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1 Introduction

All classical extended supergravities with N local supersymmetries have duality symmetry,

as shown by Gaillard and Zumino [1]. These symmetries rotate equations of motion into

Bianchi identities and are consistent with local extended supersymmetry of the classical

action.

The local UV divergences at the loop level can be eliminated (absorbed into a redef-

inition of parameters) if the classical action of extended supergravities are deformed, to

preserve a duality symmetry in presence of higher derivative terms. The issue of compati-

bility of the deformed duality symmetric extended supergravity with a global N -extended

supersymmetry of the on-shell amplitudes will be addressed here.

A deformation of N = 8 supergravity by the candidate counterterms (CTs) [2, 3] leads

to a violation of the duality current conservation [4, 5], unless the consistent procedure

of the deformation of the twisted selfduality condition [6, 7] can be implemented. In its

general form proposed in [7] it has been already applied for Born-Infeld models with higher

derivatives with U(1) duality in [8]. Other examples of the restoration of duality current

conservation with rigid N = 2 supersymmetry and U(1) duality were presented in [9]. The

procedure of [7] was however not explicitly applied to extended supergravities.

We will solve the first part of the problem here, in a particular sector of the theory: we

will construct a deformed bosonic action of N -extended supergravity where a two-vector
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part of the CT is added to the classical action. All higher order terms with higher and

higher derivatives will be identified, so that the deformed actions in N = 5, 6, 8 super-

gravities in the two-vector sector have restored SU(1, 5), SO∗(12), E7(7) duality symmetry,

respectively. We will investigate the properties of the deformed bosonic action here and

study the supersymmetric embedding of the deformed action and the superamplitudes.

A consistent reduction of N = 8 to all pure extended supergravities allows us to work

with all N ≥ 4 models. The N = 4 pure supergravity has a U(1) duality anomaly [10, 11],

which might have caused the four-loop UV divergence [12]. It was suggested recently in [13]

that the one-loop anomalous amplitudes in this theory can be cancelled by a finite local

counterterm. It remains an interesting open problem to understand the consequences of this

(and perhaps higher-loop) counterterm(s) on the four-loop divergence of the four-graviton

amplitude.

Meanwhile, the four-loop UV divergence in N = 5 supergravity is absent, [14]. More-

over, it has been recently established in [15] that N ≥ 5 supergravities do not exhibit U(1)

duality anomalies in their one-loop amplitudes, of the kind known to be present in N = 4

case [11].

The first relevant prediction of a UV finiteness of N = 8 supergravity due to E7(7)

symmetry in [4] was based on an observation that the Lorentz and SU(8) covariant, E7(7)

invariant unitarity constraint expressing the 56-dimensional E7(7) doublet via 28 indepen-

dent vectors, and consistent with supersymmetry, is unique.1 This argument is easy to

extended to other cases of N ≥ 5 supergravities since it is based on the geometric nature

of the G
H coset space where scalars are coordinates. Later on in [17] the argument was

given that for all N ≥ 5 supergravities the procedure of restoration of the duality current

conservation broken by the CT is not available. The argument in [17] was based on the

properties of invariants of the groups of type E7, which are duality groups in N ≥ 5 su-

pergravities [18]. It suggested that a deformation of the twisted selfduality condition for

groups of the type E7, consistent with supersymmetry, is not possible. Additional reasons

for an obstruction to E7(7)deformations in N = 8 supergravity based on superconformal

SU(2, 2|8) algebra were developed in [19].

It is important to stress here that the conjectured breaking of continuous E7(7) to

discrete E7(7)(Z) would be a non-perturbative effect, whereas we are analyzing here only

perturbative supergravity. The perturbative quantization of N = 8 supergravity is studied

in [20] in a formulation where its E7(7) symmetry is realized off-shell, but Lorentz invariance

is no longer manifest.

Relying on the cancellation of SU(8) current anomalies it is shown there that there are

no anomalies for the non-linearly realized E7(7) either. As a consequence, the E7(7) Ward

identities can be consistently implemented and imposed at all orders in perturbation theory,

and therefore potential divergent CTs must respect the full non-linear E7(7) symmetry.

1In case of N = 8 supergravity the direct and simple finiteness argument is based on the absence

of light-cone supersymmetric invariant counterterm candidates [16]. We are grateful to L. Brink for a

recent reminder that light-cone CT’s are still not available, despite a significant effort. But since here

we are interested also in 5 ≤ N < 8 supergravity we cannot rely on light-cone superspace, which is

known only for N = 8 supergravity. We will work in the Lorentz covariant approach and try to use the

duality/supersymmetry argument.
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In view of the highly non-trivial cancellation of the UV divergences in N = 5 super-

gravity in four loops discovered in [14] and the fact that no new explanations of this fact,

besides the one in [17], have been suggested we would like to revisit and clarify the status

of the duality conservation arguments in [4, 5] and [6].

The UV finiteness ofN = 5 supergravity in four loops established in [14] may shed some

light on the UV properties of the maximal N = 8 supergravity, if there exists a universal

formalism describing all N -extended supergravities. Such a formalism is, indeed, available

forN ≥ 2 and it was constructed to describe the supersymmetric black hole universality [21,

22]. In N = 2 the special geometry is represented by a symplectic section [23, 24]. The

symplectic sections for higher N have been constructed in [25, 26].

We would also like to briefly comment on the very recent 5-loop calculation [27] demon-

strating the presence of a divergence in N = 8 supergravity for Dcrit = 24
5 , and thus the

absence of enhanced cancellations [28] at least in that case. Although this result may be

interpreted as a hint that in four dimensions N = 8 supergravity might diverge at seven

loops it should be emphasized that the question of finiteness (or not) of N = 8 supergravity

remains wide open. The approach taken in this paper relies essentially on the exceptional

symmetry E7 which has no analog in fractional critical dimensions, and on the fact that

any CT must respect an extension of the exceptional duality symmetry, along the lines of

the construction done in this paper. The question of whether a higher order CT exists that

is both fully supersymmetric and fully duality invariant thus remains a challenge on a par

with an explicit calculation at seven loops.

Our purpose here is to make an analysis using the relatively simple two-vector sector

of the theory, extending earlier results of ref. [6]. After the deformed bosonic action with

duality symmetry will be presented we will study its supersymmetric embedding.

2 Twisted selfduality constraint and its deformation in N ≥ 5 super-

gravities

The models of N = 5, 6, 8 supergravities are reviewed in detail in appendix A, based

on [25, 26]. The scalars are coordinates of the G
H cosets, see table 1; the notation is

universal for all of them. Their duality groups G are SU(1, 5), SO∗(12), E7(7) respectively.

The isotropy groups H are U(5),U(6), SU(8), respectively.

