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1 Introduction

Following the discovery of a new heavy particle with mass far above the electroweak scale,

understanding its properties will be a crucial task for both theorists and experimenters.

In many well-motivated extensions of the Standard Model (SM), such as models based on

supersymmetry, compositeness, or extra dimensions, one expects that the first new particle

to be discovered is one member of a larger sector of particles with similar masses, charac-

terized by a scale M � v. Barring any further discoveries, the most general approach to

studying the new particle’s properties — via its decays into SM particles and its production

rates — would be to embed it into an effective field-theory (EFT) formalism. The purpose

of this work is to show how this can be done consistently.

While no new particles have yet been discovered at the LHC, the high-luminosity

run still offers a significant discovery potential for new heavy resonances, for which the

mass reach extends out to about 6 TeV (see e.g. [1, 2]). A energy upgrade to 27 TeV
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or a future 100 TeV collider could extend this reach significantly. The phantom 750 GeV

diphoton resonance, for which preliminary evidence was reported by the ATLAS and CMS

collaborations in late 2015 [3, 4], provides a concrete example with which to illustrate

the motivation for our work. Hundreds of phenomenological papers have been written in

response to these hints. In most of them, the authors have assumed the existence of a

neutral spin-0 boson S with mass MS ≈ 750 GeV and constructed the most general EFT

Lagrangian at dimension-5 order, in which S is coupled to SM fields. The underlying

assumption is that these dimension-5 operators arise from integrating out additional heavy

particles. However, in the vast majority of models addressing the diphoton resonance these

other particles had masses of the same order, governed by a scale M ∼ MS & 1 TeV. In

such a situation, it is evident that a conventional EFT approach cannot be employed in a

systematic way to study the on-shell decay and production rates of the new particle. The

naive assumption that amplitudes of the dimension-5 Lagrangian scale like vn/M , where

v ≈ 246 GeV is the electroweak scale, is invalid in this case. The reason is that EFT matrix

elements scale with powers of the mass parameters present in the theory, which now are

v and MS . For MS ∼ M � v, higher-dimensional operators can be unsuppressed with

respect to lower-dimensional ones, since their contributions can scale with (MS/M)2n =

O(1) relative to the dimension-5 contributions. Factors of M2
S in the numerator can arise,

e.g., from operators containing extra derivatives or longitudinally polarized gauge fields.

Thus, infinite towers of EFT operators would need to be retained to include all terms of

a given order in v/MS — a task that is usually impracticable. Also, a conventional EFT

would not allow one to resum large logarithms of the scale ratio MS/v.

A successful theoretical framework to address this situation will have to accomplish

the following tasks: i) it must be flexible enough to retain the full dependence on the two

new-physics scales: the mass MS of the heavy resonance that has been discovered, and the

mass scale M characterizing the other particles belonging to the new sector; ii) it must

allow for a consistent separation of the contributions arising from the scales MS and v,

and in particular it must provide the tools to resum large (double) logarithms of the scale

ratio MS/v using renormalization-group (RG) equations. Note that with MS ∼ few TeV

these logarithms can be very large, e.g. αs ln2(M2
S/m

2
t ) ∼ 5 for MS = 5 TeV, and hence

resummation is obligatory, even for electroweak radiative corrections.

The situation encountered here is similar to the case of B-meson decays to final states

containing light mesons. A systematic heavy-quark expansion of the corresponding decay

amplitudes in the small ratio ΛQCD/mb is made complicated by the fact that the light

final-state particles carry energies Ei = O(mb) that scale with the heavy-quark mass.

This obstacle was overcome with the QCD factorization approach developed in [5–7] and

the construction of soft-collinear effective theory (SCET) [8–11]. In the present work, we

use established SCET technology to derive a consistent EFT that can be employed to

study the decays of a new heavy particle S into SM particles. The decay amplitudes are

systematically expanded in powers of the ratio λ = v/MS � 1. The scale MS enters

via the large energies and momenta carried by the light SM particles in the final state.

While SCET was developed for QCD processes originally, generalizations to electroweak

processes have been discussed in [12–14]. In several aspects our approach follows the line
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of reasoning laid out in these papers. However, we go significantly further by developing

the SCET approach beyond the leading order in the power expansion, where several new

and subtle issues arise. For example, there is a non-trivial mixing of operators at leading

and subleading order, which gives rise to a novel source of large double logarithms, which

we resum. We shall refer to the effective field theory we develop as “SCET beyond the

SM” (SCETBSM).

We stress that our effective theory is not meant as an alternative to the EFT extension

of the SM referred to as SMEFT [15–19] (see [20] for a recent review). SMEFT param-

eterizes new-physics effects from heavy virtual particles in a model-independent way by

extending the SM through local, higher-dimensional operators built out of SM fields. As-

suming there are no light new particles beyond the SM, it provides the appropriate EFT

framework for studying indirect hints of new physics. SCETBSM, on the other hand, is

constructed to describe the decays of a new on-shell heavy resonance into SM particles. In

our treatment we will assume that the new resonance is narrow (ΓS/MS � 1), such that

its width can be neglected when constructing the effective theory. If S decays primarily

into SM particles, our results obtained for the various decay widths show a posteriori that

this assumption is justified.

The construction of the SCETBSM Lagrangian is process dependent. In this paper

we will develop a general toolbox, which allows for a simple, systematic and intuitive

construction of the relevant effective Lagrangians for BSM practitioners, even if they are

not experts on SCET. For simplicity, we assume that S has spin-0 and is a gauge singlet

under the SM. After reviewing some basic aspects of SCET in section 2, we construct

in sections 3 and 4 the relevant effective Lagrangians for all two-body decays of S into

SM particles, and for all three-body decay processes involving a fermion pair in the final

state. The extension to new particles with spin S = 1/2 or 1, or particles which carry SM

quantum numbers, is straightforward. However, if S is a member of an SU(2)L multiplet,

then a gauge-invariant EFT can only be built in terms of the entire multiplet.

In the conventional EFT approach, the decay amplitudes of S into pairs of SM particles

receive contributions from operators of dimension D = 5 (in the case of S → Zh these

contributions start at one-loop order), but nevertheless these amplitudes have different

scaling properties with λ = v/MS , namely (see e.g. [21, 22])

M(S → hh) = O(λ0) , M(S → V V ) = O(λ0) ,

M(S → ff̄) = O(λ) , M(S → Zh) = O(λ2) ,
(1.1)

where V represents a gauge boson (massive or massless) and f a fermion. As mentioned

earlier, for MS ∼M an infinite tower of higher-dimensional operators with D ≥ 7 can give

rise to unsuppressed corrections to these amplitudes. For example, the operators

1

M
SBµνB

µν and
1

M3
S (∂αBµν)(∂αBµν) , (1.2)

where Bµν denotes the field strength associated with hypercharge, contribute terms of

order M2
S/M and M4

S/M
3 to the S → γγ amplitude, respectively. In the case of the decay

S → Zh, the scalingM(S → Zh) ∝ v2/M derived in [22] arose from apparently accidental
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cancellations of terms scaling like M2
S/M among different diagrams, and it is thus well

motivated to ask whether higher-dimensional operators induce larger contributions scaling

like M2n
S /M2n−1 = O(λ0).

In the present work, we derive the scaling laws (1.1) from first principles and show that

they remain valid even in the case where the two scales M and MS are of the same order.

To this end, we construct the relevant SCETBSM Lagrangians up to next-to-next-to-leading

order (NNLO) in λ. The finite sets of non-local SCET operators arising at each order in the

λ expansion accounts for infinite towers of local EFT operators. The scaling properties of

the operators in SCET translate directly into the scalings of the various decay amplitudes.

The complete information about the ultra-violet (UV) completion of the theory, i.e. about

the yet unknown particles with masses of order M ∼MS and their interactions, is contained

in the Wilson coefficients of the effective Lagrangian. In section 5 we show how by solving

RG equations one can resum the large (double) logarithms of the scale ratio MS/v. While

most of our discussion focusses on the interesting case where M ∼ MS are two scales of

the same order, we discuss in section 6 scenarios in which there is a double hierarchy, such

that M � MS � v. In this case a conventional EFT framework can be used to identify

the leading terms in an expansion in powers of MS/M , while the SCETBSM is needed to

organize in a systematic way the expansion in λ = v/MS and resum large logarithms of

this scale ratio. We derive model-independent expressions for the Wilson coefficients in

the SCETBSM Lagrangian in terms of the parameters of the local EFT including operators

up to dimension 5. In section 7 we present our conclusions along with an outlook on

future work.

2 Basic elements of SCET

Our goal in this work is to develop a consistent EFT for the analysis of the on-shell decays

of a hypothetical new, heavy spin-0 boson S (with mass MS � v) into SM particles. For

simplicity we assume that S is a singlet under the SM gauge group. We also allow for the

existence of other heavy particles with similar masses M ∼ MS , which have not yet been

discovered. They are integrated out and thus do not appear as degrees of freedom in the

effective Lagrangian. As we will show, the appropriate EFT is intrinsically non-local and

consists of operators defined in SCET. Nevertheless, the theory is well defined and can be

constructed following a set of simple rules. As our desire is to elucidate the main ideas

of our proposal and to present the construction of the SCETBSM Lagrangian in the most

simple and transparent way, we will be brief on some technicalities, which are familiar to

SCET practitioners but may look intimidating to others. Interested readers can find more

details in the original papers [8–11] and in the review [24].

The intrinsic complication in constructing an EFT for the decays of a heavy particle

S into light (or massless) particles is that the large mass MS enters the low-energy theory

as a parameter characterizing the large energies Ei ∼ MS of the final-state particles.

This is different from conventional EFTs of the Wilsonian type, in which short-distance

fluctuations of heavy virtual particles are integrated out from the generating functional of

low-energy Green’s functions. In SCET, the large energies carried by the light particles give

rise to non-localities along the nearly light-like directions in which these particles travel.
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In a given decay process of the heavy particle S, the final state contains jets defining

directions {n1, . . . ,nk} of large energy flow. Each jet may consist of one or more collinear

particles, which have energies much larger than their rest masses. For each jet direction ni,

we define two light-like reference vectors nµi = (1,ni) and n̄µi = (1,−ni), with ni · n̄i = 2.

The 4-momentum p of a particle in the jet can then be written as

pµ = n̄i · p
nµi
2

+ ni · p
n̄µi
2

+ pµ⊥ , (2.1)

where n̄i · p = O(MS) is much larger than ni · p = O(m2/MS). The different components

scale as

(ni · p, n̄i · p, p⊥) ∼MS (λ2, 1, λ) , (2.2)

where λ = v/MS is the expansion parameter of the effective theory, and we assume that the

masses of the light particles are set by the electroweak scale v. Particles whose momenta

scale in this way are referred to as “ni-collinear particles”. The particles inside a given jet

can interact with each other according to the Feynman rules of SCET, which are equivalent

to the usual Feynman rules of the SM [11]. However, an ni-collinear particle cannot interact

directly with an nj-collinear particle contained in another jet.1 The effective Lagrangian

of SCET, from which one derives the Feynman rules, is discussed in the appendix.

In SCET, ni-collinear particles are described by effective fields referred to as “collinear

building blocks” [25, 26]. They are composite fields invariant under so-called “ni-collinear

gauge transformations”, which preserve the scaling of the particle momenta shown in (2.2).

The building blocks are defined with the help of ni-collinear Wilson lines [8–10] built out

of the various gauge bosons associated with the SM gauge group. We define

W (G)
ni (x) = P exp

[
igs

∫ 0

−∞
ds n̄i ·Gni(x+ sn̄i)

]
,

W (W )
ni (x) = P exp

[
ig

∫ 0

−∞
ds n̄i ·Wni(x+ sn̄i)

]
,

W (B)
ni (x) = P exp

[
ig′ Y

∫ 0

−∞
ds n̄i ·Bni(x+ sn̄i)

]
,

(2.3)

where gs, g and g′ denote the gauge couplings of SU(3)c, SU(2)L and U(1)Y , while Gµni(x) ≡
Gµ,ani (x) ta, Wµ

ni(x) ≡ Wµ,a
ni (x) τa and Bni(x) denote the corresponding ni-collinear gauge

fields. They are defined such that their Fourier transforms only contain particle modes

whose momenta satisfy the scaling in (2.2). The path-ordering symbol “P” is defined such

that the gauge fields are ordered from left to right in order of decreasing s values. For

a given SM field, the corresponding collinear Wilson line is obtained by the appropriate

product of the objects defined in (2.3), where the hypercharge generator Y in the definition

of W
(B)
ni is replaced by the hypercharge of the respective field. For example, the collinear

Wilson lines for the scalar Higgs doublet and a right-handed up-quark field are

Wni(x) = W (W )
ni (x)W (B)

ni (x) and Wni(x) = W (G)
ni (x)W (B)

ni (x) , (2.4)

where Y takes the values 1
2 and 2

3 , respectively.

1Such interactions can however be mediated by the exchange of ultra-soft particles, see section 5.
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The ni-collinear building blocks for the scalar Higgs doublet and the SM fermions are

defined as
Φni(x) = W †ni(x)φ(x) ,

Xni(x) =
/ni /̄ni

4
W †ni(x)ψ(x) ≡ PniW †ni(x)ψ(x) ,

(2.5)

where the projection operator Pni , which is defined such that /niPni = 0 and P 2
ni = Pni ,

projects out the large components of the spinor of a highly energetic fermion. The ni-

collinear building blocks for the gauge bosons are defined as (for A = G,W,B) [25, 26]

Aµ
ni(x) = W (A)†

ni (x)
[
iDµ

niW
(A)
ni (x)

]
= gA

∫ 0

−∞
ds n̄iν

[
W (A)†
ni F νµni W

(A)
ni

]
(x+ sn̄i) , (2.6)

where iDµ
ni = i∂µ + gAA

µ
ni denotes the collinear covariant derivative, gA is the appropriate

gauge coupling (which in the case A = B includes the hypercharge generator, so gG ≡ gs,

gW ≡ g, and gB ≡ g′ Y ), and F νµni is the field-strength tensor associated with the collinear

gauge field Aµni . Note that for the hypercharge gauge field the Wilson lines cancel out in

the last expression in (2.6), and hence one finds

Bµ
ni(x) = g′ Y

∫ 0

−∞
ds n̄iαB

αµ
ni (x+ sn̄i) . (2.7)

We will also use the expansions of the gauge-boson building blocks in the generators of the

gauge groups, i.e.

