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Abstract: Soft drop, a technique originally developed in the context of jet physics in

proton-proton collisions in order to reduce the contamination from non-perturbative ef-

fects, is applied to event shapes in electron-positron annihilation. In particular, we study

the thrust distribution at the Z pole and show that the region where non-perturbative

corrections due to the hadronisation process are small is considerably extended if soft drop

is applied. Therefore, we argue that the use of soft drop to reduce hadronisation effects

is potentially of great benefit in the context of strong coupling determination using event

shapes, which would be otherwise characterised by a strong correlation between αs and

non-perturbative parameters. However, reduced sensitivity to hadronisation corrections is

only one of the aspects that need to be considered. In this context, we show that pertur-

bative calculability, especially away from the soft and collinear region of the event-shape

spectrum, has a nontrivial interplay with the soft-drop observable of choice. To this pur-

pose, besides thrust, we investigate the behaviour of the hemisphere mass as well as the

jet mass. We find that the latter shows the most promising behaviour in the intermediate

region of the spectrum, especially if small jet radii are considered.
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1 Introduction

In the absence of a striking signature of new physics, the success of the physics programme

of the CERN Large Hadron Collider (LHC) heavily relies on our ability to perform theoreti-

cal calculations with ever decreasing uncertainties and compare them to precise experimen-

tal data, in order to achieve a deeper knowledge of the Standard Model of particle physics
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and, eventually, to find evidence of deviation from it. In this enterprise, high-precision cal-

culations in perturbative QCD play a central role and indeed a lot of theoretical effort has

been put into performing calculations both at fixed-order and resummed levels. In order

to achieve the sought-after accuracy, this effort must be accompanied by reliable determi-

nations of the parameters that enter the Standard Model Lagrangian, such as masses and

couplings. In particular, the relative size of perturbative QCD corrections is determined

by the strong coupling constant, αs, and precision QCD requires a reliable determination

of this parameter. The current value of the strong coupling determined by the Particle

Data Group is αs(mZ) = 0.1181±0.0011 [1].1 One type of observables that is traditionally

employed in αs extraction using perturbative QCD are event shapes in electron-positron

(e+e−) collisions.

Event-shapes quantitatively describe final-state QCD radiation and therefore provide a

rather clean way of exposing the strong coupling. On the one hand, differential distributions

for these types of observables are known to next-to-next-to-leading order (NNLO) in αs [3–

8] and are therefore used in precision determinations of the strong coupling. On the other

hand, unless one imposes rather stringent cuts on the value of the event-shape, these

distributions acquire sensitivity to the emission of soft and collinear partons, which results

in potentially large logarithmic corrections. Therefore, state-of-the-art determinations of

event shapes combine together fixed-order calculations with the all-order resummation of

these large corrections. Next-to-leading logarithmic (NLL) resummation for specific event

shapes have been known for a while, e.g. [9], and a framework to resum a rather general

class of event shapes also exists [10–14]. In recent years, this framework has also been

extended to NNLL [15, 16]. Furthermore, dedicated resummed calculations have been

performed both in context of direct QCD resummation and using the methods of Soft-

Collinear Effective Theory (SCET), e.g. [17, 18]. These high-precision calculations have

been extensively used in the context of αs fits to experimental data, e.g. [19–23].

However, some of the high-precision determinations of αs significantly differ from the

world average. A striking example is provided by fits performed using the event shapes

thrust [24] and C-parameter [25]. The calculation used in these determinations is of an

astonishing theoretical precision: it includes resummation to N3LL matched to NNLO. The

obtained value is αs(mZ) = 0.1135± 0.0011, which is a few standard deviations below the

world average [26, 27]. This rather surprising result clearly demands further investigation.

Given the fact that from a perturbative viewpoint, these calculations represent the state of

the art for both fixed-order and resummed calculations, it is natural to put non-perturbative

corrections under scrutiny. Thrust is an infra-red and collinear (IRC) safe observable and

thus one expects non-perturbative corrections to be suppressed by inverse powers of the

hard scale Q. Nevertheless, hadronisation corrections at the energies of interest, i.e the

LEP centre-of-mass energy, turn out to be sizeable. Their primary effect is a shift in the

position of the peak of the thrust distribution, together with a distortion of the spectrum in

the peak region. In the approach of refs. [26, 27], hadronisation corrections are taken into

1The size of the uncertainty of the world average, which is actually an average of averages, is doubled with

respect to its previous determination αs(mZ) = 0.1185 ± 0.0006 [2], mostly because of a more conservative

treatment of the uncertainty that affects lattice QCD calculations.
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account by fitting a universal one-parameter non-perturbative soft function defined in field

theory. However, it turns out that this non-perturbative parameter is strongly correlated

with αs and thus the simultaneous fit of the two has some degree of degeneracy.

A possible way out would be to consider measurements of multiple observables, possibly

at different centre-of-mass energies, in order to break the degeneracy between perturbative

and non-perturbative physics. However, this requires having high-precision predictions

for multiple observables and while NNLO calculations can be performed at the fully dif-

ferential level, resummed distributions often require dedicated calculations. Furthermore,

one should probably go beyond the rather simple one-parameter modelling of the hadro-

nisation process. In this paper, we put forward a different approach and we begin to

explore its feasibility, at least from a theoretical point of view. Namely, we suggest that

rather than looking for a way to disentangle perturbative and non-perturbative physics, we

should focus on observables that, while maintaining several features of the commonly used

event shapes, have at the same time reduced sensitivity to non-perturbative corrections.

One way of constructing such observables is through the application of so-called grooming

algorithms, which have been developed in the context of jet physics at the LHC.

The field of jet substructure [28–32] aims to develop efficient ways to distinguish signal

jets originating from the decay of highly-boosted massive particles into hadrons, from the

overwhelming background of QCD jets. In particular, many jet substructure algorithms

contain a grooming step, namely a procedure to remove soft and large-angle radiation from

the jet, as this is likely to come from contamination with the busy environment that one

encounters in proton-proton collision. Grooming algorithms decrease, by construction, the

effective radius of a jet and, therefore, its area [33], thus reducing the sensitivity of jet ob-

servables from the underlying event and pile-up. The effect that these algorithms have on

hadronisation corrections depends instead on the algorithm of choice [34]. However, Monte

Carlo studies show that the widely used (modified) Mass-Drop Tagger (mMDT) [34, 35],

trimming [36], pruning [37, 38], and soft drop [39], all exhibit reduced sensitivity to non-

perturbative hadronisation corrections. In this list, the mMDT/soft-drop algorithms are

the best understood from a theoretical viewpoint. Indeed, significant progress has been

made to perform all-order calculations for soft-drop observables [40, 41]. In the context of

SCET, computations have been performed up to NNLL accuracy [42, 43] for the soft-drop

mass (see also [44]) and, more recently, for multi-prong jet shapes [45]. Unfolded measure-

ments also exist [46, 47], which show very good agreement with perturbative predictions.

The soft-drop algorithm is a powerful tool that reduces the sensitivity of jet observables

to non-perturbative contributions, such as hadronisation and the underlying event, thus

extending the domain of applicability of high-precision perturbative calculations in QCD.

It is therefore natural to explore its application to QCD final states in e+e− collision, where

the only non-perturbative contribution arises from the hadronisation process, with the aim

of reducing their impact. This is what we are set to do in this study. In the first part of this

paper, we study the impact of non-perturbative corrections on the thrust distribution at

LEP energies. In particular, in section 2 we define soft-drop event shapes, while we perform

a detailed Monte Carlo study in section 3. In the second part of the paper, in view of using

soft-drop event shapes for future extractions of the strong coupling, we study the interplay
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of the soft-drop algorithm with perturbative predictions, discussing both resummation and

fixed-order. We consider the thrust distribution in section 4, while we discuss the jet mass

in section 5. Finally we conclude in section 6. Explicit results and technical details are

collected in the appendices.

2 Thrust with soft drop

The soft-drop grooming technique [39] is defined for a jet with radius R using Cambridge-

Aachen (C/A) clustering [48, 49] as:

1. Undo the last step of the clustering for the jet, J , and split it into two subjets.

2. Check if these subjets pass the soft drop condition, which is defined for e+e− collisions

as [42]:

min[Ei, Ej ]

Ei + Ej
> zcut

(
1− cos θij
1− cosR

)β/2
(2.1)

where Ei and Ej are the energies of the two subjets and θij is the angle between

them.

3. If the splitting fails this condition the softer subjet is dropped and the groomer

continues to the next step in the clustering. In other words the jet J is set to be the

harder of the two subjets.

4. If the splitting passes this condition the procedure ends and the jet J is the soft-drop

jet.

Soft drop has two different parameters: zcut, which is an energy threshold, and β, which is

the angular exponent that controls how strongly wide-angle emissions are discarded. In the

limit β → ∞ the ungroomed jet is recovered, while β = 0 corresponds to mMDT [34]. In

our studies, we will heavily use jets defined by a hemisphere of the event. In this case, we

find it more convenient to work with a soft-drop condition defined with a slightly different

normalisation:
min[Ei, Ej ]

Ei + Ej
> zcut(1− cos θij)

β/2. (2.2)

The observable we will be making use of for most of this work is thrust [24], which is

defined by

T = max
~n

(∑
i∈E |~n · ~pi|∑
i∈E |~pi|

)
, (2.3)

where the ~pi are the three-momenta of all the different particles i in the event E . The unit

vector ~n which maximizes the sum is called the thrust axis. Often, especially in the context

of all-order calculations, the variable

τ = 1− T = min
~n

(
1−

∑
i|~n · ~pi|∑
i|~pi|

)
(2.4)

is defined. This observable is equal to zero for two back to back particles, however with

additional emissions the observable moves away from zero. The τ � 1 region, often referred
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to as the two-jet region, is characterised by soft and collinear emissions, while larger values

of τ require hard emissions to contribute. Given the above considerations, we are tempted

to define soft-drop thrust as follows:

(a) the thrust axis nT is calculated, thus dividing the event into two hemispheres;

(b) the soft-drop algorithm is applied in each hemisphere;

(c) the set of particles which are left after soft drop constitutes the soft-drop event ESD,

on which the soft-drop thrust TSD is defined as

TSD = max
~n

(∑
i∈ESD |~n · ~pi|∑
i∈ESD |~pi|

)
. (2.5)

Furthermore, in analogy with eq. (2.4), we also introduce τSD = 1 − TSD. The above

definition seems very natural, as it is a straightforward extension of the ungroomed thrust.

