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1 Introduction and conclusion

Recently, new (2+1)-dimensional field theory dualities — including boson-fermion dualities

(generalizing flux attachment in the condensed matter literature) — have been under in-

tensive study.1 They have roots in large N studies of models dual to Vasiliev gravity [2–4],

as well as attempts to understand the physics of the fractional quantum Hall system and

topological insulators [5–7]. Many of these dualities were conjectured in [8]. The simplest

boson/fermion dualities were then crystallized in [9, 10], while dualities with non-Abelian

gauge groups were further studied in [11] and [12, 13], which respectively focused on unitary

and orthogonal gauge groups. These simple dualities serve to generate a larger web of du-

alities, for instance by using the natural SL(2, Z) action on (2+1)-dimensional conformal

field theories with Abelian global currents [14]. Additional recent conjectures and tests

1Relativistic versions of flux attachment are, in fact, an old idea [1]. The novelty in recent proposals is

that this extends even to conformal fixed points.
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of dualities include [15–27], and recent condensed matter applications of these dualities

include [28–35].

Heuristic derivations have appeared using wire constructions [36, 37], deformations

of well-established supersymmetric dualities [38–42], holography [43], loop models [44],

and an exact lattice duality [45]. In this paper, we generalize the lattice construction

of [45] in order to study non-Abelian theories with multiple matter flavors. (As in all of

the ‘derivations’ we have mentioned, we will need to make some weak assumptions about

what our theories flow to in the infrared. However, our assumptions are very weak, and

in many cases, including the most interesting cases where we provide new dualities, they

amount only to the assumption that our lattice theories flow to their obvious continuum

counterparts.2) We have a number of motivations for doing so. First, while the dualities

of interest formally arise from the more general conjecture [8]

SU(K)
−N+

Nf
2

+Nf Dirac fermions ←→ U(N)K +Nf complex Wilson-Fisher scalars

(1.1)

and its SO/SO counterpart (with Majorana fermions and real scalars) by setting K = 1,

since SU(1) and SO(1) are trivial, they are nevertheless rather surprising, as one side is

independent of N while the other is not. This aspect of the dualities played an important

role in the recent applications of [34, 35]. Second, the lattice non-linear sigma model

proves to be an elegant description of the Wilson-Fisher theories, as it accounts for all of

the universal behavior in the potentials of [11, 13] while eliminating the irrelevant radial

modes of the scalars. Additionally, as we explain below, the lattice is a powerful tool for

obtaining dualities, and it is important to see how far this technique can be developed. In

fact, we will provide interesting new dualities3 in the SO/SO case when 0 ≤ N −Nf ≤ 1.

The phase structure of the latter theories is non-trivial (see figures 1 and 2 in section 4) and

depends on N in interesting ways that are difficult to discern without explicit calculations

such as those that appear below. In the future, we hope to be able to provide evidence for

and nail down some of the details in the proposals of [46].

While we defer a detailed description of our lattice proof to the body of the paper,

we wish to emphasize here the main reasons why the lattice construction is powerful.

To an IR field theorist, Chern-Simons-matter theories are intractable strongly-coupled

systems (excepting certain limiting values of the parameters). However, we can obtain a

Chern-Simons interaction by beginning in the UV with a massive fermion. (Indeed, this

approach allows us to guarantee that we obtain the correct dependence on the gravitational

and electromagnetic backgrounds, as well as the topology, in the IR.) The idea is then to

integrate out the gauge field and scalars and demonstrate that the resulting theory describes

free fermions in the infrared. Integrating out the bosons will generate interactions for the

fermions, so one might fear that one loses control in the infrared. In fact, one might suspect

2See appendix C.1 for a more detailed discussion of the extent to which our assumptions are innocuous.
3As we discuss in appendix C.1, strictly speaking we are able to prove new dualities for fixed points

involving scalars coupled to Chern-Simons, but calling them ‘gauged Wilson-Fisher’ fixed points might be

presumptuous.
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that the resulting theory would be highly non-local, since we are integrating out massless

bosons. However, we only have critical bosons in the IR; in the UV, the Higgs mechanism

and confinement together prevent us from ever having to integrate out light bosons, and

so we are able to find a local fermionic theory. That this is possible is ultimately due to

the existence of the duality. Confinement results from our setting the Maxwell coupling to

infinity at the lattice scale. One might wonder about the IR description of a gauge field

which has no kinetic term in the UV, but the parity anomaly and the paucity of relevant

operators strongly suggest that a level one Chern-Simons-matter theory obtains in the IR.4

Of course, there are other coupling constants in the IR, namely those of the quadratic

and quartic terms in the scalar potential. By integrating out the radial modes, one obtains

a non-linear sigma model whose temperature, T , is the tuning parameter constructed from

these couplings. The above steps produce a local fermionic theory with a non-zero bare

mass and irrelevant interactions with a coupling constant T . We will show that for a range

of bare fermion masses in the UV gauge theory there is a critical temperature Tc where the

interactions cancel the effects of the bare mass so that the dual fermion becomes massless,

and this Tc is within the regime of applicability of perturbation theory in T .5 The UV

cutoff provided by the lattice is quite useful in this respect, as it provides the scale that

determines this regime. We can then study physics at an IR scale arbitrarily far below

that of the UV, where the parameters of the lattice gauge theory’s effective field theory will

hardly appear perturbative and the bare fermion masses will hardly appear small. But, if

we can identify the UV as describing a free massless fermion, then surely the same can be

said for the IR. In short, performing a change of variables in the UV has a significant effect

on the form of the renormalization flow, so that we can either obtain a strongly-coupled or

free theory.

The outline of the rest of the paper is as follows. In section 2, we describe the lattice

proof of the U(N) dualities with Nf = 1. In the following section, we repeat this analysis

for the SO(N) dualities. We then extend the construction to Nf > 1.

As this work was nearing completion, we learned of the forthcoming work [47], which

has some overlap with section 3.

4In fact, although we set the Maxwell coupling to infinity, our derivation makes clear that — thanks

to the Higgs mechanism — for the most part only small fluctuations of the gauge field play a role, so the

important gauge field path integrals are performed only over the Lie algebra, and there is no question that

our theories are the appropriate lattice avatars of the continuum theories of interest. The exception to this

rule is that in some cases we will need to assume that certain theories with large gauge field fluctuations

confine with a mass gap, and when we do so we assume that the analogous statement also holds for the

continuum theory.

Indeed, one could easily retain the Maxwell interaction with a large coupling constant, e2, but it would

not change anything, as its effects would be suppressed by T/e2, the inverse of the square of the Higgs

scale, as is evident from the modified propagator. We demonstrate in appendix C.2 that a small e2 is also

tractable.
5We emphasize that the appearance of the fixed point at a small value of T is not a fortunate accident,

but rather a consequence of the fact that we choose the bare fermion mass, whose magnitude is invisible in

the IR, to be small compared to the lattice scale.
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2 Nf = 1 free Dirac fermion as complex boson coupled to U(N)1

In this section we give an explicit lattice derivation of the K = Nf = 1 case of (1.1),

generalizing the N = 1 construction in [45]. The duality in Euclidean signature is explic-

itly [8, 11]6

−Lfermion = ψ̄γµ(∇µ − iAµ)ψ +mψ̄ψ +
1

2

(
i

4π
AdA+ i 2CSgrav

)
l (2.1)

−Lboson = −|(∇µ − ibµ)φ|2 − r|φ|2 − λ

2

(
|φ|2

)2
+

i

4π
tr

(
(b+A)d(b+A)− 2i

3
(b+A)3

)
+ i 2NCSgrav .

Here ψ is a Dirac fermion, φ a complex boson with N colors, b a U(N) dynamical gauge

field, and A a background “electromagnetic” Spinc connection. The level-1/2 CS term on

the fermion side should be understood as coming from integrating out a heavy “doubler”

Dirac fermion with m→ −∞, or alternatively, as +πη/2 in terms of the eta-invariant [11].

The duality is supposed to hold with sgn(r) = sgn(m), and most interestingly at the critical

point r = m = 0.

In Euclidean signature we choose γµ to be the Pauli matrices σµ and treat ψ and ψ̄

as independent. This famously leads to a reflection positive, but not real, action.7 Our

conventions for Wick rotation to Minkowski signature are such that ψ and ψ̄ are invariant,

while the coordinate y becomes it, and correspondingly γt = −iσy. In Minkowski signature

we also relate ψ and ψ̄ via ψ̄ = −iψ†γt = −ψ†σy, so that the action is real.

2.1 Lattice constructions

We will construct two lattice gauge theories representing the two sides of the duality and

show that they are manifestly equivalent. We work on a cubic lattice representing the three-

dimensional flat spacetime; we will discuss how to incorporate a gravitational background

later. A lattice site is labeled by n = (x, y, z), and the link between the sites n and

n+ µ̂ (µ̂ = x̂, ŷ, ẑ) is labeled by nµ. The lattice unit length is set to 1. On the lattice sites

there live matter fields while on the links there live gauge fields. Specifically, the theories

are as follows.

On the Dirac fermion side, at each site n there is a pair of two-component Grassmann

variables (ψn)α and (ψ̄n)α, where α =↑, ↓ is the Dirac spinor index. On each link nµ there

is the background electromagnetic gauge field eiAnµ and its conjugate e−iAnµ . The partition

6The trace in the bosonic theory can be expanded as tr
(
bdb− 2i

3
b3
)

+ 2Ad tr b+NAdA, using b+A ≡
b+A1.

7In Euclidean signature, we can define a new notion of complex conjugation, ψ† = iψ̄, under which the

massless Lagrangian iψ† /∂ψ is real. However, this should be regarded as a distraction, since the important

condition for a Euclidean action is reflection positivity. Indeed, in the massive or Majorana cases the action

cannot be made real.
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function takes the form

Zψ[A] =

∫
DψDψ̄ e−S

ψ
W [A]−Sint , DψDψ̄ ≡

∏
n

d2ψn d
2ψ̄n,

−SψW [A] ≡
∑
nµ

(
ψ̄n+µ̂

−γµ − 1

2
eiAnµψn + ψ̄ne

−iAnµ γ
µ − 1

2
ψn+µ̂

)
+
∑
n

Mψψ̄nψn. (2.2)

The properties of Wilson’s lattice fermion SW [48, 49] are reviewed in appendix A; we

are particularly interested in the vicinity Mψ ∼ 3 [45], where there is a continuum Dirac

mode whose mass m changes from negative to positive as Mψ increases across 3, while

the remaining “doubler” Dirac modes with masses at the lattice scale contribute a net

level-1/2 CS term for the background A. We have also included some possible lattice scale

interactions Sint, which are irrelevant in the continuum, up to some renormalization of the

IR mass m that we will take into account later.

