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1 Introduction

Most observables in a generic quantum field theory cannot be computed due to the lack

of a small expansion parameter. Some of the biggest breakthroughs in theoretical physics

followed from the discovery of small parameters in theories that naively did not have

any small parameters [1–5]. This allowed for the computation of generic observables in a

restricted class of theories. There is also the converse approach — effective field theory

(EFT) — that instead focuses on the calculation of a restricted class of observables in

generic theories. Different EFTs exist for different classes of observables (e.g. [6–9]).

Recently, a new class of observables was found to be computable in a generic conformal

field theory (CFT) via EFT techniques [10–24]. When two of the operators in an n-point

function have a large global charge, the correlator becomes computable in a large charge

expansion. The 2-point function then leads to nontrivial predictions about operator scaling

dimensions. Specializing to the case of a U(1) global charge in 3 spacetime dimensions,
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the dimension ∆ of the lowest dimension operator with charge Q is predicted to take the

universal form

∆ = αQ3/2 + β
√
Q+ γ +O

(
1√
Q

)
, (1.1)

where α and β are non-universal constants depending on the specific CFT, while

γ = −0.0937256 . . . (1.2)

is a universal constant independent of the CFT [10, 25].

The purpose of this paper is to verify this universal constant (1.2) in one of the CFTs

that also has a small expansion parameter: the CPN−1 model at large N [26–31]. We use

the methods of [31] to numerically compute ∆ to subleading order in N — but nonper-

turbative in Q — for Q = 1, 2, · · · , 100. We then fit the coefficients of the large charge

expansion (1.1) to our computed values of ∆ and verify (1.2) to the subpercent level.

2 Monopole operators

The charged operators that we will study are the monopole operators of a 2+1-

dimensional U(1) gauge theory. To review, in 2+1 spacetime dimensions, any U(1) gauge

theory has a U(1) global symmetry generated by the current

Jµ =
1

4π
εµνλF

νλ, (2.1)

where F is the field strength of the gauge field. Local operators charged under this current

are called monopole operators. As a simple example, in free Maxwell theory, the U(1) gauge

field can be rewritten in terms of a free compact scalar π ≡ π + 2π by writing Jµ = f∂µπ

where Jµ is as just defined (2.1) and f is an arbitrary scale. The operator eiQπ is then a

monopole operator of charge Q.

More generally, monopole insertions can be defined by restricting the path integral to

gauge field configurations that satisfy ∫
S2

F = 2πQ (2.2)

whenever the S2 encloses a monopole of charge Q. This definition can be hard to use in

practice since one also needs to supply boundary conditions for all the other fields. In fact,

different boundary conditions are what distinguish different operators of charge Q.

We will instead define monopole operators by the state-operator correspondence [32].

In particular, the lowest dimension monopole operator of charge Q corresponds to the

ground state of the CFT on the cylinder S2×R in the sector with fixed magnetic flux (2.2)

(where the S2 in (2.2) now refers to the S2 of the cylinder S2×R instead of to an arbitrary

S2 embedded in R3). The energy of this state is the scaling dimension ∆ of the operator,

and ∆ can be written in terms of the zero temperature limit of the partition function ZQ as

∆ = − lim
β→∞

1

β
lnZQ. (2.3)
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The partition function ZQ only sums over states of charge Q. In other words, all gauge

field configurations in the Euclidean path integral that computes ZQ are restricted to

satisfy (2.2). In (2.3) and for the rest of the paper, we set the radius R of the S2 to 1.

3 CPN−1 model

The CPN−1 model involves an N -component complex scalar field φ, a U(1) gauge field Aµ,

and a Lagrange multiplier field λ. The Lagrangian is [26–31]

L =
N

g

{
|∇φ− iAφ|2 +

1

8
R|φ|2 + λ

(
|φ|2 − 1

)}
, (3.1)

where R is the Ricci scalar. This theory describes a phase transition between a Higgs phase

(at small g) and a Coulomb phase (at large g). We will study it at criticality g = gc, at

which point it is a CFT.