We are looking at the bosonic part of the two-vector sector of the CT [2, 3], which has

a manifest duality symmetry as well as a supersymmetry, under condition that all fields in

the CT satisfy classical equations of motion, δScl
δφ = 0. But once such a CT is added to the

action with some constant λ in front of it, the new equation of motion has a correction

δSdeformed

δφ
=
δScl

δφ
+ λ

δSCT
δφ

= 0. (2.1)

In particular, the λ-dependent terms break duality current conservation [4, 5] at order

O(λ2). New terms of O(λ2) are therefore necessary to correct this issue; they, in turn,

push the non-conservation of duality current to O(λ3), etc. The current conservation is

restored with an infinite number of higher order terms, which also have an infinite number

of higher derivatives, [6, 7].
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N Duality group G isotropy H Mscalar nv m

4 SU(1, 1)⊗ SO(6) U(4) SU(1,1)
U(1) 6 2

5 SU(1, 5) U(5) SU(1,5)
S(U(1)×U(5)) 10 10

6 SO?(12) U(6) SO?(12)
U(1)×SU(6) 16 30

7, 8 E7(7) SU(8)
E7(7)

SU(8) 28 70

Table 1. Scalar manifolds of N ≥ 4 extended supergravities. In the table, nv is the number of

vectors and m is the number of real scalar fields. In all the cases the duality group G is embedded

in Sp(2nv,R).

We will now study dualities in N ≥ 5 supergravities, [25, 26]; the field content of these

theories is given only by the corresponding gravitational multiplet. In the case of N = 4

supergravity the duality symmetry is anomalous, [10, 11] but N ≥ 5 are anomaly-free [15].

These theories contain in the bosonic sector the metric, a number nv of vectors and m of

(real) scalar fields, see table 1. The relevant classical vector and scalar part of action has

the following general form:

Lvec = i
[
N̄ΛΣF

−Λ
µν F

−Σ|µν −NΛΣF
+Λ
µν F

+Σ|µν
]

+
1

2
grs(Φ)∂µΦr∂µΦs , (2.2)

where grs(Φ) (r, s, · · · = 1, · · · ,m) is the scalar metric on the scalar manifold Mscalar of

real dimension m and the vectors kinetic matrix NΛΣ(Φ) is a complex, symmetric, nv × nv
matrix depending on the scalar fields, see table 1. F±Λ are self-dual and anti-self-dual

combinations of the vectors field strengths (see appendix A for details).

The formalism of symplectic sections [25, 26] corresponds to a particular parametriza-

tion of the coset representative. It allows a better way to study duality symmetry of

extended supergravities for the case of a general N . The details are in appendix A for

N = 5, 82 and we give examples of symplectic sections in N = 5 and N = 8 supergravity

in appendix C. Instead of a metricNΛΣ(Φ) in the vector space, in eq. (2.2) one can introduce

duality doublets — referred to as a symplectic section — depending on scalars of the theory

(
fΛ

AB

hΛAB

)
(2.3)

so that the kinetic matrix N can be written in terms of the sub-blocks f , h as N = h f−1

or component-by-component as

NΛΣ = hΛAB (f−1)ABΣ . (2.4)

2In case of N = 6 the details of the coset space SO∗(12)
U(6)

are given in [25, 26]. There are 16 graviphotons,

15 in the twice-antisymmetric representation of U(6) plus a singlet, see [25], p.17 or [26] p. 71-72. These

subtleties do not affect our analysis.
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The vector doublet is defined by the vector field strength FΛ
µν ≡ 1

2

(
∂µA

Λ
ν − ∂νA

Λ
µ

)
and by

the derivative of the action over it, namely, ?GΛ|µν ≡ 1
2
∂L
∂FΛ

µν

F ≡
(
FΛ

GΛ

)
. (2.5)

The only way to construct G-invariants is by contracting the symplectic doublets. For

example, the graviphoton — the N (N − 1)/2-component supersymmetric partner of the

N -component gravitino ψA — is defined as

T±AB = (fΛ
AB, hΛAB)

(
0 −1
1 0

) (
F±Λ

G±Λ

)
. (2.6)

Here F∓Λ
µν are the Maxwell field strength in the action in eq. (2.2) , whereas G∓Λ|µν are

defined as derivatives of the action over F∓Λ
µν ,

G∓Λ|µν ≡ ∓
i

2

∂L
∂F∓Λ

µν

. (2.7)

Note that the graviphoton is a G-invariant and are covariant under the H-symmetry, the

U(N ) for 6 ≥ N ≥ 4 and SU(8) for N = 8.

We consider a two-vector part of the CT in N ≥ 5 supergravities, [2, 3]. The relevant

expression, a supersymmetric partner of D2kR4, depends on the graviphoton T−µνAB and

its conjugate defined in eqs. (A.34), (A.35):

LCT = λT−AB ∆ T̄−AB . (2.8)

The simplest case of the R4 CT is

LCT = λT αβγδα̇β̇γ̇δ̇∇αδ̇TβγAB∇δα̇T̄ABβ̇γ̇ (2.9)

with T αβγδα̇β̇γ̇δ̇ = λCαβγδC̄α̇β̇γ̇δ̇ being the Bel-Robinson tensor in spinor notation and ∇αδ̇
an H-covariant space-time derivative. In the R4 case the explicit differential operator in

eq. (2.8) acting on two-forms fµν is defined as follows

(∆(f))µν ≡ ∆µν
ρσfρσ := ∇κT[µ

κλ[σ∇λδρ]
ν]fρσ ; (2.10)

it maps a self-dual 2-form into an anti-self-dual one and vice versa. Here the Bel-Robinson

tensor is given in the vector form

T µνσρ ≡ CµκσλCνκρλ −
3

2
gµ[νCκλ]σϑCκλ

ρ
ϑ , (2.11)

with the Weyl tensor Cµνσρ. The H-covariant field strength of the graviphoton is Tαβ AB ≡
σµναβT

AB
µν and its complex conjugate is T̄α̇β̇AB.

Note that as it is known from [29, 30], the R4 CT does not have a supersymmetric

completion that is also invariant under a duality group with real coefficients. It is however
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believed that its nonperturbative completion is invariant under a duality group with integer

coefficients [31].

For an D2kR4 CT we have to insert more H-covariant space-time derivatives in (2.9),

so that the operator ∆ in (2.8) is more general than in eq. (2.10). Our main result for

the deformed action in (3.10) will depend only on the operator ∆ not transforming under

duality. This holds regardless of the number of derivatives it contains, since each of them

is inert under duality transformations. From now on one should understand the operator

∆ in (2.8) as representing D2kR4 CT.

Since the dual field strength G is defined in terms of the field strength F through (A.5),

to carry out perturbative calculation it is necessary, on the one hand, to express explicitly

G in terms of F . On the other, adding a deformation such as (2.9), depending on both F

and G, to the classical action defines the action implicitly, by relating it to its partial deriva-

tives with respect to F . Thus, to carry out perturbative calculations with the deformed

action it is necessary to solve this differential equation; the solution will generically exhibit

arbitrarily-high powers of the deformation parameter λ. An alternative approach, which we

will carry our in the next section and appendix B, is to determine G by solving a deformed

twisted self-duality constraint. The deformation of the classical twisted self-duality con-

straint is chosen such that the leading (i.e. O(λ)) term reproduces the CT deformation of

the classical action. There are many such deformations of the classical twisted self-duality

constraint, which differ by terms of order O(λn≥2). In the discussion in the next section

and appendix B we shall assume that no such higher-order terms are present.