Gµni(x) = Gµ,ani (x) ta , Wµ
ni(x) = Wµ,a

ni (x) τa , Bµ
ni(x) = Y Bµ,a

ni (x) , (2.8)

where in the latter case a = 1. The building blocks for the collinear fermion and gauge

fields satisfy the constraints

/niXni(x) = 0 , n̄i ·Ani(x) = 0 . (2.9)

The Wilson lines contain the longitudinal components n̄i ·Ani of the gauge fields, while the

gauge-invariant collinear fields A
µ
ni themselves have no such components. Because of the

presence of the Wilson lines, the SCET fields can create or absorb particles along with an

arbitrary number of (longitudinal) gauge bosons coupling to these particles and traveling

in the same direction. In this sense the effective fields describe “jets” of collinear partons.

Note that a different set of collinear fields (scalars, fermions and gauge fields) is introduced

for each direction ni of large energy flow.

The collinear building blocks have well-defined scaling properties with the expansion

parameter λ. One finds [10, 11]

Φni ∼ λ , Xni ∼ λ , A
µ
ni⊥ ∼ λ , ni ·Ani ∼ λ2 . (2.10)

In analogy with (2.1), the transverse gauge fields are defined as

A
µ
ni⊥ = Aµ

ni − ni ·Ani

n̄µi
2
, (2.11)

– 6 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
5

µ

UV theory

µ ∼M ∼MS

SU(3)c × SU(2)L × U(1)Y
SM particles massless

µ ∼ v

SU(3)c × U(1)em
SM particles massive

µ

UV theory

µ ∼M

local EFT

µ ∼MS

SCETBSM

µ ∼ v

Figure 1. Schematic description of the construction of the SCETBSM for the generic case M ∼MS

(left), and for the case of a double hierarchy M �MS � v (right).

where we have used that n̄i ·Ani = 0.

It follows that operators containing N collinear fields (irrespective of their directions)

have scaling dimension d ≥ N in λ, and adding more fields to an operator always increases

its scaling dimension. This is how SCET can be employed to construct a consistent ex-

pansion in powers of λ. Operators in the effective Lagrangian can also contain derivatives

acting on collinear fields, which produce collinear momenta when taking matrix elements

of an operator. There is no need to use covariant derivatives, since the building blocks are

gauge invariant by themselves. From (2.2) it follows that one can add an arbitrary number

of in̄i ·∂ derivatives acting on ni-collinear fields, while ini ·∂ or i∂µ⊥ derivatives gives rise to

additional power suppression. The freedom to introduce in̄i · ∂ derivatives at will implies

that ni-collinear fields can be delocalized along the n̄i direction, and hence the operators

appearing in the SCET Lagrangian are non-local. A first hint at this non-locality is the

presence of the Wilson lines themselves, see (2.3).

The heavy particle S should be represented in the effective theory by an effective field

Sv(x) e−iMSv·x, whose soft interactions are described by a “heavy-particle effective theory”

constructed in analogy with heavy-quark effective theory [27–32]. Since in our case S is a

gauge singlet and has no interactions, this step is unnecessary. It would become a relevant

step if one constructs the effective theory for a resonance S that is charged under any of

the SM gauge groups.

3 SCETBSM for two-body decays of S

We now have the tools to construct an EFT for the decays of a new heavy particle S with

mass MS � v into SM particles. The basic construction of the SCETBSM is illustrated in

the left panel of figure 1. It consists of the following steps:

– 7 –
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1. At the new-physics scale µ ∼MS ∼M , the complete UV theory (which is unknown,

of course) is matched onto an extension of SCET built out of the resonance S and

ni-collinear SM fields. All heavy particles besides the resonance S, as well as “hard”

quantum fluctuations with virtualities of order MS , are integrated out in this step.

Since the mass of S is much above the electroweak scale, its interactions can be

described in terms of operators in the unbroken phase of the electroweak symmetry,

preserving full SU(3)c × SU(2)L × U(1)Y gauge invariance. If there is a hierarchy

between the scales M and MS (right panel of figure 1), then the two scales are

integrated out in two steps, see section 6.

2. In the next step, the effective operators and their Wilson coefficients are evolved from

the high-energy scale µ ∼ MS to the electroweak scale µ ∼ v. This is accomplished

by solving the RG equations of the effective theory. In this process, the SM particles

can be treated as massless. In the SCET community, this version of the effective

theory is called SCETI. The relevant anomalous dimensions can be calculated using

standard technology. Solving the RGEs resums large logarithms of the scale ratio

MS/v to all orders in perturbation theory.2

3. At the electroweak scale the symmetry is broken to SU(3)c×U(1)em, and mass effects

from SM particles need to be taken into account. This is accomplished by introduc-

ing mass terms for the ni-collinear fields. In loop calculations, it is also necessary

to include so-called soft mass-mode fields with momentum scaling (λ, λ, λ) [33–35].

This version of the effective theory is often referred to as SCETII. The presence of

mass terms in loop calculations gives rise to the collinear anomaly [36]. The corre-

sponding loop integrals require an additional analytic regulator beyond dimensional

regularization, which leads to the appearance of additional large logarithms in the

matrix elements of the low-energy effective theory. It can be shown that these ra-

pidity logarithms do not exponentiate and hence they do not spoil the resummation

accomplished in step 2 [13, 36, 37].

4. If one is interested in processes involving particles much lighter than the weak scale,

then at µ ≈ v an additional matching step is required, in which the SM particles

with weak-scale masses (the top quark, the Higgs boson, and the W and Z bosons)

are integrated out. This theory is then evolved down to a scale µ characteristic to

the process of interest, where the relevant operator matrix elements are evaluated.

Each ni-collinear field in the SCETBSM Lagrangian carries a collinear momentum in

the corresponding direction ni with a large net energy and thus must produce at least one

ni-collinear particle entering the final state. By momentum conservation, each operator

in the SCETBSM Lagrangian must contain at least two different types of collinear fields,

representing particles moving in different directions. Because of electroweak symmetry

2Unlike in applications of SCET to hadronic decays of B mesons, there is no need to perform an additional

matching at an intermediate “hard-collinear” scale µ ∼
√
vMS [14]. The reason is simply that no such scale

can be formed out of the physical momenta of the particles involved in the decay.

– 8 –
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breaking, the effective theory also contains scalar fields carrying no 4-momentum. These

are represented by a constant field Φ0 ∼ λ, which does not transform under collinear gauge

transformations. After electroweak symmetry breaking one replaces

Φ0
EWSB→ 1√

2

(
0

v

)
. (3.1)

In this section we focus on the simplest, but phenomenologically most important case

of two-body decays of the heavy resonance S. Then the vectors n2 = −n1 point in opposite

directions, and therefore n2 = n̄1 and n1 = n̄2 for the light-like reference vectors. Since

the choice of the direction of the reference vectors is arbitrary, all operators in the effective

Lagrangian must be invariant under the exchange n1 ↔ n2.

3.1 Effective Lagrangian at O(λ2)

It is convenient to work in the rest frame of the decaying particle, in which the light

final-state particles carry large energies Ei = O(MS). Since the operators in the effective

Lagrangian must contain at least one n1-collinear and one n2-collinear field, the power-

counting rules in (2.10) imply that the leading operators have scaling dimension d = 2.

While invariance under ni-collinear gauge transformations is ensured by constructing the

effective Lagrangian in terms of collinear building blocks, the operators must also be invari-

ant under global gauge transformations, i.e. they must conserve the color and electroweak

charges. At O(λ2), the only gauge-invariant operators are those containing either two

scalar doublets or two transverse gauge fields. Considering the first possibility, we write

the corresponding term in the effective Lagrangian as

Leff 3
∫
ds dt C̄φφ(s, t,M, µ)S(x)

×
[
Φ†n1

(x+ sn̄1) Φn2(x+ tn̄2) + Φ†n2
(x+ tn̄2) Φn1(x+ sn̄1)

]
, (3.2)

where we have taken into account that collinear field operators can be delocalized along the

n̄i directions, as discussed in section 2. The position-space Wilson coefficient C̄φφ depends

on the new-physics scale M via the masses of the yet unknown particles, which have been

integrated out, and on the scale µ at which the effective operator is renormalized. It also

depends on the coordinates s and t parameterizing the non-locality of the operator with

respect to the position of the field S(x).

The large components n̄i · Pi of the total collinear momenta in each jet are fixed by

external kinematics. We introduce momentum operators n̄i ·Pi to obtain these components

from the quantum fields.3 We can then use translational invariance to make the dependence

on these components explicit. This gives

Leff 3 Cφφ(n̄1 · P1, n̄2 · P2,M, µ)S(x)
[
Φ†n1

(x) Φn2(x) + Φ†n2
(x) Φn1(x)

]
, (3.3)

3In some formulations of SCET the collinear fields carry the large momentum components as labels, and

the operators n̄i · Pi are referred to as the “label operators” [10].
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where the Fourier-transformed Wilson coefficient is defined as

Cφφ(ω1, ω2,M, µ) =

∫
ds dt C̄φφ(s, t,M, µ) eisω1 eitω2 . (3.4)

The dependence of the Wilson coefficient on its arguments is restricted by the fact that the

Lagrangian must be invariant under the reparameterization transformations nµi → αi n
µ
i ,

n̄µi → n̄µi /αi applied to the light-like reference vectors in each collinear sector [38]. It

follows that Cφφ in (3.3) depends on its first two arguments only through the combination

n1 · n2

2
n̄1 · P1 n̄2 · P2 =

(
n1

2
n̄1 · P1 +

n2

2
n̄2 · P2

)2

' P2
S . (3.5)

Here and below we use the symbol “'” for equations valid at leading power in λ. For

two-body decays, the total collinear momenta add up to the momentum of the decaying

resonance S, and the operator P2
S has eigenvalue M2

S . With a slight abuse of notation, we

thus write the corresponding contribution to the effective Lagrangian in the form

Leff 3M Cφφ(MS ,M, µ)Oφφ(µ) , with Oφφ = S
(
Φ†n1

Φn2 + Φ†n2
Φn1

)
. (3.6)

All fields are now evaluated at the same spacetime point. We have factored out the new-

physics scale M in the final definition of the Wilson coefficient to ensure that the function

Cφφ(MS ,M, µ) is dimensionless. Contrary to a conventional EFT, in our approach the

short-distance Wilson coefficients depend on all the relevant heavy scales in the problem

(MS and the mass scale M of yet undiscovered heavy particles), and this dependence can be

arbitrarily complicated depending on the details of the underlying UV theory. In this way,

the SCETBSM Lagrangian accounts for infinite towers of local operators in the conventional

EFT approach.

The remaining operators arising at O(λ2) contain two transverse gauge fields. Their

Lorentz indices can be contracted with the help of two rank-2 tensors defined in the plane

transverse to the vectors n1 and n2. We introduce the objects (with ε0123 = −1)

g⊥µν = gµν −
n1µn2ν + n2µn1ν

n1 · n2
, ε⊥µν = εµναβ

nα1 n
β
2

n1 · n2
. (3.7)

The latter definition is such that ε⊥12 = 1 if nµ1 = (1, 0, 0, 1) and nµ2 = (1, 0, 0,−1). The

complete effective Lagrangian can then be written in the form

L(2)
eff = M Cφφ(MS ,M, µ)Oφφ(µ)

+M
∑

A=G,W,B

[
CAA(MS ,M, µ)OAA(µ) + C̃AA(MS ,M, µ) ÕAA(µ)

]
, (3.8)

where (a summation over the group index a is understood for non-abelian fields)

Oφφ = S
(
Φ†n1

Φn2 + Φ†n2
Φn1

)
,

OAA = S g⊥µν A
µ,a
n1

Aν,a
n2
,

ÕAA = S ε⊥µν A
µ,a
n1

Aν,a
n2
.

(3.9)
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Note that ε⊥µν changes sign under n1 ↔ n2, and hence the last operator indeed has the

correct symmetry properties. The first two operators in this list are even under a CP

transformation whereas the third operator is odd (assuming that S does not transform

under CP). Here and below we indicate CP-odd operators and their Wilson coefficients by

a tilde.

The gauge fields contained in the Wilson lines entering the definitions of the gauge-

invariant building blocks in (2.5) and (2.6) become important in loop calculations or in

applications with multiple emissions of particles in the same jet direction. An exception

is the Wilson line associated with the scalar doublet in (2.5), which after electroweak

symmetry breaking accounts for the longitudinal polarization states of the physical W±

and Z0 bosons.

The SCETBSM Lagrangian (3.8), which is valid for scales µ < MS , is constructed in

the unbroken phase of the electroweak gauge symmetry, in which all particles other than

the heavy resonance S can be treated as massless. As shown in figure 1, at the electroweak

scale µ ∼ v this Lagrangian must be matched onto an effective Lagrangian constructed

in the broken phase, where the residual gauge symmetry is SU(3)c × U(1)em and where

the SM particles acquire masses. While this matching is non-trivial at loop order (see

e.g. [13, 14, 33–35]), at tree level one simply needs to transform the various fields to the

mass basis. In particular, after electroweak symmetry breaking the collinear building block

representing the scalar doublet takes the form

Φni(0) =
1√
2
W †ni(0)

(
0

v + hni(0)

)
, (3.10)

where

Wni(0) = P exp

[
ig

2

∫ 0

−∞
ds

(
c2w−s2w
cw

n̄i · Zni+ 2sw n̄i ·Ani
√

2 n̄i ·W+
ni√

2 n̄i ·W−ni − 1
cw
n̄i · Zni

)
(sn̄i)

]
. (3.11)

We have replaced the gauge fields Wµ,a and Bµ in terms of the mass eigenstates W±, Z

and A. Here cw = cos θW and sw = sin θW denote the cosine and sine of the weak mixing

angle. It follows that

Oφφ = S(0)hn1(0)hn2(0) +m2
Z

∫ 0

−∞
ds

∫ 0

−∞
dt S(0) n̄1 · Zn1(sn̄1) n̄2 · Zn2(tn̄2)

+m2
W

∫ 0

−∞
ds

∫ 0

−∞
dt S(0)

[
n̄1 ·W−n1

(sn̄1) n̄2 ·W+
n2

(tn̄2) + (+↔ −)
]

+ . . . ,

(3.12)

where the dots represent terms containing more than two collinear fields. Taking into

account that external collinear Higgs and vector bosons have power counting λ−1, it follows

from (3.8) that the S → hh and S → V V decay amplitudes obey the scaling rules shown

in (1.1). Note, however, that whereas these rules were obtained by considering dimension-

5 operators in the conventional EFT Lagrangian, the scaling relations derived in SCET

are exact.
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It is straightforward to evaluate the relevant two-body decay amplitudes and decay

rates described by the effective Lagrangian (3.8). For the di-Higgs decay mode of S,

we obtain

M(S → hh) = M Cφφ , Γ(S → hh) =
M2

32πMS
|Cφφ|2

√
1− 4m2

h

M2
S

, (3.13)

where here and below we suppress the arguments of the Wilson coefficients.

