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Abstract: A symmetry-twisted boundary condition of the path integral provides a suit-

able framework for the semi-classical analysis of nonperturbative quantum field theories

(QFTs), and we reinterpret it from the viewpoint of the Hilbert space. An appropri-

ate twist with the unbroken symmetry can potentially produce huge cancellations among

excited states in the state-sum, without affecting the ground states; we call this effect

“quantum distillation”. Quantum distillation can provide the underlying mechanism for

adiabatic continuity, by preventing a phase transition under S1 compactification. We re-

visit this point via the ’t Hooft anomaly matching condition when it constrains the vacuum

structure of the theory on Rd and upon compactification. We show that there is a precise

relation between the persistence of the anomaly upon compactification, the Hilbert space

quantum distillation, and the semi-classical analysis of the corresponding symmetry-twisted

path integrals. We motivate quantum distillation in quantum mechanical examples, and

then study its non-trivial action in QFT, with the example of the 2D Grassmannian sigma

model Gr(N,M). We also discuss the connection of quantum distillation with large-N

volume independence and flavor-momentum transmutation.
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1 Introduction and sketch of the idea

In this paper, we connect the semi-classical analysis of asymptotically free quantum field

theory in the calculable weak-coupling domain and with adiabatic continuity [1–4] (see

also [5–29]) with the ’t Hooft anomaly matching between the short distance (UV) and

long distance (IR) effective theories [30, 31] (see also [31–57]). We motivate our approach

using ideas from graded representation theory of Hilbert space. In 2d QFT, it has been

shown that adiabatic circle compactification with special spatial twisted boundary condi-

tions permits well-controlled semi-classical analysis of features such as symmetry breaking,

revealing the correct theta-angle dependence (when it exists), mass gap, Borel plane and

UV-IR renormalon structure. This approach applies to QFTs with instantons and theta

angles, such as O(3), CPN−1, and Gr(N,M) sigma models [2, 13, 20–22], as well as to the-

ories without instantons or a Θ-term, such as O(N) with N > 3, and the Principal Chiral

Model [17, 22, 28]. In both classes of QFTs, semi-classical analysis reveals the existence of

new saddles [1]. Our new Hilbert space approach gives extra physical insight into the spe-

cial twisted boundary conditions and their relation to the vacuum structure of the theory in

decompactification limit. In the first class of theories, those with instantons and Θ-angles,
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these unique boundary conditions are the ones for which a mixed anomaly polynomial,

despite being associated with a zero form symmetry, persists upon compactification.

In general, Hilbert spaces of QFTs and quantum mechanical (QM) systems are “big

places”. For example, even for a modest QM spin system with 50 spin- 1
2 particles, the

dimension of the Hilbert space is very large: H, dim(H) = 250 ≈ 1015. For the compu-

tation of certain properties of the system, not every state is as important as the others,

as is familiar for example from the success of variational approaches to low energy and

long-distance properties. In this work, motivated by ideas from graded representation the-

ory, we analyze the structure of the Hilbert space, and try to extract the most important

ground state contributions out of the vast Hilbert space. We show that this is equiva-

lent to using the symmetry-twisted partition function instead of the thermal one. The

idea is reminiscent of the supersymmetric (Witten) index [58–60], but it works equally

well for non-supersymmetric theories, including purely bosonic theories. In supersymmet-

ric systems, a natural grading is the Z2 fermionic number, (−1)F . This grading distin-

guishes bosonic states from fermionic states, leading to large cancellations between degen-

erate states under supersymmetry, and turns a thermal state sum into a graded state-sum

Z(L) = trH

[
exp(−LĤ)(−1)F

]
, which has no dependence on L. We are also motivated by

the success of twisted partition functions in probing the low energy and non-perturbative

properties of supersymmetric quantum field theories [61–63]. In a purely bosonic theory,

or in general non-supersymmetric theories, we seek a similar operation that distills the

ground state from excited states: we call this procedure quantum distillation.

As a general setup, let us consider a QFT with the global symmetry G, and denote

its Hilbert space and Hamiltonian as H and Ĥ, respectively. If the symmetry G is sponta-

neously broken to G0, the Hilbert space is decomposed into superselection sectors labeled

by the coset space G/G0:

H =
⊕

v∈G/G0

H(v), (1.1)

where the matrix elements of any local operators between H(v) and H(v′) are zero in the

infinite volume limit (v 6= v′). Since H(v) and H(v′) are related by the broken symmetry

G, they have the same energy spectrum. Assuming the absence of accidental degener-

acy, energy eigenstates of each H(v) with energy E are in some irreducible representation

RE of the unbroken symmetry G0, and especially the ground state is singlet which we

denote as R0:

H(v) ' R0 ⊕
⊕
E>0

RE . (1.2)

The ordinary partition function treats states within a given representation RE exactly in

the same way, since each state appears once with its Boltzmann weight:

Z(β) = trH

[
exp(−βĤ)

]
= vol(G/G0)

(
1 +

∑
E>0

dim(RE) [exp(−β E)]

)
. (1.3)

For a system with large global symmetries, dim(RE) can grow very quickly as a function

of E. Therefore, in order to extract ground state properties, such as the ground state
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degeneracy vol(G/G0), we have to take the limit β → ∞, which is typically the strongly-

coupled regime of interesting field theories.

Let Q̂i denote the generators of the maximal torus of G0, so that [Q̂i, Q̂j ] = [Q̂i, Ĥ] = 0,

and we introduce the symmetry-twist operator,

Ω̂ = exp

i
∑
j

αjQ̂j

 . (1.4)

We define the symmetry-twisted partition function as:

ZΩ(L) = trH

[
exp(−LĤ)Ω̂

]
= vol(G/G0)

(
1 +

∑
E>0

trRE
(
Ω̂
)

exp(−LE)

)
. (1.5)

Since [Q̂i, Ĥ] = 0, eigenstates of Ĥ are also eigenstates of Q̂i, and (1.5) provides pure phase

assignments to states in each RE . These states in RE are, by symmetries, degenerate, so

the phases provide an opportunity for the states within RE to interfere destructively,

leading to state-cancellations, so that trRE (Ω̂) � dim(RE). When this is true, we can

extract the ground-state properties from ZΩ(L) without taking L → ∞, providing more

useful information concerning the nonperturbative aspects of asymptotically free QFTs.1

What is this good for? There are three related answers to this question. We also

summarize these viewpoints in figure 1:

• Analyticity, adiabatic continuity, and semi-classics: to study the ground state

properties in a non-trivial asymptotically free QFT, a natural approach is to take

advantage of the weak coupling at small-β (high temperature). However, at small-β,

Z(β) is an extremely contaminated quantity. It has contributions from a huge tower

of states with similar order of magnitude Boltzmann weights e−βE . Furthermore, in

the presence of phase transitions, Z(β) is non-analytic as a function of β. On the other

hand, a suitable ZΩ(L) may be a relatively uncontaminated quantity, dominated by

a few or even a single state,2 due to large-cancellations in the state-sum [2, 26]. As a

result, it may be analytic as a function of L and can continuously connect small and

large L limits. If this is the case, the corresponding path integral does not change

dramatically as the radius is changed. At small-L where the theory becomes weakly

coupled, the corresponding path integral encodes semi-classical non-perturbative in-

formation about the vacuum structure of the theory which is adiabatically connected

1A real chemical potential does not cause a sign problem in the Hamiltonian formulation, but does

create a sign problem in the Euclidean path integral formulation. The grading in (1.5) corresponds to

imaginary chemical potentials. In this case, it does not create a sign problem in the Euclidean path integral

formulation, but it does cause a sign “problem” in the Hamiltonian formulation (the graded state-sum).