On the boson side, we realize the N -color complex boson by a U(N) non-linear sigma

model in the fundamental representation. More precisely, at each site n there is a U(N)

matrix (Vn)ab where a, b = 1, . . . , N is the color index. The non-linear sigma model boson

variable is given by φan = (Vn)ab ξ
b, where the “reference” column vector is

ξb =


1

0
...

0

 . (2.3)

Besides the scalar, there is also a dynamical gauge field, which is realized by a U(N) matrix

(Unµ)ab = (eibnµ)ab on each link nµ. There is again the background electromagnetic gauge

field e±iAnµ . The gauge field (b+A) has a CS term in the IR. While it is tricky to directly

implement CS action at the lattice scale, to implement it in the IR, we can use a lattice

fermion χa in the fundamental representation of U(N), with 1 < Mχ < 3 [45, 50] (see

appendix A). Piecing together these ingredients, the boson side of the duality’s partition

function is

Z[A] =

∫
DU Zσ[U ] Zχ[U,A], DU ≡

∏
nµ

(dUnµ)Haar,

Zσ[U ] =

∫
DV e−Sσ [U ], DV ≡

∏
n

(dVn)Haar,

−Sσ[U ] ≡ 1

T

∑
nµ

(
ξ†V †n+µ̂UnµVnξ + ξ†V †nU

†
nµVn+µ̂ξ

2
− 1

)
,

Zχ[U,A] =

∫
DχDχ̄ e−S

χ
W [U,A], DχDχ̄ ≡

∏
n

d2Nχn d
2N χ̄n,

−SχW [U,A] ≡
∑
nµ

(
χ̄n+µ̂

−γµ − 1

2
eiAnµUnµχn + χ̄nU

†
nµe
−iAnµ γ

µ − 1

2
χn+µ̂

)
+
∑
n

Mχχ̄nχn. (2.4)
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Note that the U(N) variables are integrated with the Haar measure,8 and the non-linear

sigma model Sσ is a direct generalization of the U(1) XY model, with the “temperature”

T controlling the radius.

We note that in (2.4) one may include a Yang-Mills term for U . In appendix C, we

discuss the consequences of doing so. In particular, we demonstrate that it changes neither

our procedure nor our conclusions.

Our claim is that one can explicitly show

Z[A] ∝ Zψ[A] (2.5)

for any background A, with some overall proportionality constant independent of A. The

two sides will involve some different Mχ and Mψ, such that Mψ is a function of Mχ and

T ; the fermion side will also involve some irrelevant interactions Sint. Moreover, when Mχ

implements level-1 CS, there is some critical value of T such that ψ has the desired massless

Dirac mode in IR.

2.2 Procedure

Our plan is to integrate out the gauge field U and discover that the boson φ binds with

one color component of χ to make a new fermion ψ, while the remaining components of χ

become invisible in the IR. As a first step, we single out one color by adopting the unitary

gauge where Vn is the identity matrix and φn = ξ (see (2.3)) for all n.9,10,11 Thus, each

link nµ ends up contributing∫
dUnµ exp

(
ξ†(Unµ + U †nµ)ξ − 2

2T
+ χ̄n+µ̂

−γµ−1

2
eiAnµUnµχn + χ̄nU

†
nµe
−iAnµ γ

µ − 1

2
χn+µ̂

)
(2.6)

to Z[A]. As Unµ does not appear elsewhere, the integral is done on each link separately [45].

For definiteness, let’s choose γµ = σµ and look at a link nz without loss of generality. The

integral is∫
dUnz exp

(
ξ†(Unz + U †nz)ξ − 2

2T
− χ̄n+ẑ ↑eiAnzUnzχ↑n − χ̄n ↓U †nze−iAnzχ

↓
n+ẑ

)
. (2.7)

Note that on each link, only one spinor component of each Grassmann variable appears.

8One might worry that a different prescription is required, so that the gauge field for the central U(1) ⊂
U(N) is ‘non-compact’ [51] (in the sense that there is no potential for the dual photon [52] — i.e., the global

U(1) symmetry corresponding to A under which monopole operators are charged is unbroken). However,

because of the absence of the Maxwell term this distinction is immaterial. See also footnotes 4 and 30.
9In [45], this gauge fixing step is avoided by a division by the volume of the gauge group in (3.2).

10This is an incomplete gauge choice, since any U(N − 1) gauge transformation that fixes ξ preserves our

gauge, but it will suffice for our purposes.
11All Faddeev-Popov determinants in this paper are trivial. This is clear from the fact that our gauge

choice does not involve the gauge field or the fermion which remain in the path integral after our gauge

fixing.

– 6 –



J
H
E
P
0
8
(
2
0
1
8
)
0
1
5

To get an idea what will happen under the U integral, let’s consider the T → ∞ and

the T → 0 limits. The T → ∞ limit is equivalent to starting with Nf = 0. One expects

the strongly fluctuating U to confine the χ’s into massive color singlets that are invisible

in the IR. In the integration (2.7), the exponent can be exactly expanded to finite order

in the 4N Grassmann variables χ̄an+ẑ ↑, χ̄
a
n ↓, χ

a,↑
n , χa,↓n+ẑ. These expanded terms form a

polynomial in U and U †. A term in this polynomial survives the dU integral only if it has

equal numbers of U and U † matrices. This in turn means the surviving terms must be

independent of A, and must involve 4k (k = 0, . . . , N) Grassmann variables, forming color

singlets on both sites n and n + ẑ.12 These terms involving 4k Grassmann variables can

either be viewed as 2k-body interactions across the link nz, or as the hopping of heavy

color singlet bosonic objects, made out of 2k fermions, across the link nz.13 Thus, when

T →∞ (or equivalently, at Nf = 0) the theory is (almost) trivial14 in the IR. This agrees

with the expectation from the IR theory (2.1) in the r,m→ +∞ limit.

In the opposite T → 0 limit, the integrand will be non-vanishing only if U leaves ξ

invariant, i.e. the U(N) gauge field Uab is spontaneously broken to a U(N − 1) field U ′AB
acting on the colors B = 2, . . . , N . Thus, (2.7) becomes

exp
(
−ψ̄n+ẑ ↑eiAnzψ↑n − ψ̄n ↓e−iAnzψ

↓
n+ẑ

)
·
∫
dU ′nz exp

(
−χ̄′n+ẑ ↑eiAnzU ′nzχ′

↑
n − χ̄′n ↓U ′

†
nze
−iAnzχ′

↓
n+ẑ

)
(2.8)

where ψ = χa=1 = ξ†χ is the first color component of χ, and (χ′)A = χA are the remaining

N − 1 color components. Now ψ is fully decoupled from χ′ (the same is true in the mass

term); in particular, ψ is a free Wilson fermion with Mψ = Mχ. On the other hand, the

dU ′ integral involving the decoupled χ′ degrees of freedom is the same as the above dU

integral in the T →∞ limit with N replaced by N −1, and hence χ′ is completely invisible

in the IR. Thus, all we have is Zψ with Mψ = Mχ (and with Sint fully decoupled from

ψ). Since we have chosen 1 < Mχ < 3 to implement level-1 CS, ψ will now implement a

level-1 CS term for the background field A. This matches with the r,m < 0 phase (since

m = Mψ − 3 = Mχ − 3, as explained in appendix A) from the IR theory (2.1).

We are, in the end, interested in the finite T case where an m = 0 Dirac mode is

developed in the IR. From the discussion above we expect χa=1 = ξ†χ on the boson side to

become ψ on the fermion side. Indeed, this has to happen because after the dU integral,

any term must be built out of color singlets on both sites n and n+ ẑ, and the only possible

quadratic terms (in χ) are (χ̄n+ẑ ↑ξ)(ξ
†χ↑n) and (χ̄n ↓ξ)(ξ

†χn+ẑ ↓). In other words, from the

UV perspective, χ1 is singled out by a Higgsed gauge field, while from the IR perspective,

12The result of the integration can be expressed in terms of Weingarten functions, but we do not need

the details here.
13There is no analytic proof that these order 1 complicated terms will make the bosonic objects massive

and invisible in the IR, but this is highly plausible on physical grounds, and is necessary for the duality to

hold at Nf = 0.
14The Nf = 0 theory is the U(0)1 theory with a vanishing Lagrangian discussed in [11]. Intuitively, the

purpose of this theory is to preserve the memory that our theory once had fermions and required a spin

structure until we coupled it to A. See also our discussion in section 3.
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χ1 plays the role of the monopole operator binding with the boson φ. What we still need

to verify is that as T increases from 0, the IR mass of ψ will increase from m = Mχ−3 < 0

and hit m = 0. Now there comes a nice aspect of the lattice gauge theory construction.

We are free to set the IR energy scale arbitrarily low compared to the inverse lattice scale,

so we can arrange the parameters such that

IR energy scale of interest � |Mχ − 3| � 1 ≡ Inverse lattice scale. (2.9)

We have shown m = Mχ − 3 < 0 at T = 0. Now that we have arranged Mχ very close to

3, we expect a massless Dirac mode for ψ will appear, if at all, at some finite but small

Tc ∼ 3 −Mχ. We can thus expand in T and check that a small (compared to the inverse

lattice scale) but non-zero T indeed helps to increase m so that it hits 0 at some small

T = Tc.
15 This low temperature expansion in the UV is fully under control, despite the

strong coupling nature of the problem in the IR.

2.3 Integrating out the gauge field

To perform the low temperature expansion, it is natural to separate U(N) into the U(N−1)

part that does not act on ξ and the U(N)/U(N − 1) part that acts on ξ:

Uab = exp

i

θ η∗C

ηA 0


 ·


1 0

0 U ′CB

 . (2.10)

In this notation,

exp

(
ξ†(U + U †)ξ − 2

2T

)
= exp

(
−θ

2 + |η|2

2T
+

(θ2 + |η|2)2 + θ2|η|2

24T
+ · · ·

)
. (2.11)

Now we rescale θ and ηA by
√
T , and due to the smallness of T , we can take the integration

ranges of θ and ηA to be R and C respectively; an overall constant from the Jacobian of

this rescaling is omitted.16 The integral (2.7) on the link nz can be expanded in powers of

15An alternative to our approach, where we make a small T expansion before performing the integral (2.7),

might be available: one might be able to use the Itzytson-Zuber formalism [53–55]. However, the expansion

is necessary for computing the IR mass m anyways, as well as for making contact with the continuum à la

footnote 4, so we may as well employ it from the beginning; in fact, it helps to clarify the physics under

consideration.
16One might worry that we need a Jacobian in the change of variables from U to {θ, η, U ′}. However,

thanks to this rescaling, and the fact that the Lie algebra yields (via exponentiation) Riemann normal

coordinates on the group manifold, the (θ, η)-dependence in the Jacobian is O(T ). As we will shortly

explain in footnote 17, this makes the Jacobian inconsequential. It is also important that the Jacobian does

not yield terms odd in θ or η, since we drop terms that are odd in these variables.

