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1 Introduction

Universality for lattice gauge theory is generally thought to mean that any lattice action

can be used in simulations provided (1) it reproduces the desired continuum action in the

classical continuum limit, (2) is local, (3) has the correct symmetries, (4) the continuum

extrapolation is performed. Due to asymptotic freedom bare perturbation theory then

correctly predicts the approach to the continuum.

The possibility that universality in field theory holds more broadly was first addressed

in the non-linear O(3) model in 2 dimensions [1]. It was shown that a topological lattice

action which is insensitive to small perturbations of the lattice fields, gives the correct

results in the continuum. The topological nature of the lattice action means that the

classical vacuum is infinitely degenerate and hence bare perturbation theory can not be set

up and is inherently meaningless. The only result that may be obtained from a topological

action is the fully non-perturbative one and it is apparently the same as the one with the

usual lattice action of the O(3) model. Hence it seems that requirement (1) above can be

dropped and universality still holds. Similar results were also shown [2, 3] to hold for the

2d XY model as well.1

From the point of view of the path integral a useful way of thinking about the type

of topological actions we investigate is the following. Field space is divided into two sets:

one, where the action is zero and two, where the action is infinite. Hence configurations

from the former enter with equal weights and fluctuate freely while configurations from

the latter are forbidden. The only non-trivial information about the field theory is then

encoded in the boundary separating the two sets.

1U(1) gauge theory was studied with a topological action in [4, 5] but it is trivial in the physically

relevant continuum limit.
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We investigate the same phenomenon for non-abelian gauge theories. A topological

lattice action can easily be defined analogously to the O(3) model and hence bare per-

turbation theory is again meaningless. Nevertheless we show that for SU(2) pure gauge

theory the non-perturbative continuum results obtained with the topological action agree

with that of the usual Wilson plaquette action which we know is in the correct universality

class of Yang-Mills theory. The compared observables are sensitive to a wide range of in-

teresting physics. At T = 0 we calculate the topological susceptibility and set the scale t0
by the gradient flow. At T = Tc we compare the dimensionless ratio Tc

√
8t0 and also the

critical exponent 1/ν from the Binder cumulant of the Polyakov loop. In small physical

volumes we calculate the discrete β-function (or step-scaling function) at two values of

the renormalized coupling in the gradient flow scheme. In all cases perfect agreement is

found between continuum extrapolated results using the topological and Wilson plaquette

gauge actions. It is worthwhile to point out that a smooth action that effectively prohibits

large plaquettes and is very close to the Wilson plaquette action for small plaquettes was

investigated recently in [6].

The organization of the paper is as follows. In section 2 the topological lattice action

and the details of our simulations are given. Section 3 is dedicated to the topological

susceptibility and scale setting, in section 4 the results related to the deconfinement phase

transition are discussed and in section 5 the results for the discrete β-function are presented.

Finally in section 6 we end with a conclusion and possible future aspects.

2 Topological lattice action

We seek an action which is gauge invariant. The simplest possibility is to use the usual

plaquette P as the only building block,

S =
∑
P

S(P )

S(P ) =

{
0 if 1− 1

2TrP < δ

∞ otherwise
(2.1)

where the sum is over all plaquettes on the lattice. On a given lattice volume the only

parameter is δ which will play the role of a bare coupling. Clearly, as δ → 0 only links

close to unity are allowed hence δ → 0 will correspond to the continuum limit.

Note that the action (2.1) has only two values, 0 or∞, hence divides the space of links

into two subsets. On one, which contain the unit links, the action is zero and hence the

links fluctuate freely without any weight and contribute equally to the path integral. In

particular, the vacuum is infinitely degenerate. On the second set of links the action is ∞
meaning that links are forbidden there and contribute nothing to the path integral. The

only dynamical information is carried by the boundary of these two sets defined by δ. As

the continuum is approached, δ → 0, links have less and less phase space to fluctuate but

still always have equal weight. Gauge invariance is encoded in a gauge invariant definition

of the boundary between allowed and not allowed links.
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δ L/a t0/a
2 t20χ β L/a t0/a

2 t20χ

0.8022 20 1.6739(8) 0.00084(3) 2.2986 20 1.572(2) 0.00070(5)

0.7411 24 3.512(3) 0.00123(4) 2.4265 24 3.364(3) 0.00117(4)

0.7031 32 6.106(6) 0.00135(6) 2.5115 32 5.843(3) 0.00139(3)

0.6792 40 8.95(1) 0.00148(5) 2.5775 40 8.93(1) 0.00152(5)

Table 1. The scale t0 and topological susceptibility with the topological (left 4 columns) and

Wilson plaquette action (right 4 columns).