Given that φ only appears quadratically in (3.1), it can be formally integrated out

exactly. This leaves us with an effective action Seff[A, λ] for A and λ:

Seff[A, λ] = N tr ln

[
−(∇− iA)2 +

1

8
R+ λ

]
− N

g

∫
λ. (3.2)

Due to the overall factor of N in front, this theory can be solved order by order in a large

N expansion. Expanding A and λ about a saddle point,

A = Ā+ a (3.3)

λ = µ2 + σ, (3.4)

gives

Seff[A, λ] = Seff[Ā, µ2] + S
(2)
eff [a, σ] + · · · , (3.5)

where S
(2)
eff [a, σ] is the quadratic effective action for the fluctuations a and σ. Schematically,

S
(2)
eff [a, σ] =

∫∫ [
1

2
〈J µJ ν〉aµaν +

1

2
〈|φ2||φ2|〉σσ + 〈J µ|φ|2〉aµσ

]
, (3.6)

where for compactness we suppressed spacetime arguments as well as a contact term (the

“seagull” term familiar from scalar QED). The correlators are evaluated with A and λ

treated as non-dynamical background fields fixed at Ā and µ2. The gauge current Jµ is

defined as

Jµ = i
[
φ†(∇µ − iĀµ)φ− φ(∇µ + iĀµ)φ†

]
. (3.7)

3.1 Saddle point and critical coupling

We expect the lowest energy saddle point at fixed Q to have a uniformly distributed

magnetic field. Therefore, we take the background Ā to be

Ā =
1

2
Q(1− cos θ)dφ, (3.8)

which results in the uniform field strength dĀ = 1
2Q sin θdθ ∧ dφ.
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The equation of motion for λ imposes the constraint (after canonically normalizing φ)

〈|φ|2〉Q,µ2 =
N

g
, (3.9)

where we explicitly indicated the dependence on the background values of A and λ. For

fixed N and g, this is a constraint between µ2 and Q. In other words, for different values

µ′2 and Q′, we have

〈|φ|2〉Q,µ2 = 〈|φ|2〉Q′,µ′2 . (3.10)

From (3.1) and (3.3), we see that µ2 is the mass parameter for the φ field. To reach

criticality, we tune g so that µ2 vanishes when Q vanishes. This defines the leading order

in large N critical coupling g = gc. From (3.10), we have

〈|φ|2〉Q,µ2 − 〈|φ|
2〉0,0 = 0. (3.11)

By expanding the scalar field φ in terms of monopole spherical harmonics [33],

φ =

∫
dω

2π

∞∑
j=Q/2

j∑
m=−j

ΦjmYQ/2,jm(θ, φ)e−iωτ , (3.12)

(3.11) can be evaluated and gives [29–31]

∞∑
j=Q/2

 j + 1
2√

(j + 1
2)2 + µ2 − 1

4Q
2
− 1

− 1

2
Q = 0. (3.13)

For fixed Q, it is easy to numerically compute µ2 as the solution to this equation. At

leading order in large N , criticality is encoded in this specific relation between µ2 and Q.

At subleading order, gc receives a correction from the self energy of the φ field [31, 34].

4 Computation

The dimension ∆ of the lowest dimension monopole operator is (2.3). To subleading order

in 1/N , this is given by the path integral over the fluctuations a and σ weighted by the

effective action (3.5) expanded to quadratic order. The result is

∆ = lim
T→∞

1

T

{
Seff[Ā, µ2] +

1

2
log det′

(
〈|φ2||φ2|〉 〈Jµ|φ|2〉
〈Jµ|φ|2〉 〈JµJν〉

)}
+O

(
1

N

)
, (4.1)

where the prime on det′ means to take the product of only the non-zero eigenvalues. Due

to gauge invariance, there will be eigenvalues that vanish (see [35] for details on gauge

fixing). The first term in (4.1) is the leading O(N) contribution to ∆ and the second term

is O(1) in N . Let us write this as

∆ ≡ N∆1 + ∆0 + · · · . (4.2)
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Figure 1. The O(N0) contribution to ∆.

Assuming the large charge expansion (1.1), we have

∆1 = α1Q
3/2 + β1

√
Q+ γ1 + · · · (4.3)

∆0 = α0Q
3/2 + β0

√
Q+ γ0 + · · · . (4.4)

In particular, γ in (1.1) has the expansion

γ = Nγ1 + γ0 +
γ−1

N
+ · · · (4.5)

One immediate prediction of the large charge expansion is that all γi vanish except for γ0.

In other words, γ = γ0. This follows from the prediction that γ is universal and thus cannot

depend on N . In this paper, we verify that γ1 = 0 and that γ0 = γ with γ given by (1.2).

We do not verify that γi vanishes for i < 0 since we only work to subleading order in large N .

