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1 Introduction

Brane solutions in supergravity have offered multiple important insights into the structure

of string theory, supergravity, and holography. They were first constructed as extremal

black branes in ten- and eleven-dimensional supergravity which preserve half of the maximal

supersymmetry [1]. An important insight came from the realization that they should be

thought of as sourced by the D- and M-branes of string and M-theory [2], based on the

earlier work [3, 4]. The dichotomy between the gauge theory living on the worldvolume of

the D-branes and their backreacted p-brane solutions ultimately led to the development of

the gauge/gravity duality [5–7] and to important insights into black hole physics in string

theory [8].

In the standard treatment of Dp-brane supergravity solutions the world-volume of the

brane is (p+ 1)-dimensional flat space, R1,p. For general values of p the near-horizon limit

of the supergravity background exhibits a singularity where the running dilaton diverges.

This bodes well for the holographic interpretation of these backgrounds as dual to (p+ 1)-

dimensional maximally supersymmetric Yang-Mills (SYM) theory on R1,p. For general

values of p this theory is not conformal and it is expected that the weakly curved region

of the supergravity solution is dual to the regime of strong gauge coupling while for small

values of the running coupling the supergravity description is not valid and the background

develops a singularity [9].

Given the importance of flat Dp-branes and their supergravity description it is nat-

ural to explore the more general situation when the worldvolume of the brane is curved.

Since supersymmetry offers a great deal of calculational control which often elucidates the

underlying physics, one is led to look for curved supersymmetric Dp-branes. Indeed, this

question was addressed in [10] where Dp-branes with worldvolumes of the form R1,m×Mq,

with m+q = p andMq a general Euclidean manifold, were studied. To preserve supersym-

metry the worldvolume theory on the brane is partially topologicallly twisted on Mq [11].

This setup has a beautiful extension into the arena of holography as emphasized in [12].

However it is well-known that the topological twist is not the only way by which a super-

symmetric gauged theory can be placed on a curved manifold, see for example [13–16]. A

particularly simple example of a curved manifold on which a SYM theory can be placed in

a supersymmetric way is offered by the sphere equipped with an Einstein metric [13]. Thus

it is natural to ask whether this gauge theory construction admits a realization in string

theory on the world-volume of spherical Dp-branes and how to construct the supergravity

solutions describing the backreaction of these branes. The goal of this work is to address

this question from the point of view of supergravity and holography.

Our approach to construct the supergravity solutions describing spherical Dp-branes is

informed by the knowledge of the Lagrangian of the maximally supersymmetric Yang-Mills

theory on Sp+1 for p ≤ 6 [13, 17]. For general values of p 6= 3 the maximal SYM theory

is not conformal and coupling it to the curvature of the sphere while preserving sixteen

supercharges necessitates certain couplings in the Lagrangian. These couplings in turn

break the R-symmetry of the SYM theory1 from SO(1, 8 − p) to SO(1, 2) × SO(6 − p). It

1The R-symmetry group is non-compact due the fact that the SYM theory is defined in Euclidean

signature.
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is natural to assume that the world-volume theory for spherical Dp-branes at low energies

is the same as this maximal SYM on Sp+1. The symmetry breaking pattern combined

with the presence of sixteen supercharges then leads to a very restrictive ansatz for the

type II supergravity backgrounds describing the spherical branes. Nevertheless it is still

difficult to solve the supergravity BPS equations and find the explicit solutions directly

in ten dimensions. We circumvent this impasse by employing the well-known technique

of reducing the ten-dimensional supergravity theory to an effective gauged supergravity in

p+2 dimensions. The spherical brane solutions of interest are then found as supersymmetric

domain walls in this gauged supergravity with non-trivial profiles for the metric as well as

three scalar fields.2 These scalar fields are the supergravity manifestation of the running

gauge coupling of SYM theory and the couplings in the Lagrangian on Sp+1 that need

to be turned on to preserve supersymmetry. Working with this p + 2-dimensional gauged

supergravity we are able to construct explicitly the supersymmetric spherical domain wall

solutions of interest and then use standard uplift formulae from the literature to convert

them to solutions of type II supergravity.

Our spherical brane solutions exhibit some common features which are in harmony with

the physics of the SYM theory. In the IR region of the geometry the solution is regular and

the radial coordinate combines with the metric on Sp+1 to produce a smooth cap-off that

locally looks like Rp+2. This behavior reflects the fact that in the dual SYM theory the

length scale associated with the sphere provides and IR cut-off for the dynamics and one

cannot probe energies smaller than this scale. This type of smooth cap-off of supergravity

solutions dual to non-conformal gauge theories on a sphere is a familiar feature from recent

holographic studies of mass deformations of three-dimensional ABJM, four-dimensional

N = 4, and five-dimensional D4-D8 SCFTs [18–22]. In the UV region of the spherical

brane solutions the background is the same as the near-horizon limit of the usual flat Dp-

brane backgrounds [1], albeit with Euclidean worldvolume. This behavior is also in line

with the dual gauge theory where at high energies the radius of the sphere should not affect

the dynamics and one expects to recover the physics of SYM theory in flat space.

Part of the motivation for constructing the supergravity solutions describing spherical

Dp-branes is to be able to make contact with recent results on supersymmetric localization

for maximal SYM on Sp+1 [17, 23]. The free energy, i.e. the logarithm of the path integral,

of the SU(N) SYM theory can be computed in the large N limit by taking a continuous

approximation of the matrix model arising from the localization calculation. It was found

in [23] that this large N free energy scales as

F ∼ N2λ
p−3
5−p
eff , (1.1)

where λeff(E) = g2
YMNE

p−3 is the effective ’t Hooft coupling of the gauge theory at energy

scale E. Given our explicit supergravity solutions describing spherical branes it is tempting

to compute this free energy holographically and compare with the supersymmetric local-

ization result. This calculation is somewhat subtle due to the fact that the solutions of

interest are not asymptotically AdS and thus one cannot rely on the standard holographic

2For p = 6 there are only two scalar fields needed in the eight-dimensional supergravity theory.
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dictionary. Nevertheless it is possible to use the results in [24–26] to evaluate the on-shell

action of the spherical brane solutions and reproduce the scaling of the free energy with N

and λeff in (1.1).

The spherical Dp-brane solutions can also be interpreted from a different vantage

point. It is standard in the context of non-conformal holography to encounter supergravity

solutions that exhibit IR singularities, see for example [9, 25, 27–30]. Whenever these

singularities are physically acceptable they are interpreted in the dual field theory as arising

from a free or gapped phase of the IR dynamics [29]. The singularity is usually remedied by

replacing the singular background by a black hole solution with the same asymptotics and a

regular horizon. In the dual gauge theory this corresponds to turning on finite temperature,

which in turn introduces a finite IR cut-off in the gauge theory. In the context of the flat Dp-

brane solutions this is discussed in some detail in [9]. Our spherical brane solutions provide

an alternative way to excise the singularity of flat Dp-brane supergravity backgrounds. Due

to the finite length scale introduced by the sphere one finds a smooth cap-off of the metric

instead of a singularity in the IR region of the geometry. We interpret this as a gravitational

manifestation of the IR cut-off for the gauge theory on Sp+1. The difference with the more

common finite temperature cut-off is that spherical branes preserve sixteen supercharges

which may provide better calculational control in some circumstances. We believe that

this is the unique IR cut-off compatible with the maximal number of supercharges for a

non-conformal SYM theory.

We start in the next section with a review of maximally SYM theory on Sp+1. We

continue in section 3 with a review of the well-known flat Dp-brane solutions. In section 4

we present the general spherical Dp-brane solutions in a unified manner and summarize how

we arrive at them by uplifting supersymmetric domain wall solutions of lower-dimensional

gauged supergravity. In section 5 we discuss the physical interpretation of these spherical

brane solutions for 1 ≤ p ≤ 6. Our supergravity backgrounds have a clear holographic

interpretation which we discuss in section 6. Section 7 is devoted to our conclusions and

a short discussion. In the three appendices we present our conventions, review the known

flat Euclidean D-brane solutions of type II supergravity, and summarize the various lower-

dimensional gauged supergravity theories used to construct the spherical brane solutions.

2 SYM theory on a sphere

An important guiding principle for constructing supersymmetric spherical Dp-brane so-

lutions is the fact that the low-energy dynamics on the worldvolume of D-branes in flat

space is given by a maximally supersymmetric Yang-Mills theory. Thus it is natural to

expect that for spherical Dp-branes the low-energy physics is the same as that of maximal

SYM theory on Sp+1. Since for general values of p, maximal SYM is not conformal it is

non-trivial to couple it to the curvature of the sphere. It is therefore useful to briefly review

the construction of the Lagrangian of maximal SYM on Sp+1.

Maximally supersymmetric Yang-Mills theory in d = p + 1 dimensions has 16 real

supercharges and consists of a vector multiplet transforming in the adjoint representation

of the gauge group G. The fields in this multiplet are the gauge field Aµ, 9− p real scalar
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Dimensions Lorentzian Euclidean

7 1 2 (Majorana)

6 2 (Weyl) 2 (Majorana)

5 2 2

4 4 (Majorana) 4 (Weyl)

3 8 (Majorana) 4

2 16 (Majorana-Weyl) 8 (Majorana)

Table 1. Number of minimal spinors in each dimension used in Lorentzian and Euclidean field

theories. The conditions the spinors satisfy are indicated in brackets. In all cases we denote the

collective 16-component fermion with the symbol Ψ.

fields, Φm, and 16 fermionic degrees of freedom, or gaugini, collectively denoted by Ψ.

Depending on the dimension and signature of space-time the fermionic degrees of freedom

are arranged into spacetime spinors as summarized in table 1. The index m, which labels

the scalar fields, transforms in the fundamental representation of the R-symmetry group,

which is SO(9 − p) for Lorentzian3 theories and SO(1, 8 − p) for the Euclidean ones. We

are mostly interested in Euclidean theories, as we intend to study SYM on Sp+1, but for

the moment we keep the discussion general and discuss both cases.

The classical action for the (p + 1)-dimensional maximal SYM theory on flat space

can be derived by dimensional reduction of the unique SYM action in ten dimensions, see

for instance [31]. Note that to obtain the Euclidean theory one must perform a timelike

dimensional reduction. Explicitly the Lagrangian of the d-dimensional SYM theory on flat

space reads4

LSYM =
1

2g2
YM

Tr

[
− FµνFµν −DµΦmD

µΦm + Ψ̄γµDµΨ

−1

2
[Φm,Φn][Φm,Φn] + Ψ̄Γm[Φm,Ψ]

]
. (2.1)

Here Ψ̄ = Ψ†Γ0 is the Dirac adjoint with Γ0 the ten-dimensional gamma matrix along the

time direction.5 The Yang-Mills field strength is given by Fµν = 2∂[µAν] + [Aµ, Aν ], and

the gauge covariant derivatives are

DµΦm = ∂µΦm + [Aµ,Φm] , DµΨ = ∂µΨ + [Aµ,Ψ] . (2.2)

The m,n indices are raised and lowered with the flat metric on R9−p for Lorentzian theories

or R1,8−p for Euclidean theories. For Euclidean theories this implies that one of the scalar

fields, Φ0, has the wrong sign kinetic term. Notice also that the scalar-fermion interaction

term involves internal gamma matrices, Γm, associated with the R-symmetry.

3We work with a “mostly +” signature.
4Since we are interested in QFTs we take p ≥ 1. We also set the θ-term in the four-dimensional SYM

action to zero.
5We use conventions in which the (9 − p)-dimensional gamma matrices are denoted by Γm and the

(p+1)-dimensional ones are γµ. The Clifford algebra is {γµ, γν} = 2gµν , with gµν the metric on space-time.
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The Yang-Mills coupling constant, gYM, is dimensionful for d = p + 1 6= 4, and the

mass dimension is given by [g2
YM] = 3 − p. This means that maximal SYM theories are

non-renormalizable for p > 3 and have to be incorporated in a UV complete theory at high

energies. Indeed, maximal SYM in five dimensions, i.e. p = 4, is conjectured to grow an

extra dimension at high energies and flow towards the (2,0) CFT in six dimensions [32, 33].

Maximal SYM in six dimensions is expected to be UV completed by a non-gravitational

but non-local theory called little string theory. Little string theory comes in two flavors,

depending on the chirality of the supercharges in six dimensions. Six-dimensional SYM

has (1, 1) supersymmetry and therefore flows towards the corresponding (1, 1) little string

theory in the UV, see [34, 35] for reviews and further references. For p > 5 maximal SYM

has a UV completion within string theory as the worldvolume theory on Dp-branes. For p ≤
3 the UV physics is under better control. When p = 3 it is well-known that maximal SYM

is conformally invariant and thus UV finite. For p < 3 the YM coupling is asymptotically

free and the physics at low-energies is strongly coupled. The theory in three dimensions, i.e.

p = 2, is believed to flow to the interacting ABJM CFT which has maximal supersymmetry

and describes the low-energy dynamics of M2-branes [36]. The IR dynamics of the maximal

two-dimensional SYM is somewhat more involved, see [37] for a recent discussion.

Placing SYM on curved backgrounds such as Sp+1 via a minimal coupling, i.e. replac-

ing ηµν with gµν and partial with covariant derivatives in (2.1), results in an action that

in general does not posses any supersymmetry. This is because constant supersymmetry

transformation parameters, ε, do not exist on a general curved manifold. The supersymme-

try transformation of the action is proportional to the derivative of ε which in general does

not vanish. Understanding which supersymmetric QFTs can be placed on which curved

manifolds while preserving some amount of supersymmetry can be done systematically us-

ing the formalism described in [15]. For maximal SYM on Sp+1 this question was addressed

in the earlier work [13], see also [14, 17].

In this paper we are interested in the maximal SYM theory placed on Sp+1 with

metric R2dΩ2
p+1 where R is the radius of the sphere and dΩ2

p+1 is the unit radius6 Einstein

metric on Sp+1. It was shown in [13] that these Euclidean theories can preserve 16 real

supercharges and the supersymmetry parameter obeys the equation

∇µε =
1

2R
γµΓε with Γ = Γ012 , (2.3)

This construction only works for p ≤ 6. This is closely related to the fact that supercon-

formal algebras only exist in six or fewer dimensions. The action for maximal SYM on

Sp+1 is explicitly given as a deformation of the action in (2.1). First we have to introduce

a minimal coupling of the Lagrangian in (2.1) to the metric on the sphere. In addition, to

ensure that the supersymmetry generated by the spinor in (2.3) is preserved, we have to

add the following extra terms to the Lagrangian

δL = − 1

R2
Tr [(p− 1)ΦmΦm + (p− 3)ΦaΦ

a]

+
1

2R
(p− 3)Tr

[
Ψ̄ΓΨ− 8Φ0[Φ1,Φ2]

]
, (2.4)

6The Ricci scalar of the sphere with metric R2dΩ2
p+1 is equal to p(p+1)

R2 .
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where the index a only runs from 0 to 2 and is contracted using the Lorentzian metric

just like the m,n indices [13]. The Lagrangian in (2.4) for p 6= 3, 6 breaks the SO(1, 8− p)
R-symmetry group of the maximal theory in Euclidean space to the subgroup7

SU(1, 1)× SO(6− p) . (2.5)

This symmetry breaking pattern is an important guiding principle for constructing the

spherical brane solutions of ten-dimensional supergravity.

