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1 Introduction

As the LHC is entering its high precision phase the need for precise calculations of higher or-

der perturbative corrections in QCD is becoming ever more important. A major bottleneck

in such calculations is due to infrared (IR) divergences, which are related to non-integrable

singularities in scattering amplitudes which arise in soft and/or collinear momentum con-

figurations. While the KLN theorem [1, 2] guarantees that these singularities cancel (in
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the sum over real and virtual emissions for final state radiation) collinear divergences as-

sociated to partons in the initial states are handled instead by a renormalisation of the

parton densities [3–5].

Since the IR divergences can be regulated dimensionally their cancellation is less prob-

lematic for analytic calculations of total inclusive quantities where one integrates over the

entire phase space volume. The situation is different for differential quantities, where the

domain of integration is taken over an arbitrary IR safe region of phase space. Then it may

be unfeasible to carry out the integral analytically and a subtraction procedure is required

to render the integrand finite. To accomplish this task has inspired the construction of a

large number of different subtraction procedures.

Existing methods fall into either one of two conceptually quite different approaches.

These are referred to as subtraction and slicing methods. The subtraction method is

based on making the divergent integrand finite by subtracting from it a suitable counter-

term whose singular behaviour matches that of the original integrand. This counter-term is

subsequently added back in, analytically or numerically, integrated form. Methods designed

for dealing with real emissions at the next-to-leading order (NLO), which fall into this

category, are the Catani-Seymour (CS) dipole method [6, 7], the Frixione-Kunszt-Signer

(FKS) subtraction method [8, 9] as well as the Nagy-Soper subtraction method [10]. While

all of these methods rely on the universal soft and collinear factorised limits of amplitudes

to construct suitable counter-terms, they are implemented in quite different ways.

In the FKS method sets of non-overlapping divergences are separated by a partition

of unity in the form of partial fractions. In each partition a suitable energy and angle

parameterisation is chosen to factorise its soft and collinear divergences and subtract their

singular parts via residue subtraction. The FKS method therefore defines its counter-terms

not just at the level of the squared amplitude, but at the level of phase space measure times

squared amplitude.

The CS method instead constructs its counter-terms purely at the level of the squared

amplitude. The counter-terms are constructed by combining together soft and collinear

limits which are promoted into the full phase-space by the so-called Catani-Seymour mo-

mentum mapping. This mapping also allows to analytically integrate the counter-terms

over the singular emission phase space.

Due to more complicated overlapping divergences at the next-to-next-to-leading order

(NNLO) neither the FKS nor CS methods can be naively generalised. The problem for

FKS-like methods based on residue subtraction is that parameterisations which completely

factorise all divergences present in a given partition do not appear to exist. The most

successful approaches based on residue subtraction therefore make use of sector decom-

position [11–15] to factorise the divergences. Such approaches, especially those based on

sector decomposition, have been used successfully in calculations at the current state of

the art; see, e.g., [16, 17]. While these methods can be efficiently implemented numerically

they come with their own set of disadvantages: they are parameterisation dependent and

the integration of the counter-terms remains, for now, numerical.

Other approaches based on residue subtraction have been limited either to simpler

applications, in which the divergences were factorisable [18–20], or were based on topol-
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ogy dependent parameterisations [21], which is difficult to apply to more complicated fi-

nal states.

Another class of subtraction methods used at NNLO are closer to the CS idea. A

prominent such method is antenna subtraction [22–24]. Its counter-terms are based on

physical matrix elements. Instead the colourful subtraction method relies on combining

the universal soft and collinear limits [25] into suitable counter-terms. The advantage of

the antenna method is that it leads to a comparably small number of counter-terms, whose

analytic integration has been achieved. A disadvantage of the antenna method are that it

is not fully local in the phase space, as certain spin correlations are ignored. This makes

the phase space generation quite cumbersome. Despite this the method has been applied

successfully in many state of the art NNLO calculations; see , e.g., [26, 27]. In comparison

the colourful subtraction method, see, e.g., [28–30], has so far been applied only to final

state radiation in, e.g., [31]. While this method is fully local it comes with the disadvantage

that the analytic integration of its counter-terms is highly non-trivial due to the appearance

of Jacobians introduced by the mapping. It has thus been relying in part on numerical

integration techniques for its counter-terms.

Slicing methods instead render divergent integrals finite by slicing out the singular

regions. As in the subtraction method the integration over the singular region — which

takes the role of the counter-term — is subsequently added back in (analytically or nu-

merically) integrated form. The original slicing method, implemented at NLO, was based

on imposing cuts on the Mandelstam variables [32, 33]. These methods were never fully

generalised to NNLO, although an extension was applied in mixed QCD-QED corrections

in [34]. More recent developments at NNLO include kt-subtraction [35] and N-jettiness

subtraction [36, 37]. Both of these methods have been implemented in an impressive num-

ber of fully differential NNLO calculations; see, e.g., [38, 39]. A clear advantage of these

methods is the comparable ease of their implementation, since one simply implements a

measurement function to cut out the singular parts of the phase space. While the kt-

subtraction method has been applied primarily only to colorless final states, as well as final

state radiation and massive partons for small multiplicities [40, 41], it has the advantage

that its counter-terms are relatively simple to integrate analytically. N-jettiness subtrac-

tion can be applied to more general processes; the integration of the required soft function

is however challenging and requires a numerical implementation. An advantage of both

the kt-subtraction and the N-jettiness methods is that the singular limits can be obtained

from general factorisation theorems. A disadvantage of these methods is that the slicing

parameters must be chosen small enough for the factorisation formula to be valid; and this

may lead to numerical instabilities; see e.g. [42, 43]. To address this problem one may

need to add higher orders in the expansion around the slicing parameters. The challenge

with this is that the structure of the sub-leading singular limits is more complicated; for

instance derivatives of amplitudes will be required, which could be difficult to obtain for

complicated processes.

Subtraction methods have also already been employed at next-to-NNLO (N3LO) in two

incidences: an application of the projection to Born method [44] in DIS jet production [45]

and a novel application [46] of the reverse unitarity approach [47] in Higgs production
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(relying, for now, on the first two terms in an expansion around the threshold). While

these are impressive calculations of so far unrivalled complexity, the methods they relied

upon can not be (at least naively) applied for more general final states.

Despite the large number of existing methods, we propose — in the hope that it may

overcome the shortcomings of existing methods — a new approach in this work. To ac-

complish maximally simple counter-terms, from the point of view of analytic integration,

an FKS like residue subtraction procedure will be employed based on a Feynman dia-

gram dependent slicing observable. By employing a slicing approach we can overcome the

limitations of parameterisations which require singularities to be factorised.

By explicitely introducing a slicing parameter for each possible soft or collinear singular

configuration it should be possible to promote this slicing scheme to a subtraction method

by employing suitable phase space mappings not unlike in the CS, antenna or colourful

subtraction methods. Indeed this idea has already been proposed in [48] in the context

of the conventional NLO slicing method. Here we will only demonstrate this idea, for a

simple example in section 3 in the context of the new slicing observable. The purpose of

this paper is instead to establish the general principles of the method. In particular we

work out the combinatorics of a generalised soft-collinear subtraction formula in section 4

— which uniquely defines a simple prescription for the soft and/or collinear final state

counter-terms. How to extend the scheme to initial states is briefly sketched. We apply

this framework for final state radiation at NLO and NNLO in pure Yang-Mills theory

for arbitrary multiplicities in section 5 and perform the integration of all counter-terms

required. We complete the section by reproducing the poles of the gluonic double real

emission correction to the gluonic Higgs decay at NNLO. Possible extensions and future

developments of the method are discussed in section 6.

2 Notation

In this section we introduce some of the notation used throughout the later sections. It is

convenient to define the normalisation factor

cΓ =
(4π)−2+ε

Γ(1− ε)
. (2.1)

Of particular importance will be the D = 4− 2ε dimensional n-particle differential Lorentz

invariant phase space measure:

dΦ1...n(Q;m2
1, . . . ,m

2
n) ≡ (2π)D(1−n)+n δ(D)

(
Q−

n∑
k=1

pk

) n∏
k=1

dDpi δ
+(p2

i −m2
i ) . (2.2)

Here Q is taken to be an off-shell time-like vector, i.e., Q2 > 0. Final state particles are

constrained to be on-shell with positive energy by the distribution

δ+(p2 −m2) = θ(p0)δ(p2 −m2) .

We mostly deal with massless vectors and masses occur in phase spaces only through

the Mandelstam variables formed by squaring sums of momenta. For this purpose it is
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convenient to introduce the shorthand

pµij...kl = pµi + pµj + . . .+ pµk + pµl . (2.3)

Mandelstam variables are defined as follows:

sij = 2pi.pj ,

sijk = 2(pi.pj + pi.pk + pj .pk) .

We thus mostly suppress the dependence on masses and employ the shorthand

dΦ1...n(Q) = dΦ1...n(Q; 0, . . . , 0) , (2.4)

for all pi massless. The total phase space volume is defined as

Φ(n)(Q;m2
1, . . . ,m

2
n) =

∫
dΦ1...n(Q;m2

1, . . . ,m
2
n) . (2.5)

A massive sum of momenta, e.g. p12, with mass s12, is indicated by bracketed notation

(12), e.g.,

dΦ(12)34...n(Q; s12, 0, . . . , 0) = dΦ(12)34...n(Q; s12) = dΦ(12)34...n(Q) . (2.6)

The phase space measure satisfies the following factorisation property

dΦ1...n(Q) =
ds12...k

2π
dΦ(12...k)k+1...n(Q; s12...k) dΦ12...k(p12...k), (2.7)

upon which much of this paper rests. Although this notation is intuitive and compact care

has to be taken with identities such as p1...n = p1 + . . . + pn which, when substituted in

eq. (2.7), could lead to appearances of δ(D)(0). Rather identites such as eq. (2.3) should

be interpreted to arise in eq. (2.7) as a consequence of momentum conserving δ-functions.

Similar considerations apply to the Mandelstam variables sij .

3 Motivation

Before describing the general method in section 4 we will illustrate it here in the context

of a simple example of a divergent phase space integral:

I(Q;D) =

∫
dΦ123(Q)

s13

s12s23
. (3.1)

This integral could appear in the real emission process γ∗ → q̄(1)q(3)g(2) at NLO in

massless QCD. The integral is problematic in D = 4 due to soft and collinear singularities

respectively located at 2 → 0 and 1||2, 2||3. It is instructive to see where the singularities

are located in the space of Mandelstam variables. Let us express the phase space measure

in terms of the variables s12, s13 and s23:∫
dΦ123(Q) = (Q2)−1+εN3

∫ Q2

0
ds12 ds13 ds23 δ(Q

2−s12−s13−s23) (s12s13s23)−ε , (3.2)
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Figure 1. The grey triangular surface Q2 = s12 + s13 + s23 represents the physical phase space.

The fat blue lines labelled by C12 and C23 show the locations of collinear singularities, while the

small red circle labelled by S2 shows the location of the soft singularity.

where

N3 =
1

2

(4π)−3+2ε

Γ(2− 2ε)
. (3.3)

We thus see that the 3-particle phase space can be represented as the area constrained on

the surface

Q2 = s12 + s13 + s23 (3.4)

together with sij ≥ 0. This physical region with the locations of its singularities, embedded

in the three dimensional sij-space, is shown in figure 1.

We now wish to construct a subtraction scheme with which to isolate the finite part of

the integral in eq. (3.1). Since there exists quite some freedom how to define such a finite

part it is natural to ask: how can we define the divergent part in the simplest possible way?

In other words, how can the evaluation of the divergent parts be maximally simplified. A

scheme that accomplishes this for the UV divergences is the minimal subtraction (MS)

scheme within dimensional regularisation. This is also what is commonly used to cancel

the soft and collinear divergences between real, virtual and counter-term contributions

in higher order calculations. The problem with the MS-scheme is however that it does

not provide us with a prescription for defining a manifestly finite integrand which can be

expanded around D = 4 before integration. This, for the practitioner of perturbative QFT,

is indeed the dilemma of dimensional regularisation. Although it allows to define a unique

finite part — it is not obvious how to obtain this finite part without performing the integral

first in D-dimensions and then expanding the analytic functions around D = 4.

For the simple example the integration is easily carried out in terms of Γ-functions,

whose expansion around D = 4 is trivial, to obtain:

I(Q;D) = (Q2)−2εN3
Γ(−ε)2Γ(2− ε)

Γ(2− 3ε)
=

Φ3(Q2)

(Q2)

(
2

ε2
− 5

ε
+ 3 +O(ε)

)
. (3.5)
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But when increasing the perturbative order very complicated integrals appear which eval-

uate to complicated hypergeometric series. For such functions a Laurent expansion around

D = 4 may be difficult to obtain. Key is that one may not always be interested in in-

tegrating the integral over the entire phase-space. In fact for various reasons, such as

detector efficiencies or large signal-swamping backgrounds, only part of the phase space

may be experimentally accessible, or interesting. The phase space integration could then

be constrained to an in principle arbitrary (infrared safe) region.

It is therefore highly desirable to have a procedure to extract the finite part of an

integral which does not rely on carrying out the integration. While, as summarised in

the introduction, such procedures have been developed in the past, based on subtraction,

sector decomposition and phase space slicing, we believe that none of these approaches

fully matches the simplicity of the divergent parts defined via the MS-scheme. Inspired by

algebro-geometric schemes based on blow-ups, which have been applied in the subtraction

of UV– and IR– divergences of Euclidean loop integrals [49, 50], we intend to provide a

prescription which meets this criterion as closely as possible in the following.

3.1 Normal coordinates and phase space factorisation

We start by identifying a set of suitable variables — we call them normal coordinates

or slicing parameters — with which to separate the phase space into singular and finite

regions. Here we shall use the word normal in the sense in which it was introduced by

Sterman, see, e.g., [51–53]; and we can identify these normal coordinates with the variables

which we introduce to take soft and collinear limits. As a guide to find these variables we

will use the phase space factorisation property of eq. (2.7) in terms of Mandelstams. It

turns out that this property alone allows one to obtain suitable Lorentz invariant factorised

soft and collinear limits of the phase space measure.

