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1 Introduction

Generalised geometry [1, 2] is the study of structures, analogous to those of ordinary

differential geometry, defined on an extended tangent space E ' T⊕. . . , which is generically

twisted by some gerbe (or “gerbe-like”) structure. In [3–5], it was shown that there is a very

natural formulation of certain supergravity theories in the language of generalised geometry.

This article serves as a discussion of how one might directly apply this construction to more

general algebras and theories. Significant work in this direction [6] has already appeared

in the mathematics literature,1 and here we will present some new examples.

Thus far, generalised geometries based around the groups O(d, d) and Ed(d) (for d ≤ 7)

and their relevance to physics have been well-studied [3–5, 7–43] (see also the literature on

doubled constructions [44–62] and other extended geometries [63–73]). There has also been

some work on generalised geometry for the groups O(d, d+ n) [6, 74, 75] (see also [76, 77])

and recently reduction of Courant algebroids [78] on principal bundles has been used to

describe the non-abelian generalisation [79, 80].

However, as shown in [6], one can associate similar Leibniz algebroids to more general

classes of Lie algebras. In fact the only necessary condition is the existence of a GL(d,R)

subalgebra, under which the decomposition of the adjoint representation consists only of

this subalgebra and exterior powers of the standard representation and its dual.

In this paper, we will endeavour to study more systematically the construction of other

types of generalised geometry, but before we begin, we must explain in more detail what we

mean by a generalised geometry. We will adopt a fairly conservative definition, requiring

that the key attributes of the construction of [3–5] hold good and taking inspiration from the

above observation of [6]. We also keep the motivation of making contact with supergravity

theories closely in mind. One could envisage a slightly more ambitious approach where the

algebraic aspects of the decomposition of the generalised tangent space are defined simply

by a section condition on it, discussed later in this paper. However, we leave this for the

future as the definition we give here is adequate for our purposes and fits with the spirit

of the remainder of the paper.

The key features we require of the generalised tangent space E on a manifold, are as

follows. Firstly, E should be an extension (or sequence of extensions) of the usual tangent

bundle T by other ordinary GL(d,R) tensor bundles, so that locally we have

E ' T ⊕ (. . . ) (1.1)

where (. . . ) denotes the added tensor bundles. The fibre of E should then naturally become

a representation of some larger semi-simple structure group G (often augmented by an

additional R+ factor). The partial derivative of a function can then be thought of as living

in the T ∗ subbundle of E∗, which we require to be stabilised by a parabolic subgroup of

G. One can then write the general expression for the Dorfman derivative introduced in [4]

LV = ∂V − (∂ ×ad V )·
1We thank Marco Gualtieri for pointing out the direct relevance of this reference to the research pre-

sented here.
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which acts on E and other generalised tensor bundles for the group G. We require this to

be naturally well-defined (diffeomorphism and gauge invariant in physics terminology) and

to satisfy the Leibniz identity

[LV , LV ′ ] = LLV V ′

so that it gives E the structure of a Leibniz algebroid. Note that all of the local features

of our definition are determined purely by the group G, its GL(d,R) subgroup and the

representation for E. Globally, it could be twisted by the transformations generated by

the Dorfman derivative, in a way specified by additional global data.

In practice, we will see in our examples that the tensor bundle parts of E are differential

forms or differential forms weighted by positive powers of the top-form line bundle. Also,

the GL(d,R) decomposition of the adjoint representation of G will feature only p-forms

and p-vectors (as in the statement of [6]), so that only the differential form parts of E

play an active role in the associated Dorfman derivatives. As we will explain later, this is

closely connected to the diffeomorphism covariance of the Dorfman derivative. Overall, this

matches well with the generators of the diffeomorphism and gauge symmetries and the field

content of standard supergravity theories, and so we will effectively include these forms of

the decompositions in our requirements on E for the purposes of the present paper.

Examples of such groups and decompositions were presented in [6], based on the B,

D and E series of Lie algebras. In this paper we will provide new classes of examples, and

explain how they appear in supergravity.

In particular we will present a new series of generalised geometries based on the groups

Spin(d, d)×R+, with the generalised tangent space transforming as a spinor representation.

This will include a (d − 2)-form potential in the geometry. We we also mention a similar

series based on the group SL(d+1,R)×R+, which will include a (d−1)-form potential. In

this case the generalised tangent space will be the antisymmetric bi-vector representation.

The algebras we study here will all correspond to real forms of a Dynkin diagram with

a so-called gravity line of nodes associated to a GL(d,R) subalgebra, as in [81]. We consider

only finite dimensional algebras and always include an overall R+ factor as in [3–5]. We

label the standard representation of the GL(d,R) subalgebra as T ,2 using the convention

that T corresponds to the Dynkin node at the left end of the gravity line, while the node

at the right end corresponds to T ∗.

T ∗T

This distinction will prove to be important in constructing our new examples of generalised

geometries. In a sense, we will simply reverse the orientation of the gravity line of some

previously known cases.

2We slightly abuse notation in not distinguishing carefully between this representation and the tangent

bundle of a d-dimensional manifold in a way which should not cause confusion.
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To this gravity line can be attached other nodes. For example, one could attach a node

with a single line to the pth node from the right

T ∗. . . Λ2T ∗ΛpT ∗

(1.2)

Schematically, this will add a generator of the form ΛpT ⊕ ΛpT ∗ to the GL(d,R) decom-

position of the adjoint. Such a term in the adjoint representation is related to a p-form

potential in the corresponding gravitational theory. This pattern holds for zero-form and

top-form potentials, for which there is no associated Dynkin node so one adds an SL(2,R)

factor, and also for more exotic fields such as the dual graviton of [82–84]. In the simplest

cases, the adjoint representation from (1.2) will simply become

ad→ (T ⊗ T ∗)⊕ ΛpT ⊕ ΛpT ∗ (1.3)

though in general there will be additional generators which arise from commutators of

these ones, and these must be analysed in each particular case. We devote appendix C to

exploring these patterns by means of several examples, with references to the literature as

all of these examples have appeared before. However, the new geometries we will introduce

in our main discussion simply have a diagram of the form (1.2) and a decomposition of the

adjoint representation (1.3). Thus, even the most basic cases can lead to new examples

and such patterns are useful for inspiring these constructions.

We observe that the Dynkin label corresponding to the generalised tangent space al-

ways has the form [1, 0, . . . , 0; ∗] where the labels before the semi-colon are those of the

gravity line. The embedding of GL(d,R) in the enlarged algebra is defined so that the

decomposition of this representation has the form T ⊕ (. . . ). We will draw the Dynkin

diagrams with the nodes corresponding to the generalised tangent space labelled with

an E. In fact, the representation theoretical structure of the so-called “section condi-

tion” [4, 48, 65, 85] (or rather the complementary irreducible parts of S2E) can also be

read off from looking at Dynkin labels. This is described in appendix B. The T part of

the generalised tangent space is stabilised by a parabolic subgroup. Moreover, any sub-

space which is null in the section condition is also stabilised by such a subgroup. The

corresponding parabolic subalgebra was described in [6]. The parabolic subalgebras are in

one-to-one correspondence with the set of subsets of nodes of the Dynkin diagram, the one

of relevance here corresponding to the gravity line. Note that if the gravity line corresponds

to a non-maximal GL(d,R) subalgebra, then the null subspace is also not maximal. This

occurs, for example, in the type II decompositions of [4].

Most such diagrams that one can draw do not give rise to generalised geometries. This

is because of the appearance of tensor fields with mixed Young tableaux symmetry, as

in [82], such as the dual graviton. As the non-linear construction of physical theories based

on these types of fields is highly problematic, it is not surprising to find that the simple

generalised geometry construction fails in these cases. The central problem here is that the
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Dorfman derivative fails to be covariant under diffeomorphisms.3 This is due to the absence

of a diffeomorphism covariant notion of gauge transformations for these mixed symmetry

fields. We will deliberately endeavour to avoid these fields throughout this paper, giving

only a brief algebraic discussion in appendix C. References on this include [86, 88–100].

However, if the decomposition of the adjoint representation contains only T ⊗ T ∗ (the

GL(d,R) subalgebra) and pairs of the type ΛpT ⊕ ΛpT ∗, then the algebra will give rise to

a generalised geometry. This fact was observed in [6] and corresponds to the fact that the

projection which defines the Dorfman derivative (see [4]) is diffeomorphism covariant if it

only involves the exterior derivative and Lie derivative.

A point that we will pick up on in this paper is the idea of considering geometries

built from subalgebras of the full continuous “U-duality” [101] algebra. In particular we

choose subalgebras of the type described above, and these will geometrise only a subsector

of the field content. Indeed the original O(d, d) generalised geometry [1–3] includes only

the NS-NS sector of the field content of type II supergravity. There are cases where the

full algebra does not give rise to a geometry, but the subalgebra does. The Spin(8, 8)×R+

geometry in section 2 provides an example of this, as it is a subalgebra of E8(8) × R+, for

which there is no corresponding geometry. Another example is sketched in appendix C.4.5.

We conclude this introductory section with a brief discussion of how all of this fits into

the literature on hidden symmetries in supergravity. Firstly, we note that the connections

between algebras of the types described above and supergravity has a long history. The ap-

pearance of such symmetries goes back to [102–104] and was further developed in [105–114].

The idea that integral exceptional groups could be exact symmetries of quantised string

theory was first proposed in [101].

Later, much grander proposals emerged of how infinite dimensional algebras could

underly eleven-dimensional supergravity and M theory [83, 115–118]. A more systematic

investigation of their appearance and the identification of the various terms appearing

at low levels in the decompositions was performed in [81, 88, 120] (see also an earlier

work [119] which considers the finite dimensional cases). (We emphasise that much of the

above schematic discussion of the structure of the algebras is contained in these references

as well as far more rigorous details.) This was continued in [121], where interpretations were

found for some of the higher level terms, arguing that infinitely many of them are higher

dual versions of the original supergravity fields. Throughout the present work, we will

refer to these as “higher duals” though we will not discuss them beyond their appearance

in certain algebraic decompositions. Similar algebraic constructions for type II [122, 123],

half-maximal [124] and also eight supercharge theories [125, 126] have been worked out.