By expanding the scalar field φ in terms of monopole spherical harmonics as

above (3.12), the determinant (4.1) was numerically evaluated for Q = 1, 2, . . . , 5 in a com-

putational tour de force [31]. We simply repeated that computation for Q = 1, 2, · · · , 100.

For all the details, see [31]. Note that our definition of Q differs from [31] by a factor of 2.

5 Results

5.1 Leading order

The saddle point contribution to the ground state energy ∆1 can be expressed as the

convergent sum [30, 31]

∆1 = 2

∞∑
j=Q/2

(j +
1

2

)√(
j +

1

2

)2

+ µ2 − 1

4
Q2 −

(
j +

1

2

)2

− 1

2

(
µ2 − 1

4
Q2

)
− Qµ2

2
+
Q(1 + 1

2Q
2)

12
, (5.1)

where µ2 is determined as the solution to (3.13).
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At large Q, the sum (5.1) for ∆1 can be analytically computed order by order in

1/Q [31], giving us the coefficients in (4.3):

α1 = ζ

(
−1

2
,

1

2
+ χ0

)
= 0.09336639094 . . . (5.2)

β1 =
5

2
ζ

(
−3

2
,

1

2
+ χ0

)
− 3α1χ0 = 0.03574650308 . . . (5.3)

γ1 = 0, (5.4)

where χ0 = −0.19727817140 . . . is the solution to ζ(1
2 ,

1
2 + χ0) = 0 and ζ is the Hurwitz

zeta function. As predicted, γ1 vanishes. This really just follows from the fact that both

µ2/Q and ∆1/Q
3/2 have a power series expansion in 1/Q.

5.2 Subleading order

We repeated the computation of [31] forQ = 1, 2, . . . , 100. The results are plotted in figure 1

and the numerical values are displayed in appendix A. By fitting to (4.4), we found that

∆fit
0 = 0.2182275Q3/2 + 0.23764

√
Q− 0.0935 +

0.025√
Q

+ · · · . (5.5)

In particular, our value for γ is

γfit = −0.0935± 0.0003, (5.6)

which is both consistent with and within one percent of the value of γ = −0.0937256 . . .

predicted in [10, 25]. This is the main result of our paper. We will give details about our

error analysis in the next three subsections.

In our fit, we assumed the functional form of the expansion (1.1). To illustrate the

validity of this form, figure 2 plots the difference between our computed values of ∆0 and

the fit (5.5). In figure 2a, the subleading O(
√
Q) behavior is clearly visible in our computed

values. In figure 2b, the universal constant plus the remaining O(1/
√
Q) behavior is also

visible.

5.2.1 Numerical approximations

There are two places in the numerical computation where approximations are made. They

both involve approximating a sum of an infinite number of terms. Let the summation

variable be called n. First, the sum is truncated at a large value nmax. Then, the summand

is expanded in a 1/n expansion up to O(1/np), and the remainder of the sum is analytically

evaluated using this expansion. Finally, nmax and p are increased until the desired precision

is reached. We computed each value of ∆ to 6 decimal places. In practice, that meant

increasing nmax and p until the numerical value of ∆ stopped changing in the 6th decimal

place. We then took our error bar for each ∆ to be 10−6.

More specifically, we set Λ = 70 in (4.63) of [31] and carried out the expansion (C.49)

of [31] to O
(
[(j + 1

2)2 + ω2]−6
)
. We also applied the same technique described in figure 1

of [35] with jc = 200, and we carried out that expansion to O(j−18).

– 6 –
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(a) Subtracting just the O(Q3/2) term of the

fit (5.5) from the computed values of ∆0.
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(b) Subtracting both the O(Q3/2) and O(
√
Q)

terms. The dashed line is the predicted O(Q0)

contribution (1.2).

Figure 2. Comparing the fit (5.5) with the computed values of ∆0 (shown in figure 1).

5.2.2 Fitting details

The value we obtain for the O(Q0) piece depends on how many terms in the large Q

expansion we include in the fit. Let us denote the number of terms by k. In principle,

k = ∞. However, if k is too large, this will result in overfitting to the “noise” due to the

finite precision of our numerical calculations. To determine an appropriate value for k, we

borrowed a method that is common in machine learning. The 100 computed values of ∆0

are randomly split into a 70-element “training set” and a 30-element “cross validation”

set. Then, the fit is performed on just the training set. Finally, k is chosen to minimize

the squared difference between the fit with k terms and the cross-validation set. Repeating

this hundreds of times, we found that k = 9 on average with a standard deviation of 2.