It is well-known [7] that if the plaquettes on a lattice are all restricted to be very small,

1− 1
2TrP < 0.015, then a geometric integer definition of the topological charge Q can be

given. A slightly more permissive bound was later derived in [8], 1 − 1
2TrP < 1

12(2+
√
2)
'

0.0244. Hence for very small bare couplings δ a local algorithm can not change topology.

In practice though the values of δ we use in this work are much larger, δ ∼ 0.6 . . . 0.8, and

we do encounter topology change frequently enough in all large volume runs. In section 5

the simulations are done in very small physical volumes where of course Q = 0 but this is

not an algorithmic artifact but rather the consequence of being in the femto world. Even

in this case δ > 0.3.

In all runs with the topological action we use a simple Metropolis algorithm whereas

with the Wilson plaquette action a heat bath algorithm. Both Metropolis and heat bath

sweeps are accompanied by two to five overrelaxation steps [9]. An allowed configuration

by the topological action may turn into a forbidden configuration by an overrelaxation

step, in this case the step is rejected and the original configuration is kept.

3 Topological susceptibility and t0 scale

The first observable we would like to compare in the continuum is the topological suscepti-

bility. The gradient flow t0 scale [10–15] is used to make it dimensionless and set the scale,

hence we will compare χt20 = 〈Q2〉t20/V .

For both the topological action and the Wilson plaquette action the measurement of

the gradient flow is done in the same way, using the plaquette discretization along the flow

and the symmetric clover discretization for the observable E(t),

E(t) = −1

2
TrFµν(t)Fµν(t) (3.1)

〈t20E(t0)〉 = 0.3

where on the right hand side the choice 0.3 could in principle be different. Choosing a

smaller value would lead to smaller finite volume effects, smaller errors but larger cut-off

effects. The topological charge Q is also measured along the flow at t = t0 requiring no

renormalization for the topological susceptibility. We confirmed that the continuum results

are insensitive to the choice of t as long as it is kept fixed in physical units. For example,

using t = 0.75 t0 . . . 1.25 t0 for the susceptibility leads to identical results.
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Figure 1. Continuum extrapolations of the topological susceptibility.

Finite volume effects are ensured to be negligible within our statistical errors by always

using symmetric L4 lattices such that
√

8t0/L < 0.25. Another indicator that finite volume

effects are small is that we always have TcL ≥ 4 (see next section).

The measurement of t0/a
2 in our simulations is very precise, its relative error is at least

an order of magnitude smaller than the relative error on the susceptibility. Hence the final

errors are completely dominated by the latter. The data is shown in table 1, the generated

number of configurations at each point is O(105) with O(100) configurations separating

the measurements.

The continuum extrapolation of t20χ in a2/t0 is straightforward and shown in figure 1.

The continuum results for the two discretizations agree, 0.00159(4) and 0.00165(4) for the

topological and Wilson plaquette actions, respectively.

4 Deconfinement phase transition

Next we compare quantities which are sensitive to the deconfinement phase transition

which is second order for SU(2). These can again be compared to the results obtained

with the Wilson plaquette gauge action or with the corresponding quantities in the 3-

dimensional Ising model. First, using the Binder cumulant of the Polyakov loop we will

determine the critical exponent 1/ν with the topological action and find that it agrees with

1/ν = 1.5878(4) from the 3-dimensional Ising model [16]. Then the critical couplings are

determined on Nt = 4, 6, 8, 10 lattices and the dimensionless ratio Tc
√

8t0 is obtained in

the continuum. Again perfect agreement is found between the two actions.

We will use standard scaling theory for much of this section; see [17] for more details.

