
J
H
E
P
0
8
(
2
0
1
7
)
1
3
5

Published for SISSA by Springer

Received: June 6, 2017

Accepted: August 14, 2017

Published: August 29, 2017

Semi-abelian Z-theory: NLSM+φ3 from the open

string

John Joseph M. Carrasco,a Carlos R. Mafrab and Oliver Schlottererc

aInstitut de Physique Théorique, CEA-Saclay,
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1 Introduction

Z-theory [1, 2] refers to the α′ dependent theory of bi-colored1 scalars whose double copy [3–

5] with maximally supersymmetric Yang-Mills theory (sYM) [6] generates the tree-level

scattering predictions of the open superstring. Z-theory was originally defined by taking

1It may be tempting to refer to the Z-theory scalars as “bi-adjoint”, since in the low-energy (α′ → 0)

limit, non-abelian Z-theory becomes bi-adjoint φ3. We make a different choice here to emphasize the

following important point: the α′-corrections imply that Z-theory scalars are not trivially Lie-algebra valued

w.r.t. one of the gauge groups — the one dressed by string Chan-Paton factors. Charges under the gauge

groups are referred to as “color” throughout this work which may equivalently be replaced by “flavour”.
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its amplitudes to be the set of doubly-ordered functions Zσ(τ) of ref. [7] — iterated inte-

grals over the boundary of a worldsheet of disk topology — which arise in the tree-level

amplitudes of the open superstring [8, 9]. The complete α′-expansion of the non-linear

Z-theory equations of motion is pinpointed in ref. [2].

To translate these doubly-ordered Zσ(τ)-functions to field-theory scattering ampli-

tudes, one dresses the permutation σ ∈ Sn encoding the integration domain with the

Chan-Paton (CP) factors associated with open-string endpoints. Depending on whether

the CP factors are entirely non-abelian or abelian, the low-energy limits of the correspond-

ing Z-theory amplitudes reproduce the tree-level interactions of either bi-adjoint scalar

particles [10, 11], or non-linear sigma model (NLSM) pions2 [1]. Z-theory amplitudes offer

a fascinating laboratory to study stringy emergence in a new and technically much simpler

context. From a double-copy perspective they isolate, in a scalar field theory, what is ultra

UV-soft3 in higher-derivative tree-level predictions of the open superstring.

The main result of this work concerns the semi-abelian version of Z-amplitudes —

those involving a mixture of abelian and non-abelian CP factors. Their low-energy the-

ory will be identified with interactions among NLSM pions and bi-adjoint scalar particles

(NLSM+φ3). Amplitudes in this theory have been recently studied [24] in a Cachazo-He-

Yuan (CHY) representation [5, 11, 25]. To be concrete, we will generalize the emergence

of color-stripped NLSM amplitudes from completely abelianized disk integrals or abelian

Z-theory amplitudes [1],

ANLSM(1, 2, . . . , n) = lim
α′→0

1

nα′

∫

Rn

dz1 dz2 . . . dzn
vol(SL(2,R))

∏n
i<j |zij |

α′ki·kj

z12z23 . . . zn−1,nzn1
, (1.1)

where zij ≡ zi−zj . In close analogy to (1.1), we will identify the doubly-stripped amplitudes

of the (NLSM+φ3) theory in the low-energy limit of semi-abelian Z-amplitudes (3.2),

ANLSM+φ3

(1, 2, . . . , r|τ(1, 2, . . . , n)) = lim
α′→0

α′r−3−δ

∫

−∞≤z1≤z2≤...≤zr≤∞

dz1 dz2 . . . dzn
vol(SL(2,R))

∏n
i<j |zij |

α′ki·kj

τ(z12z23 . . . zn−1,nzn1)
,

(1.2)

with 2≤r≤n external bi-adjoint scalars. The power of α′ is δ = 0 and δ = 1 for even and

odd numbers of pions n−r, respectively, and the second ordering referring to the integrand

is governed by a permutation τ ∈ Sn.

As first realized in ref. [26], the NLSM double copies with sYM to generate predictions

in Dirac-Born-Infeld-Volkov-Akulov theory (DBIVA) — the supersymmetric completion

of Born-Infeld (see e.g. [27]). The abelianized open string, as an all-order double copy

of abelian Z-theory with sYM, provides α′-corrections to DBIVA [1]. Similarly, as the

NLSM+φ3 double copies with sYM to generate predictions in DBIVA coupled with sYM,

the semi-abelian open string provides an all-order α′-completion to DBIVA+sYM. One

can either use the field-theory (α′ → 0) Kawai-Lewellen-Tye (KLT) type-relations at tree

level [3], often encoded in a momentum kernel [28], to double copy ordered amplitudes, or

2See [12–16] and [17–20] for earlier references on the NLSM and its tree-level amplitudes, respectively.
3For discussions of the famously exponentially suppressed UV behaviour of string scattering see e.g.

refs. [21–23].
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solve for Jacobi-satisfying numerators and take the double copy graph by graph, following

the duality between color and kinematics due to Bern, Johansson and one of the current

authors (BCJ) [4, 29]. As sYM amplitudes are by now standard textbook material [30],

the new ingredient which we provide is the understanding of how to generate the various

α′-components of semi-abelian Z-theory. Additionally, with these amplitudes in hand, one

can even consider the double copy of semi-abelian Z-theory with itself, which results in a set

of higher-derivative corrections to the theory of special Galileons coupled with NLSM+φ3

discussed in ref. [24].

It should be noted that the type of non-linear symmetry at work in effective field

theories like the NLSM and (through double copy with sYM) in DBIVA, has recently

garnered some attention from applications to cosmology. Volkov-Akulov-type constrained

N = 1 superfields allow for technically simple inflationary models [31–34] and descriptions

of dark energy [35–38]. This, as well as independent advances in the notion of a soft

bootstrap, has motivated renewed interest in understanding the effect of such non-linear

symmetries on the S-matrix, with special attention to its soft limits,4 see e.g. [41–44]

and references therein. It should be interesting to discover what symmetries survive, and

indeed emerge from, the higher-order string-theory type completion encoded in the Z-

theory amplitudes presented in [1] and here.

To understand the functions at work we will recall in section 2 the definition of the

disk integrals or Z-amplitudes at the heart of the CP-stripped open string. As explained in

section 3, the semi-abelian case requires partial symmetrizations over CP orderings which

are simplified using monodromy relations [45–47]. These techniques for evaluating (1.2)

together with the Berends-Giele recursion for non-abelian Z-theory amplitudes [2] give

efficient access to the higher-derivative interactions between pions and bi-colored scalars.

Integration-by-parts relations among the disk integrals guarantee that the BCJ duality

between color and kinematics [4, 29] holds to all orders in α′.

In the low-energy limit of semi-abelian Z-amplitudes (1.2) detailed in section 4 we will

make contact with recent results involving NLSM+φ3 [24]. Z-theory finds exact agreement

with the tree amplitudes of ref. [24] for an even number of pions, while yielding additional

couplings for odd numbers of pions. Our low-energy results reveal novel amplitude relations

between the extended NLSM and pure φ3 theory and imply simplifications of their CHY

description [24, 26].