(The statement about normal coordinates obtains after combining a few standard results (see, e.g., §4
of [56], chapter 18 of [57], and [58]) about compact connected Lie groups. There is always a bi-invariant

metric whose volume form is the Haar measure (which is also always bi-invariant). Indeed, when the

Lie algebra is simple (e.g. su(N) or so(N)), the Cartan-Killing form is the unique such metric, up to

multiplication by a positive constant. For any bi-invariant metric, the geodesics starting at the identity are

precisely the one-parameter groups, eitX , where t ∈ R and X is in the Lie algebra. Said another way, with

this metric, the Lie group and Riemannian exponential maps coincide. Finally, since right multiplication is

an isometry of this metric, the geodesics originating at a group element U ′ are of the form eitXU ′.)

– 8 –
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T (we absorb eiAnzU ′nz → U ′nz and omit the nz subscript common to all gauge fields):∫
dU ′

∫
dθ d2(N−1)η exp

(
−θ

2 + |η|2

2

) [
1 + T

(θ2 + |η|2)2 + θ2|η|2

24
+O(T 2)

]
exp

(
−ψ̄n+ẑ ↑eiAψ↑n − ψ̄n ↓e−iAψ

↓
n+ẑ − χ̄

′
n+ẑ ↑U

′χ′
↑
n − χ̄′n ↓U ′

†
χ′
↓
n+ẑ

)
[
1+

T

2

(
ψ̄n+ẑ ↑(θ

2+|η|2)eiAψ↑n+ψ̄n ↓e
−iA(θ2+|η|2)ψ↓n+ẑ+χ̄′n+ẑ↑ηη

†U ′χ′
↑
n+χ̄′n ↓U

′†ηη†χ′
↓
n+ẑ

)
+ T

((
ψ̄n+ẑ ↑θψ

↑
n

)(
ψ̄n ↓θψ

↓
n+ẑ

)
+
(
ψ̄n+ẑ ↑ η

†U ′χ′
↑
n

)(
χ̄′n ↓U

′†η ψ↓n+ẑ

)
+
(
χ̄′n+ẑ ↑η ψ

↑
n

)(
ψ̄n ↓ η

†χ′
↓
n+ẑ

))
+ O(T 2)

]
, (2.12)

where in the expansion we have omitted terms that are odd in θ or holomorphic / anti-

holomorphic in ηA, as they vanish upon integration; terms with repeated Grassmann vari-

ables also vanish. Now we can perform the Gaussian integrals over θ and η; note that

the T/24 term in the first line just produces an overall constant plus O(T 2) terms.17 The

result to order T is∫
dU ′ exp

(
−ψ̄n+ẑ ↑eiAψ↑n − ψ̄n ↓e−iAψ

↓
n+ẑ − χ̄

′
n+ẑ ↑U

′χ′
↑
n − χ̄′n ↓U ′

†
χ′
↓
n+ẑ

)
[
1 + T

(
N − 1

2

)(
ψ̄n+ẑ ↑e

iAψ↑n + ψ̄n ↓e
−iAψ↓n+ẑ

)
+ T

(
χ̄′n+ẑ ↑U

′χ′
↑
n + χ̄′n ↓U

′†χ′
↓
n+ẑ

)
+T

(
ψ̄n+ẑ ↑ψ

↑
n

)(
ψ̄n ↓ψ

↓
n+ẑ

)
+ 2T

((
ψ̄n+ẑ ↑ χ

′↑ a′
n

)(
χ̄′a
′
n ↓ψ

↓
n+ẑ

)
+
(
χ̄′a
′
n+ẑ ↑ψ

↑
n

)(
ψ̄n ↓ χ

′↓ a′
n+ẑ

))]
(2.13)

up to overall constants. Now we can re-exponentiate these terms. The terms quadratic in

ψ receive a renormalization factor of (1 − T (N − 1/2)), while the terms quadratic in χ′

receive a renormalization factor of (1−T ). We can remove these factors by a wavefunction

renormalization: √
1− T (N − 1/2) ψ → ψ,

√
1− T χ′ → χ′. (2.14)

After this rescaling, we arrive at∫
dU ′ exp

[
−ψ̄n+ẑ ↑eiAψ↑n − ψ̄n ↓e−iAψ

↓
n+ẑ − χ̄

′
n+ẑ ↑U

′χ′
↑
n − χ̄′n ↓U ′

†
χ′
↓
n+ẑ

+T
(
ψ̄n+ẑ ↑ψ

↑
n

)(
ψ̄n ↓ψ

↓
n+ẑ

)
+2T

((
ψ̄n+ẑ ↑ χ

′↑ a′
n

)(
χ̄′a
′
n ↓ψ

↓
n+ẑ

)
+
(
χ̄′a
′
n+ẑ ↑ψ

↑
n

)(
ψ̄n ↓χ

′↓ a′
n+ẑ

))]
(2.15)

(plus O(T 2)). The same idea clearly works for links in the x and y directions too, with ↑, ↓
replaced by the eigenvectors of σx and σy respectively.

The redefinition (2.14) changes the mass term in (2.4):

Mχχ̄nχn → Mψψ̄nψn +Mχ′χ̄
′
nχ
′
n , (2.16)

17This statement relies on the following manipulation: 1+CT+DT+O(T 2) = (1+CT )(1+DT+O(T 2)).
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where, to linear order in T ,

Mψ = Mχ (1 + T (N − 1/2)) , (2.17)

and Mχ′ = Mχ (1 + T ). Piecing together all the above, we arrive at the form of Zψ[A]

given in (2.2), with Mψ given above and the interactions given by

e−Sint = exp

[
T
∑
nµ

(
ψ̄n+µ̂

−γµ − 1

2
ψn

)(
ψ̄n
γµ − 1

2
ψn+µ̂

)]

×
∫
DχDχ̄DU ′ e−S

χ′
W [U ′] exp

[
2T
∑
nµ

((
ψ̄n+µ̂

−γµ − 1

2
χ′a
′
n

)(
χ̄′a
′
n

γµ − 1

2
ψn+µ̂

)

+

(
χ̄′a
′
n+µ̂

−γµ − 1

2
ψn

)(
ψ̄n
γµ − 1

2
χ′a
′
n+µ̂

))]
. (2.18)

The first line is a self-interaction of ψ, while the remainder is an interaction of ψ mediated

by the χ′ sector. It seems the latter is complicated. However, it only affects the ψ sector

at order T 2, and hence to order T we can decouple the χ′ sector and simply take

−Sint = T
∑
nµ

(
ψ̄n+µ̂

−γµ − 1

2
ψn

)(
ψ̄n
γµ − 1

2
ψn+µ̂

)
. (2.19)

The reason is the following. As we discussed in the T → 0 case, thanks to confinement,∫
DU ′e−S

χ′
W [U ′] will yield terms with 4k (k runs from 0 to N − 1) χ′ fields across each link.

On the other hand, each T ψ̄ψχ̄′χ′ interaction involves only two χ′ fields. Therefore, to

connect the χ′ sector to the ψ sector, an even number of T ψ̄ψχ̄′χ′ interactions must take

place,18 i.e. these contributions are O(T 2).

In summary, we have shown that Z[A] given by (2.4) is, up to overall constants,

equivalent to Zψ[A] given by (2.2) after integrating out U and χ′. The lattice mass Mψ

is given by (2.17) and the lattice scale interaction Sint is given by (2.19). This analysis is

made to order T , which is controlled and sufficient, as we discussed below (2.9). Note that

to this order, the only place N appears is in (2.17); for N = 1, the above reduces to the

U(1) result [45] as I0(1/T )/I1(1/T )→ T/2 at small T . At higher orders in T , the form of

Zψ[A] is unchanged, though Mψ and Sint will receive higher order corrections.

Along the same lines of reasoning, one can also show the 2k-point correlation functions

satisfy〈
ψn1 · · ·ψnk ψ̄ñ1

· · · ψ̄ñk
〉
A

= (1− T (N − 1/2))k
〈(
ξ†V †n1

χn1

)
· · ·
(
ξ†V †nkχnk

)(
χ̄ñ1

Vñ1
ξ
)
· · ·
(
χ̄ñkVñk ξ

)〉
A
, (2.20)

where the expectation values on the two sides are evaluated using theories (2.2) and (2.4),

respectively, with an arbitrary background A.

18One caveat is that
∫
DU ′e−S

χ′
W

[U′] inherits the quadratic mass term. But, this cannot couple the χ′

sector to T ψ̄ψχ̄′χ′, due to their spinor structures being orthogonal. The mass term is associated with a

lattice site, and the spinor structure on a site is χ̄′↑χ
′
↑+ χ̄′↓χ

′
↓. All other χ′ terms are associated with a link,

nµ, such that on either site at the ends of that link, χ̄′ and χ′ have opposite spins in the µ direction. So

the spinor structure in the mass term is orthogonal to that in all other terms that are associated with links.
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2.4 Vanishing of the IR Dirac mass at T = Tc

Now we have a single fermion theory (2.2), with lattice mass Mψ given by (2.17) and lattice

scale self-interaction Sint given by (2.19). Were it not for the interaction Sint, this would

be a free theory with a Dirac mode near pµ = 0 with mass m = Mψ − 3 (in addition to

Dirac modes at other points in the Brillouin zone with masses of order the lattice scale,

as explained in appendix A); recall that we have chosen 0 < 3 −Mχ ∼ T � 1 in (2.9),

so to first order we have m = (Mχ − 3) + 3T (N − 1/2), and indeed there is a solution

0 < Tc � 1 to the equation m = 0. However, it is not legitimate to ignore Sint since it

makes an order-T contribution to the IR mass.

In fact, this is its only important effect, since it is irrelevant. (It is a UV realization

of a current-current interaction. Note that our description of this interaction as irrelevant

relies on our perturbative setup: T � 1.) Explicitly, the IR mass of the Dirac mode near

pµ = 0 is given by

m = Mψ − 3 + Σ(p = 0) , (2.21)

where Σ is the self-energy of ψ at pµ = 0 to first order in T .19 It suffices to compute Σ

with only one Sint insertion. The computation is the same as the U(1) case [45]; the details

can be found in appendix B. We find Σ(p = 0) ' 0.113T , i.e.

m = Mχ − 3 + T (3N − 3/2 + 0.113) , (2.22)

which, thanks to 0 < 3 −Mχ ∼ T � 1, can hit m = 0 for some 0 < Tc � 1 as desired.

