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1 Introduction

With the discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] it became

clear that the Standard Model of Particle Physics (SM) is a good description of the physics

at and below the electroweak scale. However, it is also clear that the SM does not provide

a complete description of nature, as it fails to describe phenomena such as dark matter and

does not incorporate gravity, for example. Besides these weaknesses, there are also many

open questions, e.g., whether the electroweak vacuum is stable up to the Planck scale or

whether there is a hierarchy problem and how it may be avoided. Many models beyond

the SM (BSM) have been proposed to address the open questions and the drawbacks of the

SM. One of the promising SM extensions is supersymmetry (SUSY), which can provide a

solution to the hierarchy problem, explain the deviation of the anomalous magnetic moment

of the muon and the stability of the electroweak vacuum. However, no supersymmetric

particles with masses below the TeV scale have been discovered so far, which means that

if supersymmetry is realized in nature, the SUSY particles may be heavier than the TeV

scale. This finding is supported by the measured value of the Higgs boson mass of Mh =

125.09 ± 0.32 GeV [3]: SUSY models often predict the mass of the SM-like Higgs boson

to be of the order of the Z boson mass, MZ = 91.1876 GeV, at tree-level. In order to

raise the predicted Higgs mass to its measured value, large loop corrections are required,

which can be achieved by the presence of multi-TeV colored SUSY particles. Large loop
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corrections, on the other hand, spoil the convergence of the perturbation series, leading to

large uncertainties in fixed-order calculations.

Effective field theories (EFTs) are a well suited approach to obtain precise low-energy

predictions of BSM models with heavy particles. However, depending on the mass hierarchy

of the studied high-scale model, many different EFTs must be considered. In order to avoid

repetition in the derivation of all possible EFT Lagrangians, the universal one-loop effective

action (UOLEA) has been developed [4–6]. It provides generic expressions for the Wilson

coefficients of the operators of the effective Lagrangian up to 1-loop level and dimension

six. These generic expressions are well suited to be implemented into generic spectrum

generators such as FeynRules [7–10], FlexibleSUSY [11, 12] or SARAH [13–16] to calculate

precise predictions in all possible low-energy EFTs in a fully automated way.

The currently known effective operators of the UOLEA [4–6] are renormalized in the

MS scheme. Although this scheme is well suited to renormalize non-supersymmetric mod-

els, it is cumbersome to apply it to supersymmetric models, because the underlying dimen-

sional regularization (DREG) [17] explicitly breaks supersymmetry [18]. To nevertheless

perform loop calculations in an MS renormalized SUSY model one would have to restore

supersymmetry, for example by introducing supersymmetry-restoring counter terms, as

discussed for example in [19–21]. In supersymmetric models regularization by dimensional

reduction (DRED) [22] is currently known to not break supersymmetry up to the 3-loop

level [23–25] and is therefore widely adopted in SUSY loop calculations. In order to apply

the UOLEA to a scenario, where heavy particles of a supersymmetric model (renormal-

ized in the DR scheme) are integrated out at a high scale and a non-supersymmetric EFT

(renormalized in the MS scheme) results at low energies, the change of the regularization

scheme from DRED to DREG must be accounted for by shifting the running parameters

by finite terms. For general renormalizable softly broken supersymmetric gauge theories

these parameter shifts have been known at the 1-loop level for a long time [19]. However,

in the formalism of the UOLEA the generic effective operators that correspond to such

a regularization scheme change are currently unknown and reconstructing them from the

results of ref. [19] is difficult due to the presence of finite field renormalizations.

In this paper we present all 1-loop effective operators that appear in the effective

Lagrangian when changing the regularization scheme from DRED to DREG, assuming

that the (not necessarily supersymmetric) UV model is renormalizable. We perform the

calculation in the formalism of effective field theories by making use of the fact that the

difference between DRED and DREG can be expressed by the presence/absence of so-called

ε-scalars [23]. The ε-scalars are integrated out from the DRED-regularized UV model and

the resulting effective operators are formulated in the language of the UOLEA. Our generic

results complement the currently known generic expressions of the UOLEA and allow for

its application to supersymmetric high-scale models and its implementation into generic

spectrum generators. Finally, we show that our results are in agreement with the known

generic parameter conversion terms of ref. [19].

In section 2 we briefly review the formalism of ε-scalars in DRED and give projection

relations and Lagrangian terms necessary for the calculation of the regularization scheme

translating operators, which we derive in section 3. We apply our derived effective La-
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grangian in section 4 to the general supersymmetric model of ref. [19] to show that our

results reproduce the parameter relations derived in that reference. We conclude in sec-

tion 5.

2 Epsilon scalars in dimensional reduction

In the following we briefly review the relation between DRED and DREG, relevant to the

derivation of the effective Lagrangian in section 3. In DRED an infinite dimensional space

is introduced, which has the characteristics of a 4-dimensional space, denoted as Q4S. This

quasi-4-dimensional space is decomposed as Q4S = QdS ⊕QεS, where QdS is an infinite

dimensional space that is formally d-dimensional and QεS is its complement, formally of

dimension ε = 4 − d [24]. The metrics of the spaces Q4S, QdS and QεS are denoted by

gµν , ĝµν and g̃µν , respectively, and satisfy

gµν = ĝµν + g̃µν , gµµ = 4, (2.1)

gµν g̃ρν = g̃µρ, g̃µµ = ε, (2.2)

gµν ĝρν = ĝµρ, ĝµµ = d, (2.3)

ĝµν g̃ρν = 0. (2.4)

The signature of the metric of QεS is (−,−, . . . ). In DRED momenta are taken to be

d-dimensional, whereas gauge fields and γ-matrices are taken to be 4-dimensional. We

use the convention of a totally anti-commuting γ5. Due to the decomposition of Q4S

it is convenient to split the gauge field Aaµ ∈ Q4S into two parts, Aaµ = Âaµ + εaµ, with

Âaµ ∈ QdS and εaµ ∈ QεS. The ε-dimensional field εaµ is a scalar under d-dimensional

Lorentz transformations and is referred to as ε-scalar [23]. With respect to the gauge

group associated with Aaµ the ε-scalar transforms in the adjoint representation. After the

gauge field has been split in this way, the Lagrangian may contain the following additional

terms with ε-scalars,

L = Lφ + Lψ + Lε, (2.5)

Lφ = εaµε
µ
bF

a
b [φ1, φ2, . . . φn], (2.6)

Lψ = εaµψ̄iγ̃
µΓT aijψj , (2.7)

Lε = −1

2
(Dµεν)a(Dµε

ν)a +
1

2
m2
εε
a
µε
µ
a −

1

4
g2fabcfadeεµb ε

d
µε
ν
c ε
e
ν , (2.8)

where φi and ψi denote scalars and fermions, respectively. In eq. (2.6) F ab is a function of

the scalar fields and may contain linear and quadratic terms. The symbol γ̃µ denotes a

γ-matrix projected onto QεS, γ̃µ = g̃µν γν , and Γ is some 4×4 matrix that contains products

of {1, γµ, γ5}. In the following we denote any projection of a Lorentz tensor T σρ··· onto QεS

by T̃µν··· = g̃µσ g̃νρ · · ·T σρ···. Similarly, tensors projected onto QdS are denoted as T̂µν.... The

m2
ε -dependent term in eq. (2.8) can be removed by shifting the mass terms of the scalar fields

φi as described in ref. [26], i.e. by changing the renormalization scheme from DR to DR
′
.