Let us first see how this works for the case of collinear divergences. A choice of a

variable to parameterise the collinear limit C12 is given by s12. The collinear limit is

approached linearly as s12 → 0. The factorisation property in eq. (2.7) then allows us to

take this limit as follows:

lim
s12→0

dΦ123(Q) =
ds12

2π
dΦ12(s12) lim

s12→0
dΦ(12)3(Q; s12) . (3.6)

Since the 2-particle phase space measure dΦ12(s12) can not be simplified further, the limit

operation acts only on the remaining phase space measure dΦ(12)3, which has support in

the limit s12 → 0. Here it is useful to introduce the Sudakov parameterisation

p12 = p1̂2 +
s12

2p1̂2.n
n , p2

1̂2
= 0 = n2 , (3.7)

such that we can parameterise

p1 = z1p1̂2 +
s12z2

2p1̂2.n
n+
√
s12z1z2e

⊥ ,

p2 = z2p1̂2 +
s12z1

2p1̂2.n
n−
√
s12z1z2e

⊥ . (3.8)
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with z1 + z2 = 1 and e⊥ being a space-like unit length (|e⊥| = 1) vector transverse to both

p1̂2 and n. This allows us, at the expense of the massless reference vector n, to control how

the off-shell vector p12 present in dΦ(12)3 approaches the massless vector p1̂2

lim
s12→0

p12 = p1̂2 +O(s12) . (3.9)

We thus obtain the following factorisation of the phase space measure in the collinear limit:

lim
s12→0

dΦ123(Q) = dΦC12 dΦ1̂23(Q) , (3.10)

with the collinear phase space defined as

dΦC12 =
ds12

2π
dΦ12(s12) . (3.11)

What is characteristic to this factorised limit is that the remaining Q dependence is present

only in the reduced measure dΦ1̂23(Q). In contrast the s12-dependence is present only in

dΦ12(s12). This in effect means that the variable s12 is no longer bounded from above.

Since the factorisation is only valid in the limit of small s12 it is sensible to introduce “by

hand” a small upper cutoff for s12 to make the integral over this measure well defined. We

will describe below how to do this in a consistent manner.

We now come to the parameterisation of the soft limit. A Lorentz invariant variable

suitable to parameterise the soft limit p2 → 0 is

s2(13) = 2p2.p13 . (3.12)

This variable, which linearly approaches zero as p2 → 0, is also directly proportional to

the energy of p2 in the rest frame of p13. Due to the relation eq. (3.4) we can also identify

the limit s2(13) → 0 with the limit s13 → Q2. This allows us to derive the soft phase space

factorisation from the factorisation property eq. (2.7), as follows:

lim
s13→Q2

dΦ123(Q) = lim
s13→Q2

ds13

2π
dΦ13(s13) dΦ(13)2(Q; s13) (3.13)

Only the term dΦ13(s13) has further support in this limit, and we find:

lim
s13→Q2

dΦ123(Q) = dΦ13(Q2) dΦ
(1,3)
S2

, (3.14)

with the soft phase space measure defined as:

dΦ
(1,3)
S2

=
ds2(13)

2π
dΦ(13)2(Q2;Q2 − s2(13)) , (3.15)

= ds2(13)
dDp2

(2π)D−1
δ+(p2

2) δ(s2(13) − 2p2.p13) ,

where we have used ds13 = ds2(13). Note that the soft measure depends on the hard

momenta p1 and p3. Thus even after integration over the soft momentum the soft limit

retains a dependence on the variable s13. In contrast the collinear limit factorises entirely

and retains no dependence on any hard momenta.

– 8 –
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Figure 2. The triangular surface Q2 = s12 + s13 + s23 is split into singular and finite regions. The

red region is the soft region S2. Collinear regions C12 and C23 are indicated in blue. The finite

region F is shown in grey. The soft-collinear overlap is just visible where the blue bands intersect

with the red triangular region.

3.2 Geometry of regions

So far we have not discussed how to construct a subtraction method which consistently

combines the soft and collinear limits we introduced in the previous subsection. A way to

attack this problem is to use a phase space slicing approach. The idea here is that the

phase space can be separated into a finite region (F ) and singular, that is soft (S2) and/or

collinear (C12, C13), regions. To accomplish this decomposition we will associate a set of

small dimensionless parameters ai for Si and bij for Cij to bound the slicing parameters of

each singular region from above. This procedure will naturally lead to a classification of

the overlap of soft and collinear regions. We will associate:

S2 : {s2(13) < a2s13},

C12 : {s12 < b12Q
2},

C23 : {s23 < b23Q
2},

F : {s2(13) > a2s13 , s12 > b12Q
2 , s23 > b23Q

2} .

Here we have used s13 as the scale entering the upper bound of the soft variable s2(13).

First let us remark that for small a2 and therefore also s2(13) we have s13 ∼ Q2, and so we

could have equally well used Q2 here. However s13 is the natural hard scale appearing in

the soft phase space as already commented on above, and as we will see later it will turn

out important in more complicated situations to use this s13 instead of Q2. For this reason

we introduce this notion already here.

The decomposition of the phase space into its different finite and singular regions is

best understood geometrically and is illustrated in figure 2. In the figure it is shown how

the regions can be chosen such that the overlap of the two collinear regions C12 and C23 is

contained inside the soft region S2. Using this feature and the additivity of areas we arrive

– 9 –
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at the following partition of unity:

1 = Θ(F ) + Θ(S2) + Θ(C12) + Θ(C23)−Θ(C12 ∩ S2)−Θ(C23 ∩ S2), (3.16)

with the different regions defined by:

Θ(S2) = Θ(s2(13) < a2s13)

Θ(C12) = Θ(s23 < b23Q
2)

Θ(C23) = Θ(s12 < b12Q
2) (3.17)

Θ(C23 ∩ S2) = Θ(s2(13) < a2s13)Θ(s23 < b23Q
2)

Θ(C12 ∩ S2) = Θ(s2(13) < a2s13)Θ(s12 < b12Q
2)

Θ(F ) = Θ(s2(13) > a2s13)Θ(s23 > b23Q
2)Θ(s12 > b12Q

2) .

3.3 Counter-term integration

Let us now come to the evaluation of the integrals corresponding to the singular regions.

We will start with the soft. A convenient parameterisation of the soft phase space measure

is given by∫
dΦ

(1,3)
S2

Θ(S2) = cΓs
−1−ε
13

∫ ∞
0

ds12 ds23 (s12s23)−ε Θ(s12 + s23 < a2s13) , (3.18)

which allows us to obtain

IS1(a2, s13) =

∫
dΦ

(1,3)
S2

Θ(S2)s13

s12s23
= cΓ

Γ2(1− ε)
Γ(1− 2ε)

s−ε13 a
−2ε
2

ε2
. (3.19)

We continue with the evaluation of the collinear region. A convenient parameterisation for

the collinear region is given by:∫
dΦC12Θ(C12) = cΓ

∫ b12Q2

0
ds12s

−ε
12

∫ 1

0
dz1 dz2 δ(1− z1 − z2) (z1z2)−ε (3.20)

The collinear limit of eq. (3.1) then leads us to the following integral:

IC12(b12Q
2) =

∫
dΦC12

Θ(C12)

s12

z1

z2
= cΓ

Γ(1− ε)Γ(2− ε)
Γ(2− 2ε)

(b12Q
2)−ε

ε2
(3.21)

We continue with the evaluation of the soft-collinear overlap contribution. We can simplify

the calculation of the overlap contribution by demanding that b12 � a2. In the limit of

small b12, which in turn forces a small s12, the soft region then simplifies to

lim
s12→0

Θ(s12 + s23 < a2s13) = Θ(z2s1̂23 < a2s1̂23) = Θ(z2 < a2) , (3.22)

where we also used that in the soft region z1 ∼ 1. In other words the soft-collinear limit,

in this setting, is conveniently computed by taking the limit z2 → 0 in the collinear phase

space. The soft-collinear phase space measure is thus given by∫
dΦC12S2Θ(C12 ∩ S2) = cΓ

∫ b12Q2

0
ds12s

−ε
12

∫ a2

0
dz2 z

−ε
2 . (3.23)
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Integrating the soft-collinear limit over this measure we obtain

IC12S1(b12Q
2, a2) =

∫
dΦC12S2

Θ(C12 ∩ S2)

s12z2
= cΓ

(a2b12Q
2)−ε

ε2
. (3.24)

The singular part of eq. (3.1) can now be expressed as:

ISingular(Q; a1, b12, b23) (3.25)

=
Φ2

Q2

[
+ IS1(a2, Q

2) + IC12(b12Q
2) + IC12(b23Q

2)

−IC12S1(b23Q
2, a2)− IC12S1(b12Q

2, a2)

]
=

Φ3

(Q2)2

[
+

(
2

ε2
+
−9− 4 ln a2

ε
+
(
9 + 4ζ2 + 18 ln a2 + 4 ln2 a2

)
+O(ε)

)
+

(
2

ε2
+
−7− 2 ln b12

ε
+
(
4 + 4ζ2 + 7 ln b12 + ln2 b12

)
+O(ε)

)
+

(
2

ε2
+
−7− 2 ln b23

ε
+
(
4 + 4ζ2 + 7 ln b23 + ln2 b23

)
+O(ε)

)
−
(

2

ε2
+
−9− 2 ln a2 − 2 ln b12

ε
+ (9 + 6ζ2 + 9 ln a2 + 9 ln b12

+2 ln a2 ln b12 + ln2 a2 + ln2 b12) +O(ε)

)
−
(

2

ε2
+
−9− 2 ln a2 − 2 ln b23

ε
+ (9 + 6ζ2 + 9 ln a2 + 9 ln b23

+2 ln a2 ln b23 + ln2 a2 + ln2 b23) +O(ε)

)]
(3.26)

=
Φ3

(Q2)2

[
2

ε2
+
−5

ε
+
(
−1− 2 ln b12 − 2 ln b23 − 2 ln a2 ln b12 − 2 ln a2 ln b23 + 2 ln2 a2

)
+O(ε)

]
.

Thus we have reproduced the correct single and double poles of eq. (3.5). The cancel-

lation of the logarithms at order ε−1 signifies a consistent treatment of the soft-collinear

overlap contribution.

3.4 Slicing method

We will now test the finite part of the subtraction terms numerically using the slicing

method. The advantage of the slicing approach is the simplicity with which the finite part,

defined by

IF (Q; a1, b12, b23) =

∫
dΦ123 Θ(F )

s13

s12 s23
(3.27)

with

Θ(F ) = Θ(s12 > b12Q
2)Θ(s23 > b23Q

2)Θ(s2(13) > a2s13) , (3.28)
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Figure 3. This figure shows ∆I(λ) on the left and also separately the ε0 coefficients of IF , ISingular
and their sum on the right in the slicing method. In both figures IF is evaluated numerically with

the CUBA implementation of the Vegas algorithm using 108 points for each value of λ.

can be implemented in a numerical simulation in D = 4. To implement the hierarchy

between soft and collinear limits we introduce a single slicing parameter λ, such that

bij = λ2, ai = λ . (3.29)

We can then define the quantity

∆I(λ) = 100 ·
IF (Q;λ) + ISingular(Q;λ)− I(Q)

I(Q)
, (3.30)

which, since

lim
λ→0

∆I(λ) = 0 , (3.31)

measures the percent difference by which this quantity differs from zero for a small finite

value of λ. While we know both ISingular(Q) and I(Q) analytically we can compute the

finite integral IF (Q) numerically; this is plotted over a range of values of λ in figure 3. The

figure on the left clearly shows the formation of a plateau in the range 10−3 < λ < 10−6.

As is expected for a slicing scheme the numerical accuracy deteriorates as λ is decreased

and improves for larger values of λ, where however the counter-terms can not be used

as a reliable approximation, and power corrections in λ would be required. It is thus

evident, given the simplicity of the example, that this approach gives rise to a rather poor

numerical accuracy. Even after sampling 108 points using the Cuba implementation of

Vegas [54] (albeit in a non-optimal phase space parameterisation) we are not able to arrive

at an accuracy much better than 1% for the most optimal values of λ.

3.5 Subtraction method

An alternative to the slicing approach, presented in section 3.4, is to rewrite the region

approximants as local counter-terms. In this subsection we will illustrate — for the simple

example — how a slicing method can be promoted to a fully local subtraction method.

This idea is not new and was already discussed in, e.g. [37, 48].

The promotion can be accomplished in several different ways. One method would be

to employ a momentum map, of the kind which has been employed by Catani and Seymour

– 12 –
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Figure 4. This figure shows ∆I(λ) on the left and also separately the ε0 coefficients of IF , ISingular
and their sum on the right in the subtraction method. In both figures IF is evaluated numerically

with the CUBA implementation of the Vegas algorithm using 108 points for each value of λ.

in the dipole subtraction method [6]. Alternatively one can use, what we shall call, the

re-weighting approach, this mimics in some sense how the limit subtraction is embedded

in the full phase space in the FKS subtraction method. In our approach we can use a

similar idea, based on the particular phase space factorisation property used to derive a

certain limit.

In the context of the simple example the subtraction method can be implemented very

easily by noting that we can match soft and collinear measures with the full phase space

measure by multiplying with the corresponding factors which were simplified to unity in

the limit taking procedure. This leads us to the following relations:

dΦ
(1,3)
S2

dΦ13 = dΦ123Θ(s2(13) < a2Q
2)

(
s13

Q2

)ε
(3.32)

dΦC12 dΦ1̂23 = dΦ123Θ(s12 < b12Q
2)

(
1− s12

Q2

)−1+2ε

(3.33)

dΦC12S2 dΦ13 = dΦ123Θ(s12 < b12Q
2)Θ(z2 < a2)

(
1− s12

Q2

)−1+2ε

(z12)ε (3.34)

where we have made explicit choices for the reference vectors n in the different collinear

limits. Such that the momentum fractions zij become:

z12 + z21 = 1, z12 =
s13

s13 + s23
, z23 + z32 = 1, z32 =

s13

s13 + s12
. (3.35)

Using these relations for the measures we can derive the following alternative representation

for the finite part defined in eq. (3.27) in D = 4:

IF (Q; a1, b12, b23) =

∫
dΦ123

[
s13

s12 s23
− Q2

s12 s23
Θ(s2(13) < a2Q

2)

−
(
z12 −Θ(z21 < a2)

)
s12 z21(1− s12/Q2)

Θ(s12 < b12Q
2)

−
(
z32 −Θ(z23 < a2)

)
s23 z23(1− s23/Q2)

Θ(s23 < b23Q
2)

]
.
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A numerical evaluation of this finite part for a range of suitable values of

λ = ai = bij (3.36)

is presented in figure 4 using again the Cuba Vegas implementation. The clear advantage

of the subtraction method is that it allows to use arbitrary values for λ ∈ (0, 1], since the

integrated counter-terms evaluate by construction to those used in the slicing method for

any value of ai and bij .

In contrast to the slicing method better convergence is observed for large values of λ.

In fact it appears that λ = 1, which corresponds to the counter-terms ranging over the

entire phase space, is the optimal choice for this example. Notably the accuracy reached for

this value of λ is 100 times as good as that reached by the slicing method using the same

number of numerical evaluations. The subtraction method — to which we have promoted

the slicing method — therefore appears far superior in terms of numerical accuracy and

stability when compared to its parent slicing method.

4 General principles at NNLO and beyond

4.1 Normal coordinates and phase space factorisation

In the previous section we applied the geometric subtraction method in a simple example.