This completes the exact lattice derivation of the duality.

If one wants a theory of ψ that is not only free in the IR, but also on the lattice, one

can simply include a counter-term (2.19) for the χ theory [45]. By similar reasoning as

above, when the ψ theory has a m = 0 mode, the corresponding χ theory, with the Sint
self-energy, implements level-1 CS.

2.5 Gravitational background and topology

By now we have carried out the lattice construction of the duality (2.1) on an infinite

cubic lattice, representing infinite flat spacetime. We now verify that this construction

yields the correct behavior with a gravitational background, and even with a non-trivial

topology [11]. In fact, these properties are naturally integrated into our construction.

Regarding gravity, one can readily see that the χ fermion we have in (2.4) indeed reproduces

the right coefficient of CSgrav in (2.1). As for topology, the CS (or BF) terms that can be

consistently put on a Spinc manifold [10, 11, 59] can always be obtained from integrating

out heavy fermions.

To incorporate curved spacetime and non-trivial topology, we introduce the metric and

spin connection on the lattice using the method of [60]; the lattice building blocks might

no longer be cubes. This procedure does not interfere with our main step, integrating out

19More precisely, for small p one parametrizes Σ(p) = Σ(0) + (1/Z − 1)iγµpµ + O(p2), where Z =

1+O(T ) is the wavefunction renormalization. The IR mass should be Z times the right-hand-side of (2.21).

Fortunately, to compute m to order T , it suffices to take Z = 1.

– 11 –
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U on each individual link, in the establishment of the duality. Therefore, our UV analysis

goes through without substantial change. In these more general spacetimes, it would be

harder to extract the IR physics, compared to infinite flat spacetime. Nevertheless, since

the field theory duality holds only in the infrared, we need only concern ourselves with

curvature as small as the IR scale in (2.9), so that the only change in the IR interpretation

is the change from flat to slightly curved spacetime.

A final issue is that in gauge theory, the overall normalization of the partition function

might contain topological information about the spacetime [61–63] if it cannot be presented

as a product of local factors. In our derivation we dropped overall constants; now let’s look

closely at them. There are three sources of overall constants. The first is the gauge redun-

dancy of U , much of which we have absorbed by setting φ = ξ; the remaining redundancy

and the Faddeev-Popov determinant yield a product of local factors.20 The second is the

overall constants we dropped in integrating out U and rescaling ψ, χ′; these constants are

associated with the sites and links, i.e. they are already presented as products of local

factors. The third is the decoupled χ′ sector; since these fermions bind into heavy bosonic

objects after the U ′ integration, their contribution can also be viewed as a local term that

contains no information about the topology.

3 Nf = 1 free Majorana fermion as real boson coupled to SO(N)1

Now we turn to an explicit lattice construction of the “SO(N)K + Nf real bosons ↔
SO(K)

−N+
Nf
2

+ Nf Majorana fermions” duality in the Nf = K = 1 case (where, again,

the fermion side is free). The procedure is very similar to the Dirac case, with some minor

differences.

We briefly discuss a subtlety with Euclidean Majorana fermions (see, e.g., §2.2.1

of [64]). With a Lorentzian metric, Majorana fermions satisfy a reality condition, which

in our conventions is (ψ†)T = ψ. In Euclidean signature, such a condition may no longer

be imposed, since ψ is in the pseudoreal fundamental representation of SU(2) ∼= Spin(3).

That is, ψ is a complex 2-component spinor (in the sense that it resides in a vector space

with complex coefficients), as in the Dirac case. The difference from the Dirac case is that

in the Lorentzian signature one may express the path integral (including the action) solely

in terms of ψ, and this remains the case after Wick rotation. Indeed, the Euclidean action

is that obtained from the Dirac case by replacing ψ̄ → −ψTσy. We will therefore use the

shorthand ψ̄ for −ψTσy; however, it should be understood that we path integrate only

over ψ, and not ψ̄.21 Thus, just as in Lorentzian signature, the path integral for a free

Euclidean Majorana fermion is the Pfaffian of the Dirac bilinear form (again, see [64]).

20The exception to this is that one should include a factor for each connected component of spacetime,

since constant ‘gauge transformations’ are actual symmetries.
21Readers may be familiar with a similar discussion involving Weyl fermions in four dimensions. However,

there one treats ψ and ψ̄ as independent 2-component complex spinors, each of which is to be path-integrated

over. ψ transforms in the fundamental representation of the first SU(2) factor in Spin(4) ∼= SU(2)× SU(2),

while ψ̄ is in the fundamental of the second factor.
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The IR Majorana duality in Euclidean spacetime can be presented as [12, 13]

−Lfermion =
1

2
ψ̄γµ∇µψ +

m

2
ψ̄ψ +

i

2
CSgrav

l (3.1)

−Lboson = −1

2
((∇µ − ibµ)φ)2 − r

2
φ2 − λ

4

(
φ2
)2

+
i

4π

1

2
tr

(
bdb− 2i

3
b3
)

+ iN CSgrav.

Here ψ is a Majorana fermion, φ is a real boson with N colors, and b is an SO(N) (N ≥ 3)

dynamical gauge field. Again the duality is supposed to hold with sgn(r) = sgn(m), and

most interestingly at the critical point r = m = 0.

We do not couple the theories to a background Spinc connection, since doing so is

impossible for a Majorana fermion. That is, Majorana fermions require a choice of spin

structure. This manifests itself in the fact that our phases are governed by so-called

‘almost trivial’ or ‘invertible’ spin-TQFTs [65], namely the SO(n)1 theories discussed in [59]

which are dual to theories whose Lagrangians are given by −L = −inCSgrav. The latter

formulation allows us to define these theories for all n ∈ Z, and we have SO(−n)1 =

SO(n)−1. In particular, the m, r → ∞ phase is simply SO(N)1 plus the iN CSgrav term,

which yields SO(0)1. (Despite appearances, even the n = 0 theory is non-trivial and

requires a choice of spin structure.) Similarly, when m, r → −∞, the gauge group is Higgsed

to SO(N −1), and the Chern-Simons terms together yield SO(1)−1. The coefficients of the

gravitational Chern-Simons terms in (3.1) have been chosen [13] so that the dual theories

have the same framing anomaly [62]. As above, they arise naturally in our setup from

integrating out massive fermions as we flow to the infrared.

The lattice construction is an obvious variant of (2.2) and (2.4). (We will only do

the construction on an infinite cubic lattice representing flat spacetime; the incorporation

of a gravitational background is straightforward, as discussed in the Dirac case.) On the

Majorana fermion side, at each site n there is a two-component Grassmann variable (ψn)α,

and we denote (ψ̄n)α ≡ −ψβn(σy)βα. The partition function takes the form

Zψ =

∫
Dψ e−S

ψ
W−Sint , Dψ ≡

∏
n

d2ψn,

−SψW ≡
∑
nµ

1

2

(
ψ̄n+µ̂

−γµ − 1

2
ψn + ψ̄n

γµ − 1

2
ψn+µ̂

)
+
∑
n

Mψ

2
ψ̄nψn

=
∑
nµ

ψTn+µ̂σ
y γ

µ + 1

2
ψn −

∑
n

Mψ

2
ψTnσ

yψn , (3.2)

and Sint is again some irrelevant lattice scale interaction. The IR Majorana modes are

straightforwardly deduced from the Dirac case.

On the boson side, we realize the N -color real boson by an SO(N) non-linear sigma

model in the vector representation. That is, at each site n there is a SO(N) matrix (Vn)ab
where a, b = 1, . . . , N is the color index, and the scalar is given by φa = (Vn)ab ξ

b, where

the “reference” column vector ξb is again the unit vector pointing in the b = 1 direction.

The dynamical gauge field is realized by an SO(N) matrix (Onµ)ab = (eibnµ)ab on each link

– 13 –
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nµ. The partition function is

Z =

∫
DO Zσ[O] Zχ[O], DO ≡

∏
nµ

(dOnµ)Haar,

Zσ[O] =

∫
DV e−Sσ [O], DV ≡

∏
n

(dVn)Haar,

−Sσ[O] ≡ 1

T

∑
nµ

(
ξTV T

n+µ̂OnµVnξ − 1
)
,

Zχ[O] =

∫
Dχ e−S

χ
W [O], Dχ ≡

∏
n

d2Nχn,

−SχW [O] ≡
∑
nµ

χTn+µ̂σ
y γ

µ + 1

2
Onµχn +

∑
n

Mχ

2
χTnσ

yχn . (3.3)

Again the CS term for b is dynamically generated by a massive — but now Majorana —

fermion χa with 1 < Mχ < 3.

Our goal is again to show

Z ∝ Zψ , (3.4)

and more generally

〈ψn1 · · ·ψnk ψ̄ñ1
· · · ψ̄ñk

〉
= (const.)k

〈(
ξTV T

n1
χn1

)
· · ·
(
ξTV T

nk
χnk
) (
χ̄ñ1

Vñ1
ξ
)
· · ·
(
χ̄ñkVñk ξ

)〉
, (3.5)

with the parameters arranged according to 0 < 3−Mχ ∼ T � 1, and in particular at some

critical value of T .

The derivation procedure is the same as in the Dirac case, but with a caveat to be

explained soon. The first step is to exploit the SO(N) gauge freedom to fix Vn = 1 at all

sites n. Then, in the theory Z, we look at each individual lattice link nµ, which contributes

the factor ∫
dOnµ exp

(
ξTOnµξ − 1

T
+ χTn+µ̂σ

y γ
µ − 1

2
Onµχn

)
. (3.6)

Let’s again discuss the T →∞ and T = 0 limits, in which the mentioned caveat will appear.

As T →∞, the first term above vanishes and the theory is essentially at Nf = 0. We then

exactly expand the exponent into a polynomial of Grassmann variables and perform the

dOnµ Haar integral. Previously, in the U(N) Dirac case, only the terms with equal numbers

of U and U † matrices survived the Haar integral. By contrast, thanks to the Majorana

condition only O appears now, and the only terms that survive the Haar integral do so

because O has determinant 1:∫
dO Oa1b1 · · ·OaN bN ∝ εa1···aN εb1···bN . (3.7)
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These surviving terms describe the hopping of a massive color singlet object

εa1···aNχ
a1 · · ·χaN which is invisible in the IR.22 Thus, the theory at T → ∞ (or equiva-

lently, at Nf = 0) is (almost) trivial in the IR. In the opposite T = 0 limit, the parts of O

that rotate ξ are infinitely Higgsed, leaving the residual gauge field SO(N − 1). Then, as

in the Dirac case, the χa=1 = ξTχ component is singled out as ψ (with Mψ = Mχ), and

the remaining components fully decouple from ψ and bind into SO(N − 1) color singlets,

which become invisible in the IR. This also explains why the Majorana duality holds for

N ≥ 3; for N = 2, there is no residual SO(N − 1) gauge field, so this case must be treated

separately. Fortunately, it is identical to the U(1) case that we have studied. Thanks to

our choice of 1 < Mχ < 3, this gapped phase has a level-1 CSgrav term.