2 Review

He we provide a lightening overview of doubly-ordered Z-theory amplitudes so as to set

up the main results. We refer the reader to [1, 2] for detailed reviews of Z-theory as well

as properties of color-kinematics and the double copy.

As discussed in [1], it is possible, and indeed quite intriguing, to interpret the iterated

disk integrals of the CP stripped open-string amplitude as predictions in an effective field

4The ability of soft limits of a theory’s S-matrix to encode its symmetries has long been appreciated, from

the conception of what became known as Adler zeros [39], to the imprint of coset symmetry on double-soft

limits [40].
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theory. First we define the doubly-ordered Z-functions [7],

Zσ(1,2,...,n)(τ(1, 2, . . . , n)) ≡ α′n−3
∫

−∞≤zσ(1)≤zσ(2)≤...≤zσ(n)≤∞

dz1 dz2 · · · dzn
vol(SL(2,R))

∏n
i<j |zij |

α′sij

τ(z12z23 . . . zn−1,nzn1)
, (2.1)

with permutations σ, τ ∈ Sn. The field-theory ordering τ determines the cyclic product

of inverse zij ≡ zi − zj in the integrand, and integration-by-parts manipulations imply [7]

that different choices of τ are related by the field-theory BCJ relations [4]

n−1
∑

j=2

(k1 · k23...j)Zσ(1,2,...,n)(2, 3, . . . , j, 1, j+1, . . . , n) = 0 (2.2)

at fixed σ. The CP-ordering σ, on the other hand, constrains the domain of integration

such that zσ(i) ≤ zσ(i+1) for i = 1, 2, . . . , n−1, where Z12...n(. . .) is cyclically equivalent to

Z2...n1(. . .). The α′-dependent string-theory monodromy relations [45, 46]

n−1
∑

j=1

eiπα
′k1·k23...j Z23...j,1,j+1...n(τ(1, 2, . . . , n)) = 0 (2.3)

intertwine the contributions from different integration domains resulting ultimately in an

(n−3)!-basis at fixed integrand ordering τ . Accordingly, the σ-ordering in (2.1) will also

be referred to as the monodromy ordering. As we reserve the right to dress both orderings

with color-information, we will distinguish the monodromy related dressings as CP factors,

and the field-theory order relevant dressings as color-factors. Note that our conventions

for Mandelstam invariants in (2.1) and multiparticle momenta in (2.3) are fixed by

k12...p ≡ k1 + k2 + . . .+ kp , s12...p ≡
1

2
k212...p =

p
∑

i<j

ki · kj . (2.4)

The prefactor α′n−3 in (2.1) is designed to obtain the doubly-partial amplitudes of the

bi-adjoint scalar theory m[·|·] in the limit [11]

lim
α′→0

Zσ(1,2,...,n)(τ(1, 2, . . . , n)) = m[σ(1, 2, . . . , n) | τ(1, 2, . . . , n)] , (2.5)

see [48] and [2] for Berends-Giele recursions for the field-theory amplitudes m[·|·] and the

full-fledged disk integrals (2.1), respectively.

Perhaps the most natural way to think about Z-theory as an effective field theory is

as a doubly-colored scalar theory where one color (corresponding to color order σ, whose

generators we will annotate with ta) is provided by the stringy5 CP factors. The CP

color mixes with all higher-order kinetic terms6 depending on α′ ki · kj . The other color

5Of course there is nothing stringy about the CP factors themselves, rather the doubly-ordered amplitude

obeys the string monodromy relations on the order dressed by the CP factors.
6Indeed these higher-derivative terms are responsible for the CP ordering satisfying monodromy relations

as opposed to the field-theory relations of the field-theory color-ordering.
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(corresponding to color order τ , whose generators we will annotate with T a) represents a

familiar field-theory non-abelian color dressing.

As mentioned in the introduction, to achieve familiar color-ordered amplitudes we must

dress the doubly-ordered Zσ(τ) along one of their orderings. Dressing σ with the CP factors

leaves us with a manifestly factorizable theory whose amplitudes obey the standard field-

theory BCJ relations (2.2). Explicitly, we sum (2.1) over all distinct σ orders, weighting

each Zσ(τ) with the σ-ordered CP trace:

Z (τ(1, 2, . . . , n)) ≡
∑

σ∈Sn−1

Tr(t1tσ(2) · · · tσ(n))Z1,σ(2,...,n)(τ(1, 2, . . . , n)) . (2.6)

Starting from the CP-dressed Z-theory amplitude (2.6), the color-dressed open-string am-

plitude [8] can be written in the form [7]

Mopen
n =

∑

τ,ρ∈Sn−3

Z (1, τ(2, . . . , n−2), n, n−1) (2.7)

× S[τ(23 . . . n−2) | ρ(23 . . . n−2)]1A
YM(1, ρ(2, . . . , n−2), n−1, n)

of the KLT relations for supergravity amplitudes [3, 49]. The matrix S[·|·]1 is known as

the field-theory momentum kernel [28] and allows for the recursive representation [1],

S[A, j |B, j, C]i = (kiB · kj)S[A |B,C]i , S[∅ | ∅]i ≡ 1 , (2.8)

with multiparticle labels such as B = (b1, . . . , bp) and C = (c1, . . . , cq), multiparticle mo-

mentum kiB ≡ ki+kb1 + · · ·+kbp and composite label B,C = (b1, . . . , bp, c1, . . . , cq). In the

next section, we will derive simplified representations for the CP dressed Z-amplitudes (2.6)

when some of the generators ta are abelian. In this semi-abelian case, the open-string am-

plitudes (2.7) encode a UV completion of supersymmetric DBIVA coupled with sYM [50],

and our subsequent results on Z(. . .) should offer insight into the structure of its tree-level

S-matrix.

3 Semi-abelian Z-theory amplitudes

3.1 A structural perspective

In the case of some abelian CP-charged particles where ta → 1, the traces in (2.6) reduce

to only the relevant non-abelian generators. If there are r non-abelian charged particles

with labels 1, 2, . . . , r and n−r abelian particles, the color-ordered CP-dressed Z(τ) am-

plitude (2.6) can be written as

Z (τ(1, 2, . . . , n))
∣

∣

tr+1,...,tn→1
=

∑

σ∈Sr−1

Tr(t1tσ(2) · · · tσ(r))Z1,σ(2,3,...,r)(τ(1, 2, . . . , n)) .

(3.1)

In the notation Σ(1, 2, . . . , r) ≡ {1, σ(2, 3, . . . , r)} for their integration domain, the semi-

abelianized doubly-ordered ZΣ(τ)-amplitudes with r ≤ n are given as

ZΣ(12...r) (τ(1, 2, . . . , n)) ≡ α′n−3
∫

−∞≤zΣ(1)≤zΣ(2)≤...≤zΣ(r)≤∞

dz1 dz2 . . . dzn
vol(SL(2,R))

∏n
i<j |zij |

α′sij

τ(z12z23 . . . zn−1,nzn1)
, (3.2)
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where the punctures zr+1, . . . , zn are understood to be integrated over the range (zΣ(1),∞).