The decay amplitudes involving two vector bosons in the final state can be expressed

in terms of the general form-factor decomposition

M(S → V1V2) = M

[
F V1V2⊥ ε∗1⊥ · ε∗2⊥ + F̃ V1V2⊥ ε⊥µν ε

∗µ
1⊥ ε

∗ν
2⊥ + F V1V2‖

m1m2

k1 · k2
ε∗1‖ · ε∗2‖

]
, (3.14)

where kµi are the momenta of the outgoing bosons, mi denote their masses, and εµi ≡
εµ(ki) are their polarization vectors. The transverse and longitudinal projections of the

polarization vectors are defined as

εµ⊥(ki) = εµ(ki)− n̄i · ε(ki)
nµi
2
− ni · ε(ki)

n̄µi
2
, εµ‖ (ki) = εµ(ki)− εµ⊥(ki) . (3.15)

The first two terms in (3.14) correspond to the perpendicular polarization states of the two

bosons, while the third term refers to the longitudinal polarization states. The latter only

arise for the massive vector bosons Z0 and W±. The ratio m1m2/(k1 ·k2) factored out in

the definition of the longitudinal form factor F V V‖ takes into account that the longitudinal

polarization vectors scale as εµi‖(ki) ' kµi /mi = O(λ−1). Our definition ensures that all

three form factors are of the same order in SCET power counting. The result (3.14) can

also be written in the equivalent form

M(S → V1V2) = MF V1V2⊥

ε∗1 · ε∗2 − k2 · ε∗1 k1 · ε∗2
k1 · k2 − m2

1m
2
2

k1·k2

+MF̃ V1V2⊥
εµναβ k

µ
1 k

ν
2 ε
∗α
1 ε∗β2[

(k1 · k2)2 −m2
1m

2
2

]1/2
+MF V1V2‖

m1m2 k2 · ε∗1 k1 · ε∗2
(k1 · k2)2 −m2

1m
2
2

,

(3.16)

which is independent of the light-like reference vectors used in SCET.

To derive the tree-level expressions for the form factors from the effective La-

grangian (3.8), we use that the one-boson Feynman rule for the gauge-invariant SCET

field A
µ,a
ni⊥ yields gA ε

∗µ
i⊥(ki), where gA denotes the appropriate gauge coupling, while the

Wilson-line terms in (3.12) produce the structure

n̄1 · ε∗1
n̄1 · k1

n̄2 · ε∗2
n̄2 · k2

=
ε∗1‖ · ε∗2‖
k1 · k2

. (3.17)
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We thus obtain the transverse form factors

F gg⊥ = g2
s CGG , F̃ gg⊥ = g2

s C̃GG ,

F γγ⊥ = e2 (CWW + CBB) , F̃ γγ⊥ = e2
(
C̃WW + C̃BB

)
,

F γZ⊥ = e2

(
cw
sw

CWW −
sw
cw

CBB

)
, F̃ γZ⊥ = e2

(
cw
sw

C̃WW −
sw
cw

C̃BB

)
,

FZZ⊥ = e2

(
c2
w

s2
w

CWW +
s2
w

c2
w

CBB

)
, F̃ZZ⊥ = e2

(
c2
w

s2
w

C̃WW +
s2
w

c2
w

C̃BB

)
,

FWW
⊥ =

e2

s2
w

CWW , F̃WW
⊥ =

e2

s2
w

C̃WW ,

(3.18)

while the longitudinal form factors are given by

FZZ‖ = −Cφφ , FWW
‖ = −Cφφ . (3.19)

The fact that these form factors are given in terms of the Wilson coefficient of the oper-

ator containing two scalar fields is a nice expression of the Goldstone-boson equivalence

theorem [39–41]. The remaining longitudinal form factors vanish.

From (3.14) we see that the S → V1V2 decay amplitudes scale like M and hence are of

O(λ0) in SCET power counting. The corresponding decay rates can be obtained from the

general expression

Γ(S → V1V2) = SV1V2
M2

16πMS
λ1/2(x1, x2)

[
2
(
|F V1V2⊥ |2 + |F̃ V1V2⊥ |2

)
+ |F V1V2‖ |2

]
, (3.20)

where xi ≡ m2
i /M

2
S , and λ(x, y) = (1− x− y)2 − 4xy. The factor SV1V2 takes into account

a symmetry factor 1/2 for identical bosons and a color factor (N2
c − 1) = 8 for the digluon

rate. By measuring the polarizations of the vector bosons it would be possible to separately

probe the three form factors characterizing each decay.

3.2 Effective Lagrangian at O(λ3)

The operators arising at subleading order in the expansion in λ contain fermion fields. We

decompose Dirac matrices appearing in bilinears of the form X̄n1 . . .Xn2 as

γµ =
/n1

n1 · n2
nµ2 +

/n2

n1 · n2
nµ1 + γµ⊥ , (3.21)

such that n1µγ
µ
⊥ = n2µγ

µ
⊥ = 0. Pulling out a factor 1/M to make the Wilson coefficients

dimensionless, we find that the most general effective Lagrangian can be written in the form

L(3)
eff =

1

M

[
C ij

FLf̄R
(MS ,M, µ)O ij

FLf̄R
(µ)

+
∑
k=1,2

∫ 1

0
duC

(k) ij

FLf̄R φ
(u,MS ,M, µ)O

(k) ij

FLf̄R φ
(u, µ) + h.c.

]

+
1

M

∑
A=G,W,B

[ ∫ 1

0
duC ij

FLF̄LA
(u,MS ,M, µ)O ij

FLF̄LA
(u, µ) + (FL → fR) + h.c.

]
,

(3.22)
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where we have defined the mixed-chirality operators

O ij

FLf̄R
(µ) = S X̄ i

L,n1
Φ0 X

j
R,n2

+ (n1 ↔ n2) ,

O
(1) ij

FLf̄R φ
(u, µ) = S X̄ i

L,n1
Φ(u)
n1

X
j
R,n2

+ (n1 ↔ n2) ,

O
(2) ij

FLf̄R φ
(u, µ) = S X̄ i

L,n1
Φ(u)
n2

X
j
R,n2

+ (n1 ↔ n2) ,

(3.23)

and the same-chirality operators

O ij
FLF̄LA

(u, µ) = S X̄ i
L,n1

/A⊥(u)
n1

X
j
L,n2

+ (n1 ↔ n2) ,

O ij

fRf̄RA
(u, µ) = S X̄ i

R,n1
/A⊥(u)
n1

X
j
R,n2

+ (n1 ↔ n2) .
(3.24)

In (3.22) a sum over the flavor indices i, j is implied. We do not show color and SU(2)L
indices. The left-handed fermions FL are SU(2)L doublets, while the right-handed fermions

fR are singlets. If the right-handed fermion field in (3.23) refers to an up-type quark, the

scalar doublet Φ needs to be replaced by Φ̃ with Φ̃a = εab Φ∗b = (φ∗2,−φ∗1)T to ensure

gauge invariance. Our notation is such that, e.g., the coefficient C ij

FLf̄R
multiplies an

operator which produces a left-handed fermion doublet FL with generation index i and a

right-handed anti-fermion f̄R with generation index j. Note that, in general, the Wilson

coefficients can be arbitrary complex matrices in generation space.

When SCET operators contain two or more collinear fields belonging to the same

jet, the total collinear momentum Pi carried by the jet is shared by the various particles

described by these fields. Each component field carries a positive fraction uj of the large

component n̄i ·Pi, such that
∑

j uj = 1. The product of Wilson coefficients times operators

then becomes generalized to a convolution in these variables. In our discussion above a

single variable u appears, which refers to the longitudinal momentum fraction carried by

the boson field. To see how it arises, consider the first operator in (3.24) as an example.

Its contribution to the effective Lagrangian can be written in the form (leaving out flavor

indices and omitting a second term with n1 ↔ n2 for simplicity)∫
dr ds dt C̄FLF̄LA(r, s, t,M, µ)S(x) X̄L,n1(x+ sn̄1) /A⊥n1

(
x+ (r + s)n̄1

)
XL,n2(x+ tn̄2)

=

∫
dr CFLF̄LA(r, n̄1 · P1, n̄2 · P2,M, µ)S(x) X̄L,n1(x) /A⊥n1

(x+ rn̄1)XL,n2(x) ,

(3.25)

where the Wilson coefficient in the second step is defined in analogy with (3.4). To complete

the switch to momentum space we take a Fourier transform of the Wilson coefficient with

respect to r. This gives∫
dω CFLF̄LA(ω, n̄1 · P1, n̄2 · P2,M, µ)

∫
dr

2π
e−iωr S(x) X̄L,n1(x) /A⊥n1

(x+ rn̄1)XL,n2(x)

=

∫
dω CFLF̄LA(ω, n̄1 · P1, n̄2 · P2,M, µ)S(x) X̄L,n1(x)

[
δ(in̄1 · ∂ + ω) /A⊥n1

(x)
]
XL,n2(x) .

(3.26)

The δ-function ensures that the variable ω is set equal to the large (outgoing) momentum

component n̄1 · pA carried by n1-collinear gauge field. Since this must be a fraction of the
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large component n̄1 ·P1 of the total collinear momentum, it is useful to replace ω = u n̄1 ·P1

in the final step. This yields∫
duCFLF̄LA(u n̄1 · P1, n̄1 · P1, n̄2 · P2,M, µ)

× δ
(
u− n̄1 · PA1

n̄1 · P1

)
S(x) X̄L,n1(x) /A⊥n1

(x)XL,n2(x) .

(3.27)

The operator n̄1 · PA1 picks out the large momentum component carried by the gauge field,

whereas n̄1 · P1 produces the large momentum component carried by all n1-collinear fields

together. Using reparameterization invariance, the Wilson coefficient in this expression

can be rewritten in the form CFLF̄LA(u,MS ,M, µ) shown in (3.22), where we also use the

short-hand notation

S X̄ i
L,n1

/A⊥(u)
n1

X
j
L,n2
≡ δ
(
u− n̄1 · PA1

n̄1 · P1

)
S(x) X̄L,n1(x) /A⊥n1

(x)XL,n2(x) . (3.28)

Several additional comments are in order. First, we do not include same-chirality

operators in (3.24) in which instead of /A⊥n1
there is a derivative i/∂⊥ acting on one of the

collinear building blocks. These operators can be reduced to those in (3.22) using the

equations of motion. For instance, one finds that

S X̄ i
L,n1

i/∂⊥X
j
L,n2

+ (n1 ↔ n2) = (Yf )jk
(
OikFLf̄R +O

(2) ik

FLf̄R φ

)
−
∑
r

(
Oji
FLF̄LAr

)†
,

S
[
X̄ i
L,n1

(−i←−/∂⊥)X j
L,n2

]
+ (n1 ↔ n2) =

(
Y ∗f
)ik [(

Ojk
FLf̄R

)†
+
(
O

(2) jk

FLf̄R φ

)†]−∑
r

Oij
FLF̄LAr

,

(3.29)

where Yf with f = u, d, e are the SM Yukawa matrices (for quarks the expressions on

the right-hand side must be summed over f = u, d), and the sums over r run over the

different gauge bosons which couple to the fermion described by XL. Similar relations hold

for the corresponding operators involving right-handed fields. Secondly, in addition to the

operators in (3.24), one can construct operators in which the indices of the transverse

objects A
µ
n1⊥ and γν⊥ are contracted using the ε⊥µν tensor defined in (3.7). However, these

operators can be reduced to those in (3.24) using the identity (with γ5 = iγ0γ1γ2γ3)

[γ⊥µ , γ
⊥
ν ] = −iε⊥µν

[/n1, /n2]

n1 · n2
γ5 , (3.30)

which holds in four spacetime dimensions [42].4 From this relation it follows that

P †n1
ε⊥µν γ

ν
⊥Pn2 = iP †n1

γ⊥µ γ5 Pn2 . (3.31)

Finally, we note that at O(λ3) there do not appear operators containing two collinear

fermion fields belonging to the same jet. These operators would need to include the bilinears

4In dimensional regularization, so-called “evanescent” operators containing anti-symmetric products of

more than two γµ⊥ matrices can appear at loop order. A regularization scheme including the effects of these

operators must be employed for higher-order calculations. This is the two-dimensional analogue, in the

space of transverse directions, of the standard procedure employed in four dimensions [43, 44].
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(modulo L↔ R)

X̄ i
L,n1

/̄n1

2
X
j
L,n1

= O(λ2) or X̄ i
L,n1

Φni

/̄n1

2
γ⊥µ X

j
R,n1

= O(λ3) , (3.32)

where γ⊥µ is now defined with respect to the plane spanned by the vectors n1 and n̄1, and

the subscript ni on the scalar doublet could be 0, n1 or n2. In case of the first operator, the

required n2-collinear field could be n2 ·An2 , Φ†n2Φn2 , (Φ†n2Φn1 + h.c.), or (Φ†n2Φ0 + h.c.), all

of which are of O(λ2). In the second case, the open Lorentz index must be contracted with

A
µ
ni⊥ or ∂µ⊥, both of which count as O(λ). Hence, any such operator is at least of O(λ4).

The effective Lagrangian (3.22) describes the two-body decays of S into a pair of SM

fermions. Taking into account that external collinear fermions have power counting λ−1,

it follows that the S → ff̄ decay amplitudes obey the scaling rule shown in (1.1). At tree

level, only the operator OFLf̄R and its hermitian conjugate give non-zero contributions.

After electroweak symmetry breaking the fermion fields must be rotated from the weak to

the mass basis, and in the process the Wilson coefficients in (3.22), which are matrices in

generation space, are transformed as well. In matrix notation, we have e.g.