As in the Dirac case, we shall arrange the scales according to (2.9) and perform a small

T expansion to confirm the existence of a small, but finite, Tc. At small T , it is natural to

separate SO(N) into the SO(N −1) part that does not rotate ξ and the SO(N)/SO(N −1)

part that rotates ξ:

Oab = exp




0 −ηC

ηA 0


 ·


1 0

0 (O′)CB

 . (3.8)

Since fluctuations of ηA are suppressed by the smallness of T , we can rescale ηA by
√
T and

extend each of its components’ range of integration to R. We perform the η integral in (3.6)

and keep the result to linear order in T . Defining χ′A ≡ χA, the result of integrating out

ηnµ in (3.6) is

exp

((
1− T N − 1

2

)
ψTn+µ̂σ

y γ
µ + 1

2
ψn

)∫
dO′nµ exp

((
1− T

2

)
χ′Tn+µ̂σ

y γ
µ + 1

2
O′nµχ

′
n

)
(3.9)

(up to O(T 2) corrections). Note that to order T , the Majorana fermion ψ is free (the

current-current interaction of the Dirac case is disallowed by the Majorana condition) but

has a wavefunction renormalization, while the χ′ fermions are completely decoupled from

ψ and form massive SO(N − 1) singlets. One can rescale√
1− T (N − 1)/2 ψ → ψ , (3.10)

so that the hopping terms retain the usual normalization. This rescaling affects the mass

term as

Mψ ≡Mχ (1 + T (N − 1)/2) . (3.11)

22Again, there is no analytic proof that this object is massive and invisible in the IR, but this is highly

plausible on physical grounds, and is necessary to make the duality hold at Nf = 0. This is also related

to the statement that the gap for Z2 ⊂ O(N) charged excitations does not close [12, 13], as this object is

Z2-odd.
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Thus, we have shown that (3.3), after integrating out the gauge field, is equivalent to (3.2),

with Mψ given above and Sint negligible at order T . Since the ψ theory is free at this order,

we know there is an IR Majorana mode with mass m = Mψ − 3 — this is simpler than

the Dirac case (2.21) where there is also a self-energy contribution to be considered. As

we started with Mχ slightly below 3 (recall the arrangement of scales (2.9)), there is some

small, positive value of T at which Mψ hits 3. By a similar procedure, one can show (3.5),

where the constant is 1− T (N − 1)/2.

4 Nf > 1 — pushing the flavor bound

4.1 The generic case: U(N) with Nf ≤ N and SO(N) with Nf ≤ N − 2

We now generalize our construction to larger values of Nf . For concreteness we restrict to

a U(N) gauge group, and comment on the small differences with the SO(N) case at the

end. A natural guess for the appropriate non-linear sigma model might be Nf unit-length

scalars. However, the condition φ†iφi = 1 (no sum over i) is not invariant under the desired

SU(Nf ) global symmetry. Furthermore, after coupling to the U(N) gauge field and fixing

a unitary gauge, one is still left with continuous vacuum degeneracy. The T = 0 phase

therefore has massless scalars, and hardly resembles the gapped phase we expect from the

duality. This degeneracy also suggests that there are additional SU(Nf )-invariant relevant

deformations that we may add to the theory, on top of that parametrized by T . However,

the desired IR fixed point has only one relevant SU(Nf )-invariant deformation [11], so it

cannot be reached by slightly increasing T from 0. These considerations all make it clear

that imposing φ†iφi = 1 for each i does not yield the desired non-linear sigma model.

To determine the correct condition to impose, recall that we motivated the non-linear

sigma model in the introduction by integrating out the massive radial mode. Clearly, the

‘radial modes’ in the current case depend on the potential. This is described by the following

three relevant SU(Nf )-invariant terms that we may add to the free scalar Lagrangian [11]:

rφ†iφi +
λ

2

(
φ†iφi

)2
+ ρ
(
φ†iφjφ

†
jφi

)
. (4.1)

Focusing on the first two terms, we can, as in the introduction, eliminate them in favor of

the condition φ†iφi = Nf (where now, of course, we are summing over i). The final term in

the potential is

ρ
∑
i

(φ†iφi)
2 + ρ

∑
i 6=j
|φ†iφj |

2 . (4.2)

Since Nf ≤ N , it is geometrically clear that this is minimized when φ†iφj = 0 for all i 6= j.

A little more thought (or considering the saturation of the Cauchy-Schwarz inequality)

then shows that the first term is minimized (subject to φ†iφi = Nf ) when φ†iφi = 1 for all

i. These conditions can be unified into the SU(Nf )-invariant constraint

φ†iφj = δij . (4.3)

This yields the appropriate non-linear sigma model. Geometrically, the Nf scalars form an

orthonormal set of Nf vectors in CN . The space parametrized by these scalars is known

as a complex Stiefel manifold, VNf (CN ) ∼= U(N)/U(N −Nf ).
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We may now trivially generalize our gauge choice from the earlier sections:

φJi = δJi , φAi = 0 , (4.4)

where J = 1, . . . , Nf is a color index, as is A = Nf+1, . . . , N . Again thinking geometrically,

we have chosen our Nf orthonormal vectors to be the first Nf vectors in the standard basis

for CN . We emphasize the important point that gauge fixing has eliminated any vacuum

degeneracy.

From here, our earlier steps generalize easily. Our gauge group is Higgsed to U(N−Nf ),

and this confines χ′A = χA. We are then left with ψI , for which integrating out the massive

components of the gauge field yields order T interactions. These may be seen, as above, to

cancel away the mass of Nf Dirac modes at some critical temperature, Tc. That is, (2.22)

is generalized to23

m = Mψ − 3 + Σ(p = 0) = Mχ − 3 + T

(
3

(
N −

Nf

2

)
+ 0.113Nf

)
, (4.5)

which has a positive coefficient of T , so the massless fermions again obtain at some criti-

cal Tc.

We pause to note that our derivation is particularly trustworthy when Nf = N , as in

this case there is no χ′ that needs to confine. This is fortunate, since all of the dualities

with Nf < N may then be derived via mass deformations. A similar observation holds for

the extreme SO(N) cases discussed in sections 4.2 and 4.3.

In the SO(N) case, we simply replace the complex Stiefel manifold by a real one,

VNf (RN ) ∼= O(N)/O(N − Nf ), which is the space of Nf orthonormal vectors in RN . We

again choose the gauge (4.4), and our gauge group is Higgsed to SO(N −Nf ). Since SO(1)

is trivial, we find the requirement that N − Nf ≥ 2. Otherwise, as we discuss below, the

story changes. The IR mass is now

m = Mψ − 3 + Σ(p = 0) = Mχ − 3 +
T

2

(
3

(
N −

Nf + 1

2

)
+ 0.113 (Nf − 1)

)
. (4.6)

Again, the coefficient of T is positive.

4.2 SO(N) with Nf = N − 1

If N − Nf = 1 (as in the N = 2, Nf = 1 case discussed above), then χ′ is not confined,

and we can find an extra light Majorana fermion in the dual theory. This was concretely

observed when N = 2, Nf = 1, where we found a massless Dirac fermion instead of a

Majorana one. However, that case turns out to be quite special, as only when N = 2 are ψ

and χ′ massless at the same value of T . This agrees with our CFT intuition, since in this

case φ†M, whereM is the monopole operator, being a Dirac fermion relies on the accident

23This follows from the generalization of (2.10): θ becomes a Nf ×Nf Hermitian matrix (with N2
f real

degrees of freedom) and η becomes a (N − Nf ) × Nf complex matrix (with 2Nf (N − Nf ) real degrees of

freedom). The coefficient N −Nf/2 in (4.5) is the sum of these degrees of freedom, divided by Nf because

this is spread over the Nf flavors. The self-energy is computed in appendix B.
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Figure 1. Phase diagram of SO(N)1 plus N − 1 Wilson-Fisher scalars. Free fermionic descriptions

suffice near the repulsive fixed points at T
(1)
c and T

(2)
c , while the bosonic gauge theory applies at all

T . Both fixed points are accessible in perturbation theory. The phases in this diagram are discussed

below (3.1). Away from the fixed points, a new relevant operator (associated to m near T
(2)
c or to

m′ near T
(1)
c , or in the UV to Mχ), which is invisible at the fixed points, drives the renormalization

flow away from this line, so that there is no flow between the two fixed points.

SO(2) ∼= U(1) that implies that the global symmetry acting on the monopole operator is

U(1), not Z2. More generally, the mass m for ψI and the mass m′ for χ′ are respectively

m = Mψ − 3 + Σ(p = 0) = Mχ − 3 +
T

2

(
3

2
+ 0.113

)
N , (4.7)

m′ = Mχ′ − 3 + Σ′(p = 0) = Mχ − 3 + T

(
3

2
+ 0.113

)
(N − 1) . (4.8)

(Note that Mψ in (4.7) is consistent with (4.6), but the self-energy is different; see ap-

pendix B.) We find, for N > 2, two different gauged Wilson-Fisher fixed points,24 corre-

sponding to two different critical temperatures. The situation is summarized in figure 1. At

T (1)
c =

1

3/2 + 0.113

3−Mχ

N/2
, (4.9)

ψ is massless, while at a lower temperature

T (2)
c =

1

3/2 + 0.113

3−Mχ

N − 1
, (4.10)

χ′ is massless. That is, we have the dualities

SO(N)1 plus N − 1 Wilson-Fisher scalars at T
(1)
c ←→ N − 1 Majorana fermions (4.11)

and

SO(N)1 plus N − 1 Wilson-Fisher scalars at T
(2)
c ←→ 1 Majorana fermion . (4.12)

24See appendix C.1 for a caveat regarding this terminology.
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Just as we can express the N − 1 fermions in ψ in a gauge-invariant manner as φTi χ, we

can also write χ′ as

χ′ = det([φχ]) ≡ εa1···aNφa11 · · ·φ
aN−1

N−1 χ
aN . (4.13)

When N = 2, which is equivalent to the U(1) case, these fixed points coalesce and all

N = 2 Majorana fermions are massless at the same Tc.