However, this Hamiltonian sign “problem” is actually useful. Thus, the physical intuition behind real and

imaginary chemical potentials are somehow opposite. The former creates preference of some states over the

others by altering the magnitude of their Boltzmann weight, the latter does not change the magnitude of

the Boltzmann weight, but attaches a pure phase to the state according to its charge.
2In this sense, our approach has a similarity to tensor network approach to QFT [64]. Both may pick

out a subset of important states in an otherwise exponentially large Hilbert space.

– 3 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
8

HilbertNspaceNpicture
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NoNconstraintNbyN
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anomalyNinN2d

anomalyNinN2d

Figure 1. Schematic illustration of the advantages of the symmetry-twisted partition function

ZΩ(L) in comparison with the thermal partition function Z(β). In the left column, we count the

degrees of freedom of mesons. Mesons give a large, O(N2) contribution to Z(β) since they are in the

adjoint representation of the SU(N)/ZN symmetry, while ZΩ(L) is affected only by O(1). In the

middle column, it is explained by the Kaluza-Klein (KK) or Matsubara decomposition of the fields,

and the KK modes in ZΩ(L) are much denser than those of Z(β), due to the flavor-momentum

transmutation. In the right column, we explain its consequence for the ’t Hooft anomaly of the

theory, and the ’t Hooft anomaly in 2 dimensions persists in ZΩ(L) for any L, while it survives in

Z(β) only for β →∞.

to the strong coupling regime at large-L [1]. Note that this construction does not

change the theory, vacuum or Hilbert space. We are simply probing its low energy

properties with a different operator, leading to a generalization of partition function,

in which there may be potentially large cancellations between states, and which may

be analytic.

• Quantum distillation and mixed anomalies: assume the quantum theory has a

mixed anomaly between two symmetries G1 and G2. Further, assume that these are

zero-form symmetries. It has recently been shown [55], and here we generalize this

argument to the Grassmannian Gr(N,M) sigma model, that an anomaly polynomial

that exists on Rd persists on Rd−1 × S1 if and only if one uses a unique background

holonomy associated with G1. This is equivalent to putting a unique twisted bound-

ary condition associated with the path integral formulation of the same theory, and

correspondingly a unique (ideal) distillation of the Hilbert space.

• Flavor-momentum transmutation in the path integral: when a theory is com-

pactified on a circle of radius L, and one uses the special graded partition function

ZΩ(L), the G singlet observables in the theory exhibit volume independence at large

rank(G). The Kaluza-Klein decomposition of modes in path integral involves the

quantization of momentum not in units of 2π
L , but rather in units of 2π

L rank(G) , for

large rank. In other words, the flavor index transmutes to a momentum index.

This provides the perturbative intuition behind the idea of large-N volume indepen-

dence [65, 66].
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All these features of the symmetry-twisted partition function ZΩ(L) provide special

advantages for the study of the ground-state properties of asymptotically-free QFTs.

2 Quantum distillation and graded partition functions in QM

In this section, we use two simple QM examples to explain the underlying physical intuition

of the graded (or symmetry-twisted) partition function. We first discuss the N -dimensional

simple harmonic oscillator. The simplicity of this example should not deceive the reader.

Since it is the global symmetry that matters for the discussion, this example illustrates

some interesting effects relevant for non-trivial QFTs. Next, we discuss QM of a particle

on the CPN−1 manifold.

2.1 N-dimensional isotropic simple harmonic oscillator

Consider the N -dimensional isotropic simple harmonic oscillator

Ĥ =

N∑
j=1

1

2

(
p̂2
j + x̂2

j

)
=

N∑
j=1

(
â†j âj +

1

2

)
, (2.1)

which has a global U(N) symmetry. The canonical commutation relation is [x̂i, p̂j ] =

iδij , and creation and annihilation operators are introduced as âi = 1√
2
(x̂i + ip̂i) and

â†i = 1√
2
(x̂i − ip̂i), respectively. The ground state |0〉 is characterized by âi|0〉 = 0 for all

i = 1, . . . , N , and the Hilbert space is spanned by the Fock basis,

|{ni}〉 =
1√

n1! · · ·nN !
(â†1)n1 · · · (â†N )nN |0〉. (2.2)

The energy of the state |{ni}〉 is

E{ni} =
N

2
+

N∑
i=1

ni. (2.3)

The global U(N) symmetry acts as: âj 7→ Uij âj , with U ∈ U(N). Since we consider a

bosonic system, the states are classified by the totally symmetric representations of this

U(N) symmetry. In the highest weight notation, they are denoted as (λ, 0, . . . , 0), and the

corresponding Young tableau has one row with λ boxes:

(for λ = 6) . (2.4)

The degeneracy is the dimension of the representation:

dim(λ, 0, . . . , 0) =

(
N + λ− 1

λ

)
. (2.5)
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The thermal partition function of this system is given by

Z(β) =

∞∑
λ=0

∑
n1,...,nN≥0

δn1+···+nN ,λe−βE{ni}

= e−βN/2
∞∑
λ=0

(
N + λ− 1

λ

)
e−βλ

=
1

(2 sinh(β/2))N
(2.6)

The degeneracy factor grows very rapidly. In fact, in the large-N limit, the states with

λ ∼ N have exponentially large degeneracy. This is a quite generic feature of thermal

partition functions for theories with large global symmetries.

2.2 Quantum distillation and graded representations

We now construct a symmetry-twisted partition function, which is free from contamination

by high-energy states. Define the symmetry operator Ω̂

Ω̂ = exp

(
i
N∑
k=1

αkQ̂k

)
, where αk =

2π

N
k, Q̂k = â†kâk. (2.7)

It acts on the Fock basis as

|{ni}〉 7→ exp

(
i
∞∑
k=1

2π

N
k nk

)
|{ni}〉. (2.8)

The corresponding N ×N twist matrix Ωij is defined by

Ω̂â†jΩ̂
−1 = Ωij â

†
j , (2.9)

and is diagonal, with entries being powers of the N -th root of unity:

Ω = diag[q, q2, . . . , qN ] , q ≡ exp

(
2πi

N

)
(2.10)

Using this symmetry operator Ω̂, we define the symmetry-twisted partition function,

ZΩ(L) = tr
[
Ω̂ exp(−LĤ)

]
. (2.11)

We use the symbol L instead of β, to further distinguish the twisted partition function (1.5)

from the thermal partition function (1.3). Using the Fock basis for the trace, we find that

ZΩ(L) = e−LN/2
∞∑
λ=0

tr(λ,0,...,0)(Ω)e−Lλ, (2.12)

where trR means the trace in the representation R, labelled in highest weight notation.