Note that we have Σ ≡ {∅} for the abelianized Z-theory introduced in [1], and so what

would putatively be a doubly-ordered integral becomes the only single-ordered integral

relevant to the theory at a given multiplicity, with the order τn ≡ τ(1, 2, . . . , n).

Both the monodromy relations [45, 46] and the recent all-multiplicity developments on

α′-expansions [2, 7, 51, 52] are tailored to non-abelian disk integrals Zρ(τ) in (2.1), where

ρ and τ refer to all the n particles. In order to export these results to the semi-abelian

disk integrals of (3.1), the latter need to be expressed in terms of their completely ordered

counterparts Zρ(τ).

Of course, the inequalities among z1, z2, . . . , zr imposed by the Σ-ordering in (3.2) can

always be translated into a combination of n-particle orderings,

Z1,σ(2,3,...,r)(τn) =
∑

ρ(2,...,n)∈

[

σ(2,...,r)

r+1 r+2 ... n

]

Z1,ρ(2,3,...,n)(τn) , (3.3)

where the shuffle symbol acting on words B = (b1, . . . , bp) and C = (c1, . . . , cq) can be

recursively defined by

∅ B = B ∅ = B , B C ≡ b1(b2 . . . bp C) + c1(c2 . . . cq B) . (3.4)

However, this “naive” expansion of semi-abelian Z-amplitudes ZΣ(12...r)(τn) =

Z1,σ(2,...,r)(τn) in terms of their non-abelian counterparts Zρ(τ) usually carries a lot of

redundancies and obscures the leading low-energy order. Hence, we will be interested in

a simplified representation in terms of (n−2)! non-abelian orderings ρ = ρ(2, 3, . . . , n−1)

which is specified by an α′-dependent coefficient matrix Wα′(Σ | ρ),

ZΣ(τn) ≡
∑

ρ∈Sn−2

Wα′(Σ | ρ(2, 3, . . . , n−1))Z1,ρ(2,3,...,n−1),n(τn) , (3.5)

The expansion coefficients in the matrix Wα′(Σ | ρ) will be identified as trigonometric func-

tions of α′sij universal to all τn which clarify the first non-vanishing order of α′. This

approach will be seen to yield particularly useful expressions for ZΣ(τ) with a small num-

ber r of non-abelian CP factors, to expose their leading low-energy order, to simplify the

identification of their field-theory limit and to render the computation of their α′-expansion

more efficient.

The desired form (3.5) of semi-abelian Z-theory amplitudes can be achieved by ex-

ploiting the monodromy relations at the level of the CP-dressed integrals (2.6) [47],

Z(τn) =
∑

σ∈Sn−2

Tr([[· · · [[t1, tσ(2)]α′ , tσ(3)]α′ , · · · ]α′ , tσ(n−1)]α′ tn)Z1,σ(2,3,...,n−1),n(τn) . (3.6)

In the context of the color-dressed open superstring (2.7), this can be viewed7 as a general-

ization of the Del-Duca-Dixon-Maltoni representation of color-dressed sYM amplitudes [53].

7Note that with α′ → 0 the trace of commutators is exactly the color weight of the appropriate half-ladder

diagram.
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The complex phases seen in the monodromy relations (2.3) are absorbed into the symmetric

version of the α′-weighted commutator of [47],

[ti1ti2 . . . tip , tj1tj2 . . . tjq ]α′ ≡ eixi1i2...ip,j1j2...jq (ti1ti2 . . . tip) (tj1tj2 . . . tjq) (3.7)

− e−ixi1i2...ip,j1j2...jq (tj1tj2 . . . tjq) (ti1ti2 . . . tip) ,

where the exponents are furnished by rescaled Mandelstam invariants (2.4)

xi1i2...ip,j1j2...jq ≡
πα′

2
ki1i2...ip · kj1j2...jq . (3.8)

A simplified representation (3.5) of semi-abelian Z-theory amplitudes (3.2), in particular

the explicit form of the coefficient matrix Wα′(Σ | ρ) for Σ ≡ Σ(12 . . . r), follows by isolating

the coefficient of a given CP trace in (3.6) after abelianizing tr+1, tr+2, . . . , tn → 1.

3.2 Simplified representation of abelian Z-theory amplitudes

Once we specialize (3.6) to abelian gauge bosons with tj → 1 for j = 1, 2, . . . , n, the

α′-weighted commutators (3.7) reduce to sine-functions and yield the following simplified

expression for the abelian Z-theory amplitudes of [1],

Z(τn)
∣

∣

tj→1
≡ Z×(τn) = (2i)n−2

∑

ρ∈Sn−2

Z1,ρ(2,3,...,n−1),n(τn)

n−1
∏

k=2

sin(x1ρ(23···(k−1)),ρ(k)) .

(3.9)

We continue to use the shorthand τn ≡ τ(1, 2, . . . , n) for the integrands, and by the vanish-

ing of odd-multiplicity instances Z×(τ2m−1) = 0, the multiplicity n is taken to be even, e.g.

Z×(τ4) = 4 sin2
(

πα′

2
s12

)

Z1234(τ4) + 4 sin2
(

πα′

2
s13

)

Z1324(τ4) (3.10)

Z×(τ6) = 16
∑

ρ∈S4

sin

(

πα′

2
s1ρ(2)

)

sin

(

πα′

2
(s1ρ(3) + sρ(23))

)

(3.11)

× sin

(

πα′

2
(sρ(45) + sρ(4)6)

)

sin

(

πα′

2
sρ(5)6

)

Z1ρ(2345)6(τ6) .

Given that each factor of

sin(x12...j−1,j) = sin

(

πα′

2
k12...j−1 · kj

)

=
πα′

2
k12...j−1 · kj +O(α′3) (3.12)

introduces one power of πα′k2 into the low-energy limit, the leading behaviour of

Z×(τ(1, 2, . . . , n)) = O(α′(n−2)
) (3.13)

is manifest in (3.9), in lines with the identification of the NLSM amplitude in [1]. Hence,

the sine-factors bypass the α′-expansion of disk integrals Z1,ρ,n(τ) to the order α′n−2

when extracting the n-point NLSM amplitude — the field-theory limit (2.5) of Z1,ρ,n(τ)

is enough to obtain the leading order of (3.9) in α′. Moreover, one can identify the above

sine-functions with the string-theory momentum kernel [28], defined recursively via [1]

Sα′ [A, j |B, j, C]i = sin(πα′kiB · kj)Sα′ [A |B,C]i , Sα′ [∅ | ∅]i ≡ 1 , (3.14)

– 7 –
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with the same notation as seen in its field-theory counterpart (2.8). More precisely, (3.9)

can be rewritten in terms of its diagonal elements at rescaled value8 α′ → α′/2

Z×(τn) = (2i)n−2
∑

ρ∈Sn−2

Sα′/2[ρ(23 . . . n−1) | ρ(23 . . . n−1)]1 Z1,ρ(2,3,...,n−1),n(τn) . (3.15)

3.2.1 Deriving the BCJ numerators of the NLSM

Here we can resolve a mystery first identified in ref. [54], and made acute in ref. [1].