However step (c) does result in undesirable features. Let us consider for instance the β = 0

case, for which soft drop coincides with mMDT. Due to the close resemblance of the τ

variable with the hemisphere jet mass [9, 50] in the soft-collinear region, we expect the

τSD distribution, for β = 0, to only exhibit single logarithms at small τSD, which are of

collinear origin. However, this expectation is broken already at LO. In order to see this

let us consider a three-particle configuration, which at parton level is realized by allowing

one emission from the quark-antiquark dipole. If this emission is soft, it is then groomed

away and the groomed event is now constituted by just two partons. However, these are

not aligned and therefore they provide a non-zero value of τSD. This has to happen at

values of τSD which are parametrically rather small, suppressed by two powers of zcut. The

first power of zcut comes about because we are in a region where soft drop is active, while

the second one arises because we are concentrating on values of τ which would have been

zero in the absence of soft drop. We note that at asymptotically small values τSD, the

distribution reverts to a double-logarithmic behaviour because the value of τSD is set by the

kinematics of the emission which has been groomed away and it is therefore sensitive to

the soft-collinear region of phase-space. A more detailed analysis of this type of kinematic

configuration, and the resulting O
(
z2

cut

)
transition point, is performed in appendix A. This

effect can be seen in figure 1 for a fixed order computation at LO (on the left) and NLO

(on the right) accuracy, i.e. with one or two emissions off the qq̄ dipole calculated with the

program EVENT2 [51, 52]. The ungroomed thrust distribution is shown in solid blue, while

the naive soft-drop thrust in dotted red. The unwanted double-logarithmic behaviour of

the soft-drop distribution is clearly evident.

The resummation of the above type of contributions does not appear to be straight-

forward. Although these effects are confined to a rather small region of phase-space, where

non-perturbative effects dominate, we find their presence a nuisance and we prefer to get

rid of them altogether. Therefore, we modify the last step of the soft-drop thrust definition

as follows:
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Figure 1. Fixed order thrust calculated from EVENT2 , LO on the left and NLO on the right.

The dotted red lines show the original definition of thrust, while the solid red lines show its new

incarnation. The two definitions coincide for the ungroomed case (solid blue), while for soft-drop

thrust the new version τ ′SD removes the second transition region.

(c′) the sets of particles left in the two hemispheres after soft drop constitute the soft-drop

hemispheres HLSD and HRSD, on which the soft-drop thrust T ′SD is defined as

T ′SD =

∑
i∈HLSD | ~nL · ~pi|∑

i∈ESD |~pi|
+

∑
i∈HRSD | ~nR · ~pi|∑

i∈ESD |~pi|
, (2.6)

where ~nL and ~nR are the jet axes of the left and right hemispheres, respectively.2

If no soft drop is applied, T ′SD reduces to T , as it should. Moreover, T ′SD is free of

the undesired transition point in the soft-collinear region. Again, in analogy with

eq. (2.4), we also introduce τ ′SD = 1− T ′SD.

The LO and NLO distributions for τ ′SD are also shown in figure 1 with solid lines. We see

that the large-τ behaviour of the three distributions is identical, while τ ′SD has the desired

behaviour in the infra-red region.

Finally, we note that having abandoned the use of the thrust axis in step (c′), we could

also question its role in defining the hemispheres. For instance, we could directly cluster

the event into two C/A jets. We have checked that the resulting distributions have very

similar features to the ones obtained with the current definition.

3 Hadronisation corrections: a Monte Carlo study

The main motivation for introducing groomed event-shapes is to reduce their dependence

on non-perturbative physics, such as hadronisation corrections. We note that existing

studies for closely-related jet observables in proton-proton collisions, e.g. [34, 39, 40, 54,

2We thank Gregory Soyez for discussions on this point. Furthermore, we note that this approach shares

some similarities to event shapes defined with respect two broadening axes [53].
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Figure 2. Monte Carlo parton shower simulation of the thrust distribution τ = 1 − T in e+e−

collisions, obtained using three general-purpose programs, as indicated in the legends. The plots at

the top refer to the traditional (ungroomed) thrust distribution, while the bottom ones are for its

soft-drop version τ ′SD = 1−T ′SD. The plots on the left show the normalised distribution, at the hadron

level, while the plots on the right show the ratio of distributions obtained with hadronisation turned

on and off. We take these ratios as proxies to assess non-perturbative corrections. The vertical

lines correspond to the values of thrust, or soft-drop thrust, for which hadronisation corrections, as

estimated using the Pythia simulation, reach the 10% level.

55], are typically performed at energies of interest for LHC phenomenology, i.e. jets with

transverse momenta of several hundred GeV. On the other hand, the bulk of the thrust data

that enters current determinations of the strong coupling have been collected by the LEP

experiments, i.e. at a centre-of-mass energy around the Z mass. It is therefore necessary

to perform a dedicated study to see if grooming techniques prove useful in reducing the

size of hadronisation corrections even at the Z pole.

In order to assess the size of hadronisation corrections in the thrust distribution we

resort to a Monte Carlo study. Namely, we simulate e+e− at the centre-of-mass en-
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ergy Q = mZ using three different Monte Carlo parton showers: Pythia 8.219 [56, 57],

Sherpa 2.2.3 [58–60], and Herwig 7.1.2 [61, 62]. The Monte Carlo samples are generated at

Born level, with default settings for the shower parameters and the hadronisation models.

Thrust and the thrust axis are computed using the implementation found in Pythia [56]. In

order to calculate T ′SD, we use the thrust axis to partition each event into two hemispheres

and we apply the e+e− version of the soft drop algorithm described in the previous section,

making use of FastJet 3.2.1 [63] in order to obtain the Cambridge/Aachen [48, 49] trees.

The top-left panel of figure 2 shows the result of the three Monte Carlo simulations

for the variable τ , without any grooming. We find good agreement between the three

parton-shower programs, which does not come as a surprise. Indeed QCD radiation from

qq̄ dipoles is very well constrained by LEP data, which, in turn, are used to tune Monte

Carlo parton showers. The main motivation for performing this numerical simulation is

to assess the role of non-perturbative corrections. We address this in the top-right panel

of figure 2, where we show the ratio of the hadron-level simulations to their partonic

counterparts, which are obtained by switching off the hadronisation process. We take this

ratio as a reasonable proxy for the size of non-perturbative corrections.3 We note that non-

perturbative corrections are sizeable for both large and small values of τ . In particular,

the end-point at large τ is determined by multiple resolved emissions, which are difficult

to model in perturbation theory. For this reason, the upper limit of the fitting region is

sometimes taken at τ = 1/3, which is the end-point of the LO thrust distribution. At the

opposite end of the spectrum, i.e. small τ , the distribution becomes sensitive to QCD at

low scales and we therefore expect non-perturbative corrections to dominate. In the plot

we mark with a vertical line the value of thrust for which hadronisation corrections, as

estimated using the Pythia simulation, reach the 10% level. We note that this happens

for τ ' 7 · 10−2. For this reason, the study of ref. [26] also introduced a lower limit for

their fitting region to ensure that perturbation theory, both fixed-order and resummed,

provides the bulk of the contribution, while non-perturbative physics is a small, albeit

non-negligible, correction.

In the lower-panels of figure 2 we show the corresponding distributions and ratios

for the soft-drop version of thrust, namely τ ′SD. We first show results for zcut = 0.1 and

β = 0, which are the preferred values in LHC analyses. Let us focus on the bottom-right

plot, which shows the size of non-perturbative corrections. We see that the situation at

the large-τ ′SD tail has not changed much compared to the ungroomed case. Indeed, we

have no reason to believe that soft drop should provide any advantage in this kinematic

region. The situation is rather different at medium and small τ ′SD. In this region, non-

perturbative corrections appear to be very much reduced: indeed the ratio hadron-level to

parton-level remains close to one down to smaller values of τ ′SD, thus extending the validity

of perturbation theory down to smaller values of the event shape. More quantitatively,

the value of the observable for which hadronisation corrections reach the 10% level is

now τ ′SD ' 10−2.

3The Herwig curve shows a slightly different behaviour at parton level, resulting in a visible difference

in the hadron/parton ratio. Despite dedicated studies, we were not able to identify the source of this

discrepancy.
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Figure 3. Soft-drop thrust distribution generated with Pythia for three different values of the an-

gular exponent β, compared to ungroomed thrust. As β increases we move closer to the ungroomed

case, which we recover for β →∞. All plots are for zcut = 0.1.

A wider range for the observable’s values for which we trust perturbation theory is not

the only criterion we need to satisfy, as we have to make sure that the soft-drop procedure

does not reduce the cross-section in the desired region. By looking at the vertical lines on

the cross-section plots (left-hand side of figure 2), which indicate where non-perturbative

corrections reach the 10% level, we see that for the un-groomed case, only a third of

the cross-section is in the perturbative region, while this fraction nearly doubles in the

case of soft-drop thrust. Furthermore, the ratio plots in figure 2 hint to another possible

benefit in using soft drop, namely a reduction in the spread of the Monte Carlo estimates

of hadronisation corrections. However, because we have only considered three different

showers here, we cannot draw firm conclusions on this last observation from our study.

In summary, this Monte Carlo study supports our initial intuition: soft drop appears

to be an efficient way to reduce contamination of non-perturbative physics even in e+e−

collisions at LEP energies.

Thus far we have only considered the pair of values zcut = 0.1 and β = 0, which is the

preferred option for jet studies at the LHC. However, here we are considering a different

type of collision, at much lower energies, and so it is also interesting to explore other values

of β and zcut, in order to see if different combinations result in more desirable features. In

particular, we would like to explore the possibility of using a milder groomer and study the

corresponding trade-off in terms of sensitivity to non-perturbative physics. For clarity, we

focus on Pythia results, as the conclusions are similar for the other Monte Carlo generators.