CFLf̄R → U †fLCFLf̄RWfR ≡ CfLf̄R
, (3.33)

where fL (with a lower case) now refers to one of the two members of the left-handed

doublet, and UfL and WfR with f = u, d, e denote the rotation matrices transforming the

left-handed and right handed fermions from the weak to the mass basis. In order not to

clutter our notation too much, we use the same symbol but with a straight “C” instead of

the slanted “C” for the Wilson coefficients in the mass basis. We then find the non-zero

decay amplitudes

M(S → fiL f̄jR) =
v√
2M

C ij

fLf̄R
ūL(k1)P †n1

Pn2vR(k2) =
v√
2

MS

M
C ij

fLf̄R
eiϕij ,

M(S → fiR f̄jL) =
v√
2M

C ji ∗
fLf̄R

ūR(k1)P †n1
Pn2vL(k2) =

v√
2

MS

M
C ji ∗
fLf̄R

e−iϕji ,

(3.34)

where i, j are flavor indices. Note that the products of two highly energetic fermion spinors

give rise to the appearance of the hard scale MS in the matrix elements of the SCET

operators. The expressions on the right hold up to some complex phases, which depend on

the phase conventions for the fermion fields. The corresponding decay rates are given by

(with xi = m2
i /M

2
S)

Γ(S → fiL f̄jR) = Nf
c

v2MS

32πM2
λ1/2(xi, xj)

∣∣C ij

fLf̄R

∣∣2 ,
Γ(S → fiR f̄jL) = Nf

c

v2MS

32πM2
λ1/2(xi, xj)

∣∣C ji

fLf̄R

∣∣2 , (3.35)

where Nf
c is a color factor, which equals 3 for quarks and 1 for leptons. Beyond the Born

approximation, the remaining operators in (3.22) also contribute to the decay rates. In

section 5 we will study the mixing of these operators under renormalization.
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In general, the couplings of S to fermions contain both CP-even and CP-odd terms.

Let us decompose the various complex matrices of Wilson coefficients in the mass basis

into their real and imaginary components, for example

CfLf̄R
≡ KfLf̄R

+ iK̃fLf̄R
, (3.36)

and likewise for C
(i)

fLf̄R φ
and CfLf̄RA

. Under a CP transformation the effective La-

grangian (3.22) transforms into an analogous expression with all Wilson coefficients re-

placed by their complex conjugates. It follows that the terms involving the real parts of

the coefficients (KfLf̄R
etc.) are CP even, while those involving the imaginary parts (K̃fLf̄R

etc.) are CP odd.

3.3 Effective Lagrangian at O(λ4)

The only two-body decay of the heavy resonance S not yet accounted for is S → Zh.

Operators mediating this decay arise first at NNLO in the λ expansion. At this order a

large number of new operators arise, but only a single operator contributes to the S → Zh

decay amplitude at tree level. It reads

L(4)
eff 3

C̃φφφφ(MS ,M, µ)

M

[
iS
(

Φ†n1
Φ0 − Φ†0 Φn1

)(
Φ†n2

Φ0 + Φ†0 Φn2

)
+ (n1 ↔ n2)

]
=
C̃φφφφ(MS ,M, µ)

M
2iS

(
Φ†n1

Φ0 Φ†n2
Φ0 − Φ†0 Φn1 Φ†0 Φn2

)
.

(3.37)

The tilde on the Wilson coefficient indicates that this operator is CP odd [22]. The corre-

sponding decay amplitude is given by

M(S → Zh) = −iC̃φφφφ
v2mZ

M

n̄1 · ε∗‖(k1)

n̄1 · k1
. (3.38)

It vanishes unless the Z boson is longitudinally polarized, in which case one finds

M(S → Z‖h) = −iC̃φφφφ
v2

M
, (3.39)

in accordance with (1.1). To derive this result, we have used the exact representation

εµ‖ (k1) =
k1 · k2

m1

[
(k1 · k2)2 −m2

1m
2
2

]1/2 (kµ1 − m2
1

k1 · k2
kµ2

)
(3.40)

for the longitudinal polarization vector. For the decay rate, we obtain (with xi = m2
i /M

2
S)

Γ(S → Zh) =
v4

16πMSM2
λ1/2(xZ , xh)

∣∣C̃φφφφ∣∣2 . (3.41)

The puzzling fact that the S → Zh decay amplitude scales like λ2, whereas all other

diboson amplitudes scale like λ0, finds a natural explanation in our approach.

The complete list of the operators arising at O(λ4) in the effective Lagrangian describ-

ing the two-body decays of the heavy resonance S is rather extensive. It includes operators
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containing S along with four scalar fields, four transverse gauge fields, two scalar fields and

two transverse gauge fields, four fermion fields, two fermion fields and two scalar/transverse

gauge fields, and two fermion fields and an ultra-soft gauge or scalar field. Moreover, in

some of these operators a transverse gauge field can be replaced by a transverse derivative,

or two transverse gauge fields can be replaced by a small component of a collinear gauge

field or an ultra-soft gauge field. A complete classification of these operators is left for

future work.

4 SCETBSM for three-body decays of S

The construction of the effective Lagrangian describing three-body decays of the heavy

resonance S proceeds in analogy with section 3. Generically, the three SM particles in the

final state have momenta aligned with three different directions ni with i = 1, 2, 3, and

hence the scalar products ki ·kj = O(M2
S) are set by the mass scale of the decaying particle.

The leading SCET operators involving three ni-collinear fields are of O(λ3) and contain

fermion bilinears. The corresponding operators can be constructed as in section 3.2. The

purely bosonic three-body decays S → hhh, S → hV1V2 and S → V1V2V3 appear first at

O(λ4) in the SCET expansion. They will not be considered in detail here.

Without loss of generality, we choose the outgoing boson along the direction n3. Dirac

matrices are still decomposed as shown in (3.21), where now n1 · n2 = 1 − cosφ12 with

φ12 = <)(n1,n2) is no longer equal to 2. We find

L(3)
eff =

1

M

[
D ij

FLf̄R φ
({m2

kl},M, µ)Q ij

FLf̄R φ
(µ) + h.c.

]
+

1

M

∑
A=G,W,B

[
D ij
FLF̄LA

({m2
kl},M, µ)Q ij

FLF̄LA
(µ)

+D ij

fRf̄RA
({m2

kl},M, µ)Q ij

fRf̄RA
(µ)
]
,

(4.1)

with
Q ij

FLf̄R φ
(µ) = S X̄ i

L,n1
Φn3X

j
R,n2

+ (n1 ↔ n2) ,

Q ij
FLF̄LA

(µ) = S X̄ i
L,n1

γ⊥µ A
µ
n3⊥X

j
L,n2

+ (n1 ↔ n2) ,

Q ij

fRf̄RA
(µ) = S X̄ i

R,n1
γ⊥µ A

µ
n3⊥X

j
R,n2

+ (n1 ↔ n2) .

(4.2)

Once again i, j are flavor indices. Note that the symbol ⊥ on γ⊥µ means “perpendicular

to the plane spanned by n1 and n2”, see (3.21), while on the gauge field A
µ
n3⊥ it means

“perpendicular to the plane spanned by n3 and n̄3”, see (2.11). The contraction of these

two objects gives rise to a non-trivial dependence on the light-like reference vectors of the

three final-state particles, shown in relation (4.9) below.

We denote the Wilson coefficients by D and the operators by Q in order to distinguish

them from the corresponding quantities in the Lagrangian for two-body decays shown

in (3.22). If the right-handed fermion field in (4.2) refers to an up-type quark, the scalar

doublet Φn3 needs to be replaced by Φ̃n3 to ensure gauge invariance. The Wilson coefficients

DFLf̄R φ
are arbitrary complex matrices in generation space, while DFLF̄LA

and DfRf̄RA

are hermitian matrices. As before, we will denote the corresponding coefficients after
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transformation to the mass basis with an unslanted symbol “D” (and use fL instead of FL
to represent one of the two members of the weak doublet).

Note that there are no convolution integrals in (4.1), in contrast with (3.22). On the

other hand, by a generalization of the argument given before (3.5), the Wilson coefficients

can now depend on the three invariants (with k 6= l ∈ {1, 2, 3})

nk · nl
2

n̄k · Pk n̄l · Pl =

(
nk
2
n̄k · Pk +

nl
2
n̄l · Pl

)2

' (Pk + Pl)2 . (4.3)

For a three-body decay, these invariants evaluate to the squared invariant masses m2
kl of

the different pairs of final-state particles, which are subject to the relation

m2
12 +m2

23 +m2
13 = M2

S +m2
1 +m2

2 +m2
3 'M2

S . (4.4)

It is straightforward to derive from (4.1) the relevant tree-level expressions for the

3-body decay amplitudes of the heavy resonance S. Since both the Wilson coefficients

and the matrix elements of the effective Lagrangian depend on the pair invariant masses

squared, we can only compute the doubly differential decay rate, summed over polarizations

of the vector boson where appropriate, in two of these variables (the so-called Dalitz-plot

distribution) in a model-independent way.

We begin with the decay modes mediated by the opposite-chirality operators in (4.1),

for which we obtain

d2Γ(S → fiL f̄jR h)

dm2
12 dm

2
23

=
d2Γ(S → fiL f̄jR Z)

dm2
12 dm

2
23

=
Nf
c

512π3M3
S

m2
12

M2

∣∣Dij

fLf̄R φ

∣∣2 , (4.5)

and
d2Γ(S → fiL f̄jRW

±)

dm2
12 dm

2
23

=
Nf
c

256π3M3
S

m2
12

M2

∣∣Dij

fLf̄R φ

∣∣2 , (4.6)

where as before Nf
c = 3 for quarks and 1 for leptons. Here m2

12 = m2
ff̄

and m2
23 = m2

f̄h

or m2
f̄V

. Analogous expressions hold with L ↔ R on the left-hand side and i ↔ j on the

right-hand side. To arrive at these results, we have used that

n1 · n2

2
n̄1 · k1 n̄2 · k2 ' 2k1 · k2 ' m2

12 . (4.7)

Only the longitudinal polarization state of the electroweak gauge bosons contributes to

these rates.

From the same-chirality operators in (4.1) we obtain slightly more complicated ex-

pressions. Focusing on the case where a fermion pair is produced along with a photon,

we find

d2Γ(S → fiL f̄jL γ)

dm2
12 dm

2
23

=
Nf
c α

32π2M3
S

m2
12

M2

(m2
13)2 + (m2

23)2

(M2
S −m2

12)2

∣∣∣T fL3 Dij

fLf̄LW
+ YfLDij

fLf̄LB

∣∣∣2 ,
d2Γ(S → fiR f̄jR γ)

dm2
12 dm

2
23

=
Nf
c α

32π2M3
S

m2
12

M2

(m2
13)2 + (m2

23)2

(M2
S −m2

12)2

∣∣∣YfRDij

fRf̄RB

∣∣∣2 , (4.8)
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Process Color/coupling factor Coefficient

S → fiL f̄jL γ Nf
c α T fL3 Dij

fLf̄LW
+ YfLDij

fLf̄LB

S → fiR f̄jR γ Nf
c α YfRDij

fRf̄RB

S → fiL f̄jL Z Nf
c α T fL3

cw
sw

Dij

fLf̄LW
− sw

cw
YfLDij

fLf̄LB

S → fiR f̄jR Z Nf
c α − sw

cw
YfRDij

fRf̄RB

S → fiL f̄jLW
± Nf

c α
1
sw

Dij

fLf̄LW

S → fiR f̄jRW
± Nf

c α 0

S → qiL q̄jL g NcCFαs Dij

fLf̄LG

S → qiR q̄jR g NcCFαs Dij

fRf̄RG

Table 1. Color factors, gauge couplings and Wilson coefficients entering the expressions for the

doubly differential decay rates for the three-body decays S → fiL f̄jL V and S → fiR f̄jR V , all of

which are given by a formula analogous to (4.8).

where T fL3 denotes the weak isospin of the left-handed fermion, and YfL , YfR are the

hypercharges of the fermions. Only the two transverse polarization states of the vector

bosons contribute to these rates. The squared decay amplitudes depend in a non-trivial

way on the light-like reference vectors of the final-state mesons. We find that they involve

the quantity

n1 · n3 n2 · n̄3 + n2 · n3 n1 · n̄3

n1 · n2
' 2

(m2
13)2 + (m2

23)2

(M2
S −m2

12)2
. (4.9)

To derive this result, we have replaced ni · n̄3 = 2ni · v − ni · n3, where vµ is the 4-

velocity of the decaying resonance S. We have then multiplied all light-like vectors with

the corresponding energies (defined in the rest frame of S) to obtain kµi ' Ein
µ
i , and at the

end eliminated the energies using that m2
12 = (k1 + k2)2 = (MSv − k3)2 ' M2

S − 2MSE3

etc. The decay rates for the production of fermion pairs along with other gauge bosons

are given by analogous expressions with different charge and color factors and involving

different combinations of Wilson coefficients, as shown in table 1.

Neglecting the masses of the final-state particles, the boundaries of the Dalitz plot are

such that

0 < m2
12 < M2

S , 0 < m2
23 < M2

S −m2
12 . (4.10)

Since our results have been derived under the assumption that the invariant mass of each

pair of final-state particles is of order MS , strictly speaking they are not valid near the

boundary of the Dalitz plot. On the other hand, since the boundary effect occurs in a

power-suppressed region of phase space, one usually does not need to worry about this

issue, unless the squared decay amplitude is singular near the boundary.

If the Wilson coefficients only depend on m2
12 but not on m2

23 and m2
13 individually, the

expressions in (4.5), (4.6) and (4.8) can be integrated over m2
23 to obtain the distributions

in the invariant mass of the fermion pair. We will show in section 6 that this condition is
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satisfied (at least at tree level) in all models featuring a double hierarchy M � MS � v.

We quote the result for the interesting case of the decay S → tt̄Z. Summing over the

different polarization states of the fermions, and defining x12 = m2
tt̄/M

2
S , we find

dΓ(S → tt̄Z)

dx12
=

NcM
3
S

512π3M2
x12(1− x12)

{[∣∣D33
uLūR φ

(x12)
∣∣2 +

∣∣D33
uRūLφ

(x12)
∣∣2]

+
32πα

3

[ ∣∣∣∣ cw2sw
D33
uLūLW

(x12)− sw
6cw

D33
uLūLB

(x12)

∣∣∣∣2
+

∣∣∣∣2sw3cw
D33
uRūRB

(x12)

∣∣∣∣2 ]}.
(4.11)

With the help of (4.5), (4.6) and table 1, all other rates can be obtained from this expression

by means of simple substitutions.