In the former reference it was shown that color-kinematic satisfying numerators can be

written down for the NLSM as some sum over permuted entries of the momentum kernel

matrix (2.8). For theories compatable with the color-kinematics duality, there exists

representations of the amplitudes, proven at tree-level, conjecturally to all loop order,

where the kinematic weights of cubic graphs obey the same algebraic relationships as

the color weights. This means, order by order, a finite set of boundary graphs to all

multiplicity, termed master graphs, encodes all the information of the amplitude, and

algebraic relations propagate this information to the remaining bulk-graphs. For adjoint

theories, the algebraic relations are anti-symmetry around vertex flips (mirroring the

behavior of adjoint structure constants), as well as Jacobi identities around all edges.

Jacobi identites always express one graph’s weight in terms of two other weights. In

ref. [1] it was realized that in fact one needed only the diagonal elements of the KLT

matrix to construct the master numerators. The reason can be understood by recalling

the emergence of NLSM amplitudes from abelian Z-theory [1],

ANLSM(τn) = lim
α′→0

α′2−n
Z×(τn) , (3.16)

see (1.1), and inserting the α′ → 0 limits of the two constituents in (3.15), namely (2.5) and

Sα′/2[ρ(2 . . . n−1)|ρ(2 . . . n−1)]1 =

(

πα′

2

)n−2

S[ρ(2 . . . n−1)|ρ(2 . . . n−1)]1 +O(α′n) .

(3.17)

I.e. the string-theory KLT matrix (3.14) and the doubly-ordered Z-amplitudes (2.1) limit

to the field-theory KLT matrix (2.8) and the doubly-stripped bi-adjoint scalar amplitude

m[·|·] [11], respectively. We therefore obtain the compact formula for NLSM master

numerators proposed in [1]

ANLSM(τn) = (πi)n−2
∑

ρ∈Sn−2

S[ρ(23 . . . n−1) | ρ(23 . . . n−1)]1m[1, ρ(2, . . . , n−1), n|τn] ,

(3.18)

from the field-theory limit of (3.15). As firstly exploited implicitly in [55], color-kinematic

satisfying master numerators enter the full amplitude through a sum over their product

with the doubly-stripped partial amplitudes m[·|·] of the bi-adjoint scalar theory. Hence,

8The rescaling stems from the present choice to incorporate the relative monodromy phase between the

two color factors in the brackets [ti, tj ]α′ of (3.7) via eiπα′sij/2titj − e−iπα′sij/2tjti instead of the more

conventional representation titj − e−iπα′sij tjti underlying [47] and the original literature on monodromy

relations [45, 46].
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the role of the diagonal entries S[ρ(23 . . . n−1) | ρ(23 . . . n−1)]1 in (3.18) identifies them as

the master numerators of the NLSM [1].

We would be remiss if we did not refer to a remarkable recent result due to Cheung and

Shen [56]. There an explicit cubic action was found for the NLSM which indeed generates

exactly these color-dual kinematic numerators from application of naive Feynman rules.

3.3 Examples of semi-abelian Z-amplitudes

In this section, we extract the Wα′-matrices in (3.5) from the semi-abelian CP-dressed

Z-amplitudes in their simplified representation (3.6) when a small number r = 0, 1, . . . , 5

of CP factors is left non-abelian.

3.3.1 r ≤ 2 non-abelian generators

Given the cyclic equivalence of integration domains Σ(12 . . . r) → Σ(2 . . . r1), we need a

minimum of r = 3 non-trivial CP generators in (3.1) to deviate from the abelian disk

integrals Z×(. . .): this can be immediately seen from the rearrangements of the integration

region (3.3) following from the definition (3.2) of Z1(τn) and Z12(τn),

Z1(τn) = Z12(τn) =
∑

σ(2,3,...,n)
∈2 3 ... n

Z1,σ(2,3,...,n)(τn) =
∑

σ∈Sn−1

Z1,σ(2,3,...,n)(τn) = Z×(τn) . (3.19)

Equivalently, one can check (3.19) by comparing the sine-functions in the trace (and its

permutations in 2, 3, . . . , n−1)

Tr([. . . [[t1, t2]α′ , t3]α′ , . . . , tn−1]α′tn)
∣

∣

t2,...,tn−1=1
= (2i)n−2Tr(t1tn)

n−1
∏

k=2

sin(x12...k−1,k) ,

(3.20)

with (3.9) after stripping off the trace Tr(t1tn) of the leftover non-abelian generators.

Hence, the non-trivial semi-abelian disk integrals which are different from their abelian

counterparts involve at least r ≥ 3 non-abelian generators.

3.3.2 r = 3 non-abelian generators

For three non-trivial CP generators at positions i, j and n and all other generators abelian,

tℓ6=i,j,n → 1, the CP-dressed Z-amplitudes (3.6) boil down to traces of the form

Tr([. . . [. . . [. . . [t1, t2]α′ , . . . , ti]α′ , . . . , tj ]α′ , . . . , tn−1]α′tn) (3.21)

→ (2i)n−3
n−1
∏

k=2
k 6=j

sin(x12...k−1,k)Tr(e
ix12...j−1,j titjtn − e−ix12...j−1,j tjtitn) ,

where the coefficients of Tr(tΣ(i)tΣ(j)tn) in Z(τ) determines the semi-abelian integrals

ZΣ(ij)n(τ). Since the latter are known to be real, we will only be interested in the real

part of (3.21), e.g.

Re

[

(2i)n−3

n−1
∏

k=2

k 6=j

sin(x12...k−1,k)e
ix12...j−1,j

]

=(2i)n−3

n−1
∏

k=2

k 6=j

sin(x12...k−1,k)

{

isin(x12...j−1,j) : n even

cos(x12...j−1,j) : n odd

(3.22)
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along with Tr(titjtn). Note that cos(x12...j−1,j) enters with a different sign when considering

Tr(tjtitn) instead of Tr(titjtn). As such we arrive at the overall result

Wα′(Σ(ij)n | 2 . . . i . . . j . . . n−1) = (2i)n−3
n−1
∏

k=2
k 6=j

sin(x12...k−1,k) (3.23)

×

{

i sin(x12...j−1,j) : n even

sgn(Σ(ij)|ij) cos(x12...j−1,j) : n odd

for theWα′-matrix in (3.5), where sgn(ij|ij) = 1 and sgn(ji|ij) = −1. For even multiplicity

n = 2m, one recovers half the result Wα′(ij | 23 . . . 2m−1) = (2i)n−2
∏n−1

k=2 sin(x12...k−1,k)

known from two non-abelian CP factors ti and tj . Hence, the semi-abelian disk integrals for

three non-abelian CP factors and even n are again captured by their abelian counterparts,9

Z1ij(τ2m) =
1

2
Z×(τ2m) . (3.24)

The first novel expression for a semi-abelian integral (i.e. different from Z×(τn)) can be

found at five points with three non-abelian CP factors, where (3.23) implies that

Z345(τ5)=4
[

sin(x1,2)sin(x12,4)cos(x124,3)Z12435(τ5)+sin(x1,4)sin(x14,2)cos(x124,3)Z14235(τ5)

+sin(x1,4)sin(x134,2)cos(x14,3)Z14325(τ5)−sin(x1,2)sin(x12,3)cos(x123,4)Z12345(τ5) (3.25)

−sin(x1,3)sin(x13,2)cos(x123,4)Z13245(τ5)−sin(x1,3)sin(x134,2)cos(x13,4)Z13425(τ5)
]

.