Nevertheless, due to the remaining extra εaµ-dependent terms in the Lagrangian (2.5), the

difference between DRED and DREG manifests in the presence of extra Feynman diagrams
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with ε-scalars, which contribute additional finite terms to divergent loop amplitudes due

to the contraction relation (2.2).

In the following section we integrate out the ε-scalars using the language of effective

field theories. In the limit ε → 0 this effectively results in a change of the regularization

scheme from DRED to DREG. The resulting additional finite 1-loop operators that appear

in the “effective” Lagrangian can be absorbed by a re-definition of the fields and the running

parameters, leading to the same parameter relations given in ref. [19].

3 Regularization scheme translating operators in the UOLEA

To derive the operators that translate between DRED and DREG we consider a general

renormalizable gauge theory with the gauge group G and the Lagrangian L, which contains

real scalar fields φi, Dirac fermions ψi and a set of four-component Majorana fermions λi.
1

We furthermore assume that the theory is regularized in DRED. The gauge field Aaµ is split

into a d- and an ε-dimensional component, as described in section 2, and we distinguish

the ε-scalars from the scalars φi.

To calculate the effective action up to the 1-loop level, we first split all fields ωi ∈
{φi, ψi, λi, Âaµ, εaµ} into a background part ωB,i, satisfying the classical equations of motion,

and a corresponding fluctuation δωi. The calculation is going to be performed using a

covariant derivative expansion [4, 27, 28] in order to obtain a manifestly gauge invariant

result. This means in particular that the operator2 P̂µ ≡ iD̂µ = i∂̂µ + gÂaB,µT
a, where

ÂaB,µ is the background gauge field, should be kept as a whole in the calculation and not

be split into ∂̂µ and ÂaB,µ. Furthermore, to obtain an action which is gauge invariant under

transformations of ÂaB,µ we only fix the gauge of the fluctuation δÂaµ [29]. We choose a

gauge fixing Lagrangian of the form [4]

Lg.f. = − 1

2ξ

[
ξ(mA)abη

b + D̂µδÂaµ

]2
, (3.1)

where the fields ηa are the Goldstone bosons corresponding to the spontaneously broken

generators of the gauge group and mA is the diagonal mass matrix of the gauge bosons.

The part of the Lagrangian containing the ghost fields is given by

Lghost = c̄a(−D̂2 − ξm2
A)abc

b. (3.2)

In the following the Goldstone bosons are not treated separately, but are regarded as

part of the vector of scalar fields φi. Moreover, for the purpose of this calculation the

fluctuation δÂaµ can be treated as a scalar field transforming in the adjoint representation

under background gauge transformations [4]. Similarly, the ghosts can be regarded as usual

fermions in the adjoint representation of the gauge group. In the following calculation the

1The formulation of the Lagrangian in terms of Dirac and Majorana fermions has been chosen in order

to diagonalize the operator (i /̂D −m).
2Note that whereas this notation suggests that we are treating a simple gauge group we are not restricted

to this case. The notation is to be understood with a sum over all factors of the gauge group with their

respective gauge couplings.
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path integral over the ghosts can be performed directly and is independent of ε-scalars.

The ghosts will therefore not be considered further in this paper. The second variation of

the action around the background fields then reads

δ2L = δψ̄∆ψδψ + δλ̄∆λδλ−
1

2
δεµ∆̃µν

ε δεν −
1

2
δΦ∆ΦδΦ

− δψ̄X̃µ

ψ̄ε
δεµ − δψ̄Xψ̄ΦδΦ− δλ̄X̃

µ

λ̄ε
δεµ − δλ̄Xλ̄φδΦ

+ δεµX̃
µ
εψδψ + δΦXΦψδψ + δεµX̃

µ
ελδλ+ δΦXΦλδλ

+ δψ̄Xψ̄λδλ+ δλ̄Xλ̄ψδψ −
1

2
δεµX̃

µ
εΦδΦ−

1

2
δΦX̃µ

Φεδεµ,

(3.3)

where

δΦ =

(
δφ

δÂµ

)
, (3.4)

XΦω =

(
Xφω

X̂µ

Âω

)
, (3.5)

XωΦ =
(
Xωφ X̂

µ

ωÂ

)
, (3.6)

and

Xωσ ≡ −
δ2Lint

δωδσ

∣∣∣∣ (3.7)

denotes the derivative of the interaction Lagrangian, Lint, with respect to the fields ω

and σ, evaluated at the background field configuration. Furthermore we have introduced

the abbreviations

∆Φ ≡

(
∆φ X̂µ

φÂ

X̂µ

Âφ
∆̂µν

Â

)
, (3.8)

∆ψ ≡ /P −mψ +Xψ̄ψ, (3.9)

∆λ ≡
1

2
/P − 1

2
mλ +Xλ̄λ, (3.10)

∆φ ≡ −P 2 +m2
φ +Xφφ, (3.11)

∆̂µν

Â
≡ P 2ĝµν − 2P̂ νP̂µ + P̂µP̂ ν

(
1 +

1

ξ

)
+m2

Aĝ
µν , (3.12)

∆̃µν
ε ≡ g̃µν(P 2 −m2

ε ) + X̃µν
εε . (3.13)

In any product that contains Φ the Lorentz indices are fully contracted, for example

δΦXΦψδψ =
(
δφ δÂµ

)(Xφψ

X̂µ

Âψ

)
δψ. (3.14)

In addition, in eq. (3.3) all indices, except for the Lorentz indices of QεS, have been

suppressed for brevity. Eq. (3.3) can be simplified further due to the constraints on the
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possible couplings of ε-scalars to other fields as given in eqs. (2.5)–(2.8): we can solve the

classical equations of motion in a perturbation expansion in couplings. The leading term

is proportional to an operator of the form ψ̄γ̃µψ and thus every term in the series will

contain this operator. In the limit ε → 0 this operator vanishes, which means that the

background fields of the ε-scalars can be set to zero from the start. This property can be

used to simplify eq. (3.3), because from eqs. (2.6) and (2.8) it follows that X̃µ
Φε = X̃µ

εΦ = 0

for vanishing ε-scalar background fields.

