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1 Introduction

In previous works [1–6] various conserved, higher spin, supercurrent multiplets of super-

symmetric matter theories have been constructed. These were used to generate first order

interactions among matter theories and higher spin supermultiplets with the lowest possi-

ble number of derivatives. In this note, we go beyond matter theories and consider first

order interactions among higher spin supermultiplets.

Finding interactions involving higher spins is non-trivial as one has to satisfy the set

of consistency conditions imposed by the gauge invariance of the free higher spin action.

For non-supersymmetric theories the search for higher spin interactions is extensive and in

many cases interaction terms were successfully constructed for flat spacetime at first order

in coupling constant g by using a variety of techniques, such as light-cone approach [7–18],

Noether’s procedure [19–23]1 and BRST [29–36]. Interestingly, most of these results have

been obtained by analysing tree level amplitudes of (super)strings [37–39], thus enhancing

the connection between string theory and higher spin fields. For (A)dS backgrounds similar

results have been obtained [40–44] which eventually led to the fully interacting equations

of motion for higher spin fields [45] (see [46] for a review).

Most of these constructions, focus on interaction vertices with the lowest possible

number of derivatives, which corresponds to a minimal coupling scenario. However we can

have non-minimal type of interactions which in most cases will lead to lagrangians with

higher derivatives. This has been done in [21, 24] using gauge invariant field strengths.

An interesting, distinctive aspect of these interactions is their uniqueness up to trivial

redefinitions.

In this paper, we generalize these results to supersymmetric theories using the manifest

4D, N = 1 standard superspace formulation.2 Specifically, we give the explicit form

of gauge invariant, higher spin, conserved supercurrents for all massless, 4D Minkowski,

1Some of these results were later generalized in [24–27]. For a review see [28].
2We use the conventions of Superspace [47].

– 1 –



J
H
E
P
0
8
(
2
0
1
8
)
0
5
5

N = 1 higher spin supermultiplets. A particular example for the supergravity supercurrents

of low spins j ≤ 1 was given in [48]. Our results extends it in two directions: (i) we consider

higher spin supermultiplets and (ii) we construct higher spin supercurrents.

Our construction is focused on the description of cubic interactions Y1−Y2−Y2 between

a massless higher spin supermultiplet with arbitrary half-integer superspin Y1 = s1 + 1/2

(which describes the propagation of massless spins j = s1 + 1 and j = s1 + 1/2) and two

massless, higher spin supermultiplets with arbitrary superspin Y2. We also assume that

this cubic interaction can be written in the form gauge suprefield times supercurrent. The

supercurrent must be quadratic in the Y2 supermultiplet and the gauge transformation of

the Y1 supermultiplet will impose on it an on-shell conservation equation. Additionally, we

demand the supercurrent to be gauge invariant with respect to the gauge transformation

of the Y2 supermultiplet. The Y2-gauge invariance fixes the supercurrent to be quadratic in

the derivatives of the Y2 superfield strength and the conservation equation gives a unique

solution of this type. Furthermore, we derive a restriction on the allowed values of super-

spin, s1 ≥ 2Y2, which provides a complete classification for this class of interactions. This

is in agreement with the known constraints for the spin values of higher spin interactions of

non-supersymmetric theories [16, 21] as well as the Weinberg-Witten theorem [49]. Right

at the boundary, when s1 = 2Y2, the structure of the supercurrent simplifies drastically. Its

dependence on the superfield strength becomes algebraic and defines the supersymmetric,

higher spin extension of the Bel-Robinson3 tensor [50] (and reference therein).

The organization of the paper is as follows. In section 2, we review the description

of free, massless, 4D, N = 1 higher spin supermultiplets and their corresponding super-

field strengths. In section 3, we construct the gauge invariant, higher spin, conserved

supercurrent which generates the cubic interactions. In section 4, we include a compo-

nent discussion for the higher spin currents that can be extracted from the higher spin

supercurrent superfield. The last section summarizes our results.

