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Abstract: One of the fundamental predictions of the Standard Model is Lepton Flavour

Universality. Any deviation from this prediction would indicate the existence of physics

beyond the Standard Model. Recent LHCb measurements present a pattern of deviations

from this prediction in rare B-meson decays. While not yet statistically significant (cur-

rently 2.2−2.6σ), these measurements show an imbalance in the ratio of B-meson decays to

a pair of muons in association with a Kaon and decays to a pair of electrons in association

with a Kaon. If the measured deviations are indeed present in nature, new physics may

mediate interactions involving a pair of same flavour leptons, a b- and an s-quark. We

present the prospect for a search of new physics in this type of interactions at the LHC,

in a process that involves an s-quark, and a final state with two leptons and a b-jet. The

proposed search can improve the sensitivity to new physics in these processes by a factor

of four compared to current searches with in the total dataset expected at the LHC.
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1 Introduction

One of the fundamental predictions of the Standard Model (SM) is Lepton Flavour Univer-

sality (LFU). The photon and the Z-boson, independently, couple with the same strength to

all three generations of leptons. This property was tested extensively at LEP and SLD [1].

Any measured deviation from this prediction implies the existence of new physics, beyond

the SM (BSM).

Over the past several years, measurements of rare B-meson decays have exhibited

deviations from the SM prediction [2, 4–11]. These anomalies occur in the b → s`+`−

transitions and are manifested by an imbalance in the ratio between the number of events

measured in a final state with a pair of muons to a pair of electrons.

The value of this ratio is stated within a given range of the lepton pair mass squared,

[q2
min, q

2
max]. The q2-dependent partial width of the decay is Γ. Currently there is a 2.6σ

discrepancy with respect to the SM [3] in:

RK =

∫ q2max

q2min

dΓ(B+→K+µ+µ−)
dq2

dq2∫ q2max

q2min

dΓ(B+→K+e+e−)
dq2

dq2

RK,[1.0,6.0]GeV2 = 0.745+0.090
−0.074 ± 0.036

(1.1)

and a 2.1− 2.5σ discrepancy in the related mode with the vector meson [4]:

RK∗ =

∫ q2max

q2min

dΓ(B0→K0∗µ+µ−)
dq2

dq2∫ q2max

q2min

dΓ(B0→K0∗e+e−)
dq2

dq2

RK∗,[0.045,1.1]GeV2 = 0.66+0.11
−0.07 ± 0.03

RK∗,[1.1,6.0]GeV2 = 0.69+0.11
−0.07 ± 0.05

(1.2)
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These anomalies imply that new physics may lay between the initial common state

(b-quark) and the final state that is common between the measurements (s-quark and two

charged leptons). Many compelling UV-completions which aim to explain these anomalies

include Z ′ models, where the b→ s`+`− transition is mediated at tree level by an exchange

of a new heavy vector boson with flavour violating couplings to b- and s-quarks, as well as

couplings to either electrons [12] or muons [13–28]. The implications of such BSM models

on proton-proton (pp) collisions have been examined by others [29, 30]. Alternatively, the

anomalies may also be explained via tree-level exchanges of lepto-quarks [31–36]. In order

to keep our analysis as general as possible, here we consider an Effective Field Theory

(EFT) approach with a four-point interaction between b-quark, s-quark, and a pair of

charged leptons that can address the aforementioned anomalies.

The four point interaction may be meaningful also for processes that do not necessarily

include B-meson decays. For instance, the interaction may play a role in the direct pro-

duction of a b-quark and two opposite sign and same flavour leptons in pp collisions. The

correspondence of such an EFT model in these distinct energy scales has been previously

studied [37], demonstrating the applicability of measurements made in pp collisions on the

production mechanism on the physics of rare B-meson decays. Taking into account the

stated four-point interaction, an imbalance between the SM prediction and the recorded

data in a final state with two same flavour leptons and one b-jet can be expected. Therefore,

this kind of interaction can be tested using the extensive dataset recorded at the LHC.

We propose a search based on final states with exactly one b-jet and two opposite

sign and same flavour leptons. Any deviation from the SM prediction for this final state

would imply that new physics lays in the interactions involved within this process. The

proposed search differs significantly from the analyses that target B-meson decays, mainly

in the higher momentum thresholds of the objects involved in the final state. In the

following sections we test the feasibility and estimate the sensitivity of the search at

the LHC.