One purpose of the present paper is to explore generalised geometries based around

(the finite dimensional cases of) these algebraic constructions. In particular, we wish

to describe the dynamics geometrically using the Dorfman derivative, where the above

references consider non-linear realisations.

This paper is organised as follows. In section 2 we introduce Spin(d, d)×R+ generalised

geometry and its appearance in supergravity. In section 3 we discuss a series of “half-

3There are also algebraic issues (see e.g. [67]), which may be cured [86] by an approach inspired by

considering the tensor hierarchy [87] of the external space theory.
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exceptional” geometries, which correspond to a subsector of the full Ed(d)×R+ geometries

including only the six-form gauge field. There it is seen how the Spin(8, 8)×R+ geometry

provides the d = 8 case of this series, and supersymmetry variations are derived from it. In

these two main sections, the general prescription for the geometry is exactly that of [4, 5],

to which we refer the reader for an explanation of the overall logic of the construction. For

this reason, the discussion is not as explicit as that in [4, 5] and we will merely state the

results, but the details are straightforward to derive. Section 4 contains some discussion of

our findings.

Appendix A specifies our conventions and also gives some technical details related to

the closure of the algebra of the Dorfman derivative from section 2. In appendix B, we

show how to find the “section condition” for an arbitrary Dynkin diagram. Appendix C

contains a survey of decompositions of other algebras, most of which do not give rise to

geometries, but which complement the discussion in the main text.

2 Spin(d, d) × R+ generalised geometry

Spin(d, d)×R+ generalised geometry is the generalised geometry based upon the diagram

E

As in the introduction, this indicates that the structure group of the geometry is Spin(d, d)×
R+ and the fibre of the generalised tangent space is the fundamental representation cor-

responding to the node labelled E, which is in this case one of the spinor representations.

This is very different to the O(d, d) generalised geometry of [1, 2], which would correspond

to the diagram

E

though, due to Spin(4, 4) triality, the two geometries coincide for d = 4.

One instance of this geometry has appeared in the literature before, as the case d = 5

coincides with E5(5) × R+ generalised geometry [4, 36, 64] which is relevant to eleven-

dimensional supergravity on five-dimensional spaces. Here we will describe these geometries

more generally, with particular interest in the case of d = 8, as this describes “half” of

E8(8) × R+ in a way which will be described in section 3.

2.1 Algebraic decompositions under GL(d,R)

The first step in the analysis here is to look for the desired embedding of GL(d,R) which

gives a (d− 2)-form in the decomposition of the adjoint of Spin(d, d). With the embedding

of [2], one has:

ad(Spin(d, d))→ (W ⊗W ∗)⊕ Λ2W ⊕ Λ2W ∗ (2.1)

– 5 –
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where W is the standard representation of this GL(d,R) subgroup. Consider setting

Λ2W = Λ(d−2)T ∗ = ΛdT ∗ ⊗ Λ2T (2.2)

where T is also a fundamental representation of GL(d,R) but with a different weight under

the R+
diagonal ⊂ GL(d,R). This leads to the identification

W = (ΛdT ∗)
1
2 ⊗ T (2.3)

We then have

ad(Spin(d, d))→ (T ⊗ T ∗)⊕ Λ(d−2)T ⊕ Λ(d−2)T ∗ (2.4)

which is the desired decomposition. Henceforth, we will consider the GL(d,R) subgroup

which acts naturally on T to be the one of relevance. This switching of the choice of

GL(d,R) subgroup inside Spin(d, d) × R+ is essentially the reversal of the gravity line in

the diagram. We note here that the parabolic subalgebra, which will correspond to the

geometric subgroup in the context of generalised geometry, is spanned by the subspace

ad(GL(d,R))⊕ Λ(d−2)T ∗ (2.5)

which will correspond to diffeomorphisms and (d − 2)-form gauge transformations in

the physics.

As in [3–5], the embedding of this GL(d,R) subgroup will involve a non-trivial R+

factor part in the full structure group Spin(d, d)× R+. We make the definition

1+1 ' (ΛdT ∗)
d−4
4 , (2.6)

the appropriateness of which will become apparent when we see that the generalised tangent

space will have unit weight under the R+ factor.

We now turn to the decomposition of the spinor representation which will be the fibre

of the generalised tangent space. As the chirality of the spinor depends on whether d is

odd or even, we treat these cases separately.

For d odd, the spinor has positive chirality. As in [2], we have the decomposition of

the weight zero, positive chirality spinor of Spin(d, d)× R+ as

S+
0 → (ΛdW )

1
2 ⊗

[
Λ(even)W ∗

]
(2.7)

By (2.3), this leads to the decomposition of the weight one spinor S+
+1 = S+

0 ⊗ 1+1

S+
+1 →T ⊕ Λ(d−3)T ∗ ⊕ (ΛdT ∗ ⊗ Λ(d−5)T ∗)⊕ ((ΛdT ∗)2 ⊗ Λ(d−7)T ∗)

⊕ · · · ⊕ ((ΛdT ∗)(d−3)/2)
(2.8)

Conversely, for d even, the spinor has negative chirality. By similar means, we arrive

at the decomposition of the weight one spinor S−+1 = S−0 ⊗ 1+1

S−+1 →T ⊕ Λ(d−3)T ∗ ⊕ (ΛdT ∗ ⊗ Λ(d−5)T ∗)⊕ ((ΛdT ∗)2 ⊗ Λ(d−7)T ∗)

⊕ · · · ⊕ ((ΛdT ∗)(d−4)/2 ⊗ T ∗)
(2.9)

– 6 –
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2.2 Spin(d, d) × R+ generalised tangent space and generalised tensors

One can now exactly follow through the construction of [3–5] with these algebras and

representations. One now thinks of T as the tangent bundle of a d-dimensional manifold

and considers a generalised tangent space E as a bundle with a local isomorphism

E ' T ⊕ Λ(d−3)T ∗ ⊕ (ΛdT ∗ ⊗ Λ(d−5)T ∗)⊕ ((ΛdT ∗)2 ⊗ Λ(d−7)T ∗)⊕ . . . (2.10)

on patches of the manifold. On the overlaps of patches, one has transition functions

given by diffeomorphisms and gauge transformations, the action of the latter being the

Spin(d, d) × R+ action of exponentiated exact (d − 2)-forms. The structure group of the

generalised tangent bundle is thus the parabolic subroup of Spin(d, d) × R+ generated by

the subalgebra (2.5).

However, one can still construct a Spin(d, d) × R+ frame bundle, in the same way

that an Ed(d)×R+ frame bundle was constructed in [4], by acting with local Spin(d, d) ×
R+ transformations on the natural local frames induced by coordinates. This is then a

Spin(d, d) × R+ principal bundle, which enables us to construct Spin(d, d) × R+ vector

bundles with any representation as the fibre. These are the generalised tensor bundles for

the geometry.

A generic Spin(d, d)×R+ frame {Êα} carries a spinor index α = 1, . . . , 2d−1 and we can

express a generalised vector as V = V αÊα. In even dimensions, E∗ has the representation

S−−1 as its fibre, so one can write a dual basis with the same spinor index {Eα}. In odd

dimensions, the fibre of E∗ is S−−1, which carries the other spinor index to that for E. The

dual basis therefore is written as {Eα̇}, where also α̇ = 1, . . . , 2d−1.

We will primarily focus on the example of d = 8 in this paper, so from now on for

notational convenience we restrict focus to the case of d even, though of course very similar

statements also hold for the case of d odd.

2.3 The Dorfman derivative and the bundle N

The Dorfman derivative by a generalised vector V ∈ E can be defined using the definition

of [4]

LV = ∂V − (∂ ×ad V )·, (2.11)

where, as usual in generalised geometry, the partial derivative is promoted to have an E∗

index using the embedding T ∗ → E∗. As in [4], the symbol ×ad indicates the projection of

the partial derivative of the components of V , which has the indices of E∗ ⊗ E, onto the

adjoint of Spin(d, d)× R+.

One can see immediately that the Dorfman derivative will be covariant under diffeo-

morphisms by examining the GL(d,R) decompositions of E and E∗. Roughly, the Dorfman

derivative is a combination of the Lie derivative along the T direction in E and the Spin(d, d)

action of the (d− 2)-form dω, where ω is the Λd−3T ∗ part of V . No other contributions to

the second term of (2.11) are compatible with GL(d,R).

– 7 –



J
H
E
P
0
8
(
2
0
1
7
)
1
4
4

The Dorfman derivative is most usefully written in spinor indices. Acting on another

generalised vector W = WαÊα, we have4

(LVW )α = V β∂βW
α +

1

8
(σMN )γδ(∂γV

δ)(σMN )αβW
β +

d− 4

4
(∂βV

β)Wα (2.12)

where here the matrices σMN are the generators of the Spin(d, d) algebra acting on the

spinors V α. For more details of our conventions, see appendix A.1. One can also act on

other generalised tensors, for example a generalised tensor X transforming in the vector

representation of Spin(d, d) with zero weight under R+. This Dorfman derivative can be

written as

(LVX)M = V α∂αX
M +

1

2
(σMN )αβ(∂αV

β)XN (2.13)

One can then study the closure of the algebra of the Dorfman derivative. To do this us-

ing the expressions with spinor indices above, one needs to make note of some combinations

of two partial derivatives which vanish identically, due to the fact that only the components

of ∂α along T ∗ are non-vanishing. In fact, studying the GL(d,R) decompositions, one finds

that only the irreducible parts

(σM1...Md−2
)[αβ]∂α(. . . )∂β(. . . ) and (σM1...Md

)(αβ)∂α(. . . )∂β(. . . ) (2.14)

of two separate derivatives and, for second derivatives, only

(σM1...Md
)(αβ)∂α∂β(. . . ) (2.15)

can be non-vanishing. The remaining irreducible parts of S2E∗ form the bundle N∗ ⊂
S2E∗, whose dual N is the Spin(d, d)×R+ version of the bundle N from [4], which governs

the “section condition” of extended geometries. A general method to identify this bundle

can be found in appendix B.