Let us briefly summarise the idea behind the procedure. We introduced the variables

sij = 2pi.pj to define a collinear region and the variable si(jk) = 2pi.pjk to define a soft

region. With these variables we then derived suitably factorised limits of the phase space

measure and furthermore partitioned the phase space volume into finite and singular (soft

and/or collinear) regions.

This procedure can be generalised to arbitrary perturbative order. For instance at

NNLO we can use the variable sijk to subtract the triple collinear limit i||j||k and we can

use the variable

s(ij)(kl) = 2pij .pkl (4.1)

to subtract the double soft limit ij → 0 sensitive to the hard momenta k and l. The phase

space factorisation property can be used to determine the corresponding factorised phase

space volume limits, with which to integrate the singular limits of amplitudes. This leads

us to the following phase space factorisation in the triple collinear limit:

lim
i||j||k

dΦ1...i...j...k...n → dΦCijk
dΦ

1...îjk...n
, (4.2)

with the triple collinear phase space measure defined by

dΦCijk
=

dsijk
2π

dΦijk . (4.3)

– 14 –



J
H
E
P
0
8
(
2
0
1
8
)
0
0
6

To parameterise the momenta in this collinear limit we use, as before, the Sudakov param-

eterisation (expressed in terms of Mandelstams, rather than transverse momenta):

pi = zipîjk +
|p⊥i |2

2zipîjk.n
n+ |p⊥i |e⊥i , |p⊥i |2 = zi(sij + sik − zisijk) ,

pj = zjpîjk +
|p⊥j |2

2zjpîjk.n
n+ |p⊥j |e⊥j , |p⊥j |2 = zj(sij + sjk − zjsijk) , (4.4)

pk = zkpîjk +
|p⊥k |2

2zkpîjk.n
n+ |p⊥k |e⊥k , |p⊥k |2 = zk(sik + sjk − zksijk) ,

with zi + zj + zk = 1 and |p⊥i |e⊥i + |p⊥j |e⊥j + |p⊥k |e⊥k = 0 such that

pijk = p
îjk

+
sijk

2p
îjk
.n
n . (4.5)

As before e⊥i are space-like unit length (|e⊥i | = 1) vectors transverse to both p
îjk

and the

reference vector n. The off-shell vector pijk approaches the massless vector p
îjk

in the limit

of vanishing sijk:

lim
sijk→0

pijk = p
îjk

+O(sijk) . (4.6)

In the double soft limit we obtain the phase space factorisation:

lim
ij→0

dΦ1...i...j...n → dΦ
(k,l)
Sij

dΦ1... 6i... 6j...n , (4.7)

with the double soft phase space measure given by:

dΦ
(k,l)
Sij

=
ds(ij)(kl)

2π
lim
ij→0

dΦij(kl) . (4.8)

The pattern of these measures follows those defined at NLO. However there is subtle

difference between the soft and double soft measures. The double soft measure is not

simply dΦij(kl), since there exist further support in the limit ij → 0. Instead an explicit

form for it is given by:

dΦ
(k,l)
Sij

= ds(ij)(kl)
dDpi

(2π)D−1
δ+(p2

i )
dDpj

(2π)D−1
δ+(p2

j ) δ(s(ij)(kl) − 2pij .pkl) . (4.9)

The phase space measures at yet higher order, e.g. at N3LO, can be defined similarly. For

the m-collinear limit we would use the variable

si1...im = (pi1 + . . .+ pim)2 (4.10)

with the following phase space factorisation

lim
i1||...||im

dΦ1...i1...im...n → dΦCi1...im
dΦ

1... ̂i1...im...n
, (4.11)

and m-collinear phase space measure

dΦCi1...im
=

dsi1...im
2π

dΦi1...im . (4.12)

– 15 –



J
H
E
P
0
8
(
2
0
1
8
)
0
0
6

Similarly we may define the m-soft variable

s(i1...im)(kl) = 2pi1...im .pkl (4.13)

with phase space factorisation

lim
i1...im→0

dΦ1...i1...im...n → dΦ
(k,l)
Si1...im

dΦ1... 6i1... 6im...n , (4.14)

and the m-soft phase space measure

dΦ
(k,l)
Si1...im

= ds(i1...im)(kl)
dDpi1

(2π)D−1
δ+(p2

i1) . . .
dDpim

(2π)D−1
δ+(p2

im)

· δ(s(i1...im)(kl) − 2pi1...im .pkl) . (4.15)

4.2 Soft and collinear forests

From the conceptual side it remains to determine the overlap contributions. Since the

phase space volume of the example given in section 3 was simple enough, we were able to

construct the partition based on the geometry of the phase space in Mandelstam variables.

For higher dimensional phase spaces it will be advantageous to have at hand a formalism

which allows to derive this partition in a more algebraic manner. We will employ the

properties of Heaviside step functions for this purpose. Employing the normal coordinates

defined above we associate Θ-functions for each region as follows:

Θ(Si1...im) = Θ(ai1...imskl ≥ s(i1...im)(kl)) , (4.16)

Θ(Ci1...im) = Θ(Q2bi1...im ≥ si1...im) . (4.17)

Here we assume that all soft regions are defined in some rest frame of pkl. This rest frame

could be chosen differently for different soft divergences. We will focus our discussion more

on this point in section 5, where we show how different eikonal factors can have their

regions bounded in different rest frames.

Our starting point for now is again the equation:

Θ(Singular) + Θ(F ) = 1 , (4.18)

which follows given that finite (F ) and singular regions are to cover the entire phase space

volume. Let us now define the set R as the set of all possible singular regions, excluding

their overlaps, such that for the example of eq. (3.1) we would have R = {C12, C23, S2}.
We can then write

Θ(F ) =
∏
r∈R

(1−Θ(r)) (4.19)

which combined with eq. (4.18) leads to

Θ(Singular) = −
∑
U⊂R

(−1)|U |
∏
r∈U

Θ(r) . (4.20)

Here we sum over all nonempty subsets U , each of size |U |, of the set R. This expression

still lacks knowledge of the geometric structure of the soft and collinear regions as well as

the perturbative order.
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To get a first feel for this equation let us study its consequences using R ={C12, C23, S2}
as input. We shall use the notation Θ(A)Θ(B) = Θ(A ∩B) if regions A and B depend on

common momenta. Using this notation we then find:

Θ(Singular) = Θ(C12) + Θ(C23) + Θ(S2)−Θ(C12 ∩ S2)−Θ(C23 ∩ S2)

−Θ(C12 ∩ C23) + Θ(C12 ∩ C23 ∩ S2) , (4.21)

which agrees with eq. (3.16), if we apply the relation

Θ(C12 ∩ C23) = Θ(C12 ∩ C23 ∩ S2) . (4.22)

Indeed this relation follows from the geometric construction introduced in figure 2, since

the soft region contains the intersection C12∩C23. By demanding the hierarchy ai � bij we

can thus guarantee its validity. But eq. (4.22) would not hold for other parameter choices

such as ai � bij . This shows how, in a simple example, the geometry of regions plays an

important role.

Let us continue with our exploration of eq. (4.20). To be able to include more com-

plicated final states into our discussion let us introduce the measurement function J (l)
1...n+l,

with l denoting the maximum number of unresolved partons, which are permitted by this

measurement function. In particular the measurement function obeys the relations:

lim
i→0
J (l)

1...i...n+l = J (l−1)
1... 6i...n+l , lim

i||j
J (l)

1...i...j...n+l = J (l−1)

1...îj...n+l
. (4.23)

Here the notation J... 6i... indicates that J does no longer depend on the soft momentum

i, while J...îj... indicates that the collinear momenta i and j have been merged into the

massless momentum îj. The (purely) real emission contribution to an arbitrary NlLO

observable may then be defined as

Ol;1...n+l =

∫
dΦ1...n+l J

(l)
1...n+l |M1...n+l|2 (4.24)

with M1...n+l an n+ l parton tree-level amplitude.

In the following we wish to define a set U (l), whose elements are themselves sets of

possible singular regions which may pass the criteria of the measurement function J (l),

and where we omit all those overlap regions which cancel by vitue of eq. (4.22) and its

generalisations at higher order. We can thus write

J (l) Θ(Singular) = −J (l)
∑

U∈U(l)

(−1)|U |
∏
r∈U

Θ(r) , (4.25)

where now cancellations among different regions have taken place and only those regions

are included which can pass the criteria of the measurement function.

Let us start by studying the case l = 1. The only divergences allowed by J (1)
1...n+1 are

collinear i||j and soft i → 0 or their overlap with common partons. Let us recall at this

point the slight mismatch between our region definitions Cij and Si and the locations of

singularities i||j and i → 0 respectively. Since Cij is the region defined by sij < bijQ
2
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even a soft singularity can fake the region Cij ; an apparent paradox which is resolved by

subtracting the overlap contribution Cij ∩ Si. It follows that care must be taken when

considering the possible regions which may pass the criteria of the measurement function.

While the NLO measurement function J (1) may not allow for a singularity i||j and j||k
which would correspond to a triple collinear singularity, the region Cij ∩ Cjk can still be

mimicked by a soft singularity j → 0. As before we escape this apparent new region by

relying on the cancellation in eq. (4.22), as in the simple example. At NLO we thus define:

U (1) =
{
{Cij}, {Si}, {Cij , Si}

}
. (4.26)

where the notation {Cij} is not meant to indicate the set of all collinear divergences, but

rather one set for each collinear region. Given for example the regions R = {C12, C23, S2}
we would then have

U (1) =
{
{C12}, {C13}, {S2}, {C12, S2}, {C23, S2}

}
.

Let us now come to the definition of U (2), the set of all possible singular regions which

pass the criteria of the NNLO measurement function J (2). To define U (2) more precisely

we must establish what the geometric cancellation identities are. Since these identities

depend on the geometric properties of the soft and collinear regions, they depend on the

parameters ai... and bij.... To make progress we choose the following order

aij � ai � bijk � bij , (4.27)

as it produces simple iterated phase space volumes for the counter-terms. Further this

ordering gives rise to the following region cancellation identities:

lim
A,B→0

Θ(SA ∩ SB) = lim
A,B→0

Θ(SA ∩ SB ∩ SAB) , (4.28)

lim
A||B,A||D

Θ(CAB ∩ CAD) = lim
A||B,A||D

Θ(CAB ∩ CAD ∩ CABD) , (4.29)

and

Θ(CAi ∩ CAj) = Θ(SA ∩ CAi ∩ CAj) + Θ(CAij ∩ CAi ∩ CAj) (4.30)

−Θ(SA ∩ CAij ∩ CAi ∩ CAj) ,

which holds for

bAi ≤
aAbAij

2
, (4.31)

and is therefore consistent with eq. (4.27). Here A,B and D are sums of momenta, while

i and j are single (massless) momenta. We do not claim that these are all the identities

which are fulfilled, but they suffice to establish the desired region cancellations at NNLO.

Pictorially these identities are illustrated in figures 5 and 6. A derivation is sketched in

appendix A.

The region cancellation identities are useful since they considerably reduce the num-

ber of different singular regions, or equivalently counter-terms, which are required in the

subtraction. At NLO they allow us to obtain

Θ(Cij ∩ Cjk) = Θ(Cij ∩ Cjk ∩ Sj) , (4.32)
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Figure 5. The picture illustrates the identities SA ∩ SB ⊂ SAB (right) and CAB ∩ CAD ⊂
CABD (left).

  

Figure 6. The picture illustrates the identity (CAi ∩ CAj) ⊂ (CAij ∪ SA).

from eq. (4.30), since terms containing Cijk are rejected by the NLO measurement function.

At NNLO we obtain instead the following set:

Θ(Si ∩ Sj) = Θ(Si ∩ Sj ∩ Sij) ,
Θ(Cijk ∩ Cijl) = Θ(Cijk ∩ Cijl ∩ Sij) ,
Θ(Cij ∩ Cjk) = Θ(Cij ∩ Cjk ∩ Sj) + Θ(Cij ∩ Cjk ∩ Cijk) (4.33)

−Θ(Cij ∩ Cjk ∩ Sj ∩ Cijk) .

But furthermore these regions allow us to identify the set U (2) as the Cartesian product of

a set of soft forests U (2)
S times a set of collinear forests U (2)

C modulo measurement function

constraints. We write this statement as

U (2) = U (2)
S × U

(2)
C mod J (2) , (4.34)

with

U (2)
S = {{Si}, {Sij}, {Si, Sij}} , (4.35)
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and

U (2)
C = {{Cij}, {Cijk}, {Cijk, Cij}, {Cij , Ckl}} . (4.36)

The sets U (2)
S and U (2)

C can be thought of as the soft and collinear analogues of Zimmer-

mann’s set of forests of UV-divergent subgraphs [55]. This should not come as a complete

surprise, since it is well known that the subtraction of both soft and collinear divergences

follows similar patterns as those found in the UV; see for instance [56–59] and references

therein. Nevertheless it is not completely trivial that the regions defined with the particular

ordering of eq. (4.27) follow this pattern as well. One may associate it to the observation

that also in the context of subtracting UV-divergences an order is chosen with which to

subtract singular subgraphs; such that the smaller subgraphs are subtracted before the

larger. Similarly we may have chosen the relative ordering of soft and collinear divergences

according to such a pattern. Regardless of this similarity eqs. (4.28), (4.29) and (4.30)

are highly dependent on the relative ordering of soft and collinear regions, which has no

analogue in the subtraction of UV divergences alone.

Multiplying out the product in eq. (4.34) and discarding those regions which can not

pass the criteria of the measurement function we arrive at:

U (2) =
{
{Cij}, {Si}, {Cijk}, {Sij}, {Cij , Si}, {Cij , Sk}, {Cij , Ckl}, {Cijk, Cij}, {Cijk, Si},
{Cijk, Sij}, {Sij , Si}, {Cik, Sij}, {Cij , Sij}, {Cij , Ckl, Si}, {Cij , Ckl, Sik},
{Cij , Sij , Si}, {Cijk, Cij , Si}, {Cijk, Cij , Sk}, {Cijk, Cij , Sik}, {Cijk, Cij , Sij},
{Cijk, Sij , Si}, {Cik, Sij , Si}, {Cik, Sij , Sj}, {Cijk, Cij , Sik, Si}, {Cijk, Cij , Sjk, Sk},
{Cijk, Cij , Sij , Si}, {Cij , Ckl, Sik, Si}

}
. (4.37)

The size of this list shows the enormous increase of complexity which is encountered at

NNLO, when compared to NLO.

Before moving on to the definitions of the asymptotic phase space measures in the

various regions let us conclude this subsection with the conjecture that eq. (4.34) is valid

also for the case of l potentially unresolved emissions at NlLO:

U (l) = U (l)
S × U

(l)
C mod J (l) , (4.38)

as long as the order

ai1i2...il � . . .� ai1 � bi1i2...il+1
� . . .� bi1i2 (4.39)

is chosen, with U (l)
S and U (l)

C sets of soft and collinear forests.