2 Theoretical model

In order to have a model-independent analysis, we consider an EFT setup including 6-

dimensional operators. Since the observed anomalies constitute a deviation in the number

of muon pairs, only interactions between quarks and muons are considered (and not elec-

trons). The phenomena at low energies, i.e. a deficit in the number of muon pairs in

B-meson decays, may be explained by an interference between the new physics contribu-

tion and the SM, that is smaller and opposite to the SM contribution. However, here we

consider higher energies and a parameter space where the resulting BSM contribution is

significantly larger than the SM contribution that arise from electro-weak loop processes.

We therefore assume a scenario where the LFU violation is dominated by the BSM con-

tribution, and neglect the interference with the SM. This leads to an enhancement in

the number of expected muon pairs produced in association with a b-jet at high di-muon

masses due to BSM effects.
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Figure 1. Representative Feynman diagrams for a decay of a B+ meson to a K+ meson in

association with two leptons in the SM (upper) and in the EFT described in the text (bottom).

Only muons are considered for the decay within the EFT approach.

g s

bg

µ+

µ−

g2∗
Λ2

s

b

Figure 2. A representative Feynman diagram for a production of one b-jet in association with two

muons within the EFT approach.

Representative Feynman diagrams for the decay of a B-meson within the scope of

the SM and within the EFT approach are shown at figure 1. A representative Feynman

diagram for tree level production of this model at the LHC is shown at figure 2.

The effective Lagrangian of the benchmark model, as stated at [37], is:

Leff =
CUµij
v2

(ūiLγµu
j
L)(µ̄LγµµL) +

CDµij
v2

(d̄iLγµd
j
L)(µ̄LγµµL), (2.1)

where CUµij and CDµij are matrices that carry the flavour structure of the operators. For

the off-diagonal elements only the b−s admixtures are considered, since those are the ones

– 3 –
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related to the observed anomalies. The matrices take the form:

CUµij =

Cuµ 0 0

0 Ccµ 0

0 0 Ctµ

 , CDµij =

Cdµ 0 0

0 Csµ C∗bsµ
0 Cbsµ Ctµ

 (2.2)

The generality of eq. (2.1) stems from the fact that it can be accommadated by a

plethora of new physics scenarios. Comprehensive EFT studies including the operators

in eq. (2.1) have recently been performed in the context of B-meson decays in [38, 39].

The Wilson coefficients can then be matched to specific model realizations, including Z ′

and leptoquarks [40–47], Composite Higgs [48], Randall-Sundrum models [49, 50], Type III

2HDM [51], R-parity violating supersymmetry [52] and more.

As for the b→ s`+`− transitions, the recent combined fit reported [53]:

π

αVtbV
∗
ts

Cbsµ = −0.62± 0.13 (2.3)

Where α is the electromagnetic fine structure constant. The presumed scale of the

new physics, Λ, is estimated by defining

Cbsµ = g2
∗v

2/Λ2. (2.4)

Taking the CKM matrix elements to be |Vts| = (40.0 ± 2.7) × 10−3 and |Vtb| = 1.009 ±
0.031 [54], and using result (2.3), the scale of new physics is: Λ/g∗ ≈ 31+4

−3 TeV.

The present 95% CL limit from the 13 TeV ATLAS pp → µ+µ− analysis with

36 fb −1 [55] and a prediction for 3000 fb−1 of luminosity as stated in [37] is:∣∣∣∣ π

αVtbV
∗
ts

Cbsµ

∣∣∣∣ < 100(39), (2.5)

which corresponds to Λ/g∗ > 2.5(3.9) TeV. The stated ATLAS analysis, however, is aimed

for final states with a pair of electrons or a pair of muons. In contrast to the previous

selection method, which is inclusive for a pair of electrons or a pair of muons, we add

requirements on a few more variables, including the number of b-tagged jets. As a result,

the background is being reduced significantly. Therefore, a selection dedicated to the

presented model is expected to improve the sensitivity significantly.