5 Evolution equations for the Wilson coefficients

Large logarithms of the scale ratio MS/v can be systematically resummed to all orders

in perturbation theory using our effective theory. The leading effects arise from Sudakov

double logarithms related to the interplay of soft and collinear emissions of virtual particles.

They are controlled by so-called cusp logarithms in the anomalous dimensions of SCET

operators [8], which govern the scale dependence of the Wilson coefficients in the effective

Lagrangian of SCETBSM. The relevant anomalous dimensions are computed from the UV

divergences of SCET operators and are independent of the masses of the SM particles. They

can be most conveniently derived by setting all masses to zero and using off-shell external

momenta as infrared regulators. The relevant version of the effective theory is called

SCETI. It describes the interactions of ni-collinear fields with so-called ultra-soft fields

with momentum scaling (λ2, λ2, λ2) [10, 11]. Note that the ultra-soft scale λ2MS ∼ v2/MS

lies parametrically below the characteristic scale v of the low-energy theory. This scale

arises in intermediate steps of the calculation, but it drops out from the final expressions

for the anomalous dimensions.5

The discussion in this section is considerably more technical than that in previous

sections. The reader not interested in these technicalities may directly proceed with sec-

tion 6, noting however that there is a well-defined formalism which allows us to derive the

evolution equations needed to resum large logarithms in the SCETBSM.

5.1 Operators containing a single field in each collinear direction

The scale dependence of the Wilson coefficients of operators containing a single ni-collinear

field for each direction of large energy flow can be described by a universal anomalous

dimension depending on scalar products formed out of the different collinear momenta

5It would be possible to calculate the anomalous dimensions using the masses of the SM particles as

infrared regulators. In this case the ultra-soft scale does not arise (except in graphs involving massless

gauge-boson exchange), but the calculations are far more complicated due to the appearance of rapidity

divergences, which require analytic regulators beyond dimensional regularization [36, 37].
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{p} = {p1, . . . , pn} (strictly speaking the momenta pi should be replaced by the corre-

sponding label operators Pi), such that [45]

µ
d

dµ
C({p}, µ) = Γ({p}, µ)C({p}, µ) . (5.1)

For the Wilson coefficients of operators containing at most three external particles, the

all-order structure of the anomalous dimension is extremely simple: it contains so-called

“dipole terms” for pairs of particles i and j, which involve logarithms of the kinematic

invariants sij = 2pi · pj (with all momenta outgoing) and correlations of the two particles

in the space of group generators, as well as single-particle terms for each field [45–48].

Moreover, using charge conservation, one can eliminate all group generators in terms of the

eigenvalues of the quadratic Casimir operators Ci ∈ {CF , CA} for particles transforming in

the fundamental or the adjoint representation of the gauge group. The two-particle terms

involve the universal cusp anomalous dimension for light-like Wilson loops [49]. Since

the SM gauge group is a direct product of three simple groups Gr with G1 = U(1)Y ,

G2 = SU(2)L and G3 = SU(3)c, the cusp terms involve a sum over the three group factors.

The anomalous dimensions for two- and three-particle operators take the form

Γ({p1, p2}, µ) =
∑
r

C
(r)
1 γ(r)

cusp ln
−s12 − i0

µ2
+
∑
i=1,2

γi ,

Γ({p1, p2, p3}, µ) =
1

2

∑
r

∑
π(i,j,k)

(
C

(r)
i + C

(r)
j − C

(r)
k

)
γ(r)

cusp ln
−sij − i0

µ2
+
∑

i=1,2,3

γi ,
(5.2)

where π(i, j, k) refers to the even permutations of (1, 2, 3). For non-abelian SU(N) groups

one has C
(r)
F = (N2 − 1)/(2N) and C

(r)
A = N . For the hypercharge group G1 = U(1)Y

one sets C
(1)
F = Y 2

i and C
(1)
A = 0, where Yi denotes the hypercharge of the particle i. If a

particle does not transform under a group Gr, then C
(r)
i is set to zero.

The single-particle anomalous dimensions γi for fermions contain terms involving the

SM Yukawa matrices, which multiply the Wilson coefficients in (5.1) from the left (for

a field X̄ producing an outgoing fermion) or from the right (for a field X producing an

outgoing anti-fermion).

From (5.2), it is straightforward to derive exact all-order relations for the anomalous

dimensions governing the scale dependence of the Wilson coefficients of the two-jet op-

erators in the effective Lagrangian (3.8) arising at O(λ2) and for the three-jet operators

in the effective Lagrangian (4.1) arising at O(λ3). Omitting all arguments for simplicity,

we obtain

Γφφ =

(
1

4
γ(1)

cusp +
3

4
γ(2)

cusp

)(
ln
M2
S

µ2
− iπ

)
+ 2γφ ,

ΓBB = Γ̃BB = 2γB ,

ΓWW = Γ̃WW = 2γ(2)
cusp

(
ln
M2
S

µ2
− iπ

)
+ 2γW ,

ΓGG = Γ̃GG = 3γ(3)
cusp

(
ln
M2
S

µ2
− iπ

)
+ 2γG ,

(5.3)
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and

ΓQ
FLf̄R φ

=

[
1

2

(
Y 2
FL

+ Y 2
fR
− Y 2

φ

)
γ(1)

cusp + δfq
4

3
γ(3)

cusp

](
ln
m2

12

µ2
− iπ

)
+

[
1

2

(
Y 2
φ + Y 2

FL
− Y 2

fR

)
γ(1)

cusp +
3

4
γ(2)

cusp

](
ln
m2

13

µ2
− iπ

)
+

1

2

(
Y 2
φ + Y 2

fR
− Y 2

FL

)
γ(1)

cusp

(
ln
m2

23

µ2
− iπ

)
+ γFL + γ f̄R + γφ ,

ΓQ
fRF̄Lφ

= ΓQ
FLf̄R φ

(m2
13 ↔ m2

23, FL ↔ fR) ,

ΓQ
FLF̄LB

=

[
Y 2
FL
γ(1)

cusp +
3

4
γ(2)

cusp + δfq
4

3
γ(3)

cusp

](
ln
m2

12

µ2
− iπ

)
+ γFL + γF̄L + γB ,

ΓQ
FLF̄LW

=

[
Y 2
FL
γ(1)

cusp −
1

4
γ(2)

cusp + δfq
4

3
γ(3)

cusp

](
ln
m2

12

µ2
− iπ

)
+ γ(2)

cusp

(
ln
m2

13

µ2
+ ln

m2
23

µ2
− 2iπ

)
+ γFL + γF̄L + γW ,

ΓQ
QLQ̄LG

=

[
Y 2
QL
γ(1)

cusp +
3

4
γ(2)

cusp −
1

6
γ(3)

cusp

](
ln
m2

12

µ2
− iπ

)
+

3

2
γ(3)

cusp

(
ln
m2

13

µ2
+ ln

m2
23

µ2
− 2iπ

)
+ γQL + γQ̄L + γG ,

ΓQ
fRf̄RB

=

[
Y 2
fR
γ(1)

cusp + δfq
4

3
γ(3)

cusp

](
ln
m2

12

µ2
− iπ

)
+ γfR + γ f̄R + γB ,

ΓQqRq̄RG =

[
Y 2
qR
γ(1)

cusp −
1

6
γ(3)

cusp

](
ln
m2

12

µ2
− iπ

)
+

3

2
γ(3)

cusp

(
ln
m2

13

µ2
+ ln

m2
23

µ2
− 2iπ

)
+ γqR + γ q̄R + γG ,

(5.4)

where δfq = 1 if the fermion is a quark and 0 otherwise. We have indicated the anomalous

dimensions of the three-jet operators by a superscript “Q”.

In general, the cusp anomalous dimensions γ
(r)
cusp and the single-particle anomalous

dimensions γi depend on the three gauge couplings α1 = α/c2
w, α2 = α/s2

w and α3 = αs,

the quartic scalar coupling, and the Yukawa couplings. Up to two-loop order, however,

the cusp anomalous dimension for the gauge group Gr only depends on the corresponding

coupling αr. Explicitly, it is given by [49–51]

γ(r)
cusp =

αr
π

+

[(
67

36
− π2

12

)
C

(r)
A −

∑
f

5

18
T

(r)
F df −

1

9
T

(r)
F dφ

](αr
π

)2
+ . . . , (5.5)

where T
(r)
F = 1/2 for the non-abelian groups (r = 2, 3) and T

(1)
F = Y 2

i for the hypercharge

group. The coefficients df and dφ are the dimensions of the representations of the chiral

fermions and the scalar doublet with respect to the other two gauge groups. The sum runs

over the chiral fermion multiplets of the SM model, and we have used that there is a single
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complex scalar doublet.6 Explicitly, one finds

γ(1)
cusp =

α1

π
− 17

6

(α1

π

)2
+ . . . , γ(2)

cusp =
α2

π
+

(
2− π2

6

)(α2

π

)2
+ . . . ,

γ(3)
cusp =

α3

π
+

(
47

12
− π2

4

)(α3

π

)2
+ . . . .

(5.6)

The three-loop coefficient of the cusp anomalous dimension is only known for a single gauge

group and neglecting the contributions from the scalar Higgs doublet [53].

We will restrict our discussion here to a consistent resummation of Sudakov logarithms

at leading logarithmic order. This requires the calculation of the cusp anomalous dimension

to two-loop order, as given in (5.6), while the remaining anomalous dimensions are required

with one-loop accuracy. For fermions and the scalar doublet, the one-loop coefficients from

gauge interactions in units of αr/π are −3C
(r)
F /4 [47] and −C(r)

F [12], respectively. The one-

loop coefficients of the anomalous dimensions of the gauge fields vanish, since in contrast

to [47] we have included the gauge couplings in the definitions of the ni-collinear gauge

fields in (2.6). Including also the contributions from the Yukawa interactions to the wave-

function renormalizations of the fields, we obtain

γfL = γ f̄L = −Y 2
fL

α1

4π
− 9α2

16π
− δfq

α3

π
+

1

32π2
YfY

†
f ,

γfR = γ f̄R = −Y 2
fR

α1

4π
− δfq

α3

π
+

1

32π2
Y †f Yf ,

γφ = −α1

4π
− 3α2

4π
+
∑
f

Nf
c y2

f

8π2
,

(5.7)

where in the last expression the sum runs over the different fermion species, and yf denotes

the Yukawa coupling of the fermion f .

5.2 Two-jet operators at O(λ3)

For operators containing more than one ni-collinear field in a given direction, the anomalous

dimensions are more complicated than the simple expressions shown in (5.2). This concerns,

in particular, the anomalous dimensions governing the scale dependence of the Wilson

coefficients of the two-jet operators arising at O(λ3) in the SCETBSM Lagrangian, which we

have defined in (3.23) and (3.24). Since these operators depend on a variable u (the fraction

of the total collinear momentum carried by the boson field), the anomalous dimensions are

distribution-valued functions. Also, there is a non-trivial mixing of these operators under

renormalization. Finally, we will find that some of the convolution integrals appearing in

the evolution equations exhibit endpoint singularities at the boundary of the integration

domain, which need to be treated with care. For simplicity, we will only explore the effects

6In the same notation, the one-loop coefficient of the β function for a given gauge coupling reads [52]

β
(r)
0 =

11

3
C

(r)
A −

∑
f

2

3
T

(r)
F df −

1

3
T

(r)
F dφ .
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Figure 2. One-loop diagrams contributing to the anomalous dimension Γqq̄G in (5.10). The short

dashed line represents the heavy scalar resonance S. Solid lines denote collinear quarks, curly lines

with dashes denote collinear gluons, and simple curly lines represent ultra-soft gluons. Collinear

fields moving along the same direction are drawn next to each other.

of QCD evolution here, leaving a more complete treatment to future work. We will thus

assume that the fermion fields in the three-jet operators are quark fields.

The presence of the scalar doublet implies that, as far as QCD evolution is concerned,

the mixed-chirality operators in (3.23) renormalize like two-jet operators, with anomalous

dimensions given by (in this section we keep the dependence on the color factors CF = 4/3

and CA = 3 explicit)

ΓQLq̄R = CF γ
(3)
cusp

(
ln
M2
S

µ2
− iπ

)
+ 2γq ,

Γ
(i)
QLq̄R φ

= CF γ
(3)
cusp

(
ln

(1− u)M2
S

µ2
− iπ

)
+ 2γq ; i = 1, 2 ,

(5.8)

where we have used that γQL = γqR ≡ γq = −3CFαs/(4π)+. . . under QCD evolution. The

same is true for the same-chirality operators for which the gauge field belongs to SU(2)L
or U(1)Y , i.e.

ΓQLQ̄LB = ΓqRq̄RB = ΓQLQ̄LW = ΓqRq̄RW = CF γ
(3)
cusp

(
ln

(1− u)M2
S

µ2
− iπ

)
+ 2γq . (5.9)

When only QCD corrections are taken into account, the cusp anomalous dimension [53]

and the anomalous dimension of the quark field [54, 55] are known to three-loop order.

The same-chirality operators containing a gluon field exhibit a more interesting behav-

ior. Due to the dependence of the operators OQLQ̄LG and OqRq̄RG on the variable u, the

anomalous dimension governing the multiplicative renormalization of these operators is a

distribution-valued function of two variables u and w. We find that the scale dependence of

the corresponding Wilson coefficients is determined by the evolution equation (with q = QL
or qR)

µ
d

dµ
Cqq̄G(u,MS ,M, µ) =

∫ 1

0
dw Γqq̄G(u,w,MS , µ)Cqq̄G(w,MS ,M, µ) , (5.10)

where here and below we use a boldface notation to indicate that the Wilson coefficients

are matrices in generation space. The anomalous dimension Γqq̄G can be calculated in
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Figure 3. Left: one-loop diagram responsible for the mixing of the operators OQLQ̄LG and

OqRq̄RG into the three mixed-chirality operators in (3.23). A dashed line ended by a cross indicates

a zero-momentum scalar field Φ0, while a dashed line bending to the right shows a collinear scalar

field. Right: mixing of the O(λ2) operators OGG and ÕGG into the operator OQLq̄R by means of

subleading interactions in the SCET Lagrangian. The dotted line represents an ultra-soft quark.

analogy with the derivation of the anomalous dimensions of the subleading SCET current

operators arising in B-meson physics performed in [42, 56] (see [57] for related recent work).