There are at least three important reasons to study SYM theories on Sp+1. First, this

is a maximally symmetric space which is also the unique curved manifold on which one

can preserve 16 supercharges. Placing a supersymmetric theory on a sphere is an essential

ingredient in the context of supersymmetric localization and indeed it was recently shown

in [17], following the seminal work [14], how to study the partition function of maximal SYM

using this method for any 1 ≤ p ≤ 6. This in turn paves the way to compute exactly certain

supersymmetric correlation functions of the SYM theory. Finally, the radius, R, of the

sphere provides a natural IR cut-off for the dynamics of the SYM theory which is compatible

with supersymmetry. This is especially important in the holographic context where the

IR physics of SYM theories for p 6= 3 results in singularities of the dual supergravity

solutions. These can be resolved by introducing finite temperature in the form of a black

hole horizon [9]. The finite temperature is a convenient IR regulator which however breaks

supersymmetry completely. As we show below, our spherical Dp-brane solutions, which are

holographically dual to the maximal SYM on Sp+1, are regular in the IR while preserving

all 16 supercharges.

3 D-branes in flat space

Before embarking on the journey towards constructing supergravity solutions describing

Dp-branes with a spherical worldvolume we first review the physics of their flat counter-

parts. Black branes are solution of ten-dimensional type II supergravity that source the

metric, the dilaton, as well as (p+ 2)-form field strengths [1]. The solutions are character-

ized by their conserved electric charge µp and the ADM tension Tp. These branes break

either all of the original 32 supercharges of type II supergravity or only half of them. We

will focus on the latter case for which the branes are extremal in the sense that their ten-

sion equals their charge, i.e. Tp = µp. Within string theory these supergravity backgrounds

are interpreted as the backreaction of a large number of fundamental Dp-branes on the

ten-dimensional geometry in which they are immersed [2]. This interpretation has passed

many consistency checks in string theory and ultimately led to the AdS/CFT correspon-

dence. The low-energy physics on the flat worldvolume of the fundamental Dp-branes is

described by maximal SYM in flat space. This implies that upon gravitational backreaction

the supergravity solution describing supersymmetric black branes is holographically dual

to this SYM theory as first suggested in [9].

7For p = 6 the R-symmetry group is SO(1, 2) ' SU(1, 1) and is preserved by the Lagrangian in (2.4).
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The full ten-dimensional supergravity solution describing Dp-branes with flat world-

volume, with p ≤ 6, in asymptotically flat space and in string frame is (see for example [38])

ds2
10 = H−1/2ds2

p+1 +H1/2ds2
9−p , (3.1)

eΦ = gsH
(3−p)/4 , (3.2)

Cp+1 = (gsH)−1 volp+1 . (3.3)

Here ds2
p+1 and ds2

9−p denote the flat metrics on R1,p and R9−p respectively, volp+1 is the

volume form on R1,p and H is a harmonic function on R9−p. The harmonic function has

isolated singularities at the position of the branes. For a single stack of Dp-branes at the

origin we have ds2
9−p = dr2 + r2dΩ2

8−p, with dΩ2
8−p the unit radius metric on a round 8− p

sphere. The harmonic function in this case is

H = 1 +
gsN

µ6−pV6−pr7−p , (3.4)

where Vn−1 = 2πn/2/Γ(n/2) is the volume of the unit radius n-sphere. The fundamental

charge of a Dp-brane is given by8

µp =
2π

(2π`s)p+1
, (3.5)

and the Yang-Mills coupling constant of the worldvolume gauge theory is

g2
YM =

(2π)2gs
(2π`s)4µp

. (3.6)

The constants in (3.4) must satisfy a Dirac quantization condition. Indeed, integrating the

magnetic field strength over dΩ2
8−p leads to

1

2κ2
10µp

∫
?dCp+1 =

N(7− p)V8−p
2κ2

10µpµ6−pV6−p
= N , (3.7)

where the integer N is interpreted as the number of Dp-branes.

The field theory limit of Dp-branes in a holographic context was first studied in [9]

(see also [25]). Introducing the dimensionless radial coordinate U = r/(2π`s), this limit is

equivalent to zooming in on the near-horizon region of the branes:

gsN Up−7

2πV6−p
� 1 . (3.8)

Using (3.8), the metric and dilaton simplify to

ds2
10 = (gU)

7−p
2 ds2

p+1 + (gU)
p−7
2
(
dU2 + U2dΩ2

8−p
)
, (3.9)

eΦ = gs(gU)
(p−3)(7−p)

4 , (3.10)

Cp+1 = g−1
s (gU)7−pvolp+1 , (3.11)

8The ten-dimensional Newton constant is related to the string length `s through 4πκ2
10 = (2π`s)

8,

therefore 2κ2
10µpµ6−p = 2π. Note that in our conventions the Newton constant does not depend on gs.
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where we have introduced g as9

(2π`sg)p−7 =
gsN

2πV6−p
. (3.12)

For 0 < p < 3 at high energies, U � 1, the string coupling becomes small indicating

that the theory is free in the UV. As discussed in section 2 this is the expected UV behavior

of maximal SYM theory in 1 < d < 4 dimensions. Conversely for 3 < p < 7 the dilaton

increases at high energies indicating that the field theory is strongly coupled. This again fits

nicely with the fact that for d > 4 the SYM theory is not renormalizable. Clearly the case

p = 3 is special since the string coupling is constant throughout the solution and the metric

is that of AdS5×S5. This is the well-known holographic dual description of the conformal

N = 4 SYM theory in d = 4. The background in (3.9)–(3.11) possesses ISO(1, p)×SO(9−p)
isometry for p 6= 3 and SO(2, 4)×SO(6) for p = 3. This is the same as the global symmetry

group of the SYM theories discussed in section 2. It is therefore clear that this near-horizon

solution nicely exhibits the physics we expect from a holographic dual to SYM on flat space.

We refer to [9] and references thereof for further support of this holographic duality.

Our goal is to generalize the solutions in (3.9)–(3.11) and construct supergravity back-

grounds which correspond to spherical Dp-branes and provide a holographic description

of maximal SYM on Sp+1. This necessitates an understanding of how to construct super-

gravity solutions for D-branes with Euclidean worldvolume. This was addressed in several

papers by Hull [39–41] where he argued that there are Euclidean branes, or E-branes, not

of regular type II string theory but of the so-called type II∗ string theory. The existence

of a low-energy supergravity limit of these type II∗ string theories can be deduced inde-

pendently from a supergravity point of view [42]. The type II∗ supergravity theories admit

E-brane solutions10 for which the brane worldvolume is Euclidean and the time direction

is transverse to the brane worldvolume, i.e. E-branes resemble instantons. The E-brane

solutions can be obtained from the Dp-brane solutions above by analytically continuing

the time direction of the brane worldvolume into a spatial coordinate and at the same

time analytically continuing the polar angle of the sphere transverse to the brane into a

time-like coordinate. This analytic continuation results in changing the worldvolume of

the brane from R1,p to Rp+1 and the transverse S8−p sphere in (3.9) to de Sitter space,

dS8−p. The analytic continuation does not only affect the metric, but also changes the R-R

fields. In [39–41] all R-R fields are taken to be real with “wrong sign” kinetic terms. In this

paper we use an equivalent formulation in which all R-R fields are imaginary with “usual

sign” kinetic terms. To ensure supersymmetry the Killing spinors for these E-branes have

to satisfy rather unusual reality conditions, this is explained in some detail in appendix B.

Finally we note that solutions of the Lorentzian type IIA∗ string theory should uplift to

solutions of the so-called M∗ theory, see [39–41], which has the somewhat exotic (2, 9)

signature of the metric, i.e. two time-like and nine spatial dimensions.

9The real constant g will be identified with the coupling constant of the (p + 2)-dimensional gauged

supergravity theory in which the brane solutions can be effectively described.
10Note that in the notation of [39–41] an E(p+ 1)-brane is the Euclidean version of a Dp-brane.
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4 Spherical branes

To construct the near-horizon solution for Euclidean Dp-branes wrapped on spheres we can

utilize intuition from the field theory discussion in section 2 and make a suitable ansatz

for the ten-dimensional metric. The total isometry group of the solution should be a

direct product of the isometry group of the Sp+1 which the Dp-brane is wrapping and the

R-symmetry group of the Yang-Mills field theory in p+ 1 dimensions:

SO(p+ 2)× SU(1, 1)× SO(6− p) . (4.1)

A ten-dimensional metric ansatz that implements these symmetries is given by

ds2
10 = ∆

[
dr2 +R2e2AdΩ2

p+1 + e2B
(

dθ2 + P cos2 θ dΩ̃2
2 +Q sin2 θ dΩ2

5−p

)]
. (4.2)

The functions A, B, ∆, P , and Q depend on r and θ and satisfy suitable positivity con-

ditions such that the metric has the correct signature, while R is a constant that sets the

radius of Sp+1. The metric on a round n-sphere is denoted by dΩ2
n with volume form voln.

Clearly the dΩ2
p+1 and dΩ2

5−p factors in the metric realize the SO(p+ 2)× SO(6− p) part

of the isometry group in (4.1). The non-compact SU(1, 1) factor in the R-symmetry of the

SYM theory is realized as the isometry group of two-dimensional de Sitter space with metric

dΩ̃2
2 = −dt2 + cosh2 t dψ2 , (4.3)

where ψ is 2π-periodic.

Note that for P = Q = 1 the metric in (4.2) simplifies significantly, namely the

metric transverse to the worldvolume of the branes is the round metric on dS8−p which

has SO(1, 8− p) isometry group, i.e. the same as for the Euclidean Dp-branes in flat space

discussed at the end of section 3. Even without having an explicit solution for spherical

branes, intuition from field theory suggests that for values of the radial coordinate much

larger than the scale set by R the supergravity solution should reduce precisely to the

Euclidean Dp-brane background with P = Q = 1. This is suggested by the UV limit in the

field theory where the curvature of Sp+1 should play no role in the dynamics of the SYM

theory and it should reduce to that in flat space.

In addition to the metric (4.2), we also have to make an ansatz for the type II NS-NS

and R-R form fields and the dilaton. Dp-branes are electrically charged under Cp+1 and

it is natural to expect there to be a component of Cp+1 along the dΩ2
p+1 worldvolume of

the branes. We should also allow for all other form fields in the supergravity to have non-

zero values as long as they preserve the isometry group in (4.1). In addition the dilaton

can be an arbitrary function of r and θ. With this ansatz at hand one should analyze

carefully the equations of motion and the supersymmetry variations of the ten-dimensional

supergravity theory imposing that the background preserves 16 out of the 32 supercharges.

This analysis should result in a system of coupled non-linear partial differential equations

for the unknown functions in the ansatz. It is fair to assume that without any further

insight it will be difficult to solve explicitly this system of equations. Fortunately progress

can be made by employing a well-tested strategy in top-down holography, namely reduce
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the ten-dimensional problem to a supergravity problem in p + 2 dimensions. This can be

achieved by employing a consistent truncation of the ten-dimensional supergravity to an

appropriate gauged supergravity in p+ 2 dimensions.

4.1 Supergravity in p + 2 dimensions

The gauged supergravity theories of interest are maximally supersymmetric and arise as

consistent truncations of type II supergravity on S8−p. The vacua of these supergravities

are directly related to the field theory limits of Dp-branes discussed in section 3 and thus

for p 6= 3 the vacuum breaks half of the supersymmetries. In order to describe spherical

branes we must analytically continue these gauged supergravity theories so as to work

with an Euclidean theory. After constructing the solutions of interest we can uplift them

to ten dimensions where we recover the time direction, as in (4.2), and thus obtain a fully

Lorentzian solution of type II supergravity. In this section we start by briefly describing the

Lorentzian gauged supergravity theories before performing the analytic continuation. Since

the construction of the spherical brane solutions proceeds similarly in different dimensions

we present a uniform description of the Lagrangian and BPS equations for all values of p.

In appendix C we give a more detailed discussion of the supergravity theories in various

dimensions used in this paper and their analytic continuation.

The field theory discussion in section 2 suggest that to construct the spherical brane

solutions of interest we can restrict to an SU(1, 1)× SO(6− p) invariant truncation of the

maximally supersymmetric gauged supergravity theory. This ensures that the R-symmetry

of the SYM theory, realized as a gauge symmetry in the supergravity theory, is preserved.

In addition we are interested in supergravity solutions which preserve the SO(p+2) isometry

of the sphere which the branes are wrapping. This in turn implies that all fields present in

the gauged supergravity theory except the metric and scalar fields should be set to zero. As

discussed in detail in appendix C, imposing these symmetries on the gauged supergravity

leads to a consistent truncation which includes only the metric and three real scalar fields:

the “dilaton” φ, a real scalar x and a pseudoscalar χ.11 These scalar fields have a nice

interpretation in the SYM theory on Sp+1. The dilaton is dual to the Yang-Mills coupling,

the scalar field x is dual to the bosonic bilinear mass term Φ2, and the pseudoscalar is dual

to the fermionic bilinear mass term Ψ2 which appear in the field theory Lagrangian (2.4).

It turns out that it is more convenient to work with the scalar fields λ and β (discussed

further in appendix C) which are linear combinations of the scalar fields x and φ. In terms

of these fields, the bosonic actions for the truncated gauged supergravity theories take the

following uniform form for 0 < p < 6

S =
1

2κ2
p+2

∫
?p+2

{
R+

3p

2(p− 6)
|dλ|2 − 1

2

(
|dβ|2 + e2β |dχ|2

)
− V

}
, (4.4)

where V is the scalar potential. It is clear from the kinetic terms that (β, χ) span an

SL(2)/SO(2) coset which can be conveniently parametrized by a single complex scalar

τ ≡ χ+ ie−β . (4.5)

11The cases p = 3 and p = 6 are somewhat special and will be discussed separately below.
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The kinetic term for τ can then be written in terms of the Kähler potential

K = − log

(
τ − τ̄

2

)
= β , (4.6)

as

Kτ τ̄ |dτ |2 =
1

4

(
|dβ|2 + e2β |dχ|2

)
, (4.7)

where Kτ τ̄ = ∂τ∂τ̄K is the Kähler metric. The scalar potential can be compactly expressed

in terms of a superpotential which is holomorphic in τ and reads:

W =

−g e
1
2
λ
(

3τ + (6− p)ie−
p

6−pλ
)

for p < 3 ,

−g e
3(2−p)
2(6−p)λ

(
3ie

p
6−pλ + (6− p)τ

)
for p > 3 .

(4.8)

Here g is the SO(9−p) gauge coupling constant of the maximal gauged supergravity theory.

The scalar potential is given by

V =
1

2
eK
(

6− p
3p
|∂λW|2 +

1

4
Kτ τ̄DτWDτ̄W −

p+ 1

2p
|W|2

)
, (4.9)

where Da = ∂a + ∂aK is the Kähler covariant derivative.