Armed with (2.14) and (2.15), one can see the closure of the algebra using Fierz

identities. Some of the steps of this derivation are highlighted in appendix A.2. In fact,

the closure of the algebra is guaranteed by the results of [6], and the structure forms a

Leibniz algebroid.

2.4 Generalised connections and torsion

Generalised connections are defined simply as linear differential operators

D : B → E∗ ⊗B (2.16)

where B is any Spin(d, d) × R+ tensor bundle and the generalised torsion is defined for

V ∈ E by

T (V ) = L
(D)
V − LV (2.17)

acting on any generalised tensor.

4Recall that we are taking d even here.
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Writing Dα = ∂α + Ωα, where Ωα is a local Lie algebra valued section of E∗, one can

see that Ω has a decomposition into Spin(d, d)× R+ irreducible parts

S−−1 ⊗ ad(Spin(d, d)× R+) = S−−1 + S−−1 +K−1 + P−1 (2.18)

where K is the representation corresponding to the positive chirality spin- 3
2 representation,

and P is the remaining irreducible part.

From (2.12), one can easily see that the generalised torsion lives in the representations

S−−1 ⊕K−1. The GL(d,R) decomposition of this contains the terms

S−−1 ⊕K−1 → T ∗ ⊕ (T ⊗ Λ2T ∗)⊕ Λd−1T ∗ ⊕ . . . (2.19)

so the generalised torsion contains the ordinary torsion as well as terms for a (d− 1)-form

field strength and the derivative of a scalar.

2.5 Split frames and Spin(d) × Spin(d) structures

As in [3, 4], one can construct so-called conformal split frames for the geometry, essentially

by acting on a local coordinate induced frame {Êα} = {∂/∂xm, dxm1 ∧ · · · ∧ dxmd−3 , . . . }
with an element of the geometric subgroup, which untwists the patching of the generalised

tangent space, and an R+ scaling. The key ingredient of this group element is a (d − 2)-

form gauge field which has the same gauge transformation patching as the twisting of the

generalised tangent space. The split frames concretely realise the global isomorphism

E ' T ⊕ Λ(d−3)T ∗ ⊕ (ΛdT ∗ ⊗ Λ(d−5)T ∗)⊕ ((ΛdT ∗)2 ⊗ Λ(d−7)T ∗)⊕ . . . (2.20)

Now suppose we have a metric gmn, a scalar field ∆ and a (d − 2)-form gauge field

Am1...md−2
. One can build a particular SO(d) family of split frames corresponding to these

fields, by applying the untwisting transformation (by A(d−1)) and R+ scaling (by e∆) to

the coordinate induced frame on E as above, and then working in a vielbein frame êa
m for

the given metric on the tangent bundle T .

In one of these split frames {Êα}, one can define a positive definite inner product on

E by

G(V, V ) = δabV
aV b +

1

(d− 3)!
δa1b1 . . . δad−3bd−3Va1...ad−3

Vb1...bd−3
+ . . . (2.21)

where V = V aÊa + 1
(d−3)!Va1...ad−3

Êa1...ad−3 + . . . . This inner product is stabilised by

Spin(d) × Spin(d), the maximal compact subgroup of Spin(d, d) × R+, so the generalised

vielbein frames for this generalised metric form a Spin(d)× Spin(d) structure.

Given this structure, one can then go through the remaining steps in the construction

of [3–5]. One finds a family of torsion-free compatible connections and a set of unique

operators associated to them acting on certain spinor bundles of Spin(d)× Spin(d). Using

these, one can look to construct a generalised Ricci curvature tensor as in [4, 5]. We do

not give details of this here, but the calculations are straightforward.
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2.6 Appearance in supergravity

Recall that generalised geometry typically describes the internal sector of compactifications

of supergravity. We refer to this internal sector as a dimensional restriction of the origi-

nal theory. Essentially, one performs a dimensional split taking the external space to be

Minkowski, and keeps only fields depending on the internal coordinates which do not break

the symmetry of the external space. The exact prescription for dimensional restriction is

given in [5] for the example of eleven-dimensional supergravity restricted to d-dimensional

spaces, where it is shown to be described by Ed(d)×R+ generalised geometry.

Similarly, for small values of d, the Spin(d, d) × R+ generalised geometries all appear

in maximal supergravity. Here we give a brief discussion of some examples.

d = 4 and d = 5. As mentioned before, the d = 4 case coincides exactly with the

original O(4, 4) generalised geometry of [1, 2], after a Spin(4, 4) triality rotation. One can

see that the R+ weight of E vanishes, as does the relevant term of the Dorfman derivative.

The relevance of this geometry to type II theories is well-known [3, 7–34].

The d = 5 geometry is the E5(5) × R+ generalised geometry of eleven-dimensional

supergravity restricted to five-dimensional spaces [4, 5, 36, 64].

d = 6. This geometry can be viewed as a subsector of the E7(7)×R+ generalised geometry

of type IIB supergravity restricted to six-dimensional spaces [4, 36, 39, 40]. The generalised

tangent space has the decomposition

E ' T ⊕ Λ3T ∗ ⊕ (Λ6T ∗ ⊗ T ∗) (2.22)

thus including the charges of the D3-brane and dual graviton. Note that no gauge trans-

formation associated to the dual graviton is included in the geometry, so that there are no

problems with covariance.

d = 7 and d = 8. The algebra one would naturally associate to eleven-dimensional

supergravity restricted to eight-dimensional manifolds is E8(8)×R+, whose decomposition

under the relevant gravity line subgroup GL(8,R) will be given in section 3.2. This algebra

includes the potential of the dual graviton, so that it does not give rise to a generalised

geometry due to the usual problems with covariance of the Dorfman derivative. However,

the Spin(8, 8) × R+ subalgebra can be viewed as a truncation of E8(8) × R+ which keeps

only the six-form potential, as will be described in section 3, and this does give rise to

a generalised geometry. In this sense, the d = 8 case geometrises a sector of eleven-

dimensional supergravity not previously covered by a geometric construction of this type.

The generalised tangent space decomposes as

E ' T ⊕ Λ5T ∗ ⊕ (Λ8T ∗ ⊗ Λ3T ∗)⊕ ((Λ8T ∗)2 ⊗ T ∗) (2.23)

The additional charges in the geometry are thus the M5-brane, a higher dual of the M5-

brane [121] and a higher dual of the graviton (see appendix C.2). Again, the gauge trans-

formations associated to the dual charges are not included here.
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d E
(1/2)
d × R+ H

(1/2)
d Dynkin diagram

6 SL(6,R)× SL(2,R)× R+ SO(6)× SO(2)

E

E

7 SL(8,R)× R+ SO(8)
E

8 Spin(8, 8)× R+ Spin(8)× Spin(8)

E

9 E9(9) KE9(9)

E

Table 1. Series of half-exceptional groups and their maximal compact subgroups

The d = 7 case corresponds to half of the IIA circle reduction of the d = 8 case. Here

E has the decomposition

E ' T ⊕ Λ4T ∗ ⊕ (Λ7T ∗ ⊗ Λ2T ∗)⊕ (Λ7T ∗)2 (2.24)

so one has the D4-brane, a dual version of the NS5-brane, and also a higher dual of the

D0-brane. One can visualise this reduction in Dynkin diagrams by folding up the node at

the right end (as in C.1) and then truncating it.

3 Half-exceptional generalised geometry

In this section, we show how the Spin(8, 8) × R+ geometry of the previous section fits

into a series of “half-exceptional” algebras we denote E
(1/2)
d , listed in table 1. These

algebras are constructed by taking the level decompositions5 of the exceptional algebras

and truncating to even levels only. As the grading respects this operation, the resulting

algebra is guaranteed to close. The Dynkin diagrams of the resulting series of algebras

closely resemble those of the exceptional algebras, in that there is a gravity line with one

node added. However, this node is now added above the sixth node from the right instead

of the third. The Spin(d, d)× R+ series of the previous section was built by adding nodes

to the right end of the Dynkin diagram, which changed the relevant higher dimensional

theory as well as the dimension of restriction. The present series adds nodes to the left

end, which keeps the higher dimensional theory the same, while increasing the dimension

of restriction.

5In the extra node added to the gravity line as in [120].
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The representation corresponding to the generalised tangent space is given by a Dynkin

label with a 1 for the nodes labelled E and zero for the other nodes. This overall pattern

is exactly as for the exceptional groups. Note that though we added E9(9) in the last line

to continue the algebraic pattern, we do not discuss this group further in this paper.

For the supergravity, the truncation to even levels means that one restricts to a subsec-

tor of the field content. The full exceptional algebra is generated by the Λ3T ⊕ Λ3T ∗ part

of the algebra and multiple commutators. This roughly corresponds to the presence of the

three-form gauge field A(3) in the supergravity. In the same way, the truncation to even

levels is generated instead by the Λ6T ⊕Λ6T ∗ part, which corresponds to the six-form Ã(6).

Therefore, it makes perfect sense that these algebras geometrise the subsector consisting

of the metric, the six-form and, as the dimension increases, their higher rank dual fields

(in the sense of [121]).