In figure 3, we consider three different values of the angular exponent β = 0, 1, 2, while

zcut = 0.1 is kept fixed. Larger values of β correspond to milder grooming (the ungroomed

result can be thought as β → ∞). The hadron-level results are shown as well as the

ratio to the partonic level. Here it can be seen that the region where non-perturbative

corrections are small rapidly decreases as β increases, thus suggesting that while β = 1
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Figure 4. Soft-drop thrust distribution generated with Pythia for three different values of the

energy cut zcut, compared to ungroomed thrust. All plots are for β = 0.

is still acceptable, larger values of β do not serve our purposes. Next, a comparison for

different choices of zcut can be made, which is shown in figure 4. We choose to vary the

value of zcut up and down by a factor of 2, while keeping β = 0. In this case milder

grooming corresponds to smaller values of zcut. Here we see that the choice zcut = 0.05

is rather promising as the range over which non-perturbative corrections are small has

decreased only slightly as compared to the default zcut = 0.1, while the fraction of events

in the potential αs fitting region has noticeably increased.

In summary, thanks to a simple Monte Carlo study we have shown that groomed event-

shapes in e+e− collisions at LEP energies, such as soft-drop thrust, are characterised by

reduced sensitivity to non-perturbative physics in the kinematic region which is typically

used in determinations of the strong coupling. Therefore, we argue that the usage of this

type of observable can help with reducing the degeneracy between αs and non-perturbative

parameters, thus improving the reliability of strong-coupling extractions from event shapes.

However, this research program only makes sense if we are able to provide theoretical

predictions for groomed event shapes which are, from a perturbative point of view, under

the same theoretical control as traditional, i.e. ungroomed, event shapes. In the next

section we discuss perturbative predictions for the variable τ ′SD, emphasising its strengths

and limitations.

4 Resummation of soft-drop thrust

The all-order resummation of the soft-drop thrust (τ ′SD) distribution closely follows the

calculation of the soft-drop energy correlation e
(2)
2 , which was performed to NNLL accuracy

in ref. [42]. The result is based on the factorisation of the differential distribution in terms of

hard, soft and collinear functions, which was derived using SCET. Because e
(2)
2 and thrust

are proportional in the soft limit, an analogous factorisation theorem holds for soft-drop
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thrust. Therefore, in the τ � zcut � 1 limit we have

dσ

dτ
= H(Q)SG(zcut, β)[SC(τ, zcut, β)⊗ J(τ)]2, (4.1)

where in order not to clutter notation we henceforth write τ instead of τ ′SD. Here H is the

hard function, which takes into account the virtual contributions and depends only on the

energy scale Q. The global soft function, SG, takes into account soft wide-angle emissions.

Since soft wide-angle radiation is groomed away by soft drop and it does not influence

the value of thrust, its scale only depends on the soft-drop parameters zcut and β, and

on the hard scale Q. Collinear hard emissions are taken into account by the jet function

J . Since collinear hard radiation always passes the soft drop condition, this function will

only depend on τ . Finally SC describes soft collinear emissions, i.e. radiation which can

be groomed away but can also pass and lead to a non-zero value of thrust. Therefore, it

depends on both the groomer’s parameters and on the observable. In the context of SCET,

resummation of large logarithmic corrections is obtained by evolving these functions using

renormalisation group equations. Therefore, it is fully determined by the knowledge of

the fixed-order expansions of the above functions and their anomalous dimensions. For a

generic function K, we have

µ
dK(µ)

dµ
=

[
ΓK(αs) log

µ2

µ2
K

+ γK(αs)

]
K(µ), (4.2)

where the terms in the square bracket are, respectively, the cusp and non-cusp contribu-

tions to the anomalous dimension, while µK is the infra-red scale of the function we are

considering. The above factorisation theorem is valid in the asymptotic limit τ � zcut and,

as usual, it holds up to power-corrections in the observable. We anticipate that, together

with this asymptotic, we are also going to explore the region τ ∼ zcut in detail, discussing

how power-corrections to the factorisation theorem become order-one contributions in this

kinematic region. The main results are summarised in the following, while more details

are collected in appendix B. Here, we only explicitly discuss the relevant functions at one

loop, which are needed for NLL′ resummation.

The hard function H is determined by the virtual corrections to the e+e− → qq̄ process.

These depend on the underlying process but not on the observable nor on the grooming

algorithm. At one loop, the result is [64–67]

H = 1 +
αs
2π
CF

(
µ2

Q2

)ε[
− 2

ε2
− 3

ε
+

7π2

6
− 8

]
+O

(
α2
s

)
, (4.3)

where we have absorbed the MS constant in the definition of the scale µ. The hard scale

is given by µH = Q. The coefficient on the double pole determines the cusp contribution

ΓH = −2CFΓcusp, (4.4)

where Γcusp is the universal cusp anomalous dimension [68]

Γcusp =
∞∑
n=0

Γn

(αs
π

)n+1
, with Γ0 = 1, Γ1 =

CA
2

(
67

18
− π2

6

)
− 5

9
TRnf . (4.5)
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The non-cusp anomalous dimension can be written as

γH =

∞∑
n=0

γ
(n)
H

(αs
π

)n+1
, (4.6)

where the one-loop coefficient can also be found from eq. (4.3) based on the coefficient for

the single pole:

γ
(0)
H = −3CF . (4.7)

The jet function is obtained by considering emissions in the collinear limit. The calcu-

lation is observable-dependent, however it is not groomer-dependent. Therefore the same

results as for un-groomed thrust can be used here [69]. Furthermore, in order to diagonalize

the convolution product in eq. (4.1) we consider Laplace moments

J̃(N) =

∫ ∞
0

dτe−NτJ(τ) = CF
αs
2π

[
1 +

π2

12

∂2

(∂ logN)2

](
N̄µ2

Q2

)ε[
2

ε2
+

3

2ε
+

1

2

(
7− π2

)]
,

(4.8)

where N̄ = NeγE . From this result, we conclude that the collinear scale is given by

µ2
J = Q2/N̄ . Furthermore, the coefficient of the double and single poles determine the

cusp and non-cusp contributions to the jet-function anomalous dimension

ΓJ = 2CFΓcusp, (4.9)

γ
(0)
J =

3

2
CF . (4.10)

Finally, we turn our attention to the two soft functions that enter the factorisation

theorem. The global soft function does not depend on the observable, but only on the

soft-drop parameters [42]. Its expression reads

SG(zcut, β) =
αsCF

2π

(
µ

2β/2zcutQ

)2ε[ 2

β + 1

1

ε2
− π2

6

(
1

1 + β
+ 2 + β

)]
, (4.11)

from which we can easily deduce that the global soft scale is µSG = 2β/2zcutQ, while the

anomalous dimensions are

ΓSG =
2

β + 1
CFΓcusp, (4.12)

γ
(0)
SG

= 0. (4.13)

The collinear soft function is both groomer and observable dependent. Its Laplace space

expression is

S̃C(N, zcut, β) =
αs
2π
CF

[
1 +

π2

12

∂2

(∂ logN)2

] µN̄
β+1
β+2

2
β/2
β+2 z

1
β+2

cut Q

2ε

β + 2

β + 1

[
− 1

ε2
+
π2

12

]
, (4.14)
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from this the soft-collinear scale can be read off as µSC =
[

2β/2zcut

N̄β+1

] 1
β+2

Q, while the anoma-

lous dimensions are

ΓSC = −β + 2

β + 1
CFΓcusp, (4.15)

γ
(0)
SC

= 0. (4.16)

Cancellation of all singularities and renormalisation-group invariance at the order con-

sidered here require that

ΓH + ΓSG + 2ΓSC + 2ΓJ = 0, (4.17)

γ
(0)
H + γ

(0)
SG

+ 2γ
(0)
SC

+ 2γ
(0)
J = 0, (4.18)

ΓHp
(i)
H + ΓSGp

(i)
SG

+ 2ΓSCp
(i)
SC

+ 2ΓJp
(i)
J = 0, (4.19)

where p
(i)
K is the power at which a variable i = zcut, N̄ , . . . enters the definition of the scale

µK . It is easy to verify that the above relations are indeed satisfied. Furthermore, one can

exploit the above relations, which are valid order by order in the strong coupling, to infer

the two-loop anomalous dimension of the collinear soft function, the only one which is both

observable and soft-drop dependent, from the knowledge of the anomalous dimension of

the hard, global soft and collinear functions, which can be taken from the literature. This

is enough to extend the resummation of soft-drop thrust to NNLL accuracy.

4.1 The soft function in the transition region

The factorisation of the soft function in terms of the global and collinear soft functions,

eqs. (4.11) and (4.14) respectively, is obtained in the limit τ � zcut or, equivalently in

Laplace space N � 1/zcut. The region τ ∼ zcut is often referred to as the transition

region [34, 70] because if τ & zcut soft-drop is not active, and hence the soft-drop thrust

is perturbatively equivalent to its ungroomed counterpart, while if τ . zcut the grooming

procedure does modify the emission phase-space. One can take different approaches to

the treatment of the transition region. For instance, in ref. [42] the region τ ∼ zcut was

calculated at fixed-order through matching. In contrast, the jet mass study of refs. [40, 41]

did supplement the theoretical prediction in the transition region with a resummation of

the ungroomed jet mass.