It is clear from the kinetic term of the scalar λ in (4.4) as well as the superpotential

in (4.8) that p = 6 has to be treated separately. This is in harmony with the field theory

discussion in section 2 where it was shown that the R-symmetry is unbroken upon placing

SYM on S7. This in turn implies that in the supergravity theory we should retain only the

complex scalar field, τ , and not include the scalar λ. The eight-dimensional gravitational

action for p = 6 then reads12

S =
1

2κ2
8

∫
?8

{
R− 2Kτ τ̄ |dτ |2 − V

}
, (4.10)

where

V =
1

2
eK
(

1

4
Kτ τ̄DτWDτ̄W −

7

12
|W|2

)
, (4.11)

and

W = −3ig . (4.12)

It is reassuring to observe that the supergravity action in (4.10) can be obtained by a

formal limit of the action in (4.4) by taking λ/(p− 6)→ 0 and p→ 6.

As mentioned above, due to the runaway potential for the dilaton φ there is no vacuum

solution of the gravitational theories in (4.4) and (4.10) that preserves all 32 supersymme-

tries.13 There are however domain wall solutions which preserve 16 supercharges and are

closely related to the flat brane solutions in ten dimensions discussed in section 3, see for

12Again we refer to appendix C for more details on how to obtain this action from maximal supergravity

in eight dimensions.
13The case p = 3 is an exception.
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example [25]. These solutions are obtained by setting χ = x = 0, or equivalently β = p
p−6λ,

and read

ds2
p+2 = dr2 + e

2(9−p)
(6−p)(p−3)

λ
ds2

p+1 , e
(p−3)
6−p λ =

g(3− p)2

2p
(r − r0) , (4.13)

where ds2
p+1 is the flat metric on Minkowski space and r0 is an integration constant that can

be set to zero by shifting appropriately the radial coordinate r. These solutions can be up-

lifted to solutions of type II supergravity using the uplift formulae discussed in section 4.3.

The end result of this uplift is given by the following ten-dimensional background

ds2 = eλ
(

ds2
p+2 +

1

g2
e

2(p−3)
6−p λ

dΩ2
8−p

)
, (4.14)

eΦ = gse
p(7−p)
2(6−p)λ , (4.15)

F8−p =
7− p
gsg7−pvol8−p . (4.16)

This solution precisely matches the near-horizon limit of the flat Dp-brane solutions

in (3.9)–(3.10) where gU = e
2p

(6−p)(p−3)
λ

and the number of branes N is related to the

supergravity coupling constant g via (3.12).

So far we have discussed only Lorentzian supergravities. However the spherical branes

of interest here have a Euclidean worldvolume and thus should be described by Euclidean

gauged supergravity theories. Such theories should be maximally supersymmetric with an

SO(1, 8 − p) gauge group and should be closely related to the more familiar SO(9 − p)

maximal gauged supergravity theories in Lorentzian signature. These Euclidean super-

gravity theories are unfortunately not available in the literature. We resolve this impasse

by performing an analytic continuation of the truncated Lorentzian supergravity theories

described by the Lagrangians in (4.4) and (4.10).

At the level of the action the analytic continuation is straightforward. The metric

becomes Euclidean and the only real modification to the action stems from the fact that

the pseudo scalar χ becomes imaginary

χ→ iχ . (4.17)

This results in the “wrong sign” kinetic term for χ. The scalar τ in (4.5) appears to be

a purely imaginary scalar field and thus is not appropriate to describe two independent

scalar fields. We must therefore consider τ = i(χ+ e−β) and, what used to be, its complex

conjugate τ̃ = i(χ− e−β) as two independent scalar fields in the Euclidean theory.14 Simi-

larly we should work with two superpotentials, W as defined in (4.8) and W̃ obtained by

complex conjugation of W accompanied by the replacement τ̄ → τ̃ ,

W̃ =

−g e
1
2
λ
(

3τ̃ − (6− p)ie−
p

6−pλ
)

for p < 3 ,

g e
3(2−p)
2(6−p)λ

(
3ie

p
6−pλ − (6− p)τ̃

)
for p > 3 .

(4.18)

The scalar potential of the Euclidean theory is obtained by replacing W by W̃ in (4.9).

14This is a familiar predicament from similar constructions of Euclidean supergravity solutions in a

holographic context [18, 19].
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With this Euclidean supergravity theory at hand we are now in a position to discuss

how to construct the spherical branes of interest. We start by writing the following metric

ansatz compatible with the spherical symmetry of the worldvolume of the brane

ds2
p+2 = dr2 +R2e2AdΩ2

p+1 . (4.19)

In addition we assume that the scalar fields and the warp factor A only depend on the radial

variable r. The constant R should be thought of as the radius of Sp+1 and is auxiliary

since it can be absorbed into a redefinition of metric function A.15 To obtain the brane

solutions with flat worldvolume one should take R →∞. As we shall discuss below this is

not a smooth limit, nevertheless it still proves useful to keep the constant R explicitly in

the formulae below.

Equipped with this ansatz we can plug it in the supersymmetry variations of the

(p + 2)-dimensional gauged supergravity theory and look for solutions which preserve 16

supercharges. This is discussed in some detail in appendix C. The end result is the following

system of BPS equations which should be obeyed by the metric function and the three scalar

fields:

(λ′)2 = eK
(

6− p
3p

)2

(∂λW)(∂λW̃) , (4.20)

(λ′)(τ ′) = eK
(

6− p
12p

)
(∂λW)Kτ τ̃Dτ̃W̃ , (4.21)

(λ′)(τ̃ ′) = eK
(

6− p
12p

)
(∂λW̃)Kτ̃ τDτW , (4.22)

(λ′)(A′ −R−1e−A) = −eK
(

6− p
6p2

)
(∂λW)W̃ , (4.23)

(λ′)(A′ +R−1e−A) = −eK
(

6− p
6p2

)
(∂λW̃)W , (4.24)

where Kτ̃ τ is the inverse of the Kähler metric in (4.7). Equations (4.20), (4.21),

and (4.22) arise from the spin- 1
2 supersymmetry variations of the gauged supergravity

theory, while (4.23) and (4.24) arise from the spin- 3
2 variations.

Equations (4.23) and (4.24) lead to a first order differential equation together with the

following algebraic relation for the metric function A(r)

eA =
1

Rg2

2p

6− p
τ̃ − τ
τ̃ + τ

e
2(p−3)
6−p λ

(λ′) . (4.25)

Fortunately these two equations are compatible with each other. In addition one can

explicitly check that all BPS equations in (4.20)–(4.24) are compatible with the second

order equations of motion derived from the action in (4.4) after the analytic continuation

in (4.17).16

15To stay in the regime of validity of supergravity we have to make sure that ReA is larger than the

Planck and the string scales throughout the solution.
16The case p = 6 should again be treated separately and is discussed in more detail in appendix C.1.
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r

IR

UV

Rp+2

Figure 1. The regular geometries interpolate between flat Euclidean Dp-branes in the UV and

Rp+2 in the IR.

Note that upon taking the limit R → ∞ in (4.20)–(4.24) accompanied with τ = τ̃ ,

which in turn implies W = W̃, we obtain the BPS equations for a domain wall with flat

slices. These equations are then solved by the Euclidean analog of (4.13).

4.2 Analysis of the BPS equations

We now perform a preliminary analysis of the BPS equations (4.20)–(4.24). It proves

convenient to introduce a new parametrization of the scalar fields given by

τ = ie
− p

6−pλ(X + Y ) , τ̃ = −ie−
p

6−pλ(X − Y ) , for p < 3 ,

τ = ie
p

6−pλ(X + Y ) , τ̃ = −ie
p

6−pλ(X − Y ) , for p > 3 .
(4.26)

When the BPS equations are solved it is important to impose appropriate boundary con-

ditions in the IR. The physics of the SYM theory on Sp+1 suggests that the supergravity

solutions should cap off smoothly in the IR and it is thus natural to look for solutions in

which close to some finite value of the radial coordinate r → rIR the metric looks like the

metric on (p+ 2)-dimensional flat space in spherical coordinates

ds2
p+2 ≈ dr2 + (r − rIR)2dΩ2

p+1 . (4.27)

In the UV, i.e. for large values of r, the solution should asymptotically approach the

flat brane domain wall solution (4.13) as depicted in figure 1. Notice that in this UV limit

one finds X = 1 and Y = 0. In the IR region the scalar fields should approach a constant

finite value in order to have a regular solution. These IR values for the scalars can be found

as the critical points of the superpotential W (or W̃)

∂λW = DτW = 0 , (4.28)

which in terms of the new variables X,Y read:

XIR =
p

3
, YIR = ±2(p− 3)

3
, for p < 3 ,

XIR =
p

(6− p)(p− 2)
, YIR = ± 2(p− 3)

(6− p)(p− 2)
, for p > 3 .

(4.29)
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The upper sign in the expressions above refers to a critical point ofW whereas the lower sign

refers to a critical point of W̃. Notice that for p = 4 the critical value of the superpotential

is at the UV point X = 1. We will discuss this in more detail below. Even though X and

Y approach fixed values in the IR, the scalar λ can take any value λ = λIR. As discussed

in section 6 below, λIR is related to the effective gauge coupling constant of the dual SYM

theory at the IR energy scale set by the radius of the sphere.

Finally we want to point out that when solving the BPS equations in (4.20)–(4.24) it

sometimes proves useful to use the scalar X as a new radial variable. This is possible since

X is a monotonic function of the radial variable r in (4.19).

4.3 Uplift to ten dimensions

After this uniform treatment of the gauged supergravity theories in p+ 2 dimensions and

their spherical brane solutions, we provide general uplift formulae that we use to obtain

the spherical brane solutions in ten dimensions. These are distilled from the literature and

brought into a universal form in appendix C. In this section we merely quote the results.

The ten-dimensional metric takes the expected form in (4.2)

ds2
10 =

eλ√
Q

ds2
p+2 +

e
2(p−3)
6−p λ

g2

(
dθ2 + P cos2 θ dΩ̃2

2 +Q sin2 θ dΩ2
5−p

) . (4.30)

The squashing functions P and Q are determined in terms of the gauged supergravity

scalars as

P =

{
X
(
X sin2 θ + (X2 − Y 2) cos2 θ

)−1
for p < 3 ,

X
(

cos2 θ +X sin2 θ
)−1

for p > 3 ,
(4.31)

Q =

{
X
(

sin2 θ +X cos2 θ
)−1

for p < 3 ,

X
(
X cos2 θ + (X2 − Y 2) sin2 θ

)−1
for p > 3 .

(4.32)

The ten-dimensional dilaton is

e2Φ = g2
se

p(7−p)
6−p λ

P Q
1−p
2 , (4.33)

and the non-vanishing type II form fields are given by

B2 = e
p

6−pλ
Y P

g2X
cos3 θ vol2 ,

C5−p = ie
− p

6−pλ
Y Q

gsg5−pX
sin6−p θ vol5−p ,

C7−p =
i

gsg7−p
(
ω(θ) + P cos θ sin6−p θ

)
vol2 ∧ vol5−p .

(4.34)

Here vol5−p and vol2 refer to the volume forms on dΩ2
5−p and dΩ̃2

2, respectively, see (4.2)

and (4.3). The function ω(θ) is defined such that in the UV the derivative of C7−p simply

gives the volume form on the (8 − p)-dimensional de Sitter space, namely

d

dθ

(
ω(θ) + cos θ sin6−p θ

)
= (7− p) cos2 θ sin5−p θ . (4.35)
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5 Details of the solutions

In this section we do a case-by-case study of the spherical brane solutions. The simplest

example is provided by the near-horizon geometry of Euclidean D3-branes. It is simply

given by H5 × dS5. Writing the metric on H5 in global coordinates

ds2
H5 = dη2 + sinh2 η dΩ2

4 , (5.1)

makes it clear that flat Euclidean D3-branes are described by the same supergravity solution

as spherical D3-branes. This is of course a reflection of the fact that the worldvolume N = 4

SYM theory is conformal and the four-sphere is a conformally flat manifold. As discussed

in section 2 placing non-conformal maximal SYM theories on spheres in a supersymmetric

way must be accompanied by adding particular mass terms in addition to the standard

conformal coupling term to the Lagrangian. In the bulk supergravity solutions this is

manifested by modifying the usual flat Euclidean Dp-brane solutions to new solutions of

supergravity which we exhibit explicitly below.

5.1 D6-branes

As discussed in section 4.1, the case of spherical D6-branes is a degenerate limit of our

equations since now we only have two scalar fields instead of three. This is consistent with

the fact that for the maximal seven-dimensional SYM theory on S7 the R-symmetry is

unbroken. In addition we showed in (4.12) that the superpotential is a purely imaginary

constant which implies that the pseudoscalar χ does not appear in the scalar potential.

This in turn means that the BPS equations derived in appendix C.1 only result in first order

equations for the scalar β and the warp factor A. A first order equation for χ is obtained

directly from the equations of motion. We refer to appendix C.1 for further details on the

eight-dimensional supergravity and the derivation of the BPS equations. Keeping this in

mind it is still useful to mimic the structure of the BPS equations with p < 6 and introduce

new scalar variables

τ = i(X + Y ) , τ̃ = −i(X − Y ) . (5.2)

In these variables the BPS equations together with the equation of motion for Y reduce to

the following system of coupled first order ODEs

(X ′)2 =
9

4
g2X + 36R−2e−14AX4 , (5.3)

Y ′ = 6R−1X2e−7A , (5.4)

(A′)2 =
1

16
g2X−1 +R−2e−2A , (5.5)

where by prime we denote a derivative with respect to r. We have checked that this system

of equations implies the equations of motion of the gauged supergravity theory. To solve

the flow equations in (5.3) it is convenient to use the metric function A as a radial variable.

One then finds

X = e6A . (5.6)
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We then proceed by defining yet another radial coordinate

ρ = arcsinh

(
4

gR
e2A

)
, (5.7)

such that the metric takes the form

ds2
8 =

gR3

16
sinh ρ

(
dρ2 + 4dΩ2

7

)
, (5.8)

and

X =
(
(gR/4) sinh ρ

)3
. (5.9)

The full solution of the gauged supergravity theory is obtained by integrating the equation

dY

dρ
=

3

16
g3R3 sinh3 ρ tanh2 ρ . (5.10)

We will not need the lengthy analytic expression for Y (ρ) in our analysis and thus refrain

from presenting it here.