The two sine-factors in each term signal the leading low-energy order α′2 and lead to the

α′-expansions

Z345(1,2,3,4,5)=(πα′)2
(

1−
s51+s12

s34
−
s23+s12

s45

)

+
(πα′)4

12

(

2s12s23+2s212+3s51s23

+2s51s12+s45s23−s45s12−2s45s51−2s34s23−s34s12+s34s51+2s34s45

−
s312+2s51s

2
12+2s251s12+s351
s34

−
s312+2s23s

2
12+2s223s12+s323
s45

)

+O(α′5)

Z235(1,2,3,4,5)=(πα′)2
(

1−
s45+s51

s23

)

+
(πα′)4

12

(

2s251−2s51s12+s45s12+6s45s51+2s245

+3s34s12+s34s51−2s34s45+2s23s12−3s23s51−3s23s45+2s23s34+2s223

−
s351+2s45s

2
51+2s245s51+s345
s23

)

+O(α′5) (3.26)

after appropriate relabelling in the second case. The non-abelian Z-amplitudes on the right

hand side of (3.25) can for instance be evaluated through the Berends-Giele techniques

of [2]. Seven-point examples of the low-energy limits at the order of (πα′)4 to be found

in (A.19) and (A.20) can be easily arrived at by inserting (3.23) into (3.5).

9An alternative argument can be derived from reflection symmetry Z123...n(τn) = (−1)nZ1,n...32(τn).

– 10 –



J
H
E
P
0
8
(
2
0
1
7
)
1
3
5

As will be detailed in section 4, the low-energy limits ∼ (πα′)2 of (3.26) tie in with the

expressions in section 2.3 of [24],

A5(1
φ, 2φ, 3φ, 4Σ, 5Σ) =

s34 + s45
s12

+
s15 + s45

s23
− 1

A5(1
φ, 2φ, 3Σ, 4φ, 5Σ) =

s34 + s45
s12

− 1 , (3.27)

which describe the doubly-ordered five-point amplitudes involving two NLSM pions Σ and

three bi-colored φ3 scalars.

3.3.3 r = 4 and r = 5 non-abelian generators

The r = 4 analogue of the trace (3.21) with tℓ6=p,q,r,n → 1 is given by

Tr([. . . [. . . [. . . [. . . [t1, t2]α′ , . . . , tp]α′ , . . . , tq]α′ , . . . , tr]α′ , . . . , tn−1]α′tn)

→ (2i)n−4
n−1
∏

k=2
k 6=q,r

sin(x12...k−1,k)Tr
(

eix12...r−1,r(eix12...q−1,q tptqtrtn − e−ix12...q−1,q tqtptrtn)

− e−ix12...r−1,r(eix12...q−1,q trtptqtn − e−ix12...q−1,q trtqtptn)
)

= (2i)n−4
n−1
∏

k=2
k 6=q,r

sin(x12...k−1,k)Tr
(

cos(x12...q−1,q) cos(x12...r−1,r)[[t
p, tq], tr]tn (3.28)

− sin(x12...q−1,q) sin(x12...r−1,r){{t
p, tq}, tr}tn

+ i cos(x12...q−1,q) sin(x12...r−1,r){[t
p, tq], tr}tn

+ i sin(x12...q−1,q) cos(x12...r−1,r)[{t
p, tq}, tr]tn

)

.

Selecting the real part of (3.28) amounts to constraining the number of brackets accompa-

nied by a sine-function, such that

Wα′(Σ(pqr)n | 23 . . . p . . . q . . . r . . . n−1) = (2i)n−4
n−1
∏

k=2
k 6=q,r

sin(x12...k−1,k) (3.29)

×







































cos(x12...q−1,q) cos(x12...r−1,r)Tr([[t
p, tq], tr]tn)

− sin(x12...q−1,q) sin(x12...r−1,r)Tr({{t
p, tq}, tr}tn)

∣

∣

Tr(tΣ(p)tΣ(q)tΣ(r)tn)
: n even

i cos(x12...q−1,q) sin(x12...r−1,r)Tr({[t
p, tq], tr}tn)

+i sin(x12...q−1,q) cos(x12...r−1,r)Tr([{tp, tq}, tr]tn)
∣

∣

Tr(tΣ(p)tΣ(q)tΣ(r)tn)
: n odd

.
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The notation (Y )|Tr(X) instructs to select from the expression Y the coefficients of the CP

trace Tr(X). The obvious r = 5 counterpart of (3.28) with tℓ6=p,q,r,s,n → 1 yields

Wα′(Σ(pqrs)n|23...p...q...r...s...n−1)=(2i)n−5
n−1
∏

k=2
k 6=q,r,s

sin(x12...k−1,k) (3.30)

×



















































































Tr(cos(x12...q−1,q)cos(x12...r−1,r)cos(x12...s−1,s)[[[t
p,tq],tr],ts]tn

−cos(x12...q−1,q)sin(x12...r−1,r)sin(x12...s−1,s){{[t
p,tq],tr},ts}tn : n odd

−sin(x12...q−1,q)cos(x12...r−1,r)sin(x12...s−1,s){[{t
p,tq},tr],ts}tn

−sin(x12...q−1,q)sin(x12...r−1,r)cos(x12...s−1,s)[{{t
p,tq},tr},ts]tn)

∣

∣

Tr(tΣ(p)tΣ(q)tΣ(r)tΣ(s)tn)

Tr(−isin(x12...q−1,q)sin(x12...r−1,r)sin(x12...s−1,s){{{t
p,tq},tr},ts}tn

+isin(x12...q−1,q)cos(x12...r−1,r)cos(x12...s−1,s)[[{t
p,tq},tr],ts]tn : n even

+icos(x12...q−1,q)sin(x12...r−1,r)cos(x12...s−1,s)[{[tp,tq],tr},ts]tn

+icos(x12...q−1,q)cos(x12...r−1,r)sin(x12...s−1,s){[[t
p,tq],tr],ts}tn)

∣

∣

Tr(tΣ(p)tΣ(q)tΣ(r)tΣ(s)tn)

Examples for five- and six-point low-energy limits with r = 4 can be found in (A.1) as well

as (A.3) to (A.9), respectively. Moreover, the leading α′-orders of six-point integrals with

r = 5 are displayed in (A.11) to (A.18).

3.4 General form of the semi-abelian Wα
′-matrix

To conjecture a form of the Wα′-matrix in (3.5) for an arbitrary number of non-trivial CP

particles it is helpful to introduce a unifying notation relying on a set of binary vectors,

Bin(a, b) ≡ {v ∈ ({0, 1})a s.t. |v|2 odd ⇐⇒ b odd} . (3.31)

Bin(a, b) is the set of binary vectors in an a-dimensional space whose magnitude squared

is odd if and only if b is odd, e.g.