The bare parameters, δ or β, are collectively denoted by α. Since we investigate the

deconfinement phase transition at fixed temporal extent, the dependence on Nt is often

suppressed while the spatial volume is denoted by Ns. The Binder cumulant of the Polyakov
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Figure 2. The measured Binder cumulants of the Polyakov loop and linear interpolations close to

the critical points with the topological action.

loop L is defined by

g(α,Ns) =
〈L4〉
〈L2〉2

− 3 . (4.1)

The reduced temperature will be denoted by x = (α−αc)/αc. Scaling theory says that close

to the critical point a scaling function f can be defined such that g(α,Ns) = f
(
xN

1/ν
s

)
with some critical exponent ν. Expanding around x = 0 we obtain

g(α,Ns) = f(0) + f ′(0)xN1/ν
s + . . . (4.2)

which means that by considering two spatial volumes, Ns and bNs, for some b > 1, we may

estimate the exponent as

1

ν
=

log
(
S(bNs)
S(Ns)

)
log(b)

, (4.3)

where S(Ns) is the slope of g(α,Ns) with respect to α close to the critical point.

Our data for the Binder cumulant for Nt = 4, 6, 8, 10 are shown in figure 2 together with

linear interpolations (the largest χ2/dof is 1.55). The generated number of configurations is

O(105)−O(106), depending on the parameters. The slopes of these interpolations directly

give an estimate of the critical exponent 1/ν via equation (4.3) without the need to know

the precise location of αc. The results are given in table 2. Clearly, the expected exponent
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Nt Ns b 1/ν

4 12 5/3 1.71(25)

6 18 5/3 1.40(20)

8 24 5/3 1.60(29)

10 20 3/2 1.54(29)

Table 2. The critical exponent 1/ν with the topological action from Nt = 4, 6, 8, 10 lattices.

Nt δc t0/a
2 βc t0/a

2

4 0.8015(5) 1.68(2) 2.2986(6) 1.572(5)

6 0.7413(8) 3.53(3) 2.4265(30) 3.36(7)

8 0.705(2) 6.05(9) 2.5115(40) 5.8(2)

10 0.678(3) 9.2(3) 2.5775(24) 8.9(1)

Table 3. Infinite volume extrapolated critical couplings and t0 scale for both the topological and

Wilson actions. The critical βc for Nt = 4, 6, 8 are from [17]. The errors on t0/a
2 contain the error

of the critical couplings, that is why these errors are larger than those in table 1. The 4-volume for

the scale measurements are the same as in table 1.

of the 3D Ising model, 1/ν = 1.5878(4), is consistent with our data at each Nt even at

finite Ns.

Next, we turn to the determination of the critical couplings. Let us denote the inter-

section of the Binder cumulants corresponding to Ns and bNs by α(Ns, b). The dependence

on Ns and b is again fixed by scaling theory and for large enough volumes we have, with

some constant A,

α(Ns, b) = αc +Aε(Ns, b)

ε(Ns, b) =
1

N
−y1+1/ν
s

1− by1
b1/ν − 1

, (4.4)

where y1 = −1 for the 3D Ising model. Having established that our result for 1/ν is

compatible with the 3D Ising model, we will simply use y1 = −1 and 1/ν = 1.5878 in the

above infinite volume extrapolations.

The infinite volume extrapolations, using (4.4) is shown in figure 3. Estimating

the statistical error on αc is non-trivial since the pair-wise intersections for various Ns

are correlated; we use a jackknife procedure starting from the independently measured

Binder cumulants.

The critical couplings with the Wilson plaquette action have been determined in [17]

for Nt = 4, 6, 8. Our results for the Binder cumulants and infinite volume extrapolation

for Nt = 10 is shown in figure 4.

The final results for the critical couplings are listed in table 3 which we subsequently

use to determine Tc in physical units, Tc
√

8t0.