Many of the interesting properties of this solution are only apparent when uplifted

to ten or eleven dimensions. Unfortunately we are not able to directly use the general

formulae presented in subsection 4.3 since they are not valid for p = 6. Nevertheless, since

our eight-dimensional solution is rather simple the uplift formulae of [43] can be readily

applied and yield the following type IIA background

ds2
10 =

R2e2Φ/3

g
2/3
s

(
1

4
dρ2 + dΩ2

7 +
1

16
sinh2 ρ dΩ̃2

2

)
, (5.11)

H3 =
3

g2g2
s

e2Φdρ ∧ vol2 , (5.12)

F2 =
i

gsg
vol2 , (5.13)

e2Φ = g2
s

(
gR
4

sinh ρ

)3

. (5.14)

For ρ→ 0 the metric and dilaton approach that of a D6-brane in flat space:

ds2
10 ≈

1√
H
R2dΩ2

7 +
√
H
(

dr̃2 + r̃2dΩ̃2
2

)
, (5.15)

e2Φ ≈ (H)−3/2 , (5.16)

where 16r̃ = g(Rρ)2 and H = 1/gr̃. The function H is precisely the harmonic function for

N D6-branes in the near-horizon limit upon replacing g with N using (3.12)

H =
gsN`s

2r̃
. (5.17)

We thus conclude that ρ → 0 should be identified with the UV limit of the dual gauge

theory. In the limit ρ → ∞ we should be exploring the IR regime of the field theory

where the finite size of S7 should play a role. Indeed the eight-dimensional metric (5.8)
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in this limit caps off in the expected regular manner wheras the dilaton blows up. This is

an indication that we must further uplift our type IIA solution to eleven dimensions and

interpret it in M-theory. The uplift to eleven dimensions has to be done with some care

because the two-form field strength F2 and its one-form potential, C1, are imaginary. The

one-form potential appears in the eleven-dimensional metric as a Kaluza-Klein vector and

so if it is imaginary it would render the eleven-dimensional metric complex. This is resolved

by remembering that, as discussed in section 3, our type II solutions can be interpreted

as solutions of Hull’s type II∗ theories [39]. Hull has argued in [41] that the type IIA∗

theory uplifts to an eleven-dimensional version of M-theory with two time directions called

M∗-theory. In our formulation this means that we can apply the standard uplift formulae

presented in appendix A with a purely imaginary M-theory circle parametrized by iω with

ω ∈ R. Doing this for the solution in (5.11) we obtain, quite surprisingly, a metric on

H2,2/ZN × S7 where H2,2 ≡ SO(3, 2)/SO(2, 2). Explicitly we find

ds2
11 =

R2

4g
2/3
s

(
ds2

4 + 4 dΩ2
7

)
, (5.18)

where

ds2
4 = dρ2 − 1

4
sinh2 ρ

(
dt2 − cosh2 t dψ2 + (N−1dω − sinh t dψ)2

)
, (5.19)

is a metric on H2,2 with three-dimensional anti-de Sitter spacetime boundary, albeit in

the wrong signature. Even though the coordinate ω is timelike, it should still be treated

as periodic, just like in the standard relation between type IIA and eleven-dimensional

supergravity. We have parametrized the M∗-theory circle such that ω has periodicity

ω ∼ ω + 4π. Notice that crucially the metric on AdS3 is not regular unless N = 1. In fact

the structure of the metric is precisely that of an extremal BTZ black hole. The analytic

continuation of this metric to eleven spacelike dimensions yields a metric on

H4/ZN × S7 , (5.20)

where the four-dimensional hyperbolic space has a boundary that is a Lens space S3/ZN .

Given that the eleven-dimensional metric above is closely related to the standard AdS4×S7

solution of eleven-dimensional supergravity, it is not surprising to find that up to factors

of N , the four-form flux is the standard one

G4 =
3i

2g2g2
s`s

(
gR
4

sinh ρ

)3

dρ ∧ vol2 ∧ dω =
3i

L4
volH2,2 , (5.21)

where we have introduced

L4 =
R

2g
1/3
s

. (5.22)

As expected we also find that the M2-brane flux

NM2 =
1

(2π`s)6i

∫
G7 =

2L6
4

π2`6s
∈ Z , (5.23)

is properly quantized. The explicit appearance of i in (5.21) and (5.23) is a result of our

choice of conventions for IIA∗ and M∗ theories. We will discuss the holographic interpre-

tation of this curious eleven-dimensional background further in section 6.
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5.2 D5/NS5-branes

For p = 5 the solution is constructed in the maximal SO(4) gauged supergravity in seven

dimensions [44] which arises as a consistent truncation of type IIB supergravity on S3,

see [25]. Just like the well known SO(5) gauged theory [45], obtained by reducing eleven-

dimensional supergravity on S4, this theory has maximal supersymmetry.

Using the three scalar truncation of the SO(4) theory discussed in appendix C.2 one

can derive the BPS equations given in (4.20)–(4.24). As mentioned in the previous section

it is convenient to use X as a coordinate and express the remaining scalar fields Y and λ

as functions of X. The solutions to the BPS equations are then fully determined by the

following ODE
dY 2

dX
=
Y 2

X

(
1− 16X + 15X2 − 9Y 2

2− 8X + 6X2 − 3Y 2

)
, (5.24)

together with the integral

λ(X) = λIR +

∫ X

XIR

3 dx

5
(
1− x

) [(x− 1

3

)
d log Y (x)

dx
− 1

]
. (5.25)

In terms of the new coordinate, the seven-dimensional metric takes the form

ds2
7 =

(1− 3X)2 − 9Y 2

g2Xe4λ

(
dX2

(2− 8X + 6X2 − 3Y 2)2 +
X2

Y 2
dΩ2

6

)
. (5.26)

Unfortunately we have not been able to find an analytic solution to the equations above

that connects the IR values of X and Y given in (4.29) to the UV values X = 1, Y = 0.

To construct such a solutions to (5.24), we therefore have to resort to numerical methods.

As will become quite familiar when solving the supergravity BPS equations for various

values of p, the solution for Y as a function of X is completely fixed by the IR boundary

conditions (4.29). The only physical integration constant that appears in the solution is the

value of the scalar λ in the IR and conveniently λIR only appears as an additive constant

in the integral expression (5.25). A numerical plot of the solution is given in figure 2. Its

uplift to a solution of type IIB supergravity is given by the formulae in section 4.3 with

p = 5.

As discussed above, the numerical solution interpolates between a regular IR region

where X, Y , and λ approach a constant value and the metric caps off smoothly and the

near-horizon geometry of D5-branes in the UV. The uplift to ten dimensions provides a full

solution to the type II supergravity equations of motion describing D5-branes wrapped on

S6. Furthermore by an SL(2,R) transformation we can obtain a solution describing NS5-

branes (or more generally (p, q)-fivebranes) wrapped on S6 and all equations of motion of

course remain satisfied. The wrapped NS5-brane solution is particularly interesting since

the sphere provides an IR cut-off of the linear dilaton geometry sourced by NS5-branes

in flat space. As briefly discussed in section 2, the UV completion of SYM theories in

six dimensions is believed to be given by a non-local, non-gravitational theory called little

string theory (LST). This theory can be understood as the decoupling limit of NS5-branes

where the string coupling vanishes gs → 0 [46]. A holographic model for LST was considered
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Figure 2. A numerical solution for the functions Y (X) and λ(X) in the case p = 5. Notice that

since (5.24) is quadratic in Y , the function −Y is also a solution with λ unchanged. The far UV

region is at Y = 0, X = 1 and the IR region where the S6 smoothly caps of is indicated by the

solid dots.

in [47] and studied in more detail in [48, 49]. The original construction is based on the

linear dilaton vacuum which is simply the near-horizon limit of N flat NS5-branes.17 The

metric and dilaton of this type IIB solution are

ds2
10 = ds2

6 + dη2 + g−2dΩ2
3 , Φ = log gs − gη , (5.27)

where g2 = gsN
−1`−2

s . Although these fields together with a Yang-Mills instanton provide

an exact background of heterotic string theory [50], interpreting it in the context of hologra-

phy is somewhat problematic due to the singular bahaviour of the dilaton for large negative

η. In particular, it makes the holographic computation of LST correlation functions im-

possible without further information about the singular region η → −∞ [47]. In [48, 49] a

resolution of the singularity was proposed whereby the N NS5-branes are spread out on a

circle breaking the SO(4) isometry group of the space transverse to the branes to an SU(2)

subgroup. In a T-dual frame the singularity corresponds to the origin of an ALE space

zN1 + z2
2 + z2

3 = 0 , (5.28)

and the resolution of the singularity is achieved by introducing a non-zero right-hand side

in (5.28). Our type IIB supergravity solution provides an alternative way to resolve the

problem. Remember that the singularity can be understood as a result of the dual SYM

theory becoming weakly coupled in the IR. As we have explained, placing the SYM on

S6 introduces an effective IR cut-off set by the radius of the sphere. In the supergravity

17This background can be obtained from (3.9) for p = 5 by an SL(2,R) transformation.
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description this is manifested by the smooth cap-off of the geometry in the IR. More

explicitly we find that the dilaton of our spherical NS5-brane background takes the form

Φ = log

(
gs
√
P

X

)
− 5λ , (5.29)

which in the IR reduces to

ΦIR = log

(
3gs√

5(3 sin2 θ + 5 cos2 θ)

)
− 5λIR , (5.30)

and therefore eΦ can be made arbitrarily small throughout the full solution by suitably

tuning λIR. It will be most interesting to understand better this spherical NS5 background

and its implications for the physics of LST.

5.3 D4-branes

Our solutions for spherical D4-branes are constructed in a six-dimensional gauged super-

gravity theory obtained by reducing the maximal SO(5) gauged supergravity in seven

dimensions on a circle. As explained in more detail in appendix C.3, we first introduce

a seven-dimensional scalar x that breaks SO(5) → SU(2) × U(1) together with a U(1)

gauge field A. Reducing this theory on a circle introduces the dilaton φ as well as an ad-

ditional scalar field arising from the component of the gauge field on the reduction circle,

i.e. A = χdω where ω is the coordinate on the circle. As a result we obtain the desired

three scalar fields, x, φ and χ.18 After rewriting the BPS equations with the scalar X as

a coordinate the system reduces to a single ODE which controls the full solution

dY 2

dX
=
Y 2(1− 12X + 12X2 − 4Y 2)

2X(1−X)(1− 2X)
. (5.31)

This equation is solved by

Y 4 = cX(1−X)
(

(1− 2X)2 − 4Y 2
)2
, (5.32)

where c is an integration constant. The critical point of the superpotential determines

the IR values of the scalar field as in (4.29) which for p = 4 yields XIR = 1 and YIR =

±1/2. However, the analytic solutions (5.32) only reach the IR for diverging c, i.e. when

(1− 2X)2 − 4Y 2 = 0. This is a solution to the BPS equation (5.31) but it is not physical

since the metric

ds2
6 =

(1− 2X)2 − 4Y 2

g2Xeλ

(
dX2

4(1− 2X)2(X − 1)2
+
X2

Y 2
dΩ2

5

)
, (5.33)

vanishes completely. All solutions in (5.32) with finite c correspond to gravitational domain

walls with singular IR behavior. These singular flows still provide solutions to the ten-

dimensional equations of motion via the uplift formulae in section 4.3. Furthermore an

18These scalars are the ones discussed in section 4.1.
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uplift of these solutions to eleven-dimensional supergravity is given in section C.3. Still,

the conclusion remains that there is no smooth solution with running scalar X that connects

the UV to a regular IR. This is perhaps not surprising since the IR value of the scalar X

is located at X = 1 which is also the UV value for X.

We are thus lead to explore solutions with constant X = 1. The original BPS equa-

tions (4.20)–(4.24) are solved by 2Y = e2λIR−2λ where λIR is an integration constant. The

BPS equation for λ then reduces to

(λ′)2 =
g2

16
e−5λ

(
e4λ − e4λIR

)
. (5.34)

Notice that the scalar χ = e2λIR/2 is constant (cf. (4.5) and (4.26)). Using λ as a coordinate,

the six-dimensional metric can be written as

ds2
6 =

8e3λ−2λIR

g2

(
sinh−1(2λ− 2λIR)dλ2 + sinh(2λ− 2λIR)dΩ2

5

)
. (5.35)

Since the six-dimensional supergravity theory used to construct this solution is obtained

from a reduction of the maximal seven-dimensional SO(5) gauged supergravity it is possible

to uplift the solution above to seven dimensions. Performing this uplift, see appendix C.3,

one finds that the metric and the scalar fields in seven dimensions are simply that of the

maximally supersymmetric AdS7 (or rather H7) vacuum of the gauged supergravity, albeit

with an asymptotic S5×S1 metric on the boundary. There is however also a non-vanishing

gauge field A = χdω, see (C.29), which is pure gauge since the six-dimensional scalar field

χ is constant. Note that due to the topology of S1 it requires a large gauge transformation

to set the field A to zero.

The six-dimensional spherical D4-brane solution above can also be uplifted to ten-

dimensional type IIA supergravity. The explicit form of the solution is

ds2
10 =

eλ√
Q

(
ds2

6 +
eλ

g2

(
dθ + cos2 θ dΩ̃2

2 +Q sin2 θ dζ2
))

, (5.36)

e2Φ = g2
se

6λQ−3/2 , (5.37)

B2 =
e2λIR

2g2
cos3 θ vol2 , (5.38)

C1 =
ie2λIR

2gsg
e−4λQ sin2 θ dζ , (5.39)

C3 = − i

gsg3
cos3 θ vol2 ∧ dζ . (5.40)

This background is of the general form discussed in section 4.3 with

P = 1 , Q = 4
(

4− e4λIR−4λ sin2 θ
)−1

. (5.41)

In the IR region the scalar λ which determines the behavior of the dilaton is finite and

approaches the constant λIR. In the UV region however, the scalar λ diverges and the

type IIA dilaton blows up. This indicates that the proper description of the solution is in

– 23 –



J
H
E
P
0
8
(
2
0
1
8
)
0
2
9

eleven-dimensional supergravity. To find this eleven-dimensional background we can use

the uplift formulae in appendix A. However, just like in section 5.1, we should remember

that we are working in the type IIA∗ theory of Hull which uplifts to the M∗-theory in

which the eleven-dimensional circle is timelike. We take this into account by using a pure

imaginary x11. Keeping this in mind we find the following eleven-dimensional background

ds2
11 =

1

g
2/3
s g2

(
8e2λ̃

(
dλ̃2

sinh 2λ̃
+ sinh 2λ̃ dΩ2

5

)
− 4e4λ̃dω2

+ dθ2 + cos2 θdΩ̃2
2 + sin2 θ(dω − dζ)2

)
, (5.42)

A3 =
i

gsg3
cos3 θ (dω − dζ) ∧ vol2 , (5.43)

where we shifted λ̃ = λ−λIR and the eleventh direction is parametrized by ggse
2λIRx11/2 =

iω. This eleven-dimensional solution is valid in the limit when λ̃ is very large. As it turns

out the first line of (5.42) is simply the global metric on AdS7 whereas the second line is a

metric on four-dimensional de Sitter space. Indeed the full solution is the analytic continu-

ation of the well-known AdS7×S4 solution of standard eleven-dimensional supergravity to

the M∗-theory. It is encouraging to find that in the far UV region of our spherical D4-brane

solution we find the metric in (5.42) which should be associated with the near-horizon limit

of Euclidean M5-branes. This is in line with the expectation discussed in section 2 that

the five-dimensional maximally symmetry SYM theory on S5 flows to the superconformal

(2, 0) theory on S5 × S1 in the UV.

5.4 D2-branes

Spherical D2-branes are constructed in maximal supergravity in four dimensions with

ISO(7) gauge symmetry. This theory was first constructed by Hull in [51] and later argued

to arise as a consistent truncation of type IIA supergravity on S6 [52], see appendix C.4

for more details. Using once again the scalar X as radial coordinate we can reduce the set

of BPS equations (4.20)–(4.24) to a single ODE

dY 2

dX
=
Y 2(7X2 − 4X − Y 2)

X(2X(X − 1) + Y 2)
. (5.44)

This ODE is solved by

Y 4 = cX
(
X(X − 1)− Y 2

)3
, (5.45)

where c is an integration constant. After setting c = −1 we obtain a solution connecting

the UV values of the scalars X = 1, Y = 0 with their IR values as in (4.29) with p = 2. This

choice of integration constant still leaves us with six distinct solutions for Y (X). However,

two of them, Y = ±X, are not physical since the metric

ds2
4 =

X2 − Y 2

g2Xe−λ/2

(
dX2

(2X(X − 1) + Y 2)2
+
X2

Y 2
dΩ2

3

)
(5.46)

– 24 –



J
H
E
P
0
8
(
2
0
1
8
)
0
2
9

Y(X)

e
λIR-λ (X)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.0

0.2

0.4

0.6

0.8

1.0

X

•

•

Figure 3. The full analytic solution for the functions Y (X) and λ(X) in the case p = 2. The UV

region is at X = 1, Y = 0 and the IR region is indicated by the solid dots.

vanishes for these flows. Of the remaining four solutions, only two flow to the (regular) IR.