It is convenient to use the background-field gauge [58] for the external gluon, in which the

combination gsG
µ,a is not renormalized. Evaluating the UV divergences of the one-loop

diagrams shown in figure 2, supplemented by wave-function renormalization, we obtain

(with ū ≡ 1− u and w̄ ≡ 1− w)

Γqq̄G(u,w,MS , µ) =

[
CF

(
ln
ūM2

S

µ2
− iπ − 3

2

)
+
CA
2

(
ln
u

ū
+ 1

)]
γ(3)

cusp δ(u− w)

+ w̄
[
V1(ū, w̄) + V2(ū, w̄)

]
+O(α2

s) .

(5.11)

The logarithmic terms in the first line are exact to all orders in perturbation theory, whereas

the remaining terms have been computed at one-loop order. The kernel functions Vi, which

are symmetric in their arguments, have been computed first in [42]. At one-loop order

one finds

V1(ū, w̄) + V2(ū, w̄) = −CA
2

αs
π

{
1

ūw̄

[
ū
θ(u− w)

u− w + w̄
θ(w − u)

w − u

]
+

+

(
w

w̄
− 1

u

)
θ(u− w) +

(
u

ū
− 1

w

)
θ(w − u)

}
+

(
CF −

CA
2

)
αs
π

[(
2− ūw̄

uw

)
θ(u+ w − 1) +

uw

ūw̄
θ(1− u− w)

]
,

(5.12)

where for symmetric functions g(u,w) the plus distribution is defined to act on test func-

tions f(w) as ∫ 1

0
dw [g(u,w)]+ f(w) =

∫ 1

0
dw g(u,w) [f(w)− f(u)] . (5.13)

Using arguments based on conformal symmetry, it was shown in [42] how the convolution

in (5.10) can be diagonalized by expanding the Wilson coefficients in a suitable basis of

Jacobi polynomials. This will be discussed in more detail elsewhere.

Next, we find that the operators OQLQ̄LG andOqRq̄RG mix into the three mixed-chirality

operators in (3.23). The diagram responsible for this mixing is shown on the left-hand side

– 26 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
5

in figure 3. The evolution equations for the Wilson coefficients of these operators read

µ
d

dµ
C

(1)
QLq̄R φ

(u, µ) = Γ
(1)
QLq̄R φ

(u, µ)C
(1)
QLq̄R φ

(u, µ)

+

∫ 1

0
dw Γmix(u,w, µ)Yq(µ)CqRq̄RG(w, µ) ,

µ
d

dµ
C

(2)
QLq̄R φ

(u, µ) = Γ
(2)
QLq̄R φ

(u, µ)C
(2)
QLq̄R φ

(u, µ)

+

∫ 1

0
dw Γmix(u,w, µ)C†

QLQ̄LG
(w, µ)Yq(µ) ,

(5.14)

and (only if CGG = C̃GG = 0 !)

µ
d

dµ
CQLq̄R(µ) = ΓQLq̄R(µ)CQLq̄R(µ)

+

∫ 1

0
dw Γmix(0, w, µ)

[
Yq(µ)CqRq̄RG(w, µ) +C†

QLQ̄LG
(w, µ)Yq(µ)

]
,

(5.15)

where we have defined the mixing kernel

Γmix(u,w, µ) =
CFαs(µ)

π

θ(1− u− w)

1− u +O(α2
s) . (5.16)

The anomalous dimensions Γ
(i)
QLq̄R φ

and ΓQLq̄R have been given in (5.8). For simplicity, we

have omitted the dependence of the Wilson coefficients on the new-physics scales MS and

M , as well as the dependence of the anomalous dimensions on the scale MS .

The evolution equation (5.15) needs to be modified if the Wilson coefficients

CQLQ̄LG(w, µ) and CqRq̄RG(w, µ) exhibit non-integrable singularities at the endpoint of

the integration region. As we discuss in the appendix, this happens whenever CGG 6= 0

or C̃GG 6= 0. Hard matching contributions then produce poles in the Wilson coefficients

located at w = 1,7 whose residues are related to the coefficients CGG and C̃GG. While at

first sight the presence of these poles appears to give rise to endpoint-divergent integrals

of the form
∫ 1

0 dw
1

1−w in (5.15), a careful treatment reveals that the form of the mixing

kernel in (5.16) must be modified in this case. The dimensionally regularized loop inte-

gral produces an extra factor
(
w(1 − w)

)−ε
, which regularizes the singularities at w = 1

at the expense of introducing a 1/ε2 pole. Next, for CGG 6= 0 or C̃GG 6= 0 there is an

additional contribution arising from the mixing of the operators in the O(λ2) effective La-

grangian (3.22) into the O(λ3) operator OQLq̄R , which happens via subleading terms in the

SCET Lagrangian connecting collinear fields with an ultra-soft quark field. The relevant

diagram is shown on the right-hand side in figure 3. The two effects conspire to produce

an extra term in the evolution equation (5.15) proportional to a combination of CGG and

C̃GG times a cusp logarithm. Details of this calculation are presented in the appendix. The

7In higher orders of perturbation theory, the poles can be multiplied by logarithms of (1 − w).

– 27 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
5

final result for the corrected form of the evolution equation (5.15) reads

µ
d

dµ
CQLq̄R(µ) = ΓQLq̄R(µ)CQLq̄R(µ)

+
M2

M2
S

[
γqq̄cusp

(
ln
M2
S

µ2
− iπ

)
+ γ̃qq̄

]
g2
s(µ)

(
CGG(µ) + iC̃GG(µ)

)
Yq(µ)

+

∫ 1

0
dw Γmix(0, w, µ)

[
Yq(µ) C̄qRq̄RG(w, µ) + C̄†

QLQ̄LG
(w, µ)Yq(µ)

]
,

(5.17)

where

γqq̄cusp =
CFαs(µ)

π
+O(α2

s) , γ̃qq̄ =
CFαs(µ)

π
+O(α2

s) , (5.18)

and the subtracted coefficients C̄qq̄G(w, µ) (with q = QL or qR) are obtained from the

original ones by subtracting all terms of order (1 − w)−1 modulo logarithms. At lowest

order in perturbation theory, we show in the appendix that

C̄QLQ̄LG(u, µ) = CQLQ̄LG(u, µ)− M2

M2
S

g2
s(µ)

1− u
[
CGG(µ)− iC̃GG(µ)

]
,

C̄qRq̄RG(u, µ) = CqRq̄RG(u, µ)− M2

M2
S

g2
s(µ)

1− u
[
CGG(µ) + iC̃GG(µ)

]
.

(5.19)

Note that the evolution equations (5.10) and (5.14) do not require similar modifications,

because the factor (1−w) in the third line of (5.11) and the θ(1−u−w) function in (5.16)

eliminate the singularities at w = 1.

The cusp anomalous dimension γqq̄cusp in (5.18) is a new object, which arises from the

exchange of an ultra-soft quark between two collinear sectors. This is likely to be a new

universal quantity, which arises in SCET applications beyond the leading power in the

expansion parameter λ. The calculation of the two-loop coefficient of this quantity is an

interesting open problem, to which we will return in future work.

5.3 Resummation of large logarithms

To illustrate the results derived above, we now perform the resummation of large loga-

rithms of the scale ratio MS/v for two representative cases, working consistently at leading

logarithmic order. We focus on the examples S → 2 jets and S → tt̄ + jet, where in both

cases the jets are seeded by gluons (quark jets contribute at subleading power only). At

tree level, the expression for the S → 2 jets rate obtained from (3.20) reads

Γ(S → 2 jets) =
M2

MS
8πα2

s(µ)
(
|CGG(µ)|2 + |C̃GG(µ)|2

)
. (5.20)

Likewise, the Dalitz distribution for the decay S → tt̄+ jet obtained from (4.8) reads

d2Γ(S → tt̄+ jet)

dx12 dx23
=
M3
S

M2

αs(µ)

8π2

x12

(
x2

13 + x2
23

)
(1− x12)2

×
(∣∣D33

uLūLG
({xij}, µ)

∣∣2 +
∣∣D33

uRūRG
({xij}, µ)

∣∣2) , (5.21)
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where we have defined xij = m2
ij/M

2
S with x12 + x23 + x13 = 1. In the above relations

we suppress the dependence of the Wilson coefficients on the new-physics scales M and

MS . The scales µ on the right-hand side of the equations should be chosen equal to a

characteristic scale of the process. In the first case, this should be a scale associated with

the definition of the jets, while in the second case the scale should be around the top-quark

mass. We will now derive how the Wilson coefficients at these low scales can be computed,

at leading logarithmic order, in terms of the Wilson coefficients at the high scale MS . We

will focus on QCD evolution only, since this will give rise to the largest effects.

The general solution of the RG equation (5.1) has been derived in [59, 60]. For the

specific cases considered here, where the relevant anomalous dimensions are given by ΓGG
in (5.3) and ΓQ

QLQ̄LG
, ΓQqRq̄RG in (5.4), we obtain at leading logarithmic order

CGG(µ) = exp

[
6

49
g(MS , µ) +

6

7
iπ ln r

]
CGG(MS) , (5.22)

with the same relation connecting C̃GG(µ) with C̃GG(MS), and

D33
uAūAG

({xij}, µ) = exp

[
17

147
g(MS , µ) +

(
4

7
+

17

21
iπ

)
ln r

]
D33
uAūAG

({xij},MS)

× (x12)
1
21

ln r (x23 x13)−
3
7

ln r ,

(5.23)

with A = L,R. We have defined the ratio r = αs(µ)/αs(MS) and

g(MS , µ) =
4π

αs(MS)

(
1− 1

r
− ln r

)
+

(
251

21
− π2

)(
1− r + ln r

)
+

13

7
ln2 r . (5.24)

These expressions apply for six massless flavors of quarks, and they should thus not be

evaluated below the scale of the top-quark mass mt ≈ 173 GeV. For a scalar resonance of

mass MS = 2 TeV, we find numerically

CGG(mt) ≈ (0.42 + 0.36 i)CGG(MS) ,

D33
uAūAG

({xij},mt) ≈ (0.52 + 0.42 i)

(
x

1/9
12

x23 x13

)0.11

D33
uAūAG

({xij},MS) ,
(5.25)

indicating that evolution effects can be quite sizable. In the second case, these effects lead

to an additional, non-trivial dependence on the kinematic variables xij .

The solution of the RG equations governing the evolution of the Wilson coefficients of

the two-jet operators arising at O(λ3), which we have derived in section 5.2, is more compli-

cated. These equations can either be solved by numerical integration or by constructing a

suitable complete set of basis functions which diagonalize the relevant anomalous-dimension

kernels [42]. We leave a detailed discussion of these matters for future work.

6 SCETBSM for the scale hierarchy M �MS � v

While our SCETBSM approach was designed to deal with the case where the masses of

the heavy new resonance S and of other, yet undiscovered new particles are of the same
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order, it also applies to new-physics scenarios in which there is a double hierarchy, such

that M �MS � v. It is interesting to study this case in some detail, as it provides a nice

test case with which to illustrate our method.

6.1 Effective Lagrangian below the new-physics scale M

If the scale M characterizing the new physics lies much above the scale of the resonance S,

the undiscovered heavy particles can be integrated out in a first step, see the right panel

of figure 1. This is the standard case of integrating out heavy virtual degrees of freedom,

which are too massive to be produced as real particles. The effective Lagrangian obtained

after this first step consists of local operators built out of S and SM fields. We can write

Leff(M > µ > MS) = LSM + LSMEFT + LS . (6.1)

Here LSMEFT is the EFT extension of the SM by higher-dimensional operators constructed

out of SM fields only. Up to dimension-6 order, the corresponding operators have been

classified in [15–19]. LS describes the interactions of S with itself and with SM fields. Up

to dimension-5 order, we write the most general expression for this Lagrangian in the form

LD≤5
S =

1

2
(∂µS)(∂µS)− V (S)−Mλ1 S φ

†φ− λ2

2
S2φ†φ− λ3

6M
S3φ†φ− λ4

M
S
(
φ†φ

)2

+
cGG
M

αs
4π

S GaµνG
µν,a +

cWW

M

α

4πs2
w

SW a
µνW

µν,a +
cBB
M

α

4πc2
w

SBµνB
µν

+
c̃GG
M

αs
4π

S GaµνG̃
µν,a +

c̃WW

M

α

4πs2
w

SW a
µνW̃

µν,a +
c̃BB
M

α

4πc2
w

SBµνB̃
µν

− 1

M

(
S Q̄L Ŷu φ̃ uR + S Q̄L Ŷd φdR + S L̄L Ŷe φ eR + h.c.

)
.

(6.2)

Here V (S) denotes the scalar potential, which in particular accounts for the mass MS of the

scalar resonance. Gaµν , W a
µν and Bµν denote the field strength tensors of SU(3)c, SU(2)L

and U(1)Y , and G̃µν,a = 1
2 ε

µναβ Gaαβ etc. are the dual field strengths. The quantities Ŷf
with f = u, d, e are arbitrary complex matrices in generation space. We have used the

equations of motion for the SM fields and for the field S to eliminate redundant operators,

such as S φ†D2φ, (∂µS) (φ†iDµφ + h.c.), (∂µS) ψ̄γµψ (with an arbitrary chiral fermion

ψ), and (�S)φ†φ.8 Note that the coupling Mλ1 of the Higgs-portal operator S φ†φ is

dimensionful and naturally of order M (i.e., it has a “hierarchy problem”). Our operator

basis agrees with the one obtained in [61], where a complete operator basis was constructed

up to dimension D = 7. Compared with [62], we have eliminated the redundant operator

S (∂µS)(∂µS).