Much of this section is concerned with repeating the construction of [4, 5] for these

half-exceptional geometries. Therefore, we will mostly state the results, referring the reader

to [4, 5] for more explanation of the overall logic.

3.1 Half-exceptional geometry for d ≤ 7

The complete description of the half-exceptional geometries for d ≤ 7 can almost be read-

off from the equations in [4, 5], simply by setting the truncated terms to zero. For example

the generalised tangent space has a local isomorphism

E ' T ⊕ Λ5T ∗, (3.1)

the Dorfman derivative becomes

LV V
′ = Lvv′ +

(
Lvσ′ − iv′dσ

)
, (3.2)

where v ∈ T and σ ∈ Λ5T ∗ are the two parts of the generalised vector V , and the generalised

torsion acts as

T (V ) = e∆
(
−ivd∆ + v ⊗ d∆− ivF̃ + d∆ ∧ σ

)
. (3.3)

The N bundle decomposes as

N ' Λ4T ∗M ⊕ (Λ7T ∗M ⊗ Λ3T ∗M). (3.4)

so that the corresponding representation is the fundamental representation for the fourth

node from the right of the Dynkin diagram. See [4] for precise details of the meaning of

these expressions.

The maximal compact subgroup Hd ⊂ Ed(d)×R+ becomes now the maximal compact

subgroup H
(1/2)
d of E

(1/2)
d ×R+ as listed in table 1, which is a subgroup of Hd with algebra

ad(H
(1/2)
d ) ' Λ2T ∗ ⊕ Λ6T ∗, (3.5)

under an SO(d) decomposition. The representations of Hd in which the fermions transform

then decompose under H
(1/2)
d , but in calculations it is often more convenient to continue
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to work with the (now reducible) Hd objects. Note however that there is one substantial

simplification in truncating away the Λ3T ∗ component of the Hd algebra: we no longer

need to consider the two different representations S± of the algebra on spinors (see [5]),

which were distinguished by the sign of the action of Λ3T ∗.

The only equation which must be changed is the expression for the torsion-free com-

patible connection in the split frame. Recall that in generalised geometry, the torsion-free

and compatibility conditions are insufficient to fix the connection uniquely: there are un-

determined components. The expression given in [4] is a particular choice, as the result

is ambiguous due to the fact that one could choose to absorb some combinations of terms

into the undetermined parts of the connection. This particular choice is no longer available

to us in the more restricted setup considered here, but now a valid choice is

Da = e∆

(
∇a +

1

4

(
17− 2d

d− 1

)
(∂b∆)γa

b − 1

2

1

7!
F̃ab1...b6γ

b1...b6 + /Qa

)
,

Da1...a5 = e∆

(
1

4

5!

7!
F̃ a1...a5b1b2γ

b1b2 − 3

4

(
d−1

5

)−1
(∂b∆)γba1...a5 + /Qa1...a5

)
,

(3.6)

where again Q represents the parts of the connection which are not determined uniquely.

The unique derivative operators which led to the supersymmetry variations of the

fermions in [5] can be truncated straightforwardly. We reproduce here the relevant terms

acting on a spinor ε̂ = e−∆/2εsugra, which is promoted to a representation of H
(1/2)
d

/Dε̂ = ΓaDaε̂+
1

5!
Γc1...c5Dc1...c5 ε̂

= e∆/2

(
/∇+

9− d
2

(
/∂∆
)
− 1

4
/̃F

)
εsugra,

(D f ε̂)a = Daε̂−
1

3

1

4!
Γc1...c4Dac1...c4 ε̂+

2

3

1

5!
Γa

c1...c5Dc1...c5 ε̂

= e∆/2

(
∇a −

1

12

1

6!
F̃ab1...b6Γb1...b6ε

)
εsugra.

(3.7)

We briefly note that the d = 7 case here is part of a family of generalised geometries

based on the groups SL(d+ 1,R)× R+, with diagrams

E

This family is similar to that of section 2, but it geometrises a (d−1)-form potential, leading

to a top-form field strength. Another example of this series is the well-known E4(4) × R+

generalised geometry in four dimensions studied in [4, 5, 36, 63]. They can be thought of

as the “gravity-line-reversal” of the geometry in appendix C.1.
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3.2 Half-exceptional geometry for d = 8: Spin(8, 8) × R+

The GL(8,R) decompositions of the relevant representations of E8(8) × R+ read

1+1 → (Λ8T ∗)

2480 → (T ⊗ T ∗)⊕ Λ3T ⊕ Λ3T ∗ ⊕ Λ6T ⊕ Λ6T ∗ ⊕ (Λ8T ⊗ T )⊕ (Λ8T ∗ ⊗ T ∗)
248+1 ' 2480 ⊗ 1+1

→ T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ (T ∗ ⊗ Λ7T ∗)

⊕ (Λ8T ∗ ⊗ Λ3T ∗)⊕ (Λ8T ∗ ⊗ Λ6T ∗)⊕ ((Λ8T ∗)2 ⊗ T ∗)

(3.8)

Performing the truncation to even levels on E8(8)×R+, one is left with the Spin(8, 8)×R+

subgroup. The geometry we need is thus the Spin(8, 8) × R+ geometry of the previ-

ous section.

The decompositions listed in section 2 provide us with the generalised tangent space

and the adjoint bundle associated to the frame bundle. We now look at the decompositions

of the bundle N and the torsion representation K−1. The fibre of N is the representation

1+2 ⊕ 1820+2, so that

N ' (Λ8T ∗)2 ⊕ Λ4T ∗ ⊕ (Λ7T ∗ ⊗ Λ3T ∗)⊕ (Λ8T ∗ ⊗ Λ2T ∗ ⊗ Λ6T ∗)

⊕ ((Λ8T ∗)2 ⊗ T ∗ ⊗ Λ5T ∗)⊕ ((Λ8T ∗)3 ⊗ Λ4T ∗)
(3.9)

Note that in order for an expression of the form LVW +LWV = ∂ ×E (V ×N W ) to exist,

one would need a coordinate independent map

∂ : (Λ8T ∗)2 → (Λ8T ∗)2 ⊗ T ∗ (3.10)

which clearly cannot be canonically defined. Therefore, as for the E7(7) × R+ geometry

of [4], no such expression can be written.

The fibre of K−1 is the spin-3
2 representation 1920+

−1, giving a decomposition

K ' (T ⊗ Λ2T ∗)⊕ Λ7T ∗

⊕ (T ⊗ Λ4T )0 ⊕ (T ∗ ⊗ Λ6T )⊕ (Λ7T ⊗ Λ4T )

⊕ (Λ8T ⊗ T ⊗ Λ2T )0 ⊕ (Λ8T ⊗ Λ2T ⊗ Λ7T )⊕ ((Λ8T )2 ⊗ Λ7T )

(3.11)

At first glance, some of the terms here that would survive on truncating to d = 7 appear

to disagree with those given in [4]. However, on using the seven-dimensional isomorphism

T ∗⊗Λ6T = Λ7T⊗T ∗⊗T ∗ = Λ5T⊕(Λ7T⊗S2T ∗), one can see that there is no contradiction.

The expressions for the torsion-free compatible connection and unique projections for

the supersymmetry variations for d ≤ 7 extend to the case d = 8 without the need for

significant modification. Here there are more parts of the connection to deal with, but we

can choose to express the connection (acting on a spinor ε̂ = e−∆/2εsugra) as

Da = e∆

(
∇a +

1

4

(
17− 2d

d− 1

)
(∂b∆)γa

b − 1

2

1

7!
F̃ab1...b6γ

b1...b6 + /Qa

)
,

Da1...a5 = e∆

(
1

4

5!

7!
F̃ a1...a5b1b2γ

b1b2 − 3

4

(
d−1

5

)−1
(∂b∆)γba1...a5 + /Qa1...a5

)
,

D(... ) = e∆
(
/Q(... )

)
, for other parts

(3.12)
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so that those terms do not affect the calculation of the projections

/Dε̂ = ΓaDaε̂+
1

5!
Γc1...c5Dc1...c5 ε̂+ (. . . )

= e∆/2

(
/∇+

9− d
2

(
/∂∆
)
− 1

4
/̃F

)
εsugra,

(D f ε̂)a = Daε̂−
1

3

1

4!
Γc1...c4Dac1...c4 ε̂+

2

3

1

5!
Γa

c1...c5Dc1...c5 ε̂+ (. . . )

= e∆/2

(
∇a +

1

6

1

7!
F̃b1...b7Γa

b1...b7ε− 1

12

1

6!
F̃ab1...b6Γb1...b6ε

)
εsugra,

(3.13)

as the undetermined pieces of the connection Q cancel.

3.3 Supersymmetry variations with only F̃(7)

The supersymmetry variation of the eleven-dimensional gravitino can be written in terms

of the dual field strength ∗F = ∗dA(3) as

δψM = ∇Mε+
1

12

[
2

7!
(∗F)N1...N7

ΓM
N1...N7 − 1

6!
(∗F)MN1...N6

ΓN1...N6

]
ε (3.14)

Using the ansatz

F̃m1...m7 = ∗Fm1...m7 ∗ FµM1...M6 = 0 (3.15)

but otherwise keeping the same reduction of fields as in [5], this gives rise to the supersym-

metry variations

δρ =

[
/∇− 1

4
/̃F +

9− d
2

(/∂∆)

]
ε,

δψm =

[
∇m +

1

6

1

7!
F̃n1...n7Γm

n1...n7 − 1

12

1

6!
F̃mn1...n6Γn1...n6

]
ε,

(3.16)

for the fermions in the d-dimensional restriction.

These are precisely the expressions reproduced by the projection operators (3.13) in

the half-exceptional geometry. The generalised geometry description of supersymmetric

backgrounds [7–10, 39, 41–43, 127] can therefore be extended to the case of compactifica-

tions to three dimensions with only internal ∗F fluxes by the Spin(8, 8) × R+ geometry.