The N = 2 case is usually used as evidence that the usual dualities break down when

N −Nf = 1, since starting from any such configuration one may flow (via Higgsing) to the

N = 2, Nf = 1 case. We now see that while there are changes when N−Nf = 1, this is not

the whole story, and indeed the fixed point at T
(1)
c is quite similar to that of the generic

duality. If we start with N = 3, Nf = 2 and Higgs away one color in order to study the

N = 2, Nf = 1 theory, then we find the surprise that a new U(1) symmetry emerges that

guarantees that ψ and χ′ have the same mass. Acting with this symmetry on ψ = φTχ

yields an entire Dirac fermion, ψ + iχ′. We are used to mass parameters mapping via the

duality to mass parameters, but here that clearly cannot be the case, since there is only

one mass parameter on the boson side while there are two Majorana masses available on

the fermion side. The resolution of this is provided by noting that the latter mass terms

are not invariant under the U(1) global symmetry, and so they must map to monopole

operators in the dual theory. Only the U(1)-invariant Dirac mass term maps to the scalar

mass. Denoting the monopole operator by M, we thus learn that

U(1)1 plus a Wilson-Fisher scalar and a (Re φ†M)2 potential ←→ 1 Majorana fermion ,

(4.14)

as the potential on the left hand side is the Majorana mass ψ̄ψ.

One might now wonder if it is possible to have all N Majorana fermions be simultane-

ously massless, when N > 2, by allowing one of the scalars to have a temperature t 6= T .

This would be extremely interesting, as it would mean that by breaking the O(N − 1)

global symmetry in the bosonic gauge theory one could enhance the global symmetry in

the dual theory to O(N). However, it turns out that this is not possible. Instead, ψ splits

into N − 2 fermions with a mass

Mχ − 3 +

(
3

2
+ 0.113

)(
(N − 3)

T

2
+

Tt

T + t
+ T

)
(4.15)

and one fermion with a mass

Mχ − 3 +

(
3

2
+ 0.113

)(
(N − 2)

Tt

T + t
+ t

)
, (4.16)

while χ′ has a mass

Mχ − 3 +

(
3

2
+ 0.113

)
((N − 2)T + t) . (4.17)

For N > 2, these masses can never be made equal for finite small t 6= T : the χ′ mass is

the greatest, while the first mass is greater / less than the second mass if T is greater /

less than t. Note that these formulae concretely demonstrate the symmetry enhancement

described above as one Higgses from N = 3, Nf = 2 to N = 2, Nf = 1 by taking t → 0:

the masses (4.15) and (4.17) adjust themselves in order to become equal.

– 19 –



J
H
E
P
0
8
(
2
0
1
8
)
0
1
5

4.3 SO(N) with Nf = N

When N = Nf , we are unable to choose the gauge (4.4), since SO(N) transformations

cannot guarantee that our Nf orthonormal vectors are oriented. So, there is a twofold

vacuum degeneracy, labelled by the vevs (4.4) and the vev obtained by the replacement

φ11 = −1. These vacua are related by the Z2 center of the O(Nf ) global symmetry group of

the gauge theory. However, as we already remarked above, this Z2 should not be present

at the IR fixed points we seek with free fermion duals.25 So, we should have no qualms

about employing spontaneous symmetry breaking in order to focus on the vacuum (4.4).

Indeed, we may as well break the Z2 symmetry explicitly: when N = Nf we can include

the potential

− 1

N !
εi1···iN ε

I1···INφI1i1 · · ·φ
IN
iN

= − detφIi (4.18)

in our non-linear sigma model. For most values of N , this is dangerously irrelevant; i.e.,

it is irrelevant, but nevertheless important, as it dramatically affects the vacuum structure

of the theory. In any case, since (4.6) still holds (see appendix B for the self-energy), we

are lead, as above, to the following duality, again for N ≥ 2:26

SO(N)1 plus N Wilson-Fisher scalars at T̃
(1)
c ←→ N Majorana fermions . (4.19)

We emphasize that this last duality is qualitatively different from the rest discussed in

this paper, due to the mechanism by which the renormalization group eliminates the Z2

symmetry from the infrared CFT. Foreseeing the existence of a second gauged Wilson-

Fisher fixed point, as in the previous section, we have denoted the critical temperature

of (4.19) by T̃
(1)
c , which is again much smaller than the inverse lattice scale.

The duality (4.19), of course, does not exist when N = 1. However, we can now

increase the temperature and search for a Z2 symmetry-restoring phase transition at some

T̃
(2)
c ∼ O(1) � T̃

(1)
c , analogous to that described by the N = 1 Ising fixed point. In fact,

we will now argue that the Ising fixed point obtains for all N :

SO(N)1 plus N Wilson-Fisher scalars at T̃
(2)
c ←→ Ising . (4.20)

This follows from the observation that the fermions’ masses increase as we increase the

temperature from the fixed point in (4.19). The minimal assumption is then that strong

interactions do not yield new light degrees of freedom. We are thus led to the proposal of

figure 2.

25This might seem strange, since the desired free fermionic dual will have O(Nf ) global symmetry.

However, the Z2 present on the fermion side of the duality maps to a symmetry under which monopole

operators of the gauge theory are charged [13]. More precisely, the operators that are odd under this Z2

are those monopole operators which are allowed in the SO(N) gauge theory, but forbidden in the Spin(N)

gauge theory.
26Note that the N = 2 case is different from U(1)1 with Nf = 2, since the quartic terms in the poten-

tial (4.1) are not independent, whereas the SO(2)1 with Nf = 2 theory has two independent quartic potential

terms. The missing potential in the U(1) case is of the form −(εijφ
†
iφj)

2; it is forbidden by the SU(2) flavor

symmetry, but allowed by the O(2) (or SO(2), if we included (4.18)) flavor symmetry of the SO(2) theory, as

is clear if we write this potential in terms of 2-component real scalars as 2(εabφ
a
i φ

b
j)

2 = 2((φTi φi)
2−(φTi φj)

2).

The last equality expresses this potential using the terms appearing in (the real scalar analogue of) (4.1).
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Figure 2. Phase diagram of SO(N)1 plus N Wilson-Fisher scalars. Ungauged descriptions suffice

near the repulsive fixed points at T̃
(1)
c and T̃

(2)
c , while the bosonic gauge theory applies at all T .

Only the free fermion fixed point is accessible in perturbation theory. The phases in this diagram

are discussed below (3.1). Away from the fixed points, a new relevant operator (associated to Mχ),

which is invisible at the fixed points, drives the renormalization flow away from this line, so that

there is no flow between the two fixed points.

Alternatively, if one is willing to believe that the gauge theory with an infinite Maxwell

coupling is in the same universality class as the associated continuum theory even at finite

T (cf. footnote 4), then our usual arguments can provide additional evidence for the duality,

as we now demonstrate for N = 2. We fix the gauge φa1 = (s, 0)T , φa2 = (0, 1)T , where

s = ±1 is an Ising variable. By regarding SO(2) as U(1), we can recast these as 1-component

complex scalars — φ1 = is, φ2 = 1 — which we succinctly write in the 2-component form

φ = (is, 1)T . We similarly regard χ as a Dirac fermion. Next, we exactly integrate out the

U(1) gauge field, as in [45]; we will not use a small T expansion since we expect T̃
(2)
c to

occur at order 1. The contribution to the partition function from a link nµ is∫ π

−π

dbnµ
2π

exp

(
φ†n+µ̂e

ibnµφn + φ†ne−ibnµφn+µ̂ − 4

2T

)
exp

(
χ̄n
γµ − 1

2
eibnµχn+µ̂ + χ̄n+µ̂e

−ibnµ−γ
µ − 1

2
χn

)
. (4.21)

Note that the first factor is the exponential of ((1+snsn+µ̂) cos bnµ−2)/T . We then Fourier

expand the first exponential and Taylor expand the second. When snsn+µ̂ = 1, we have∫ π

−π

dbnµ
2π

∑
jnµ∈Z

e−2/T Ijnµ(2/T ) eibnµjnµ

[
1+ χ̄n

γµ − 1

2
eibnµχn+µ̂ + χ̄n+µ̂e

−ibnµ−γ
µ−1

2
χn +

(
χ̄n
γµ−1

2
χn+µ̂

)(
χ̄n+µ̂

−γµ−1

2
χn

)]
= e−2/T I0(2/T ) exp

[
I1(2/T )

I0(2/T )

(
χ̄n
γµ − 1

2
χn+µ̂ + χ̄n+µ̂

−γµ − 1

2
χn

)
+

(
1− I1(2/T )2

I0(2/T )2

)(
χ̄n
γµ − 1

2
χn+µ̂

)(
χ̄n+µ̂

−γµ − 1

2
χn

) ]
, (4.22)
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which is identical to the Nf = 1 result of [45] with the replacement 1/T → 2/T ; recall

Ij = I−j is the jth modified Bessel function. On the other hand, when snsn+µ̂ = −1, the

contribution is simply

e−2/T
[
1 +

(
χ̄n
γµ − 1

2
χn+µ̂

)(
χ̄n+µ̂

−γµ − 1

2
χn

)]

= e−2/T exp

[(
χ̄n
γµ − 1

2
χn+µ̂

)(
χ̄n+µ̂

−γµ − 1

2
χn

)]
. (4.23)

There are two main differences between snsn+µ̂ = ±1. The first difference is the overall

factor of I0(2/T ) that favors Z2 symmetry breaking at small temperatures. The second is

that the fermion cannot hop through a link with snsn+µ̂ = −1.

Now the phases can be easily understood. I0(2/T ) behaves as e2/T
√
T/4π at small

T and 1 + 1/T 2 at large T . Thus, at T � 1 only the snsn+µ̂ = 1 configurations will be

realized, and the theory becomes the same as Nf = 1 except T → T/2. In particular, at

T̃
(1)
c (where (4.6) with N = Nf = 2 vanishes, or equivalently where (4.5) with N = Nf = 1

and T → T/2 vanishes), one finds a free Dirac fermion. As T increases, the mass of this

fermion increases. If we always had snsn+µ̂ = 1, then we would suspect that this fermion

remains massive at order-1 values of T , so if we want to search for dramatic effects that

it causes we should study Ising domain boundaries on which snsn+µ̂ = −1. However, the

fermion’s correlation length is of order the lattice scale within each Ising domain, and it

cannot hop through domain boundaries, so it seems unlikely to affect the Ising spin in any

interesting way. Thus, we are left only with the Ising model at temperatures of order-1 and

above. It is not hard to see the same physical picture carries over to higher values of N .
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A Wilson’s lattice fermion

We remind the reader of Wilson’s lattice fermion action SW [48, 49]. In the absence of a

gauge field, the action in momentum space is

−SW =

∫ π

−π

d3p

(2π)3
ψ̄−p

(∑
µ

γµ i sin pµ +

(
M −R

∑
µ

cos pµ

))
ψp , (A.1)

where in the main text we have set R = +1. Consistent with the fermion doubling theo-

rem [66], there are 2D = 8 IR Dirac modes, corresponding to the vicinities p = p̄+δp of the

eight saddle points where each p̄µ component is either 0 or π. Taking sin pµ ' δpµ cos p̄µ
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and cos pµ ' cos p̄µ around each of these saddle points, we see that each IR Dirac mode has

mass ±(M − R
∑

µ cos p̄µ) , where the sign in this expression is
∏
µ cos p̄µ. The role of R

is therefore to make the modes have different masses [48, 49]. For example, near M ∼ 3R,

the Dirac mode at p̄ = 0 has a small IR mass m = M − 3R, while the other seven Dirac

modes have lattice scale masses.