In this study we want to have a closer look at the transition region. Therefore, we

calculate soft corrections without assuming the hierarchy τ � zcut. At one loop, we consider

the emission of a soft gluon with momentum k off a dipole with light-like momenta n and n̄:

S(τ, zcut, β) = g2
sCF

(
µ2eγE

4π

)ε ∫
d4−2εk

(2π)3−2ε

n · n̄
k−k+

δ
(
k2
)
Θ
(
k− + k+

)
Θ
(
k− − k+

)
(4.20)

×
[

Θ

(
zcutQ

[
k+

k0

]β/2
− 2k0

)
δ(τ) + Θ

(
2k0− zcutQ

[
k+

k0

]β/2)
δ

(
τ − k+

Q

)]
+ (n↔ n̄),

– 13 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
5

where Θ is the Heaviside step function. The first term in square brackets accounts for the

emission failing soft drop, while the second one for passing it. Performing the integrals

is a straightforward exercise, where most clarity is offered by looking at the cumulative

soft function:

Σsoft(τ, zcut, β) =

∫ τ

0
dτ ′S

(
τ ′, zcut, β

)
=
αsCF

2π

(
µ

2β/2zcutQ

)2ε[ 2

β + 1

1

ε2
− π2

6

(
1

1 + β
+ 2 + β

)]

+
αs
π
CF

 µ

2
β/2
β+2 z

1
β+2

cut τ
β+1
β+2Q

2ε

β + 2

β + 1

[
− 1

ε2
+
π2

12

]

+
αsCF

2π

(
2(β + 2)Li2

[
1

2

(
2τ

zcut

) 2
β+2

])
, (4.21)

for τ ≤ zcut/2. The dilogarithmic contribution, although power-suppressed at small-τ , is

crucial in order to recover the plain thrust soft function at the transition point zcut = 2τ :

Σsoft(τ, 2τ, β) =
αsCF

2π

[
− 2

ε2
+

4 log τ

ε
− 4 log2 τ +

π2

6
+O(ε)

]
, (4.22)

where we have set µ = Q. Furthermore, in Laplace space, we have

S̃(N, zcut, β) =

∫
dτ e−NτS(τ, zcut, β)

=
αsCF

2π

(
µ

2β/2zcutQ

)2ε[ 2

β + 1

1

ε2
− π2

6

(
1

1 + β
+ 2 + β

)]

+
αs
π
CF

[
1 +

π2

12

∂2

(∂ logN)2

] µN̄
β+1
β+2

2
β/2
β+2 z

1
β+2

cut Q

2ε

β + 2

β + 1

[
− 1

ε2
+
π2

12

]

+
αsCF

2π

(
2(β + 2)Li2

[
1

2

(
1

2
zcutN̄

) −2
β+2

])
. (4.23)

We note that the above soft function contains two different scales: the soft wide-angle scale

µSG = 2β/2zcutQ and the soft collinear scale µSC =
[

2β/2zcut

N̄β+1

] 1
β+2

Q, which were previously

defined. In particular, the dilogarithm depends on the ratio of these two scales. In the

limit N � 1/zcut, the contribution from the last line vanishes and the soft functions splits

in the two single-scale soft functions SG and SC previously analysed.

4.2 Implementation of the resummation

We are now ready to assemble together the results presented earlier and obtain a resummed

expression for the soft-drop thrust distribution. We find it most convenient to present the

resummed results for the cumulative distribution defined as

Σ(τ) =
1

σ0

∫ τ

0
dτ ′

dσ

dτ ′
, (4.24)
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where σ0 indicates the Born cross-section. We start by considering the logarithmic be-

haviour of the cumulative distribution when soft-drop is active, i.e. below the transition

point 2τ < zcut. In the region τ � zcut the usual logarithmic counting holds and we

can write

Σ(τ) =
1

2πi

∫
C

dN

N

[
1 +

∞∑
n=1

(αs
π

)n
C̃(n),

]
eF̃(λN̄ ,λzcut), (4.25)

where C̃ encapsulates the constant contributions in τ and zcut and αs is computed at a

scale µ. The resummed exponent F̃ is given by

F̃ (λN̄ , λzcut) =
1

αs
f1(λN̄ , λzcut) + f2(λN̄ , λzcut) + αsf3(λN̄ , λzcut), (4.26)

where λx = αsb0 log x and the functions fi take into account Ni−1LL contributions. Fur-

thermore, to any fixed-logarithmic accuracy, the inverse Laplace transform can be per-

formed analytically [9]. The resulting expression in physical (τ) space has a form that

closely resembles eq. (4.25)

Σ(τ) =

[
1 +

∞∑
i=1

(αs
π

)n
C(n)

]
exp

[
1

αs
g1(−λτ , λzcut) + g2(−λτ , λzcut) + αsg3(−λτ , λzcut)

]
,

(4.27)

where the functions gi only depend on the functions fi and their derivatives. Explicit ex-

pressions, as well as detailed derivations are collected in appendix B. Beyond the transition

point 2τ > zcut, we instead employ the standard resummation for thrust.

However, as previously discussed, if we want to obtain a smooth transition between

the groomed and ungroomed regime, we have to supplement the calculation with those

contributions which are power-suppressed at small τ but O(1) in the transition region. In

order to find the contribution to the resummed exponent, we therefore consider running

coupling corrections to transition-region corrections:

gtr(τ, zcut) =
αs
π
CF (β + 2)Li2

[
1

2

(
2τ

zcut

) 2
β+2

]
1

1− 2λzcut

. (4.28)

The logarithmic accuracy of the above contribution is difficult to assess because in the

asymptotic region of small τ , it is a power correction. To lowest order in the strong

coupling, this term resembles a contribution to the overall constant C̃(1), however, it does

receive logarithmic running coupling corrections, which are accounted for in λzcut . This

behaviour further complicates when we consider the differential thrust distribution, because

the derivative with respect to τ acts both on the dilogarithm as well as on the logarithmic

part. This contribution is able to fully resolve the discontinuity issue at the lowest order in

the strong coupling. However, further issues related to multiple emissions, similar to those

discussed also in [39], appear at O(α2
s) and beyond. Unfortunately, the method investigated

in this work is not able to solve them as they are beyond the accuracy considered here.
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4.3 Numerical results for β = 0 and β = 1

Now that our setup has been established, numerical results can be presented and discussed.

We present results at the centre-of-mass energy Q = mZ , with αs(mZ) = 0.1181 [1] using

NLO running and the five-flavour scheme. For this proof-of-concept study we begin by

considering NLL′, i.e. we include the functions g1, g2 and C(1). In addition we include the

dilogarithm contribution in C(1). Furthermore, in order to obtain a reliable description in

the whole τ range, we match the resummation to fixed-order, using the program EVENT2 [51,

52]. We first consider tree-level (LO) matrix elements and we employ a standard additive

matching:

τ
dσLO+NLL′

dτ
= τ

dσLO

dτ
+

[
τ
dσNLL′

dτ
− τ dσ

NLL′|LO

dτ

]
, (4.29)

where the last contribution subtracts the expansion of the resummation to first order, in

order to avoid double counting. Extension to higher accuracy, both at fixed-order and

resummed level is discussed in section 4.4.

We start by considering the β = 0 case4 In figure 5, we compare the fixed-order

calculation for plain thrust and the soft-drop thrust to the first-order expansion of the

resummation. We do this for two different values of zcut: zcut = 0.1 on the left and

zcut = 0.05 on the right.

The ratio plots at the bottom show that the expansion of the resummation correctly

captures the asymptotic behaviour of the LO distribution in all cases. We have verified that

the slight off-set in the soft-drop distributions is due to power corrections in zcut, which

we do not account for here (see [34, 40] for studies of their impact on similar observables).

Furthermore, we note that the solid red curve is continuous in the transition region, because

of the dilogarithmic correction terms that we have introduced, while the discontinuity is

clearly visible if this term is dropped, as shown in the green dotted curve.

We then present fully resummed and matched results in figure 6. In order to ease

the matching procedure, we have modified the argument of the logarithms, so that the

end-point of the resummed distribution matches the one of the fixed-order τmax = 1/3 [9].

The details of this prescription are given in appendix C. We estimate the perturbative

uncertainty by perfoming a 7-point scale variation of renormalisation and resummation

scales around their central value Q, i.e. we vary both scales by a factor of two up and

down but we discard combinations that give rise to logarithms of four. We first note that

in the case of plain thrust, the impact of resummation is significant, which shows that

higher-order corrections are sizeable. As expected, this remains true for soft-drop thrust

for values of τ above the transition region. However, we note that if zcut is not too small,

so that logarithms of zcut do not play an important role, then resummation becomes a less

significant corrections to the fixed-order calculation. An observation which was already

made in the context of high-pt jet mass distributions after grooming [34, 40, 41], which

4It is well-known [34, 39] that the logarithmic counting changes in this case, as logarithms of soft origin

disappear. Therefore, NLL terms become the first non-vanishing contribution and they could be referred

to as “LL”. However, for consistency with the rest of the paper, we prefer to keep here the counting for

general β.
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Figure 5. A comparison between the fixed order and expansion of the differential cross section of

the plain and soft-dropped thrust for e+e− collisions at a centre of mass energy Q = mZ and the

soft drop parameters β = 0 and zcut = 0.1 (left) and zcut = 0.05 (right). The figure shows LO for

plain thrust (black dashed) and soft-dropped thrust (magenta dashed-dotted) and the expansion

for plain thrust (blue dotted) and soft-dropped thrust (red solid). The plots at the bottom show

the ratio of the expansions to their fixed-order counterparts.

remains true also in this context. Furthermore, we remind the reader that from the analysis

performed in section 3, hadronisation corrections become sizeable, i.e. bigger than 10%,

for values of the ungroomed τ below 7 · 10−2, while if soft-drop is applied this happens

for τ . 10−2.

It is also interesting to study the behaviour of the soft-drop distribution for different

values of the angular exponent β. This is done in figure 7 for β = 1. Because any β > 0

leaves a residual double-logarithmic behaviour at small τ , we see that the resummation

has a bigger effect compared to the β = 0 case, even for zcut = 0.1. Furthermore, as

discussed in section 3, these distributions have larger non-perturbative corrections in the

fitting region. On the other hand, we note that for β = 1 the LO discontinuity is smaller

and, consequently, the impact of the dilogarithm correction is reduced with respect to the

β = 0 case.

Finally, it can be seen that all soft-drop distributions showed here still suffer from

a discontinuity at the transition point, despite the treatment previously discussed. This

undesired feature has been pushed one order higher in perturbation theory, i.e. O
(
α2
s

)
but

it is still sizeable. It originates from a discontinuity at the transition point in the second

order derivative contribution, which appears because of the treatment of multiple-emission

contributions. In ref. [39], this effect was smoothed out by considering finite differences

rather than derivatives. Here, we prefer to leave this discontinuity apparent to stress the

fact that a more rigorous solution is needed in order to use groomed distributions for

precision predictions. We see this as the main challenge to be addressed in the near future.
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Figure 6. The results for the fixed order and resummed differential cross section of the plain

and soft-dropped thrust for e+e− collisions at a centre of mass energy Q = mZ and the soft drop

parameters β = 0 and zcut = 0.1 (left) and zcut = 0.05 (right). The figure shows LO for plain thrust

(black dashed) and soft-dropped thrust (magenta dashed-dotted) and the matched LO+NLL′ cross

section for plain thrust (blue dotted) and soft-dropped thrust (red solid) with the bands from

resummation and scale uncertainties included.
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Figure 7. Same as figure 6 but now for soft drop applied with angular exponent β = 1.