To perform the path integral, we shift the Dirac and Majorana fermions to eliminate

terms with mixed fermionic and bosonic fluctuations as described in ref. [30]. We first shift

the Majorana fermions by

δλ′ = δλ−∆−1
λ

[
X̃ν
λ̄εδεν +Xλ̄ΦδΦ−Xλ̄ψδψ

]
, (3.15)

δλ̄′ = δλ̄+
[
δεµX̃

µ
ελ + δΦXΦλ + δψ̄Xψ̄λ

]
∆−1
λ , (3.16)

and afterwards the Dirac fermions by

δψ′ = δψ − Λ−1
ψ

[
Ξ̃νψ̄εδεν + Ξψ̄ΦδΦ

]
, (3.17)

δψ̄′ = δψ̄ +
[
δεµΞ̃µεψ + δΦΞΦψ

]
Λ−1
ψ , (3.18)

and introduce the following abbreviations

Λ̃µνε = ∆̃µν
ε − 2X̃µ

ελ∆−1
λ X̃ν

λ̄ε, (3.19)

ΛΦ = ∆Φ − 2XΦλ∆−1
λ Xλ̄Φ, (3.20)

Λψ = ∆ψ −Xψ̄λ∆−1
λ Xλ̄ψ, (3.21)

Ξ̃µ
ψ̄ε

= X̃µ

ψ̄ε
−Xψ̄λ∆−1

λ X̃µ

λ̄ε
, (3.22)

Ξψ̄Φ = Xψ̄Φ −Xψ̄λ∆−1
λ Xλ̄Φ, (3.23)

Ξ̃µεψ = X̃µ
εψ − X̃

µ
ελ∆−1

λ Xλ̄ψ, (3.24)

ΞΦψ = XΦψ −XΦλ∆−1
λ Xλ̄ψ, (3.25)

Ξ̃µεΦ = −2X̃µ
ελ∆−1

λ Xλ̄Φ, (3.26)

Ξ̃µΦε = −2XΦλ∆−1
λ X̃µ

λ̄ε
. (3.27)

For Dirac fermions the shifts (3.17)–(3.18) can be performed independently. For Majorana

fermions λ and λ̄ are not independent and it is necessary that δλ′γ0 = δλ̄′ for the shifted

fields δλ′ and δλ̄′ defined in (3.15)–(3.16), respectively. That this is indeed the case is

shown in appendix A. After shifting the fermions in this way, the variation takes the form

δ2L = δψ̄′Λψδψ
′ + δλ̄′∆λδλ

′ − 1

2
δΦ(ΛΦ − 2ΞΦψΛ−1

ψ Ξψ̄Φ)δΦ

− 1

2
δεµ(Λ̃µνε − 2Ξ̃µεψΛ−1

ψ Ξ̃νψ̄ε)δεν −
1

2
δεµ(Ξ̃µεΦ − 2Ξ̃µεψΛ−1

ψ Ξψ̄Φ)δΦ

− 1

2
δΦ(Ξ̃µΦε − 2ΞΦψΛ−1

ψ Ξ̃µ
ψ̄ε

)δεµ.

(3.28)
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In eq. (3.28) the fermionic and bosonic fluctuations are now completely decoupled and the

part which depends on the ε-scalars can be written as

δ2LΦε = −1

2

(
δεµ δΦ

)( Ω̃µν
ε X̃µ

εPh

X̃ν
Phε ∆Ph

)(
δεν
δΦ

)
, (3.29)

where

Ω̃µν
ε = Λ̃µνε − 2Ξ̃µεψΛ−1

ψ Ξ̃νψ̄ε, (3.30)

X̃µ
εPh = Ξ̃µεΦ − 2Ξ̃µεψΛ−1

ψ Ξψ̄Φ, (3.31)

X̃µ
Phε = Ξ̃µΦε − 2ΞΦψΛ−1

ψ Ξ̃µ
ψ̄ε

, (3.32)

∆Ph = ΛΦ − 2ΞΦψΛ−1
ψ Ξψ̄Φ. (3.33)

The term ∆Ph does not depend on the ε-scalars. Performing the path integral over the

ε-scalars and the scalars Φi we find the effective action

Γ =
i

2
log det

(
Ω̃µν
ε X̃µ

εPh

X̃ν
Phε ∆Ph

)
≡ i

2
log detQ. (3.34)

The matrix Q can be brought into a diagonal form by inserting U and V to the left and

to the right of Q and by choosing

U =

(
1 −X̃εPh∆−1

Ph

0 1

)
, (3.35)

V =

(
1 0

−∆−1
PhX̃Phε 1

)
. (3.36)

The resulting effective action reads

Γ =
i

2
log det

(
Ω̃µν
ε − X̃

µ
εPh∆−1

PhX̃
ν
Phε

)
+
i

2
log det ∆Ph, (3.37)

where only the first term depends on the ε-scalars. Substituting the expressions for Ω̃µν
ε ,

X̃µ
εPh, ∆−1

Ph and X̃ν
Phε into the first term we find the ε-dependent part

Γ =
i

2
log det

(
Λ̃µνε − 2Ξ̃µεψΛ−1

ψ Ξ̃νψ̄ε − W̃
µν
)

+ · · · , (3.38)

W̃µν =
(

Ξ̃µεΦ − 2Ξ̃µεψΛ−1
ψ Ξψ̄Φ

)(
ΛΦ − 2ΞΦψΛ−1

ψ Ξψ̄Φ

)−1 (
Ξ̃νΦε − 2ΞΦψΛ−1

ψ Ξ̃νψ̄ε

)
. (3.39)

In a standard EFT calculation eq. (3.38) is written as a trace in momentum space and

must be expanded in powers of p/M to obtain a local action, where M is the mass of the

heavy particle to be integrated out. In our calculation, however, all 1-loop integrals get

multiplied by ε, so only the divergent parts give a non-zero contribution to Γ in the limit

ε→ 0. Since the divergences in a renormalizable gauge theory are local [31, 32], we obtain
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a local action. By performing a power counting we find that the only terms that yield

divergent momentum integrals are

Γdiv =
i

2
log det

(
∆̃µν
ε − 2Ỹ µν

λ − 2Ỹ µν
ψ + 2Z̃µνλψ + 2Z̃µνψλ

)
, (3.40)

Ỹ µν
ω = X̃µ

εω∆−1
ω X̃ν

ω̄ε, (3.41)