In order to determine the dimensionless combination Tc
√

8t0 in the continuum only

t0/a
2 needs to be measured at the critical couplings. Even though the statistical error of

t0/a
2 is very small in a given simulation, the uncertainty of the critical coupling itself needs

– 6 –



J
H
E
P
0
8
(
2
0
1
8
)
0
3
2

 0.8

 0.801

 0.802

 0.803

 0.804

 0.805

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

10
3
 ε

Nt = 4

 0.739

 0.74

 0.741

 0.742

 0.743

 0.744

 0  1  2  3  4  5  6

10
4
 ε

Nt = 6

 0.7

 0.702

 0.704

 0.706

 0.708

 0.71

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

10
4
 ε

Nt = 8

 0.674

 0.676

 0.678

 0.68

 0.682

 0.684

 0  2  4  6  8  10  12  14  16

10
5
 ε

Nt = 10

Figure 3. Infinite volume extrapolations of the critical couplings with the topological action; see

equation (4.4).
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Figure 4. Binder cumulants and infinite volume extrapolation of the critical coupling with the

Wilson plaquette action at Nt = 10.

to be taken into account. By a simple interpolation of t0/a
2 in δ and β we estimate this

uncertainty originating from the uncertainty on the critical couplings. It turns out that

this is the dominant source of final uncertainty, the statistical error is negligible. In table 3

we list the results and the reason for the unusually large error on t0/a
2, relative to table 1,

is the aforementioned effect. Another way of saying it is that if only the central values of

βc and δc are taken, then there is an uncertainty on Nt leading to an additional uncertainty

on
√

8t0/a2/Nt beside t0/a
2.
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The continuum extrapolation is shown in figure 5, the results are 0.851(8) and 0.840(6)

with the topological and Wilson plaquette action, respectively. Again, complete agreement

is found.

5 Small volume, perturbative regime

In this section we compare quantities in the perturbative regime. The simplest example

is given by the discrete β-function or step-scaling function [18] in small physical volume

or femto world [19–21] We will use the finite volume gradient flow scheme with periodic

boundary conditions [22, 23]. In this scheme the renormalized coupling is defined by

g2R(L) =
128π2

9(1 + δ(c))
〈t2E(t)〉 (5.1)

where c =
√

8t/L is a constant so g2R only depends on one scale, L, the linear size of the

periodic box. The factor

δ(c) = −c
4π2

3
+ ϑ4

(
e−1/c

2
)
− 1 (5.2)

is such that at tree level the above scheme agrees with MS, ϑ is the 3rd Jacobi elliptic

function [22, 23]. We set c = 3/10. The boundary condition is periodic in all directions and

it is well-known that there are degenerate perturbative vacua within this setup. However for

small renormalized couplings the system fluctuates around one of the vacua and tunnelling

events are suppressed. In our simulations we work in this regime and indeed do not detect

tunnelling at all as expected.

The expansion of g2R(L) in terms of gMS is unusual in a periodic 4-torus in the sense that

both even and odd powers can appear, as well as non-analytic logarithms [21]. Particularly

for SU(2) purely logarithmically suppressed terms appear right after tree level; see [22] for

an extended discussion. Hence only the first coefficient of the β-function is the same in the

gradient flow scheme and MS. It is important to note that the scheme as such is completely

– 8 –
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well-defined non-perturbatively, merely the perturbative expansion behaves in a somewhat

unusual way. The β-function at fixed g2R is a perfectly well-defined and universal quantity.

The subscript R will be dropped in what follows.

On the lattice the discrete β-function, (g2(sL)−g2(L))/ log(s2), or step-scaling function

is the most easily accessible quantity with a well-defined continuum limit for fixed g2(L).

We set s = 3/2. It has a perturbative expansion

g2(sL)− g2(L)

log(s2)
= b0

g4(L)

16π2
+ . . . (5.3)

where, as mentioned above, the terms in . . . contain both even and odd powers of g(L) as

well as logarithms. The 1-loop term b0 = 22/3 is nevertheless universal.

We computed the discrete β-function at two values of the renormalized coupling,

g2(L) = 1.5 and g2(L) = 2.5. As we will see the first is small enough such that the

continuum result is compatible with the 1-loop approximation (5.3). The continuum limit

is approached by 3 sets of lattice volumes, 164 → 244, 184 → 274 and 244 → 364 cor-

responding to the scale change s = 3/2. The desired values of g2(L) were tuned on the

smaller lattices to high accuracy by tuning the bare couplings of the two actions, β and δ,

respectively. Then at the same values of the bare couplings the renormalized couplings were

measured on the larger lattices. Finally the results were extrapolated to the continuum

linearly in a2/L2.

