of the 8. that we have been using. The conversion is
realized through a tensor E'” 4pcp, which is symmetric traceless in the 8, indices I, J and
anti-symmetric in the 8, indices obeying the anti-self-duality condition
plJ 1 A'B'C'D ]

ABCD — — 5,€ABCD

! reu ! . C-5
Y A'B'C'D (C.5)

20For the scattering amplitudes corresponding to higher derivative interactions in 4D, see [37, 38, 66].
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12345678 — 1 and all indices

Here, € is the totally anti-symmetric tensor defined such that e
are raised and lowered with the Kronecker symbol.

To obtain E'’ sgcp, one can start with the Clebsch-Gordan coefficients Ef, 4 for
obtaining an SO(8) singlet out of the product 8, ® 8. ® 8,: the coefficients E’,4 have
the property that for any three quantities uy, v*, and w? transforming as 8,, 8,, and 8.,
respectively, the product urv*w?E!,4 is an SO(8) singlet. As is well-known, the ET, 4
can be identified with the coefficients in the multiplication table of the generators e,
(a = 1,...8) of the octonion algebra: e, - eg = E7g,€7, where e; = 1 and e, - e, = 1 for
any given a. Explicit formulas for the E,4 are given in (A.12) of [67]. From the E, 4,

we can construct
EIJAB = E[]a[AEJ]aB] ) (CG)

which is a tensor that converts between the adjoint representation of SO(8) written as
either an anti-symmetric tensor of the 8, or as an anti-symmetric tensor of the 8.. Then,
using E' 45, we can further construct our desired tensor

1
EY apecp = B opE" X cp + E/X spE™8 op — Zé‘uEKLABEKLCD ) (C.7)

which has all the properties we required.

TABCD we can obtain a symmetric trace-

From any anti-self-dual anti-symmetric tensor
less tensor F17 4po pTABCD , which can be further contracted with the null polarizations

Y to obtain a quadratic function of Y
T(Y) = YiYsE"Y opepTHBOP. (C.8)

Using this procedure for the amplitude (C.4), we can extract

4
Atree, sG(S555)(s, 1;Y;) = (H Y;]Y{JE[JAiBiC,-DZ-> Atree, 36(9558) 4 Pi(s, 1) (C.9)
i=1
Due to the SO(8) R-symmetry, this expression can be written as (V7 - ¥2)?(Y3 - Y4)? times
a function of the SO(8) invariants ¢ and 7 introduced in (2.3). To uncover this form, it is
easier to set Y; to some particular values, for instance

2 5
Y; = (1 a gjz'lzyi) : (C.10)

for some 6-vectors g; that we can further take to be

g1:(100000),

ooooooo) ,
(C.11)
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for some parameters x and y. Plugging these expressions in (C.9) one finds that

Atree, 56 (5555)(5,65¥) _ 1120 g vaq 4 [1—4xA+4(1—x)B+2(3x2+y2)A2

(Y1-Y2)?(Y3-Ya)? stu
+ (4o (z—1)+12y%) AB+ (7(z—1)*+2y*) B> —dx (2’ +y*) A3
+4 (22— 1)+ (z—3)y?) A2B+4 (z(x—1)>+(2+2)y?) AB?
+4(1—2) (2 —1)*+y?)) B3 —4(a?+y?) (z(z—1)+4*) AB
(PP A2 (1243 (P —1)°) AP

9

—4 ((:U—l)2+y2) (:E(:B—l)—i—yQ) AB3+ ((m—1)2+y2)2B4

(C.12)

where

(13)(24) = (14)(23)

A (12)(34)° (12)(34)

(C.13)

Making use of the SO(8) symmetry, the z and y dependence can be rewritten in terms of
o and 7 through

x:1+0_7-7 y2:20(1+7)_02_(1_7-)2. (C.14)
2 4
Using that
s = (p3 +pa)® = —(34)[34], t = (p2 +p3)® = —(23)[23], (C.15)
u= (ps+ps)* = —(24)[24],
as well as the relations
(12)[24] = —(13)[34] , (12)[23] = (14)[34] (C.16)
that follow from momentum conservation, it can be shown that
A=_" gt (C.17)
s s

Plugging (C.14) and (C.17) into (C.12) and using that s + ¢+« = 0, it can be shown
that (C.12) can be rewritten as

Atree, sa(55585)(s,t;Y;) 1190 (tu + sto + 3u7—)2

(Y1 Y2)%(Ys - Ys)? ey (C.18)

Up to an overall constant, we have thus derived the form of the first term in (3.23).
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