4.4 Towards precision

The results of the previous section, although interesting on their own, were not presented

at a high-enough accuracy to have the ability of leading to a competitive extraction of the

strong coupling. In this section, we discuss the ingredients of the calculation that need to

be improved in order to reach the target accuracy. Let us start with the discussion of the

fixed-order contribution, which we have thus far considered only at tree-level. Using the

code EVENT2 [51, 52] we are able to obtain NLO predictions for the thrust distribution,
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Figure 8. On the left, the thrust distribution, with and without soft drop, in fixed-order pertur-

bation theory, namely at LO and NLO. On the right, comparisons of fixed-order results to the

expansion of the NNLL resummation.
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Figure 9. Ratios of the all-order distribution computed at NNLL to its NLL′ counterpart, on the

left for plain thrust and, on the right, for soft-drop thrust.

with and without soft drop. We show the results in figure 8, on the left, where we plot

LO and NLO distributions on a linear scale, in order to emphasise the medium-to-large τ

region. We have chosen to show the representative case β = 0, zcut = 0.1. We can see that

the NLO corrections are indeed sizeable. However, we note that they are well-reproduced

by matching to the resummed calculation. The other interesting feature that this plot

shows is the effect of fixed-order corrections on the transition region. While the transition

is rather sharp at LO, it becomes broader at NLO because phase-space conditions are less

constraining in the presence of two emissions. Furthermore, although not so visible on the

plot, the end-point of the distribution does change in going from LO to NLO. It should
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be noted that e+e− event shapes have been computed to NNLO accuracy [3–8]. However,

the implementation of soft drop in those numerical codes is not straightforward and it is

currently a work in progress.

Second, we move to the all-order part of the calculation and we consider the effect

of NNLL resummation. In figure 8, on the right, we compare the expansion fo the NNLL

resummation to the fixed-order results. At asymptotically small values of τ , we find that the

expansion of the resummation reproduces the NLO, in both cases (as in the case of figure 5

the soft-drop curve lacks finite-zcut corrections). We note that the irregular behaviour just

before 10−3 is a numerical artefact due to the fact that the denominator crosses zero in that

region. At intermediate values of τ , i.e. in the transition region, we see that the expansion of

the soft-drop resummation does not agree very well with its fixed-order counterpart. This

is because the calculation in this region does not reach the required accuracy as it is based

on the lower-order analysis which led to eq. (4.28). This confirms once again that in order

to achieve reliable predictions across the entire range of τ , accuracy in both resummation

and fixed-order is not enough because soft-drop requires a detailed understanding of the

region τ ∼ zcut. For this reason, we prefer not to show matched NNLL+NLO results

because they can be misleading until a deeper understanding of the transition region is

reached. It is nevertheless interesting to show the impact of NNLL resummation, which

provides the dominant effect for τ � zcut. We study this in figure 9, where we show the

ratio of the NNLL result to its NLL′ counterpart, on the left for plain thrust and on the

right for soft-drop thrust. We see that the numerical impact of higher-order resummation

is much reduced in the case of soft-drop thrust. Furthermore, the theoretical uncertainty,

as measured by scale variation, is also significantly smaller.

5 Resummation for jet-mass observables

We have seen that contributions that are not easy to control play an important role in

the transition region for soft-drop thrust. This situation is not ideal because it makes it

harder to achieve high precision in a region which is extremely relevant for phenomenology.

It is therefore interesting to analyse different observables, which share with the thrust

distribution the behaviour in the soft and collinear region but that might exhibit better

properties in the transition region. The observable we consider is the jet mass. First, we

will treat it similar to thrust by making use of the jet mass of a hemisphere as an observable,

which is the variable that was also discussed in [42]. Second we consider the invariant mass

of an anti-kt [71] jet with radius R in order to assess the effect of a jet clustering radius

on the transition region. Jet masses have been already considered in previous soft drop

studies [39–41].

5.1 Hemisphere jet invariant mass

We start by considering the hemisphere mass. In this case, we cluster an event into exactly

two jets and we look at the largest value of:

e
(2)
2 =

m2
J

E2
J

, (5.1)

with mJ the jet mass and EJ its energy. This is the same observable that was considered

in ref. [42]. Therefore, the results can be largely reused, with a slight modification due to
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the different definition of soft drop, which corresponds to zcut → zcut2
−β/2. Factorisation

of the distribution in terms of hard, soft and jet functions leads to the identification of the

following scales

µH = Q, µ2
J =

Q2

4N̄
,

µSG = 2β/2Qzcut, µSC =

[
zcut

2β/2N̄β+1

] 1
β+2 Q

2
. (5.2)

Note that these scales only differ in factors of two compared to the computation for thrust,

since these observables share soft and collinear behaviours. Furthermore, this leads to the

same anomalous dimensions. Just as for the scales, the transition point contribution is also

the same as for thrust after the change N̄ → 4N̄ or in τ -space τ → e
(2)
2 /4. This leads to a

transition contribution:

T (τ, zcut) =
αs
π
CF (β + 2)Li2

[
1

2

(
e

(2)
2

2 zcut

) 2
β+2
]
. (5.3)

Because the resummation of the hemisphere mass was discussed in great detail in

ref. [42], in this section we limit ourselves to an analysis of its behaviour in the transition

region in order to understand whether it suffers from the same issues as the thrust. In

ref. [42] the computation in the small e
(2)
2 region was extended beyond the transition point.

Additive matching with the fixed-order calculation was used, relying on the assumption

that the resummation and its expansion cancel one another near the transition region.

Here, we compare that procedure to ours, namely we considered the resummation of the

groomed and ungroomed hemisphere mass merged together with the transition contribution

eq. (5.3) and subsequently matched to fixed-order.

This comparison can be seen in figure 10, on the left. The result that makes use

of the technique described in [42] is shown in the dotted green here. In order to make

the comparison more explicit, we will not make use of the end-point modification of the

logarithms previously discussed. When compared to the solid red, which shows the result

including the transition point effects, it can be seen that they agree quite well across

the whole spectrum. However it can also be seen, when comparing it to the fixed order

result (magenta dashed-dotted), that at this accuracy the resummation and expansion do

not cancel near the transition point. Instead what is happening is that the discontinuity

at the transition point is significantly canceled between the resummation and expansion.

This cancellation did not happen in the case of the thrust. The difference between these

observables is that for e
(2)
2 at the transition point resummation effects are significantly

smaller than for thrust. This can be understood due to the fact that for e
(2)
2 the transition

point is at a factor 4 larger value, which makes the logarithms significantly less important.

Finally, in figure 10, on the right, we present our final results for the resummed and

matched distributions, in comparison with the fixed-order ones. This is done for both the

plain and the groomed hemisphere mass. For this plot, we have adopted our end-point

prescriptions and we have also included uncertainty bands, which have been computed

varying renormalisation and resummation scales, as previously described. Higher-order
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Figure 10. The results for the fixed order and resummed differential cross section of the plain

and soft-dropped e
(2)
2 for e+e− collisions at a centre of mass energy Q = mZ and the soft drop

parameters zcut = 0.1 and β = 0. The figure shows LO for plain e
(2)
2 (black dashed) and soft-

dropped e
(2)
2 (magenta dashed-dotted) and the matched LO+NLL′ cross section for plain e

(2)
2 (blue

dotted) and soft-dropped e
(2)
2 (red solid) In addition the resummation without taking into account

transition point effects is shown (green dotted). Right shows the end-point corrections included

with the bands from resummation and scale uncertainties.

transition effects are still present but they are much reduced compared to the soft-drop

thrust distributions in figure 6 and they are now within the theoretical uncertainty.

5.2 Narrow jet invariant mass

We have previously performed the calculation assuming two hemisphere jets, however it is

also possible to make use of a clustering algorithm without fixing the number of jets. In

this case we will be making use of anti-kt clustering with a jet radius R. Here we define

the normalisation of the observable as

ρ =
m2
J

2E2
J(1− cosR)

(5.4)

The same computations as those performed in section 4 can be repeated for this observable.

Other than the observable itself, a couple of alterations need to be made to the method

of computing these different contributions. First the jet radius needs to be included in

the soft drop condition. The more significant change in the one-gluon calculation is the

additional condition θ < R, with θ being the angle between the emission and the particle

it is emitted from. For collinear emissions this condition is always satisfied.

We start by considering the O(αs) contribution in the small-R limit but keeping the

full ρ dependence

1

σ0

dσ

dρ
= δ(ρ) + CF

αs
2π

{
− 4

(
log ρ

ρ

)
+

(5.5)

−
[
3
√

1− 4ρ− 8 log
(

1 +
√

1− 4ρ
)

+ 8 log 2
](1

ρ

)
+

+ δ(ρ)

(
−9

2
+

2π2

3

)}
,
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which, in the small ρ limit, results in

1

σ0

dσ

dρ
= δ(ρ) + CF

αs
2π

[
−4

(
log ρ

ρ

)
+

− 3

(
1

ρ

)
+

+ δ(ρ)

(
−9

2
+

2π2

3

)]
. (5.6)

When writing down the factorisation theorem, we have to pay attention to the way we

treat the out-of-jet region. However, we have just computed the full δ(ρ) term we can

thus predict the out of jet contribution by subtracting the hard, collinear and soft expres-

sions. In addition we know the IR divergences should cancel. Given the hard, soft and

collinear functions

H = 1 + CF
αs
2π

(
µ2

Q2

)ε[
− 2

ε2
− 3

ε
+

7π2

6
− 8

]
, (5.7)

J̃

(
µ

µJ

)
= CF

αs
2π

[
1 +

π2

12

∂2

(∂ logN)2

](
4N̄µ2

Q2R2

)ε[
2

ε2
+

3

2ε
+

1

2

(
7− π2

)]
, (5.8)