It is straightforward to calculate the tree-level contributions to the S → hh, S → V V

and S → ff̄ decay amplitudes from the above effective Lagrangian and to reproduce the

scaling relations shown in (1.1). The only non-trivial case concerns the S → Zh decay

8The authors of [21] have used the equation of motion for the scalar Higgs doublet to eliminate the

portal interaction S φ†φ instead of the operator S (Dµφ)†(Dµφ), which we have eliminated. This is not a

suitable choice, because the portal interaction is a dimension-3 operator, whose contribution is enhanced

by two powers of the cutoff scale relative to the dimension-5 operators in the effective Lagrangian.
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amplitude, for which the leading dimension-5 contribution arises at one-loop order and

was calculated in [22]. The first tree-level contribution to the S → Zh decay amplitude

arises from the dimension-7 operator

LD=7
S 3 C7

M3
(∂µS) (φ†iDµφ+ h.c.)φ†φ . (6.3)

This contribution is suppressed by three powers of the new-physics scale.

6.2 RG evolution from the new-physics scale to the scale MS

Up to dimension-5 order, the Wilson coefficients λi, cV V , c̃V V , and Ŷf in (6.2) evaluated at

the new-physics scale µ0 ∼M encode the complete information about the UV completion

of the theory at higher scales.9 After these coefficients have been fixed from a matching

calculation in the context of a particular model, they can be evolved from the high scale

µ0 ∼ M to the intermediate scale µ ∼ MS set by the mass of the resonance S (see the

right panel in figure 1). In this process, large logarithms of the scale ratio M/MS � 1 are

resummed. Since in our case S is a gauge singlet under the SM, the relevant anomalous

dimensions are those of the corresponding SM operators without the field S. For simplicity,

we will consider here only the effects related to QCD evolution.

At leading logarithmic order, only the Wilson coefficients Ŷf associated with quark

fields change under scale variation, and we find (with q = u, d)

Ŷq(µ) =

(
αs(µ)

αs(µ0)

)3CF /β0

Ŷq(µ0) , (6.4)

where β0 = 11
3 CA − 2

3 nf is the first coefficient of the QCD β-function. All other Wilson

coefficients are scale independent in this approximation. Beyond the leading order the

evolution effects become more interesting. For the scale dependence of the coefficient

cGG(µ), which is renormalized multiplicatively, an exact solution can be written in terms

of the QCD β-function [63, 64]. It reads

cGG(µ) =
β(αs(µ))/α2

s(µ)

β(αs(µ0))/α2
s(µ0)

cGG(µ0) =

[
1 +

β1

β0

αs(µ)− αs(µ0)

4π
+ . . .

]
cGG(µ0) . (6.5)

We write the perturbative expansions of the β-function in the form

β(αs)

α2
s

= − 1

2π

(
β0 + β1

αs
4π

+ . . .
)
, (6.6)

where β1 = 34
3 C

2
A− 10

3 CAnf −2CFnf . For the CP-odd coefficient c̃GG(µ) no exact solution

is available. At NLO, one obtains

c̃GG(µ) =

[
1 +

(γsJ)1

β0

αs(µ)− αs(µ0)

4π
+ . . .

]
c̃GG(µ0) . (6.7)

Here (γsJ)1 = −6CFnf is the two-loop coefficient in the anomalous dimension of the flavor-

singlet axial-vector current [65].

9The Wilson coefficients of the Weinberg operators contained in LSMEFT also enter at this order, but

they do not play a role in our analysis.
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Figure 4. One-loop diagram responsible for the mixing of the Wilson coefficients cGG, c̃GG and

Ŷq described by (6.8).

Starting at NLO, there is a non-trivial mixing of the Wilson coefficients cGG, c̃GG and

Ŷq under renormalization, caused by the diagram shown in figure 4. For the CP-even,

flavor-diagonal coefficients, this effect was first studied in [66]. Including also flavor non-

diagonal couplings and CP-odd coefficients, we find that the mixing is governed by the

RG equation

µ
d

dµ
Ŷq(µ) = γy(µ) Ŷq(µ) + γqg(µ)

[
cGG(µ)− ic̃GG(µ)

]
Yq(µ) , (6.8)

where γy is the anomalous dimension of the SM Yukawa couplings, while γqg accounts for

the mixing effects. The perturbative expansions of these objects read

γy(αs) = γy0
αs
4π

+ γy1

(αs
4π

)2
+ . . . , γqg(αs) = γqg1

(αs
4π

)2
+ . . . , (6.9)

where γy0 = −6CF , γy1 = −3C2
F − 97

3 CFCA + 20
3 CFTFnf [67], and γqg1 = −24CF . At NLO,

the solution to the RG equation (6.8) takes the form

Ŷq(µ) = Uy(µ, µ0)

[
Ŷq(µ0)− γqg1

2β0

αs(µ)− αs(µ0)

4π

(
cGG(µ0)− ic̃GG(µ0)

)
Yq(µ0)

]
, (6.10)

where

Uy(µ, µ0) =

(
αs(µ)

αs(µ0)

)− γ
y
0

2β0

[
1− γy1β0 − β1γ

y
0

2β2
0

αs(µ)− αs(µ0)

4π
+ . . .

]
. (6.11)

Relations (6.5), (6.7) and (6.10) describe the scale dependence of the Wilson coefficients

between the new-physics scale µ0 ∼M and the scale µ ∼MS .

6.3 Matching to SCETBSM at the scale µ ∼MS

At the scale µ ∼ MS , the effective Lagrangian (6.1) is matched onto the SCETBSM La-

grangians discussed in section 3 and 4. The leading contributions arise from the operators

of dimension up to 5. They originate from the D = 5 operators contained in (6.2), or from

the D = 3 Higgs-portal interaction S φ†φ in combination with a D = 6 interaction from the

effective Lagrangian LSMEFT. We will now derive the corresponding matching conditions

at tree level. In this approximation, time-ordered products of S φ†φ with operators of the

SMEFT Lagrangian in the basis of [19] do not give rise to non-zero matching contributions.
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Figure 5. Diagrams contributing to the tree-level matching conditions for the Wilson coefficients

of O(λ3) operators. The first two graphs contribute the two terms in (6.13) and (6.16), while the

third diagram generates the coefficients in (6.15) and (6.17).

Matching coefficients at O(λ2). We begin with the Wilson coefficients of the O(λ2)

SCETBSM operators in the effective Lagrangian (3.8), for which we obtain

Cφφ(MS ,M, µ) = −λ1 ,

CGG(MS ,M, µ) = −M
2
S

M2

cGG
8π2

, C̃GG(MS ,M, µ) =
M2
S

M2

c̃GG
8π2

,

CWW (MS ,M, µ) = −M
2
S

M2

cWW

8π2
, C̃WW (MS ,M, µ) =

M2
S

M2

c̃WW

8π2
,

CBB(MS ,M, µ) = −M
2
S

M2

cBB
8π2

, C̃BB(MS ,M, µ) =
M2
S

M2

c̃BB
8π2

.

(6.12)

All scale-dependent quantities are evaluated at the matching scale µ ∼MS .

Matching coefficients at O(λ3). The matching conditions for the Wilson coefficients

of the two-body O(λ3) SCETBSM operators in the effective Lagrangian (3.22) follow by

evaluating the tree-level Feynman diagrams shown in figure 5. We write the results in

terms of matrices in generation space. For the coefficients of the mixed-chirality operators,

we obtain (with f = u, d, e)

CFLf̄R(MS ,M, µ) = −Ŷf −
M2λ1

M2
S

Yf ,

C
(i)

FLf̄R φ
(u,MS ,M, µ) = −Ŷf −

M2λ1

(1− u)M2
S

Yf ; i = 1, 2 .

(6.13)

The matrices Yf refer to the original Yukawa matrices of the SM. Several of the coefficients

of the same-chirality operators vanish at tree level, namely

CLLL̄LG(u,MS ,M, µ) = C`R ¯̀
RG

(u,MS ,M, µ) = 0 ,

CfRf̄RW (u,MS ,M, µ) = 0 .
(6.14)

For the remaining coefficients, we find

CQLQ̄LG(u,MS ,M, µ) = −αs
2π

u

1− u (cGG + ic̃GG) 1 ,

CqRq̄RG(u,MS ,M, µ) = −αs
2π

u

1− u (cGG − ic̃GG) 1 ,

CFLF̄LW (u,MS ,M, µ) = − α

2πs2
w

u

1− u (cWW + ic̃WW ) 1 , (6.15)
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Figure 6. Representative one-loop diagrams contributing to the matching condition for the

Wilson coefficients C̃φφφφ in (6.20). Dashed lines with a cross denote zero-momentum insertions of

the scalar field ϕ0
0. In the first and third graph one must sum over all possible attachments of the

scalar lines on the fermion loop.

CFLF̄LB(u,MS ,M, µ) = −YFLα
2πc2

w

u

1− u (cBB + ic̃BB) 1 ,

CfRf̄RB(u,MS ,M, µ) = −YfRα
2πc2

w

u

1− u (cBB − ic̃BB) 1 ,

where YFL and YfR in the last two relations refer to the hypercharges of the fermions.

Note that at tree level these coefficients are diagonal in flavor space. Once again, all

scale-dependent quantities are evaluated at the matching scale µ ∼MS .

The matching conditions for the O(λ3) operators governing three-body decays of the

resonance S are given by similar expressions. In analogy with (6.13), we find

DFLf̄R φ
({m2

kl},M, µ) = −Ŷf −
M2λ1

m2
12

Yf . (6.16)

The coefficients DFLF̄LA
and DfRf̄RA

are given by expressions analogous to those in (6.15),

with the replacement u/(1− u)→ (M2
S −m2

12)/m2
12; for example, we find

DQLQ̄LG
({m2

kl},M, µ) = −αs
2π

M2
S −m2

12

m2
12

(cGG + ic̃GG) 1 . (6.17)

Note that, as anticipated in section 4, these results only depend on the invariant mass m12

of the fermion pair.

The explicit expressions for the Wilson coefficients in (6.13) and (6.15) confirm our

general arguments presented in section 5.2. The coefficients contain poles at u = 1, whose

residues are determined in terms of the Wilson coefficients of the O(λ2) operators given

in (6.12).

Matching coefficient C̃φφφφ at O(λ4). The coefficient C̃φφφφ in the effective La-

grangian (3.37) receives matching contributions starting at one-loop order. Writing the

scalar doublets in the form

Φni = W †ni

(
−iϕ+

ni
1√
2

(
ϕ0
ni + iϕ3

ni

)) , Φ0 =
1√
2

(
0

ϕ0
0

)
, (6.18)

where ϕ0
0 denotes a zero-momentum boson, we find that

L(4)
eff 3

C̃φφφφ(MS ,M, µ)

M
S
(
ϕ0

0

)2 (
ϕ3
n1
ϕ0
n2

+ ϕ3
n2
ϕ0
n1

)
+ . . . , (6.19)
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where the dots represent contributions involving more than five fields. In order to determine

C̃φφφφ, we compute the four-particle decay amplitude S → ϕ3(k1)ϕ0(k2)ϕ0(0)ϕ0(0) with

two zero-momentum particles in the final state, in both the full theory — defined by the

Lagrangian (6.2) — and the effective theory. Treating all particles other than S as massless

and performing the matching calculation with on-shell external states, all loop graphs in

the effective theory are scaleless and hence vanish. In the full theory, the one-loop diagrams

shown in figure 6 give rise to non-zero results. All other diagrams are scaleless. Note that

the evaluation of the two graphs involving the Bµ and Wµ
3 gauge bosons requires a regulator

in order to avoid that the gauge-boson propagator becomes singular. We introduce an

infinitesimal momentum q to the “zero-momentum” ϕ0 boson coupling to the vector boson

and take the limit q → 0 after summing up all diagrams. In that way, we find in the MS

subtraction scheme

C̃φφφφ(MS ,M, µ) = −
∑

f=u,d,e

Nf
c T

fL
3

16π2

[
Im Tr

(
ŶfY

†
f YfY

†
f

)(
L2 − 2iπL− 7π2

6

)

− Im Tr
(
ŶfY

†
f

)(
4λ+

e2

2s2
wc

2
w

)(
L− iπ − 2

)]
,

(6.20)

where λ denotes the quartic scalar coupling of the SM (not to be confused with our SCET

expansion parameter), T fL3 denotes the weak isospin of the left-handed fermions, and L =

ln(M2
S/µ

2). The complex matrices Ŷf have been defined in (6.2), while Yf are the Yukawa

matrices of the SM. A simple result for the traces can be obtained by transforming the

Yukawa matrices to the mass basis and defining

(
U †f ŶfWf

)
ii
≡ yfi

(
cfi + ic̃fi

)
, (6.21)

where yfi is the SM Yukawa coupling of the fermion fi. This leads to

C̃φφφφ(MS ,M, µ) = −
∑

f=u,d,e

Nf
c T

fL
3

16π2

∑
i=1,2,3

c̃fi

[
y4
fi

(
L2 − 2iπL− 7π2

6

)

− y2
fi

(
4λ+

e2

2s2
wc

2
w

)(
L− iπ − 2

)]
.

(6.22)

The dominant contribution is likely to arise from the top quark.

In [22], it was shown that a tree-level contribution to C̃φφφφ arises first from a

dimension-7 operator in the effective Lagrangian obtained by integrating out the new-

physics scale M , shown in (6.3). We find that the corresponding matching contribu-

tion reads

δC̃φφφφ = − M2
S

2M2
C7 , (6.23)

where C7 itself is most likely suppressed by a loop factor. This contribution is parametri-

cally suppressed compared with that in (6.20) by a factor M2
S/M

2 � 1.
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7 Conclusions

We have developed a theoretical framework to construct a consistent effective field theory

for the on-shell decays into light SM particles of the first new heavy resonance beyond the

SM that will be discovered at the LHC or elsewhere. Our approach is flexible enough to

retain the full dependence on the mass MS of the new resonance S and on the masses of

other, yet undiscovered particles. It can thus deal with the important situation where the

first particle to be discovered is a member of a new sector characterized by a mass scale

M . It provides a consistent separation between the electroweak scale v ≈ 246 GeV and the

new-physics scales MS and M , irrespective of whether MS ∼ M are of similar magnitude

or if there is a double hierarchy v � MS � M . Large double and single logarithms of

scale ratios can be resummed to all orders in perturbation theory by solving RG evolution

equations in the effective theory.

Our effective theory SCETBSM is a variant of soft-collinear effective theory (SCET),

in which the effective Lagrangian is constructed out of gauge-invariant collinear building

blocks for the particles of the SM along with a field representing the new heavy resonance S.