These are given by

Y 2 =
(1−X)

2X

(
(1−X)(1 + 2X) +

√
(1−X)(1 + 3X)

)
. (5.47)

The BPS equation for λ can now be readily integrated and yields

e2(λ−λIR) = 1−X +
Y 2

X
, (5.48)

with Y 2 given by (5.47). To illustrate this analytic solutions we plot it in figure 3.

This four-dimensional supergravity solution can be uplifted to a ten-dimensional solu-

tion of type IIA supergravity using the uplift formulae in section 4.3 with p = 2. We have

verified that all equations of motion in ten dimensions are satisfied by the above solution.

In the UV one finds that X → 1 and Y → 0 and the ten-dimensional solution reduces to

the near-horizon limit of D2-branes with flat worldvolume. Although the four-dimensional

solution is completely regular, see (5.46), the ten-dimensional background appears to be

singular in the IR due to the fact that the metric function Q as defined in (4.32) blows

up for X = 2/3 and θ = 0. This problem can be circumvented completely by a double

analytic continuation

θ → π/2 + iθ̃ , ψ → iψ̃ , (5.49)

where θ appears in the uplift formula for the metric (4.30) and ψ is a coordinate on the

dS2 in (4.3). The analytic continuation (5.49) leaves the functions P and Q positive in the

full range of the new coordinates 0 ≤ θ̃ ≤ ∞ and 2/3 ≤ X ≤ 1 and so the metric as well

as the other fields are now regular. Furthermore the metric remains with signature (1,9)
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where the θ̃ parametrizes the time direction. A careful study of the form-fields shows that

the continued solution is also a solution of type IIA∗ with all R-R fields pure imaginary

and NS-NS fields real. Finally, the global symmetry of the solution matches with the

field theory expectation (4.1) where SU(1, 1) is now realized as the isometry group of the

hyperbolic plane spanned by (t, ψ̃). The need to perform the analytic continuation in (5.49)

can perhaps be traced to the fact that in the SYM Lagrangian in (2.4) the coefficient of

one of the bosonic bilinear terms changes sign as one goes from p > 3 to p < 3. This

interpretation is also consistent with the fact that we have to perform the same analytic

continuation for the supergravity solution describing spherical D1-branes.

As discussed in section 3, flat D2-branes are singular in the IR since the dilaton blows

up. It is well-known that this singularity can be interpreted by going to eleven-dimensional

supergravity since flat D2-branes uplift to M2-branes smeared over the M-theory circle. The

IR singularity can therefore be understood as a direct consequence of the smearing and its

resolution is achieved by replacing the smeared M2-branes by a point-like stack localized

on the circle. In this way the singular supergravity solution is resolved by replacing it with

the AdS4 × S7 solution of eleven-dimensional supergravity. On the gauge theory side this

interpretation is mirrored by the expectation that maximal SYM theory in three dimensions

flows to the conformal ABJM theory in the deep IR. For our spherical D2-brane solution

there is no singularity in the IR and in fact the dilaton is never so large as to warrant an

uplift to eleven dimensions. In the dual field theory the interpretation is clear - placing

three-dimensional maximal SYM on a three-sphere introduces an IR cut-off and the RG

flow never reaches the superconformal ABJM theory in the IR. As a final comment we note

that the spherical D2-brane supergravity solution should lie in region (b) of figure 1 in [9].

5.5 D1-branes

The final example we consider is the supergravity solution for spherical D1-branes. In this

case we have to deviate slightly from our general approach of first finding the solution of

interest in a lower-dimensional gauged supergravity and then uplifting it to ten dimen-

sions. The reason for this is that we are not aware of an appropriate three-dimensional

supergravity theory that is obtained by a consistent truncation of type IIB supergravity

on S8. Nevertheless we are still able to make progress and find the solution directly in

ten dimensions by solving a system of ODEs, which resemble BPS equations derived from

a three-dimensional supergravity theory, and are obtained by analytically continuing the

equations in section 4.1 to p = 1. We then use the solution of these effective BPS equations

in a ten-dimensional background of the form presented in section 4.3 with p = 1 and check

explicitly that the equations of motion of type IIB supergravity are obeyed. It is highly

non-trivial that this procedure works and we consider this sufficient evidence the resulting

solution describes the backreaction of spherical D1-branes.

To describe the solution we use again the scalar X to parametrize the radial direction.

The BPS equation for Y then reduces to

dY 2

dX
=

Y 2(7X2 + 1− Y 2)

X(2(X2 − 1) + Y 2)
. (5.50)
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A particular solution to this ODE that interpolates between the IR at (X,Y ) = (1/3,±4/3)

and the UV at (X,Y ) = (1, 0) is

Y 2 =
(X + 1)(1−X)2

X
. (5.51)

Next, the equation for λ can be readily integrated, resulting in

λ = λIR +
5

2
log

1−X
2X

. (5.52)

The three-dimensional metric in (4.30) is explicitly given in terms of the scalars Y and λ by

ds2
3 =

(1 +X)2 − Y 2

g2Xe−
4
5
λ

(
dX2

(2(1 +X)(X − 1) + Y 2)2
+
X2

Y 2
dΩ2

2

)
. (5.53)

One can then set p = 1 in the formulae in section 4.3 and obtain an explicit solution of

type IIB supergravity.

Again we note that regularity in the IR completely fixes the profile for Y as a function of

X and the only integration constant of the solution is the one that appears in the expression

for λ in (5.52). A plot of the analytical solution for the scalar fields is given in figure 4. As

was the case for the other spherical brane solutions above we find that in the UV region

the ten-dimensional background we construct is asymptotic to the flat D1-brane solution

of type IIB supergravity. In the IR region the three-dimensional metric caps off smoothly

which reflects the IR cut-off provided by the scale of the S2 in the dual two-dimensional

maximal SYM theory. The ten-dimensional metric on the other hand exhibits a similar

feature as the D2-brane solution in that there is a region in the plane spanned by X and θ for

which the metric function Q becomes negative. Just as for the spherical D2-brane solution

we can cure this problem by performing the analytic continuation (5.49). This renders the

new ten-dimensional configuration a completely regular background of type IIB∗ theory.

6 Holographic interpretation

It is natural to conjecture that the supergravity backgrounds presented in sections 4 and 5

are holographically dual to the maximal SYM theory on Sp+1 described in section 2. So

far we have presented some basic evidence for this duality — the global symmetries and

the supersymmetry of the gauge theory and the supergravity solutions agree. More refined

tests of this duality are harder to perform since for p 6= 3 the SYM theory is not conformal

and thus in general we do not have an asymptotically AdSp+2 region in the geometry. This

in turn implies that we cannot rely on the standard holographic dictionary which is well-

developed for asymptotically AdS space-times. Nevertheless some progress can be made

and our goal in this section is to evaluate the on-shell action of the supergravity solutions

and compare the result with the free energy of the SYM theory on Sp+1 computed by

supersymmetric localization in [17, 23].

It is important to emphasize that we are interested in the scaling of the free energy

of the SYM theory with the rank of the gauge group, N , and the effective dimensionless

’t Hooft coupling λeff which is defined by

λeff(E) = g2
YMNE

p−3 , (6.1)
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Figure 4. A analytic solution in the case p = 1. The UV region is at X = 1, Y = 0 and the IR is

indicated by the solid dots.

see for example [9]. Here E is the energy scale in the field theory at which the coupling is

defined. In the supersymmetric localization computation in [17, 23], with which we want

to compare our supergravity results, the energy scale is set by the inverse radius of the

sphere. It should also be noted that in this field theory calculation there is an implicit

choice of regularization scheme. The relation between the energy scale in a non-conformal

SYM theory and the “radial coordinate” in a dual supergravity background is a subtle

problem that has been discussed in a similar context in [24–26]. We will make use of these

results in the calculations below.

In standard AdS holography the holographic computation of the free energy F is per-

formed by evaluating the renormalized on-shell action of the gravitational background. For

our non-AdS backgrounds the procedure of holographic renormalization is less developed

and the calculation is more subtle. It is perhaps possible to use the results of [26] to

approach this problem in a more systematic fashion however, since here we are mainly

interested in the scaling of F with N and λeff, we will circumvent going through the holo-

graphic renormalization procedure.

As discussed in section 4.3, the p+2-dimensional supergravity action in (4.4) is obtained

by a dimensional reduction of type II ten-dimensional supergravity on a (8−p) dimensional

de Sitter space equipped with a squashed metric. For the purposes of evaluating the on-

shell action we analytically continue all our solutions to be fully Euclidean such that the

de Sitter part of the metric becomes a sphere. This is needed in order to obtain a finite

Newton constant for the (p + 2)-dimensional effective supergravity theory whose on-shell

action we are interested in computing. The Newton constant in p+ 2 dimensions, κ2
p+2, is

obtained by directly integrating out the (8 − p)-dimensional sphere starting from the ten-

dimensional action. Ignoring numerical volume factors coming from the integration over
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the sphere we find that κ2
p+2 is related to the fundamental string theory parameters by

2κ2
p+2 =

2κ2
10g

2
s

vol8−p
∼ (2π`s)

8g2
sg

8−p . (6.2)

It turns out that to determine the scaling of the free energy with N and λeff it is

sufficient to find how the on-shell action scales with the integration constant λIR. To this

end we should find the scaling of the integrand in the action in (4.4) with the metric

function eA, which in turn depends on λIR through its dependence on λ. This dependence

is determined by rewriting the algebraic relation (4.25) in the variables (X,Y ) using (4.26).

We then make use of the fact that in these variables the profiles for X and Y do not involve

the integration constant λIR and in fact λIR only appears as an additive constant to an

explicit integral expression, cf. (5.25) and (5.52). This means that we can easily determine

the scaling of the metric function with λIR:

ReA ∼ g−1e
p−3
6−pλIR . (6.3)

It should be noted that for the supergravity solutions corresponding to flat Dp-branes the

integration constant λIR is not physical since it can be removed by shifting the radial

coordinate, see for example (4.13). For the spherical Dp-brane backgrounds, however, λIR

is physical since the shift of the radial coordinate can be used to either fix the radial

location of the IR region or to fix the value of λ in the IR but not both simultaneously.

Combining all the pieces together one can show that all terms in the integrand of the

action in (4.4) scale in the same way with eλ which results in the following scaling of the on-

shell action, or alternatively the supergravity dual of the free energy in the dual field theory,

Fsugra ∼
∫

(ReA)p

2κ2
p+2

∼ e
p(p−3)
6−p λIR

(2π`sg)8g2
s

. (6.4)

This expression is schematic since the on-shell action formally diverges due to the

integration over the infinite range of the radial coordinate and the asymptotic behavior

of the metric function eA in the UV region. These divergences should be regularized by

a proper application of a holographic renormalization procedure for non-AdS space-times.

Nevertheless, we believe that the scaling of the on-shell action presented on the right hand

side of (6.4) is the correct one. This is due to the fact that the standard local holographic

counterterms one can write down appear with the same power of eλIR as in (6.4).

At this point we need to relate the supergravity parameters g, λIR, and gs to quantities

in the dual field theory. First we use the relation between g and the rank of the gauge group

N in (3.12). The relation between the effective ’t Hooft coupling and the ten-dimensional

dilaton was written down in [26] (see also [24, 25])

eΦ =
1

N
cdλ

7−p
2(5−p)
eff , (6.5)

where cd is a numerical constant which can be found in eq. (2.21) of [26] but is not important

for the scaling argument we are making. The relation (6.5) implicitly relates the energy
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scale of the field theory appearing in (6.1) to the radial coordinate of the supergravity

solution through the radial dependence of the dilaton. Combining this with (4.33), we find

a relation between the supergravity parameter λIR and the effective ’t Hooft coupling19

e
p(7−p)
2(6−p)λIR ∼ 1

gsN
λ

7−p
2(5−p)
eff . (6.6)

We are now in a position to express the holographic free energy in (6.4) in terms of field

theory quantities and find

Fsugra ∼ N2λ
p−3
5−p
eff . (6.7)

This supergravity result nicely agrees with the field theory calculation done in [23] where

the free energy of large N maximal SYM theory on Sp+1 was obtained by supersymmetric

localization for 2 < p < 5 and analytically continued to general p 6= 5. Notice that for

p = 5 the relation in (6.5) degenerates and thus the result in (6.7) is not reliable. This

was also observed in the context of flat Dp-brane supergravity solutions in [24, 25] and is

perhaps due to the fact that the world-volume theory for D5/NS5-branes is not an ordinary

local QFT in the UV. Note also that although we have focused on the non-conformal SYM

theories for p 6= 3 the result in (6.7) nicely reproduces the well-known scaling with N of

the free energy of the N = 4 SYM theory.

The case of spherical D4-branes is somewhat special since in the far UV region the

maximal five-dimensional SYM theory flows to the superconformal (2, 0) theory in six

dimensions which is holographically dual to AdS7 × S4. It is well-known that the free

energy of this SCFT scales as N3. We can recover this scaling by combining (6.7) with

p = 4 and (6.1). Notice that as discussed in [53] the holographic evaluation of the AdS7 on-

shell action disagrees, by a constant factor of order 1, with the large N result for the SYM

free energy on S5 computed by supersymmetric localization. It will be very interesting

to resolve this discrepancy and understand the role played by the asymptotically AdS7

solution discussed in section 5.3.