We evaluate the density of states using the following formula for the totally symmetric

representation,

tr(λ,0,...,0)(Ω) =

λ∑
k=0

1

k!

∑
r1,...,rk≥1

δr1+···+rk,λ
tr�(Ωr1) · · · tr�(Ωrk)

r1 · · · rk
. (2.13)
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Figure 2. Schematic image for the graded partition function (2.12) for an N -dimensional isotropic

simple harmonic oscillator, with N = 4, showing the representations with λ = 0, 1, 2, corresponding

to energy Eλ = N
2 +λ. Since the phases qn = exp(2πin/4) are attached to the states, most of them

cancel with one another, and we obtain the information of the ground states. We will see that a

similar structure is also present in certain QFTs.

The trace in the defining representation (1, 0, . . . , 0) = � shows that

tr�(Ωr) =

{
N (r = 0 mod N),

0 (r 6= 0 mod N).
(2.14)

Using these results, we obtain3

tr(N,0,...,0)(Ω
r) =

{
1 (r = 0 mod N),

0 (r 6= 0 mod N).
(2.15)

There is tremendous cancellation among degenerate states due to the phase factors attached

to them, leading to

ZΩ(L) = e−LN/2
∞∑
λ=0

e−LNλ =
e−LN/2

1− e−NL
=

1

2 sinh(LN/2)
. (2.16)

This should be compared with the thermal partition function (2.6). Note the very different

behavior in the large scale limit (β or L, respectively):

Z(β) = e−βN/2

(
1+N e−β+· · ·+

(
2N−2

N−1

)
e−(N−1)β+

(
2N−1

N

)
e−Nβ+. . .

)
(2.17)

ZΩ(L) = e−LN/2
(

1+0×e−L+· · ·+0×e−(N−1)L+1×e−NL+. . .
)
. (2.18)

Thus, the symmetry-twisted partition function of the N -dimensional isotropic oscillator at

radius L maps to the thermal partition function of a one-dimensional harmonic oscillator

with the inverse temperature NL. Therefore, at large N , the symmetry-twisted partition

function ZΩ(L) is much less contaminated by high-energy states. The relation to large N

volume independence in QFT is discussed in section 3.6.

This mapping, albeit simple, may in principle have dramatic implications. In particu-

lar, N can be taken to infinity to reach a thermodynamic limit, and the thermal partition

function of a thermal system may develop non-analyticities, and associated phase transi-

tions. But the graded partition function maps to a system with effectively one-degree of

3Note the formula:
∑
k≥0

1
k!

∑
r1,...,rk≥1

δr1+···+rk,λ
r1···rk

= 1, coming from the Taylor expansion of (1−x)−1 =

exp(− ln(1 − x)).

– 7 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
8

freedom, which will not exhibit a thermodynamic phase transition. This type of simplifi-

cation is what we seek in non-trivial QFTs, discussed below in section 3. This is physically

interesting, because if the graded partition function is analytic as a function of L, that gives

an opportunity to study non-perturbative aspects of asymptotically free QFTs precisely

at small-L where the theory becomes weakly coupled. This gives a Hilbert space rein-

terpretation of the phenomena of adiabatic continuity and semi-classic calculability that

have been observed in 2d CPN−1, O(N), principal chiral model, and Grassmannian sigma

models [2, 13, 17, 18, 20–22, 28], and is also potentially related to center-stability and avoid-

ance of Hagedorn instability in 4d QCD(adj) (QCD with multiple adjoint fermions) [1, 3–

8, 16, 67]. These QFTs have been analyzed from the path integral perspective. Therefore,

we next briefly discuss the implications of quantum distillation of Hilbert space in the path

integral formulation.

2.3 Path integral interpretation: Flavor-momentum transmutation

It is useful to interpret the Hilbert space distillation in the graded partition function ZΩ(L)

from the path integral viewpoint. This provides a perspective on the volume independence

phenomenon in large-N QFTs. In the absence of an operator insertion to the partition

function, the Kaluza-Klein modes of a spatially compactified (with radius L) QFT are

quantized in units of 2π
L , where each KK-mode has N -fold degeneracy. The insertion of the

operator Ω̂ = ei
∑
αiQi in (2.11) amounts to a finer quantization of the KK-modes, as the N -

fold degeneracy of KK-modes is split into N -levels with 1-fold degeneracy, where the spacing

between the levels is now 2π
LN . In particular, in the L =fixed, N →∞ limits, the spectrum

looks like the perturbative spectrum of a theory on R2, despite the fact that L ∼ O(N0)

can be arbitrarily small. We refer to this phenomenon as flavor-momentum transmutation.

This is analagous to the color-momentum transmutation in the Eguchi-Kawai reductions

as discussed by Gross and Kitazawa [68], and Gonzalez-Arroyo and Okawa [69–71].

More formally, in the coherent state basis, the path-integral expression of the thermal

partition function of the N -dimensional (bosonic) oscillator is given by

Z(β) =

∫
a(β)=a(0)

Da∗Da exp

(∫ β

0
dτ

N∑
k=1

[ia∗k∂τak − a∗kak]

)
, (2.19)

with periodic boundary conditions on the fields, as appropriate for bosonic degrees of

freedom. The graded partition function can be realized with twisted boundary conditions

on the a(τ), ZΩ(L) =
∫
a(L)=Ωa(0)(. . .). By a field redefinition, the a(τ) can be rendered

periodic at the price of turning on a particular SU(N) background field. The result is:

ZΩ(L) =

∫
Da∗Da exp

(∫ L

0
dτ

N∑
k=1

[
ia∗k

(
∂τ +

2π

NL
k

)
ak − a∗kak

])
. (2.20)

Decomposing the field with the Matsubara modes, ak(τ) = 1√
L

∑
m ãk,mei 2π

L
mτ , the expo-

– 8 –
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nent becomes

∞∑
m=−∞

N∑
k=1

[
iã∗k,−m

(
2π

L
m+

2π

NL
k

)
ãk,m − ã∗k,−mãk,m

]

=

∞∑
m′=−∞

[
i

2π

NL
m′ã′∗−m′ ã

′
m′ − ã′∗−m′ ã′m′

]

=

∫ NL

0
dτ ′
[
ia′∗(τ ′)∂τ ′a

′(τ ′)− a′∗(τ ′)a′(τ ′)
]
, (2.21)

where ã′m′ = ãk,Nm, with k = m′ mod N . This defines the partition function of a one-

dimensional harmonic oscillator with inverse temperature NL. Because of the twisted

boundary condition, the flavor-dependent imaginary chemical potential plays the role of

refined Matsubara frequencies. This reproduces exactly (2.16), with the physical implica-

tions already discussed after (2.16).

2.4 Quantum distillation in CPN−1 quantum mechanics

As a warm-up to some 2d sigma model QFTs, we now briefly consider the quantum me-

chanics of a particle moving on the complex projective space, CPN−1:

CPN−1 =
U(N)

U(N − 1)×U(1)
. (2.22)

This QM problem is exactly solvable, and the group theoretic structure of the corresponding

Hilbert space is well known: see for example [72]. One may be tempted to think that the

Hilbert space again decomposes into representations of U(N), as in the N -dimensional

simple harmonic oscillator discussed in the previous sub-sections. However, the correct

global symmetry is in fact PSU(N) = SU(N)/ZN . An analogous comment applies to the

familiar example of a QM particle on S2, where we do not have half-integer spin states (in

which case the symmetry would be SU(2)) but only integer spin states, so that the faithful

symmetry is SU(2)/Z2 = PSU(2) = SO(3).