3 Analysis

3.1 Simulated event samples

Monte Carlo (MC) simulated event samples of pp collisions at
√
s = 13 TeV were used

to estimate the background SM processes as well as the EFT signal. The SM processes

taken into consideration are: top pair production events (tt); top pair production events

in association with an electro-weak boson (tt + W/Z); production of Z boson and Drell-

Yan processes in association with jets (Z/γ∗+ jets); and di-boson production (WZ,WW )

processes. The background samples were uniformly generated at leading order using Mad-

Graph5 aMC@NLO 2.6.1 [56] in the 5 flavour scheme with the NNPDF30LO PDF set

– 4 –
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and interfaced with the Pythia 8.23 [57] parton shower. The MadSpin interface was

used to model the decay of top quarks and the electro-weak bosons.

A valid MadGraph model was built in order to generate signal events, using the model

presented in section 2 as a benchmark. The signal samples were uniformly generated at

leading order using MadGraph5 aMC@NLO 2.6.1 [56] in the 4 flavour scheme.1 The

signal samples were then normalized according to the total cross-section obtained in the 5

flavour scheme.

Finally, all simulated samples were processed through DELPHES 3 [58] in order to

simulate the detector effects and apply simplified reconstruction algorithms.

3.2 Event reconstruction

The analysis relies on the reconstruction of hadronic jets, muons, and missing transverse

energy (Emiss
T ). Jets were reconstructed using the anti-kt [59] clustering algorithm with

a radius parameter R = 0.4 implemented in FastJet [60, 61], and are required to have

transverse momentum pT > 20 GeV and pseudo-rapidity |η| < 2.5. The identification of

b-tagged jets was done by applying a pT-dependent weight based on the jet’s associated

flavour, using truth information, and the MV2c20 tagging algorithm [62] in the 70% work-

ing point. Muons are reconstructed using truth-level muons after applying an artifical

pT- and η-dependent efficiency weight, with isolation requirements from other energy-flow

objects applied in a cone of R = 0.5, and a minimum pT requirement of 20 GeV for each

muon. The missing transverse energy was calculated based on all energy-flow objets in the

particle flow approach.

3.3 Event selection

An optimization was done by maximizing the sensitivity of the selection. The sensitivity

was estimated as the expected Z-value using the BinomialExpZ function by RooFit [63].

Different scenarios for the total relative uncertainty on the background were tested:

25%, 50%, 100%. The integrated luminosity was chosen to be 120 fb−1, which is an evalua-

tion for the full Run-2 integrated luminosity, expected to be available by the end of 2018.

As a base-point, the selection contains two muons with opposite-sign charges (OS). In

addition, since the signal is expected to have exactly one b-jet, this selection was applied

as well, using the medium working point of 70% (Nb). Since the signal expected to have

low missing transverse energy (Emiss
T ), an upper selection on Emiss

T was optimized. This is

especially helpful in reducing the tt background, since in addition to the muons it contains

two neutrinos that escape the detectors. The invariant mass of both muons (mµµ) was used

for optimization where new physics is expected to enter at the tail of the mµµ distribution

while keeping a small yield for the background. The selection applied is summarized in

table 1. The distributions of the observables described in the text, within the selection of

the muon pair and the b-tagged jets, are presented in figure 3.

1We find this choice suitable since the appearance of a massive b-quark in the final state is indicative of

the signal.
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Observable Selection

Nb =1

Nµ = 2, OS

Emiss
T [GeV] < 180

mµµ [GeV] > 1700

Table 1. Summary of the selection for muon pairs. The object definition and common selection

described in the text are applied.
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Figure 3. Distribution of the invariant mass of both muons mµµ (left) and the missing transverse

energy Emiss
T (right). The selection of two opposite sign muons and exactly one b-jet are applied.

The signal scenarios of Λ = (3, 5) TeV are presented as well, using g∗ = 1. The requirement on the

invariant mass of both muons mµµ > 500 GeV is applied.

The expected Z-value for the total integrated luminosity of 120 fb−1, using the selec-

tions presented at table 1, is shown at figure 4. The expected Z-value as a function of the

total integrated luminosity, for different parameter choice of the signal, using the selections

presented at table 1, is shown at figure 5.