S̃

(
µ

µS

)
= CF

αs
2π

[
1 +

π2

12

∂2

(∂ logN)2

](
4N̄2µ2

Q2R2

)ε[
− 2

ε2
+
π2

6

]
, (5.9)

we can predict the out of jet contribution:5

O = CF
αs
2π

(
2µ2

Q2R

)ε[4 log
(
R
2

)
ε

+
π2

3
− 7

2
+ 6 log

(
R

2

)]
. (5.10)

Now this can be combined with the hard function, since both are made up of exclusively

δ(ρ) terms:

O +H = 1 + CF
αs
2π

(
4µ2

Q2R2

)ε[
− 2

ε2
− 3

ε
+

3π2

2
− 23

2

]
. (5.11)

Whether or not an emission falls outside of the jet is independent of soft drop and only

depends on the clustering algorithm. Therefore the out-of-jet function can also be applied

to soft drop resummation without having to recompute it. This results in the functions for

soft drop

SG

(
µ

µSG

)
= CF

αs
2π

(
2µ

zcutQR

)2ε 1

β + 1

[
2

ε2
− π2

6

]
, (5.12)

S̃C

(
µ

µSC

)
= CF

αs
2π

[
1 +

π2

12

∂2

(∂ logN)2

]2µN̄
β+1
β+2

z
1

β+2

cut QR

2ε

β + 2

β + 1

[
− 1

ε2
+
π2

12

]
, (5.13)

where the hard, which includes out of jet emissions now, and the collinear functions are

the same as without soft drop. The scales are given by

µH =
QR

2
, µ2

J =
1

N̄

(
QR

2

)2

,

µSG = zcut
QR

2
, µSG =

[
zcut

N̄β+1

] 1
β+2 QR

2
, (5.14)

5Alternatively, the out-of-jet contribution could be computed directly using, for instance, the formalism

developed in refs. [66, 72].
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and the anomalous dimensions remain the same as for thrust. This shows that the natural

central scale for this observable is µ = QR
2 .

A crucial difference when we introduce a (small) jet-radius is the transition point

contribution. What can be seen is that at the transition point, ρ = zcut or N̄ = 1/zcut

in Laplace space, the sum of the collinear soft and wide-angle soft functions result exactly

in the soft function for the ungroomed distribution. The reason for this can be found by

looking at the similar expressions without taking the small-R or small-ρ limit:

(2 + β)Li2

[
1− cosR

2

(
ρ

zcut

) 2
2+β

]
− (2 + β)Li2

[
1− cosR

2

]
(5.15)

At the transition point these two terms cancel. If we approximate this in the small ρ limit

the first term vanishes, while the other does not. Thus, if the jet radius R is large, one

encounters the same transition-point issues previously discussed. Indeed the situation is

analogous to the hemisphere-jet case, which can be recovered by setting cosR = 0. On the

other hand, if we take the small-R limit of eq. (5.15), then both contributions vanish up

to power corrections in the jet radius.

Now that it has been established that small-R jets are a means of suppressing the

dilogarithmic transition effect, we can show the resummation for this observable. Here

we make use of the LO end-point value ρmax = 1/4 and we consider to jet radii, namely

R = 0.5 and R = 1.0. The results are shown in figure 11. It can be seen that for the jet

mass transition point effects are small. The fixed order shows in almost constant behaviour

in the region where soft drop is active and the matched cross section lines up well. This

shows that it is possible to make use of a jet radius instead of making use of hemispheres

in order to reduce the effects of the transition region.

6 Conclusions

Event-shapes in e+e− collisions are a powerful way to inspect QCD radiation in a relatively

clean environment. For this reason, they have often been employed in precision QCD stud-

ies and, in particular, in determinations of the strong coupling constant. Despite the fact

that IRC safety guarantees that non-perturbative corrections due to the hadronisation pro-

cess are power-suppressed, these have a non-negligible impact on event-shape distributions

in region of phase-space where many data points live. In particular, fits to determine the

strong coupling show a significant correlation between αs and non-perturbative parameters.

In this paper, we have put forward the idea of using techniques developed in the

context of jet substructure to reduce an observable sensitivity to non-perturbative physics.

In particular, we have considered the soft-drop algorithm and we have applied it to the

event-shape thrust. We have first performed a study using Monte Carlo parton shower

simulations and we have found that the impact of these non-perturbative corrections is

significantly reduced when soft drop is applied. This opens up the possibility of performing

fits for the strong coupling that rely on a wider region of phase-space where hadronisation

corrections are genuinely small. In this context, we have shown that the effectiveness in

reducing non-perturbative corrections, at the energy considered here Q = mZ , quickly
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Figure 11. The results for the fixed order and resummed differential cross section of the plain and

soft-dropped jet mass with R = 1 (left) and R = 0.5 (right) for e+e− collisions at a centre of mass

energy Q = mZ and the soft drop parameters zcut = 0.1 and β = 0. The figure shows LO for plain

ρ (black dashed) and soft-dropped ρ (magenta dashed-dotted) and the matched LO+NLL′ cross

section for plain ρ (blue dotted) and soft-dropped ρ (red solid) with the bands from resummation

and scale uncertainties included.

degrades as the angular exponent β increases, and preferred options appear to be β = 0

and, perhaps, β = 1. On the other hand, we have found that the dependence on the energy

threshold zcut is less pronounced. Thus, a mild energy cutoff, e.g. zcut = 0.05, appears to be

an promising compromise between reducing hadronisation corrections, while maintaining

the bulk of the dataset.

In order for this enterprise to be successful, reduction in non-perturbative effects must

be accompanied by our ability of performing perturbative calculations for soft-drop event

shapes with an accuracy that matches the one for traditional event shapes. While this

is certainly possibile for fixed-order calculations, work has to be done in the context of

resummation where soft-drop observables are currently known to NNLL, while the un-

grommed thrust distribution is known one order higher, namely N3LL. Furthermore, as

we have pointed out in this study, complications may arise in the description of the so-

called transition region, i.e. the region of phase-space where soft drop starts to become

active. The hierarchy of scales that characterises the deep infra-red and collinear region

does not apply here and one becomes sensitive to a new class of contributions. These

were investigated here to first order, but a more detailed analysis is necessary if we want

to maintain perturbative accuracy in this region. However, our analysis also shows that

observables that share the same behaviour in the soft/collinear limit, may have exhibit very

different sensitivity to these contributions. From this point of view, we have found soft-drop

thrust to be particularly sensitive to these corrections, which are instead parametrically

suppressed if we choose to measure the invariant mass of jet with radius R.

In conclusion, grooming algorithms such as soft drop show a promising reduction in

the non-perturbative corrections, even when applied to e+e− collision at the Z pole, with
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potential benefits for αs determination, provided that the perturbative structure of the

resulting distribution is under theoretical control in the range relevant for phenomenology.

Furthermore, we note that the recursive structure of the soft-drop algorithm opens up

new ways of defining event-shape or observables. The traditional jet mass, and thrust,

receives important (i.e. NLL) contributions from any number of un-ordered emissions in

the final state, while it is possible to define observables on the two prongs that first pass

the soft-drop condition. Two-pronged observables exhibit different sensitivity to “multiple-

emissions” that might lead to a simplification of their all-order treatment, while directly

exposing the strong coupling at the tagged splitting. This study is part of a rather ambitious

project which aims to apply techniques developed for searches to precision measurements

(see ref. [73] for work in the context of top-quark mass extraction) and we look forward to

continuing working in this direction.

Acknowledgments

We thank Andrew Larkoski, Gregory Soyez and Jesse Thaler for many useful discussions

and Steffen Schumann for his comments on this manuscript. This work was partly sup-

ported by the U.S. National Science Foundation, under grant PHY-1619867, All-Order

Precision for LHC Phenomenology. The work leading to this publication was also sup-

ported by the German Academic Exchange Service (DAAD) with funds from the German

Federal Ministry of Education and Research (BMBF) and the People Programme (Marie

Curie Actions) of the European Union Seventh Framework Programme (FP7/2007-2013)

under REA grant agreement n. 605728 (P.R.I.M.E. Postdoctoral Researchers International

Mobility Experience).

A Transition points in the soft-drop thrust distribution

In this appendix we consider three-parton configuration and we study, to lowest order in

the strong coupling, the kinematic configurations that give rise to transition points in the

thrust distribution. We focus on the β = 0 case and we start by considering a configuration

with three massless partons:

E1 + E2 + E3 = Q,

~p1 + ~p2 + ~p3 = 0,

Ei = |~pi|, i = 1, 2, 3. (A.1)

The thrust axis before soft-drop divides the event into two hemispheres and without loss

of generality, we assume that partons 2 and 3 are in the same hemisphere, while parton 1

is recoiling against them in the opposite one. Thus we have ~p2 · ~p3 ≥ 0 and

E2
1 = E2

2 + E2
3 + 2~p2 · ~p3 ≥ E2

2 + E2
3 , (A.2)

which implies E1 ≥ E2, E3. We then apply soft drop and we consider the situation in

which E3 < E2 and parton 3 is just groomed away or just passes. For the β = 0 case this
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happens if
E3

E2 + E3
= zc =⇒ E3 =

zc
1− zc

E2. (A.3)

A.1 The asymptotic region of small τSD

In order to determine the resulting τSD when parton 3 is groomed away, the algorithm then

calculates thrust on the two-parton event. However, the partons are not back-to-back and

this results in a non-trivial configuration for the soft-drop thrust axis and, consequently, a

non-zero value of τSD. We have

τSD = 1−max
~n

|~p1 · ~n|+ |~p2 · ~n|
|~p1|+ |~p2|

. (A.4)

The thrust axis is found to be

~nSD =
~p1 − ~p2

|~p1 − ~p2|
, (A.5)

which leads to

τSD = 1−

√
(~p1 − ~p2)2

E1 + E2

=
E1 + E2 −

√
E2

1 + E2
2 − 2~p1 · ~p2

E1 + E2
=
E1 + E2 −

√
2E2

1 + 2E2
2 − E2

3

E1 + E2
, (A.6)

with

E2
3 = |~p3|2 = E2

1 + E2
2 + 2~p1 · ~p2 (A.7)

Note that eq. (A.6) vanishes in the soft limit E3 → 0 because E1 → E2. Therefore, at least

to this order in perturbation theory, τSD is infra-red and collinear safe.