In the highest weight notation, the Hilbert space can be decomposed as [72]:

H '
∞⊕
λ=0

Rλ, (2.23)

with Rλ = (λ, 0, . . . , 0︸ ︷︷ ︸
N−3

, λ). The degeneracy of the representation grows extremely quickly:

dim(Rλ) =
2λ+N − 1

N − 1

(
λ+N − 2

λ

)2

. (2.24)

Therefore, the thermal partition function is:

Z(β) =

∞∑
λ=0

dim(Rλ)e−βE(λ,0,...,0,λ) , (2.25)

– 9 –
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where the energy eigenvalues are expressed in terms of the quadratic Casimir:

E(λ,0,...,0,λ) = 2λ(λ+N − 1) (2.26)

Now consider the following graded partition function:

ZΩ = tr
[
Ω̂ exp(−LĤ)

]
=

∞∑
λ=0

tr(λ,0,...,0,λ)(Ω)e−LE(λ,0,...,0,λ) , (2.27)

where Ω is the U(N) twist matrix in (2.10). This requires the knowledge of tr(λ,0,...,0,λ)(Ω),

which can be found easily using the multiplication identity:

(λ, 0. · · · , 0, 0)⊗ (0, 0, · · · , 0, λ) = (λ− 1, 0. · · · , 0, 0)⊗ (0, 0, · · · , 0, λ− 1) + (λ, 0, · · · , 0, λ).

(2.28)

For example, for λ = 5 and N = 4, we have the Young tableaux expression: ⊗

=

 ⊗

⊕
(2.29)

Therefore,

tr(λ,0,··· ,0,λ)(Ω) =
∣∣tr(λ,0,··· ,0)(Ω)

∣∣2 − ∣∣tr(λ−1,0,··· ,0)(Ω)
∣∣2 . (2.30)

This formula has several useful implications. For example, taking Ω = 1 gives the dimension

of the corresponding representation, tr(λ,0,··· ,0,λ)(1) = dim((λ, 0, . . . , 0, λ)):

dim((λ,0, . . . ,0,λ)) =

(
λ+N−1

λ

)2

−

(
λ+N−2

λ−1

)2

=
2λ+N−1

N−1

(
λ+N−2

λ

)2

, (2.31)

agreeing with the degeneracy (2.24) of the states in the representation R = (λ, 0, . . . , 0, λ).

The expression (2.30) implies that it is natural to grade with respect to totally sym-

metric representations (as in the harmonic oscillator example), but of two different sizes.

This leads to dramatic cancellations in the graded state sum (2.11). Indeed, using (2.30)

and (2.15), we find that for the U(N) twist (2.10)

tr(λ,0,...,0,λ)(Ω) =


1 (λ = 0 mod N),

−1 (λ = 1 mod N),

0 (others).

(2.32)

Therefore, the symmetry-twisted partition function reduces to

ZΩ(L) =

∞∑
k=0

(
e−LE(kN,0,...,0,kN) − e−LE(kN+1,0,...,0,kN+1)

)
(2.33)

In the large-L (arbitrary N), as well as large-N (arbitrary L) limits, the sum is dominated

by low k values:

ZΩ(L) ∼ 1− e−2NL + 0 + · · ·+ 0 + e−4N(N−1/2)L − e−4N(N+1)L + . . . (2.34)

– 10 –
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This should be contrasted with the thermal partition function:

Z(β) ∼ 1 +
(
N2 − 1

)
e−2Nβ +

1

4
N2(N − 1)(N + 3) e−4(N+1)β + . . . (2.35)

We again emphasize that in obtaining ZΩ(L), we did not change the theory. The Hilbert

space associated with the graded and thermal partition functions are one and the same.

In the next section, we generalize this Hilbert space argument to QFT, and explore its

connection to mixed anomalies.

3 Quantum distillation in 2d QFTs

3.1 Overview of the 2d bosonic Gr(N,M) sigma model QFT

Now, we move to an interesting class of QFTs, the Grassmannian Gr(N,M) sigma models

in 2d. This theory has the following properties which makes it interesting in its own right,

in addition to being a testing-ground for ideas in QCD-like theories [73, 74].

• Asymptotic freedom and dynamically induced mass

• Instantons on any 2 dimensional Euclidean spacetime manifold M2, and fractional

instantons on R× S1
L with twisted boundary conditions.

• Confinement in the bosonic model

• Interpolation from vector model to matrix model as M interpolates from O(N0)

to O(N1).

• Quantum distillation in its Hilbert space with a suitably graded (symmetry-twisted)

partition function.

• Theta angle and a mixed anomaly between charge-conjugation symmetry C, and

PSU(N) global symmetry on R2 at Θ = π. In the supersymmetric N = (2, 2) exten-

sion, a mixed anomaly between discrete axial Z2N and PSU(N) global symmetry.

• Mixed anomaly (C-PSU(N)) on R1×S1
L at Θ = π, provided a unique twisted bound-

ary condition is imposed associated with PSU(N) symmetry.4 In the supersymmetric

N = (2, 2) extension, a mixed anomaly (Z2N -PSU(N)), provided the same boundary

conditions as in the bosonic case are used for the full super-multiplet.

Our goal in this section is to provide the relation between quantum distillation, semi-

classical analysis and mixed ’t Hooft anomalies. All three concepts are tied with symmetry-

twisted boundary conditions in the path integral formulation and its operator image in the

Hilbert space interpretation.

4Note that the anomaly polynomial and constraints remain the same as in R2, despite the fact that the

associated global symmetry is zero-form. With periodic boundary conditions, the anomaly polynomial does

not exist on R1 × S1
L.
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Formal aspects. We first consider purely bosonic sigma models whose target space is

given by the complex Grassmannian manifold Gr(N,M) [73, 74]. The elementary field is

the mapping:

z(x) : M2 → Gr(N,M) ≡ U(N)

U(N −M)×U(M)
(3.1)

The real dimension of the Gr(N,M) space is equal to the number of microscopic degrees

of freedom:

dimRGr(N,M) = N2 − [(N −M)2 +M2] = 2M(N −M) (3.2)

Note that M = 1 corresponds to the vector-like theory Gr(N, 1) = CPN−1, with dimension

2(N − 1), while the other extreme of M is the matrix-like theory Gr(2N,N), with dimen-

sion 2N2. Thus the Grassmannian models interpolate between vector-like and matrix-like

behavior. This nonlinear sigma model is realized as a gauged sigma model, in terms of

fields z as N ×M complex rectangular matrices, constrained such that z†z = 1M . For that

purpose, we first recall that

U(N)

U(N −M)
'
{
z ∈ CN×M

∣∣∣ z†z = 1M

}
. (3.3)

The action of the Gr(N,M) model is given by

S =
2

g2

∫
M2

tr[D(a)z† ∧ ∗D(a)z]− i
Θ

2π

∫
M2

tr(F ), (3.4)

where z :M2 → U(N)/U(N −M), a is the U(M) gauge field onM2, D(a) = d + ia is the

covariant derivative, and F = i−1D(a)∧D(a) = da+ia∧a is the U(M) field strength. When

it is evident, we simply denote D = D(a). The field z transforms under U(N)× U(M) as

z 7→ UNzU
†
M , for (UN , UM ) ∈ U(N)×U(M) where U(N) is global symmetry and U(M) is

gauge structure. The covariant derivative acts on z as

Dz = dz − iza, Dz† = dz† + iaz†. (3.5)

Since tr(F ) is a U(1) field strength, the topological charge is quantized in the integers:

Q ≡ 1

2π

∫
M2

tr(F ) ∈ Z (3.6)

Thus the topological Θ angle in (3.4) is 2π periodic, in this field normalization.