When coupled to a slowly varying U(1) gauge field Anµ, integrating out the fermion

will produce a level-C CS term, where each IR Dirac mode contributes (−1/2) sgn(mass)

to C. Therefore [50],

C =


0, 3|R| < |M |
sgn(R), |R| < |M | < 3|R|
−2 sgn(R), |M | < |R|

. (A.2)

If M = 3R exactly, then there will be one massless Dirac mode, and integrating out the

remaining Dirac modes contributes C = sgn(R)/2 (the IR meaning of which is supplied

by our UV lattice regularization). Note that the magnitude of R does not affect any IR

physics (as long as we scale M correspondingly), so we set |R| = 1 in the main text, which

has the UV convenience that ±γµ −R projects out one spinor component.

If we replace ψ by the N -color fermion χa, the analysis is very much the same; in

particular the non-Abelian CS level is still as above. Therefore, to implement level-1 CS,

we can set R = +1 and 1 < Mχ < 3. A similar discussion holds for Majorana fermions

and SO(N) gauge fields.

B Mass renormalization from lattice scale interaction

We compute the self-energy in (2.21) and (4.5) for 1 ≤ Nf ≤ N Dirac fermions. We set

the external momentum pµ = 0, and take Mχ ' 3 in the internal lines. The self-energy

at p = 0 is proportional to the identity matrix in 2 × 2 spinor space, due to the charge

conjugation symmetry ψ → σ2ψ̄T , ψ̄ → −ψTσ2. To first order,

−Σ 12×2 δIJ =

JI

+

JI

+

JI

where the arrowed lines are the ψI (I = 1, . . . , Nf ) Dirac fermions, the wavy lines are

the Hermitian θIJ (Higgsed) gauge fields, and the double wavy lines are the complex ηAJ
(Higgsed gauge fields). The ψ̄ψθθ and ψ̄ψη†η vertices appeared in (2.12) (and its Nf > 1

generalizations), and are responsible for renormalizing Mχ to Mψ, which we have already

taken into account. So we only need to compute the third diagram, whose ψ̄ψθ vertices

appeared in the quartic terms in (2.12). (One can also draw an additional tadpole diagram,
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which vanishes by charge conjugation symmetry.) The Feynman rules are given by

I

k
=

[
−
∑
µ

(γµi sin kµ − cos kµ)−Mχ

]−1

=
−Mχ +

∑
µ (cos kµ + γµ i sin kµ)

(Mχ −
∑

ν cos kν)2 +
∑

ν(sin kν)2

J

q
I

k − q/2

k + q/2

µ, IJ = −e−iqµ/2 (γµi cos kµ + sin kµ)

q mod 2π
µ, IJ ν, J ′I ′ = T δµν δII′δJJ ′

in Euclidean signature. (The vertex is given by ∂kµ of the inverse propagator due to gauge

invariance, and there is an additional factor accounting for an Umklapp process.27) The

third diagram is given by

δIJ δKK T
∑
µ

∫ π

−π

d3k

(2π)3(
γµi cos

kµ
2

+ sin
kµ
2

) −Mχ +
∑

λ

(
cos kλ + γλ i sin kλ

)
(Mχ −

∑
κ cos kκ)2 +

∑
κ(sin kκ)2

(
γµi cos

kµ
2

+ sin
kµ
2

)

= δIJ Nf T

∫ π

−π

d3k

(2π)3

∑
µ

cos kµ (Mχ −
∑

λ cos kλ)− (sin kµ)2

(Mχ −
∑

κ cos kκ)2 +
∑

κ(sin kκ)2

= δIJ Nf T

∫ π

−π

d3k

(2π)3

[
−1 +

Mχ(Mχ −
∑

λ cos kλ)

(Mχ −
∑

κ cos kκ)2 +
∑

κ(sin kκ)2

]
. (B.1)

To first order we can take Mχ ' 3. Performing the integration numerically, we find

−Σ(p = 0) ≈ −0.113Nf T . (One can also explicitly check that the first two diagrams

renormalize Mχ to Mψ while the tadpole diagram vanishes.)

Next we consider the Majorana cases with 1 ≤ Nf ≤ N − 2 and Nf = N ; for the

Nf = N − 1 case one has to also take the unconfined χ′ into account, as we will discuss

27At the vertex, we take −π < kµ ± qµ/2 ≤ π. But this implies −2π < qµ < 2π, i.e. qµ would have a

range of 4π, so we allow it to change by 2π across the interaction line, which corresponds to an Umklapp

process. If this happens, it gives rise to an extra factor e−iqµ/2e−i(±2π−qµ)/2 = −1. This issue does not

come up in our self-energy computation.
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later. The Feynman rules are

I

k
=
−Mχ +

∑
µ (cos kµ + γµ i sin kµ)

(Mχ −
∑

ν cos kν)2 +
∑

ν(sin kν)2
(−σy)

J

q
I

k − q/2

k + q/2

µ, IJ = i e−iqµ/2 (−σy) (γµi cos kµ + sin kµ)

q mod 2π
µ, IJ ν, J ′I ′ =

T

2
δµν (δIJ ′δJI′ − δII′δJJ ′)

where the undirected lines are the ψI Majorana fermions and the wavy lines are the real,

antisymmetric θIJ (Higgsed) gauge fields. It is clear that the self-energy is just that of the

Dirac case with Nf replaced by (Nf − 1)/2, so −Σ(p = 0) ≈ −0.113 (Nf − 1)T/2.

We are left with the Majorana case with Nf = N − 1, at which there is an additional

unconfined Majorana fermion χ′. The real ηNf I fields which connect the ψ sector to the χ′

sector must also be taken into account. The new Feynman rules are

k
=
−Mχ +

∑
µ (cos kµ + γµ i sin kµ)

(Mχ −
∑

ν cos kν)2 +
∑

ν(sin kν)2
(−σy)

I

q

k − q/2

k + q/2

µ,NfI = i e−iqµ/2 (−σy) (γµi cos kµ + sin kµ)

q mod 2π
µ,NfI ν, I ′Nf = T δµν δII′

where the double lines are the χ′ fermion and the double wavy lines are the real ηNf I
(Higgsed) gauge fields. The self-energy of the ψI fermions becomes −Σ(p = 0) ≈
−0.113 (Nf + 1)T/2 = −0.113NT/2, while that of the χ′ fermion is −Σ′(p = 0) ≈
−0.113Nf = −0.113 (N − 1).

C Lattice and/or Yang-Mills regularization

C.1 Physical argument for IR equivalence

In this paper, we regularized Chern-Simons-matter theories by realizing them on a lattice.

There is, however, another regularization scheme that is commonly used in the continuum:

the addition of a Yang-Mills (YM) term with a coupling constant g. In particular, the fixed

points of interest may be defined as the IR fixed points of UV gauge theories with g2 far

– 25 –



J
H
E
P
0
8
(
2
0
1
8
)
0
1
5

below the cutoff scale, which can be regularized by imposing perturbative renormalization

conditions. As one flows to the IR, one expects g2 → ∞, as the YM term is irrelevant.

However, it softens the UV behavior of the gauge field, as is clear from its propagator.

In contrast, on the lattice, there is no compelling reason for us to include the YM

term (indeed, in the main text we took g2 → ∞ on the lattice), as the lattice suffices

as a regulator. From this perspective, YM is no different from other irrelevant terms.

However, this leads to the question of whether the two different regularization schemes

flow to the same IR. Universality suggests an affirmative answer, especially since the YM

term is dominated in the IR by the Chern-Simons (CS) interaction.28 Nevertheless, a

phase transition is not out of the question, especially since we are considering g2 � 1 and

g2 � 1. The purpose of this appendix is to confirm that no phase transition occurs as we

decrease g2.

The following simple argument suggests the two regularizations flow to the same IR.

First suppose one uses the continuum YM regularization. If one starts the RG flow at a

scale Λ, then there is some intermediate scale µ′ ∼ g2Λ at which the effective coupling,

g2µ′ , runs to order 1 in units of µ′. That is, at the intermediate scale µ′, one has the boson

coupled to a CS and YM action, with an order 1 YM coupling. Now suppose one uses our

lattice construction. One gets the same for free. Let the intermediate scale µ′ be such that

µ′ . 3 −Mχ. Then one can integrate out the χ′ fermion, which generates not only the

desired CS term, but also a YM term with g2µ′ ' 3 −Mχ, which is again order 1 in units

of µ′. Therefore, using either regularization scheme, there is some intermediate energy

scale µ′ at which one has a boson coupled to CS and an order 1 YM, which then flows

to the same IR at µ � µ′. Of course, under these RG flows, we also generate an infinite

set of other order-1 interactions, so we can never say that the lattice theory has become

a CS+YM theory, but it is undeniable that at the scale µ′ the two theories obtained by

flowing from Λ appear awfully similar.

The argument above suggests that either the lattice or the YM regularization would

yield the same IR, but one can also consider combining these two regularizations. That is,

instead of taking g2 →∞ on the lattice, we can take

IR energy scale of interest � g2 � 1 ≡ Inverse lattice scale . (C.1)

We emphasize again that there is no compelling reason to do so for regularization purposes.

We simply wish to explore the relationship between the different regularization schemes,

and in particular to demonstrate that introducing a YM term alters neither our method

nor our conclusions. That is, we will repeat the arguments of the main text in order to

find a fixed point with T � 1.