The calculation above is not valid for p = 6 since, as discussed in section 4.1, the scalar

λ is not part of the p+2-dimensional supergravity theory. Fortunately there is an alternative

method that can be used to calculate the holographic free energy of the spherical D6-

brane solution. As discussed in section 5.1 the eleven-dimensional (Euclidean) supergravity

description of the spherical D6-brane is given by S7 ×H4/ZN . We can calculate the free

energy of this background by compactifying on S7, treat the resulting background as a

solution of supergravity in four dimensions and evaluate its on-shell action. This brings us

into the familiar territory of holographic renormalization for asymptotically locally AdS4

(or H4 in Euclidean signature) spaces. The on-shell action for the H4/ZN background of

interest can be evaluated after adding the usual Gibbons-Hawking and curvature counter

terms. To this end we apply the results of [54] to find the holographic free energy20

F =
L2

4

4πGN

2π2

N
, (6.8)

19Some care has to be taken when combining (6.5) with (4.33) since the expression in (4.33) depends on

both the internal and radial coordinates. To arrive at (6.6) we used (4.33) evaluated in the UV region.
20Here we use 16πGN = 2κ2

4 to denote Newtons constant of the four-dimensional supergravity theory.
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where the factor of N appears because the ZN action reduces the volume of the boundary

manifold S3/ZN as compared to the volume of S3. As usual, GN is the four-dimensional

Newton constant:

GN =
3π3`9s
8L7

4

. (6.9)

The free energy can then be expressed in terms of NM2 as well as the number of D6-branes

N and takes the form

F =
πL2

4

2NGN
=

√
2π

3N
N

3/2
M2 . (6.10)

NM2 has a somewhat mysterious interpretation in the seven-dimensional field theory. No-

tice that NM2 is a dimensionless quantity built from the radius of the seven-sphere. It is thus

natural to conjecture that it is related to the dimensionless ’t Hooft coupling of the field the-

ory. Indeed if we take R−1 as the energy scale in the effective ’t Hooft coupling (6.1) we find

23π6λ−2
eff (R−1) = 23π6(g2

YMNR−3)−2 =
23π6R6

(2π)8g2
s`

6
sN

2
=
NM2

N2
. (6.11)

To arrive at this expression we have used (5.22) and (5.23). This result is consistent with

the relation in (6.5). Using this we find the final expression for the holographic free energy

of spherical D6-branes

F =
25π10N2

3λ3
eff

. (6.12)

It is quite nice to see that this expression follows from analytically continuing the one

in (6.7) to p = 6 and therefore agrees with the field theory results in [23]. It should be

stressed that the numerical coefficients in (6.12) have been computed using a “holographic

renormalization scheme”, i.e. using the relation in (6.11). It will be most interesting to

compute this numerical coefficient from the field theory and compare with the holographic

result in (6.12). Finally, we would like to point out that it was observed in [23] that the

localization calculation for the path integral of seven-dimensional maximal SYM on S7

exhibits features reminiscent of a theory with conformal symmetry. Clearly this QFT

is not conformal so this feature appears puzzling. It is tempting to speculate that this

localization observation is related to the fact that in our supergravity solution the local

isometries of H4/ZN close the Euclidean three-dimensional conformal algebra SO(4, 1).

6.1 Thermal free energy

As we have emphasized numerous times, the finite size of Sp+1 provides an IR cut-off for the

low-energy dynamics of the SYM theory which is compatible with supersymmetry. A more

commonly used IR cut-off is to consider SYM at finite temperature. This of course breaks

supersymmetry but nevertheless offers the possibility for a qualitative comparison with

the holographic results above. The supergravity dual description of a (p+ 1)-dimensional

maximal SYM theory at finite temperature is given by a (p + 2)-dimensional black brane

solution which we summarize below.

The black branes of interest are most easily described as solutions to the (p + 2)-

dimensional gauged supergravity theory described in section 4.1. In contrast to the spheri-

cal brane solutions however these nonsupersymmetric backgrounds preserve the full gauge
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symmetry. This fits well with the fact that in the dual gauge theory at finite temperature

the R-symmetry is preserved. The metric of the solution takes a standard black-hole form

ds2
p+2 = dr2 + e2A(r)

(
−h(r)dt2 + dx2

p

)
, (6.13)

where dx2
p is the metric on Rp. In addition to the metric the only field with a non-trivial

profile is the scalar λ(r). The equations of motion reduce to the following set of equations21

A =
9− p

(6− p)(p− 3)
λ , (6.14)

log(1− h) =
2p(p− 7)

(6− p)(p− 3)
(λ− λ0) , (6.15)(

e
p−3
6−pλ

)′
= −g(3− p)2

2p

√
h , (6.16)

where λ0 is an integration constant. When the integration constant is chosen such that

h = 1 we recover the supersymmetric flat domain wall solution in (4.13). The horizon of

the black hole is located where λ→ λ0 and the asymptotic infinity (UV) is located where

h → 1. Notice that for p < 3 the UV is located for large negative λ but for p > 3 it is

located at large positive λ. In the near-horizon region the metric takes the form

ds2
p+2 = dr2 − g2(7− p)2

4
e

2(5−p)p
(6−p)(p−3)

λ0(r − r0)2dt2 + e
2(9−p)

(6−p)(p−3)
λ0dx2

p . (6.17)

The temperature of the black hole can be determined using the standard trick of ensuring

that the near-horizon metric does not have conical singularities when analytically continued

to Euclidean time, it. The result is

T =
g(7− p)

4π
e

(5−p)p
(6−p)(p−3)

λ0 . (6.18)

This black brane solution can be uplifted to ten dimensions using the formulae in section 4.3

and the metric in string frame reads:

ds2
10 = (gU)

p−7
2
(
h−1dU2 + (gU)7−p (−h dt2 + dx2

p

)
+ U2dΩ2

8−p
)
, (6.19)

where gU = e
2p

(6−p)(p−3)
λ

such that

h = 1− U7−p
0

U7−p , gU0 = e
2p

(6−p)(p−3)
λ0 . (6.20)

The dilaton and R-R fields are the same as for the flat supersymmetric brane solution

in (3.10) and (3.11). The effective ’t Hooft coupling can be easily computed using (6.5)

and (3.10) and is given in terms of the temperature

λeff ∼ (gsN)
2(5−p)
7−p

(
T

g

)p−3

∼ gsN (2π`sT )p−3 . (6.21)

21These black brane solutions are clearly well-known and studied in many references, see for example [55].

For convenience we rederive them here in our conventions and notation.
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An alternative way to arrive at the same relation for λeff is to first identify the energy scale

in the QFT, E, with the temperature of the black hole, T . Using this and the relation

in (6.1) one obtains again (6.21). The entropy of the black branes was computed in [9] and

can be evaluated in terms of the Einstein frame area of the horizon which is

AEinst = e−2Φ(U0)Astr ∼ g−2
s (gU0)

9−p
2 gp−8Vp , (6.22)

where Vp is the spatial volume of the Dp-branes. The area of the horizon determines the

entropy of the black brane via S = 2AEinst/κ
2
10 which in terms of the field theory quantities

takes the form

S ∼ N2λ
p−3
5−p
eff T pVp . (6.23)

It is then clear that the thermal free energy F ∼ TS has the same scaling in terms of

N and λeff as the supersymmetric free energy in (6.7). This can be viewed as another

consistency check of our field theory interpretation of the spherical brane backgrounds as

holographically dual to the maximal SYM theory on Sp+1.

7 Conclusions

In this paper we constructed explicit supergravity solutions which preserve sixteen real

supercharges and describe the backreaction of spherical Dp-branes with 1 ≤ p ≤ 6. We

also argued that these backgrounds are holographically dual to the planar limit of the

maximally supersymmetric Yang-Mills theory on Sp+1. An immediate consistency check

of this claim is provided by the fact that the global symmetries and supersymmetry of the

gauge theory and the supergravity solutions are the same. As a more refined check of the

duality we showed that the on-shell action of the supergravity solutions agrees with recent

results from supersymmetric localization about the planar limit of the free energy of the

SYM theory. There are several interesting questions for further research that arise from

these spherical brane solutions which we discuss briefly below.

While in section 6 we described a way to extract holographic information from the

on-shell action of the spherical brane solutions and compared that successfully with super-

symmetric localization results, it is clear that the procedure we employed is not rigorous.

It is certainly desirable to understand better how to apply holographic renormalization

for the spherical brane solutions in order to be able to systematically extract supergravity

results for correlation functions in the dual SYM theory on Sp+1. The results of [26] can

perhaps be adapted and used in this context. Once the holographic renormalization pro-

cedure is under control one can study other gauge theory observables using the spherical

brane solutions. A natural candidate are supersymmetric Wilson line operators. Depend-

ing on the representation of the gauge group these operators should be described by probe

fundamental strings or D-branes and their expectation value is captured by the on-shell

action of the probe. It would also be interesting to study these line operators in the dual

gauge theory using supersymmetric localization and perhaps establish additional checks

of this non-conformal holographic duality. The holographic calculation of the expectation

value of a BPS Wilson loop in the fundamental representation for the non-conformal four-

dimensional N = 2∗ theory on S4 was recently performed in [21] and the result agrees
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with supersymmetric localization. This gives us reasons to be optimistic that a similar

calculation for the spherical Dp-brane solutions above should be within reach.

We constructed our ten-dimensional spherical brane solutions by first studying super-

symmetric domain walls of lower-dimensional maximal gauged supergravity and making

use of uplift formulae. There should be a more systematic way to construct brane solutions

with curved world volumes directly in ten- and eleven-dimensional supergravity. There is

of course the standard Maldacena-Núñez construction of supergravity solutions sourced by

branes with curved worldvolumes which preserve supersymmetry via a partial topological

twist [12, 56], see also [57] for a review. However it is well-established that supersymmetric

gauge theories on curved manifolds can preserve supersymmetry in more general ways [15].

It is thus natural to ask whether and how the branes of string and M-theory realize these

alternative supersymmetric gauge theories. This question was recently discussed in [58, 59]

but it is fair to say that the subject deserves a deeper and more systematic exploration.

Given that maximal SYM is believed to possess a unique Lagrangian on Sp+1 it is

natural to conjecture that our spherical brane solutions are the unique ones preserving 16

supercharges. This in turn should provide the unique IR cut-off of the dual SYM theory

with this amount of supersymmetry. However it should be possible to find a generalization

of our construction to gauge theories with smaller amounts of supersymmetry by adding

suitable couplings to the SYM Lagrangian. Recently this was explored in field theory

using supersymmetric localization in [23, 60]. The supergravity description of such a con-

struction should bear similarities with the N = 1∗ and N = 2∗ mass deformations of the

four-dimensional N = 4 SYM on S4 which were recently explored in a holographic context

in [19–21]. It will also be interesting to construct similar supersymmetric supergravity so-

lutions dual to the maximal SYM theory on different curved manifolds. Perhaps a natural

example to consider is given by a squashed Sp+1 when p = 2k is an even integer. In this case

we can view the sphere as a U(1) bundle over CPk and squash the Einstein metric while

preserving SU(k)×U(1) invariance. This construction should preserves 8 supercharges and

the partition function of the field theory should be computable by supersymmetric localiza-

tion, see for example [61–63]. It will be most interesting to explore these questions further.

Finally we should stress that the description of spherical branes in this work is through

the supergravity solutions describing their backreaction on space-time. It will certainly

be interesting to have a better understanding of the Euclidean Dp-branes with spherical

worldvolume from the perspective of open string theory. The proper framework for such a

study appears to be the type II∗ string theories introduce by Hull [39–41]. It is important

to understand better the role of these somewhat exotic variations of string theory and how

to microscopically describe Euclidean Dp-branes with a curved worldvolume.
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A Conventions for type II supergravity

The spherical Dp-brane backgrounds constructed in this paper solve the equations of motion

of ten-dimensional type II supergravity. This theory comes in two flavors, type IIA and type

IIB, depending on whether the chirality of the supersymmetry generators ε1,2 is opposite or

the same. The bosonic field content consists of the NS-NS sector, common to both type IIA

and type IIB, and the R-R sector. The metric GMN , the dilaton Φ, and the three-form H3

build up the NS-NS sector, while the R-R sector contains the n-form field strengths Fn, with

n = 0, 2, 4 for type IIA and n = 1, 3, 5 for type IIB. In type IIA F0, i.e. the Romans mass,

does not have any propagating degrees of freedom and is set to zero throughout this paper.

In type IIB F5 has to obey a self-duality condition. The fermionic field content consists

of a doublet of gravitinos, ψM , and a doublet of dilatinos, λ. The components of these

doublets are again of opposite chirality in type IIA and of the same chirality in type IIB.

In this paper we use the democratic formalism in which the number of R-R fields is

doubled such that n runs over 0, 2, 4, 6, 8, 10 for type IIA and 1, 3, 5, 7, 9 for type IIB [64].

This redundancy is removed by introducing duality conditions for all R-R fields

Fn = (−1)
(n−1)(n−2)

2 ?10 F10−n . (A.1)

These duality conditions should be imposed by hand after deriving the equations of motion

from the action. The bosonic part of the action written in string frame is given by22

Sbos =
1

2κ2
10

∫
?10

[
e−2Φ

(
R+ 4|dΦ|2 − 1

2
|H3|2

)
− 1

4

∑
n

|Fn|2
]
, (A.2)

where the ten-dimensional Newton constant κ10 is related to the string length through

4πκ10 = (2πls)
8 and we have defined

?10 |A|2 ≡ ?10
1

n!
Aµ1...µnA

µ1...µn = ?10A ∧A . (A.3)

This action should be completed by its fermionic counterpart, which we do not write

explicitly, and is invariant under the following supersymmetry variations23

δψ1
M =

(
∇M −

1

4
/H3M

)
ε1 +

1

16
eΦ
∑
n

/FnΓMΓ(10)ε
2 ,

δψ2
M =

(
∇M +

1

4
/H3M

)
ε2 − 1

16
eΦ
∑
n

(−1)
(n−1)(n−2)

2 /FnΓMΓ(10)ε
1 ,

δλ1 =

(
/∂Φ− 1

2
/H3

)
ε1 +

1

16
eΦΓM

∑
n

/FnΓMΓ(10)ε
2 ,

δλ2 =

(
/∂Φ +

1

2
/H3

)
ε2 − 1

16
eΦΓM

∑
n

(−1)
(n−1)(n−2)

2 /FnΓMΓ(10)ε
1 ,

(A.4)

22We mostly follow the conventions of [38].
23In these formulae we have implicitly chosen positive chirality spinors in type IIB supergravity.
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where ΓM are the ten-dimensional gamma matrices and Γ(10) is the chirality operator. The

Feynman slash notation for an n-form field is defined as follows

( /An)Mk+1···Mn ≡ ΓM1···Mk(An)M1···MkMk+1···Mn , (A.5)

for k ≤ n and ΓM1···Mk ≡ 1
k!Γ

[M1 · · ·ΓMk] is the totally antisymmetric product of k gamma

matrices.

The Bianchi identities and equations of motion derived from the action (A.2) are

dH3 = 0 , and d(e−2Φ ?10 H3) +
1

2

∑
n

?10Fn ∧ Fn−2 = 0 , (A.6)

for the NS-NS field H3 and

dFn −H3 ∧ Fn−2 = 0 , (A.7)

for the R-R form fields. The NS-NS and R-R fluxes can be written in terms of potentials as

Fn = dCn−1 −H3 ∧ Cn−3 , H3 = dB2 . (A.8)

The dilaton and the Einstein equations of motion can be written as

0 = ∇2Φ− |dΦ|2 +
1

4
R− 1

8
|H3|2 ,

0 = RMN + 2∇M∇NΦ− 1

2
|H3|2MN −

1

4
e2Φ

∑
n

|Fn|2MN ,
(A.9)

where we have defined

|An|2MN ≡
1

(n− 1)!
(An)M

M2···Mn(An)NM2···Mn . (A.10)

In the strong coupling limit, gs � 1, type IIA string theory is expected to be described

by M-theory. Therefore it will sometimes be useful to uplift our ten-dimensional type

IIA supergravity solutions to eleven-dimensional supergravity. When compactified on a

circle the eleven-dimensional theory has two parameters, the eleven-dimensional Newton

constant κ11 and the radius of the circle R11. These are related to the ten-dimensional

parameters as follows

R11 = `s and κ2
11 = 2πR11κ

2
10 . (A.11)

The bosonic fields of eleven-dimensional supergravity are the metric and a three-form

potential A3. Their dynamics is governed by the following action

S =
1

2κ2
11

∫
?11

[
R− 1

2
|dA3|2

]
− 1

12κ2
11

∫
A3 ∧ dA3 ∧ dA3 . (A.12)

To reduce to ten dimensions we make the following Kaluza-Klein ansatz

ds2
11 = e−

2
3

ΦGMNdxMdxN + e
4
3

Φ
(
dx11 + C1

)2
,

A3 = C3 +B2 ∧ dx11 .
(A.13)

All fields appearing on the right hand side of (A.13) are the ten-dimensional type IIA

fields in string frame.
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B Flat Euclidean D-branes

In this appendix we explicitly show that flat Euclidean Dp-branes are indeed supersym-

metric solutions of type II∗ supergravity. For more details on these theories, including the

type II∗ actions, see for example [65].