Bin(3, 1) = Bin(3, 3) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} (3.32)

Bin(3, 0) = Bin(3, 2) = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)} . (3.33)

Using the binary-vector notation, the above derivations are consistent with a Wα′ given as:

Wα′(Σ(p1p2 ···pr−1)n|23...p1 ...p2 ......pr−1 ...(n−1))=(2i)n−r
n−1
∏

k=2
k 6=p2,···,pr−1

sin
(

x12...(k−1),k

)

×
∑

v∈Bin(r−2,n)

Tr





[

[

···
[

[

p1,p2
]

v1
,p3

]

v2
···

]

vr−3

,pr−1

]

vr−2

tn





∣

∣

∣

∣

∣

∣

Tr(tΣ(p1)···tΣ(pr−1) tn)

, (3.34)

where without loss of generality we take the first leg to be CP-abelian, leg n to be CP-non-

abelian, and the second entry of Wα′ to be canonically ordered. The binary commutators
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(whose trigonometric dressing singles out the underlined entry pb) are defined as follows,

[pa, pb ]0 ≡ (tpatpb + tpbtpa)× i sin(x12...(pb−1), pb) (3.35)

[pa, pb ]1 ≡ (tpatpb − tpbtpa)× cos(x12...(pb−1), pb) .

3.5 Structure of the low-energy expansion

In this subsection, we describe the implications of the representation (3.5) of semi-abelian

disk integrals (3.2) for the structure of their low-energy expansion. As emphasized in (3.12),

each sine-factor descending from the α′-weighted brackets in (3.6) contributes an overall

factor of πα′. For r non-abelian CP factors and n external legs, tracking the commutators

[·, ·]α′ with an identity matrix in one of their entries amounts to the lower bound (πα′)n−r

on the leading low-energy order, see the examples in the previous section. Moreover,

depending on (2i)n−r being real or imaginary, another sine factor with low-energy order

πα′ arises from the α′-weighted traces, leading to the refined lower bound

ZΣ(12...r)(τn) =

{

O(πα′n−r) : n− r even , r ≥ 2

O(πα′n−r+1) : n− r odd , r ≥ 3
. (3.36)

For small n and r, (3.36) implies the following leading low-energy contributions for

ZΣ(12...r)(τn),

n r ≤ 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

4 α′2ζ2 α′2ζ2 1 × × × ×

5 0 α′2ζ2 α′2ζ2 1 × × ×

6 α′4ζ4 α′4ζ4 α′2ζ2 α′2ζ2 1 × ×

7 0 α′4ζ4 α′4ζ4 α′2ζ2 α′2ζ2 1 ×

8 α′6ζ6 α′6ζ6 α′4ζ4 α′4ζ4 α′2ζ2 α′2ζ2 1

9 0 α′6ζ6 α′6ζ6 α′4ζ4 α′4ζ4 α′2ζ2 α′2ζ2

, (3.37)

unless special choices of Σ and τn lead to additional cancellations (see appendix A, in

particular (A.7), (A.15) and (A.21) for examples). Smaller values of r than admitted

in (3.36) are already accounted for by (3.19) and yield the abelian integrals Z×(τn) =

O(α′n−2) in (3.9).

The even powers of π in the leading low-energy orders (3.36) can be obtained from

rational multiples of Riemann zeta values ζ2k in the α′-expansion of completely ordered

disk integrals Zσ(τn) in (2.1), e.g.

ζ2 =
π2

6
, ζ4 =

π4

90
, ζ6 =

π6

945
, . . . ζ2k = (−1)k−1 (2π)

2kB2k

2(2k)!
, (3.38)

with B2k denoting the Bernoulli numbers. When naively assembling their semi-abelian

counterparts (3.2) from combinations of Zσ(τn) via rearrangements (3.3) of the integration

domain, the leading order of (πα′)2k reflects cancellations among the contributing Zσ(τn)

at all lower orders α′≤2k−1, see section 4.3 of [1].
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As a major advantage of the trigonometric representation (3.5) of the semi-abelian

disk integrals, their leading low-energy order (3.36) is determined from the field-theory

limit (2.5) of completely ordered disk integrals Zσ(τ). More generally, the n−r and n−r+1

overall powers of α′ in the Wα′-matrix for even and odd numbers of abelian CP factors,

respectively, reduce the required order of α′ in the low-energy expansion of Zσ(τ) by the

same amount when assembling the α′-expansion of semi-abelian disk integrals.

The α′-expansion of Zσ(τ)
10 involves multiple zeta values (MZVs)

ζn1,n2,...,nr ≡
∞
∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nr
r , nr ≥ 2 (3.39)

in a uniformly transcendental pattern, i.e. the order of α′w is accompanied by MZVs of

transcendental weight w = n1 + n2 + . . .+ nr [9, 51, 63–66]. Uniform transcendentality is

particularly transparent from the recursive method of [52] to obtain the α′-expansion of

n-point integrals from the Drinfeld associator11 acting on their (n−1)-point counterparts.

Extending an alternative all-multiplicity technique based on polylogarithm integration [7],

a Berends-Giele recursion for the α′-expansion of disk integrals Zσ(τ) was given in [2] whose

efficiency comes to maximal fruition at high multiplicity and fixed order in α′.

By (3.5), all these expansion-methods for Zσ(τ) as well as the results available for

download via [2, 68] can be neatly imported to infer the α′-dependence of semi-abelian disk

integrals. The complete (conjectural) basis of MZVs over Q present in the α′-expansion of

Zσ(τ) generically enters their semi-abelian counterparts, accompanied by an appropriate

global prefactor of (πα′)2k as determined by (3.36). The coefficient of each such basis

MZV in the semi-abelian Z-amplitudes signals an independent effective higher-derivative

interaction between NLSM pions and φ3 scalars

4 NLSM coupled to bi-adjoint scalars in semi-abelian Z-theory

4.1 Summary and overview

In this section, we identify the low-energy limits of semi-abelian Z-theory amplitudes (3.2)

with doubly partial amplitudes in a scalar field theory. We recall that the tree-level S-

matrices of the bi-adjoint φ3 theory and the NLSM emerge from the (α′ → 0)-regime of

completely ordered disk integrals (2.1) and their abelianized contribution (3.9), respectively.

On these grounds, it is not at all surprising that the “interpolating” case of semi-abelian

disk integrals incorporates couplings between NLSM pions and φ3 scalars.

While the bi-colored φ3 scalars are taken to be charged under two gauge groups with

generators ta ⊗ T b, the CP matrix ta is absent in the color-dressing T b of NLSM pions. In

any field theory with interaction vertices involving both species, the tree-level amplitudes

10Both the initial studies of α′-expansions beyond four points [57–60] and powerful recent results on

five-point integrals [61, 62] benefit from the connection with (multiple Gaussian) hypergeometric functions.
11Also see [67] for a connection with the pattern relating the appearance of MZVs ζn1,n2,...,nr of different

depth r in open-superstring amplitudes [51].
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of r bi-colored scalars and n−r pions admit a color-decomposition

MNLSM+φ3

r,n =
∑

σ∈Sr−1

∑

τ∈Sn−1

Tr(t1tσ(2)tσ(3) · · · tσ(r))Tr(T 1T τ(2)T τ(3) · · ·T τ(n))

×ANLSM+φ3
(1, σ(2, 3, . . . , r) | 1, τ(2, 3, . . . , n)) (4.1)

modulo multi-traces in the ta due to the exchange of pions in the internal propagators. As

a main result of this work, it is apparent that, for a suitable choice of NLSM+φ3 couplings,

the doubly-partial single-trace amplitudes ANLSM+φ3
(1, σ(2, . . . , r)) | 1, τ(2, . . . , n)) in (4.1)

emerge from the low-energy limit of semi-abelian Z-theory amplitudes (3.2),

ANLSM+φ3
(1, 2, . . . , r | τ(1, 2, . . . , n)) = lim

α′→0
(α′)−2⌈n−r

2
⌉Z12...r(τ(1, 2, . . . , n)) , (4.2)

which is equivalent to (1.2). The structure of a multi-trace completion of (4.1) as well as

its tentative string-theory origin (see e.g. ref. [69]) is left as an interesting open problem

for the future.