The tuned couplings and the measured values on the larger lattices are shown in

table 4. The continuum extrapolations are shown in figure 6, all χ2/dof are less than

unity. As emphasized above the 2-loop result is only shown for orientation, it is not

universal in our scheme. There is perfect agreement for the continuum results between the

two actions. The smaller coupling, g2(L) = 1.5 is expected to be small enough such that

renormalized perturbation theory at 1-loop is trustworthy. This seems to be the case despite

the only logarithmically suppressed terms and the results with the Wilson plaquette and

topological actions are compatible with the 1-loop approximation (5.3) within 1σ and 1.3σ,

respectively. Even though bare perturbation theory is not possible to set up, renormalized

perturbation theory behaves as expected.

6 Conclusion and outlook

In this paper we investigated non-abelian lattice gauge theory with an action that is in-

sensitive to small perturbations of the lattice fields. In particular, the classical vacuum

is infinitely degenerate. By comparing continuum extrapolated results to those obtained

with the Wilson plaquette action (which is known to be in the correct universality class)

we conclude that even though the topological action has no classical continuum limit, the

quantum continuum limit correctly reproduces the theory. There are of course only a finite

number of comparisons that one can do in simulations but we have chosen quantities that

span a wide range of interesting phenomena. The topological susceptibility, the critical

temperature, critical exponents, and the β-function in small physical volumes were com-

pared and perfect agreement was found. This suggests that universality on the lattice

– 9 –
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L/a δ g2(L) g2(sL) δ g2(L) g2(sL)

16 0.34174 1.498(2) 1.604(2) 0.44743 2.502(2) 2.809(5)

18 0.33798 1.500(2) 1.602(2) 0.44049 2.499(2) 2.799(5)

24 0.32907 1.502(2) 1.601(3) 0.42603 2.502(3) 2.781(7)

L/a β g2(L) g2(sL) β g2(L) g2(sL)

16 4.68515 1.500(1) 1.609(1) 3.65284 2.500(2) 2.806(2)

18 4.73710 1.500(2) 1.604(1) 3.70290 2.500(2) 2.794(3)

24 4.86235 1.500(2) 1.598(2) 3.82180 2.502(2) 2.777(4)

Table 4. Renormalized couplings, top 3 rows: topological action, bottom 3 rows: Wilson plaquette

action. Left 3 columns: tuned to g2(L) = 1.5, right 3 columns: tuned to g2(L) = 2.5.
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Figure 6. Continuum extrapolations of the discrete β-function at g2(L) = 1.5 (left) and g2(L) = 2.5

(right). The Wilson plaquette data is displaced slightly for better visibility.

is very robust; one is free to modify the lattice action not only with higher dimensional

irrelevant operators but also the relevant operators do not have to be reached in a smooth

way dictated by the classical continuum Lagrangian.

It may be worthwhile to remember that a positive transfer matrix can not be associated

with a topological action at finite lattice spacing [24]. However, as duly pointed out in [24],

this is not necessarily a problem if the effect of non-positivity disappears in the continuum

limit. In other words if the positivity violation is merely a cut-off effect. Our results indicate

that this is indeed the case since in the continuum the correct Euclidean Yang-Mills theory

is obtained.

A less obvious question concerns the form of scaling violations, O(a2) specifically,

confirmed numerically in our work. Since bare perturbation theory is not applicable it

is not immediately clear that the same scaling is expected as with the Wilson plaquette

action. However, following the same line of reasoning as for the 2-dimensional O(3) model

in [1], Symanzik’s effective theory, formulated in the continuum, still applies and leads to

the same O(a2) scaling violations as with the Wilson plaquette action.

An intriguing application of topological actions might be with dynamical fermions. The

Nielsen-Ninomiya no-go theorem [25] heavily relies on the classical action, namely that in
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momentum space the continuum Dirac operator is reproduced in the classical continuum

limit. With a topological fermionic action the classical continuum limit is meaningless.

Hence perhaps the no-go theorem may be circumvented by such actions although it is of

course not at all clear how they would be first defined and then implemented.
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