Z̃µνωσ = X̃µ
εω∆−1

ω Xω̄σ∆−1
σ X̃ν

σ̄ε. (3.42)

Using the results of ref. [6] and the methods described in ref. [33] we find the following

effective Lagrangian containing all contributions from integrating out the ε-scalars,

16π2εLreg =−
∑
i

(m2
ε )i(X̃

µ
εεµ)ii +

1

2

∑
ij

(X̃µ
εεν)ij(X̃

ν
εεµ)ji

+
∑
ij

2
cFj
[
2mψj(X̃

µ
εψ)ij(X̃ψ̄εµ)ji + (X̃µ

εψ)ijiD̂ν γ̂
ν(X̃ψ̄εµ)ji

]
−
∑
ijk

2
cFj+cFk−1

(X̃µ
εψ)ij γ̂

ν(Xψ̄ψ)jkγ̂ν(X̃ψ̄εµ)ki

+
ε

12
tr
[
Ĝ′µνĜ

′µν
]
,

(3.43)

where Ĝ′µν = −igĜaµνta, Ĝaµν = ∂̂µÂ
a
ν−∂̂νÂaµ+gfabcÂbµÂ

c
ν and cF = 0 for Dirac fermions and

cF = 1 for Majorana fermions. All quantities with Lorentz indices appearing in eq. (3.43)

are still projected onto either QdS or QεS. After inserting the respective functional deriva-

tives into this equation each term on the right hand side will contain a factor ε. One can

then divide the equation by ε and take the limit ε → 0. After this limit has been taken

there is no difference between d-dimensional and 4-dimensional quantities anymore and

the hats can be removed. It should be pointed out that in eq. (3.43) the Latin indices

contain all indices (generation, gauge, . . . ), except for the Lorentz indices of the ε-scalars.

Thus, the sums are to be interpreted as a trace over all indices with the coefficient given

by eq. (3.43). Also, we consider the Majorana spinors λ and λ̄ to be independent. This

convention has to be followed when calculating quantities like Xλ̄λ from the Lagrangian

of the full model. Furthermore, we stress that the order of D̂ν and γ̂ν in the second line

matters, whenever D̂ν contains chiral projectors.

In the next section we apply eq. (3.43) to reproduce the general parameter relations

given in ref. [19] for a supersymmetric Lagrangian. However, we’d like to remark that

eq. (3.43) is a generalization of the results of ref. [19], because it contains terms that corre-

spond to field renormalizations and tadpoles and can be applied also to non-supersymmetric

models regularized in DRED.

4 Applications

In this section we apply eq. (3.43) to reproduce the parameter relations given in ref. [19] for

a supersymmetric Lagrangian with the gauge coupling g corresponding to a simple gauge

group, a gaugino mass parameter M , a gaugino-fermion-scalar coupling gλ, a Yukawa

coupling Y ijk and a quartic scalar coupling λijkl.

– 8 –



J
H
E
P
0
8
(
2
0
1
8
)
0
2
6

4.1 Gauge coupling

The relation between the DRED and the DREG gauge coupling can be obtained from the

last term in eq. (3.43), where the limit ε→ 0 can be taken immediately,

Lreg,gauge =
1

12(16π2)
tr
[
G′µνG

′µν] = − g2

12(16π2)
C(G)GaµνG

µν
a , (4.1)

where G′µν = −igGaµνta and ta are the generators in the adjoint representation of the

gauge group, (ta)bc = −ifabc, and C(G)δab = tr[tatb] = facdf bcd. The term in eq. (4.1)

can be absorbed into a finite field renormalization of the gauge field and a shift in the

gauge coupling,

(Aaµ)DRED →
(

1− 1

2
δZA

)
(Aaµ)DREG, (4.2)

gDRED → gDREG − δg, (4.3)

with

δZA =
g2

3(16π2)
C(G), (4.4)

δg = −1

2
gδZA. (4.5)

From eq. (4.5) one obtains

gDREG = gDRED

(
1− g2

6(16π2)
C(G)

)
, (4.6)

which agrees with the result of ref. [19].

4.2 Gaugino mass parameter

We assume that the supersymmetric Lagrangian (regularized in DRED) contains the kinetic

and the soft-breaking gaugino mass term

Lλ =
1

2
λ̄a
(
i /̂∂ −MDRED

)
λa, (4.7)

where λa denotes the gaugino Majorana spinor, transforming in the adjoint representation

of the gauge group. In addition, there is an interaction term between the gauginos and

the ε-scalars,

Lελ =
g

2
λ̄bγ̃µεaµ(ta)bcλ

c, (4.8)

with tabc = −ifabc. When the ε-scalars are integrated out, the following two terms from the

second line of eq. (3.43) contribute to the relation between MDRED and MDREG:

16π2εLreg,λ = 2
(

2MX̃µ
ελX̃λ̄εµ + X̃µ

ελiD̂ν γ̂
νX̃λ̄εµ

)
. (4.9)
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The derivatives X̃µ
ελ and X̃µ

λ̄ε
are obtained from Lελ and read

(X̃µ
ελ)ab =

g

2
λ̄cγ̃

µ(ta)cb, (4.10)

(X̃µ

λ̄ε
)ab = −g

2
γ̃µ(ta)bcλc, (4.11)

which yields

16π2εLreg,λ =
g2

2
λ̄a
(
−γ̃µi /̂∂γ̃µ − 2Mγ̃µγ̃µ

)
(tb)ac(t

b)cdλ
d, (4.12)

=
g2

2
ελ̄a

(
i /̂∂ − 2M

)
C(G)λa, (4.13)

with (tb)ac(t
b)cd = fabcfdbc = C(G)δad and γ̃µγ̃µ = ε. After dividing by ε and taking

the limit ε → 0 the terms in eq. (4.13) can be absorbed by the finite field and parameter

re-definitions

(λa)DRED →
(

1− 1

2
δZλ

)
(λa)DREG, (4.14)

MDRED →MDREG − δM, (4.15)

with

δZλ =
g2

16π2
C(G), (4.16)

δM = M

(
2
g2

16π2
C(G)− δZλ

)
. (4.17)

Thus, the relation between the gaugino mass parameter in DRED and DREG reads

MDREG = MDRED + δM = MDRED

(
1 +

g2

16π2
C(G)

)
, (4.18)

which is in agreement with the result of ref. [19].