5.2.3 Error analysis

The error of ±0.0003 in (5.6) comes from combining the two sources of error mentioned in

the last two subsections. There is an uncertainty in k of ±2 and there is an uncertainty

in ∆ of ±10−6. For each k from 7 to 11, we propagated the uncertainty in ∆ into an

uncertainty in γ, giving us an “allowed region” of γ for each k. Then we took the total

allowed region to be the union of the allowed regions. Our reported error of ±0.0003 is the

width of this region.

6 Discussion

6.1 Relation to the large charge EFT

Physically, the background magnetic field gaps the φ and λ fields by an amount of order
√
B.

Therefore, on distance scales larger than 1/
√
B, we should be left with a local effective

Lagrangian for the gauge field. This is just the Euler-Heisenberg effective Lagrangian

on S2 × R with additional constraints due to conformal invariance. This EFT can be

shown [10, 20] to be equivalent to the large charge EFT.
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In this paper, we did our computations in the full UV-complete theory, not in the EFT.

All divergences were absorbed by terms in the renormalizable Lagrangian (3.1) which is

what allowed us to determine the non-universal coefficients α and β in (1.1).

6.2 Flat space consistency check

One simple consequence of the locality of the EFT is that the coefficient of the O(Q3/2)

term in (1.1) should be computable in flat space R3 without going to the cylinder S2 ×R.

Therefore, as a consistency check, we also repeated the entire computation of [31] on R3.

The main ingredient was the flat space φ propagator in a background magnetic field com-

puted in [36]. Using this, we reproduced the numerical value of the O(N0Q3/2) coefficient

in (5.5) to 4 decimal places. (The numerical value of the O(NQ3/2) coefficient (5.2) was

already reproduced via a flat space calculation in [31] and has a simple interpretation as a

sum over Landau levels.)

6.3 Outlook

To summarize, using the methods of [31], we numerically computed the scaling dimensions

of large charge monopole operators in the CPN−1 model in 2+1 dimensions. We computed

the dimensions of the lowest dimension monopole operators of charge Q = 1, 2, · · · 100.

From this, we fit to the large charge expansion of [10] and verified the universal prediction

for the O(Q0) contribution. In the future, it would be interesting to verify other predic-

tions of the large charge EFT. In particular, there are specific predictions for the 4-point

function [12, 19] as well as for the dimensions of operators with both large charge and large

spin [20].
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A Numerical values

Q ∆0

1 0.3814657

2 0.8745160

3 1.4645878

4 2.1387552

5 2.8878980

6 3.7052725

7 4.5856569

8 5.5248609

9 6.5194280

10 7.5664451

11 8.6634141

12 9.8081621

13 10.9987765

14 12.2335573

15 13.5109803

16 14.8296687

17 16.1883708

18 17.5859425

19 19.0213322

20 20.4935694

21 22.0017546

22 23.5450511

23 25.1226780

24 26.7339043

25 28.3780437

Q ∆0

26 30.0544503

27 31.7625150

28 33.5016616

29 35.2713444

30 37.0710456

31 38.9002727

32 40.7585567

33 42.6454502

34 44.5605261

35 46.5033756

36 48.4736074

37 50.4708459

38 52.4947311

39 54.5449166

40 56.6210693

41 58.7228684

42 60.8500049

43 63.0021804

44 65.1791070

45 67.3805065

46 69.6061098

47 71.8556564

48 74.1288944

49 76.4255792

50 78.7454740

Q ∆0

51 81.0883489

52 83.4539806

53 85.8421523

54 88.2526533

55 90.6852786

56 93.1398288

57 95.6161099

58 98.1139328

59 100.6331133

60 103.1734718

61 105.7348333

62 108.3170269

63 110.9198859

64 113.5432476

65 116.1869529

66 118.8508466

67 121.5347767

68 124.2385947

69 126.9621556

70 129.7053171

71 132.4679403

72 135.2498889

73 138.0510297

74 140.8712321

75 143.7103681

Q ∆0

76 146.5683122

77 149.4449416

78 152.3401356

79 155.2537759

80 158.1857465

81 161.1359335

82 164.1042251

83 167.0905115

84 170.0946850

85 173.1166398

86 176.1562717

87 179.2134786

88 182.2881600

89 185.3802172

90 188.4895531

91 191.6160722

92 194.7596805

93 197.9202857

94 201.0977969

95 204.2921245

96 207.5031806

97 210.7308784

98 213.9751325

99 217.2358589

100 220.5129749
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