4.3 Asymptotic phase space measures

Having fixed the order of limits we are now in a position to determine the asymptotic

measures associated to the singular regions. To compute the asymptotic measure associated

to a particular region U one should take the following sequence of limits of the expression:

lim
aij→0

lim
ai→0

lim
bijk→0

lim
bij→0

dΦ
∏
r∈U

Θ(r) . (4.40)

Let us consider how this works for a few examples:
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• U = {Sij , Cijk}:

lim
aij→0

lim
bijk→0

dΦ...i...j...k...Θ(aijskl > s(ij)(kl))Θ(Q2bijk > sijk)

= lim
aij→0

dΦ
...îjk...

dΦCijk
Θ(aijzk > zij)Θ(Q2bijk > sijk) (4.41)

= dΦ...k... dΦCijkSijΘ(aij > zij)Θ(Q2bijk > 2pij .pk)

= dΦ...k... dΦCijkSij (Q
2bijk, aij)

with

dΦCijkSij = ds(ij)k dzij
dDpi

(2π)D−1
δ+(p2

i )
dDpj

(2π)D−1
δ+(p2

j )

· δ(s(ij)(kl) − 2pij .pk)δ(zij −
pij .n

pk.n
) . (4.42)

• U = {Cijk, Cij}:

lim
bijk→0

lim
bij→0

dΦ...i...j...k...Θ(Q2bij > sij)Θ(Q2bijk > sijk)

= lim
bijk→0

dΦ...îj...k... dΦCijΘ(Q2bij > sij)Θ(Q2bijk − sîjk) (4.43)

= dΦ
...

̂̂
ijk...

dΦCîjk
dΦCijΘ(Q2bij > sij)Θ(Q2bijk − sîjk)

= dΦ
...

̂̂
ijk...

dΦCîjk
(Q2bijk) dΦCij (Q

2bij)

• U = {Sij , Cij}:

lim
aij→0

lim
bij→0

dΦ...i...j...Θ(aijskl > s(ij)(kl))Θ(Q2bij > sij)

= lim
aij→0

dΦ...îj... dΦCijΘ(aijskl > sîj(kl))Θ(Q2bij > sij) (4.44)

= dΦ... 6îj... dΦ
(k,l)
Sîj

dΦCijΘ(aijskl > sîj(kl))Θ(Q2bij > sij)

= dΦ... 6îj... dΦ
(k,l)
Sîj

(skl, aij) dΦCij (Q
2bij)

• U = {Sij , Si}: there are two different cases, of which the more complicated one is:

lim
aij→0

lim
ai→0

dΦ...i...j...Θ(aijskl > s(ij)(kl))Θ(aisjk > si(jk))

= lim
aij→0

dΦ...i... 6j... dΦ
(j,k)
Si

Θ(aijskl > sj(kl))Θ(aisjk > si(jk)) (4.45)

= dΦ... 6i... 6j... dΦ
(j,k)
Si

dΦ
(l,k)
Sj

Θ(aijskl > sj(kl))Θ(aisjk > si(jk))

= dΦ... 6i... 6j... dΦ
(j,k)
Si

(sjk, ai) dΦ
(l,k)
Sj

(slk, aij) .

There exists a subtlety when taking the limit aij → 0 in the third line, which forces

the single soft limit j → 0, since the argument of the factor Θ(aisjk > si(jk)) does
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not simplify in this limit. To understand this better let us study the scaling with aij
which the different factors portray:

aisjk > sij + sik (4.46)

O(aij) > O(aij) +O(1)

The two terms on the right hand side are thus (at least naively) not of the same size;

their exist however no support to further simplify this expression. The only plausible

interpretation is that the upper bound on the left forces both Mandelstams on the

right, i.e. sij and sik to scale as ∼ aiaij . Given that both i and j are sufficiently soft

it thus appears that i is forced to become collinear to k for sik to be of similarly size

as sij .

A different way to come to a similar conclusion comes from the result of the integral:∫
dΦ

(j,k)
Si

(sjk, ai)S
(j,k)
i ∼ (sjk)

−ε , (4.47)

where S(j,k)
i corresponds to the singular limit of an amplitude. It is thus clear that

this integral is homogeneous in pj , although the constraint eq. (4.46) does not appear

to be so.

We will leave it as an exercise for the reader to work out the asymptotic forms of the

measures corresponding to other regions. Compact expressions for the resulting measures

for all required regions can be found in appendix C. In particular we find that at NLO and

NNLO all regions can be written using the following primitive phase space measures:

dΦCij (Q
2bij) = dΦCij Θ(sij < Q2bij) (4.48)

dΦCijk
(Q2bijk) = dΦCijk

Θ(sijk < Q2bijk) (4.49)

dΦ
(j,k)
Si

(sjk, ai) = dΦ
(j,k)
Si

Θ(si(jk) < aisjk) (4.50)

dΦ
(l,k)
Sij

(skl, aij) = dΦ
(k,l)
Sij

Θ(s(ij)(kl) < aijskl) (4.51)

dΦCijSi(Q
2bij , ai) = dΦCijSi Θ(sij < Q2bij)Θ(zi < ai) (4.52)

dΦCijkSij (Q
2bijk, aij) = dΦCijkSij Θ(s(ij)k < Q2bijk)Θ(zij < aij) (4.53)

It is left to future work to show that an analogous statement will hold also at higher orders,

i.e. that one requires a certain set of new primitive measures corresponding to, e.g., {Cijkl},
{Sijk} and {Cijkl, Sijk} at N3LO, while all other regions will factorise into the measures

already present at lower orders.

4.4 Soft and collinear master integrals at NNLO

The integration of singular limits of amplitudes over the primitive NNLO phase spaces

({Cijk}, {Sij} and {Cijk, Sij}) is more complicated than the integration over NLO primitive

phase spaces or their iterated limits which occur at NNLO. While the latter evaluate to

Γ-functions, the primitive NNLO limits can lead to hypergeometric functions of type pFq.
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In order to minimise the total number of integrals it is advantageous to express them in

terms of a basis of master integrals. This basis can be constructed by solving the relevant

IBP identities using the Laporta algorithm. Using reverse unitarity [47, 60] to treat Dirac

δ-functions which appear in the definition of their associated phase space measures, it is

a well defined task to use public codes to set up the IBP reduction for these limits. How

to use this technique in the presence of Heaviside step functions is briefly reviewed in

appendix B. To accomplish this task we have employed the public softwares FIRE [61, 62]

and AIR [63].

For the double soft this procedure leads to exactly two master integrals, they can

be easily extracted from the two independent double soft Master integrals which were

presented and evaluated in [64], where they appeared in the threshold limit of the Higgs

boson cross section in gluon fusion. In our conventions this leads to:

M
(2;1)
S (s12, a34) =

∫
dΦ

(1,2)
S34

(s12, a34)
(s12)2

(s(12)(34))4
(4.54)

= −c2
Γ

(s12)−2ε(a34)−4ε

4ε

Γ4(1− ε)
Γ(4− 4ε)

,

M
(2;2)
S (s12, a34) =

∫
dΦ

(1,2)
S34

(s12, a34)
s12

s34s13s24
(4.55)

= M
(2;1)
S (s12, a34) 3F2(1, 1,−ε; 1− ε, 1− 2ε; 1) .

The double soft-triple collinear master integrals are in one-to-one correspondence to those

in the double soft limit, and results for these slightly simpler integrals can be read off from

their double soft counter parts using the phase space parameterisation which was presented

in section 5.2 of [65].

M
(2,2;1)
SC (Q2b134, a34) =

∫
dΦC134S34(Q2b134, a34)

1

(s1(34))2(z34)2
(4.56)

= c2
Γ

(Q2a34b134)−2ε

4ε2
Γ4(1− ε)
Γ2(2− 2ε)

,

M
(2,2;2)
SC (Q2b134, a34) =

∫
dΦC134S34(Q2b134, a34)

1

s34s13z4
(4.57)

= M
(2,2;1)
SC (Q2b134, a34) 3F2(1, 1,−ε; 1− ε, 1− 2ε; 1) .

In the triple collinear limit we will require four master integrals. These, among two other

simpler ones, were presented and evaluated in [66], where they appeared in the context of

jet fragmentation. In our conventions these results can be expressed as follows

M
(2;1)
C (Q2b123) =

∫
dΦC123(Q2b123)

1

s2
123

(4.58)

= −c2
Γ

(Q2b123)−2ε

2ε

Γ5(1− ε)
Γ(2− 2ε)Γ(3− 3ε)

,

M
(2;2)
C (Q2b123) =

∫
dΦC123(Q2b123)

1

s123s12z23
(4.59)

= −2− 3ε

ε
M

(2;1)
C (Q2b123) 3F2(1, 1− 2ε, 1− ε; 2− 3ε, 2− 2ε; 1) ,
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M
(2;3)
C (Q2b123) =

∫
dΦC123(Q2b123)

1

s12s13z13z12
(4.60)

= c2
Γ

(Q2b123)−2ε

2ε

Γ4(1− ε)
Γ(1− 4ε)

4F3(1− ε,−2ε,−2ε,−2ε; 1− 2ε, 1− 2ε,−4ε; 1) ,

M
(2;4)
C (Q2b123) =

∫
dΦC123(Q2b123)

1

s12s13z2z3
(4.61)

= c2
Γ(Q2b123)−2ε

[
3

Γ(1− ε)5

ε4Γ(1− 2ε)Γ(1− 3ε)

−Γ(1− 2ε)Γ(1− ε)3Γ(1 + ε)

2ε4Γ(1− 4ε)
3F2(−2ε,−2ε,−2ε; 1− 2ε,−4ε; 1)

+
Γ(1− ε)5

ε2(1− ε)(1 + ε)Γ(1− 3ε)Γ(1− 2ε)

×4F3(1, 1− ε, 1− ε, 1− ε; 1− 3ε, 2− ε, 2 + ε; 1)

]
.

The expansions around ε = 0 of the hypergeometric functions, can be obtained with the

HypExp package [67].

4.5 Example at NNLO

Let us now consider an example where we can apply the ideas we developed in the last

section in a simple setting. The example we shall consider is

I1 =

∫
dΦ1234

s34s134s234
= SΓ

[
− 1

4ε3
− 1

2ε2
+

(
5

2
ζ2 − 1

)
1

ε
+ 5ζ2 + 11ζ3 − 2 +O(ε0)

]
(4.62)

where we have set Q2 = 1 and

SΓ = Φ2 (cΓ)2. (4.63)

We have analytically evaluated this integral applying again reverse unitarity, IBP reduction

as well as the results for the master integrals given in [68]. This integral contains the

following set of singular regions:

R = {C34, S34, C134, C234} , (4.64)

which leads to the following set of regions:

U =
{
{C34}, {S34}, {C134}, {C234},

{C34, S34}, {C34, C134}, {C34, C234}, {S34, C134}, {S34, C234}, (4.65)

{S34, C134, C34}, {S34, C234, C34}
}
.

Making use of permutation invariance the number of different counter-terms is reduced

to seven. Using IBP reduction we can evaluate them using the master integrals given in

section 4.4. We list analytic results in the following:

• {C34}:∫
dΦ123̂4

s13̂4s23̂4

∫
dΦb34(b34)

s34
= −SΓ

(b34)−ε

ε3
(1− 3ε)(2− 3ε)Γ5(1− ε)

Γ(3− 3ε)Γ(2− 2ε)
(4.66)

– 24 –



J
H
E
P
0
8
(
2
0
1
8
)
0
0
6

• {S34}:∫
dΦ12

∫
dΦ

(1,2)
S34

(s12, a34)

s34s1(34)s2(34)
= −SΓ

(a4
34)−ε

2ε3
(1− 4ε)(3− 4ε)Γ4(1− ε)

Γ(4− 4ε)
(4.67)

• {C134}:∫
dΦ1̂342

s1̂342

∫
dΦC134(b134)

s34s134z34
= −SΓ

(b2134)−ε

4ε3
(1− 3ε)(2− 3ε)Γ5(1− ε)

Γ(3− 3ε)Γ(2− 2ε)
(4.68)

• {C134, S34}:∫
dΦ1̂342

s1̂342

∫
dΦC134S34(b134, a34)

s34s1(34)z34
= −SΓ

(a2
34b

2
134)−ε

4ε3
(1− 2ε)Γ4(1− ε)

Γ2(2− 2ε)
(4.69)

• {C34, S34}:∫
dΦ12

∫ dΦ
(1,2)
S
3̂4

(s12, a34)

s13̂4s23̂4

∫
dΦC34(b34)

s34
= −SΓ

(a2
34b34)−ε

ε3
(1− 2ε)Γ4(1− ε)

Γ2(2− 2ε)
(4.70)

• {C34, C134}:∫
dΦ1̂342

s1̂342

∫
dΦC

13̂4
(b134)

s13̂4z3̂4

∫
dΦC34(b34)

s34
= −SΓ

(b34b134)−ε

ε3
(1− 2ε)Γ4(1− ε)

Γ2(2− 2ε)
(4.71)

• {S34, C234, C34}:∫
dΦ1̂342

s1̂342

∫
dΦC

13̂4
S
3̂4

(b134, a34)

s13̂4z3̂4

∫
dΦC34(b34)

s34
= −SΓ

(a34b34b134)−ε

ε3
Γ2(1− ε)
Γ(2− 2ε)

(4.72)

Summing the counter-terms, weighted with the appropriate signs, we obtain:

I1S =

∫
dΦ1234

s34s134s234
Θ(singular) (4.73)

= SΓ

[
− 1

4ε3
− 1

2ε2
+

(
− 1 +

5

2
ζ2

)
1

ε

−2 + 5ζ2 + 10ζ3 − 2ζ2La34 + L3
a34 −

1

2
L2
a34(Lb134 + Lb234)

−Lb34L2
a34 −

1

2
La34(L2

b134 + L2
b134) + La34Lb34(Lb134 + Lb234) +O(ε1)

]
where we use the notation

Lnz = logn z . (4.74)

The singular contribution thus correctly reproduces the poles of eq. (4.62). We continue

with a numerical check of the finite part of eq. (4.62), which is defined by:

I1F =

∫
dΦ1234

s34s134s234
Θ(F ) , (4.75)
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Figure 7. This figure shows ∆I1(λ) on the left and also separately the ε0 coefficients of I1F , I1S
and their sum on the right in the subtraction method. In both figures I1F is evaluated numerically

using 108 points for each value of λ.

with

Θ(F ) = Θ(s34 > b34)Θ(s(12)(34) > a34s12)Θ(s134 > b134)Θ(s234 > b234) . (4.76)

A numerical evaluation of I1F using the slicing method for a range of values of a parameter

λ, which fixes the cut-off parameters via

a34 = λ, b134 = b234 = λ2, b34 = λ3 , (4.77)

is shown in figure 7. The strict hierarchy which the slicing cut offs must satisfy unfortu-

nately limits the range of possible values of λ which can be chosen without risking loss

of numerical stability. Nevertheless good numerical convergence is observed in the range

λ ∈ [0.1, 0.001] for this particular example. In general we may not expect such good

convergence in the range λ ∼ 0.1 which is likely due to the trivial numerator.