4 Ratio analysis

Keeping in mind the LHCb measurements [2, 3, 5–11], which hinted a deficit in the number

of muon pairs with respect to the number of electron pairs, we suggest a ratio method

as a complementary analysis. While an increase in the number of muon pairs can be

observed over the expected background if the increase is of certain significance, a deficit

can only be observed if the background is well known and the deficit is larger than the

background resolution (this statement is also true for an increase but an increase is in

principle unlimited). Hence, in order for our model to also accommodate a deficit at the

higher muon pair invariant mass regime, a ratio method is proposed. This method has the

advantage that the SM background does not need to be known to high precision as the

systematical uncertainties associated with it vanish. Here too, we depart from the LHCb

– 6 –
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Figure 4. The signal cross-section as a function of the expected Z-value, using the selections pre-

sented at table 1. The cross-sections corresponding to Λ = (3, 4, 5) TeV are presented, using g∗ = 1.
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Figure 5. The expected Z-Value as a function of the total integrated luminosity, using the selections

presented at table 1. The Z-Values corresponding to Λ = (3, 4, 5) TeV are presented, using g∗ = 1.

exclusive analysis and target the high invariant mass of the lepton pairs regime in the

presence of a b-jet.

An evaluation of the signal cross-section as a function of the sensitivity was done,

by using the selections presented at table 1. Figure 4 presents the signal cross-section as

a function of the expected corresponding Z-value. The expected Z-value was calculated

using different relative uncertainties assumptions on the background. In general, small

differences observed between different values of the relative background uncertainty. For

this reason, looking at the ratio between final states with a muon pair and with an electron
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Figure 6. Predicted upper limit on the term presented at equation (2.5), as a function of the total

integrated luminosity. The dashed lines correspond to integrated luminosity of (36, 120, 3000) fb−1.

The upper limit for integrated luminosity of 36 (3000) fb−1, corresponding the a value of 100(39)

using the latest ATLAS public analysis, are also marked.

pair will not improve our sensitivity. On the other hand, if we decide to look only at muon

pairs in the final state, we can use similar selection for electron pairs as a CR, in order to

normalise the expected SM yield.

5 Results

In order to quantitatively evaluate the gained sensitivity of the presented analysis, a cal-

culation of the expected upper limit was done. Figure 6 presents the expected upper limit

on the term presented in equation (2.5), as a function of the total integrated luminosity.

Figure 7 presents the expected value of the term presented in equation (2.5) for a discovery,

as a function of the total integrated luminosity.

The upper limit was calculated using the CLs [64] method. Data was randomly cho-

sen as an integer of a poisson distribution, with an average of the expected background

yield. The background only (signal+background) hypothesis was randomly chosen from

a gaussian distribution with a mean of the background (signal+background) yield. Small

differences were observed between different standard deviation assumptions on the back-

ground yield, so only the case of 50% was considered. The uncertainty on the signal was not

considered. The expected upper limit for an integrated luminosity of (36, 120, 3000) fb−1

is
∣∣∣ π
αVtbV

∗
ts
Cbsµ

∣∣∣ < (67, 36, 11), assuming 50% of background uncertainty. One can conclude

that the dedicated analysis presented in this section improves the sensitivity significantly,

compared to the limit presented in [37].
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Figure 7. Predicted discovery (5σ) on the term presented at equation (2.5), as a function of

the total integrated luminosity. The dashed lines correspond to integrated luminosity of (36, 120,

3000) fb−1.

6 Conclusion

Recent anomalies observed in the decays of B-mesons imply a new physics interaction that

may lay between initial and final states involving a b-quark, a s-quark and a pair of opposite

sign muons. The interaction can be described in the scope of an EFT for a four-fermion

interaction of a b-quark, an s-quark and a pair of muons. The four point interaction may

play a role in the direct production of a b-quark and two opposite sign and same flavour

leptons in pp collisions. We propose a search at the LHC for this type of interaction using

final states with a pair of opposite sign muons and one b-jet. The search differs significantly

from the analyses that target B-meson decays, mainly in the higher momentum thresholds

of the objects involved in the final state. When compared to previous ATLAS analysis,

the search significantly improves the sensitivity to new physics laying in this four-fermion

interaction.
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