A specific set of couplings NLSM+φ3 is singled out by the coefficients of the Adler

zeros in the tree-level amplitudes of the NLSM [24]. In this reference, interactions

of the NLSM with φ3 scalars are inferred from a soft-limit extension of the NLSM,

and the resulting single-trace doubly-partial amplitudes are represented in the CHY

framework [5, 11, 25]. For an even number of pions, we claim that the tree amplitudes

of the NLSM+φ3 theory in [24] match the low-energy limits (4.2) of semi-abelian disk

integrals, see (3.26) and (3.27) for five-point examples. For odd values of n−r, however,

the NLSM+φ3 amplitudes of [24] vanish and do not admit any non-trivial comparison

with the leading α′-order of semi-abelian Z-theory.

From the incarnation of relevant double-copy structures in the CHY formalism [24],

the NLSM+φ3 theory under investigation is closely related to DBIVA coupled to sYM by

dualizing the color-factors built from the field-theory T a into kinematic factors of sYM.

The DBIVA + sYM theory, in turn, appears in the low-energy limit of string theory with

abelian and non-abelian CP factors in the tree amplitudes (2.7) and therefore supports the

identification (4.2).

In the rest of this section, we discuss two implications of (4.2) for new representations

of the tree-level S-matrix in the NLSM+φ3 theory.

4.2 Amplitude relations: NLSM+φ3 versus pure φ3

The representation of semi-abelian disk integrals in (3.5) along with the low-energy limit

of the Wα′-matrix therein reduces any doubly-partial amplitude of the coupled NLSM+φ3

theory to those of pure φ3,

ANLSM+φ3
(1, 2, . . . , r | τn) =

∑

ρ∈Sn−2

W (12 . . . r | ρ(23 . . . n−1))m[1, ρ(23 . . . n−1), n | τn] ,

(4.3)

where τn ≡ τ(1, 2, . . . , n). The entries of the W -matrix are polynomials in the Mandelstam

invariants,

W (12 . . . r | ρ(23 . . . n−1)) ≡ lim
α′→0

(α′)−2⌈n−r
2

⌉Wα′(12 . . . r | ρ(23 . . . n−1)) , (4.4)
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which follow by replacing the trigonometric functions at the leading α′-order of Wα′ via

sin(xA,B) →
iπ
2 kA · kB and cos(xA,B) → 1. In the simplest case of r ≤ 2 bi-adjoint scalars,

they coincide with the diagonal entries of the field-theory KLT matrix (2.8),

W (∅ | 23 . . . n−1) = W (p | 23 . . . n−1) = W (pq | 23 . . . n−1) (4.5)

= (iπ)n−2S[23 . . . n−1 | 23 . . . n−1]1 = (iπ)n−2
n−1
∏

j=2

k12...j−1 · kj ,

and do not depend on the legs p, q. The resulting amplitude relations connecting the

bi-adjoint scalar theory with its coupling to the NLSM read

ANLSM+φ3
(∅ | τn) = ANLSM+φ3

(1 | τn) = ANLSM+φ3
(1, 2 | τn) (4.6)

= (iπ)n−2
∑

ρ∈Sn−2

m[1, ρ(2, 3, . . . , n−1), n | τn]
n−1
∏

j=2

(k1ρ(23...j−1) · kρ(j)) ,

and their general form (4.3) resembles recent relations [70–74] between Einstein-Yang-Mills

amplitudes and those of pure Yang-Mills theory. We shall next elaborate on the cases with

r ≥ 3 bi-colored scalars and extract the field-theory limits (4.4) from the Wα′ matrices of

the previous section via sin(x12...j−1,j) →
iπ
2 (k12...j−1 · kj) and cos(x12...j−1,j) → 1.

4.2.1 r = 3, 4 bi-adjoint scalars

With three or four bi-adjoint scalars at legs n, p, q, r, (3.23) and (3.29) imply

W (Σ(pq)n | 23 . . . p . . . q . . . n−1) = (iπ)n−3
n−1
∏

j=2
j 6=q

k12...j−1 · kj ×

{

iπ
2 k12...q−1 · kq : n even

sgn(Σ(pq)|pq) : n odd

(4.7)

with sgn(pq|pq) = 1 and sgn(qp|pq) = −1 as well as

W (Σ(pqr)n | 23 . . . p . . . q . . . r . . . n−1) = (iπ)n−4
n−1
∏

j=2
j 6=q,r

k12...j−1 · kj (4.8)

×



























Tr([[tp, tq], tr]tn)
∣

∣

Tr(tΣ(p)tΣ(q)tΣ(r)tn)
: n even

iπ
2 (k12...q−1 · kq)Tr([{t

p, tq}, tr]tn)

+ iπ
2 (k12...r−1 · kr)Tr({[t

p, tq], tr}tn)
∣

∣

Tr(tΣ(p)tΣ(q)tΣ(r)tn)
: n odd

Note that cases with three bi-adjoint scalars at legs p, q, n and even multiplicity simplify to

W (Σ(pq)n | 23 . . . p . . . q . . . n−1)
∣

∣

∣

n even
=

1

2
W (∅ | 23 . . . n−1) (4.9)

by the first line of (4.7).
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4.2.2 General form of the W -matrix in field theory

In the binary-vector representation of the Wα′-matrix given in section 3.4, words with large

numbers of entries vj = 1 dominate the sum in (3.34). For even numbers n−r of pions,

only the word v = (1, 1, . . . , 1) contributes and yields the simple result

W (Σ(p1p2 · · · pr−1)n | 23 . . . p1 . . . p2 . . . . . . pr−1 . . . (n−1))
∣

∣

n−r even
= (iπ)n−r (4.10)

×

( n−1
∏

j=2
j 6=p2,··· ,pr−1

k12...(j−1) · kj

)

Tr([[. . . [[tp1 , tp2 ], tp3 ], . . .], tpr−1 ]tn)
∣

∣

Tr(tΣ(p1)tΣ(p2)...tΣ(pr−1)tn)

in terms of commutators. For odd values of n−r, on the other hand, the leading low-energy

order of (3.34) stems from words with a single entry vℓ = 0 such that the trace in

W (Σ(p1p2 · · · pr−1)n | 23 . . . p1 . . . p2 . . . . . . pr−1 . . . (n−1))
∣

∣

n−r odd

=
1

2
(iπ)n−r+1

( n−1
∏

j=2
j 6=p2,··· ,pr−1

k12...(j−1) · kj

) r−1
∑

ℓ=2

(k12...(pℓ−1) · kpℓ) (4.11)

× Tr([[. . . [{[. . . [[tp1 , tp2 ], tp3 ], . . .], tpℓ}, tpℓ+1 ], . . .], tpr−1 ]tn)
∣

∣

Tr(tΣ(p1)tΣ(p2)...tΣ(pr−1)tn)

exhibits one anti-commutator operation {·, ·} inside the nested commutators.