2 Free higher spin supermultiplets and their superfield strengths

The massless, higher spin irreducible representations of the 4D, N = 1, super-Poincaré

were first described in [51] using a component Lagrangian invariant under on-shell super-

symmetry. Later a superfield formulation was introduced in [52–54] and further develop-

ments can be found in [56–59]. A synopsis of the description of higher spin supermultiplets

is the following:

1. The integer superspin Y = s (s ≥ 1) supermultiplets (s + 1/2, s),4 are described by

a pair of superfields Ψα(s)α̇(s−1),
5 and Vα(s−1)α̇(s−1) (is real) with the following zero

3The Bel-Robinson tensor is known in the context of General Relativity and is a spin 4, gauge invariant

and conserved tensor constructed out massless spin 2 fields. It is the generalization of the energy-momentum

tensor.
4On-shell they describe the propagation of degrees of freedom with helicity ±(s+ 1/2) and ±s.
5The notation α(k) is a shorthand for k undotted symmetric indices α1α2 . . . αk. The same notation is

used for the dotted indices.
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order gauge transformations

δ0Ψα(s)α̇(s−1) = −D2Lα(s)α̇(s−1) +
1

(s− 1)!
D̄(α̇s−1

Λα(s)α̇(s−2)) , (2.1a)

δ0Vα(s−1)α̇(s−1) = DαsLα(s)α̇(s−1) + D̄α̇sL̄α(s−1)α̇(s) . (2.1b)

Off-shell, this supermultiplet carries 8s2+8s+4 bosonic and equal number of fermionic

degrees for freedom.6

2. The half-integer superspin Y = s + 1/2 supermultiplets (s + 1, s + 1/2) have two

descriptions. The first is called the transverse formulation (s ≥ 1) and it uses the

pair of superfields Hα(s)α̇(s) (is real) and χα(s)α̇(s−1) with the following zero order

gauge transformations

δ0Hα(s)α̇(s) =
1

s!
D(αs

L̄α(s−1))α̇(s) −
1

s!
D̄(α̇s

Lα(s)α̇(s−1)) , (2.2a)

δ0χα(s)α̇(s−1) = D̄2Lα(s)α̇(s−1) +Dαs+1Λα(s+1)α̇(s−1) . (2.2b)

This supermultiplet, off-shell describes 8s2 + 8s + 4 bosonic and equal fermionic

degrees of freedom. The second formulation is called the longitudinal (s ≥ 2) and it

includes the superfields Hα(s)α̇(s) (is real) and χα(s−1)α̇(s−2) with the following zero

order gauge transformations

δ0Hα(s)α̇(s) =
1

s!
D(αs

L̄α(s−1))α̇(s) −
1

s!
D̄(α̇s

Lα(s)α̇(s−1)) , (2.3a)

δ0χα(s−1)α̇(s−2) = D̄α̇s−1DαsLα(s)α̇(s−1) +
s− 1

s
DαsD̄α̇s−1Lα(s)α̇(s−1) (2.3b)

+
1

(s− 2)!
D̄(α̇s−2

Jα(s−1)α̇(s−3)) .

This supermultiplet carries 8s2 + 4 off-shell bosonic and equal number of fermionic

degrees of freedom. However one can show that it is dual to the first, transverse,

formulation [6, 52].

The physical and propagating degrees of freedom of the two massless integer and half-

integer superspin theories above are described by corresponding superfield strengths Wα(2s)

and Wα(2s+1) respectively. They are defined by:

Y = s+ 1/2: Wα(2s+1) ∼ D̄2D(α2s+1
∂α2s

α̇s∂α2s−1

α̇s−1 . . . ∂αs+1

α̇1Hα(s))α̇(s) (2.4)

Y = s: Wα(2s) ∼ D̄2D(α2s
∂α2s−1

α̇s−1∂α2s−2

α̇s−2 . . . ∂αs+1

α̇1Ψα(s))α̇(s−1) . (2.5)

These are superfields which respect the gauge symmetries mentioned above and at the com-

ponent level they include the bosonic and fermionic higher spin field strengths. Moreover,

they have two interesting characteristics. Firstly, they are both chiral superfields

D̄
β̇
Wα(2s+1) = 0 , D̄

β̇
Wα(2s) = 0 . (2.6)

6A detailed counting of the off-shell degrees of freedom can be found in [55–58].
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Secondly, they have a special index structure. Specifically, they have indices of only one

type (the undotted ones) and in both cases the number of indices is 2Y . Furthermore,

on-shell they satisfy the following equations of motions:

DβWβα(2s) = 0 , DβWβα(2s−1) = 0 . (2.7)