Some work examining such backgrounds (as well as more general cases) was presented

in [128].

From this point, one anticipates that the rest of the construction will go through,

exactly as in [4, 5], to provide all of the equations of this restricted theory.

4 Discussion

In this paper, we have constructed a new family of generalised geometries based on the

groups Spin(d, d) × R+ in which the generalised tangent space corresponds to a spinor

representation of the group. We have shown how these geometries arise in supergravity
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and how the case of Spin(8, 8) × R+ provides a geometry for a class of supersymmetric

backgrounds which fall outside the classes covered previously.

The idea of studying geometries containing subsectors of the field content of a theory

is not new, as the original generalised geometry of [1, 2] covered only the NS-NS sector of

type II supergravity. This can be viewed as taking an O(10, 10)×R+ subgroup of E11 [129].

In a sense, the construction of [4, 5] also contains only a subsector as there the fields are

dimensionally restricted. Recently the main focus has been to try to include all of the

fields, in increasing dimensions. However, one quickly runs into serious problems even for

E8(8)×R+, related to the problem of dual gravity, and worse still for the infinite-dimensional

algebras conjectured to underlie the cases where yet more dimensions are included, as there

are then infinitely many mixed symmetry tensor fields to account for.

While understanding this is obviously an important ultimate goal, it may be worthwhile

to study subsectors where the problems associated to these more complicated types of fields

do not appear. It seems likely that the Spin(d, d) × R+ series will continue to have some

role as one includes more dimensions of the eleven-dimensional theory in the geometry. For

the case of Spin(8, 8) we have found that the geometric prescription appears to hold good

if one simply truncates away the problematic fields. The generalised tangent space still

contains the higher level charges, though they do not actively play a role. It seems likely

that this pattern will continue. The Spin(9, 9) case contains a six-form charge, which may

well be the D6 brane of type IIA restricted to 8 dimensions. More interesting could be

the Spin(10, 10) case with a seven-form charge, which could be related to one of the seven-

branes in type IIB of [130, 131]. The Spin(11, 11) case has an eight-form charge, which

may be the totally anti-symmetric part of the dual graviton in the full eleven-dimensions.

These cases all deserve some investigation in the future.

The other respect in which it may be useful to consider subsectors is for the study of

supersymmetric backgrounds. Clearly, one need not always have all fluxes switched on, so

for the purposes of considering backgrounds with only certain fluxes, the analysis could be

greatly simplified if one includes only the relevant fluxes in the geometry.

The investigations of appendix C.5 indicate that dimensional restrictions of six-

dimensional minimal supergravity can also be described by generalised geometry. Further,

one can include vector and tensor mulitiplets in six dimensions, provided the restricted

fields parameterise a coset. One encounters the same problems as for E8(8) × R+ if one

tries to include three dimensions or more, but the restrictions to two dimensions appear

to work as for Ed(d)×R+ for d ≤ 7 in eleven-dimensional supergravity. One can similarly

consider G2(2)×R+ for five-dimensional minimal supergravity restricted to two dimensions

and find a similar situation to the SO(4, 3)× R+ case of C.5. This suggests that the con-

struction applies to any supergravity theory, so long as the restricted fields parameterise a

coset and mixed symmetry tensor fields are not included.

Another overriding question, which we do not attempt to answer here, is what feature of

these physical theories causes the appearance of generalised geometry? One could suspect

the supersymmetry in supergravity may have a role here, as it seems to be very interwoven

in the construction. However, generalised geometry also seems to be applicable in cases with

no supersymmetry, and in the case of subsectors it is not clear that the fields considered
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form supermultiplets, so one can question whether one really has supersymmetry in those

cases. Gravity may actually be the only absolutely common ingredient. The answer to this

question will hopefully become clearer as more is known about these structures.
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A Conventions and technical details

A.1 Conventions

All convention choices whose relevance overlaps with those made in [4, 5] are chosen to

match [4, 5].

We use indices M,N, · · · = 1, . . . , 2d as the vector indices of Spin(d, d) and spinor

indices α, β, · · · = 1, . . . , 2d. The generators ωMN of Spin(d, d) are taken to acts on vectors

and spinors of Spin(d, d) by

δXM = ωMNX
N δV α =

1

4
ωMN

(
σMN

)α
βV

β (A.1)

Where we have spinor inner products given by a real matrix Cαβ below, we use the index

conventions

Cαβ = (C−1)αβ V α = CαβVβ Vα = CαβV
β (A.2)

The contraction of a Spin(d, d)×R+ generalised vector V = V αÊα with a generalised dual

vector Z = ZαE
α is defined as V αZα. The embeddings are normalised such that if V and

W have only vector and one-form parts respectively, then V αZα = V mZm.

A.2 Closure of Spin(d, d) × R+ Dorfman algebra and Fierz identities

We examine the algebra of two Dorfman derivatives by U, V ∈ E acting on X as in (2.13).

The interesting point is to see how projections of the partial derivatives have to vanish in

order for the terms like V (∂U)(∂X) and V X(∂∂U) to cancel. The former types of terms

appear in ([LU , LV ]X − L[U,V ]X)M as(
−1

2

[
1

8

(
σPQ

)α
β (σPQ)γ δ + δαδδ

γ
β +

d− 4

4
δαβδ

γ
δ

]
V β
(
∂γU

δ
)

(∂αXM )

)
− (U ↔ V )

(A.3)

while the latter appear as(
−1

4
(σMN )α β

[
1

8

(
σPQ

)β
ε (σPQ)γ δ+δ

β
δδ
γ
ε+

d−4

4
δβεδ

γ
δ

](
∂α∂γU

δ
)
V εXN

)
−(U↔V )

(A.4)
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One then applies the Fierz identities detailed below, which show a clear pattern. For the

resulting expressions to vanish, one needs that the expressions

(σM1...Mp)αβ∂α(. . . )∂β(. . . ) and (σM1...Mq)αβ∂α∂β(. . . ) (A.5)

are non-vanishing only for p = d − 2 or p = d and q = d respectively. One can see that

this is indeed the case by evaluating the decompositions of the relevant representations of

Spin(d, d) × R+ under GL(d,R). This also follows directly from the general argument of

appendix B.

Fierz identity for Spin(4, 4). Here we have a symmetric spinor inner product C(αβ)

on 8-component spinors (δαα = 8). We find

1

8
(σMN )αβ(σMN )γδ + δαδδ

γ
β +

d− 4

4
δαβδ

γ
δ =

1

8

[
8CαγCβδ

]
(A.6)

Fierz identity for Spin(6, 6). Here the inner product C[αβ] is antisymmetric on 32-

component spinors and we have

1

8

(
σMN

)α
β (σMN )γ δ + δαδδ

γ
β +

d− 4

4
δαβδ

γ
δ =

1

32

[
−16CαγCβδ +

8

2!

(
σMN

)αγ
(σMN )βδ

]
(A.7)

Fierz identity for Spin(8, 8). C(αβ) is symmetric again and we have 128-component

spinors. We obtain

1

8

(
σMN

)α
β (σMN )γ δ + δαδδ

γ
β +

d− 4

4
δαβδ

γ
δ

=
1

128

[
32CαγCβδ +

16

2!

(
σMN

)αγ
(σMN )βδ +

8

4!

(
σM1...M4

)αγ
(σM1...M4)βδ

] (A.8)

B Section conditions from Dynkin labels

As in the introduction, we order the Dynkin labels so that the first (d−1) places represent

the gravity line, while the others correspond to the added nodes, separating the two groups

with a semi-colon. The generalised tangent space E then always has a label [1, 0, . . . , 0; ∗].
We can then examine the decomposition of the tensor product of two such represen-

tations. We find there is always a term with a label [2, 0, . . . 0; ∗] in the decomposition

of the symmetric part S2E, while there is always one of the type [0, 1, 0, . . . , 0; ∗] in the

antisymmetric part Λ2E. By considering the R+
diagonal ⊂ GL(d,R) weights of the terms

in the GL(d,R) decomposition of E, we see that there can only be one term like S2T in

S2E and only one term like Λ2T in Λ2E. These are always found in the decompositions of

the representations with the labels just highlighted. Therefore, if we have two generalised

vectors V and W living only in the T part of E, then, since T ⊗ T = S2T ⊕ Λ2T , only

these irreducible parts of V ⊗W can be non-zero. The bundle labelled N in [4] therefore

corresponds to the sum of all of the irreducible parts of S2E except for the representation

with label [2, 0, . . . 0; ∗] identified here.
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Considering instead E∗ ' T ∗ ⊕ . . . , one can consider the implications of the above for

the partial derivative, which lives only in the T ∗ component. This allows one to quickly

read off which combinations of two partial derivatives must vanish identically. There are

two cases of interest.

If both derivatives act on the same object, clearly the antisymmetrised part will vanish.

Of the symmetric part, only the irreducible component corresponding to the dual of the

[2, 0, . . . , 0; ∗] representation defined above can survive.

If the derivatives act on different objects, then the same component of the symmetric

part will survive as for the previous case. However, also only one irreducible component

of the antisymmetric part can be non-vanishing: that corresponding to the dual of the

[0, 1, 0, . . . , 0; ∗] representation defined above. Note that the presence of antisymmetrised

derivatives acting on different objects vanishing identically has not been discussed promi-

nently in the literature. This is because in most cases examined so far, the antisymmetric

tensor product Λ2E has been irreducible.

One can also see in the examples of appendix C that the leading GL(d,R) irreducible

components of the bundle N have Dynkin labels which match the gravity line part of the

Dynkin label for the containing representation of the enlarged algebra. For example, for

the d ≤ 7 geometries in [4], the leading component is always T ∗, while for the d ≤ 7 half-

exceptional cases of section 3 it is always Λ4T ∗. These are also fairly easy to guess, given

the form of E.