4.6 Generalisation to initial states

Let us briefly comment here also on the generalisation of the geometric subtraction pro-

cedure to divergences in the inital states. Since soft divergences are always associated to

momenta in the final state, no new complications are encountered here in the initial state.

Indeed the double-soft counter-terms we propose here have already been used in initial

state calculations before, see [69].

The new feature is that there can be collinear divergences, where final state partons

become collinear to partons in the initial state. One can define the slicing parameters for

these regions analogously to those in the final states, as the Mandelstams sij = −2pi.pj ,

where now i (j) is in the initial (final) state. Phase space factorisation in these spacelike

Mandelstams similarly provides one with a way to define suitable singular phase space

volumes. Let us briefly sketch how this would work for a simple NLO process:∫
dΦ12→3H |M12→3H |2 , (4.78)
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with H a higgs boson, or a collection of “hard momenta”, p1, p2 the initial state partons

and p3 a final state parton. A collinear divergence can arise in the limit p3||p1. To define

a counter-term for this region we define the collinear region s13 < −b13Q
2. Phase space

factorisation for the counter-term yields:

lim
b13→0

∫ −b13Q2

0
ds13 dΦ1→(13)3 dΦ(13)2→H |M12→3H |2 . (4.79)

Let us now introduce a parameterisation for the collinear phase space dΦ1→(13)3. We

parameterise the momentum as:

p3 = (1− z3)p1 + y3n+ p⊥3 (4.80)

such that∫
dΦC13(b13Q

2) =

∫
ds13 dΦ1→(13)3 = cΓ

∫ −b13Q2

0
ds13 s

−ε
13

∫ 1

0
dz3(1− z3)−ε . (4.81)

Then we can derive the following factorised limit:

lim
b13→0

∫
dΦ12→3H |M12→3H |2 θ(−s13 < b13Q

2)

=

∫
dΦC13(b13Q

2)
2P13(z3)

−s13

∫
dΦ1′2→H |M1′2→H |2 with p1′ = z3p1 . (4.82)

The massless collinear momentum p1′ = z3p1, which enters the Born amplitude in the

collinear limit, is thus modified only by the longituidinal momentum fraction z3. This

feature indeeds leads to the typical convolution integral, which one expects from initial

state collinear divergences. Further more our prescriptions for dealing with the soft collinear

overlap will lead to subtraction in the variable 1−z3 with an upper bound a3. For the value1

a3 = 1 this is indeed identical to the usual plus prescription with which these divergences

are commonly subtracted, see e.g. [5]. The geometric subtraction procedure can thus be

extended in a straight forward manner to the subtraction of collinear divergences in the

initial states. In fact the integrated triple collinear counter-terms at NNLO have already

been presented in [66]. We will further explore this extension in the future.

5 Counter-terms for final state real emissions in Yang Mills theory

In the following section we will employ the geometric subtraction formalism to construct

suitable counter-terms for tree-level Yang Mills amplitudes; that is QCD amplitudes with-

out quarks, which we ignore here for simplicity. While amplitudes factorise completely in

collinear limits, soft limits are color correlated. To make the counter-terms as simple as

possible we will employ tailor-made soft volumes for the different color correlated eikonal

factors, which make up a particular soft limit.

1The value a3 = 1 is not accessible with the slicing method, but it is in the subtraction method to which

the slicing method can be promoted.
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To accomplish this task we correlate the sum over singular regions with individual

interference terms contributing to the squared amplitude:

OSingular
l;1...n+l =

∫
dΦ1...n+l J

(l)
1...n+l Θ(Singular) ∗ |M1...n+l|2 , (5.1)

with

Θ(Singular) ∗ |M1...n+l|2 =
∑
k,m

(M∗k)1...n+l (Mm)1...n+l Θ(Singular(k,m)) , (5.2)

where the sum over k,m labels different color projected (sets of) Feynman diagrams con-

tributing to the matrix element M, such that M =
∑

kMk. We can then use eq. (4.25)

individually for each component of Θ(Singular). In order to ensure gauge invariance in

the counter-terms it is sufficient that sets of Feynman diagrams multiplying a particular

entry of Θ(Singular) conspire to singular limits which are gauge invariant, such as the

Altarelli-Parisi splitting function or the eikonal factor.

In the following we shall present how to define Θ(Singular) explicitly at NLO and at

NNLO. Further more we will provide all integrated counter-terms for final state emissions

at these first two orders.

5.1 Counter-terms at NLO

At NLO we define the sum over singular regions as

OSingular
1;1...n+1 = − lim

ai→0
lim
bij→0

∑
U∈U(1)

(−1)|U |
∫

dΦ1...n+1 J (1)
1...n+1

∏
r∈U

Θ(r) ∗ |M1...n+1|2, (5.3)

with the set of regions defined by

U (1) = {{Cij}, {Si}, {Cij , Si}} . (5.4)

To define a suitable Θ-matrix it is sufficient to define how it behaves in the singular limit.

In the soft limit we require it to behave as follows:

lim
ak→0

Θ(Sk) ∗ |M1...n+1|2 =
∑
ij

|M(i,j)
1... 6k...n+1|

2 S(i,j)
k Θ(aksij − sk(ij)) (5.5)

where the eikonal factor is given by

S(i,j)
k = 2

sij
siksjk

, (5.6)

and |M(i,j)
1...n|2 denotes the color correlated squared (Born) amplitude:

|M(i,j)
1...n|

2 = 〈M1...n|T i.T j |M1...n〉 . (5.7)

Here T i denote the (by now standard) color charge operator; see, e.g., [25]. In the collinear

limit we require the Θ-matrix to factorise completely:

lim
bij→0

Θ(Cij) ∗ |M...i...j...|2 =
2

sij
(Pij)µ1µ2 |Mµ1µ2

...îj...|
2 Θ(bijQ

2 − sij) . (5.8)
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Here (Pij)µ1µ2 is the standard spin correlated gluonic Altarelli-Parisi splitting function

defined in, e.g., eq. (12) of [25] and |Mµ1µ2
...îj...|

2 is the spin correlated squared matrix

element, denoted T µν in [25]. Let us remark also that the different soft volumes Θ(an+1sij−
sn+1(ij)) all collapse to the same limit in the soft-collinear limit; since

lim
i||k

Θ(aksij − sk(ij)) = Θ(ak − zk) . (5.9)

To write down the integrated counter-term it is convenient to define the functions:

ISg (skl, ai) =

∫
dΦ

(k,l)
Si

(skl, ai)S
(k,l)
i = 2cΓ

(a2
i skl)

−ε

ε2
Γ(1− ε)2

Γ(2− 2ε)
, (5.10)

ICgg(Q2bij) =

∫
dΦCij (Q

2bij)
2

sij
〈Pgg(zi)〉 (5.11)

= 6CAcΓ
(Q2bij)

−ε

ε2
(1− ε)(4− 3ε)

(3− 2ε)

Γ(1− ε)2

Γ(2− 2ε)
,

ISCgg (Q2bij , ai) =

∫
dΦCijSi(Q

2bij , ai)
2

sij
〈Pgg(zi)〉

∣∣∣
zi→0

(5.12)

= 4CAcΓ
(Q2bijai)

−ε

ε2
,

as well as the following linear combination:

IĈab(Q2bij , ai, aj) = ICab(Q2bij)− ISCab (Q2bij , ai)− ISCab (Q2bij , aj) . (5.13)

Here 〈Pgg(zi)〉 denotes the spin averaged Altarelli-Parisi splitting function. In terms of

these functions one can write down a compact formula for the quantity OSingular
1;1...n+1:

OSingular
1;1...n+1 =

∑
i>j

IĈij (Q2bij , ai, aj)O0;1...îj...n+1 +
∑
i

∑
k,l 6=i

∫
dO(k,l)

0;1... 6i...n+1I
S
gi(skl, ai) ,

(5.14)

with

dO(i,j)
l;1...n+l = dΦ1...n+l |M

(i,j)
1...n+l|

2J (l)
1...n+l . (5.15)

It is straight forward to show that eq. (5.14) agrees with the corresponding one-loop pole

operator given by Catani in, e.g., [70].

5.2 Counter-terms at NNLO

At NNLO we define the sum over singular regions similarly as

OSingular
2;1...n+2 = − lim

aij→0
lim
ai→0

lim
bijk→0

lim
bij→0

(5.16)∑
U∈U(2)

(−1)|U |
∫
dΦ1...n+2 J (2)

1...n+2

∏
r∈U

Θ(r) ∗ |M1...n+2|2 ,

with U (2) defined similarly, although not identically due to the more elaborate soft struc-

ture, as in eq. (4.37). To define the limits Θ(Cij) and Θ(Si) we simply use the NLO

definitions. The triple collinear limit is defined similarly to the double collinear:

lim
bijk→0

Θ(Cijk)∗|M...i...j...k...|2 =
4

(sijk)2
(Pijk)µ1µ2 |Mµ1µ2

...îjk...
|2 Θ(Q2bijk−sijk) , (5.17)
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with (Pijk)µ1µ2 the triple collinear Altarelli-Parisi splitting function, defined, e.g., in eq. (66)

of [25].

The double soft limit receives two independent color-correlated contributions:

lim
k,l→0

|M1...n+2|2 =
1

2

n∑
i,j,r,t=0

|M(i,j)(r,t)
1... 6k... 6l...n|

2 S(i,j)
k S(r,t)

l (5.18)

−1

2
CA

n∑
i>j=1

|M(i,j)
1... 6k... 6l...n|

2
(

2S(i,j)
kl − S

(i,i)
kl − S

(j,j)
kl

)
,

with S(i,j)
kl the double-soft eikonal function defined in eq. (109) of [25],

|M(i,j)(r,t)
1... 6k... 6l...n|

2 = 〈M1... 6k... 6l...n+2|{T i.T j ,T k.T l}|M1... 6k... 6l...n+2〉 (5.19)

and where we have used the color conservation identity∑
i

T i|M〉 = 0 , (5.20)

to shift the color diagonal terms S(i,i)
kl into the color off-diagonal terms.

The double soft limit thus contains two terms. The first term factorises over the soft

momenta and contains color-kinematic correlations with up to four hard partons (Wilson

lines). Instead the second term contains kinematic correlations of the two soft momenta

and color-kinematic correlations with up to two hard partons. It is interesting to note that

while both terms are singular in triple collinear regions i||l||k and j||l||k only the second

term contributes to the limit containing k||l and only the first term contributes to limits

containing i||k, i||l, j||k and j||l.
A natural measure for the second term is dΦ

(i,j)
Skl

(sij , akl) which we introduced earlier.

Instead we shall treat each of the eikonal factors in the first term with a single soft phase

space measure, i.e. with dΦ
(i,j)
Sk

(sij , ak) dΦ
(r,t)
Sl

(srt, al). The “true” double soft measure will

thus be associated only to the second term, while the first term is naturally associated to

the product of two single soft limits. These considerations lead us to define:

lim
akl→0

Θ(Skl) ∗ |M1...n+2|2 (5.21)

= −1

2
CA

n+2∑
i,j=1 6=k,l

|M(i,j)
1... 6k... 6l...n+2|

2 (2S(i,j)
kl − S

(i,i)
kl − S

(j,j)
kl ) Θ(aklsij − s(kl)(ij)) ,

and

lim
akl→0

lim
(ak,al)→0

(1−Θ(Skl))Θ(Sk)Θ(Sl) ∗ |M1...n+2|2 (5.22)

= +
1

2

∑
i,j,r,t 6=k,l

|M(i,j)(r,t)
1... 6k... 6l...n+2|

2 S(i,j)
k S(r,t)

l Θ(aksrt − sk(rt)) Θ(alsij − sl(ij)) .

With this distribution of the theta functions it follows that the double soft limit k, l→ 0 is

not entirely controlled by the limit akl → 0, instead also ak, al → 0 is required for both terms
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in eq. (5.18) to diverge. The region cancellation between the regions Θ(Sij)Θ(Si)Θ(Sj)

and Θ(Si)Θ(Sj), which was given in eq. (4.28), therefore only holds for the second term in

eq. (5.18), since the first does not contribute to the region Θ(Sij).

Let us now consider what happens in the strongly ordered double soft limits corre-

sponding to {Sij , Si}. One can show, by taking the successive soft limits, that this limit

becomes:

lim
akl→0

lim
ak→0

Θ(Sk)Θ(Skl) ∗ |M1...n+2|2

= −CA
n+2∑
i,j 6=k,l

|M(i,j)
1... 6k... 6l...n+2|

2 S(i,j)
l Θ(aklsij − sl(ij)) (5.23)

·
(
S(l,j)
k Θ(akslj − sk(lj)) + S(l,i)

k Θ(aksli − sk(li))− S
(i,j)
k Θ(aksij − sk(ij))

)
.

Thus the different single eikonal factors which contribute to the strongly ordered limit of

the non-Abelian double soft limit come with their distinct single soft phase spaces. A

caveat of the method is that in the strongly ordered soft limit certain collinear limits such

as {Skl, Sk, Cil}, which would usually not survive in the non-Abelian double soft factor,

e.g. {Skl, Cik} is not singular, now survive:

lim
ajk→0

lim
ak→0

lim
bil→0

Θ(Cil)Θ(Sk)Θ(Skl) ∗ |M1...n+2|2 (5.24)

= −CA
n+2∑
j 6=k,l

|M(i,j)
1... 6k... 6l...n+2|

2 2

sil
〈Pil(zl)〉

∣∣∣
zl→0

Θ(akl − zl) Θ(bklQ
2 − sil)

· S(îl,j)
k

(
Θ(akzlsîlj − zlskîl − skj)−Θ(aksîlj − skîl − skj)

)
.

The re-scaling invariance of the eikonal factor,

S(îl,j)
k = S(zl îl,j)

k , (5.25)

ensures that the last two terms in eq. (5.24) would cancel, if it was not for the differing

Θ-functions which break the re-scaling invariance upon which the cancellation mecha-

nism relies.