Adding more derivatives, corresponding to superpartners of D2kR4, will not change

the general structure of the two-vector vector (and hence its duality properties), but will

change the dimension of the CT and the number of loops were it might be generated. In

the context of the four-graviton amplitude it corresponds to an insertion of a dimension-

increasing function of Mandelstam variables f(s, t, u). The operator ∆ in such case will

have additional derivatives compared with the expression shown in (2.10).

3 Complete two-vector deformed action with duality symmetry

The twisted nonlinear selfduality constraint in classical supergravity at λ = 0 was proposed

in [32, 33]. In H-covariant form it states that there are only nv physical vectors. The

constraint is

T+
µν AB = hΛAB F

+Λ
µν − fΛ

AB G
+
µν Λ = 0 , (3.1)

together with its complex conjugate. If instead of using the H-covariant constraint we

would like to use the G-covariant one, we can multiply the equation on f−1 so that

G+
µν Λ − (f−1h)ΛΣ F

+Σ
µν = 0 ⇒ G+

µν Λ −NΛΣ F
+Σ
µν = 0 . (3.2)

A non-vanishing deformation on the right-hand side of these equations, which would

also be Lorentz and H-covariant, was presented in eq. (5.7) in [7]. It can be derived,

following the proposal in [6] to use the manifestly duality invariant source of deformation.

– 6 –
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In this case it depends on a duality doublet F = (F,G); that is, the classical twisted self-

duality constraint (3.2) is not valid and we propose that its right-hand side is given by the

source of deformation

I = λT−AB ∆ T̄−AB = λ(hΣABF
−Σ − fΣ

AB G
−
Σ)∆(h̄Λ

AB F+Λ − f̄ΛAB G+
Λ) . (3.3)

It leads to a constraint of the type given in eq. (5.7) in [7]

T+
AB + λ∆T−AB = 0 (3.4)

where the H covariant differential operator ∆ is defined in eq. (2.10). In fact all results

below are valid in a more general case when ∆ depends also on scalars and gravitons. For

the subsequent analysis it is convenient to switch to a G-covariant form of equations

(f−1)ABΛ

(
T+
AB + λ∆T−AB

)
= 0 , (3.5)

which will give us the following (we skip indices, they are easy to restore)

[G+ −N F+ +X(G− −NF−)]Λ = 0 , (3.6)

and the complex conjugate is

[G− − N̄ F− + X̄(G+ − N̄F+)]Λ = 0 . (3.7)

Here the differential operators X and X̄ are

X = λf−1∆f, X̄ = λf̄−1∆̄f̄ . (3.8)

We may substitute G− from (3.7) into (3.6) and we get

G+
Λ =

[
(1−XX̄)−1[X(N − N̄ )F− + (N −XX̄N̄ )F+]

]
Λ
. (3.9)

This can be integrated to produce the deformed action, so that the derivative of the action

over F+ will produce the value of G+ in (3.9). The result is

Ldef = −iF+(1−XX̄)−1X(N − N̄ )F− − iF+(1−XX̄)−1(N −XX̄N̄ )F+ + h.c. . (3.10)

The integrability condition requires that

δG+
Λ

δF+Σ
=
i

2

δ2S

δF+ΛδF+Σ
,

δG+
Λ

δF−Σ
=
i

2

δ2S

δF+ΛδF−Σ
= − δG−Σ

δF+Σ
. (3.11)

We test the integrability condition in the appendix B and show that the action (3.10) leads

to (3.9). And since every term in the expression for G is linear in F , it is easy to present

a nice and simple form of the vector-dependent part of the action, it is given in the form

Ldef = FG̃. (3.12)

In conclusion of this section, we have derived a deformed action (3.10), (3.12) for N ≥ 5

supergravity, with terms with higher derivatives of an infinite order, which has a duality

current conservation. It extends the results of [6] by giving a closed form expression of the

duality-invariant two-vector part of the allowed N ≥ 5 counterterm. The first deformation

term, is proportional to X = λf−1∆f and has 8 derivatives, other terms with Xn are of

the order λn∂2n. Since now G+ = i
2
δLdef
δF+ , we find that deformed equations of motion for

the F -field become exact Bianchi identity for the G-field.

– 7 –



J
H
E
P
0
8
(
2
0
1
8
)
0
9
1

4 Duality restoration in an example: λ2 approximation, no scalars

Our deformed (bosonic) action is given in eq. (3.10). We are interested in vector-dependent

terms which are independent, linear and quadratic in X ∼ λ

L0+1+2 = −iF+NF+ − iF+X(N − N̄ )F− − iF+XX̄(N − N̄ )F+

+ iF−N̄F− + iF+(N̄ − N )X̄F− + iF−(N̄ − N )X̄XF− . (4.1)

The action has a manifest SO(N ) symmetry. We stress that restoration of the SU(N )

symmetry for the S-matrix following from this action is a necessary but in general not

sufficient condition for consistency of eq. (B.18) and supersymmetry; it is this necessary

condition that we shall verify below.

At the base point of the coset space we will take N = −i, N − N̄ = −2i, f = 1/
√

2,

X = λf−1∆f = λ∆ and we take ∆ = ∆†

L0+1+2
base = −

[
(F+)2 + (F−)2

]
− 4λF+∆F− − 2λ2F+∆2F+ − 2λ2F−∆2F− . (4.2)

In such case we defined the dual field strength as

G̃ =
1

2

δL
δF

. (4.3)

To check directly that the current conservation, broken due to terms λ [4, 5] and

restored by the terms of order λ2 in the action we need to compute the B component of

the duality current conservation ∂µJ
µΛΣBΛΣ. The B component of the Gaillard-Zumino

duality current JµGZB = G̃µνBBν , corresponding to the transformation FΛ′ = AΛ
ΣF

Σ +

BΛΣGΣ, can be defined only in the presence of the equation of motion dG = 0, i.e. in the

presence of the dual vector Bν such that G = dB.

Here we will just check that, in absence of scalars, ∂µJ
µΛΣBΛΣ vanishes through O(λ2).

This component of the duality current3

∂µJ
µΛΣBΛΣ = −

(
δS

δF+Λ

δS

δF+Σ
− δS

δF−Λ

δS

δF−Σ

)
BΛΣ

= G+
ΛB

ΛΣG+
Σ −G−ΛBΛΣG−Σ = 2iGΛB

ΛΣG̃Σ , (4.4)

with the self-dual and anti-self-dual dual field strengths given by

−δS
0+1+2
base

δF+Λ
= 2F+Λ + 4λ∆F−Λ + 4λ2∆2F+Λ, (4.5)

−δS
0+1+2
base

δF−Λ
= 2F−Λ + 4λ∆F+Λ + 4λ2∆2F−Λ . (4.6)

Eq. (4.4) becomes then

G+
ΛG

+
Σ −G−ΛG−Σ = (F+

Λ + 2λ∆F−Λ + 2λ2∆2F+
Λ )(F+

Σ + 2λ∆F−Σ + 2λ2∆2F+
Σ )

−(F−Λ + 2λ∆F+
Λ + 2λ2∆2F−Λ )(F−Σ + 2λ∆F+

Σ + 2λ2∆2F−Σ ) (4.7)

3The position of duality indices Λ was not specified strictly at the level of [1]–[34], as it becomes later

when in symplectic sections upper component was taken with the duality index up, and lower component

with the index down.
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which, up to terms of order O(λ3) is a total divergence

G+
ΛG

+
Σ −G−ΛG−Σ = F+

Λ F
+
Σ − F−Λ F−Σ +O(λ3) . (4.8)

This supports and illustrates at the λ2 level the general proof in section 2 that our deformed

action has a duality current conservation.