3 Gauge invariant, conserved, higher spin supercurrent

Now let us consider the cubic interaction Y1 − Y2 − Y2 between a massless superspin Y1
supermultiplet and two massless superspin Y2 supermultiplets. We select Y1 to be half-

integer Y1 = s1+1/2 for arbitrary positive integer s1 and Y2 can be either integer, Y2 = s2,

or half-integer, Y2 = s2 + 1/2, for arbitrary positive integer s2. Moreover, we assume that

the first order interaction vertices can be written in a lagrangian form which is generated

by a higher spin supercurrent J and a higher spin supertrace T as follows:7

SI = g

∫

d8z

{

Hα(s1)α̇(s1)Jα(s1)α̇(s1) + χα(s1)α̇(s1−1)Tα(s1)α̇(s1−1)

}

. (3.1)

In this case, the supertrace Tα(s1)α̇(s1−1) can be ignored because one can find improvement

terms to eliminate it. This is related to the fact that a gauge invariant description of

supermultiplet Y2 via the superfield strength has conformal symmetry. Hence the only

non-trivial object to focus in the supercurrent Jα(s1)α̇(s1).

It is straightforward to show that, due to the gauge transformation (2.2a) the higher

spin supercurrent must satisfy on-shell (up to terms that depend on the equation of motion)

the following conservation equation

D̄α̇s1Jα(s1)α̇(s1) = 0 . (3.2)

Also due to the reality of Hα(s1)α̇(s1), Jα(s1)α̇(s1) must be real:

Jα(s1)α̇(s1) = J̄α(s1)α̇(s1) . (3.3)

On top of these requirements, we demand that the higher spin supercurrent is gauge invari-

ant with respect the gauge transformation of the Y2 supermultiplets. This can be achieved

if the supercurrent explicitly depends on the superfield strength Wα(2Y2) of the Y2 super-

multiplet. Furthermore, due to the cubic nature of the interaction the supercurrent must

be quadratic in the Y2 information. However because of the special index structure of

Wα(2Y2), we conclude that the supercurrent must explicitly depend on both Wα(2Y2) and

W̄α̇(2Y2). The most general ansatz one can write is:

Jα(s1)α̇(s1) =

s1−2Y2
∑

p=0

αp ∂(p)Wα(2Y2) ∂
(s1−2Y2−p)W̄α̇(2Y2) (3.4)

+

s1−2Y2−1
∑

p=0

βp ∂(p)DWα(2Y2) ∂
(s1−2Y2−1−p)D̄W̄α̇(2Y2)

7Due to the duality between the transverse and longitudinal formulations of the half-integer superspin,

we only have to consider one of them. Our choice is the transverse description.
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for some coefficients αp and βp. We have intentionally not explicitly written the external

indices of the spacetime or spinorial derivatives in order to simplify the expression. Also

one must not forget the independent symmetrization of all the dotted and undotted indices

of the right hand side together with appropriate symmetrization factors that we also omit.

The symbol ∂(k) is a replacement for a string of k spacetime derivatives.

An immediate consequence of all the above is that there is a constraint in the Y1 and

Y2 values. A supercurrent of this type can exist only if:

s1 ≥ 2Y2 ⇒ Y1 ≥ 2Y2 + 1/2 . (3.5)

In other words, if Y2 > s1/2 there is not enough room for derivatives in order to have

a gauge invariant supercurrent. Hence the conclusion is that if a supersymmetric theory

allows the construction of a gauge invariant, conserved (as in (3.2)), real supercurrent of

rank s1 then its spectrum can include massless supermultiplets with superspin Y > s1/2.

This is a supersymmetric, higher spin extension of the Weinberg-Witten theorem [49].

Also at the component level the constrain (3.5) is consistent with the restrictions found

in [16, 21].

Now we have to actually check, whether a solution of (3.2) and (3.3) of the form (3.4)

exist. The conservation equation (3.2) relates the βp and αp coefficients:

βp = −i (−1)2Y2 αp+1
p+ 1

s1 − p
, p = 0, 1, . . . , s1 − 2Y2 − 1 (3.6)

whereas the reality of the supercurrent gives the following constraints:

αp = α∗

s1−2Y2−p , p = 0, 1, . . . , s1 − 2Y2 , (3.7)

βp = β∗

s1−2Y2−1−p , p = 0, 1, . . . , s1 − 2Y2 − 1 . (3.8)

The above three constraints fix uniquely the coefficients αp and βp

αp = c (i)s1−2Y2 (−1)p

(

s1−2Y2

p

)(

s
p

)

(

2Y2+p
2Y2

) , p = 0, 1, . . . , s1 − 2Y2 , (3.9)

βp = c (i)s1−2Y2+1 (−1)p+2Y2

(

s1−2Y2

p

)(

s
p

)