The chosen distribution of single and double soft Θ-functions similarly splits the various

overlapping soft-collinear limits. For instance the triple collinear double soft limit splits

into a non-Abelian part:

lim
akl→0

lim
bikl→0

Θ(Skl)Θ(Cikl) ∗ |M1...n+2|2 (5.26)

= C2
A |M1... 6ikl...n+2|2 (2S(i,n)

kl − S(i,i)
kl − S

(n,n)
kl )

∣∣∣
zi→1

·Θ(akl − zk − zl)Θ(Q2bikl − sil − sik) ,

and an Abelian part:

lim
akl→0

lim
(ak,al)→0

lim
bikl→0

(1−Θ(Skl))Θ(Sk)Θ(Sl))Θ(Cikl) ∗ |M1...n+2|2 (5.27)

= +4C2
A |M1...îkl...n+2

|2 S(i,n)
k S(i,n)

l

∣∣∣
zi→1

·Θ(ak − zk) Θ(al − zl)Θ(Q2bikl − sil − sik) ,
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where n denotes the collinear reference vector such that, e.g.,

S(i,n)
k = 2

zi
sikzk

. (5.28)

The single soft triple collinear limits instead are split into three different eikonal factors:

lim
ak→0

lim
bijk→0

Θ(Sk)Θ(Cikl) ∗ |M1...n+2|2

= +CA |M1...îkl...n+2
|2 2

sij
Pij(zi)

(
S(i,j)
k Θ(aksij − si(kl))Θ(Q2bikl − sij) (5.29)

+S(îj,n)
k Θ(Q2bikl − sij − skîj)

(
Θ(akzi − zk) + Θ(akzj − zk)

))
,

with

S(îj,n)
k = S(zi îj,n)

k = S(zj îj,n)
k = 2

1

sîjkzk
. (5.30)

It is interesting to note how the different eikonals contributing to this limit come with

their individual phase space volume constraints. The first term can be interpreted as a

degeneration of the limit {Cijk, Sk} into something like an ordered {Cij , Sk} with the soft

scale smaller then the collinear one. The second term on the other hand takes the form

of a soft collinear limit where the soft and collinear scales are of the same order. Let us

briefly analyse the kinematics of this second limit. Taking the limit ak → 0 in Θ(akzi− zk)
forces the momentum fraction zk to vanish; in turn this means that

pµk →
pk.pîj
n.pîj

nµ ⇒ 2pk.pij →
pk.pîj
n.pîj

2n.pij = 2pk.pîj (5.31)

and so sijk → sij+skîj . It appears almost as something of a miracle that the triple collinear

splitting function produces a factor (sij + skîj)
2 in the numerator which precisely cancels

the overall denominator 1/s2
ijk. A feature which leads to a welcome simplification for the

integrated counter-term associated to this limit.

The strongly ordered double soft limit receives contributions only from the non-Abelian

double soft limit of the triple collinear region and yields

lim
aik→0

lim
ak→0

lim
bijk→0

Θ(Sk)Θ(Sik)Θ(Cikl) ∗ |M1...n+2|2 (5.32)

= +CA |M1...îkl...n+2
|2 2

sij
Pij(zi)

∣∣∣
zi→0

Θ(aik − zi)

·
(
S(i,j)
k Θ(aksij − si(kl))Θ(Q2bikl − sij)

+Θ(Q2bikl − sij − skîj)S
(îj,n)
k

(
Θ(akzi − zk)−Θ(ak − zk)

))
,

Other limits can be worked out similarly starting from these expressions and using the soft

and collinear limits of amplitudes. All in all, with this choice of the single and double soft

color correlated phase space boundaries, the NNLO set of regions which enters eq. (5.16)

is given by:

U (2) =
{
{Si}, {Sij}, {Cij}, {Cijk}, {Cijk, Cij}, {Cijk, Sij}, {Cijk, Si}, {Cij , Ckl},

{Cij , Sij}, {Cij , Si}, {Cij , Sk}, {Sij , Si}, {Si, Sj}, {Si, Sj , Sij}, {Cijk, Cij , Sij},

– 32 –



J
H
E
P
0
8
(
2
0
1
8
)
0
0
6

{Cijk, Cij , Si}, {Cijk, Cij , Sk}, {Cijk, Sij , Si}, {Cijk, Si, Sj}, {Cijk, Si, Sj , Sij},
{Cij , Ckl, Si}, {Cij , Sij , Si}, {Cij , Si, Sk}, {Cij , Si, Sk, Sik}, {Cjk, Sij , Si},
{Cijk, Cij , Sij , Si}, {Cijk, Cij , Sik, Sk}, {Cijk, Cij , Si, Sk}, {Cijk, Cij , Si, Sk, Sik},

{Cij , Ckl, Si, Sk}, {Cij , Ckl, Si, Sk, Sik}
}
. (5.33)

It is convenient to re-organise the sum over regions in eq. (5.16) by introducing the sub-

divergence subtracted regions C̄ijk, Ŝij , and C̄ij , as certain subsets of U (2). The region

C̄ijk is defined as the set of all regions which contain Cijk. The region Ŝij is defined as the

set of all regions containing Sij apart from those also containing Cijk; and the region C̄ij
includes Cij and its overlaps with the regions Si and Sj .

Using Θs we can also define these regions as follows:

Θ(C̄12) = Θ(C12)
(

1−Θ(S1)−Θ(S2)
)
, (5.34)

Θ
(
Ŝ12) = Θ(S12)

[(
1−Θ(S1)−Θ(S2)

)(
1−Θ(C12)

)
+Θ(S1)

∑
k 6=1,2

Θ(C2k) + Θ(S2)
∑
k 6=1,2

Θ(C1k)

]
(5.35)

−Θ(S1)Θ(S2)(1−Θ(S12)) ,

Θ(C̄123) = Θ(C123)

[(
1−

3∑
k=1

Θ(Sk)

)(
1−

3∑
i>j=1

Θ(Cij)

)

+

3∑
i>j=1

3∑
k=1 6=i,j

(
1−Θ(Sij)

)
Θ(Si)Θ(Sj)

(
1−Θ(Cik)−Θ(Cjk)

)
+

3∑
i>j=1

3∑
k=1 6=i,j

Θ(Sij)
((

1−Θ(Si)−Θ(Sj)
)(

1−Θ(Cij)
)

+Θ(Sj)Θ(Cik) + Θ(Si)Θ(Cjk)
)]
. (5.36)

Note in particular that the term Θ(S1)Θ(S2)(1−Θ(S12)) in eq. (5.35) only receives con-

tributions from the first term in eq. (5.18), instead all other terms in eq. (5.35) receive

contributions only from the respective second term in eq. (5.18).

Associated to these Θ-functions we define the integrals

lim
aij→0

lim
ai→0

lim
bijk→0

lim
bij→0

∫
Θ(C̄123) ∗ dO2:123...n+2 (5.37)

= IC̄g1g2g3(t123, t12, t13, t23, a12, a13, a23, a1, a2, a3)

∫
dO0;1̂23...n+2

and

lim
aij→0

lim
ai→0

lim
bij→0

∫
Θ(Ŝ12) ∗ dO2:123...n+2 (5.38)

= −CA
2

∑
i,j 6=1,2

∫
dO(i,j)

0;3...n+2 I
Ŝ
g1g2(sij , a12, a1, a2, t12, t1i, t1j , t2i, t2j)

+
∑

i,j,k,l 6=1,2

∫
dO(i,j)(k,l)

0;3...n+2 I
S
g1(sij , a1) ISg2(skl, a2) ,
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where tij... = Q2bij... and

dO(i,j)(k,l)
0;1... 6k... 6l...n+2 = dΦ1... 6k... 6l...n+2 |M

(i,j)(r,t)
1... 6k... 6l...n|

2 J (0)
1... 6k... 6l...n+2 . (5.39)

In terms of these combinations we can then write out the sum in eq. (5.16) as follows:

OSingular
2;1...n+2 = lim

aij→0
lim
ai→0

lim
bijk→0

lim
bij→0

∫
dΦ1...n+2 J (2)

1...n+2(∑
i

Θ(Si) +
∑
i>j

Θ(C̄ij) +
∑
i>j

Θ(Ŝij) +
∑
i>j>k

Θ(C̄ijk) (5.40)

−
∑

i>j>k>l

Θ(C̄ij)Θ(C̄kl)−
∑
i>j

∑
k 6=i,j

Θ(C̄ij)Θ(Sk)

)
∗ |M1...n+2|2 .

An explicit representation for the pole part in terms of the different region approximants

can then be written as follows:

OSingular
2;1...n+2 =

∑
i>j

IC̄gigj (tij , ai, aj)O1;1...îj...n+2

−
∑
k

∑
i,j 6=k

∫
dO(i,j)

1;1... 6k...n+2 I
S
gk

(sij , ak)

−
∑

i>j>k>l

IC̄gigj (tij , ai, aj) I
C̄
gkgl

(tkl, ak, al)O0;1...îj...k̂l...n+2

+
∑
i>j>k

IC̄gigjgk(tijk, tij , tik, tjk, aij , aik, ajk, ai, aj , ak)O0;1...îjk...n+2
(5.41)

+
∑
i>j

∑
k 6=i,j

∑
l,m∈{1,...,îj,..., 6k,...n+2}

IC̄gigj (tij , ai, aj)
∫

dO(l,m)

0;1...îj... 6k...n+2
ISgk(slm, ak)

+
∑
k>l

∑
i,j,m,n 6=k,l

∫
dO(i,j)(m,n)

0;1... 6k... 6l...n+2 I
S
gk

(sij , ak) ISgl(smn, al)

−CA
2

∑
k>l

∑
i,j 6=k,l

∫
dO(i,j)

0;1... 6k... 6l...n+2 I
Ŝ
gkgl

(sij , akl, ak, al, tkl, tik, tjk, til, tjl)

Let us remark here that the poles of the observable O1...n+2 do of course not depend on

the parameters ai... and bij.... To get a simpler expression independent of these parameters

one can alternatively set all the parameters to unity, i.e., bij... = 1, ai... = 1. However to

explicitly verify the cancellation of these parameters in the pole parts constitutes a welcome

cross-check for its validity for a given process.

Given the results of all the integrated counter-terms, for which we present simple

integral representations in appendix C, one can assemble the functions IC̄gigjgk and I Ŝgigj
which make up the basic new building blocks needed at NNLO to construct the integrated

counter-terms for arbitrary multiplicities. We give these functions as expansions in ε in-

cluding terms up to O(ε0); although the results of this paper allow to construct them to

arbitrary order if needed. Since these functions are lengthy, due to the many parameters

– 34 –



J
H
E
P
0
8
(
2
0
1
8
)
0
0
6

on which they depend, we provide them in computer readable format with this publication.

We nevertheless provide them here for the useful case where one sets

Q2bijk = β2, Q2bij = β1, aij = α2, ai = α1 (5.42)

for all i, j, k:

I Ŝgg(sij , α2, α1, α1, β1, β1, β1, β1, β1) = 12(cΓ)2

·
{

1

ε4
+

1

ε3

[
− 2

3
Lsij −

4

3
Lβ1 +

11

6

]
+

1

ε2

[
4

3
LsijLβ1 −

2

3
L2
α2
− 8

3
Lα1Lα2

+
4

3
L2
α1

+
2

3
L2
β1 −

11

9
Lsij −

22

9
Lα2 −

22

9
Lβ1 − 3ζ2 +

67

18

]
+

1

ε

[(
2Lsij +

8

3
Lα2 +

8

3
Lα1 + 4Lβ1 −

11

9

)
ζ2 +

2

9
L3
sij −

2

3
L2
sijLβ1 −

4

3
L2
α1
Lsij

−2

3
LsijL

2
β1 +

2

3
L3
α2

+
4

3
Lα1L

2
α2

+
4

3
L2
α2
Lβ1 +

16

3
Lβ1Lα1Lα2 −

4

3
L3
α1

−4

3
L2
α1
Lβ1 −

2

9
L3
β1 +

22

9
LsijLβ1 +

44

9
Lβ1Lα2 +

11

9
L2
β1 −

67

27
Lsij

−134

27
Lα2 −

134

27
Lβ1 − 5ζ3 +

202

27

]
+

[
− 8

3
Lβ1L

2
α1
Lα2 +

4

3
L2
α2
L2
α1

+
134

27
LsijLβ1 +

2

9
LsijL

3
β1 +

1

3
L2
sijL

2
β1

+
2

9
L3
sijLβ1 +

4

3
L3
α1
Lsij +

2

3
L2
sijL

2
α1

+
2

3
L2
sijL

2
α2
− 44

9
Lβ1Lα2Lsij

−4

3
LsijLβ1L

2
α2

+
8

9
L3
α1
Lα2 +

20

9
Lα1L

3
α2

+
268

27
Lβ1Lα2 +

2

3
L2
β1L

2
α1

+
4

3
Lβ1L

3
α1
− 8

3
L2
β1Lα1Lα2 +

(
8Lβ1 +

32

3
Lα1 −

4

3
Lα2 + 2Lsij +

22

9

)
ζ3

+

(
− 16

3
Lβ1Lα2 − 8Lα1Lα2 −

16

3
Lα1Lsij − 4LsijLβ1 +

44

9
Lβ1 −

44

9
Lα2

−22

9
Lsij − 4L2

α1
+ 2L2

α2
− 2L2

β1 −
67

27

)
ζ2 +

44

9
LsijL

2
α2

+
22

9
L2
sijLα2

+
1214

81
− 404

81
Lsij −

9

2
ζ4 −

1

6
L4
sij −

808

81
Lα2 −

13

18
L4
α2
− 808

81
Lβ1 −

11

27
L3
β1

+
4

3
L2
α1
Lβ1Lsij +

8

3
L2
α1
Lα2Lsij +

8

3
L2
sijLα1Lα2 +

16

3
Lα1L

2
α2
Lsij

−16

3
Lα1Lβ1Lα2Lsij − 8Lβ1Lα1L

2
α2
− 11

9
LsijL

2
β1 −

11

9
L2
sijLβ1 +

1

18
L4
β1

+
11

27
L3
sij +

88

27
L3
α2

+
67

27
L2
β1 +

7

9
L4
α1
− 44

9
L2
α2
Lβ1 −

22

9
L2
β1Lα2

−4

3
Lβ1L

3
α2
− 2

3
L2
β1L

2
α2

]
+O(ε)