An important physical implication of the quantization of the topological charge is

the existence of charge-conjugation symmetry C at Θ ∈ πZ. Namely, the action (3.4) at

Θ ∈ πZ is invariant under C modulo 2π, and the quantum theory is invariant under the

charge conjugation. This symmetry will play a role in our discussion of quantum anomalies.

The Grassmannian model has instantons [73, 74]. The Bogomolnyi factorization of the

action gives

S =
2

g2

∫
tr[(Dz)† ∧ ∗Dz]

=
1

g2

∫
tr
[
(Dz ∓ i ∗Dz)† ∧ ∗(Dz ∓ i ∗Dz)

]
∓ i

2

g2

∫
tr(Dz† ∧Dz)

=
1

g2

∫
tr
[
(Dz ∓ i ∗Dz)† ∧ ∗(Dz ∓ i ∗Dz)

]
± 4π

g2

∫
tr(F )

2π
. (3.7)
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Thus the BPS/ ¯BPS equations are Dz = ±i ∗ Dz, and the action is bounded below, S ≥
4π
g2 |Q|, for each topological sector of charge Q, with equality satisfied on BPS solutions.

The instanton action SI , instanton amplitude, Θ-angle, dynamical strong scale Λ, and

β-function are related as:

SI =
4π

g2
, I2d ∼ e

− 4π
g2(µ)

+iΘ
, Λβ0 = µβ0I2d, any (N,M) (3.8)

where β0 = N is the leading order β-function [75]. In particular, the strong scale is re-

lated to a fractional power of the instanton amplitude, I1/β0

2d µ = Λ. Such effects play an

important role in the quantum Grassmannian field theory with symmetry-twisted com-

pactification [22].

Spectrum and representation. Let us now consider the spectrum of massive particles.

As an analogy with QCD, one may consider the z field as a “quark”, and z† as an “anti-

quark”. The gauge structure of the theory is U(M) = (SU(M)×U(1))/ZM , and the global

symmetry is PSU(N). The fields z and z† would transform as fundamental N and anti-

fundamental N̄ under the global symmetry, but these fields have both global and gauge

index, and in particular, they are not gauge invariant. More precisely,

z ∈
(

N , M

)
(3.9)

However, the bound states of z and z† are gauge invariant. The leading gauge invariant

operators in the theory are:

(zz†)kj (x) ∈ (AdjN , 1M ) , z(x)(ei
∫ y
x a)(z†)(y) ∈ (1N , 1M ) (3.10)

which are in the adjoint and singlet representations, respectively. In the large-N limit,

with M -finite, the adjoint and singlet representations become degenerate [76].

The fact that physical states in the spectrum transform in the adjoint or product of

adjoints and singlet representation (instead of the fundamental and other representations)

follows from the fact that the global symmetry of the theory is not SU(N), but is PSU(N) =

SU(N)/ZN . In this sense, the symmetry with the faithful representations is PSU(N), and

the same thing occurs in our CPN−1 QM example in section 2.

3.2 Hilbert space interpretation of twisted boundary conditions

The theory has a vacuum state, which can be described in detail semi-classically [2, 13]. The

excited states, as in the quantum mechanical example, lie in representations of PSU(N),

and the Hilbert space admits a corresponding decomposition. The analysis is similar to

the quantum mechanical CPN−1 example, except that, unlike in QM where excited singlet

states do not appear in the spectrum, now one has singlet higher energy states as well, due

to the existence of operators as in (3.10). Interestingly, and to a certain extent even more

dramatically than in the QM examples, in the large-N limit this implies that the graded

state-sum in the Grassmannian QFT is even simpler. The Hilbert space construction in

– 13 –



J
H
E
P
0
8
(
2
0
1
8
)
0
6
8

this subsection follows Sulejmanpasic [26]. Consider the insertion of the following operator

into the trace:

Ω̂ = ei
∑
k αkQ̂k (3.11)

Using this symmetry operator Ω̂, we define the symmetry-twisted partition function,

ZΩ(L) = tr
[
Ω̂ exp(−LĤ)

]
. (3.12)

The first excited states of the system are the adjoint and the singlet:

adjoint : (1, 0, . . . , 0, 1), degeneracy = N2 − 1

singlet : (0, 0, . . . , 0, 0), degeneracy = 1 (3.13)

The key facts are (2.32) and that the energy difference between these two states is O
(

1
N

)
in the large-N limit. This leads to a striking difference between the thermal state sum and

the graded state sum, since these low-lying states contribute as

Z(β) ≈ +(N2 − 1)× e−βEadj + 1× e−βEsinglet + . . . →︸︷︷︸
N→∞

N2 × e−βEadj

ZΩ(L) ≈ (−1)× e−βEadj + 1× e−βEsinglet + . . . →︸︷︷︸
N→∞

0 (3.14)

Thus the important effect of the grading is to turn the (N2 − 1)e−βEadj contribution into

a contribution (−1)e−βEadj , because of (2.32). This furthermore produces a relative sign

between the two leading contributions, −1× e−βEadj and +1× e−βEsinglet , in ZΩ(L), which

leads therefore to a cancellation in the large-N limit, due to the degeneracy of Eadj and

Esinglet at large N . For higher energy states, for any k-index representation with k 6= 0

modulo N , trR[Ω] = 0. And the next states that can potentially contribute have masses

of order O(N). Therefore, we find that the graded partition function has a simple large

N limit:

lim
N→∞

ZΩ(L) ∼ e−LE(0,0,...,0,0) (3.15)

In particular, it is analytic as a function of L, and cannot exhibit a phase transition as

L changes.

Note that analyticity of (3.15) is in sharpe contrast with the behavior of thermal

partition function, which has a deconfinement temperature Td = Λ
lnN , as a result of which

the theory becomes deconfined at large-N limit once a temperature is turned on [77]. In

distinction, (3.15) is analytic as a function of L, and is dominated by the same state both at

small and large L. In other words, βcritical →∞ in Affleck’s study [77], while Lc → 0 in [2].

3.3 Mixed anomalies on R2

In this section, we consider the constraint on the vacuum structure coming out of the ’t

Hooft anomaly matching. Following refs. [55, 56], we construct the ’t Hooft anomaly under
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adiabatic S1 compactification starting from that of the Grassmannian sigma model on R2.

To describe the mixed anomalies, we consider two examples.