We are interested in finding the maximum value of τSD which is sensitive to this type

of kinematic configurations. In the main text, we argued that this should be τSD = O
(
z2
c

)
.

We can now make a more quantitative statement. The maximum of eq. (A.6) is reached

when E3 is as large as possible, while being groomed away and E1 and E2 equally share

the remaining energy Q− E3. We find

Ē1 = Ē2 =
1− zc
2− zc

Q,

Ē3 =
zc

2− zc
Q. (A.8)

Filling these energies into eq. (A.6) leads to

τ̄SD =
2(1− zc)−

√
4− 8zc + 3z2

c

2(1− zc)
=
z2
c

8
+O

(
z3
c

)
. (A.9)

For zc = 0.1, we find τ̄SD ≈ 0.00154, which agrees with what is seen in figure 1.

In the soft emission limit τSD given by eq. (A.6) is equal to

τSD =
k+k−

2Q2
. (A.10)
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When this is effect is included it adds an additional contribution to the soft function:

S̃(N, zcut, β) = g2
sCF

(
µ2eγE

4π

)ε
×
∫
dτSD e

−Nτ
∫

d4−2εk

(2π)3−2ε

n · n̄
k−k+

δ
(
k2
)
Θ
(
k− + k+

)
Θ
(
k− − k+

)
×Θ

(
zcutQ

[
k+

k0

]β/2
− 2k0

)[
δ

(
τSD −

k−k+

2Q2

)
− δ(τSD)

]
+ (n↔ n̄)

= CF
αs
2π

[
− log2 τSD + 2 log τSD log

(
z2

cut

2

)
+ log2

(
z2

cut

2

)
− π2

3

]
+O(τSD),

(A.11)

if τSD < z2
cut/8. Hence, we find a double logarithmic enhancement for the differential cross

section in the small τSD limit, even for β = 0. For this reason, we have decided to discard

the naive version of soft-drop thrust τSD in favor of the better behaved τ ′SD.

A.2 Transition point at large τSD

The same kinematic configuration can be applied to the case where no particle is groomed

away in order to obtain the transition point above which the distribution returns to the un-

groomed thrust differential cross section. Since no particles are groomed away conservation

of momentum can now be applied:

τSD = 1−max
~n

|~p1 · ~n|+ |~p2 · ~n|+ |~p3 · ~n|
|~p1|+ |~p2|+ |~p3|

. (A.12)

The thrust axis is found to be

~n =
~p1 − ~p2 − ~p3

|~p1 − ~p2 − ~p3|
=

~p1

|~p1|
, (A.13)

which leads to

τSD = 1−

√
(~p1 − ~p2 − ~p3)2

E1 + E2 + E3
=
Q− 2E1

Q
. (A.14)

Filling the energy derived in the previous section into this equation leads to

τ̄ =
zc

2− zc
=
zc
2

+O
(
z2
c

)
. (A.15)

For zc = 0.1, this leads to τ̄ ≈ 0.05263, which also agrees with what is seen in figure 1.

B Details of the analytic calculation

B.1 Scales and coefficients

In order to compute the scales for each of the factorized functions and their associated

anomalous dimensions we will follow the derivation of appendices B-E of [42]. For the

computations we will be making use of light-cone coordinates defined by nµ the jet direction

and n̄µ the opposite direction resulting in k− = n̄ · k, k+ = n · k and k⊥ the components

transverse to n.

– 28 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
5

B.1.1 Collinear function

The collinear (or jet) function can be derived using standard splitting functions, which

describes the emission of a particle in the collinear limit. This calculation is observable

dependent, however it is not groomer dependent. Therefore the same results as for un-

groomed thrust can be used here [69]. For the collinear limit we can assume k− � k+,

which implies k(0) ≈ k−/2.

For the following we will compute the expressions in Laplace space with the Laplace

space conjugate N :

J̃(ν) =

∫ ∞
0

dτe−NτJ(τ) (B.1)

In Laplace space the one-loop Jet function in the MS scheme is given by:

J̃

(
µ

µJ

)
= g2

s

(
µ2eγE

4π

)ε ∫
dτ e−Nτ

∫
d4−2εk

(2π)3−2ε

Pqg(z)

k+Q
δ

(
τ − k+

zQ

)
δ
(
k2
)
Θ
(
k−
)

= g2
s

Ω1−2ε

4(2π)3−2ε

(
µ2eγE

Q4π

)ε
×
∫
dτ e−Nτ

∫
dz

(1− z)ε

∫
dk+

(
k+
)−1−ε

Pqg(z) δ

(
τ − k+

zQ

)
= CF

αs
2π

[
1 +

π2

12

∂2

(∂ logN)2

](
N̄µ2

Q2

)ε[
2

ε2
+

3

2ε
+

1

2

(
7− π2

)]
, (B.2)

where we have used the integration variable (1 − z) = k−/Q and introduced N̄ = NeγE

which results from the Mellin transform approximation from appendix A of [74] that also

applies to Laplace transformations up to O(1/N). This derivation is for one of the hemi-

sphere jets, the other jet can be computed in a similar manner.

B.1.2 Global soft function

Since soft wide angle emissions fail the soft drop condition in general this function will not

depend on the observable and will only depend on the grooming condition. Therefore this

result will be the same as the one presented in [42].

SG

(
µ

µSG

)
= g2

sCF

(
µ2eγE

4π

)ε ∫
d4−2εk

(2π)3−2ε

n · n̄
k−k+

δ
(
k2
)
Θ(k0)Θ

(
k− − k+

)
ΘSD + (n↔ n̄)

= g2
sCF

(
µ2eγE

4π

)ε
Ω1−2ε

(2π)3−2ε

∫
dk+

(k+)1+ε

∫
dk−

(k−)1+εΘ
(
k0
)
Θ
(
k− − k+

)
ΘSD

=
αsCF

2π

(
µ

2β/2zcutQ

)2ε[ 2

β + 1

1

ε2
− π2

6

(
1

1 + β
+ 2 + β

)]
. (B.3)

with the soft drop condition defined as

ΘSD = Θ

(
zcut

Q

2

[
k+

k0

]β/2
− k0

)
(B.4)
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B.1.3 Soft collinear function

For the soft collinear function both the observable and the grooming method need to be

taken into account. However, the anomalous dimensions and scale can be determined

through the cancellation of the IR-divergences. However, in order to find the constant

contributions, we will still need to compute this function. We find

S̃C

(
µ

µSC

)
= g2

sCF

(
µ2eγE

4π

)ε ∫
dτ e−Nτ

∫
d4−2εk

(2π)3−2ε

n · n̄
k−k+

δ
(
k2
)
Θ
(
k−
)

×
[

Θ

(
zcutQ

[
2
k+

k−

]β/2
− k−

)
δ(τ) + Θ

(
k−− zcutQ

[
2
k+

k−

]β/2)
δ

(
τ − k+

Q

)]

= −g2
sCF

(
µ2eγE

4π

)ε
Ω1−2ε

2(2π)3−2ε

∫
dk+

(k+)1+ε

∫
dk−

(k−)1+εΘ
(
k−
)

×Θ

(
k− − zcutQ

[
2
k+

k−

]β/2)[
1 +

π2

12

∂2

(∂ logN)2

]
Θ

(
k+

Q
− 1

N̄

)

=
αs
2π
CF

[
1 +

π2

12

∂2

(∂ logN)2

] µN̄
β+1
β+2

2
β/2
β+2 z

1
β+2

cut Q

2ε

β + 2

β + 1

[
− 1

ε2
+
π2

12

]
. (B.5)

C Resummation formulae

As described in section 4.2 in the soft-drop region the resummation is written in the form

Σ(τ) =
1

2πi

∫
C

dN

N

[
1 +

∞∑
n=1

(αs
π

)n
C̃(n),

]
eF̃(λN̄ ,λzcut), (C.1)

where C̃ encapsulates the constant contributions in τ and zcut an αs is computed at a scale

µ. The resummed exponent F̃ is given by

F̃ (λN̄ , λzcut) =
1

αs
f1(λN̄ , λzcut) + f2(λN̄ , λzcut) + αsf3(λN̄ , λzcut). (C.2)

These functions are given by:

fK1 (λT ) =
Γ

(0)
K

2b20π
[(1 + 2λT ) log(1 + 2λT )− 2λT ], (C.3)

fK2 (λT ) =
Γ

(1)
K

b20π
2

[
λT −

1

2
log(1 + 2λT )

]
+

Γ
(0)
K b1

4b30π
[log(1 + 2λT )(2 + log(1 + 2λT ))− 4λT ]

+
Γ

(0)
K

2b0π
log(1 + 2λT )LKµ −

γ
(0)
K

2b0π
log(1 + 2λT ), (C.4)

fK3 (λT ) =
Γ

(2)
K

b20π
3

λ2
T

1 + 2λT
− Γ

(1)
K b1

b30π
2

[
log(1 + 2λT )− 2(1− λT )λT

2(1 + 2λT )

]
+

Γ
(0)
K b2

b30π

[
(1 + 2λT ) log(1 + 2λT )− 2λT (1 + λT )

2(1 + 2λT )

]
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+
Γ

(0)
K b21
b40π

[
(log(1 + 2λT )− 2λT )2

4(1 + 2λT )

]

+
Γ

(1)
K

b0π2
LKµ

λT
1 + 2λT

+
Γ

(0)
K b1

2b20π
LKµ

[
log(1 + 2λT )− 2λT

1 + 2λT

]
− Γ

(0)
K

2π

(
LKµ
)2 λT

1 + 2λT

−γ
(1)
K + 2πb0K(1)

b0π2

λT
1 + 2λT

− γ
(0)
K b1

2b20π

[
log(1 + 2λT )− 2λT

1 + 2λT

]
+
γ

(0)
K

π
LKµ

λT
1 + 2λT

, (C.5)

for any function K with the sum given by

fi(x, y) = fSGi

(
p

(N̄)
SG

x+ p
(zcut)
SG

y
)

+ 2fSCi

(
p

(N̄)
SC

x+ p
(zcut)
SC

y
)

+ 2fJi

(
p

(N̄)
J x+ p

(zcut)
J y

)
= fSGi

(
p

(zcut)
SG

y
)

+ 2fSCi

(
p

(N̄)
SC

x+ p
(zcut)
SC

y
)

+ 2fJi

(
p

(N̄)
J x

)
. (C.6)

and

LKµ = log

(
Q2

µ2

)
+ 2p

(2)
K log 2 (C.7)

We note that some of the terms cancel in the final exponential because of eq. (4.19). Finally,

the coefficient C̃(n) is given by

C̃
(1)
K = K(1) +

[
log

(
Q2

µ2

)
+ 2p

(2)
K log 2

][
−γ

(0)
K

2
+

Γ
(0)
K

4

(
log

(
Q2

µ2

)
+ 2p

(2)
K log 2

)]
, (C.8)

for any function K and the sum now includes the hard function

C̃(n) = C̃
(n)
H + C̃

(n)
SG

+ 2C̃
(n)
SC

+ 2C̃
(n)
J . (C.9)

In principle the full result is a product of the all order contributions for the different

functions, however up to order αs we can write this as a sum.