5 SU(N ) restoration from SO(N ) in the six-point amplitude example

Note that the deformed action in (4.2) has terms with SO(N ) symmetry, for example

using indices we have λ2(F+AB)∆2(F+AB) as well as terms with SU(N ) symmetry, like

λF+AB∆F−AB. In classical theory there are also SO(N ) invariant terms, like (F+AB)2,

however, the on shell action is known to have an SU(N ) symmetry. Here we will find out if

the presence of the new SU(N ) symmetry breaking terms, like λ2(F+AB)∆2(F+AB), affects

the on shell symmetry of the theory. For this purpose we will compute all contributions

to the λ2 amplitude, the one from the single λ2(F+AB)∆2(F+AB) vertex and the one from

the tree diagram with two vertices λF+AB∆F−AB, as shown in figure 1.

In this section we will treat the parameter λ as independent of the gravitational cou-

pling. To test the on-shell symmetry properties of the deformed action (4.2) it therefore

suffices to analyze tree-level amplitudes with λ-dependent vertices. Our strategy will thus

be to concentrate on the simplest possible non-trivial tree amplitude involving the correc-

tion term in lowest order, with four gravitons and two vectors on the external legs, which

is such that no other (of the infinitely many) higher order vertices can contribute. To this

aim we start from (4.2) where all dependence on the scalar fields has been stripped off.

Introducing the chiral projectors

P±
µ1ν1
ρ1σ1

=
1

4

(
δµ1
ρ1
δν1
σ1
− δν1

ρ1
δµ1
σ1
∓ iεµ1ν1

ρ1σ1

)
(5.1)

onto the self-dual and anti-self-dual components of 2-forms we can schematically represent

the operator ∆ in the form

∆ = P+(Xhh)P− + P−(Xhh)P+ +O(h3) ,

∆2 = P+(Xhh)P−(Xhh)P+ + P−(Xhh)P+(Xhh)P− +O(h5) , (5.2)

where Xhh is the leading term in the expansion of the fourth order differential operator ∆

to lowest (quadratic) order in the metric fluctuations. With this the action (4.2) contains

the following pieces up to and including second order in λ (still omitting internal indices)

−4λF+∆F− = −4λ(∂A)P+(Xhh)P−(∂A) +O(h3) ,

−2λ2F+∆2F+ = −2λ2(∂A)P+(Xhh)P−(Xhh)P+(∂A) +O(h5) ,

−2λ2F−∆2F− = −2λ2(∂A)P−(Xhh)P+(Xhh)P−(∂A) +O(h5) . (5.3)

For the computation of the scattering amplitude we must saturate these vertices with the

polarization states ε±±µν (p) for the gravitons, and ε±µ (p) for the vectors (with the usual on-

shell conditions p2 = 0 and pµε±±µν (p) = pµε±µ (p) = 0). Putting back the internal indices we
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A+A+

A A

h++ h−− h++ h−−

A+A+

h++ h−− h++ h−−

Figure 1. Graphs contributing to the amplitude A(AAB
+ (p1)ACD

+ (p2)h++(p3)h++(p4)h−−(p5)

h−−(p6)).

recall that the vector fields of N -extended supergravity transform in the adjoint of SO(N )

(with an extra singlet vector for N = 6); the vector polarizations therefore carry an extra

SO(N ) label [AB]. When applied to the field strength this SO(N ) label becomes elevated to

an (S)U(N ) index pair, where we must now distinguish between upper and lower positions

of the indices [AB]. For instance, for N = 8 supergravity this results in the substitutions

F+AB
µν → ip[µε

+AB
ν]

F−µνAB → ip[µε
−
ν]AB (5.4)

where F+AB
µν transforms in the 28 of SU(8), while F−µνAB transforms in the 28 of SU(8),

with independent polarizations ε±ABµ for all vectors. These SU(8) assignments are further-

more consistent with the relations

P+µν
ρσ(ipρε

+AB
σ ) = ip[µε

+AB
ν] , P−µν

ρσ(ipρε
−
σ AB) = ip[µε

−
ν]AB ,

P+µν
ρσ(ipρε

−
σ AB) = 0 , P−µν

ρσ(ipρε
+AB
σ ) = 0 . (5.5)

At order O(λ2) the amplitude

AAB,CD(p1, . . . , p6) =
〈
AAB+ (p1)ACD+ (p2)h++(p3)h++(p4)h−−(p5)h−−(p6)

〉
(5.6)

will thus receive two contributions, namely one from the square of the quadratic vertex (first

line in (5.3)) with two vectors contracted, and the other from the sextic vertex (second and

third line in (5.3)); these two contributions are depicted in figure 1. We note that in this am-

plitude both index pairs [AB] and [CD] are in the upper position because of the positive he-

licities of the external spin-one states. Since one cannot form an SU(N ) singlet with four up-

per indices for N ≥ 5, a non-vanishing result for this amplitude would indicate a breakdown

of the SU(N ) R symmetry. However, we will now show that this amplitude indeed vanishes.

To proceed we first consider the square of the O(λ) vertex: not forgetting a factor 1/2

from the expansion of the exponential this leads to

1

2

(
− 4iλ(∂A)P+(Xhh)P−(∂ A)

)(
− 4iλ(∂A)P−(Xhh)P+(∂A)

)
(5.7)

where the underbracket denotes the contraction (= vector propagator in a convenient

gauge)

AABµ (k)ACDν (−k) = − i

k2
ηµνδ

B[AδC]D (5.8)
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and where the positive helicity vectors are left uncontracted as they will be dressed with

positive helicity polarizations in accord with (5.5). Now using the relation

P−
µ2ν2
ρ2σ2

kµ2ην2ν̄2P−
µ̄2ν̄2
ρ̄2σ̄2

kµ̄2 =
1

4
k2P−ρ2σ2;ρ̄2σ̄2 , (5.9)

with the momentum k = p1 + p3 + p5 (= −p2 − p4 − p6) on the internal line we see that

the propagator factor is cancelled, and we end up with an effective local vertex

+ 2iλ2(∂A)P+(Xhh)P−(Xhh)P+(∂A)

which is the same as the contact interaction in the second line in (5.3). Therefore the

two contributions exactly cancel at the order of λ2. Thus, the deformed all order higher

derivatives action, which has a duality current conservation, yields a six-point on-shell

amplitudes at the λ2 order which does exhibit the expected SU(N ) demanded by N -

extended supergravity. Using the vertices in eq (5.3) it is not difficult to show that the

eight-point O(λ3) SU(N )-breaking amplitude also vanishes.