These mneumonics provide an easy way to find the representation for the bundle N ,

or rather its compliment in S2E. It seems likely that there is a similar extension of them

to find the entire sequence of representations discussed in [67], which are related to the

tensor hierarchy [87].

C Examples of algebras and GL(d,R) decompositions

In this appendix we review the gravity line decompositions of some algebras relevant to

restrictions of various gravitational theories. We include this to illustrate the general

schematic patterns outlined in the discussion in the main text. We will endeavour to point

out the references to the literature along the way, and it should be understood that the

relevance of these algebras to the physical theories is not new. A important reference for

much of the section is [81].

C.1 SL(d + 1,R) × R+ and Kaluza-Klein reduction

The most trivial example of an algebra leading to a generalised geometry is SL(d+1,R)×R+

with diagram

E

One finds that

E ' T ⊕ R (C.1)

– 19 –



J
H
E
P
0
8
(
2
0
1
7
)
1
4
4

and

ad(SL(d+ 1,R)× R+) ' R⊕ (T ⊗ T ∗)⊕ T ⊕ T ∗ (C.2)

This corresponds to (d+ 1)-dimensional gravity restricted to d dimensions. The geometry

includes the d-dimensional gravity, 1-form gauge field and a scalar. It is clearly very

reminiscent of ordinary Kaluza-Klein reduction. When written in SL(d+ 1,R) indices, the

form of the Dorfman derivative coincides with the ordinary Lie derivative.

The diagram above represents that of ordinary gravity, but with the right-most node

“folded-up” off the gravity line. The pattern can be used fairly generally to examine the

S1 reduction of the parent higher dimensional theory. We will see it again below.

A further comment is that the SL(d + 1,R) × R+ geometry described in section 3 is

essentially the “gravity-line-reversal” of this one.

C.2 SL(d + 1,R) × R+ and dual gravity

We examine pure D dimensional gravity restricted to d = D − 3 dimensions (with a warp

factor in the metric ansatz). This structure will appear as a subsector in almost all of the

rest of the algebras considered in this appendix, so it is natural to study this first.

The relevant algebra is the algebra of the Ehlers group SL(d + 1,R) × R+. We draw

the Dynkin diagram as

(d− 2)
(d− 1)

32

E
d

E
1

(C.3)

the numbers indicating the order of the Dynkin labels, which we write as [n1, . . . , nd−1;nd].

This setup can be understood as one of a series similar to that in table 1 and this is the

simplest way to see intuitively how it generalises the patterns outlined in the introduction.

We discuss this at the end of this section.

First we look at the GL(d,R) decompositions. Similarly to section 2.1, we use a

different embedding to the one that immediately comes to mind. This leads to

ad(SL(d+ 1,R)× R+) ' R⊕ (T ⊗ T ∗)⊕ (T ⊗ ΛdT )⊕ (T ∗ ⊗ ΛdT ∗) (C.4)

We can identify here that the gauge field for the dual graviton living in T ∗ ⊗ ΛdT ∗, which

is not a pure differential form. Now let (1+1 ' ΛdT ∗) and we have

E ' ([1, 0, . . . , 0; 1])+1 ' T ⊕ (T ∗ ⊗ Λd−1T ∗)⊕ ((ΛdT ∗)2 ⊗ T ∗) (C.5)

The dual graviton charge is thus T ∗ ⊗ Λd−1T ∗, and we also see here a higher dual charge

(ΛdT ∗)2 ⊗ T ∗, which must also result from pure gravity as that is all we have in this con-

struction.

Now we examine

S2E ' 1+2 ⊕ [1, 0, . . . , 0; 1]+2 ⊕ [0, 1, 0, . . . , 0, 1; 0]+2 ⊕ [2, 0, . . . , 0; 2]+2 (C.6)
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and

Λ2E ' [1, 0, . . . , 0; 1]+2 ⊕ [2, 0, . . . , 0, 1; 0]+2 ⊕ [0, 1, 0, . . . , 0; 2]+2 (C.7)

We see that S2E has one term of the form [2, 0, . . . , 0; ∗] while Λ2E has a term like

[0, 1, 0, . . . , 0; ∗]. Applying the reasoning of B we have

N ' 1+2 ⊕ [1, 0, . . . , 0; 1]+2 ⊕ [0, 1, 0, . . . , 0, 1; 0]+2 ⊂ S2E (C.8)

Looking at leading terms

[1, 0, . . . , 0; 1]+2 ∼ Λd−1T ∗ ⊕ . . .
[0, 1, 0, . . . , 0, 1; 0]+2 ∼ (T ∗ ⊗ Λd−2T ∗)0 ⊕ . . .

(C.9)

we see that N ' (T ∗ ⊗ Λd−2T ∗) ⊕ (ΛdT ∗)2 ⊕ . . . looks to have the correct form under

GL(d,R) for there to be a gauge transformation of E of the form

∂ : N → E (C.10)

as one would hope. However, this fails to be covariant as for the d = 7 case of [4].

The natural guess for the “torsion” representation is E∗⊕K ⊂ E∗⊗ad[SL(d+1,R)×R+]

where K ∼ 1−1 ⊕ [1, 0, . . . , 0, 1]−1 ⊕ [0, 1, 0, . . . 0, 1, 0]−1. The decompositions are

[1, 0, . . . , 0, 1]−1 ' T ∗ ⊕ (T ⊗ Λd−1T )⊕ ((ΛdT )2 ⊗ T )

[0, 1, 0, . . . , 0, 1, 0]−1 ' (T ⊗ Λ2T ∗)0 ⊕ (T ⊗ Λd−1T )

⊕ (ΛdT ⊗ Λ2T ⊗ Λ2T ∗)0 ⊕ ((ΛdT )2 ⊗ Λ2T ⊗ T ∗)0

(C.11)

so that the overall “torsion” would be

E∗ ⊕K 'T ∗ ⊕ (T ⊗ Λ2T ∗)⊕ 2× (T ⊗ Λd−1T )⊕ ΛdT ⊕ (ΛdT ⊗ Λ2T ⊗ Λ2T ∗)

⊕ ((ΛdT )2 ⊗ T )⊕ ((ΛdT )2 ⊗ Λ2T ⊗ T ∗)
(C.12)

However, even ignoring issues of covariance, the usual form (2.11) of the Dorfman derivative

and torsion (2.17) fails to project out some parts of the connection. Therefore, it would

seem that the prescription of [3–5] would need some algebraic modification to include dual

gravity. An interesting approach to this modification can be found in [86].

A final comment here is that the restriction to d = D − 2 dimensions would involve

the (centrally extended) affine algebra of [132, 133] with diagram

(d− 1)2

d

E
1

(C.13)

This fits the pattern of the non-gravity line node connecting to those nodes of the gravity

line corresponding to the potential term (T ∗⊗Λd−1T ∗ in this case), though we do not wish

to discuss further such infinite dimensional algebras here.
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The diagram (C.3) for the d = D− 3 case can be viewed as that obtained by removing

the node labelled 1 from (C.13) (and relabelling d → d + 1). The node above the gravity

line can then be thought of as connecting to the T ∗ node but still keeping the ΛdT ∗ factor,

which does not correspond to a node. This is why we positioned the added node over the

left edge of the diagram.

This is similar to what happens in the simpler situation where there is a node for an

SL(2,R) factor added over the left-edge of the diagram corresponding to the addition of a

ΛdT ∗ potential, such as in the d = 6 case of table 1. In these cases, there is a pattern that

the Dynkin label of the generalised tangent space also has a 1 in the entry corresponding

to the SL(2,R) node. The exact same behaviour is seen in all series like that in table 1,

when one includes a new node for a top-form potential as the rank of the gravity line is

increased. The E3(3) ' SL(3,R) × SL(2,R) geometry in the exceptional series and the

geometry of appendix C.4.5 provide further examples of this.

C.3 Kaluza-Klein reduction of dual gravity

Consider the setup of C.2 with D = 11 and d = 8, which is a subsector of eleven-dimensional

supergravity restricted to eight-dimensions as we will see below. We wish to look at the

reduction to type IIA, which corresponds to folding up the right-most node of the Dynkin

diagram as in C.1. This leads to the following GL(7,R) decomposition for the remaining

nodes of the gravity line

E ' T ⊕ R⊕ Λ6T ∗ ⊕ Λ7T ∗

⊕ (Λ7T ∗ ⊗ (Λ7T ∗ ⊕ T ∗))
⊕ (T ∗ ⊗ Λ6T ∗)⊕ ((Λ7T ∗)2 ⊗ T ∗)

(C.14)

In the usual type IIA language, we see terms for the D0 and D6-branes on the first line

and the dual gravity setup of C.2. The Λ7T ∗ fits as the magnetic dual of the dilaton while

the two terms on the middle line are higher duals of the D0 and D6-branes [121].

In the usual gravity language, the D0-brane sources the Kaluza-Klein vector, while the

D6-brane is its magnetic charge. The fact that the magnetic charge comes directly from

this reduction makes sense of the idea that the starting setup includes a kind of magnetic

dual of gravity.

C.4 Some decompositions of E8(8) × R+

Here we will briefly look at some of the other decompositions of E8(8) × R+, and their

relevance to supergravity. We gave the GL(8,R) decomposition and one of the Spin(8, 8)

decompositions in section 3. This subgroup resulted in a generalised geometry. The decom-

positions listed here do not lead to geometries (with the exception of C.4.5), but are helpful

examples for understanding how the Dynkin diagrams relate to the fields and charges. One

sequence of embeddings we examine is

E8(8) × R+ → O(8, 8)× R+ → O(7, 7)×O(1, 1)× R+ (C.15)
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where the O(7, 7) subgroup corresponds to the T-duality group of the type II theories. We

emphasise that the middle group here is a different O(8, 8) subgroup to the one considered

in section 3.