(

2Y2+p
2Y2

)

s1 − 2Y2 − p

2Y2 + 1 + p
, p = 0, 1, . . . , s1 − 2Y2 − 1

(3.10)

up to an overall real constant c. Hence not only is there a solution but it is unique. The

higher spin supercurrent we find is

Jα(s1)α̇(s1) = c(i)s1−2Y2

s1−2Y2
∑

p=0

(−1)p

(

s1−2Y2

p

)(

s
p

)

(

2Y2+p
2Y2

)

{

∂(p)Wα(2Y2) ∂
(s1−2Y2−p)W̄α̇(2Y2) (3.11)

+ i(−1)2Y2
s1 − 2Y2 − p

2Y2 + 1 + p
∂(p)DWα(2Y2) ∂

(s1−2Y2−1−p)D̄W̄α̇(2Y2)

}

.
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There are two interesting cases to look at. The first one is at the boundary of (3.5),

when s1 = 2Y2. In this case the supercurrent (3.11) is simplified and takes the follow-

ing form:

Jα(s1)α̇(s1) = c Wα(2Y2)W̄α̇(2Y2) . (3.12)

This supercurrent is the supersymmetric and higher spin extension of the Bel-Robinson

tensor. That means that for Y2 = 3/2 (linearized supergravity) the supercurrent J
αβγα̇β̇γ̇

as

defined by (3.12) in its components includes the Bel-Robinson tensor of General Relativity

(see [50] and references their in). For higher values of Y2 we get higher spin generalizations

of the Bel-Robinson tensor. A supercurrent of this type has been constructed in [60].

The second interesting observation is in the limit Y2 = 0. This case technically is not

allowed because it is not a gauge theory but a matter theory, hence there is no zero order

transformation and W is not a superfield strength. However, it is the chiral superfield of

the free chiral theory and the suppercurrent (3.11) gives the cubic interactions of the higher

spin supermultiplet Y1 with the chiral supermultiplet. Therefore it is allowed to take this

limit. In that case the expression (3.11) exactly matches to the higher spin supercurrent

of matter theories found in [1, 2].

4 Component structure of the higher spin supercurrent

The components of the higher spin supercurrent (3.11) will include bosonic and fermionic

gauge invariant, conserved higher spin currents. It will be useful to extract the expressions

for these currents and compare with known results for non-supersymmetric theories. For

the projection of the superfield to its components, we will follow [2, 56, 57]. Due to the

conservation equation (3.2), on-shell the higher spin supercurrent Jα(s1)α̇(s1) has only three

independent components8 (2 bosonic and one fermionic)

J
(0,0)
α(s1)α̇(s1)

= Jα(s1)α̇(s1)
∣

∣

∣

θ=0
θ̄=0

, J
(1,0)
α(s1+1)α̇(s1)

=
1

(s1 + 1)!
D(αs1+1

Jα(s1))α̇(s1)

∣

∣

∣

∣

∣

θ=0
θ̄=0

,

(4.1)

J
(1,1)
α(s1+1)α̇(s1+1) = −

1

2(s1 + 1)!(s1 + 1)!
[D(αs1+1

, D̄(α̇s1+1
]Jα(s1))α̇(s1))

∣

∣

∣

∣

∣

θ=0
θ̄=0

.

The rest of them either vanish or are derivatives of the components above. It is straight for-

ward to show, using (3.3) and (3.2), that these components satisfy the traditional spacetime

conservation equations

∂αs1
α̇s1J

(0,0)
α(s1)α̇(s1)

= 0, ∂αs1+1α̇s1J
(1,0)
α(s1+1)α̇(s1)

= 0, ∂αs1+1α̇s1+1J
(1,1)
α(s1+1)α̇(s1+1) = 0

(4.2)

8The labels (0, 0), (1, 0) and (1, 1) correspond to the position of the components in the θ and θ̄ expansion

of the supercurrent.
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hence they correspond to gauge invariant, conserved, higher spin currents. Their explicit

expressions are:

J
(0,0)
α(s1)α̇(s1)

∼ (i)s1−2Y2

s1−2Y2
∑

p=0

(−1)p

(

s1−2Y2

p

)(

s

p

)

(

2Y2+p

2Y2

)

{

∂(p)W
(0,0)
α(2Y2)

∂(s1−2Y2−p)W̄
(0,0)
α̇(2Y2)

(4.3a)