The supersymmetry variations are exactly the same as those of regular type II super-

gravity, see (A.4), with the only difference that the R-R fields now have to be treated as

purely imaginary and the spinor obeys an unusual reality condition. For type IIA∗ the

spinors satisfy a MW∗ condition

ε∗ = −CAΓ(10)ε , (B.1)

and similarly for type IIB∗

ε∗ = CAσ3ε , (B.2)

where ε = (ε1, ε2)T and A and C define respectively Dirac conjugation, χ̄D ≡ χ†A, and Ma-

jorana conjugation, χ̄ ≡ χTC. The reality conditions for the spinors are thus equivalent to

ε̄ = −ε̄DΓ(10) , (B.3)

for type IIA∗ while for type IIB∗ we find

ε̄ = ε̄Dσ3 . (B.4)

We can now check explicitly that the flat Euclidean branes of Hull are indeed 1
2 -BPS

solutions of type II∗ supergravity, i.e. they preserve 16 real supercharges. The solutions

are given by

ds2
10 = H−1/2ds2

p+1 +H1/2ds2
1,8−p , (B.5)

eφ = gsH
(3−p)/4 , (B.6)

Cp+1 = i(gsH)−1volp+1 (B.7)

In these solutions ds2
p+1 is the metric of flat (p+1)-dimensional Euclidean space, ds2

1,8−p is

the Minkowski metric on R1,8−p, and H is a harmonic function on this Minkowski space.

Inserting these solutions into the supersymmetry variations we see that they can indeed

be solved by imposing the usual Dp-brane projector with an extra i inserted(
1 + iΓ0...pΓ(10)P

)
ε = 0 . (B.8)

Here P = σ1 when p(p+1)
2 is even and P = iσ2 when p(p+1)

2 is odd. It is important to

note that the projector above is consistent with the reality condition obeyed by the spinors

in the type II∗ supergravity theory. We would like to stress that this subtle interplay

of imaginary R-R fluxes and unusual reality conditions on the spinors is the reason why

Euclidean branes preserve supersymmetry in type II∗ string theory and supergravity.
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C Gauged supergravity for spherical branes

In this appendix we introduce, case by case, the (p + 2)-dimensional gauged supergravity

theories used to construct the spherical Dp-brane solutions discussed in the main text. The

supergravity theories available in the literature are Lorentzian and we need to analytically

continue them to Euclidean signature. After presenting in some detail the construction

of the gauged supergravity solutions we perform their uplifts to ten-dimensional type II

and/or eleven-dimensional supergravity.

As emphasized in the main text, we start with a maximally supersymmetric gauged

supergravity theory in p+ 2 dimensions and perform a consistent truncation, following the

method of [66], to preserve an SO(3)× SO(6− p) subgroup of the SO(9− p) gauge group,

corresponding to the R-symmetry in the dual SYM theory. By analytically continuing

the supergravity theory to Euclidean signature we end up with a non-compact SO(1, 2)×
SO(6− p) ' SU(1, 1)× SO(6− p) gauge group, in harmony with (2.5). We start with the

case p = 6 and work our way down to p = 2.

C.1 Spherical D6-branes

The supergravity theory appropriate for our construction is the maximal SO(3) gauged

supergravity in eight dimensions, originally constructed in [67], analytically continued to

Euclidean signature and non-compact gauge group. The uplift of this theory to eleven-

dimensional supergravity as well as more general gaugings are discussed in [43].

C.1.1 Maximal eight-dimensional SO(3) gauged supergravity

The maximal N = 2 ungauged supergravity theory in eight dimensions has E3(3) '
SL(3,R) × SL(2,R) global symmetry under which the bosonic fields of the theory trans-

form. In particular, the 7 scalars parametrize the five-dimensional and two-dimensional

coset spaces SL(3,R)/SO(3) and SL(2,R)/SO(2) and are most conveniently expressed in

terms of two matrices Z and A transforming according to

Z→ GZH , where G ∈ SL(3,R) and H ∈ SO(3) ,

A→ KAL , where K ∈ SL(2,R) and L ∈ SO(2) .
(C.1)

The fermionic fields transform under SO(3) × SO(2) ' SU(2) × U(1) which acts as the

R-symmetry of the supergravity theory.24 In total, the field content of the ungauged

theory consists of the metric gµν , two sixteen-component gravitini ψaµ, six gaugini λai ,

seven scalars ZM
i and AIJ , one three-form tensor field Aµνρ, three two-form tensor fields

AMµν , and six one-form vector fields AMN
µ . We use the following index conventions: µ, ν, ρ =

0, . . . 7 are eight-dimensional spacetime indices; M,N = 1, 2, 3 are SL(3,R) indices in the

fundamental; I, J = 1, 2 are SL(2,R) indices in the fundamental; i, j = 1, 2, 3 are in the 3

and a, b = 1, 2 are in the 2 of SU(2) ' SO(3), respectively.

To obtain a gauged supergravity theory with a non-trivial potential for the scalars a

subgroup of the global symmetry group should be promoted to a local symmetry. This can

24We are cavalier about the global difference between SO(3) and SU(2).

– 38 –



J
H
E
P
0
8
(
2
0
1
8
)
0
2
9

be done in several inequivalent ways by gauging a subgroup of the global symmetry group.

By gauging the maximal compact subgroup SO(3) in SL(3,R) one obtains the theory

studied by Salam and Sezgin in [67]. This theory can be obtained by reducing the eleven-

dimensional supergravity to eight dimensions on an SU(2) group manifold. As described

in [43] one can also obtain more general gaugings by reducing the eleven-dimensional super-

gravity on different group manifolds. One example is a reduction on an SU(1, 1) group man-

ifold resulting in the Lorentzian eight-dimensional SO(1, 2) ' SU(1, 1) gauged supergravity.

This case can be understood as an analytic continuation of the Salam-Sezgin theory or as a

“non-compactification” of eleven-dimensional supergravity. However, this SU(1, 1) gauged

supergravity theory is still Lorentzian. To obtain the Euclidean action appropriate for con-

structing the spherical brane solutions of interest we need to combine this analytic continu-

ation of the gauge group with an analytic continuation of the time direction in space-time.

C.1.2 SO(3) invariant truncation

We begin with the SO(3) gauged supergravity of [67] and are interested in constructing

solutions which preserve the SO(3) gauge symmetry and have a maximally symmetric

seven-dimensional factor in the metric. These requirements eliminate all tensor fields in

the supergravity theory except the metric itself. There are two scalars, a “dilaton” β and

an “axion” χ, parametrizing an SL(2,R)/SO(2) coset, which are not charged under the

SO(3) gauge symmetry.

The Lagrangian for the bosonic fields in this SO(3) invariant truncation reads25

S =
1

2κ2
8

∫
?8

{
R− 1

2

(
|dβ|2 + e2β |dχ|2

)
− V

}
. (C.2)

The potential is proportional to the gauge coupling constant, g, of the supergravity theory

and is given by

V = −3

2
g2eβ . (C.3)

It proves convenient to introduce the complex scalar τ = χ + ie−β as in (4.5), the Kähler

potential as in (4.6), and superpotential as in (4.12) The potential in (C.3) can then be

written in terms of the superpotential (4.12) using the expression (4.11).

The supersymmetry variations of this truncation of the supergravity theory can be

read off from [43, 67]. They can be explicitly written as

δψµ = ∇µε+
1

8
eK∂µ(τ + τ̄)ε+

1

24
eKWγ9γµε , (C.4)

δλi =

(
τ − τ̄

2
∂µτ̄ γ9γ

µ +
1

6
eKDτW

)
σiε , (C.5)

where γ9 = iγ01...7, the spinor εa is in the 2 of SO(3), (σi)
a
b are SO(3) Pauli matrices, and

Dτ is the Kähler covariant derivative defined below (4.9).

25Our notation is different from the one in [67]. We have defined β ≡ −2φSS, χ ≡ −2BSS, g ≡ gSS
2

, where

quantities with an SS subscript are the ones used in [67].
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As described in the main text, we are interested in an analytic continuation of this

gravitational theory and its supersymmetry variations into Euclidean signature. This is

achieved by changing the signature of the metric as well as replacing the pseudoscalar as

follows, χ → iχ. In addition we should treat the complex conjugate of the scalar τ as an

independent scalar. We emphasize this by using the notation W → W̃ and τ̄ → τ̃ .

To find the solution of interest we impose the usual spherically symmetry domain wall

ansatz for the metric as in Equation (4.19)

ds2
8 = dr2 +R2e2AdΩ2

7 , (C.6)

and assume that the scalar fields only depend on the radial coordinate r.

To solve the supersymmetry variations in (C.4) we use a conformal killing spinor on

S7 obeying

∇S7

µ ε =
i

2
γµε . (C.7)

Here ∇S7
is the covariant derivative on the unit radius S7. Note that this is in harmony

with the expected supersymmetry generator for the seven-dimensional SYM theory on S7,

see (2.3).

The vanishing of the gaugino and gravitino variations then leads to the following

differential equations

Kτ̃ τ (τ̃ ′)(τ ′) =
1

16
eKWW̃ , (C.8)

(A′)2 −R−2e2A =
1

144
e2KWW̃ , (C.9)

where a prime denotes differentiation with respect to r. Notice that the equations in (C.8)

correspond to a degenerate limit of (4.20)–(4.24) in which we remove the scalar λ and set

p = 6.

There is a subtlety when analyzing the BPS equations in this truncation of the eight-

dimensional supergravity. There are only two independent equations in (C.8) and thus one

of the two scalars in the model appears to not be constrained by a differential equation.

This problem is fixed by the equations of motion which lead to the following first order

differential equation for the scalar χ

χ′ =
6

R
e−2Ke−7A . (C.10)

We have a first order equation in (C.10) because the scalar χ does not appear in the

potential V in (C.3) and the usual second order differential equation has an integral of

motion which reduces the order of the equation. The constant coefficient on the right hand

side of (C.10) is the unique value of this integral of motion which makes the BPS equations

in (C.8) together with (C.10) compatible with all other equations of motion and with the

integrability of the supersymmetry variations in (C.4).

The gauged supergravity solution discussed above can be uplifted to type IIA and

eleven-dimensional supergravity and the explicit result is presented in section 5.1.
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C.2 Spherical D5/NS5-branes

To construct a supergravity solution describing spherical D5- or NS5-branes we consider

the maximal seven-dimensional SO(4) gauged supergravity constructed in [44]. We then

use the results of [68] to uplift this seven-dimensional solution to ten-dimensional type IIB

supergravity.

C.2.1 Maximal seven-dimensional SO(4) gauged supergravity

The maximal N = 4 ungauged supergravity theory in seven dimensions has E4(4) = SL(5)

global symmetry under which the bosonic fields transform. In particular the fourteen

scalars span the coset space SL(5)/SO(5) and can be parametrized by a matrix Z that

transforms according to

Z→ GZH , where G ∈ SL(5) and H ∈ SO(5) . (C.11)

In addition to the bosonic fields, the fermions transform under SO(5) ' USp(4) which

acts as the R-symmetry group of the supergravity theory. In total the field content of

the ungauged theory consists of the metric gµν , four gravitini ψaµ, five two-forms BM
µν ,

ten vector fields AMN
µ , sixteen gaugini χabc, and fourteen scalar fields Z ab

M . We use the

following index conventions: a, b = 1, . . . , 4 denote USp(4) indices; M,N = 1, . . . , 5 are

SL(5) indices, and µ, ν = 0, . . . , 6 are seven-dimensional spacetime indices.

The global symmetries can be promoted to a local symmetry in several inequivalent

ways. Gauging the maximal compact subgroup SO(5) ⊂ SL(5) one obtains the well known

gauged supergravity theory [45]. This theory has a maximally supersymmetric AdS7 vac-

uum and can also be obtained by performing a consistent truncation of eleven-dimensional

supergravity on S4. Further gaugings were discovered in [69] and a complete classifica-

tion was obtained in [44] using the embedding tensor formalism. We are interested in a

maximal supergravity with an SO(4) gauge group which should capture domain wall solu-

tions describing the backreaction of NS5/D5-branes. It was anticipated in [25] that such a

supergravity theory should exist and indeed it was explicitly constructed in [44].26

In the maximal SO(4) gauged theory the SL(5) representations of the bosonic fields are

decomposed into representations of the gauge group. The ten vector fields that transform

in the 10 of SL(5) transform in 6+4 of SO(4) where the 6 plays the role of the SO(4) gauge

field. Four of the two-forms BM
µν become massive by combining with the 4 other vector

fields. The fifth two-form is uncharged and is present also in the N = 2 theory [70]. Finally,

the scalars transform in the symmetric traceless of SL(5), i.e. the 14, which decomposes

into the 9 + 4 + 1 representation of SO(4).

C.2.2 SO(3) invariant truncation

The R-symmetry of the six-dimensional SYM theory on S6 is SO(1, 2) and thus we should

find an SO(3) invariant truncation of the SO(4) gauged supergravity which we can then

26A half-maximal version of the supergravity theory which can be viewed as a consistent truncation of

the maximal theory was studied in [70].
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analytically continue. Imposing this symmetry on the theory and keeping only fields com-

patible with a solution preserving the isometries of S6 leads to a consistent truncation of

the SO(4) gauged supergravity consisting of the metric and three real scalar fields. This

is in agreement with the field theory discussion in section 2. More precisely, the three

supergravity scalars should be dual to the Yang-Mills coupling and the two independent

operators in the deformation Lagrangian (2.4).

The three scalars invariant under the SO(3) symmetry of interest here are the singlets

in the branching rules of the breaking of SO(4) to SO(3)

9→ 5⊕ 3⊕ 1 , 4→ 3⊕ 1 , 1→ 1 . (C.12)

In the notation of [44] the parametrization of the scalar coset element for these three scalars

is

Z =



e−φ−x 0 0 0 0

0 e−φ−x 0 0 0

0 0 e−φ−x 0 0

0 0 0 e−φ+3x e4φχ

0 0 0 0 e4φ


. (C.13)

Notice that χ is a pseudoscalar. These three scalars parametrize the following submanifold

of the SL(5)/SO(5) scalar coset

R+ ×
SL(2,R)

SO(2)
, (C.14)

where R+ is parametrized by the combination λ ≡ −φ − x and SL(2,R)/SO(2) is

parametrized by β ≡ 5φ − 3x and χ. The bosonic action for this consistent truncation

takes the familiar form (4.4) with p = 5

S =
1

2κ2
7

∫
?7

{
R− 15

2
|dλ|2 − 1

2

(
|dβ|2 + e2β |dχ|2

)
− V

}
. (C.15)

The potential is proportional to the gauge coupling constant g and takes the form

V =
g2

2
eβ(−3eλ − 6e−4λ−β + e−9λ−2β + e−9λχ2) . (C.16)

After introducing the scalar τ = χ+ ie−β one can use the superpotential in (4.8) and the

Kähler potential in (4.6) to write the potential in terms of the superpotential as in (4.9).