To conclude, we have shown that the bosonic duality-symmetric action with higher

derivatives does not break the SU(N ) symmetry of the six- and eight-point on shell am-

plitudes to SO(N ). However, in general, the issue of the restoration of SU(N ) symmetry

and supersymmetry based on deformed action requires additional investigations.

6 Discussion

In this paper we have constructed a complete deformed action of the two-vector sector of the

candidate UV divergence serving as the seed of deformation of N ≥ 5 supergravities; the

resulting action terms in eqs. (3.9) and (3.10) extend earlier results of [6], where the duality-

completion of the two-vector superpartner of an R4 counterterm was first considered. We

have solved perturbatively the twisted non-linear constraint equation (3.4) and identified

the dual field strength G+(F, φ) to all orders in λ, presented in (3.9). We have also found

the complete all order in λ action (3.10) such that the corresponding duality current is

conserved.

Our deformed action, when expanded near the base point of the moduli space GH has

terms which break SU(N ) symmetry down to SO(N ) symmetry. This feature, if it would

persist on shell, would prevent our deformed action from being consistent with supersym-

metry. We have therefore computed the six-point amplitude, as shown in figure 1, and we

have found that the contribution from the SU(N ) symmetry violating λ2 vertex in the de-

formed action is precisely cancelled by the tree diagram with two λ vertices. These examples

indicate that an analogous cancellation and restoration of SU(N ) symmetry in scattering

amplitudes might take place at all higher orders in λ and for all n-point amplitudes.

Our conclusion here is the following. When using the two-vector sector of the candidate

counterterm as a seed for deformation of the action we do not find an inconsistency between

the requirement of duality current conservation and supersymmetry of the deformed action.

It does not mean that our deformed action has a supersymmetric embedding, but there is
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also no obvious obstruction to it: the six-point tree amplitude based on deformed action has

an SU(N ) symmetry, which is necessary but not sufficient condition for supersymmetry.

Our analysis here does not explain why N = 5 supergravity in four loops is UV

finite [14]. We will continue with analogous investigation of more general sectors of the

deformation of the theory in Part II of this project. We will take into account the one-

vector and the four-vector sectors, in addition to the two-vector sector we have studied

here. Ultimately, the goal is to either construct a supersymmetric deformed action of

N ≥ 5 supergravity, or to find that it is not available.
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A A review of classical N -extended supergravities

We start by recalling4 the main features of four dimensional pure N -extended supergravi-

ties, N ≥ 5.

These theories contain in the bosonic sector, besides the metric, a number nv of vectors

and m of (real) scalar fields. The relevant classical bosonic vector and scalar part of action

is known to have the following general form:

S =

∫ √−g d4x

(
−1

2
R+ ImNΛΓF

Λ
µνF

Γ|µν +
1

2
√−g ReNΛΓε

µνρσ FΛ
µνF

Γ
ρσ+

+
1

2
grs(Φ)∂µΦr∂µΦs

)
. (A.1)

The vector-scalar part of this action was presented in (2.2) and notations explained there.

Duality rotations and symplectic covariance of these theories were uncovered in [1].

We consider a theory of nv abelian gauge fields AΛ
µ , in a D = 4 space-time with Lorentz

signature (which we take to be mostly minus). They correspond to a set of nv differential

1-forms

AΛ ≡ AΛ
µ dx

µ (Λ = 1, . . . , nv) . (A.2)

4This is a shortened version of the corresponding review in [26], which focuses on the details important

to our case.
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The corresponding field strengths and their Hodge duals are defined by5

FΛ ≡ dAΛ ≡ FΛ
µν dx

µ ∧ dxν ,

FΛ
µν ≡

1

2

(
∂µA

Λ
ν − ∂νA

Λ
µ

)
,

(?FΛ)µν ≡
√−g

2
εµνρσ F

Λ|ρσ . (A.3)

The dynamics of a system of abelian gauge fields coupled to scalars in a gravity theory is

encoded in the bosonic action (A.1). Introducing self-dual and anti-self-dual combinations

F± =
1

2
(F ± i ?F ) , ?(F±) = ∓iF± , (A.4)

the vector part of the Lagrangian defined by (A.1) can be rewritten in the form given

in (2.2). We introduce new tensors

?GΛ|µν ≡
1

2

∂L
∂FΛ

µν

= ImNΛΣ F
Σ
µν + ReNΛΣ

?FΣ
µν ←→ G∓Λ|µν ≡ ∓

i

2

∂L
∂F∓Λ

µν

, (A.5)

the Bianchi identities and field equations associated with the Lagrangian (A.1) can be

written as

∇µ?FΛ
µν = 0 , ∇µ?GΛ|µν = 0 (A.6)

or equivalently

∇µImF±Λ
µν = 0 , ∇µImG±Λ|µν = 0 . (A.7)

Introducing the 2nv-component column vector

?F ≡
(
?FΛ

?GΛ

)
, (A.8)

a general duality rotation is any general linear transformations on such a vector,(
?F

?G

)′
=

(
A B

C D

)(
?F

?G

)
. (A.9)

For any constant matrix S =

(
A B

C D

)
∈ GL(2nv,R) the transformed vector of magnetic

and electric field-strengths ?F ′ = S · ?F satisfies the same equations (A.6) as the original

one. In a condensed notation we can write

∂ ?F = 0 ⇐⇒ ∂ ?F ′ = 0. (A.10)

Separating the self-dual and anti-self-dual parts

F = F+ + F− ; G = G+ +G− (A.11)

5We use, for the ε tensor, the convention: ε0123 = −1.
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and taking into account that F and G are related by (A.5),

G+ = NF+ ; G− = N̄F− , (A.12)

the duality rotation in eq. (A.9) can be rewritten as(
F+

G+

)′
= S

(
F+

NF+

)
;

(
F−

G−

)′
= S

(
F−

N̄F−

)
. (A.13)

The kinetic matrix N = N (Φ) transforms under a duality rotation such that the definition

of G∓ as a variation of the Lagrangian continues to hold:

G′+Λ = (C +DN )ΛΣ F
+Σ ≡ − i

2

∂L′
∂F ′+Λ

= (A+BN )∆
ΣN ′Λ∆F

+Σ (A.14)

that

N ′ΛΣ(Φ′) =
[
(C +DN ) · (A+BN )−1

]
ΛΣ

. (A.15)

The condition that the matrix N is symmetric both before and after the duality transfor-

mation implies that

S ∈ Sp(2nv,R) ⊂ GL(2nv,R) , (A.16)

that is:

ST CS = C , (A.17)

where C is the symplectic invariant 2nv × 2nv matrix:

C =

(
0 −1
1 0

)
. (A.18)

It is useful to rewrite the symplectic condition (A.17) in terms of the nv × nv blocks

defining S:

AT C − CT A = BT D −DT B = 0 ; AT D − CT B = 1 . (A.19)

In N ≥ 5 models the fields are in some representation of the isometry group G of the

scalar manifold or of its maximal compact subgroup H.6 All the properties of supergravity

theories for N ≥ 5 are completely fixed in terms of the geometry of the coset G/H; they

can be formulated in terms of the coset representatives L satisfying by

L(Φ′) = gL(Φ)h(g,Φ) . (A.20)

Here g ∈ G, h ∈ H and Φ′ = Φ′(Φ), Φ being the coordinates of G/H. Note that the scalar

fields in G/H can be assigned, in the linearized theory, to linear representations RH of the

local isotropy group H so that dim RH = dim G − dim H (in the full theory, RH is the

representation which the vielbein of G/H belongs to).