Another decomposition one can consider is that of E8(8)×R+ → E7(7)×SL(2,R)×R+.

The two orientations of the gravity line in this subalgebra will be seen to correspond to a

subsector of the type IIB theory including the dual graviton and a new generalised geometry

for a subsector of type IIA.

C.4.1 O(8, 8) × R+ extension of T duality in 7 dimensions

The (continuous) T-duality group in seven-dimensions is O(7, 7). This group is contained

in an O(8, 8) subgroup of E8(8), so to begin with, we examine the decomposition O(8, 8)×
R+ → O(7, 7)×O(1, 1)× R+

ad(O(8, 8)× R+)0 → ad(O(7, 7))(0,0) ⊕ 7(+1,0) ⊕ 7(−1,0) ⊕ 1(0,0) (C.16)

where in the pairs of weights on the right hand side, the first refers to the O(1, 1) factor,

while the second refers to the original R+ factor in O(8, 8)× R+.

We now embed GL(7,R) into O(7, 7)×O(1, 1)×R+ so that 1(+1,0) ' Λ7T and 1(0,+1) '
Λ7T ∗, and the embedding into the O(7, 7) factor is such that the vector decomposes as

T ⊕ T ∗ as in [2]. We then have the GL(7,R) decompositions:

7(+1,+1) ' (T ⊕ T ∗)⊗ Λ7T ⊗ Λ7T ∗

' T ⊕ T ∗

7(−1,+1) ' (T ⊕ T ∗)⊗ (Λ7T ∗)2

' ((Λ7T ∗)2 ⊗ T ∗)⊕ (Λ7T ∗ ⊗ Λ6T ∗)

91(0,+1) ' ((T ⊗ T ∗)⊕ Λ2T ⊕ Λ2T ∗)⊗ Λ7T ∗

' Λ5T ∗ ⊕ (T ∗ ⊗ Λ6T ∗)⊕ (Λ7T ∗ ⊗ Λ2T ∗)

1(0,+1) ' Λ7T ∗

(C.17)

The generalised tangent space for this group would be the adjoint of O(8, 8) with unit

R+ weight.

E ' 120+1 ' T ⊕ T ∗ ⊕ Λ5T ∗ ⊕ (T ∗ ⊗ Λ6T ∗)⊕ Λ7T ∗

⊕ (Λ7T ∗ ⊗ Λ6T ∗)⊕ (Λ7T ∗ ⊗ Λ2T ∗)⊕ ((Λ7T ∗)2 ⊗ T ∗)
(C.18)

It is clear that the first line of this corresponds to the NS-NS sector complete with magnetic

duals. The terms added to the usual tangent space correspond to the string, the NS5-brane,

the dual graviton and the magnetic dual of the dilaton. The three terms on the second line

are higher duals for the string, NS5-brane and graviton respectively.

Looking at the decomposition

E ⊗ E ' [1, 0, . . . , 0; 0, 0]+1 ⊗ [1, 0, . . . , 0; 0, 0]+1

= 1+2 ⊕ [0, 0, 1, 0, 0, 0; 0, 0]+2 ⊕ [1, 0, . . . , 0; 0, 0]+2 ⊕ [0, . . . , 0; 0, 2]+2

⊕ [0, 1, 0, . . . , 0; 0, 1]+2 ⊕ [2, 0 . . . , 0; 0, 0]+2

(C.19)
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one can read off that

N ' 1+2 ⊕ [0, . . . , 0; 0, 2]+2 ⊕ [0, 0, 1, 0, 0, 0; 0, 0]+2 (C.20)

The algebras for this magnetic completion of the NS-NS sector also form a series, whose

diagrams we draw as

d

(d− 1)

(d+ 1)

E
1

Due to the appearance of the potential for the dual graviton, these do not straightforwardly

define generalised geometries in dimensions d ≥ 7. The case d = 6 has group SO(6, 6) ×
SL(2,R)×R+ ⊂ E7(7)×R+ corresponding to a slight enhancement of ordinary generalised

geometry by an SL(2,R) factor. These algebras have been identified before [124] in the

very similar context of type I supergravity, and a similar algebra was considered in [83] in

the context of the bosonic string.

C.4.2 O(8, 8) × R+ decompostion of E8(8) × R+

Embedding the above in E8(8) × R+, gives us the GL(7,R) decomposition of E8(8) × R+

relevant to the type II theories

E ' 248+1 → ad(O(8, 8))+1 ⊕ 128±+1 (C.21)

where we take + for type IIB and − for type IIA. The decomposition of the first term is

the common NS-NS sector as above. The decomposition of the second term is

128+
+1 ' R⊕ Λ2T ∗ ⊕ Λ4T ∗ ⊕ Λ6T ∗

⊕
[
Λ7T ∗ ⊗

(
Λ7T ∗ ⊕ Λ5T ∗ ⊕ Λ3T ∗ ⊕ T ∗

)] (C.22)

for the type IIA case and

128−+1 ' T
∗ ⊕ Λ3T ∗ ⊕ Λ5T ∗ ⊕ Λ7T ∗

⊕
[
Λ7T ∗ ⊗

(
Λ6T ∗ ⊕ Λ4T ∗ ⊕ Λ2T ∗ ⊕ R

)] (C.23)

for type IIB. These correspond to the D-branes of these theories, and their higher du-

als [121].

As noted in [122, 123], the diagrams corresponding to the type IIA and IIB decompo-

sitions should be drawn as

E
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for type IIA, the “folding up” of the right-most node corresponding to KK reduction (as

in C.1), and

E

for type IIB.

C.4.3 E7(7) × SL(2,R) in type IIB

Here we briefly look at the subsector corresponding to the E7(7)× SL(2,R)×R+ subgroup

in the type IIB decomposition. One has

248+1 → (133,1)+1 ⊕ (56,2)+1 + (1,3)+1 (C.24)

where

(133,1)+1 ' T ⊕ Λ3T ∗ ⊕ (T ∗ ⊗ Λ6T ∗)⊕ (Λ7T ∗ ⊗ Λ4T ∗)⊕ ((Λ7T ∗)2 ⊗ T ∗)

(56,2)+1 ' 2×
[
T ∗ ⊕ Λ5T ∗ ⊕ (Λ7T ∗ ⊗ Λ2T ∗)⊕ (Λ7T ∗ ⊗ Λ6T ∗)

]
(1,3)+1 ' 3× (Λ7T ∗)

(C.25)

This corresponds to a different embedding of GL(7,R) in E7(7) to the one considered in [4].

Clearly, this is a different reorganisation of the type IIB decomposition of the previous

section, the SL(2,R) factor corresponding to the S-duality symmetry. For this construction,

we would take E ' (133,1)+1 and draw the diagram

E

the nodes added above the fourth node and zeroth node from the right indicating that

the algebra is generated by Λ4T ⊕ Λ4T ∗ and Λ0T ⊕ Λ0T ∗. The interpretation of the very

extended E7 algebra as a subsector of type IIB has appeared before in [81] .

In this case one has

E ⊗ E ' 1+2 ⊕ [1, 0, . . . , 0, 0; 0]+2 ⊕ [0, 0, 0, 0, 1, 0; 0]+2

⊕ [0, 1, 0, . . . , 0; 0]+2 ⊕ [2, 0 . . . , 0; 0]+2

(C.26)

so that

N ' 1+2 ⊕ [0, 0, 0, 0, 1, 0; 0]+2 (C.27)

Removing one node from the left of the diagram here, we recover the d = 6 case of

section 2, enhanced by an additional SL(2,R) factor, which also includes the axion-dilaton

system in the algebra.
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C.4.4 E8(8) adjoint in type IIB

The adjoint of E8(8) is the 2480 representation. We can get the GL(7,R) decomposition

of this from the 248+1 above simply by multiplying all terms by Λ7T to remove the R+

weight. This is typical of restrictions to d = D − 3 dimensions, where the presence of the

dual graviton typically makes the representation for E a weighted version of the adjoint,

and one can notice that the operation exchanges fields with their duals. This observation

aids us in identifying the field relevant to each term. For brevity, we give only the type IIB

decomposition Graviton: T

Dual Gravtion: T ∗ ⊗ Λ6T ∗

2nd Dual: ((Λ7T ∗)2 ⊗ T ∗)

 ⊗Λ7T−→ ((T ⊗ T ∗)⊕ (T ⊗ Λ7T )⊕ (T ∗ ⊗ Λ7T ∗))

(
F1: T ∗

Dual F1: Λ7T ∗ ⊗ Λ6T ∗

)
−→ (Λ6T ⊕ Λ6T ∗)(

NS5: Λ5T ∗

Dual NS5: Λ7T ∗ ⊗ Λ2T ∗

)
−→ (Λ2T ⊕ Λ2T ∗)(

D1: T ∗

Dual D1: Λ7T ∗ ⊗ Λ6T ∗

)
−→ (Λ6T ⊕ Λ6T ∗)(

D3: Λ3T ∗

Dual D3: Λ7T ∗ ⊗ Λ4T ∗

)
−→ (Λ4T ⊕ Λ4T ∗)(

D5: Λ5T ∗

Dual D5: Λ7T ∗ ⊗ Λ2T ∗

)
−→ (Λ2T ⊕ Λ2T ∗)(

D7: Λ7T ∗

Dual D7: Λ7T ∗

)
−→ (R⊕ R)

(Dual dilaton: Λ7T ∗) −→ (R)

The first part of the adjoint is the subsector of C.2. The remaining parts exchange the fields

and their duals, for example the parts of E relevant to the NS5-brane becoming the parts

of the adjoint relevant to the string and vice-versa. The remaining NS-NS seven-form in E

is mapped to the algebra generator R which corresponds to the dilaton, hence we identify

this seven-form as the dual dilaton (as in C.3).