The supersymmetry variations for this consistent truncation can be obtained from the

results in [44]. The vanishing of the spin- 1
2 variations leads to the equations

∂µ(λ)γµε1 = − 1

15
eK/2∂λWε4 , ∂µ(λ)γµε4 = − 1

15
eK/2∂λWε1 , (C.17)

∂µτ̄ γ
µε1 =

(
e−KKτ̄ τ

)1/2
DτWε4 , ∂µτγ

µε4 =
(
e−KKτ τ̄

)1/2
Dτ̄Wε1 . (C.18)

From the spin-3
2 variations we find

∇µε1 +
i

8
eK∂µ(τ + τ̄) ε1 = − 1

20
eK/2Wγµε

4 , (C.19)

∇µε4 −
i

8
eK∂µ(τ + τ̄) ε4 = − 1

20
eK/2Wγµε

1 . (C.20)
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There are four supersymmetry generators, εa, in the maximal supergravity theory. However

the equations for the pair (ε2, ε3) are identical to the ones presented above for (ε1, ε4).

As described in the main text, the analytic continuation to Euclidean signature corre-

sponds, at this level, to the replacement χ→ iχ accompanied by the substitutionsW → W̃
and τ̄ → τ̃ . After this analytic continuation we can look for the spherical brane solution

by imposing the domain wall metric ansatz as in (4.19)

ds2
7 = dr2 +R2e2A(r)dΩ2

6 , (C.21)

and assume that all scalars depend only on the radial coordinate r. Furthermore we can

assume that ε1,4 are conformal Killing spinors on S6

∇S6

α

(
ε1

ε4

)
=

1

2
γ∗γα

(
ε1

−ε4

)
, (C.22)

where γ∗ ≡ iγ123456. With this at hand we can derive the system of BPS equations in (4.20)–

(4.24) with p = 5. Furthermore, combining the spin- 1
2 and spin-3

2 equations we can find an

algebraic equation for A as in (4.25) with p = 5.

C.2.3 Uplift to type IIB supergravity

Any solution of the seven-dimensional SO(4) gauged supergravity can be uplifted to the

ten-dimensional type IIB supergravity using the uplift formulae of [68]. When we apply

these uplift formulae to the solutions of the BPS equations in (4.20)–(4.24) with p = 5 we

obtain the spherical NS5-brane solution with the following string frame metric

ds2 =
1√
X

(
e−4λdr2 +

X((1− 3X)2 − 9Y 2)

g2Y 2
dΩ2

6 +
1

g2
dθ2 +

sin2 θX

g2(sin2 θ +X cos2 θ)
dΩ̃2

2

)
.

(C.23)

The remaining ten-dimensional fields are given by

e2Φ =
e−10λ

X(sin2 θ +X cos2 θ)
,

C0 = iY e5λ cos θ ,

B2 = − 1

g2

(
θ − sin 2θX

2(sin2 θ +X cos2 θ)

)
vol2 ,

C2 = −i Y e5λ sin3 θ

g2(sin2 θ +X cos2 θ)
vol2 ,

(C.24)

where vol2 is the volume element of the dΩ̃2
2 metric in (4.3). Integrating the H and F3 flux

derived from (C.24) over the three-dimensional space spanned by θ and dΩ̃2
2 we find that

the D5-brane charge is vanishing while the NS5-brane charge is not. This fits nicely with

the interpretation of this background as corresponding to spherical NS5-branes.

The spherical D5-brane solution can be obtained from the spherical NS5-brane solution

above by acting with the SL(2,R) global symmetry of the type IIB supergravity. This
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transformation acts on the supergravity background fields as follows

τIIB 7→
aτIIB + b

cτIIB + d
,

[
C2

B2

]
7→

[
a b

c d

][
C2

B2

]
, where

[
a b

c d

]
∈ SL(2,R) . (C.25)

Here τIIB ≡ C0 + ie−Φ is the axion-dilaton field and the Einstein frame metric remains

unchanged. Applying this transformation to the background in (C.24) with a = d = 0 and

b = −c = 1, yields the spherical D5-brane solution in type IIB supergravity. The fluxes of

this D5-brane solution are the same as the ones in (4.34) with p = 5. In particular the H

flux integral over dθ and dΩ̃2
2 vanishes while the R-R flux integral over this space does not.

For other values of the SL(2,R) parameters in (C.25) we obtain more general solutions

which should describe (p, q)-fivebranes wrapped on S6.

C.3 Spherical D4-branes

If we are to follow the pattern of gauged supergravity theories used to construct spherical

Dp-brane solutions we should use a maximal six-dimensional SO(5) gauged supergravity.

This theory is not so well studied in the literature and the only analysis we are aware

of is the one in [71] where the author constructed the six-dimensional theory through a

dimensional reduction of the maximal seven-dimensional SO(5) gauged supergravity on

a circle. We will thus describe the spherical D4-brane background as a solution of this

maximal seven-dimensional supergravity theory. The SO(5) gauged supergravity has a

maximally supersymmetric AdS7 solution dual to the conformal vacuum of the (2, 0) six-

dimensional SCFT which fits well with the field theory expectation, discussed in section 2,

that the five-dimensional maximal SYM theory on S5 flows in the UV to the six-dimensional

(2, 0) theory on S5 × S1.

The maximal SO(5) gauged supergravity in seven dimensions was constructed in [45]

and can be obtained as a consistent truncation of eleven-dimensional supergravity on S4.

Any solution of the seven-dimensional theory can be uplifted to eleven dimensions using

the uplift formulae of [72]. The field content of the theory is the same as for the SO(4)

gauged supergravity discussed in appendix C.2.1. The difference comes from the gauging

which in this case is SO(5). This gauging of course fits in the general classification of [44],

whose conventions we use, and affects the details of the Lagrangian of the theory and thus

the space of solutions.

C.3.1 SO(3) invariant truncation

The R-symmetry breaking pattern discussed around (2.5) dictates that we should look for

the spherical D4-brane solutions in an SO(3) × SO(2) invariant truncation of the SO(5)

gauged supergravity. This, combined with the requirement that the solution should have

the isometries of S5×S1, leads to a consistent truncation which consists of the metric, a sin-

gle real scalar field, x, and a single SO(2) gauged field, A.27 The scalar coset matrix (C.11)

27The SO(2) gauge field generator can be thought of as the 45 component of the 5 × 5 matrix generator

of the SO(5) gauge field.
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for this truncation is diagonal and reads

Z = diag(e−x, e−x, e−x, e3x/2, e3x/2) . (C.26)

The bosonic action can be obtained from [44] and reads

S =
1

2κ2
7

∫
?7

{
R7 −

15

2
|dx|2 − 1

2
e6xFµνF

µν − V7

}
, (C.27)

where F = dA is the gauge field strength of A and the potential is proportional to the

gauge coupling constant g,

V7 = −3

2
g2e−x(4 + e5x) . (C.28)

We can now dimensionally reduce this theory on S1 to a six-dimensional gravitational

theory.28 To this end we use the following metric and gauge field ansatz

ds2
7 = e−φds2

6 + e4φdω2 , A = χdω . (C.29)

The scalar fields φ and χ depend only on coordinates of the six-dimensional space with

metric ds2
6. To conform with the notation used throughout this work it is convenient to

define the following combination of these two scalars

β ≡ 3x− 2φ , and λ ≡ x+ φ . (C.30)

The six-dimensional Lagrangian of the dimensionally reduced theory then reads

S =
1

2κ2
6

∫
?6

{
R− 3|dλ|2 − 1

2

(
|dβ|2 + e2β |dχ|2

)
− V

}
, (C.31)

where R is the Ricci scalar for the metric ds2
6 and the six-dimensional potential is

V = −3

2
g2e−λ(4 + eβ+2λ) . (C.32)

The derivation of the BPS equations now follows a familiar pattern. We work with the

supersymmetry variations of the seven-dimensional maximal supergravity theory as given

in [44]. To present them succinctly we define the scalar τ = χ+ie−β and the superpotential

as in (4.8) with p = 4. Using the Kähler potential in (4.6) one can then show that the

six-dimensional potential in (C.32) can be written in the general form (4.9) with p = 4.

Combining the gaugino and gravitino variations of [44] we find

∂µλγ
µε =

1

6
eK/2∂λWε , (C.33)

∂µτγ
µ = (e−KKτ̄ τ

)1/2
DτWε , (C.34)

∇µε+
i

8
eK∂µ(τ + τ̄) ε = − 1

16
eK/2Wγµε . (C.35)

28It should also be possible to construct this six-dimensional theory as a consistent truncation of the

six-dimensional maximal gauged supergravity studied in [71].
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Now we can perform the familiar analytic continuation to Euclidean signature by

treating τ and τ̄ → τ̃ as independent scalars and performing the substitution χ→ iχ. For

the metric we use the usual spherical domain wall ansatz

ds2
6 = dr2 +R2e2AdΩ2

5 , (C.36)

and assume that all scalar fields depend only on r. The supersymmetry parameter ε is a

conformal Killing spinor on S5 obeying

∇S5

µ ε =
i

2
γµε . (C.37)

We can plug this in the supersymmetry variations (C.33) and derive the system of BPS

equations in (4.20)–(4.24) and the algebraic equation in (4.25) with p = 4.

C.3.2 Uplift to eleven-dimensional and type IIA supergravity

The solution of the maximal seven-dimensional SO(5) gauged supergravity described above

can be uplifted to eleven dimensional M∗ theory using the uplift formulae presented in [73,

74]. Using the functions P and Q defined in (4.31) we can write the eleven-dimensional

metric as

ds2
11 = g−2/3

s e−λP−1/3 ds2
6 + g4/3

s e4λQ−1 P 2/3

(
dx11 +

iY Q sin2 θ

gsge2λX
dζ

)2

+
g
−2/3
s P−1/3

g2

(
dθ2 + P cos2 θ dΩ̃2

2 +Q sin2 θ dζ2
)
,

(C.38)

where x11 should be taken as pure imaginary and therefore spans a timelike U(1) whereas

ζ spans a spacelike U(1). The three-form gauge field is

A(3) =
P cos3 θ

g2X

(
− i

gsg
dζ + e2λY dx11

)
∧ vol2 , (C.39)

where vol2 is the volume form of the two dimensional de Sitter space in (4.3).

This eleven-dimensional solution can be dimensionally reduced to ten-dimensional type

IIA∗ supergravity along the timelike U(1) spanned by x11 using the formulae in (A.13).

The result is a type IIA background of the form described in section 4.3 with p = 4. Notice

that we introduced gs by hand in the above to conform with the notation in section 4.3

and the rest of the paper.

C.4 Spherical D2-branes

To construct spherical D2-branes we employ the four-dimensional maximal ISO(7) gauged

supergravity as presented in [75]. We construct spherical brane solutions to this theory

which can then be uplifted to both type IIA and eleven-dimensional supergravity.
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C.4.1 ISO(7) gauged supergravity in four dimensions

The maximal ungauged supergravity in four dimensions has E7(7) global symmetry un-

der which the bosonic fields transform. In particular, the scalars parametrize the 70-

dimensional coset space E7(7)/SU(8) with coset element Z that transforms according to

Z→ GZH , where G ∈ E7(7) and H ∈ SU(8) . (C.40)

In addition to the bosonic fields, the fermions transform under SU(8) which acts as the R-

symmetry of the supergravity theory. In total, the field content of the ungauged theory con-

sists of the metric gµν , eight gravitini ψiµ, 56 gaugini χijk, 28 gauge fields AMµ and 70 scalars

ZijM . Here we use the following index conventions: µ, ν = 0, . . . , 3 are four-dimensional

spacetime indices, M = 1, . . . , 56 are E7(7) indices and i, j = 1, . . . , 8 are SU(8) indices.

A subgroup of the global symmetry group of the supergravity theory can be promoted

to a gauge group in several inequivalent ways. The well-known SO(8) gauged supergravity

theory described in [76] is obtained in this way and is relevant for the low-energy dynamics

of a system of coincident M2-branes since it arises as a consistent truncation of the eleven-

dimensional supergravity on S7. Here we are however interested in D2-branes and thus

should use an ISO(7) gauged four-dimensional supergravity. There are two inequivalent

ways to find a four-dimensional maximal supergravity theory with an ISO(7) gauge group.

The “electrically gauged” theory was constructed in [51] (see also [52]) and is the one that

admits an uplift to type IIA supergravity with vanishing Romans mass. This will be the

theory we focus on for our analysis. The other inequivalent gauging is described in detail

in [75] and is relevant for compactifications of the massive type IIA supergravity on S6 [77].

C.4.2 SO(3) invariant truncation

We use the results of [75] and focus on the electric gauging with m = 0 relevant for

type IIA supergravity with vanishing Romans mass. We want to study a solution that

preserves SO(4)×SO(3) gauge symmetry and has maximally symmetric three-dimensional

factor in the metric. This truncation eliminates most scalars and all tensor fields except

the metric. A larger truncation of this four-dimensional supergravity which imposes only

SO(4) symmetry was studied in section 5 of [75]. The SO(4)×SO(3) truncation of interest

here can be obtained from that larger truncation by setting one of the pseudoscalars in [75]

to zero. To comply with the notation used in the main text we make the following change

of notation with respect to [75]

λ ≡ 2ϕGV , β ≡ φGV , χ ≡ ρGV , χGV = 0 , (C.41)

where the subscript GV refers to the quantities used in section 5 of [75].

The bosonic Lagrangian of this supergravity truncation can be read off from [75]

L = ?4

{
R− 3

4
|dλ|2 − 1

2

(
|dβ|2 + e2β |dχ|2

)
− V

}
, (C.42)

where the potential V is given by

V = −1

2
g2e−β

[
24eλ/2+β + 8e2β + 3eλ(1 + χ2e2β)

]
. (C.43)

– 47 –



J
H
E
P
0
8
(
2
0
1
8
)
0
2
9

and as usual g is the gauge coupling. Notice that this Lagrangian is of the general form

in (4.4) with p = 2.

We are not aware of a reference in the literature where the explicit fermionic super-

symmetry variations for this ISO(7) gauged supergravity were presented. However the

authors of [75] write down an explicit superpotential for our truncation and, after defining

τ = χ+ ie−β , it can be readily checked that it coincides with the one in (4.8) with p = 2.

Using the Kähler potential in (4.6) one can then show that the potential in (C.43) can be

written in the general form (4.9) with p = 2. In addition one can show explicitly that the

system of BPS equations in (4.20)–(4.24) and the algebraic equation (4.25) (with p = 2)

imply the equations of motion derived from the Lagrangian in (C.42).29 We consider these

results as sufficient evidence that any solution to the system of equations in (4.20)–(4.24)

describes a supersymmetric solution of the four-dimensional ISO(7) electrically gauged

supergravity theory.

Finally we point out that one can use the uplift formulae provided in [77] to uplift any

solution of the four-dimensional ISO(7) gauged supergravity to a solution of type IIA su-

pergravity. For the SO(4)×SO(3) truncation described above this uplifted ten-dimensional

background has the form presented in section 4.3. The ten-dimensional solution has van-

ishing Romans mass and thus can be further uplifted to a solution of eleven-dimensional

supergravity using the formulae in (A.13).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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