C.1 Laplace inversion

For the inverse Laplace transform we shall make use of a technique first proposed in [9].

Furthermore, we find convenient to rewrite the inversion into a form similar to what was

presented in [18]. In order to perform the Laplace inversion we expand eq. (C.1) about

ν̄ = N̄τ = 1:

Σ(τ) =

[
1 +

∞∑
i=1

(αs
π

)n
C̃(n)

]
eF̃(−λτ ,λzcut) 1

2πi

∫
C

dν

ν
(C.10)

× exp

[
ν + F̃ (1)(−λτ , λzcut)(log ν + γE)

+
1

2
F̃ (2)(−λτ , λzcut)(log ν + γE)2 +O

(
αn+2
s logn τ

)]
,
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where we suppress terms beyond NNLL accuracy and introduce the new integration variable

ν = Nτ . Here F̃ (n) is defined as

F̃ (n)(−λτ , λzcut) =
dn

d logn 1
τ

F̃

(
αsb0 log

1

τ
, λzcut

)
, (C.11)

with b0 =
11CA−2nf

12π . The necessary functions are, up to NNLL accuracy, given by

F̃ (1)(x, y) = b0
d

dx
f1(x, y) + αsb0

d

dx
f2(x, y) +O

(
αn+2
s logn τ

)
,

F̃ (2)(x, y) = αsb
2
0

d2

dx2
f1(x, y) +O

(
αn+2
s logn τ

)
. (C.12)

This results in

Σ(τ) =

[
1 +

∞∑
i=1

(αs
π

)n
C̃(n)

]

× exp

[
F̃ (−λτ , λzcut) + γEF̃

(1)(−λτ , λzcut) +
γ2
E

2
F̃ (2)(−λτ , λzcut)

]
× 1

2πi

∫
C

dν

ν
exp

[
ν +

(
F̃ (1)(−λτ , λzcut) + γEF̃

(2)(−λτ , λzcut)
)

log ν

+
1

2
F̃ (2)(−λτ , λzcut) log2 ν +O

(
αn+2
s logn τ

)]
. (C.13)

This integral can be solved by making use of [9]

1

2πi

∫
C

dν

ν
logn ν exp[ν +G log ν] =

dk

dGk
1

Γ(1−G)
. (C.14)

In order to change the integral into this form we are required to expand out the log2 ν term

in the exponent. The terms that are neglected here are of the order O
(
αks(αs log τ)n

)
with

k ≥ 2 and n ≥ 1. Using this method we obtain

R(τ) =

[
1 +

∞∑
i=1

(αs
π

)n
C̃(n)

]
exp

[
1

αs
f1 + f2 + γEb0f

′
1 + αs

(
f3 + γEb0f

′
2 +

γ2
E

2
b20f
′′
1

)]
× 1

Γ(1− b0f ′1)

[
1 + αsb0

(
f ′2 + γEb0f

′′
1

)
ψ(0)

(
1− b0f ′1

)
+

1

2
αsb

2
0f
′′
1

(
ψ(0)

(
1− b0f ′1

)2 − ψ(1)
(
1− b0f ′1

))]
, (C.15)

and we have suppressed the arguments of fi and the prime indicates the derivative with

respect to the first argument of fi. Finally we can exponentiate the results of the integral

and combine everything in the final result:

R(τ) =

[
1 +

∞∑
i=1

(αs
π

)n
C(n)

]
exp

[
1

αs
g1(−λτ , λzcut) + g2(−λτ , λzcut) + αsg3(−λτ , λzcut)

]
,

(C.16)
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where

g1(x, y) = f1(x, y),

g2(x, y) = f2(x, y) + γEb0f
′
1(x, y)− log Γ

(
1− b0f ′1(x, y)

)
,

g3(x, y) = f3(x, y) + b0f
′
2(x, y)

(
ψ(0)

(
1− b0f ′1(x, y)

)
+ γE

)
+
π2

12
b20f
′′
1 (0, 0)

+
b20
2
f ′′1 (x, y)

(
ψ(0)

(
1− b0f ′1(x, y)

)2 − ψ(1)
(
1− b0f ′1(x, y)

)
+2γEψ

(0)
(
1− b0f ′1(x, y)

)
+ γ2

E

)
C(1) = C̃(1) − π2

12
b20f
′′
1 (0, 0), (C.17)

where we have shifted the constant contribution of g3 to the rest of the constant contribu-

tions in C(1), which means g3(0, 0) = 0.

The contributions from the transition region should be taken into account somewhat

differently. The dilogarithm in Laplace space was computed using an approximation that

only holds for logarithms (appendix A of [74]) and should instead be treated in τ space

directly, where we neglect multiple emission contributions. Only taking into account the

single emission case allows us to make use of the dilogarithm from the inclusive soft func-

tion in thrust space as presented in eq. (4.21). This corresponds to the simple substitu-

tion 1/N̄ → τ .

Since we are interested in the differential cross section the derivative of R will need to

be taken with respect to τ :

τ
dσ

dτ
(τ) = −

[
1 +

∞∑
i=1

(αs
π

)n
C(n)

]
×
[
b0g
′
1(−λτ , λzcut) + αsb0g

′
2(−λτ , λzcut) + α2

sb0g
′
3(−λτ , λzcut)

]
× exp

[
1

αs
g1(−λτ , λzcut) + g2(−λτ , λzcut) + αsg3(−λτ , λzcut)

]
. (C.18)

Here at LL accuracy only f1 and f ′1 are needed, at NLL accuracy in addition we need f2,

f ′2 and from the derivative of the additional terms used for the inversion f ′′1 .

In order to assess the uncertainty due to missing logarithmic orders, we rescale the

argument the argument of the logarithms we are resumming by an arbitrary factor xL,

log(xLτ), log
(
xL
zcut

2

)
, (C.19)

where an additional factor 1/2 is included in the logarithm of zcut in order to ensure that

these logarithms are the same at the transition point. In order to maintain NLL accuracy,

we have to modify the functions f2 and C̃(1):

p(2) log 2→ p(2) log 2 + p(zcut) log 2− log xL

(
p(zcut) − p(N̄)

)
. (C.20)
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C.2 Treatment of the end point

Since the matched cross section should be valid over the full range, it is convenient to

force the end-point of the resummed distribution to match the end-point of the fixed-order

computation. In order to accomplish this we will make use of the techniques described

in [9, 75]. The main point is to modify the argument of the logarithms of τ to:

log(xLτ)→ − log

(
1

xLτ
− 1

xLτmax
+ 1

)
= log

(
xLττmax

τmax − τ + xLττmax

)
= log τ̄ . (C.21)

This modification is enough to reduce the resummation to 0 at the end-point τmax. However,

the expansion has an additional constant:

τ
dσexp

dτ
=
αs

π

[
1

2
G12 log τ̄ +G11

]
, (C.22)

where Gij indicates the different coefficients of the expansion. With the new modified

logarithms that go to 0 at the end-point this expression becomes equal to G11 at the end-

point. In order to also make the value of the expansion at the end-point equal to 0 we will

add a term −G11τ/τmax to this expression resulting in:

τ
dσexp

dτ
=
αs

π

[
1

2
G12 log τ̄ +G11

(
1− τ

τmax

)]
. (C.23)

This does mean that the resummation need to include an additional term

Σ(τ)→ Σ(τ) exp

[
−αs
π

τ

τmax
G11 log τ̄

]
, (C.24)

in order to ensure that the expansion of exponential reproduces the correct result. For the

derivative of R we will suppress any power corrections that are unnecessary to make both

resummation and expansion approach 0 at the end-point:

τ
dσres

dτ
=

(
F ′(log τ̄)− αs

π

τ

τmax
G11

)
C exp

[
F (log τ̄)− αs

π

τ

τmax
G11 log τ̄

]
. (C.25)

where we have taken the derivative with respect to log τ̄ instead of log τ . All of these

modifications are power suppressed terms and do not alter the τ → 0 limit.

Strictly speaking, the end-point modification is relevant only for the ungroomed part

of the spectrum. However, groomed and ungroomed distributions should line up at the

transition point and it is therefore convenient to also modify the soft-drop distribution.

Because logarithms of zcut become logarithms of τ beyond the transition point, we treat

them on a equal footing as the logarithms of τ . Therefore, we introduce a variant of our

resummed expression, which only differs by power corrections

τ
dσres

dτ
=

(
F ′(log τ̄ , log zcut)−

αs
π

τ

τmax

(
G

(SD)
11 + S′0

))
C(SD)

(
2τ

zcut

)
exp[F (log τ̄ , log zcut)]

×
∏
K

exp

αs
π

τ

τmax

G
(K)
11

p
(N̄)
K

(
−p(N̄)

K log τ̄ + p
(zcut)
K log

(
xL
zcut

2

)), (C.26)
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where S′0 is the derivative of the dilogarithmic contribution, p
(i)
K are the powers of a vari-

able i in the scale of a function K and C(SD) depends on 2τ/zcut through means of the

dilogarithm and reduces to C at the transition point. The coefficient G
(SD)
11 originates from

the expansion as described in the case of ungroomed thrust, eq. (C.22), which is equal to

the sum over all possible functions K for G
(K)
11 . Here the power-suppressed term for the

dilogarithm itself C(SD) was not included in order to insure that C(SD)(1) = C. These

power corrections become equal to the end point corrections for ungroomed thrust at the

transition point.
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