+i(−1)2Y2
s1−2Y2−p

2Y2+1+p
∂(p)W

(1,0)
α(2Y2+1) ∂(s1−2Y2−1−p)W̄

(0,1)
α̇(2Y2+1)

}

,

J
(1,0)
α(s1+1)α̇(s1)

∼ (i)s1−2Y2

s1−2Y2
∑

p=0

(−1)p

(

s1−2Y2

p

)(

s

p

)

(

2Y2+p

2Y2

)

s1+1

2Y2+1+p
∂(p)W

(1,0)
α(2Y2+1) ∂(s1−2Y2−p)W̄

(0,0)
α̇(2Y2)

,

(4.3b)

J
(1,1)
α(s1+1)α̇(s1+1) ∼ (i)s1−2Y2

s1−2Y2
∑

p=0

(−1)p

(

s1−2Y2

p

)(

s

p

)

(

2Y2+p

2Y2

)

{

i∂(p)W
(0,0)
α(2Y2)

∂(s1+1−2Y2−p)W̄
(0,0)
α̇(2Y2)

(4.3c)

−i
2s1−2Y2+1−p

2Y2+1+p
∂(p+1)W

(0,0)
α(2Y2)

∂(s1−2Y2−p)W̄
(0,0)
α̇(2Y2)

+(−1)2Y2
s1+2Y2+2+p

2Y2+1+p
∂(p)W

(1,0)
α(2Y2+1) ∂(s1−2Y2−p)W̄

(0,1)
α̇(2Y2+1)

−(−1)2Y2
s1−2Y2−p

2Y2+1+p
∂(p+1)W

(1,0)
α(2Y2+1) ∂(s1−2Y2−1−p)W̄

(0,1)
α̇(2Y2+1)

}

.

The components W
(0,0)
α(2Y2)

and W
(1,0)
α(2Y2+1) are the only non-trivial components of the super-

field strength Wα(2Y2)

W
(0,0)
α(2Y2)

= Wα(2Y2)
∣

∣

∣

θ=0
θ̄=0

, W
(1,0)
α(2Y2+1) =

1

(2Y2 + 1)!
D(α2Y2+1

Wα(2Y2))

∣

∣

∣

∣

∣

θ=0
θ̄=0

(4.4)

and are the higher spin field strengths for spins j = Y2 and j = Y2 + 1/2 respectively.

These (4.3a) higher spin currents are consistent with the results of [21, 24].

5 Discussion

We consider cubic interactions Y1−Y2−Y2 among massless supermultiplets of superspin Y1
and Y2, where Y1 is half integer Y1 = s1 + 1/2 for arbitrary positive integer s1 and Y2 has

an arbitrary non-negative integer or half-integer value. Specifically, we consider the class

of these interactions that are generated by a higher spin supercurrent Jα(s1)α̇(s1) which

respects the gauge symmetry of the Y2 supermultiplet. We find that:

i. There is a unique gauge invariant, conserved, real, higher spin supercurrent

Jα(s1)α̇(s1) (3.11).

ii. The existence of this supercurrent puts constraints (3.5) on the allowed Y2 superspin

values [s1 ≥ 2Y2]. This is a supersymmetric and higher spin generalization of the

Weinberg-Witten theorem and also is consistent with various spin restrictions coming

from the consideration of non-supersymmetric, higher spin, cubic interactions.
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iii. For the special case of s1 = 2Y2 the higher spin supercurrent simplifies a lot (3.12)

and agrees with the results of [60]. This supercurrent provides a supersymmetric,

higher spin extension of the linearized Bel-Robinson tensor known in the context of

General Relativity.

iv. Another special limit is Y2 = 0 where we recover previously known results for the

higher spin supercurrent of the free, massless chiral theory.

v. The component structure includes two bosonic and one fermionic gauge invariant,

conserved, higher spin currents (4.3a) which depend on the derivatives of higher spin

field strengths for spins j = Y2 and j = Y2 + 1/2.

The list of the supercurrents we find refer only to non-minimal couplings (higher num-

ber of derivatives) and that is due to the explicit dependence of the supercurrent on the

superfield strengths. Therefore, in spite of this list being infinite (for arbitrary values of

Y1 and Y2 that respect (3.5)), it is incomplete. This is simply understood from the fact

that ordinary conserved currents such as the energy momentum tensor and their higher

spin extensions [61] are not included in the class of gauge invariant currents. It would be

interesting to search for non gauge invariant higher spin supercurrents that generate min-

imal coupling (least number of derivatives) among higher spins and give gauge invariant

conserved charges.
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