C.4.5 E7(7) × SL(2,R) in type IIA

Here we present a sketch of the subsector corresponding to the E7(7) × SL(2,R) × R+

subgroup in the type IIA decomposition. This subgroup actually leads to a generalised

geometry with diagram

E

E

This is the “gravity-line-reversal” of the type IIB algebra of C.4.3.
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We choose the embedding of GL(7,R) in E7(7) × SL(2,R)× R+ such that

ad(E7(7)) ' (T ⊗ T ∗)⊕ (Λ3T ⊕ Λ3T ∗)⊕ (Λ6T ⊕ Λ6T ∗)

ad(SL(2,R)) ' R⊕ Λ7T ⊕ Λ7T ∗

1+1 ' (Λ7T ∗)

(C.28)

The generalised tangent space corresponds to the (56,2)+1 representation which then de-

composes as
E ' T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T ∗

⊕
[
Λ7T ∗ ⊗ (Λ5T ∗ ⊕ Λ2T ∗ ⊕ T ∗)

]
⊕ ((Λ7T ∗)2 ⊗ T ∗)

(C.29)

The first line includes the charges for the D2, NS5 and D6-branes, while the second line

contains their dual charges. The last line is the higher dual of the graviton. The adjoint

includes potentials only for the pure-form charges, so that there are no problems with the

generalised geometric construction. It is an extension of the E7(7) × R+ geometry of [4, 5]

by the SL(2,R) factor.

By the method of B, one finds that

N ' 1+2 ⊕ (133,2)+2 ⊕ (1539,1)+2 (C.30)

while the only non-vanishing part of antisymmetric partial derivatives lives in the

(1539,3)+2 representation.

C.5 Six-dimensional N = (1, 0) supergravity

Here we briefly mention how one can see similar structures in six-dimensional theories

with 8 supercharges. The corresponding infinite dimensional algebras and relation to the

supergravity has previously appeared in [125].

The diagrams in this section feature a node for a short root added to the gravity line,

in contrast to the other cases we have looked at, where all roots have the same length. This

still adds the generators for the expected p-form potential into the system, but it will also

lead to the inclusion of further terms which do not follow such a simple rule. A systematic

discussion of this would be beyond the scope of the present paper, and we will content

ourselves simply to note what happens in two simple examples.

For pure six-dimensional minimal supergravity restricted to three dimensions, consider

SO(4, 3)× R+ with the diagram6

2
E

1

3

This leads to the GL(3,R) decompositions

E ' T ⊕ T ∗ ⊕ (T ∗ ⊗ Λ2T ∗)⊕ (Λ3T ∗ ⊗ Λ2T ∗)⊕ ((Λ3T ∗)2 ⊗ T ∗)
ad ' R⊕ (T ⊗ T ∗)⊕ Λ2T ⊕ Λ2T ∗ ⊕ (T ⊗ Λ3T )⊕ (T ∗ ⊗ Λ3T ∗)

(C.31)

6Note that this diagram is a collapsed version of the diagrams in section C.4.1.
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showing that we have not only the expected two-form gauge field, but also the dual graviton.

Due to the latter, the usual generalised geometry construction fails. The representation

for N comes out to be

N ' 1+2 ⊕ [0, 2; 0]+2 ⊕ [0, 0; 2]+2 (C.32)

One can see the exact same behaviour if one considers adding vector and tensor mul-

tiplets in six dimensions. The relevant group cosets are well-known (see [134] for a review

of their geometry). For example, for the SO(5, 4)× R+ case we draw the diagram as

E

and find the GL(3,R) decompositions

E ' T ⊕ T ∗ ⊕ (T ∗ ⊗ Λ2T ∗)⊕ (Λ3T ∗ ⊗ Λ2T ∗)⊕ ((Λ3T ∗)2 ⊗ T ∗)

⊕
[
T ∗ ⊕ Λ3T ∗ ⊕ (Λ3T ∗ ⊗ Λ2T ∗)

]
⊕
[
R⊕ Λ2T ∗ ⊕ (Λ3T ∗ ⊗ T ∗)⊕ (Λ3T ∗)2

]
ad ' R⊕ (T ⊗ T ∗)⊕ Λ2T ⊕ Λ2T ∗ ⊕ (T ⊗ Λ3T )⊕ (T ∗ ⊗ Λ3T ∗)

⊕
[
R⊕ Λ2T ⊕ Λ2T ∗

]
⊕
[
T ⊕ T ∗ ⊕ Λ3T ⊕ Λ3T ∗

]
(C.33)

which one can easily identify as adding a vector multiplet and a tensor multiplet (both

with magnetic duals included) to the pure supergravity above. One can find similar de-

compositions for the theories related to the other very special quaternionic cosets.

The above algebras are relevant to restrictions of six-dimensional theories to d = 3

dimensions. One could instead examine the restriction to d = 2. In this case, there is no

dual graviton and the construction of [3–5] is expected to go through. However, this is of

limited interest for studying backgrounds, as there can be no H(3) flux in two dimensions.

Open Access. This article is distributed under the terms of the Creative Commons
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[34] D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux

vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [INSPIRE].

[35] P. Koerber, Lectures on Generalized Complex Geometry for Physicists, Fortsch. Phys. 59

(2011) 169 [arXiv:1006.1536] [INSPIRE].

[36] C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203]

[INSPIRE].

[37] P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and

superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].

[38] H. Triendl and J. Louis, Type II compactifications on manifolds with SU(2)× SU(2)

structure, JHEP 07 (2009) 080 [arXiv:0904.2993] [INSPIRE].

[39] M. Graña, J. Louis, A. Sim and D. Waldram, E7(7) formulation of N = 2 backgrounds,

JHEP 07 (2009) 104 [arXiv:0904.2333] [INSPIRE].

[40] G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and Generalized

Geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].

[41] M. Graña and F. Orsi, N=1 vacua in Exceptional Generalized Geometry, JHEP 08 (2011)

109 [arXiv:1105.4855] [INSPIRE].

[42] M. Graña and F. Orsi, N=2 vacua in Generalized Geometry, JHEP 11 (2012) 052

[arXiv:1207.3004] [INSPIRE].

[43] M. Graña and H. Triendl, Generalized N = 1 and N = 2 structures in M-theory and type-II

orientifolds, JHEP 03 (2013) 145 [arXiv:1211.3867] [INSPIRE].

– 30 –

https://doi.org/10.1007/JHEP03(2012)073
https://doi.org/10.1007/JHEP03(2012)073
https://arxiv.org/abs/1109.2603
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2603
https://doi.org/10.1007/JHEP07(2012)051
https://arxiv.org/abs/1202.5542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5542
https://arxiv.org/abs/1301.7238
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7238
https://doi.org/10.1007/JHEP01(2014)176
https://doi.org/10.1007/JHEP01(2014)176
https://arxiv.org/abs/1305.5255
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5255
https://doi.org/10.1007/JHEP07(2013)180
https://arxiv.org/abs/1306.2543
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2543
https://doi.org/10.1007/JHEP12(2013)083
https://arxiv.org/abs/1306.4381
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4381
https://doi.org/10.1088/1126-6708/2005/08/099
https://doi.org/10.1088/1126-6708/2005/08/099
https://arxiv.org/abs/hep-th/0506154
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506154
https://doi.org/10.1088/1126-6708/2005/11/048
https://arxiv.org/abs/hep-th/0507099
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507099
https://doi.org/10.1088/1126-6708/2006/06/033
https://doi.org/10.1088/1126-6708/2006/06/033
https://arxiv.org/abs/hep-th/0602129
https://inspirehep.net/search?p=find+EPRINT+hep-th/0602129
https://doi.org/10.1088/1126-6708/2006/12/062
https://arxiv.org/abs/hep-th/0610044
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610044
https://doi.org/10.1088/1126-6708/2008/11/021
https://arxiv.org/abs/0807.4540
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4540
https://doi.org/10.1002/prop.201000083
https://doi.org/10.1002/prop.201000083
https://arxiv.org/abs/1006.1536
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1536
https://doi.org/10.1088/1126-6708/2007/07/079
https://arxiv.org/abs/hep-th/0701203
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701203
https://doi.org/10.1088/1126-6708/2008/09/123
https://arxiv.org/abs/0804.1362
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1362
https://doi.org/10.1088/1126-6708/2009/07/080
https://arxiv.org/abs/0904.2993
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2993
https://doi.org/10.1088/1126-6708/2009/07/104
https://arxiv.org/abs/0904.2333
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2333
https://doi.org/10.1007/JHEP11(2010)083
https://arxiv.org/abs/1007.5509
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5509
https://doi.org/10.1007/JHEP08(2011)109
https://doi.org/10.1007/JHEP08(2011)109
https://arxiv.org/abs/1105.4855
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4855
https://doi.org/10.1007/JHEP11(2012)052
https://arxiv.org/abs/1207.3004
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3004
https://doi.org/10.1007/JHEP03(2013)145
https://arxiv.org/abs/1211.3867
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3867


J
H
E
P
0
8
(
2
0
1
7
)
1
4
4

[44] W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47

(1993) 5453 [hep-th/9302036] [INSPIRE].

[45] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

[46] C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065

[hep-th/0406102] [INSPIRE].

[47] C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664]

[INSPIRE].

[48] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory,

JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

[49] O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory,

JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

[50] O. Hohm and S.K. Kwak, Frame-like Geometry of Double Field Theory, J. Phys. A 44

(2011) 085404 [arXiv:1011.4101] [INSPIRE].

[51] I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to

double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

[52] I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev.

D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

[53] O. Hohm, S.K. Kwak and B. Zwiebach, Double Field Theory of Type II Strings, JHEP 09

(2011) 013 [arXiv:1107.0008] [INSPIRE].

[54] G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of Double Field
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