6This group is also the isotropy group of the scalar manifold and it is also isomorphic to the R-symmetry

group; we use these names interchangeably when referring to H.
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Fermions in extended supergravities form representations the isotropy subgroup H
rather than of the isometry group G of the scalar manifold. For example, there is the

graviphoton — 2-form TAB — appearing in the supersymmetry transformation law of the

gravitino 1-form

δψA = ∇εA + αTAB|µνγ
aγµνεBVa + · · · . (A.21)

Here ∇ is the covariant derivative in terms of the space-time spin connection and the

composite connection of H, α is a coefficient fixed by supersymmetry, V a is the space-

time vielbein, A = 1, · · · ,N is the index acted on by the automorphism group H in the

fundamental representation. Here and in the following the ellipsis denote trilinear fermion

terms. The 2-form field strength TAB will be constructed by dressing the bare field strengths

FΛ with the coset representative L(Φ) of G/H, Φ denoting a set of coordinates of G/H.

The same field strength TAB which appears in the gravitino transformation law is also

present in the dilatino transformation law

δχABC = PABCD,`∂µφ
`γµεD + βT[AB|µνγ

µνεC] + · · · . (A.22)

Here PABCD = PABCD,`dφ
` is the vielbein of the scalar manifold, β is a coefficient fixed

by supersymmetry.

In order to give the explicit dependence on scalars of TAB it is necessary to recall that,

according to the Gaillard-Zumino construction, the isometry group G of the scalar manifold

acts on the vector (F−Λ, G−Λ) (or its complex conjugate) as a subgroup of Sp(2nv,R) (nv
is the number of vector fields) with duality transformations interchanging electric and

magnetic field strengths, as shown in (A.13).

Let now L(Φ) be the coset representative of G/H in the symplectic representation,

namely as a 2nv×2nv matrix belonging to Sp(2nv,R) and therefore, in each theory, it can

be described in terms of nv×nv blocks AL, BL, CL, DL satisfying the same relations (A.19)

as the corresponding blocks of the generic symplectic transformation S.

Since the fermions of supergravity theories transform in a complex representation of

the R-symmetry group H ⊂ G, it is useful to introduce a complex basis in the vector space

of Sp(2nv,R), defined by the action of following unitary matrix:

A =
1√
2

(
1 i1

1 −i1

)
,

and to introduce a new matrix V(Φ) obtained by complexifying the right index of the coset

representative L(Φ), so as to make its transformation properties under right action of H
manifest:

V(Φ) =

(
f f̄

h h̄

)
= L(Φ)A† , (A.23)

where:

f =
1√
2

(AL − iBL) ; h =
1√
2

(CL − iDL) .
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From the properties of L(Φ) as a symplectic matrix, it is easy to derive the following

properties for V:

V ηV† = −iC ; V†CV = iη , (A.24)

where the symplectic invariant matrix C and η are defined as follows:

C =

(
0 −1
1 0

)
; η =

(
1 0

0 −1

)
, (A.25)

and, as usual, each block is an nv × nv matrix. The above relations imply on the matrices

f and h the following properties:

i(f †h− h†f) = 1

(f th− htf) = 0. (A.26)

The nv × nv blocks f , h of V acquire the following form

f = fΛ
AB ,

h = hΛAB , (A.27)

where AB are indices in the two-index antisymmetric representation of H = SU(N )×U(1)

or SU(8) in N = 8 case. Upper SU(N ) indices label objects in the complex conjugate

representation of SU(N ):

(fΛ
AB)∗ = f̄ΛAB (A.28)

etc. Thus we have another symplectic section depending on scalars of the theory and

transforming as follows (
fΛ

AB

hΛAB

)′
= S

(
fΛ

AB

hΛAB

)
. (A.29)

The kinetic matrix N can be written in terms of the sub-blocks f , h, and turns out to

be:

N = h f−1, N = N t , (A.30)

transforming projectively under Sp(2nv,R) duality rotations as already shown in the pre-

vious section. By using (A.26) and (A.30) we find that

(f t)−1 = i(N − N̄ )f̄ , (A.31)

that is

(f−1)ABΛ = i(N − N̄ )ΛΣf̄
ΣAB . (A.32)

For the symplectic product in general 〈 | 〉, one can use the convention

〈A | B〉 ≡ BΛAΛ − BΛAΛ . (A.33)
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In particular, a symplectic invariant can be constructed using one symplectic section de-

pending on field strength and its dual (F±, G±) and the other one depending on scalars

(f, h)

T±AB = (fΛ
AB, hΛAB)

(
0 −1
1 0

) (
F±Λ

G±Λ

)
. (A.34)

Here T±AB is a G-invariant since ST CS = C, but it transforms under the group H. Thus,

the graviphoton and its conjugate are

T−AB = hΛAB F
−Λ − fΛ

AB G
−
Λ ,

T̄−AB = (T−AB)∗ = h̄Λ
AB F+Λ − f̄ΛAB G+

Λ . (A.35)

Note that, in classical supergravity, the graviphoton satisfies the constraint shown in

eq. (3.1) as a consequence of eqs. (A.30), (A.12). It is an H-covariant form of what is

known as a twisted selfduality constraint, covariant under G transformations.

The constraint eq. (3.1) is known as linear twisted self-duality constraint. It can be

given in the following form. We can use a 56-dimensional real symplectic vector of field

strengths

F ≡
(
FΛ

GΛ

)
, (A.36)

that transforms in the 56 of E7(7) ⊂ Sp(56,R). The scalars of the theory are described by

the symplectic section

VAB ≡
(
fΛ

AB

hΛAB

)
. (A.37)

The period matrix is defined by the property

hΛAB = NΛΣf
Σ
AB . (A.38)

This relation of the components of the section VIJ with the components of the sym-

plectic E7(7)/SU(8) coset representative imply the constraints

〈VAB | V CD〉 = −2iδAB
CD , 〈VAB | VCD〉 = 0 . (A.39)

The graviphoton field strength is defined by

TAB ≡ 〈VAB | F〉 , (A.40)

and its self- and anti-self-dual parts are

TAB
± ≡ 〈VAB | F±〉 . (A.41)

They all transform under compensating SU(8) transformations only. Since the H-tensor

TAB is complex, we have

TAB± = (TAB∓) . (A.42)
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Finally, the linear twisted self-duality constraint eq. (A.12), is equivalent to the vanishing

of

T
AB−

= (TAB+) = 0 . (A.43)

We are now able to derive some differential relations using the Maurer-Cartan equations

obeyed by the scalars through the embedded coset representative V. Indeed, let Γ =

V−1dV be the Sp(2nv,R) Lie algebra left invariant one form satisfying:

dΓ + Γ ∧ Γ = 0 . (A.44)

In terms of (f ,h), Γ has the following form:

Γ ≡ V−1dV =

(
i(f †dh− h†df) i(f †dh̄− h†df̄)

−i(f tdh− htdf) −i(f tdh̄− htdf̄)

)
≡
(

Ω(H) P̄
P Ω̄(H)

)
, (A.45)

where the nv×nv sub-blocks Ω(H) and P embed the H-connection and the vielbein of G/H
respectively. This identification follows from the Cartan decomposition of the Sp(2nv,R)

Lie algebra.