4.3 Gaugino coupling

We consider a supersymmetric and gauge invariant Lagrangian with a gaugino λa, charged

scalars φi and Dirac fermions ψi. The left- and right-handed components of the ψi are

assumed to originate from superfields transforming in the (generally reducible) representa-

tion R and its conjugate representation R̄, respectively. The mass eigenstates are obtained

from a diagonalization of a mass matrix by two unitary matrices L and R. The scalar fields

φ1i and φ2i originate from the same superfields as the left- and right-handed components

of the Dirac fermions, respectively, and the scalar mass eigenstates are obtained from the

diagonalization of the mass matrix with the unitary matrix U . The Lagrangian, formulated

in terms of the mass eigenstate fields ψi, φ1i and φ2i then contains the coupling term

Lgλ =
√

2gλ

(
φ∗1iU

†
ij λ̄

a(taR)jkLkmPLψm − ψ̄iRTijPL(taR)jkλ
aU∗kmφ

∗
2m + h.c.

)
, (4.19)
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where taR denotes the generator in the representation of the Dirac fields ψi. Here the Latin

indices run over both flavor indices and gauge group indices. In DRED supersymmetry

ensures that gDRED
λ = g, where g denotes the gauge coupling. In DREG supersymmetry is

explicitly violated and one has gDREG
λ 6= g. To the relation between gDRED

λ and gDREG
λ the

third line of eq. (3.43) contributes, which reads for the considered case

16π2εLreg,gλ = −X̃µ
ελγ̂

νXλ̄ψγ̂νX̃ψ̄εµ − X̃
µ
εψγ̂

νXψ̄λγ̂νX̃λ̄εµ. (4.20)

The derivatives X̃µ
ελ and X̃µ

λ̄ε
have been calculated in section 4.2 already. The derivatives

X̃µ
εψ and X̃µ

ψ̄ε
can be obtained from the Dirac fermion–ε-scalar coupling of the DRED

Lagrangian

Lεψ̄ψ = gεaµψ̄iγ̃
µ
(
RTij(t

a
R)jkR

∗
klPR + L†ij(t

a
R)jkLklPL

)
ψl, (4.21)

which yields

(X̃µ
εψ)al = gψ̄iγ̃

µ(T aR)il, (4.22)

(X̃µ

ψ̄ε
)ai = −gγ̃µ(T aR)ilψl, (4.23)

where we have introduced the abbreviation

(T aR)il = RTij(t
a
R)jkR

∗
klPR + L†ij(t

a
R)jkLklPL. (4.24)

The derivatives Xλ̄ψ and Xψ̄λ can be read off eq. (4.19) and read

(Xλ̄ψ)aj =
√

2gλ

[
φ∗1i(U

†taRL)ijPL − φ2i(U
T taRR

∗)ijPR

]
≡
√

2gλA
a
j , (4.25)

(Xψ̄λ)ai =
√

2gλ

[
(L†taRU)imφ1mPR − (RT taRU

∗)imPLφ
∗
2m

]
≡
√

2gλB
a
i . (4.26)

Inserting all derivatives into eq. (4.20) yields

16π2εLreg,gλ =
gλg

2

√
2

[
λ̄iγ̃µ(taG)ij γ̂

νAjkγ̂ν γ̃µ(T aR)klψl + ψ̄iγ̃
µ(T aR)ij γ̂

νBk
j γ̂ν γ̃µ(taG)klλl

]
=
d

4

√
2gλg

2εC(G)
(
λ̄iAilψl + ψ̄iB

l
iλ
l
)
, (4.27)

where we used that

γ̃µγ̃µ = ε, (4.28)

(taG)ijA
j
k(T

a
R)kl =

1

2
C(G)Ail, (4.29)

(taG)kl(T
a
R)ijγ

µBk
j =

1

2
γµC(G)Bl

i, (4.30)

and (taG)bc = −ifabc being the generators in the adjoint representation of the gauge group.

In addition to the term on the r.h.s. of eq. (4.27) finite field renormalizations of the Dirac

fermions and of the gaugino contribute to the difference between gDRED
λ and gDREG

λ . The

field renormalization of the gaugino has already been calculated in section 4.2. The field
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renormalization of the Dirac fermion follows from the second term in the second line of

eq. (3.43), which reads

16π2εLreg,ψ̄ψ = −g2ψ̄iγ̃
µ(T aR)ili /̂∂γ̃µ(T aR)lkψk. (4.31)

After taking the limit ε→ 0 the terms on the r.h.s. of eqs. (4.31) and (4.27) can be absorbed

by the finite field and parameter re-definitions

ψDRED
i →

(
δij −

1

2
(δZψ)ij

)
ψDREG
j , (4.32)

gDRED
λ → (1− δgλ) gDREG

λ , (4.33)

where

(δZψ)ij =
g2

16π2
C(ri)δij , (4.34)

δgλ =
g2

32π2
C(G)− 1

2
δZψ, (4.35)

and we used (T aR)il(T
a
R)lk = C(ri)δik. Here, the ri are the irreducible components of

the representation R and the index i is not summed over. From eq. (4.35) one obtains

the relation

gDREG
λ = gDRED (1 + δgλ) = gDRED

(
1 +

g2

32π2
[C(G)− C(ri)]

)
, (4.36)

which depends on the irreducible representation in which the chiral superfield transforms.

The relation (4.36) agrees with the result of ref. [19].

4.4 Yukawa coupling

We consider a supersymmetric and gauge invariant Lagrangian with the superpotential

W =
1

6
YijkΦiΦjΦk, (4.37)

where Φi are chiral superfields and Yijk is the Yukawa coupling. Furthermore we assume

that the Weyl fermionic components of the superfields can be arranged into Dirac fermions

ψi. The left- and right-handed components of these Dirac fermions are assumed to originate

from the diagonalization of a mass matrix using the unitary matrices R and L. The scalar

fields φi may originate from the diagonalization of the scalar mass matrix with the unitary

matrix U . The Lagrangian, formulated in terms of the mass eigenstate fields ψi and φi,

then contains the Yukawa coupling term

Ly =
1

6
YijkUilφlLjmRknψ̄nPLψm + h.c. ≡ 1

6
Υlmnφlψ̄nPLψm + h.c., (4.38)

where Υlmn = YijkUilLjmRkn. The DRED to DREG parameter conversion for the Yukawa

coupling receives field renormalization contributions from ψi, which originate from the

second term in the second line of eq. (3.43). In addition, the term in the third line of
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eq. (3.43) (and its hermitian conjugate) give an explicit contribution to the Yukawa cou-

pling, which reads

16π2εLreg,y = −1

2
X̃µ
εψγ̂

νXψ̄ψγ̂νX̃ψ̄εµ. (4.39)

The appearing derivatives read

Xψ̄nψm = −1

6
ΥlmnφlPL, (4.40)

(X̃µ
εψ)al = gψ̄iγ̃

µ(T aRψ)il, (4.41)

(X̃µ

ψ̄ε
)ai = −gγ̃µ(T aRψ)ilψl, (4.42)

and one obtains

16π2εLreg,y = − d

12
g2εψ̄i(T

a
Rψ

)Fij(ΥlkjφlPL)(T aRψ)kmψm, (4.43)

where we have used that γ̂ν γ̂ν = d, γ̃µγ̃µ = ε and we have defined

(T aRψ)il = RTij(t
a
Rψ

)jkR
∗
klPR + L†ij(t

a
Rψ

)jkLklPL, (4.44)

(T aRψ)Fil = RTij(t
a
Rψ

)jkR
∗
klPL + L†ij(t

a
Rψ

)jkLklPR. (4.45)

The gauge invariance of eq. (4.38) implies

Ylnj(t
a
Rψ

)mj = Yjnm(taRφ)jl + Yljm(taRψ)jn, (4.46)

where (taRφ) are the generators of the representation under which the scalar fields transform.