• Bosonic Gr(N,M) model at Θ = π. The mixed ’t Hooft anomaly5 is between PSU(N)

and charge conjugation symmetry C.

• Supersymmetric N = (2,2) Gr(N,M) model. The mixed anomaly is between PSU(N)

and axial Z2N symmetry.

The reason for this exercise is two-fold. First, the anomaly has the important effect that

it dramatically reduces the possibilities of IR theories. Second, despite the fact that we are

considering zero-form symmetries, the anomaly polynomial persists upon compactification

on R × S1
L, if and only if one uses a unique twisted boundary condition, corresponding

precisely to the graded partition function ZΩ(L) = tr
[
Ω̂ exp(−LĤ)

]
. In path integral

language, this corresponds to a background SU(N) holonomy on the compactified spacetime

manifold, R×S1
L, as used in the semi-classical studies of these theories on R×S1 [2, 13, 22].

In other words, there is a precise relation between the persistence of the anomaly upon

compactification, the Hilbert space quantum distillation, and the semi-classical analysis of

the corresponding path integrals. We first describe the mixed anomaly, and then discuss

some of the physics associated with it.

3.3.1 Mixed anomaly for bosonic Gr(N,M) model at Θ = π

We first gauge the PSU(N) symmetry, and show that one loses 2π periodicity of the Θ

angle. As a result, C will be lost as a symmetry, implying a mixed anomaly.

To gauge the flavor symmetry, we introduce a background SU(N) one-form gauge field

A, and a ZN two-form gauge field B. The discrete two-form gauge structure can be realized

as a pair (B,C), a U(1) two-form gauge field B and a U(1) one-form gauge field C satisfying

the constraint NB + dC = 0.

Minimal coupling gives the action:

Sgauged =
2

g2

∫
R2

tr[D(a, Ã)z† ∧ ∗D(a, Ã)z]− i
Θ

2π

∫
R2

[tr(F ) +B]. (3.16)

Here, D(a, Ã)z = dz− iza+ iÃz, and Ã = A+ 1
NC is the U(N) gauge field. To obtain this

action, we impose the manifest U(1) one-form gauge invariance under

B 7→ B − dλ, Ã 7→ Ã+ λ, a 7→ a+ λ. (3.17)

By checking the spectrum of gauge-invariant line operators, we can immediately see that

the faithful symmetry group SU(N)/ZN is correctly gauged [79]: if we consider the U(N)

Wilson line in the fundamental representation, W (C) = trP exp(i
∫
C Ã), then W (C)k is

not one-form gauge invariant for any k 6= 0 mod N . To maintain gauge invariance, we must

5It has recently been shown that the bosonic CP1 model also has a mixed ’t Hooft anomaly between

C, parity P, and time reversal T symmetries [78] (see also [52]). In this paper, we do not discuss this

anomaly, but it is an interesting future question whether this anomaly can also persist under a certain

boundary condition.
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attach the surface operator exp(−ik
∫
S B) with ∂S = C, but it depends on the topology of

the surface and they are no longer genuine line operators.

A direct consequence at this stage is that the topological term (3.6) in the partition

function is no longer quantized in integer units. Instead,

Q =
1

2π

∫
R2

[tr(F +B)] =

∫
R2

d(tr(a))

2π︸ ︷︷ ︸
∈Z

+
M

N

∫
R2

dC

2π︸ ︷︷ ︸
∈M
N

Z

∈ gcd(N,M)

N
Z (3.18)

which implies that the Θ angle is no longer 2π periodic, but is 2πN/gcd(M,N) periodic.

Since strict 2π periodicity was crucial for C symmetry at Θ = π, now, this symmetry is

lost, implying a mixed anomaly. Before discussing the implications of this mixed anomaly,

let us examine the same effect from the perspective of the partition function.

Denote the partition function in the background (A,B) gauge fields as

ZΘ[(A,B)] =

∫
Dz†DzDa exp(−Sgauged), (3.19)

where, in the path integral, we integrate only over the fields that are present in the micro-

scopic theory. Applying the charge-conjugation operation to this partition function, one

observes that Z at Θ = π is changed as:

Zπ[C · (A,B)] = Zπ[(A,B)] exp

(
−iM

∫
R2

B

)
(3.20)

in the presence of the background gauge field. This is of course the same effect that

rendered the topological charge non-integer in (3.18). This gives the ’t Hooft anomaly, or

global inconsistency.

To demonstrate that this is a genuine anomaly, we must show that it is irremovable by

a local counter-term in two dimensions. Gauge invariance says that such a term is given by

ik

∫
B, (3.21)

where k = 0, 1, . . . , N − 1. When this term is added, the C invariance at Θ = π requires

2k −M = 0 modulo N . (3.22)

Therefore, the apparent anomaly can be removed if and only if 2k = M (mod N). Doing

the same analysis at Θ = 0, we get 2k = 0 mod N , and there is no anomaly at Θ = 0, e.g.,

by choosing k = 0.

There are four cases. If (N,M)= (even, odd), there is no solution for k at Θ = π, and

there is an anomaly. If (N,M)= (even, even), the solution at Θ = 0 is k = 0, and at Θ = π

is k = M/2 and there is no counter-term that is good at both Θ = 0, π. This is the global

inconsistency condition [31, 46, 53]. Below, we assume the vacuum at Θ = 0 is trivial in

such cases; hence the vacuum at Θ = π cannot be trivial. There is a similar discussion for

(N,M) = (odd, even) and (N,M) = (odd, odd).

As a result of the anomaly, there are three possible IR realizations:

1. C× PSU(N) ought to be spontaneously broken to an anomaly-free subgroup,
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2. There is a TQFT in the IR. A TQFT implies that there cannot be a trivial (unique)

ground state once this theory is considered on arbitrary manifolds.

3. There is a CFT at the critical point.

Because of the 2d nature of the theory, the Mermin-Wagner-Coleman theorem [80, 81]

implies that the continuous global symmetry PSU(N) cannot be broken. As a result, if

the second and third options do not take place,6 then the charge conjugation C must be

spontaneously broken.

Before discussing what happens to these anomaly considerations upon compactification

of the QFT’s spacetime manifold, we also describe our second example, the supersymmetric

N = (2, 2) Gr(N,M).

3.3.2 Mixed anomaly for supersymmetric Gr(N,M) sigma model

The bosonic Grassmannian theory can be extended to an N = (2, 2) supersymmetric model

by introducing a Dirac Fermi field ψ, the fermionic partner of the z field, constrained

to satisfy z†ψ = 0M . The supersymmetric theory, apart from the PSU(N) symmetry,

also possesses a U(1)A symmetry at the classical level, transforming the Dirac fermion

ψ =

(
ψ+

ψ̄−

)
as

U(1)A : ψ 7→ eiσ3αψ (3.23)

where ψ± are the right/left movers. Under this transformation, the fermionic measure

changes as

DψDψ 7→ DψDψ exp

(
−2α i

N

2π

∫
R2

tr(da+ ia ∧ a)

)
. (3.24)

The U(1)A symmetry has a global anomaly and is reduced to Z2N quantum mechanically.