From (A.23) and (A.45), we obtain the (nv × nv) matrix equation:

D(Ω)f = f̄ P ,
D(Ω)h = h̄P , (A.46)

together with their complex conjugates. The H-connection is

Ω(H) = i[f †(Dh + hω)− h†(Df + fω)] = ω1 , (A.47)

where we have used:

Dh = N̄Df ; h = N f , (A.48)

which follow from (A.46) and the fundamental identity (A.26). Furthermore, using the

same relations, the embedded vielbein P can be written as follows

P = −i(f tDh− htDf) = if t(N − N̄ )Df , (A.49)

and

D(ω)fΛ
AB =

1

2
f̄ΛCDPABCD. (A.50)

For N > 4, P coincides with the vielbein PABCD of the relevant G/H.

This equation is a part of the Maurer-Cartan equation

DVAB =
1

2
PABCDV CD , (A.51)

where D is the H-covariant derivative and PABCD the vielbein 1-form on the scalar mani-

fold. Using the definition of the graviphoton field strength (A.40) we also find that

DTAB =
1

2
PABCD ∧ T CD

, (A.52)

and its complex conjugate.
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It is useful in the context of black holes to define the central charges, as integrals over

the dressed, scalar dependent graviphoton, ZAB and Z̄AB and symplectic doublet charges

Q which are integrals over field strength’s F and G which are scalar independent. These

are related as follows
1

2
ZABZ̄

AB = −1

2
QtM(N )Q , (A.53)

where C is the symplectic metric while M(N ) and Q are:

M(N ) =

(
1 −ReN
0 1

)
·
(

ImN 0

0 ImN−1

)
·
(

1 0

−ReN 1

)
= CVV†C , (A.54)

Q =

(
pΛ

qΛ

)
. (A.55)

More useful relations follow

f f † = −i
(
N − N̄

)−1
,

hh† = −i
(
N̄−1 −N−1

)−1 ≡ −iN
(
N − N̄

)−1 N̄ ,

h f † = N f f † ,

f h† = f f †N̄ . (A.56)

B Integrability of the deformed twisted self-duality in N ≥ 5 models

In this appendix we use matrix-like notation and omit the Lorentz, G, H indices.

f−1f̄−1 = f̄−1f−1 = i(N − N̄ ), (B.1)

XX̄ = λ2f−1∆f f̄−1∆̄f̄ = λ2f−1∆M∆̄M̄f , (B.2)

(XX̄)n = λ2nf−1(∆M∆̄M̄)nf , (B.3)

X(N − N̄ ) = λf−1∆f(N − N̄ ) = −iλf−1∆f(f−1f̄−1) = −iλf−1∆f̄−1. (B.4)

We consider the following action,

L = αF+(1−XX̄)−1X(N − N̄ )F− + βF+(1−XX̄)−1(N −XX̄N̄ )F+ + h.c., (B.5)

where α and β are complex constants. We rewrite this action by using the identities. The

first term can be rewritten as

αF+(1−XX̄)−1X(N − N̄ )F−

= αF+
∑
n=0

(XX̄)nX(N − N̄ )F−

= −iαF+
∑
n=0

λ2n+1f−1(∆M∆̄M̄)nf × f−1∆f̄−1F−

= −iαF+
∑
n=0

λ2n+1f−1(∆M∆̄M̄)n∆f̄−1F−. (B.6)
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The hermitian conjugate of this action is

iᾱF−
∑
n=0

λ2n+1f̄−1(∆̄M̄∆M)n∆̄f−1F+

= iᾱF+
∑
n=0

λ2n+1f−1(∆M∆̄M̄)n∆f̄−1F− + tot.div, (B.7)

where we have used the partial integral, and note that ∆̄ becomes ∆ by raising and lowering

Lorentz indices, which do not change the sign.

The second term becomes

βF+(1−XX̄)−1(N −XX̄N̄ )F+

= βF+(1−XX̄)−1{(N − N̄ )− (1−XX̄)N̄ )}F+

= βF+NF+ + βF+
∑
n=1

(XX̄)n(N − N̄ )F+

= βF+NF+ + βF+
∑
n=1

λ2nf−1(∆M∆̄M̄)nf(N − N̄ )F+

= βF+NF+ + βF+
∑
n=1

λ2nf−1(∆M∆̄M̄)n−1∆M∆̄M̄f(N − N̄ )F+

= βF+NF+ + βF+
∑
n=1

λ2nf−1(∆M∆̄M̄)n−1∆M∆̄f̄(N − N̄ )F+

= βF+NF+ − iβF+f−1
∑
n=1

λ2n(∆M∆̄M̄)n−1∆M∆̄f−1F+. (B.8)

Therefore the Lagrangian becomes

L = βF+NF+ − iβF+f−1
∑
n=1

λ2n(∆M∆̄M̄)n−1∆M∆̄f−1F+

+ 2(Imα)F+
∑
n=0

λ2n+1f−1(∆M∆̄M̄)n∆f̄−1F−

+ β̄F−N̄F− + iβ̄F−f̄−1
∑
n=1

λ2n(∆̄M̄∆M)n−1∆̄M̄∆f̄−1F− + tot.div. (B.9)

Let us recall the form of dual tensor G, and rewrite it with identities.

G+ = (1−XX̄)−1[X(N − N̄ )F− + (N −XX̄N̄ )F+] (B.10)

= −i
∑
n=0

λ2n+1f−1(∆M∆̄M̄)n∆f̄−1F− +NF+ − if−1
∑
n=1

λ2n(∆M∆̄M̄)n−1∆M∆̄f−1F+.

On the other hand,

G+ =
i

2

∂S

∂F+
(B.11)

= i(Imα)
∑
n=0

λ2n+1f−1(∆M∆̄M̄)n∆f̄−1F− + iβNF+

+ βf−1
∑
n=1

λ2n(∆M∆̄M̄)n−1∆M∆̄f−1F+. (B.12)
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Note that we have performed partial integrals, lowering and raising operations in the above.

Thus, by choosing α = −i and β = −i, we can reproduce the deformed dual tensor G from

the action.