Using this relation one can simplify the r.h.s. of eq. (4.43) by writing

(T aRψ)Fij(ΥlkjφlPL)(T aRψ)km =
1

2
ΥlmiφlPL

[
C(rψ,m) + C(rψ,i)− C(rφ,l)

]
, (4.47)

which yields

16π2εLreg,y = − d

24
g2εψ̄iΥlmiφlPL

[
C(rψ,m) + C(rψ,i)− C(rφ,l)

]
ψm, (4.48)

for the irreducible representations rψ,m, rψ,i and rφ,l. This term and the appearing terms

bilinear in the fields ψi can be absorbed by the finite field and parameter re-definitions

ψDRED
i →

(
1− 1

2
δZψ,i

)
ψDREG
i , (4.49)

Y DRED → (1− δY )Y DREG, (4.50)

with

δZψ,i =
g2

16π2
C(rψ,i), (4.51)

δYlmn =
g2

16π2

[
C(rψ,m) + C(rψ,n)− C(rφ,l)

]
− 1

2
(δZψ,m + δZψ,n) , (4.52)

where the limit ε→ 0 has been taken. From eq. (4.52) one obtains the relation

Y DREG
lmn = Y DRED

lmn (1 + δY ) , (4.53)

= Y DRED
lmn

{
1 +

g2

32π2

[
C(rψ,m) + C(rψ,n)− 2C(rφ,l)

]}
, (4.54)

which agrees with the result of ref. [19].
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4.5 Quartic scalar coupling

Here we reproduce the known result for the relation between quartic scalar couplings in

DRED and DREG. We consider a general gauge invariant (not necessarily supersymmetric)

Lagrangian with the quartic scalar coupling term

Lλ = −1

4
λijklϕ

∗
iϕ
∗
jϕkϕl. (4.55)

We assume that the gauge eigenstate fields ϕi are rotated into mass eigenstates φi with

a unitary matrix U . The only contribution to the relation between λDRED and λDREG

originates from the second term in the first line of eq. (3.43),

16π2εLreg,λ =
1

2

∑
ij

(X̃µ
εεν)ij(X̃

ν
εεµ)ji . (4.56)

The derivative (X̃ν
εεµ)ji can be obtained from the kinetic term of the scalar fields,

(Dµφ)†i (D
µφ)i, which contains the coupling to ε-scalars. These couplings are of the form

Lεφ = g2φ∗i (T
a)ij(T

b)jkφkε
a
µε
b
ν g̃
µν , (4.57)

where (T a) = U †taU . From this coupling we find

X̃µν
εε = g2g̃µνφ∗i {T a, T b}ijφj (4.58)

and the contribution to the effective Lagrangian is

16π2εLreg,λ =
g4

2
g̃µνφ

∗
i {T a, T b}ijφj g̃νµφ∗k{T b, T a}klφl (4.59)

=
g4

2
εϕ∗iϕ

∗
kϕjϕl{ta, tb}ij{tb, ta}kl, (4.60)

where we have used g̃µν g̃νµ = g̃µµ = ε. The term on the r.h.s. of eq. (4.60) can be absorbed

by the parameter re-definition

λDRED = λDREG − δλ (4.61)

with

λDREG
ijkl = λDRED

ijkl + δλ, (4.62)

= λDRED
ijkl − g4

16π2

(
{ta, tb}ik{tb, ta}jl + {ta, tb}il{tb, ta}jk

)
. (4.63)

The relation (4.63) agrees with the result of ref. [19].

4.6 Trilinear, quadratic and tadpole couplings

In a supersymmetric gauge theory, renormalized in the DR
′

scheme, without spontaneous

symmetry breaking the quartic scalar coupling λijkl is the only coupling from the scalar

potential which receives a non-zero contribution from the ε-scalars [19]. In a spontaneously
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broken gauge theory, however, there may be additional non-zero contributions to the tri-

linear, quadratic and tadpole scalar couplings from the ε-scalars. These non-zero contribu-

tions originate from replacing the scalar fields φi by non-zero vacuum expectation values

vi (VEVs) and corresponding perturbations ηi, as φi = vi + ηi. Therefore it is expected

that the contribution to the other scalar couplings from the ε-scalars is proportional to

the VEVs. In this section we calculate the relation of the trilinear, quadratic and tadpole

scalar couplings between DRED and DREG in a general spontaneously broken gauge the-

ory using the result of eq. (3.43). We consider a theory with a simple gauge group G that

is spontaneously broken by the VEVs of some real scalar fields φi. The scalar potential in

such a general renormalizable gauge theory reads

−V (φ) = ξiφi +
1

2
m2
ijφiφj +

1

3
hijkφiφjφk +

1

4
λijklφiφjφkφl, (4.64)

where all couplings are totally symmetric. Expanding the scalar fields around their VEVs

as φi = vi + ηi yields the potential

−V (η) = ξivi +
1

2
m2
ijvivj +

1

3
hijkvivjvk +

1

4
λijklvivjvkvl

+
(
ξi +m2

ijvj + hijkvjvk + λijklvjvkvl
)
ηi

+

(
1

2
m2
ij + hijkvk +

3

2
λijklvkvl

)
ηiηj

+

(
1

3
hijk + λijklvl

)
ηiηjηk +

1

4
λijklηiηjηkηl .