We have worked out in detail the case where S is a spin-0 boson that is a singlet with respect

to the SM gauge interactions. We have constructed the most general effective Lagrangian

at leading, subleading, and partially subsubleading order in the expansion in λ = v/MS .

It describes all two-body decays of S into SM particles. We have also constructed the

leading-order effective Lagrangian describing three-body decays of S. We have calculated

the anomalous dimensions of the operators in the effective Lagrangian and derived the

RG evolution equations for their Wilson coefficients. For the operators arising at next-to-

leading order in λ several subtleties arise. These operators mix under renormalization, and

their anomalous dimensions are distribution-valued functions depending on the momentum

fractions carried by different collinear field operators. The evolution equations involve a new

cusp anomalous dimension originating from the exchange of an ultra-soft quark between

two collinear sectors. There has recently been an increasing interest in applications of

SCET beyond the leading power in λ [57, 68–76]. The results obtained in this paper are

an important contribution to this rapidly developing field.

There are several extensions and refinements of our approach which are worth pur-

suing. The matrix elements of the SCETBSM operators, which we have computed at tree

level, should be calculated to one-loop order. These matrix elements contain large rapidity

logarithms of the scale ratio MS/v from the collinear anomaly, despite the fact that the

hard scale MS has been integrated out from the low-energy effective theory. Understanding

the structure of these logarithms and showing that they do not spoil factorization is an

important ingredient of our approach. It will be important to complete the calculation

of the one-loop anomalous dimensions of the two-jet operators arising at O(λ3) in the

SCETBSM Lagrangian, which we have presented in section 5.2, by including the contribu-

tions from electroweak and Yukawa interactions. Perhaps more importantly, the two-loop

contribution to the cusp anomalous dimension γqq̄cusp in (5.18) should be calculated. This

quantity is associated with the exchange of an ultra-soft quark between two collinear fields

moving along different directions. It is a crucial new ingredient for a consistent Sudakov
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resummation at subleading power in SCET. Finally, it would be interesting to provide

a complete classification of the operators arising at O(λ4) in the SCETBSM Lagrangian,

whose structure we have only sketched in section 3.3.

Our work can be generalized in several ways. In particular, it would be interesting to

extend it to other cases of new heavy resonances, which are well motivated theoretically.

This includes various heavy leptoquarks or Z ′ bosons, which have been proposed to address

some present anomalies in rare and semileptonic decays of B mesons [77–82] (see [83] for

a recent review). It also applies to heavy particles that can serve as mediators to the dark

sector, generalizing the hybrid EFT framework recently proposed in [84]. Finally, it would

be interesting to calculate the Wilson coefficients in the SCETBSM Lagrangian in some

concrete new-physics models. Specifically, in future work we plan to illustrate our results

in the context of an extension of the SM containing heavy, vector-like fermions.

As our community eagerly awaits the discovery of new heavy particles, we have devel-

oped here a general effective field-theory approach that allows one to describe the decays

of such particles into SM particles in a model-independent way, systematically separating

the new-physics scales from the scales of the SM, accounting for the full complexity of

the (partially unknown) UV completion via Wilson coefficient functions and providing a

framework for the resummation of large logarithms to all orders in perturbation theory.
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A Derivation of the evolution equation (5.17)

Effective Lagrangian of SCET. The leading-order SCET Lagrangian describing a

massless, n-collinear fermion (of any chirality)

ξn(x) =
/n/̄n

4
ψ(x) (A.1)

interacting with a (abelian or non-abelian) gauge field Aµ reads [8, 11]

L(0)
ξ,n(x) = ξ̄n(x)

/̄n

2

(
in ·D + i /D⊥c

1

in̄ ·Dc
i /D⊥c

)
ξn(x) + . . . , (A.2)

where the dots represent the effective Yang-Mills Lagrangian and gauge-fixing terms. The

covariant collinear derivative is defined as

iDµ
c = i∂µ + gAA

µ
n(x) , (A.3)
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where gA denotes the relevant gauge coupling. The covariant derivative without a subscript

“c” is defined as

in ·D = in · ∂ + gA n ·An(x) + gA n ·Aus(x−) . (A.4)

It includes the ultra-soft gauge field n · Aus in addition to the small component of the

collinear gauge field n · An, both of which have the same power counting (∼ λ2). Note

that the ultra-soft gauge field is multipole-expanded and lives at position x− ≡ n
2 n̄ · x.

This ensures that only the relevant components n · pus of ultra-soft momenta, which can

compete with the corresponding small components n · pn of collinear momenta, enter in

the computation of Feynman diagrams. The Feynman rules of SCET follow from the

Lagrangian (A.2) in the usual way.

At subleading order in the expansion in powers of λ new interaction vertices arise. The

terms of O(λ) and O(λ2) have been constructed in [11]. Of particular importance to our

discussion below is the coupling of a collinear fermion to an ultra-soft fermion qus, which

enters at first order in λ. The relevant effective Lagrangian reads

L(1)
ξq,n = ξ̄n(x) i /D⊥cWn(x) qus(x−) + h.c. , (A.5)

where Wn is the collinear Wilson line introduced in (2.3), and the ultra-soft quark field

has power counting qus ∼ λ3. The Lagrangians (A.2) and (A.5) can be written for any

collinear sector of the theory.

Endpoint singularities in collinear contributions. For new-physics models in which

the Wilson coefficients of the leading SCETBSM operators in (3.8) are non-zero, one can

show on general grounds that the Wilson coefficients C
(i)

FLf̄R φ
(u, µ), CFLF̄LA(u, µ), and

CfRf̄RA(u, µ) are singular in the limit u → 1. The origin of these singularities can be

understood as follows. When integrating out some heavy degrees of freedom generates the

operators in (3.9), the same UV physics will also generate corresponding vertices in which

one of the two outgoing collinear lines is replaced by a line carrying a hard momentum.

Consider, for example, the vertex shown on the left-hand side in figure 7 (a corresponding

graph exists with n1 and n2 interchanged). If we denote the momentum of the n1-collinear

gluon by k1 = uP1, then the hard gluon carries momentum k2 = P2 +(1−u)P1. The vertex

function can then be written in the form

M
[
CGG(u,MS ,M, µ) g⊥αβ + C̃GG(u,MS ,M, µ) ε⊥αβ

]
g2
s δab , (A.6)

where the dependence on u enters through the invariants 2k1·k2 = uM2
S and k2

2 = (1−u)M2
S .

Clearly, for u→ 1 we recover

lim
u→1

CGG(u,MS ,M, µ) = CGG(MS ,M, µ) , (A.7)

and likewise for C̃GG, where CGG and C̃GG are the coefficients in the effective La-

grangian (3.8).10 Consider now the diagram shown on the right-hand side in figure 7,

10Beyond tree level this relation is more complicated. The coefficient on the left-hand side can contain

hard loop corrections ∼ (µ2/k22)nε, which are absent in the coefficient on the right-hand side.

– 38 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
5

k1

k2 (hard)

uP1

ū P1

P2

Figure 7. Vertex function connecting S with a collinear gluon and a hard gluon (left), and the

corresponding hard matching contribution to the Wilson coefficients in (A.8) (right).

which yields the following hard matching contributions to the Wilson coefficients (omitting

some arguments):

∆CQLQ̄LG(u, µ) =
M2

M2
S

g2
s(µ)

1− u
[
CGG(u, µ)− iC̃GG(u, µ)

]
,

∆CqRq̄RG(u, µ) =
M2

M2
S

g2
s(µ)

1− u
[
CGG(u, µ) + iC̃GG(u, µ)

]
.

(A.8)

This produces poles at u = 1, whose residues are given in terms of the coefficients CGG and

C̃GG in the effective Lagrangian (3.8). At first sight, these give rise to endpoint-divergent

integrals
∫ 1

0 dw
1

1−w when inserted into (5.15).

To see how these integrals are cured, we need to look at the relevant operator

mixing contribution in more detail. Consider the one-loop contributions to the S →
qiL(k1) q̄jR(k2)φ∗(0) decay amplitude, where the scalar field carries zero momentum. We

include multiplicative radiative corrections to the matrix element of the operator O ij
QLq̄R

as well as the mixing contribution shown by the first diagram in figure 3. Before renormal-

ization, i.e. written in terms of bare Wilson coefficients, we find

M(S→qiLq̄
j
Rφ
∗) =

1

M

[
Z−1
QLq̄R

CijQLq̄R −
∫ 1

0
dwNε(w)

(
µ2

−k2
1

)ε
Y ik
q CkjqRq̄RG(w)

−
∫ 1

0
dwNε(w)

(
µ2

−k2
2

)ε(
C†
QLQ̄LG

(w)
)ik

Y kj
q

]〈
qiLq̄

j
Rφ
∗|OijQLq̄R |S

〉
tree

,

(A.9)

where (here and below we omit the “−i0” regulator in the arguments of the logarithms)

Z−1
QLq̄R

= 1 +
CFαs
π

[
1

2ε2
+

1

2ε

(
ln

µ2

−M2
S

+
3

2

)]
,

Nε(w) = eεγE
CFαs

2π
(1− ε) Γ(ε)

(
w(1− w)

)−ε
.

(A.10)

Naively expanding Nε(w) as Nε(w) = CFαs/(2πε) + “finite terms” reproduces the mixing

terms shown in (5.15). However, in the presence of the poles at u = 1 in (A.8), such an

expansion does not capture all the 1/ε singularities. Let us split up the Wilson coefficients

in two terms, such that

CijqRq̄RG(w) =
M2

M2
S

g2
s

1− w
(
CGG + iC̃GG

)
δij + C̄ijqRq̄RG(w) , (A.11)
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and similarly for C†
QLQ̄LG

(w). The subtracted coefficients C̄ijqRq̄RG(w) and C̄ij
QLQ̄LG

(w) are

integrable at w = 1. We then obtain from (A.9)

M(S → qiLq̄
j
Rφ
∗) =

1

M

[
Z−1
QLq̄R

CijQLq̄R

− CFαs
2πε

∫ 1

0
dw
[
Y ik
q C̄kjqRq̄RG(w) +

(
C̄†
QLQ̄LG

(w)
)ik

Y kj
q

]
− CFαs

2π
eεγE Γ(ε)

Γ(2− ε) Γ(−ε)
Γ(1− 2ε)

[(
µ2

−k2
1

)ε
+

(
µ2

−k2
2

)ε ]
× g2

sM
2

M2
S

(
CGG + iC̃GG

)
Y ij
q

]〈
qiLq̄

j
Rφ
∗|OijQLq̄R |S

〉
tree

.

(A.12)

It follows that, in the MS subtraction scheme, the bare Wilson coefficient CijQLq̄R receives

the counterterms

CijQLq̄R

∣∣
ren

= Z−1
QLq̄R

CijQLq̄R −
CFαs
2πε

∫ 1

0
dw
[
Y ik
q C̄kjqRq̄RG(w) +

(
C̄†
QLQ̄LG

(w)
)ik

Y kj
q

]
+
CFαs

2π

[
2

ε2
+

1

ε

(
ln

µ2

−k2
1

+ ln
µ2

−k2
2

− 2

)]
g2
sM

2

M2
S

(
CGG + iC̃GG

)
Y ij
q .

(A.13)

The endpoint singularities are regularized in this expression and give rise to the double

poles in 1/ε; however, the appearance of the collinear logarithms is worrisome, as it would

indicate a sensitivity of the associated anomalous dimension to infrared scales.

Contribution from the exchange of an ultra-soft quark. This dependence is can-

celled by the contribution from a loop diagram involving the exchange of an ultra-soft

quark between the two collinear sectors, shown on the right-hand side in figure 3. In this

graph the Sgg vertex descents from the O(λ2) effective Lagrangian (3.8). It is combined

with two insertions of the subleading SCET Lagrangian (A.5), which couples a collinear

fermion to a collinear gauge field and an ultra-soft quark. More accurately, the diagram

arises from the subleading-power operator

T
{
OGG(x), i

∫
d4yL(1)

ξq,n1
(y), i

∫
d4z L(1)

ξq,n2
(z), i

∫
d4wL(−1)

q̄Φq (w)
}
, (A.14)

and similarly with ÕGG instead of OGG. The Lagrangian

L(−1)
q̄Φq = − (q̄us,L Yq Φ0 qus,R + h.c.) (A.15)

describes the coupling of ultra-soft quarks to the zero-momentum scalar field Φ0. With

qus ∼ λ3 and Φ0 ∼ λ, and taking into account that the ultra-soft measure scales as

d4xus ∼ λ−8, it follows that this Lagrangian contributes terms of O(λ−1) to the action.

This lifts the operator in (A.14) from the naive expectation O(λ4) to O(λ3).11

11One might worry that multiple insertions of the Lagrangian (A.15) can promote the operator to even

lower order in λ. However, graphs with such multiple insertions do not produce UV poles and are scaleless

when evaluated on shell. If we would introduce soft mass-mode fields instead of ultra-soft fields, then the

coupling of the soft quark to the scalar doublet is a leading-power interaction, while the coupling of a soft

quarks to a collinear quark and gluon in (A.5) appears at O(λ1/2). Also in this case the operator (A.14) is

of O(λ3).
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Evaluating the contribution of the operator (A.14) to the matrix element in (A.9), we

obtain an extra contribution inside the bracket on the right-hand side of (A.12), which reads

− CFαs
2π

eεγE (1− ε) Γ(ε)
π

sinπε

(
µ2(−M2

S)

(−k2
1)(−k2

2)

)ε
g2
sM

2

M2
S

(
CGG + iC̃GG

)
Y ij
q . (A.16)

This term has the effect of removing the collinear logarithms in expression (A.13) and

replacing them by a logarithm of the hard scale. We thus obtain the final result

CijQLq̄R

∣∣
ren

= Z−1
QLq̄R

CijQLq̄R −
CFαs
2πε

∫ 1

0
dw
[
Y ik
q C̄kjqRq̄RG(w) +

(
C̄†
QLQ̄LG

(w)
)ik

Y kj
q

]
+
CFαs

2π

[
1

ε2
+

1

ε

(
ln

µ2

−M2
S

− 1

)]
g2
sM

2

M2
S

(
CGG + iC̃GG

)
Y ij
q

(A.17)

for the counterterms. From this expression, it is straightforward to derive the RG evolution

equation (5.17).
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