We would like to check the integrability condition (3.11) more carefully. As a simple

example consider the first (i.e. O(λ2)) correction discussed in section 4, but dressed with

scalars:

L = −iF+XX̄(N − N̄ )F+ + h.c. = −iλ2F+f−1∆M∆̄f−1F+ + h.c.. (B.13)

Here

fΣ
AB(f̄−1)CDΣ = MABCD. (B.14)

From the identity, the conjugate to eq.(A.32) we get

(f̄−1)CDΣ = i(N − N̄ )ΣΛf
Λ
CD, (B.15)

and

MABCD = ifΣ
AB(N − N̄ )ΣΛf

Λ
CD. (B.16)

Then, the part of the action can be written as

iF+(f−1)AB∆fΣ
AB(N − N̄ )ΣΛ′f

Λ′
CD∆̄(f−1)CDF+ (B.17)

and

F+(f−1)AB ∆MABCD ∆̄ (f−1)CDF+. (B.18)

Note that on an H-invariant the covariant derivative is a simple one:

DS = dS. (B.19)

For S = KABK̄
AB we find that

DKAB = dKAB +B[A
CKCB] (B.20)

and

D̄K̄AB = dK̄AB + B̄[A
CK̄

CB]. (B.21)

To agree with DS = dS we need the H-connection to be antihermitian

B = −B†. (B.22)

Now we present (B.18) as follows

F̃AB
−→
∆ M̃AB (B.23)

where we have defined

M̃AB ≡MABCD ∆̄ (f−1)CDF+ F̃AB ≡ iF+(f−1)AB (B.24)

since we are only interested in H-covariant properties. We perform partial integration

in (B.23) and use the fact that d becomes −d and our ∆ has 2 factors d+B, each becomes
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−d + BT to act to the left. We use the antihermitian property of B and replace it by

−d− B̄. Since ∆ has 2 of these factors we find that

F̃AB
−→
∆ M̃AB = F̃AB

←−̄
∆ M̃AB. (B.25)

The action acquires a form

iF+(f−1)AB
←−̄
∆ MABCD

−→̄
∆ (f−1)CDF+. (B.26)

This is a confirmation of a consistency condition at this level. In the linear approximation

it gives a local amplitude which has at least 6 points

〈h++ h++ h−− h−− v+ v+〉+ h.c. (B.27)

and more. But is also seems to hint towards some kind of U(1) anomaly

〈h++ h++ h−− h−− v+ v+〉 − h.c.. (B.28)

We know from [10] that the U(1) subgroup in H = U(5) in N = 5 and H = U(6) in N = 6

are anomaly free, in H = SU(8) in N = 8 there is no U(1) subgroup. Moreover, it was

established more recently that there is no one-loop anomaly in N ≥ 5 supergravities.

C Examples of symplectic sections (f, h)

The action and supersymmetry rules of N = 5 supergravity were given in [35]. The

symplectic sections were presented in [36], and we refer to notations and details in [36].

The theory has 5 complex scalars zi, and Λ = ij and the symplectic section is:

f ijAB =
(
e1δ

ij
AB +

e1

2
εijABmzm + 2e2δ

[A
[i z

B]zj]

)
, i = 1, 2, 3, 4, 5 , (C.1)

hij|AB = Nij|mnfmnAB, (C.2)

Nij|kl = − i

1− (zm)2

(
1

2

[
1 + (zn)2

]
δijkl −

1

2
εijklpzp − 2δ[i [kzl]zj]

)
, (C.3)

hij|AB = −i
[e1

2
δijAB −

e1

4
εijABkzk + e2δ

[A
[i z

B]zj]

]
. (C.4)

Here e2
1 ≡ 1

1−|z|2 , e2 ≡ 1−e1
|z|2 .

The action and supersymmetry rules of N = 8 supergravity were given in [32] and

in [33]. Here we are using the ones in [33], in SL (8,R)-basis. The translation between

the symplectic formalism for extended supergravities reviewed in [26] and the original

formulation of N = 8 supergravity of [33], (including the more recent analysis of the

gauge-fixing local SU(8) in [34]), which was presented in [37].

The coset representative for E7(7)/SU(8) was parametrized in [33] as follows

V =

(
uIJij vijKL

vklIJ uklKL

)
. (C.5)
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The sub-matrices u and v carry indices of both E7(7) and SU(8) (I = 1, . . . , 8, I = 1, . . . , 8)

but one can choose a suitable SU(8) gauge for the fields, and then retain only manifest

invariance with respect to the rigid diagonal subgroup of E7(7)× SU(8), without distinction

among the two types of indices. Comparing the notation of [33] (in particular the appendix

B) with the symplectic formalism of [1, 26], we can identify{
φ0 ≡ u
φ1 ≡ v

u kl
ij = (P−1/2) kl

ij ,

vijkl = −(P̄−1/2)ijmnȳ
mnkl

so that  f = 1√
2
(φ0 + φ1) = 1√

2
(u+ v)

ih = 1√
2
(φ0 − φ1) = 1√

2
(u− v)

. (C.6)

Since sections are sub-matrices of the symplectic representation, relatively to electric and

magnetic subgroups, their explicit indices components are given by

f kl
ij =

1√
2

(
(P−1/2) kl

ij − (P̄−1/2)ijmnȳ
mnkl

)
,

hij,kl =
−i√

2

(
(P−1/2) kl

ij + (P̄−1/2)ijmnȳ
mnkl

)
, (C.7)

where, in matrix notation,

P = 1− Y Y † , Y = B
tanh

√
B†B√

B†B
, Bij,kl = − 1

2
√

2
φijkl , (C.8)

the last definition coming from the choice of the symmetric gauge for the coset represen-

tative in eq. (B.1) of [33]. If one defines

P̃ = 1− Y †Y , (C.9)

and uses the identity

(P̃−1/2)Y † = Y †(P−1/2) , (C.10)

the following simple expressions for f and h are finally achieved:

f =
1√
2

[
P−1/2 − (P̃−1/2)Y †

]
=

1√
2

[1− Y †] 1√
1− Y Y †

, (C.11)

h = − i√
2

[
P−1/2 + (P̃−1/2)Y †

]
= − i√

2
[1 + Y †]

1√
1− Y Y †

. (C.12)

The above notations are such that

P 1/2 =
√

1− Y Y † P kl
ij = δklij − yijmnȳmnkl

P̃ 1/2 =
√

1− Y †Y P̄ klij = δklij − ȳklmnymnij . (C.13)

It is easily checked that the symplectic sections satisfy the usual relations

i(f †h− h†f) = 1 ,

hT f − fTh = 0 . (C.14)
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These are obtained writing the symplectic sections as in (C.11) and (C.12), and using the

identity

Y P̃−1 = P−1Y . (C.15)

The kinetic matrix is given in terms of the symplectic sections by [26]

N = hf−1 . (C.16)

Therefore, eqs. (C.11) and (C.12) yield

N = −i [1 + Y †]
1√

1− Y Y †
√

1− Y Y † 1

1− Y † =

= −i 1 + Y †

1− Y †

or, component-by-component,

Nij|kl = −i(δklmn + ȳmnkl)(δmnij − ȳijmn)−1 . (C.17)

Open Access. This article is distributed under the terms of the Creative Commons
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