}
, (5.43)

and

IC̄gigjgk(β2, β1, β1, β1, α2, α2, α2, α1, α1, α1) = −24(cΓ)2C2
A

·
{

1

ε2

[
1

2
L2
α2

+ 2Lα1Lα2 + 2L2
α1

+ ζ2 +
11

6
Lα2 +

11

2
Lα1 +

3

2

]
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+
1

ε

[(
− 2Lα2 − 6Lα1 − 2Lβ1 −

11

2

)
ζ2 −

1

2
L3
α2
− Lα1L

2
α2

−L2
α2
Lβ1 − 4Lβ1Lα1Lα2 − 2L3

α1
− 4L2

α1
Lβ1 −

11

3
Lβ1Lα2

−11

6
L2
α1
− 11Lα1Lβ1 +

67

18
Lα2 +

67

6
Lα1 − 3Lβ1 +

5

2
ζ3 +

14

3

]
+

[
− 919

108
Lβ1 −

89

108
Lβ2 −

11

18
L3
α2
− 67

18
L2
α1
− 3

2
L2
β2 + 4Lβ1Lα1Lβ2Lα2

−2

3
L3
α1
Lα2 +

202

9
Lα1 +

202

27
Lα2 +

77

8
ζ4 +

11

3
Lβ1Lβ2Lα2 +

193

24

−67

9
Lβ1Lα2 −

11

2
L2
β2Lα1 +

7

6
L4
α1
− 11

6
Lβ2L

2
α2
− 1

2
L2
β2L

2
α2

+
7

24
L4
α2
− 11

6
L2
β2Lα2 −

11

6
Lβ2L

2
α1

+
3

2
L2
β1 −

469

18
Lα1Lβ1

+3Lβ2Lβ1 − 2L2
α1
L2
β2 + Lβ1L

3
α2

+ 2L2
β1L

2
α1

+ 4Lβ1L
3
α1

+

(
− 55

6
+ 5Lβ2 − 10Lβ1 − 12Lα1 − Lα2

)
ζ3 +

(
− 67

9
+ 11Lβ1

−L2
β2 + L2

β1 + 4L2
α1

+
1

2
L2
α2

+ 2Lα1Lα2 + 4Lβ1Lα2 + 14Lα1Lβ1

−2Lβ2Lα1 + 2Lβ2Lβ1

)
ζ2 +

67

18
Lβ2Lα1 +

11

2
L2
α1
Lβ1 +

11

6
L2
α2
Lβ1

+
1

2
L2
β1L

2
α2

+
11

2
L2
β1Lα1 +

11

6
L2
β1Lα2 +

1

3
Lα1L

3
α2

+ 2L2
β1Lα1Lα2

−2L2
α1
Lα2Lβ2 − 2Lα1L

2
β2Lα2 − Lα1L

2
α2
Lβ2 + 4Lβ1L

2
α1
Lβ2

+2Lβ1L
2
α1
Lα2 + 3Lβ1Lα1L

2
α2

+ L2
α2
Lβ1Lβ2 + 11Lβ1Lα1Lβ2

]
+O(ε)

}
. (5.44)

5.3 The poles for the H → gggg phase space integral

A simple example which allows us to test the validity of eq. (5.41) is given by the quantity

OH→g1g2g3g4 =

∫
dΦ1234 |MH→g1g2g3g4 |2 . (5.45)

We consider the corresponding amplitude in the heavy quark effective theory where the

Higgs boson couples to gluons directly via the effective Lagrangian:

L = −Ceff

4
HGµνa Gaµν , (5.46)

with Ceff a Wilson coefficient, H the Higgs boson field and Gµνa the gluon field strength

tensor. We can evaluate the inclusive quantity OH→g1g2g3g4 using IBP reduction and the
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master integrals presented in [68] to get (setting Q2 = 1):

OH→g1g2g3g4 = 120(cΓ)2g4
s(CA)2OH→g1g2

·
{
− 1

ε4
− 1

ε3
121

30
+

1

ε2

[
39

5
ζ2 −

872

45

]
+

1

ε

[
123

5
ζ3 +

473

15
ζ2 −

4691

54

]
+

[
− 37

10
ζ4 −

304951

810
+ 99ζ3 +

2303

15
ζ2

]
+O(ε)

}
(5.47)

Using eq. (5.41) we can confirm the pole parts of this expression independently to obtain

(using again the parameter choice of eq. (5.42)):

OSingular
H→g1g2g3g4 = 120(cΓ)2g4

s(CA)2OH→g1g2

·
{
− 1

ε4
− 1

ε3
121

30
+

1

ε2

[
39

5
ζ2 −

872

45

]
+

1

ε

[
123

5
ζ3 +

473

15
ζ2 −

4691

54

]
+

[
− 586351

1620
+

6788

45
ζ2 +

1496

15
ζ3 −

8

5
ζ4 −

1

5
L4
α2
− 17

3
L2
α1
− 89

135
Lβ2

−6

5
L2
β2 −

22

15
Lβ2L

2
α2
− 22

15
L2
β2Lα2 −

2

5
L2
β2L

2
α2
− 8

5
L2
α1
L2
β2 +

4

5
L4
α1

−44

15
L2
α1
Lβ1 −

22

15
L2
α2
Lβ1 −

16

5
Lβ1L

3
α1
− 22

15
Lβ2L

2
α1
− 22

5
L2
β2Lα1

−4

5
L2
β2ζ2 −

16

5
Lα1ζ3 −

8

5
Lα2ζ3 −

44

15
Lα2ζ2 +

22

15
L3
α2

+
503

27
Lα1

+
187

18
Lβ1 +

121

90
L2
β1 −

44

15
Lα1ζ2 + 4ζ3Lβ2 +

8

5
Lβ2Lβ1ζ2

+
16

5
Lβ1L

2
α1
Lβ2 +

44

15
Lβ1Lβ2Lα2 +

4

5
L2
α2
Lβ1Lβ2 +

44

5
Lβ1Lα1Lβ2

−8

5
Lα1Lβ1ζ2 +

8

5
L2
α1
ζ2 −

16

5
Lα2Lα1ζ2 −

8

5
Lβ2Lα1ζ2 +

8

5
L2
α2
ζ2

+
4

5
L2
α2
L2
α1

+
134

45
Lβ2Lα1 +

12

5
Lβ2Lβ1 +

8

5
Lα1L

3
α2

+
644

45
Lα1Lβ1

+
44

15
L2
β1Lα1 +

8

5
L2
β1L

2
α1
− 12

5
Lβ1Lα1L

2
α2
− 8

5
L2
α1
Lα2Lβ2 (5.48)

−8

5
Lα1L

2
β2Lα2 −

4

5
Lα1L

2
α2
Lβ2 +

16

5
Lβ1Lα1Lβ2Lα2

]
+O(ε)

}
The αi... and βij... parameters thus cancel in the poles and, more importantly, reproduce

the correct result. A proper integrand-level implementation of these counter-terms must

therefore numerically cancel the finite log-dependent parts which make up the finite part

of the integrated counter-term OSingular
H→g1g2g3g4 . Unfortunately it is infeasible to check the

finite part using the slicing approach, since the hierarchies which we have assumed for the

four different slicing parameters are too large to simulate numerically. To guarantee an

accuracy of 1% one would have to take the smallest parameter to be around 10−8. Even

with enormous computer resources this would prove to be challenging. Further more one

would have to find an explicit decomposition of the squared amplitude which respects the

distribution of θ-functions which we have fixed in the various soft limits.

– 37 –



J
H
E
P
0
8
(
2
0
1
8
)
0
0
6

In order to accomplish this task we will therefore have to resort to the subtraction

method to which one should be able to promote the slicing method. In the subtraction

method the hierarchy between slicing parameters can be relaxed and an accurate stable

numerical evaluation should be feasible. Since it requires working out suitable phase space

parameterisations or momentum mappings for all the 26 different counter-terms this is a

however a formidable task in itself and will be left therefore to future work.

6 Conclusions

In this work we introduced a new scheme for the subtraction of IR divergences in real

radiation phase space integrals, which is based on a particular Feynman diagram dependent

slicing observable.

To construct this observable we introduced slicing parameters or normal coordinates

for each soft or collinear singular region. We then exploited this freedom by demanding a

particular strict hierarchy in the size of these parameters. This hierarchy lead to simple

counter-terms from the point of view of analytic integration but it also leads to numerical

difficulties as a slicing scheme. By promoting the slicing scheme to a subtraction scheme

the hierarchy of the slicing parameters can subsequently be dropped and any physical

value of the slicing parameters can be used; in this way good numerical convergence can

be obtained. Here this was demonstrated explicitely for a simple NLO example, but not

yet at NNLO.

Based on the geometric properties of the observable we established a subtraction

formula which summarises the combinatorics of the various counter-terms for single

and double real emissions and conjecture its general form for an arbitrary number of

unresolved emissions.

We applied the formalism to final state real radiation at NLO and NNLO in Yang

Mills theory and integrated all the required counter-terms. We employed reverse unitar-

ity and IBP reduction to simplify the calculation of the most complicated counter-terms.

We showed in particular how the master integrals required for these counter-terms can be

extracted from existing calculations of unrelated quantities. We were thereby able to com-

pute or extract all required counter-terms in terms of Γ and pFq hypergeometric functions

to all orders in the dimensional regulator.

We tested the integrated counter-terms by reproducing the poles of the purely double

real emission contribution to the gluonic Higgs decay in the heavy quark effective theory.

There exist many possible directions to extend this work in the future. The most

important step will be to show that the scheme can indeed be employed to build local

counter-terms at the level of the integrand. The next logical step would be to extend the

scheme to include also initial states; this would open up a new path for computing LHC

observables. Another step is to extend the scheme to real-virtual corrections; one can

foresee that this should be a straight forward application of the techniques presented here

for the case of real radiation at NLO. Beyond one can also imagine to use the scheme for

N3LO calculations and/or to include massive quarks into the formalism.
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Given the simplicity of the integrated counter-terms, the potential locality of the

counter-terms and their well defined combinatorial properties, we believe that the proposed

scheme may well become an important method for performing higher order calculations in

perturbative QCD in the future.
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A Region cancellations

In the following we will derive several identities among different sets of overlapping regions.

• Let us start with the identity

lim
A||B,A||D

Θ(CAB ∩ CAD) = lim
A||B,A||D

Θ(CAB ∩ CAD ∩ CABD) , (A.1)

where A, B and D are non-intersecting sets of momenta. We consider here the special

case where the region CAB∩CAD corresponds to a collinear momentum configuration

only. It is sufficient to show that sABD ≤ bABD given that sAB ≤ bAB and sAD ≤ bAD.

Now since A||B and A||D it follows that A||B||D, which in turn implies that

sABD . bAB ∼ bAD � bABD , (A.2)

which is in accord with the ordering given in eq. (4.39) and guarantees eq. (4.29).

• We proceed with the identity

lim
A,B→0

Θ(SA ∩ SB) = lim
A,B→0

Θ(SA ∩ SB ∩ SAB) , (A.3)

where again A and B are two non-intersecting sets of momenta. In order to prove

this identity we have to specify the hard momenta which enter the constraint of the

soft slicing parameter. Two different choices will be relevant for us. The derivation

is easiest in the case when the hard momenta of the different slicing parameters are

chosen identically as say k and l, such that

SA : sA(kl) < aAskl , (A.4)

SB : sB(kl) < aBskl , (A.5)

SAB : s(AB)(kl) < aABskl . (A.6)
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Applying the limits limaA→0 and limaB→0 to the region boundary SAB results depends

on the order in which the limits are taken. For instance order

lim
aB→0

SAB : sA(kl) < aABskl , (A.7)

which is automatically satisfied given that aA � aAB. Taking the limits in the other

order leads to a similar conclusion and we conclude that (SA ∩ SB) ⊂ SAB. How-

ever there exists another case of interest where the hard momenta appearing in the

different soft order parameters are not identical but are nested in the following sense:

SA : sA(kl) < aAskl , (A.8)

SB : sB(il) < aBsil, i ∈ A , (A.9)

SAB : s(AB)(kl) < aABskl . (A.10)

Again we obtain different results for SAB depending on whether we take first the

limit in aA or aB. If for instance we take first B → 0 the conclusions are as in

the case before. If however we first take the limit A → 0 we have to ask whether

sB(kl) < aABskl is guaranteed by sB(il) < aBsil. For this purpose it is useful to write

sB(kl) = sB(il)

sB(kl)

sB(il)
=
sB(il) sikl yB;kl

sil
, (A.11)

where

yB;kl =
1− ~v(i,l)

B .~v
(i,l)
kl

2
, (A.12)

and where we have written out the ratio
sB(kl)

sB(il)
using energies and angles in the rest-

frame of pil. Here ~v
(i,l)
X denotes the D − 1 dimensional space-like velocity vector of

the momentum X in the rest-frame of pil. We thus obtain the following bound:

sB(kl) ≤ aB (si(kl) + skl) yB;kl . aB skl , (A.13)

where we have used that si(kl) is much smaller than skl and yB;kl ∈ (0, 1]. It thus

follows that sB(kl) � aABskl, given aB � aAB. Thus for the cases of interest eq. (4.28)

is fulfilled, given the ordering of eq. (4.39).

Using similar arguments one can show that a more general identity

lim
A,B,C→0

Θ(SAC ∩ SBC) = lim
A,B,C→0

Θ(SAC ∩ SBC ∩ SABC) , (A.14)

is also true.

• Let us now consider the following 4-term cancellation identity:

0 = Θ(CAi ∩ CAj)
−Θ(SA ∩ CAi ∩ CAj) (A.15)

−Θ(CAij ∩ CAi ∩ CAj)
+Θ(SA ∩ CAij ∩ CAi ∩ CAj) ,
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where A is a set of momenta not containing the single momenta i and j. The identity

derives from the fact that the overlap region CAi ∩CBi contains singular momentum

configurations of two types:

(i) A→ 0,

(ii) A||i||j,

or their overlap. While for the second case A||i||j we can relie on the identity given

in eq. (4.29), we must show that it holds also for the case A→ 0. To accomplish this

it is sufficient to show that

lim
A→0

Θ(CAi ∩ CBi)− lim
A→0

Θ(SA ∩ CAi ∩ CBi) = 0 , (A.16)

since the other two terms in eq. (A.15) are contained in a sub-region of these regions

and must thus cancel by the same mechanism. The soft region is given by the bound

SA : sA(ij) ≤ aAsij (A.17)

Using the constraints sAi < bAi and sAj < bAj we find

SA ∩ CAi ∩ CAj : sA(ij) ≤ bAi + bAj ≤ aAsij (A.18)

Thus, assuming bAi ∼ bAj we must fulfil the bound:

2bAi
aA
≤ sij . (A.19)

Now since the momenta i and j are not allowed to be collinear to the momenta in A,

we can write this as

bAi ≤
aAbAij

2
. (A.20)

This bound corresponds to the worst scenario, since it may be that A||i||j may not

be allowed by the measurement function; nevertheless this inequality is consistent

with the ordering suggested in eq. (4.39).