(4.65)

In order for a minimum to be attained at ηi = 0 ∀i the following conditions must be satisfied

ξi +m2
ijvj + hijkvjvk + λijklvjvkvl = 0 ∀i. (4.66)

When integrating out the ε-scalars one obtains corrections to the potential (4.65) from the

first line of eq. (3.43),

16π2εLreg,η = −
∑
a

(m2
ε)a(X̃

µ
εεµ)aa +

1

2

∑
ab

(X̃µ
εεν)ab(X̃

ν
εεµ)ba . (4.67)

The derivatives (X̃µν
εε )ab in eq. (4.67) are to be taken with respect to the ε-scalar mass

eigenstates, denoted by εa, and (m2
ε)a are the corresponding mass eigenvalues. The deriva-

tives can be calculated from the interaction Lagrangian between the ε-scalars and the scalar

fields ηi, which reads

Lεη =
g2

2
εaµε

b
ν g̃
µν(T a)ij(T

b)ik (vjvk + 2ηjvk + ηjηk) , (4.68)

where T a = −ita are real, antisymmetric matrices and ta are the generators of the represen-

tation under which the ηi transform. The first term in the parentheses of (4.68) contributes

to the mass matrix of ε-scalars, which reads

(m2
ε)ab = m2

εδab + g2(T a)ijvj(T
b)ikvk. (4.69)
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Since this matrix is symmetric it can be diagonalized by an orthogonal matrix O such

that Oab(m
2
ε)bcOdc = (m2

ε)aδad. The corresponding mass eigenstates εa are then given by

εa = Oabεb and the interaction Lagrangian in terms of ε-scalar mass eigenstates becomes

Lεη =
g2

2
εaµε

b
ν g̃
µν(T aO)ij(T

b
O)ik (2ηjvk + ηjηk) , (4.70)

where T aO = OabT
b and we have omitted the ε-scalar mass term. From eq. (4.70) one

obtains the derivatives

(X̃µν
εε )ab = −g

2

2
g̃µν{T aO, T bO}kj (2vkηj + ηkηj) , (4.71)

(X̃µ
εεµ)aa = −g

2

2
ε{T a, T a}kj (2vkηj + ηkηj) , (4.72)

and the contribution from the ε-scalars becomes

16π2εLreg,η = (m2
ε)a

g2

2
ε{T a, T a}kj (2vkηj + ηkηj)

+
g4

8
ε{T a, T b}kj{T a, T b}lm (4vkvlηjηm + 4vkηlηjηm + ηkηlηjηm) .

(4.73)

From eq. (4.73) one can see that for vi = 0 ∀i there would only be a contribution to the

quadratic and to the quartic scalar coupling, as was pointed out in ref. [19]. However, when

vi 6= 0 these two contributions also get distributed to other terms in the scalar potential.

The new scalar potential including the contribution from the ε-scalars becomes

−V (η) = ξivi +
1

2
m2
ijvivj +

1

3
hijkvivjvk +

1

4
λijklvivjvkvl

+

(
ξi +m2

ijvj + hijkvjvk + λijklvjvkvl +
1

16π2
vkAki

)
ηi

+

(
1

2
m2
ij + hijkvk +

3

2
λijklvkvl +

1

2(16π2)
Aij +

1

2(16π2)
vlvkBkilj

)
ηiηj

+

(
1

3
hijk + λijklvl +

1

2(16π2)
vlBlijk

)
ηiηjηk

+

(
1

4
λijkl +

1

8(16π2)
Bijkl

)
ηiηjηkηl,

(4.74)

where we have introduced the abbreviations

Aij ≡ g2(m2
ε)a{T a, T a}ij = 2g2(m2

ε)a(T
aT a)ij , (4.75)

Bijkl ≡ g4{T a, T b}ij{T a, T b}kl, (4.76)

and all repeated indices are summed over. In eq. (4.74) all parameters are still defined

in DRED. The 1-loop terms on the r.h.s. of eq. (4.74) can be absorbed by the parameter

re-definitions

pDRED = pDREG − δp, (4.77)
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where p ∈ {ξ,m2, h, λ, v}. Note, that ηDRED = ηDREG, because there is no contribution to

the field renormalization of scalar fields from eq. (3.43). By demanding that the potential

written in terms of DREG parameters takes the same form as in eq. (4.65) we obtain the

following set of equations relating the shifts to the finite loop corrections from the ε-scalars

δλijkl =
1

2(16π2)
B(ijkl), (4.78)

1

3
δhijk+δλijklvl+λijklδvl =

1

2(16π2)
vlBl(ijk), (4.79)

1

2
δm2

ij+δhijkvk+hijkδvk+
3

2
δλijklvkvl+3λijklδvkvl =

A(ij)

2(16π2)
+
vkvlBk(i|l|j)

2(16π2)
, (4.80)

δξi+δm
2
ijvj+m

2
ijδvj+δhijkvjvk+2hijkδvjvk+δλijklvjvlvk+3λijklδvjvkvl =

vkAki
16π2

, (4.81)

where T(i1i2...in) ≡ 1
n!

∑
σ∈Sn Tσ(i1)σ(i2)...σ(in) and Sn is the symmetric group over n symbols

and Bk(i|l|j) = 1
2

∑
σ∈S2

Bkσ(i)lσ(j). This set of equations is equivalent to

δλijkl =
1

2(16π2)
B(ijkl), (4.82)

1

3
δhijk + λijklδvl =

vl
2(16π2)

[
Bl(ijk) − B(ijkl)

]
, (4.83)

1

2
δm2

ij + hijkδvk =
Aij

2(16π2)
+

vkvl
2(16π2)

[
Bk(i|l|j) − 3Bl(ijk) +

3

2
B(ijkl)

]
, (4.84)

δξi +m2
ijδvj =

vjvkvl
(16π2)

[
−Bk(i|l|j) +

3

2
Bl(ijk) −

1

2
B(ijkl)

]
, (4.85)

where we have used that A(ij) = Aij , because Aij = Aji. Eq. (4.82) is equivalent to

the result obtained in section 4.5 for complex scalar fields. The eqs. (4.83)–(4.85) can be

simplified further by using the fact that the shifts of the vacuum expectation values δvi can

be related to the shifts δZη of the scalar fields and corresponding (auxiliary) background

fields δẐη as [34, 35]

δvi =
1

2

(
δZη + δẐη

)
ij
vj . (4.86)

As pointed out in refs. [34, 35], neither δZη nor δẐη receive contributions from ε-scalars,

which implies

δvi = 0 ⇔ vDREG
i = vDRED

i . (4.87)

This allows us to derive the following relations for the trilinear, quadratic and tadpole

scalar couplings between DREG and DRED,

hDREG
ijk = hDRED

ijk +
3vl

2(16π2)

[
Bl(ijk) − B(ijkl)

]
, (4.88)

(m2
ij)

DREG = (m2
ij)

DRED +
Aij

(16π2)
+

vkvl
(16π2)

[
Bk(i|l|j) − 3Bl(ijk) +

3

2
B(ijkl)

]
, (4.89)

ξDREG
i = ξDRED

i +
vjvkvl
(16π2)

[
−Bk(i|l|j) +

3

2
Bl(ijk) −

1

2
B(ijkl)

]
. (4.90)