To see this, note that the axial charge conservation can be written as

∆QA = (2N)× 1

2π

∫
R2

tr(F ) ∈ 2NZ (3.25)

as a result of integer-quantization of topological charge. Thus, (3.23) is a symmetry only

when α ∈ 2π
2NZ. Relatedly, note that the 2d instanton amplitude is

I2d = e−SI (trψ−ψ+)N (3.26)

and the global symmetry is just Z2N .

Following the same analysis as in the bosonic discussion, there is a mixed anomaly

between the PSU(N) and Z2N symmetries. To show this, gauge the PSU(N) symmetry by

introducing a U(N) gauge field Ã and a U(1) two-form gauge field B with the constraint

6For spin chains, it has been shown that topological order does not appear in the IR [82], and thus

the topological order can be ruled out when the field theory appears as an IR description of certain spin

systems. On the other hand, a CFT is possible, and indeed this is a part of the Haldane conjecture for

half-integer antiferromagnetic spin chains [83, 84]. Since they correspond to the CP1 model at Θ = π, CFT

matches the anomaly when N = 2 and M = 1.
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NB + d(tr(Ã)) = 0. Under the U(1)A transformation (3.23), the fermion measure is

changed by

DψDψ 7→ DψDψ exp

[
2α i

(
M

2π

∫
M2

tr(dÃ+ iÃ ∧ Ã)− N

2π

∫
M2

tr(da+ ia ∧ a)

)]
= DψDψ exp

[
−2Nα i

(
1

2π

∫
M2

tr(da+ ia ∧ a) +
M

2π

∫
M2

B

)]
(3.27)

As a result, the axial charge non-conservation becomes

∆QA ∈ 2MZ + 2NZ = 2gcd(N,M)Z. (3.28)

This shows that once PSU(N) is gauged, Z2N is no longer a symmetry, reducing it all the

way down to Z2 gcd(M,N): under the Z2N transformation,

Z[(A,B)] 7→ Z[(A,B)] exp

(
−iM

∫
R2

B

)
, (3.29)

and we obtain the ’t Hooft anomaly.

Similar to the bosonic model, since the continuous global symmetry cannot be broken

(invoking the Mermin-Wagner-Coleman theorem), the only option in the IR is spontaneous

breaking of Z2N down to Z2 gcd(M,N) or smaller subgroups, assuming a TQFT or a CFT

does not arise.

Indeed, the first option is consistent with dynamical breaking of chiral symmetry by a

fermion-bilinear condensate:

〈trψ−ψ+〉 = NΛ ei
2πk
N , k = 0, 1, . . . , N − 1 (3.30)

leading to N isolated vacua, as well as being consistent with the supersymmetric index

IW = tr((−1)F ) = N [58, 59].

3.4 Adiabatic compactification and persistence of anomaly polynomial

The graded partition function in the operator formalism (2.11), translated to the path

integral formulation, corresponds to considering a path integral with symmetry twisted

boundary conditions along the S1
L compactification

z(x1, x2 + L) = Ωz(x1, x2), (3.31)

where

Ω = diag(1, ω, . . . , ωN−1) ∈ U(N). (3.32)

Equivalently, one may consider the insertion of a background holonomy Ω into the action.

Under this boundary condition, we now show that the two-dimensional ’t Hooft anomaly

survives even after circle compactification on R× S1
L at arbitrarily size L of the circle S1

L.

The key observation is that the boundary conditions (3.31), or equivalently, the back-

ground holonomy (3.32), remain invariant under the intertwined combination of a center-

transformation with phase ω and a ZN cyclic permutation [55]. Neither of these individual
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transformations leave the boundary condition invariant, however, combining the center

transformation with the opposite cyclic permutation leaves the boundary condition intact.

When taking this symmetry-twisted boundary condition, we have the ZN symmetry

generated by the following transformation,

z 7→ Sz, Φ 7→ ω−1Φ, (3.33)

where Φ = P exp(i
∫
S1 a) is the U(M) Polyakov loop, and S is the shift matrix of SU(N) la-

bels:

S =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

1 0 0 · · · 0

 . (3.34)

We must combine these two transformations in order to keep the boundary condition

invariant.7

Since the ZN transformation involves the transformation on the Polyakov loop, we

must introduce the ZN two-form gauge field,

B = B(1) ∧ L−1dx2, (3.35)

when gauging this ZN symmetry. Here, B(1) is a ZN one-form gauge field. As a result,

we obtain

Zπ[C ·B(1)] = Zπ[B(1)] exp

(
−iM

∫
B(1)

)
. (3.36)

This gives the ’t Hooft anomaly or global inconsistency condition on R × S1
L under the

symmetry-twisted boundary condition, with the same implications as those discussed for

the theory on R2.

An almost identical consideration also shows that in the N = (2, 2) supersymmetric

Gr(N,M) model, the anomaly remains essentially the same between PSU(N) and Z2N ,

the discrete axial symmetry, upon compactification of the theory on R1 × S1
L.

3.5 Overview of small-L resurgent semiclassics

The non-perturbative dynamics of the CPN−1 and Gr(N,M) models with Ω-twisted bound-

ary condition has been examined in detail in the recent literature [2, 13, 20–22]. Here we

highlight some of the connections with the analysis of this current paper.

As discussed earlier, Gr(N,M) admits instanton solutions with topological charge

QT = 1. In the presence of the Ω-background, (3.8), these 2d instantons split into N

minimal action kink-instantons, each with topological charge QT = 1
N [2, 86–88]. Note

that in the study of Affleck, where Ω = 1, fractionalization to N kink-instanton does not

take place [77]. The fractionalization is similar to 4d instantons splitting into N monopole

7This is parallel to the emergence of the color-flavor center symmetry in SU(Nf )-symmetric QCD with

Nf flavor of massive fermions with gcd(Nf , N) ≥ 2 [55, 56, 85].
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instantons in the presence of a non-trivial holonomy in gauge theories on R3 × S1
L. The

kink-instanton and anti-instanton amplitudes are given by

Kj,k = e−SI/Nei
Θ+2πk
N = e

− 4π
g2N ei

Θ+2πk
N , Kj,k = K∗j,k (3.37)

for each j = 0, 1, . . . , N − 1, and k = 1, . . . , N is a branch label. As asserted, the 2d

instanton amplitude is a composite of the N -kink instantons:8

I =

N−1∏
j=0

Kj,k = e−SIeiΘ = e
− 4π
g2 +iΘ

(3.38)

For example, the mass gap in the system is generated by the proliferation of kink-instantons,

and is given by [1, 13]

mg(Θ) ∝ max
k

(
Kj,k +Kj,k

)
= Λ max

k
cos

(
Θ + 2πk

N

)
, Λ = L−1e

− 4π
Ng2(L−1) (3.39)

This formula is rather intriguing. It shows that

• The mass gap may be induced by semi-classical instantons with action SK = SI/N .

• These semi-classical effects survive the large-N limit, e
− 4π
g2N ∼ O(N0), unlike the 2d

instanton, which is suppressed as e
− 4π
g2 ∼ e−N .

• The result is multi-branched, and the choice associated with the vacuum of the theory

is non-analytic at Θ = π, related to spontaneous C-breaking and the existence of

two vacua.