Before proceeding, we note that there is the theoretical possibility of another phase

transition, due to the existence of another dimensionless parameter in the UV: T − T 0
c ,

where T 0
c is the critical temperature of the ungauged non-linear sigma model (which is the

appropriate model to consider because g2 � 1). We will fall short of being able to address

28When there is no CS term, the YM term becomes the leading term and is important. For instance,

lattice proofs of bosonic particle-vortex duality [67, 68] require a Maxwell term to access the critical point.
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the behavior of our theories at such order-1 values of T . So, conservatively one might say

that this paper demonstrates equivalences between free fermion (and Ising) fixed points

and the IR limits of Chern-Simons theories coupled to scalars, but that these fixed points

might not have the right to be called ‘gauged Wilson-Fisher’ fixed points, since one cannot

necessarily arrive at them by coupling Wilson-Fisher fixed points to gauge theories and

then flowing to the IR (while tuning appropriately to hit the fixed point). Generally, this

perspective seems rather conservative, as one can imagine increasing T , and simultaneously

increasing 3−Mχ, so that one always has a critical theory; we then require only that this

procedure does not dramatically alter the critical behavior at some T , and in particular that

a ‘gauged Wilson-Fisher’ fixed point exists.29 In the cases where we have found multiple

fixed points, one may or may not be willing to make the analogous assumption that there

are multiple corresponding such ‘gauged Wilson-Fisher’ fixed points. Our arguments do

not shed much light on this question; even if there is no phase transition, it is possible

that one (or both) of our fixed points cannot satisfy the stringent conditions laid out in

footnote 29. What we hope to have clearly demonstrated is that it is overly pessimistic

to use the usual Higgsing-down reasoning (which violates the conservative requirements of

footnote 29) in order to rule out the usual dualities in these cases; indeed, this Higgsing

argument forces us to introduce large temperature deformations, and when one does so

new degrees of freedom may become light.

Similarly, one might feel more comfortable studying the generation of CS terms by

fermions with 3−Mχ � g2. Unfortunately, for small enough N our search for a fixed point

(with T, 3−Mχ � 1) fails if we demand this, so we do not assume it below. (This would

presumably be rectified by including higher orders of T, 3 −Mχ in perturbation theory.)

For example, our solution for Tc in the U(N) case requires 3 −Mχ < 0.6 g2N , as can be

seen by choosing some Mχ slightly below 3 and studying the limit g2/T → 0 in (C.6) (and

adding to it the analogous contribution with Nf → N − Nf discussed in the preceding

paragraph). We are nevertheless confident that our fermion implements the desired CS

interaction, thanks to the parity anomaly.

Having said this, we now assume the condition (C.1) involving g2, as well as the usual

analogous assumption (2.9) for 3 −Mχ. We make no additional assumptions about the

relationships between g2, T , and 3−Mχ.

C.2 Including Yang-Mills on the lattice

The YM theory on the lattice is given by e−SYM where (for a U(N) theory)

−SYM =
1

4g2

∑
n,µ,ν

tr
(
U †nνU

†
(n+ν̂)µU(n+µ̂)νUnµ − 1

)
. (C.2)

29One can easily argue, as in the main text, for the existence of a phase transition, but as T is increased

to be order-1 there is no proof that it remains second order. Furthermore, even if it is second order there is

no proof that the fixed point exists for sufficiently small g2, |T − T 0
c | so that it can be considered a ‘gauged

Wilson-Fisher’ fixed point. That is, a weakly gauged lattice non-linear sigma model at a temperature near

T 0
c has an order-1 energy scale above which the scalars are not near their Wilson-Fisher fixed point, and so

in order to have a ‘gauged Wilson-Fisher’ fixed point in the strictest sense we must have |T −T 0
c | . g2 � 1.
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For small g2, we can expand the Uab matrix using the Lie algebra elements bab:

−SYM = − 1

4g2

∑
n,µ,ν

(
tr
(
b(n+µ̂)ν − bnν − b(n+ν̂)µ + bnµ

)2
+ · · ·

)
, (C.3)

where (. . .) are higher order terms.30 In our problem, suppose we have Nf bosons at

temperature T . Then the gauge field components baI = b∗Ia (I = 1, . . . , Nf ) are Higgsed;

the IJ components are what we called the Hermitian matrix θIJ and the AJ (A = Nf +

1, . . . , N) components are what we called the complex matrix ηAJ . Their perturbative

action has the leading terms

− 1

4g2

∑
n,µ,ν

(∑
I,J

∣∣θ(n+µ̂)ν − θnν − θ(n+ν̂)µ + θnµ
∣∣2
IJ

+ · · ·

)
− 1

2T

∑
n,µ

(∑
I,J

|θnµ|2IJ + . . .

)

− 1

4g2

∑
n,µ,ν

(
2
∑
A,J

∣∣η(n+µ̂)ν − ηnν − η(n+ν̂)µ + ηnµ
∣∣2
AJ

+ · · ·

)
− 1

2T

∑
n,µ

(∑
A,J

|ηnµ|2AJ + . . .

)
.

(C.5)

On the other hand, there is a residual U(N−Nf ) gauge group with gauge field bAB. This is

coupled to the χ′A fermions. Since the YM term for bAB is irrelevant, we expect this gauge

field to confine χ′A into massive bosons, as in the main text. That is, currents involving χ′

vanish. In particular, these fermions should not contribute a CS term for the background

field, A, in the IR.

Now we compute the self-energy of the ψI fermion and show it is again positive and

30While this expansion seems innocent, we recall (see also footnote 8) that it actually dramatically changes

the IR physics, since the new action only has the trivial U = 1 saddle, whereas the original action had many

saddles [51]. These saddles are characterized by the presence of Dirac strings (i.e., 2π flux tubes as narrow

as one plaquette) which end on monopoles. Such saddles do not exist in continuum U(1) gauge theories on

R3, but they can exist on a lattice because the core of a monopole is a lattice cube, which is non-singular.

This distinction is sometimes emphasized by calling the central U(1) ⊂ U(N) ‘compact’ when the action

is (C.2) and ‘non-compact’ when (C.3) is employed. For either a ‘compact’ or ‘non-compact’ U(1) gauge

field, a Dirac string is invisible to charged particles. However, in the former case, a Dirac string is also

invisible in the Maxwell term, while in the latter it costs extra action in the Maxwell term, just like a thin

solenoid. So the difference is really in the prescription of the Maxwell term.

The IR field theory dualities of interest require ‘non-compact’ gauge fields, so we would really prefer to

use (C.3). We therefore add to (C.2) the following term that eliminates the extra monopole saddles:

1

4g′2

∑
n,µ,ν

1

2

(
arg det

(
U†nνU

†
(n+ν̂)µU(n+µ̂)νUnµ

)
+ 2πmnµν

)2
. (C.4)

Here, mnµν = −mnνµ is an integer field on the plaquettes to be summed over in the path integral. A Dirac

string is visible in this term and costs extra action. To keep the computations below unaltered, we can take

1/g′
2 � 1/g2 and ignore (C.4) in the perturbative expansion.
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increases with T . The main change compared to appendix B is the gauge field propagator:

q mod 2π
µ, IJ ν, J ′I ′

= δII′δJJ ′

[
δµν
T

+
δµν

∑
λ

∣∣eiqλ − 1
∣∣2 − (eiqµ − 1

) (
e−iqν − 1

)
g2

]−1

= δII′δJJ ′

[
g2

g2/T +
∑

λ |eiqλ − 1|2

(
δµν −

(
eiqµ − 1

) (
e−iqν − 1

)∑
λ |eiqλ − 1|2

)

+T

(
eiqµ − 1

) (
e−iqν − 1

)∑
λ |eiqλ − 1|2

]
.

Note the following features of this propagator. First, it does not diverge in the IR, due

to the Higgs mechanism; this is related to the locality of the theory that obtains after

integrating out the gauge field. Second, the fact that the second term does not vanish

as g2 → 0 is responsible for the fact that we cannot perturbatively compute the fermion

self-energy correction when T is of order 1. Choosing a gauge besides unitary gauge can

ameliorate this problem, but then one must compute the correlation function
〈
φ†nχnφn′χ̄n′

〉
in a theory where φ is dynamical and T is order 1.

To leading order in (T, g2), the self-energy diagrams for the ψI fermions are

.

We have to include the χ′ fields (arrowed double lines) in the internal lines, as in contrast

to the original g2 → ∞ case where they confine on each lattice link, now, above the scale

g2, the χ′ fermions exist as propagating fermions. The propagator of the χ′ fermion is the

same as that of the ψ fermion. The ηAI propagator (double wavy lines) is the same as the

θIJ propagator expect for δII′δJJ ′ → δII′δAA′ and T → 2T . In appendix B the first and

third diagrams which renormalize Mχ to Mψ were already accounted for in the real space

exact mapping; now we have to compute them in momentum space. The ψ̄ψθθ vertex is

given by

J

q′I

q
k − (q − q′)/2

k + (q − q′)/2

ν,K ′J ′

µ, I ′K

=
δµν

2
δII′ δJJ ′ δKK′ e

−i(q−q′)µ/2 (γµi sin kµ − cos kµ)

(which is ∂kµ∂kν/2 of the inverse propagator, by gauge invariance) and the ψ̄ψη†η vertex

is obtained by replacing δKK′ with δAA′ . In YM theory there are also interactions among
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the gauge fields, but thanks to the vanishing of any tadpole diagram, we do not need to

include them to first order in (T, g2).

Let’s compute the first two diagrams with external p = 0 (the last two diagrams are

computed the same way with T → 2T and Nf → N−Nf ). Gauge invariance leads to Ward

identities which imply that the
(
eiqµ − 1

) (
e−iqν − 1

)
terms in the gauge field propagator

make O(g2(3 − Mχ)) + O(T (3 − Mχ)) contributions at p = 0 upon summation of the

diagrams,31 so we only need the δµν term of the gauge field propagator. The first two

diagrams at p = 0 contribute

δIJ Nf

∫ π

−π

d3k

(2π)3
g2

g2/T + 2
∑

λ (1− cos kλ)

∑
µ

[
−1

2
+

cos kµ (Mχ−
∑

λ cos kλ)− (sin kµ)2

(Mχ −
∑

κ cos kκ)2 +
∑

κ(sin kκ)2

]

= δIJ Nf

∫ π

−π

d3k

(2π)3
g2

g2/T + 2
∑

λ (1− cos kλ)

[
−5

2
+

Mχ(Mχ−
∑

λ cos kλ)

(Mχ −
∑

κ cos kκ)2 +
∑

κ(sin kκ)2

]
,

(C.6)

where in the square bracket in the first line, the −1/2 is from the first diagram and the

rest, from the second diagram, is the same as (B.1). The integrand is always negative, and

moreover, its T derivative is also negative. Since the diagrams compute −Σ, this means the

total self-energy, at leading order in (3 −Mχ, T, g
2), is always positive and increases with

T (towards ∼ 0.6 g2N). This is the same as in the g2 →∞ case of the main text. There is

no substantial change if we consider the SO(N) theories instead of U(N). Therefore, our

results in this paper are independent of whether or not we have a weakly coupled YM term

in the UV, in agreement with our intuitive argument given above.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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