– 17 –



J
H
E
P
0
8
(
2
0
1
8
)
0
2
6

The relations (4.87)–(4.90) represent a generalization of the known results of ref. [19] for

a spontaneously broken gauge theory with non-zero VEVs. In the limit vi → 0, which was

used in ref. [19], one obtains

hDREG
ijk = hDRED

ijk , (4.91)

(m2
ij)

DREG = (m2
ij)

DRED − 2g2

16π2
m2
εC(ri)δij , (4.92)

ξDREG
i = ξDRED

i , (4.93)

with (T aT a)ij = i2(tata)ij = −C(ri)δij . The m2
ε -dependence in eq. (4.92) can be removed

by shifting the m2
ij parameters as described in ref. [26], which is equivalent to transforming

from the DR into the DR
′

scheme as

(m2
ij)

DRED = (m2
ij)

DRED′
+

2g2

16π2
m2
εC(ri)δij . (4.94)

In the DR
′

scheme one therefore obtains in the limit vi → 0,

hDREG
ijk = hDRED′

ijk , (m2
ij)

DREG = (m2
ij)

DRED′
, ξDREG

i = ξDRED′
i , (4.95)

which is the known result from ref. [19].

5 Conclusions

The universal one-loop effective action (UOLEA) is a very elegant tool to fully automate the

derivation of the large set of effective Lagrangians of a given UV model with heavy particles.

To date, however, only part of the UOLEA is known and only in dimensional regularization

(DREG). Due to this restriction, the known part cannot be applied to supersymmetric UV

models, regularized in dimensional reduction (DRED), with non-supersymmetric effective

theories that are regularized in DREG.

In this paper we have extended the UOLEA by generic 1-loop operators which represent

a translation between DRED and DREG. These operators allow for an application of the

UOLEA to supersymmetric UV models with non-supersymmetric EFTs. As the UOLEA

itself, our derived generic operators are well suited to be implemented into generic spectrum

generators to fully automate the derivation of non-supersymmetric EFTs.

We have performed the calculation of the effective operators in the language of effec-

tive field theories, close to the formulation of the UOLEA. In our case the field to be

integrated out is the unphysical ε-scalar, which occurs in DRED when the 4-dimensional

gauge field is split into a d- and an ε-dimensional part. The resulting effective operators

can be absorbed by a re-definition of the fields and parameters, leading to the well-known

parameter translations in supersymmetric models of ref. [19].

In our calculation we have assumed that the UV theory is renormalizable and gauge in-

variant, but not necessarily supersymmetric. Within these restrictions our result is generic

and contains even terms corresponding to finite field renormalizations. Furthermore, our

result has an explicit m2
ε dependence, which can be removed by shifting the squared mass

parameters of the scalar fields appropriately as described in ref. [26].
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Finally we have applied our derived effective operators to various UV theories for

illustration and to prove that the known results of ref. [19] can be reproduced. Furthermore,

we have derived relations for scalar cubic, quadratic and tadpole couplings in a general

renormalizable gauge theory with spontaneous symmetry breaking, complementing the

results of ref. [19].
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A Consistency of shifts for Majorana fermions

We here show that the shifts (3.15) and (3.16) can be performed consistently for Majorana

fermions. For Majorana fermions there is only one degree of freedom and so it is necessary

that the shifted fields δλ̄′ and δλ′ are related as δλ̄′ = δλ′†γ0. That this is in fact the case

follows from the Hermiticity of the Lagrangian. Consider the terms containing Majorana

fermions in the original Lagrangian

Lλ = λ̄Fλ+ εaµλ̄G̃
µ
aλ+ φλ̄Hψ + φψ̄Iλ+ φλ̄Jλ, (A.1)

where F , G, H, I and J are independent of the fields. Taking the Hermitian conjugate

and using that L†λ = Lλ we find

Lλ = λ̄γ0F †γ0λ+ εaµλ̄γ
0(G̃µa)†γ0λ+ φλ̄γ0I†γ0ψ + φψ̄γ0H†γ0λ, (A.2)

which yields the relations

F = γ0F †γ0, (A.3)

G̃µa = γ0(G̃µa)†γ0, (A.4)

H = γ0I†γ0, (A.5)

I = γ0H†γ0, (A.6)

J = γ0J†γ0. (A.7)

We can also relate F , G, H, I and J to the quantities appearing in the second variation of

the Lagrangian by noting that

δ2Lλ = δλ̄(F + εaµG̃
µ
a + φJ)δλ+ δλ̄G̃µaλδε

a
µ + δεaµλ̄G̃

µ
aδλ+ δλ̄(Hψ + Jλ)δφ

+ δλ̄Hφδψ + δψ̄Iφδλ+ δφ(λ̄J + ψ̄I)δλ+ · · · ,
(A.8)
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where the extra terms indicated by the ellipsis do not include any variation of λ or λ̄.

Comparing this to (3.3) one obtains

∆λ = (F + εaµG̃
µ
a + φJ), (A.9)

X̃µ
ελ = λ̄G̃µa , (A.10)

X̃µ

λ̄ε
= −G̃µaλ, (A.11)

Xφλ = λ̄J + ψ̄I, (A.12)

Xλ̄φ = −(Hψ + Jλ), (A.13)

Xψ̄λ = Iφ, (A.14)

Xλ̄ψ = Hφ. (A.15)

From these relations and (A.3)–(A.7) it follows that

(∆†λ)−1 = γ0∆−1
λ γ0, (A.16)

(X̃µ

λ̄ε
)† = −X̃µ

ελγ
0, (A.17)

X†
λ̄φ

= −Xφλγ
0, (A.18)

X†
λ̄ψ

= γ0Xψ̄λγ
0. (A.19)

Calculating the Dirac adjoint of the shift (3.15) we obtain

δλ′†γ0 = δλ̄−
(
X̃µ†δεµ +X†

λ̄φ
δφ− δψ†X†

λ̄ψ

)
(∆−1

λ )†γ0

= δλ̄−
(
−X̃µ

ελγ
0δεµ −Xφλγ

0δφ− δψ†γ0Xψ̄λγ
0
)
γ0(∆−1

λ )γ0γ0

= δλ̄+
(
X̃µ
ελδεµ +Xφλδφ+ δψ̄Xψ̄λ

)
∆−1
λ

= δλ̄′,

(A.20)

where we have used eqs. (A.16)–(A.19) in the second line and the definition (3.16) in the last

line. We conclude that the shifts (3.15)–(3.16) are consistent with the required property

for Majorana fermions, δλ̄′ = δλ′†γ0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[34] M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in

spontaneously broken gauge theories, JHEP 07 (2013) 132 [arXiv:1305.1548] [INSPIRE].
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