B Reverse unitarity with Heaviside step functions

In this section we will briefly review the method of reverse unitarity and show how it can

be used to find IBP relations among the integrated counter-terms. The central idea of

reverse unitarity is always to treat Dirac delta functions as cut propagators by making

the replacement:

δ+(p2)→
(

1

p2

)
c

. (B.1)

Cut propagators are then differentiated just like normal propagators,

∂

∂x

(
1

f(x)

)ν
c

= −ν
(

1

f(x)

)ν+1

c

∂f(x)

∂x
, (B.2)
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and satisfy the identity: (
1

f(x)

)ν
c

= 0 , for ν ≤ 0 . (B.3)

To employ this trick we rewrite Heaviside step functions as follows:

Θ(a ≥ f({pi})) =

∫ a

0
ds δ(s− f({pi}))→

∫ a

0
ds

(
1

s− f({pi})

)
c

, (B.4)

where we assume positivity of f(x). The Dirac δ-function can then be interpreted as a

cut-propagator. Let us consider for instance the integral:

lim
a→0

∫
dΦ Θ(a ≥ f({pi}))|M|2 =

∫ a

0
ds I(s), (B.5)

where

I(s) =

∫
lim
s→0

dΦ δ(s− f({pi})) |M|2 . (B.6)

Using reverse unitarity one can then find relations among integrals of the kind I(s), whose

integrands |M|2 can be related by IBP relations. Note that since here we are interested

in the limit s → 0 the final integral over the variable s is always trivial. This would

not be the case away from the limit. Similarly one can repeat the trick above for several

step-functions.

C Integrated counter-terms

In the following we provide expressions for the counter-terms associated to all the re-

quired regions.

• {Cij}:

lim
bij→0

∫
Θ(Cij) ∗ dO2;1...i...j...n+2 = ICgg(Q2bij)

∫
dO1;1...îj...n+2

• {Cijk}:

lim
bijk→0

∫
Θ(Cijk) ∗ dO2;1...i...j...k...n+2 = ICggg(Q2bijk)

∫
dO

0;1...îjk...n+2

• {Sk}:

lim
ak→0

∫
Θ(Sk) ∗ dO2;1...n+2 = −

n+2∑
i,j=1 6=k

∫
dO(i,j)

1;1... 6k...n+2 I
S
gg(sij , ak)

• {Skl}:

lim
akl→0

∫
Θ(Skl) ∗ dO2;1...n+2 = −1

2
CA

n+2∑
i,j=1 6=k,l

∫
dO(i,j)

0;1... 6k... 6l...n+2 I
S
gg(sij , akl)
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• {Cijk, Cij}:

lim
bijk→0

lim
bij→0

∫
Θ(Cijk)Θ(Cij) ∗ dO2;1...i...j...k...n+2

= ICgg(Q2, bijk) ICgg(Q2, bij)

∫
dO

0;1...îjk...n+2

• {Cijk, Sij}:

lim
aij→0

lim
bijk→0

∫
Θ(Cijk)Θ(Sij) ∗ dO2;1...i...j...k...n+2

= ISCggg(Q2, aij , bijk)

∫
dO

0;1...îjk...n+2

• {Cijk, Sk}:

lim
ak→0

lim
bijk→0

∫
Θ(Cijk)Θ(Sk) ∗ dO2;1...i...j...k...n+2

=

∫
dO

0;1...îjk...n+2

∫
dICgigj (Q

2, bijk)

· 1

2

[
ISg (sij , ak) + ISCgg (Q2bijk − sij , ziak) + ISCgg (Q2bijk − sij , zjak)

]
• {Cij , Ckl}:

lim
bij→0

lim
bkl→0

∫
Θ(Cij)Θ(Ckl) ∗ dO2;1...i...j...k...l...n+2

= ICgg(Q2, bij) ICgg(Q2, bkl)

∫
dO

0;1...îj...k̂l...n+2

• {Ckl, Skl}:

lim
akl→0

lim
akl→0

∫
Θ(Skl)Θ(Ckl) ∗ dO2;1...k...l...n+2

= −ICgg(Q2bkl)
n+2∑

i,j=1 6=k,l

∫
dO(i,j)

0;1... 6k... 6l...n+2 I
S
g (sij , akl)

• {Cij , Si}:

lim
ai→0

lim
bij→0

∫
Θ(Si)Θ(Cij) ∗ dO2;1...i...j...n+2 =

∫
dO1;1...îj...n+2 I

SC
gg (Q2bij , ai)

• {Cij , Sk}:

lim
ak→0

lim
bij→0

∫
Θ(Sk)Θ(Cij) ∗ dO2;1...i...j...k...n+2

= −
∑

l,m∈{1,...,îj,..., 6k,...n+2}

∫
dO(l,m)

0;1...îj... 6k...n+2
ISg (slm, ak) ICgg(Q2bij)
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• {Sij , Si}:

lim
akl→0

lim
ak→0

∫
Θ(Sk)Θ(Skl) ∗ dO2;1...n+2

= −CA
∑
i,j 6=k,l

dO(i,j)
0;1... 6k... 6l...n+2

·
[ ∫

dISgl(sij , akl)
(
ISg (sil, ak) + ISg (sjl, ak)

)
−ISg (sij , akl)ISg (sij , ak)

]
• {{Sk, Sl}, {Skl, Sk, Sl}}:

lim
akl→0

lim
(ak,al)→0

∫
(1−Θ(Skl))Θ(Sk)Θ(Sl)

)
∗ dO2;1...n+2

= +
1

2

∑
i,j,r,t 6=k,l

∫
dO(i,j)(r,t)

0;1... 6k... 6l...n+2 I
S
g (sij , ak)ISg (srt, al)

• {Cijk, Cij , Sij}:

lim
aij→0

lim
bijk→0

lim
bij→0

∫
Θ(Sij)Θ(Cijk)Θ(Cij) ∗ dO2;1...i...j...k...n+2

=

∫
dO

0;1...îjk...n+2
ISCgg (Q2bijk, aij) ICgg(Q2bij)

• {Cijk, Cij , Si}:

lim
ai→0

lim
bijk→0

lim
bij→0

∫
Θ(Si)Θ(Cijk)Θ(Cij) ∗ dO2;1...i...j...k...n+2

=

∫
dO

0;1...îjk...n+2
ICgg(Q2bijk) ISCgg (Q2bij , ai)

• {Cijk, Cij , Sk}:

lim
ak→0

lim
bijk→0

lim
bij→0

∫
Θ(Cijk)Θ(Cij)Θ(Sk) ∗ dO2;1...i...j...k...n+2

=

∫
dO

0;1...îjk...n+2

∫
dICgigj (Q

2bijk)

· 1

2

[
ISCgg (Q2bijk, ziak) + ISCgg (Q2bijk, zjak)

]
• {Cijk, Sik, Sk}:

lim
aik→0

lim
ak→0

lim
bijk→0

∫
Θ(Cijk)Θ(Sk)Θ(Sik) ∗ dO2;1...i...j...k...n+2

=

∫
dO

0;1...îjk...n+2

∫
dISCgigj (Q

2bijk, aik)

· 1

2

[
ISg (sij , ak) + ISCgg (Q2bijk − sij , ziak)− ISCgg (Q2bijk − sij , ak)

]
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• {{Cijk, Si, Sj}, {Cijk, Sij , Si, Sj}}:

lim
(ai,aj)→0

lim
bijk→0

∫
(1−Θ(Sij))Θ(Cijk)Θ(Si)Θ(Sj) ∗ dO2;1...i...j...k...n+2

=

∫
dISCgigk(Q2bijk, ai) ISCgg (Q2bijk − sik, aj)

∫
dO

0;1...îjk...n+2

• {Cij , Ckl, Si}:

lim
ai→0

lim
bij→0

lim
bkl→0

∫
Θ(Si)Θ(Cij)Θ(Ckl) ∗ dO2;1...i...j...k...l...n+2

= ISCgg (Q2bij , ai) ICgg(Q2, bkl)

∫
dO

0;1...îj...k̂l...n+2

• {Ckl, Skl, Sk}:

lim
akl→0

lim
ak→0

lim
bkl→0

∫
Θ(Skl)Θ(Ckl)Θ(Sk) ∗ dO2;1...k...l...n+2

= −ISCgg (Q2bkl, ak)
n+2∑

i,j=1 6=k,l

∫
dO(i,j)

0;1... 6k... 6l...n+2 I
S
g (sij , akl)

• {{Cij , Si, Sk}, {Cij , Sik, Si, Sk}}:

lim
(ak,ai)→0

lim
bij→0

∫
(1−Θ(Sik))Θ(Sk)Θ(Si)Θ(Cij) ∗ dO2;1...i...j...k...n+2

= −ISCgg (Q2bij , ai)
∑

l,m∈{1,...,îj,..., 6k,...n+2}

∫
dO(l,m)

0;1...îj... 6k...n+2
ISgg(slm, ak)

• {Cil, Skl, Sk}:

lim
akl→0

lim
ak→0

lim
bil→0

∫
Θ(Cil)Θ(Sk)Θ(Skl) ∗ dO2;1...n+2

= −CA
∑

j∈{1,...,îl,..., 6k,...n+2}

∫
dO(îl,j)

0;1... 6k...îl...n+2

∫
dISCglgi(Q

2bil, akl)

·
(
ISg (zlsîlj , ak)− I

S
g (s

îlj
, ak)

)
• {Cijk, Cij , Sij , Si}:

lim
aij→0

lim
ai→0

lim
bijk→0

lim
bij→0

∫
Θ(Sij)Θ(Si)Θ(Cijk)Θ(Cij) ∗ dO2;1...i...j...k...n+2

= ISCgg (Q2bijk, aij) ISCgg (Q2bij , ai)

∫
dO

0;1...îjk...n+2

• {Cijk, Cij , Sik, Sk}:

lim
aik→0

lim
ai→0

lim
bijk→0

lim
bij→0

∫
Θ(Sik)Θ(Si)Θ(Cijk)Θ(Cij) ∗ dO2;1...i...j...k...n+2

=
1

2

∫
dISCgigj (Q

2bij , aik)
(
ISCgg (Q2bijk, ziak)− ISCgg (Q2bijk, ak)

)
·
∫

dO
0;1...îjk...n+2
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• {{Cijk, Cij , Si, Sk}, {Cijk, Cij , Si, Sk, Sik}}:

lim
(ak,ai)→0

lim
bijk→0

lim
bij→0

∫
(1−Θ(Sik))Θ(Sk)Θ(Si)Θ(Cijk)Θ(Cij) ∗ dO2;1...i...j...k...n+2

= ISCgg (Q2bijk, ak) ISCgg (Q2bij , ai)

∫
dO

0;1...îjk...n+2

• {{Cij , Ckl, Si, Sk}, {Cij , Ckl, Si, Sk, Sik}}:

lim
(ak,ai)→0

lim
bij→0

lim
bkl→0

∫
(1−Θ(Sik))Θ(Si)Θ(Sk)Θ(Cij)Θ(Ckl) ∗ dO2;1...i...j...k...l...n+2

= ISCgg (Q2bij , ai) ISCgg (Q2, bkl, ak)

∫
dO

0;1...îj...k̂l...n+2

Apart from the counter-terms corresponding to the regions {{Sij}, {Cijk}, {Cijk, Sij}} all

other counter-terms are expressible in terms of either factorised or simple iterated NLO

limits. This allows to evaluate them straight forwardly in terms of Γ-functions by em-

ploying the paramaterisations given in eqs. (3.18), (3.20) and (3.23). For the regions

{{Sij}, {Cijk}, {Cijk, Sij}} the corresponding integrated counter-terms can be expressed

via IBP reduction in terms of the Master integrals defined in section 4.4:

ISgg(sij , akl) = −16
(11ε2 − 19ε+ 3)(−1 + 4ε)(−3 + 4ε)

(−3 + 2ε)ε3
M

(2;1)
S (sij ; akl)

+8M
(2;2)
S (sij ; akl) (C.1)

ISCggg(Q2bijk, aij) = C2
A

[
− 8(22ε3 − 49ε2 + 25ε− 3)

ε2(−3 + 2ε)
M

(2,2;1)
SC (Q2bijk, aij)

+8M
(2,2;2)
SC (Q2bijk, aij)

]
(C.2)

ICggg(Q2bijk) = C2
A

[
12
(
M

(2;3)
C (Q2bijk) + M

(2;4)
C (Q2bijk)

)
− 24(4ε3 − 6ε2 + 3)

(2ε− 1)(−1 + ε)(−3 + 2ε)
M

(2;2)
C (Q2bijk)

−12(12ε8+232ε7−1587ε6+3632ε5−3677ε4+1350ε3+354ε2−384ε+72)

ε3(2ε− 1)(−1 + ε)(−3 + 2ε)2

·M(2;1)
C (Q2bijk)

]
(C.3)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[67] T. Huber and D. Mâıtre, HypExp: a Mathematica package for expanding hypergeometric

functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122

[hep-ph/0507094] [INSPIRE].

[68] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals

in massless QCD, Nucl. Phys. B 682 (2004) 265 [hep-ph/0311276] [INSPIRE].

[69] S. Bühler, F. Herzog, A. Lazopoulos and R. Müller, The fully differential hadronic production

of a Higgs boson via bottom quark fusion at NNLO, JHEP 07 (2012) 115 [arXiv:1204.4415]

[INSPIRE].

[70] S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427

(1998) 161 [hep-ph/9802439] [INSPIRE].

– 50 –

https://doi.org/10.1016/0550-3213(81)90339-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B193,381%22
https://doi.org/10.1007/JHEP07(2013)003
https://arxiv.org/abs/1302.4379
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4379
https://doi.org/10.1088/1126-6708/2008/10/107
https://arxiv.org/abs/0807.3243
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3243
https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2372
https://doi.org/10.1088/1126-6708/2004/07/046
https://arxiv.org/abs/hep-ph/0404258
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0404258
https://doi.org/10.1007/JHEP11(2012)062
https://arxiv.org/abs/1208.3130
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3130
https://doi.org/10.1007/JHEP08(2015)051
https://arxiv.org/abs/1505.04110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04110
https://doi.org/10.1103/PhysRevD.90.054029
https://doi.org/10.1103/PhysRevD.90.054029
https://arxiv.org/abs/1407.3272
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3272
https://doi.org/10.1016/j.cpc.2006.01.007
https://arxiv.org/abs/hep-ph/0507094
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0507094
https://doi.org/10.1016/j.nuclphysb.2004.01.023
https://arxiv.org/abs/hep-ph/0311276
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0311276
https://doi.org/10.1007/JHEP07(2012)115
https://arxiv.org/abs/1204.4415
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4415
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9802439

	Introduction
	Notation
	Motivation
	Normal coordinates and phase space factorisation
	Geometry of regions
	Counter-term integration
	Slicing method
	Subtraction method

	General principles at NNLO and beyond
	Normal coordinates and phase space factorisation
	Soft and collinear forests
	Asymptotic phase space measures
	Soft and collinear master integrals at NNLO
	Example at NNLO
	Generalisation to initial states

	Counter-terms for final state real emissions in Yang Mills theory
	Counter-terms at NLO
	Counter-terms at NNLO
	The poles for the H to gggg phase space integral

	Conclusions
	Region cancellations
	Reverse unitarity with Heaviside step functions
	Integrated counter-terms