The scenario with two vacua that we find in the semi-classical domain is one of the

possible outcomes of the anomaly consideration for these models at Θ = π. It is also

interesting to see that for N = 2,M = 1, namely the CP1 model, the mass gap vanishes at

Θ = π, at leading order in semi-classics. On R2, this is a part of the Haldane conjecture [83,

84, 89–91]. This is consistent with the CFT possibility arising from the ’t Hooft anomaly

matching argument.

In section 4, we explain the relation between the semi-classical analysis, and why it

works the way it does on R×S1
L while also producing some of the non-perturbative aspects

of the theory on R2, from the point of view of the Hilbert space quantum distillation and

mixed anomalies.

3.6 Large-N volume independence and flavor-momentum transmutation

Turning on the Ω-background ensures that the anomaly polynomial survives upon com-

pactification. There is another important property associated with this background. In

the large-N limit, SU(N) singlet observables as well as their correlation functions become

8A similar splitting formula for saddle contributions applies for other 2d sigma models, such as the

principal chiral model and the O(N) model with N > 3; note that these are models without instantons [17,

18, 22].
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independent of N for any finite value of L. Let us explicitly show it by using the technique

developed by Sulejmanpasic [26].

The perturbative intuition behind volume independence is the following. If one im-

poses a trivial Ω = 1 background, then Kaluza-Klein momenta are naturally quantized in

units of 2π
L . In the infinite volume limit, L → ∞, the momentum modes become a con-

tinuum, producing perturbation theory on R2. However, with the non-trivial twist-Ω, the

momentum modes are quantized in a much finer spectrum, in units of 2π
LN . Thus the flavor

background Ω transmutes into fractionalized momenta. In this case, to obtain perturbation

theory on R2, at least, the planar perturbation theory, there are two options. i) N =fixed,

L→∞ as before or ii) L =fixed, N →∞. In this latter case, one can derive global sym-

metry singlet observables by using reduced QM system. For example, the renormalization

group β-function of QFT can be derived from reduced QM, by using a similar construction

of the matrix model derivation of the β function of Yang-Mills by Gross and Kitazawa [68].

Technically, the construction works as follows (see [26] for the CPN−1 argument). We

fix M and take the large-N limit of the Gr(N,M) model. For simplicity, we take Θ = 0, but

it can easily be incorporated. To take the large-N limit, we define the ’t Hooft coupling by

2f0 = g2N. (3.40)

The action becomes

Seff =
N

f0

∫
M2

d2x tr
{
Dµz

†Dµz + iλ(z†z − 1)
}
, (3.41)

where we introduced the Lagrange multiplier field λ, which is a real M × M matrix-

valued field.

We consider the circle compactification M2 = R × S1
L, and we take the symmetry

twisted boundary condition along S1
L. Integrating out z and z†, we obtain the effective ac-

tion

Seff(aµ, λ) = −Tr ln[−D2
µ + iλ]− iN

f0

∫
d2x tr(λ). (3.42)

We evaluate the functional trace using a plane wave basis:

Tr ln[−D2
µ + iλ]

=

∫
d2x

(
N−1∑
s=0

1

L

∑
n∈Z

∫
dk1

2π
tr ln

[
− (D1 + ik1)2 −

(
D2 + i

2πn+ (2πs/N)

L

)2

+ iλ

])

= N

∫
d2x

(
1

NL

∑
m∈Z

∫
dk1

2π
tr ln

[
− (D1 + ik1)2 −

(
D2 + i

2πm

NL

)2

+ iλ

])
, (3.43)

where in the intermediate step, the sum over Kaluza-Klein modes and flavor modes merges

to a much finer sum. As a result of this transmutation, in the large-N limit, the explicit L

dependence in the integrand of
∫

d2x disappears [26]:

lim
N→∞

(. . .) =

∫
d2k

(2π)2
tr ln

[
−(Dµ + ikµ)2 + iλ

]
. (3.44)
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Therefore, we obtain the effective action as Seff = Nseff(aµ, λ), where seff(aµ, λ) is N -

independent, and hence the action is suitable for saddle point analysis in the N → ∞
limit. The effective action is identical to the one on R2 except that in the

∫
R2 integral, the

domain is nowM2 = R×S1
L. This is immaterial for the saddle point analysis. Studying the

gap equation in the large-N analysis, one finds aµ = 0, λ = m2
g [76]. Here, mg = µe

− 4π
g2(µ)N

has an interpretation as the mass of z quanta, now derived from reduced model. This

argument proves the large-N volume independence in the Ω-background.

The analysis is valid for any SU(N) invariant operators, and thus the large-N scaling

of correlation functions of the topological charge can also be obtained. This recovers

the Θ dependence of the vacuum for large N , as well as the adiabatic continuity of the

vacuum structure.

4 Conclusions: what is happening and why is it happening?

The interpretation of what is going on both in the Hilbert space and path integral formula-

tion of these theories is actually quite intriguing. Consider the following graded state-sums,

and their path integral realizations:

ZΩ(L) = tr
[
Ω̂ exp(−LĤ)

]
=

∫
z(x1,x2+L)=Ωz(x1,x2)

DzDz†Da e−S[z,z̄,a]

=

∫
z(x1,x2)=z(x1,x2)

DzDz†Da e−S[z,z̄,a,Ω] (4.1)

In the last step we used a field redefinition to replace Ω-twisted boundary condition with

Ω-holonomy. Several observations are in order:

• Neither the Hilbert space of the theory nor the degeneracies associated with states are

altered in our graded construction. Rather, we consider a graded state-sum with the

insertion of Ω̂ into the partition function, tr
[
Ω̂ exp(−LĤ)

]
. We call this procedure

quantum distillation. The distillation effectively picks out a subset of states, without

applying any projections. The graded state-sum has no simple thermal interpretation

(at least associated with the original theory).

• In the presence of large global symmetries, quantum distillation can in principle over-

whelm exponential Hagedorn growth in the Hilbert space. In this sense, the graded

partition function ZΩ(L) has a much stronger change of being an analytic function

of L, with the possibility of no phase transition as L changes from small to large L.

• Due to asymptotic freedom, the small-L regime becomes weakly coupled and semi-

classically accessible. What is learned on small-L is not detached from R2. In cir-

cumstances where ZΩ(L) is an analytic function of L, the ground states of these

two regimes are guaranteed to be continuously connected. This is the idea of adia-

batic continuity.
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• Anomaly matching implies that there are three possibilities in these theories in the

IR, when the Coleman-Mermin-Wagner theorem is taken into account: spontaneously

broken discrete symmetry, TQFT or CFT. This anomaly consideration in principle

permits a phase transition between these possibilities. But provided ZΩ(L) is an

analytic function of L, what takes place at weak coupling at small-L also takes place

at strong coupling at large-L.

• In the large-N limit, we can prove volume independence for observables provided

they are measured using ZΩ(L). The fact that volume independence works implies

that a distillation in the Hilbert space may even overcome exponential growth in the

density of states.

• A similar graded Hilbert space analysis should apply to other 2d asymptotically free

sigma models, such as the principal chiral model, and the O(N) sigma model.

The overall construction suggests the appealing possibility for analyticity of the graded

partition function with important implications for non-perturbative properties of 2d QFT

in the decompactification limit.
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