4.3 Comparison with CHY integrands

Recently the modern connected formalism of Cachazo, He and Yuan (CHY) [5, 11, 25]

has given rise to all-multiplicity representations for NLSM amplitudes [26] and their

(NLSM+φ3) extensions [24]. These CHY representations arise from integrals over the

moduli space of punctured Riemann spheres, where the integrands depend on both the

external data {tai , T bi , ki} of the NLSM- or φ3 scalars and the punctures zi ∈ C associated

with the ith leg. The punctures are constrained by the scattering equations

Ei ≡
n
∑

j 6=i

sij
zij

= 0 (4.12)

which mirror integration-by-parts relations in string theory and completely localize the

integrals.

For any combination of the two species of scalars, the CHY integrands for NLSM+φ3

amplitudes in [24] allow to factor out a universal piece, where n-particle Parke-Taylor

factors (z12z23 . . . zn,1)
−1 are combined with traces Tr(T b1T b2 . . . T bn) of the generators

T bi of the common gauge group. The other factor of the integrand depending on the

number of pions and φ3 scalars is based on a matrix A = A({ki, zi}) specified in [26].

For pure NLSM amplitudes, this non-universal piece of the CHY integrand is a reduced

Pfaffian (Pf ′A)2, where the prime refers to the deletion of two rows and columns each. For

generic configurations of the two scalar species, the non-universal part of the integrand

factorizes into an r-particle Parke-Taylor factor (z12z23 . . . zr,1)
−1Tr(ta1ta2 . . . tar) and a
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Pfaffian (PfAr+1,...,n)
2 referring to the external pion legs r+1, . . . , n. Accordingly, the

integrands vanish for an odd number n−r of pions.

In order to express the connected amplitudes in terms of doubly-partial amplitudes as

done in (4.3), any z-dependence from (Pf ′A)2 and (z12z23 . . . zr,1)
−1(PfAr+1,...,n)

2 has to be

reduced to Parke-Taylor factors — (z12z23 . . . zn,1)
−1 and permutations in 1, 2, . . . , n. The

naive evaluation of the Pfaffians, however, involves more diverse functions of zj than cap-

tured by linear combinations of τ(z12z23 . . . zn,1)
−1 with τ ∈ Sn. The desired reduction to

Parke-Taylor factors requires manifold applications of the scattering equations (4.12) and

can in principle be addressed through the algorithms of [75, 76]. Still, the complexity of

these manipulations grows rapidly with the multiplicity and has therefore obstructed a com-

pact Parke-Taylor representation of the non-universal integrands with more than four legs.

From the amplitude relations (4.3) reducing the tree-level S-matrix of the NLSM+φ3

theory to doubly-partial amplitudes, one can reverse-engineer a Parke-Taylor form of the

underlying CHY integrands, valid on the support of the scattering equations (4.12). The

simple form for the W -matrix of NLSM amplitudes in (4.5) translates into the following

representation of the connected integrand,

(Pf′A)2 =
∑

ρ∈Sn−2

S[ρ(23 . . . n−1)|ρ(23 . . . n−1)]1
(1, ρ(2), ρ(3), . . . , ρ(n−1), n)

mod Ei

=
∑

ρ∈Sn−2

∏n−1
j=2 (k1ρ(23...j−1) · kρ(j))

(1, ρ(2), ρ(3), . . . , ρ(n−1), n)
mod Ei , (4.13)

in terms of Parke-Taylor factors with

(1, 2, 3, . . . , n−1, n) ≡ z12z23 . . . zn−1,nzn,1 . (4.14)

Similarly, (4.3) along with the explicit W -matrices given in the previous sec-

tion yields a simplified form of the connected integrands for mixed amplitudes

ANLSM+φ3
(Σ(p1p2 . . . pr−1)n | . . .) with an even number of pions

(PfA{12...n−1}\{p1,p2,...,pr−1})
2

(Σ(p1),Σ(p2),...,Σ(pr−1),n)
=(iπ)r−n

∑

ρ∈Sn−2

W (Σ(p1p2 ...pr−1)n|ρ(23...n−1))

(1,ρ(2),ρ(3),...,ρ(n−1),n)
mod Ei .

(4.15)

Note that one can use the expression (4.10) for the W -matrix, given the even values of

n−r in (4.15). The simplest instance beyond (4.13) involves two pions and three bi-adjoint

scalars,

(PfA12)
2

z34z45z53
=

(k1 · k2)(k12 · k3)

(1, 2, 3, 4, 5)
+

(k1 · k3)(k13 · k2)

(1, 3, 2, 4, 5)
+

(k1 · k3)(k134 · k2)

(1, 3, 4, 2, 5)
(4.16)

−
(k1 · k2)(k12 · k4)

(1, 2, 4, 3, 5)
−

(k1 · k4)(k14 · k2)

(1, 4, 2, 3, 5)
−

(k1 · k4)(k134 · k2)

(1, 4, 3, 2, 5)
mod Ei ,

with the underlying W -matrix given in (4.7). While the number of terms in (4.15)

and (4.16) generically grows when converting the rank-(n−r) Pfaffians into sums over

(n−2)! permutations, our motivation for the rearrangement stems from the simplicity of

the Parke-Taylor form (4.14) for the entire z-dependence.
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5 Conclusions

Here we continue the program of understanding the predictions of color-stripped Z-theory

as sYM-stripped open-superstring scattering. Unlike sYM where color and kinemat-

ics, along with their respective Lie-algebra structures, can be cleanly separated, the α′-

dependent kinematic factors of color-stripped semi-abelian Z-theory involve functions of

both CP traces and momenta. Each of these orders in α′ can be understood as part of

a successive set of color-kinematic satisfying effective field theories, whose culmination in

Z-theory exhibits very soft UV behavior.

We find compact expressions for the doubly-ordered Z-amplitudes whose CP factors

admit a mixture of both abelian and non-abelian generators. At leading order in α′,

these doubly-stripped amplitudes encode the predictions of a field theory of NLSM pions

coupled to bi-adjoint scalars. Single-trace amplitudes in this theory were recently expressed

in the CHY formalism by Cachazo, Cha, and Mizera [24]. The form of Z-theory’s low-

energy results presented here offers an efficient complementary representation. As color-

kinematics is supported at every order in α′ (as well as the resummation), the results

presented here have applicability, through double copy, to a spectrum of theories including

higher-derivative corrections to DBIVA+sYM of various supersymmetries, as well as higher-

derivative corrections to scattering within the special-Galileon+NLSM+φ3 theory.
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A Expansions of semi-abelian disk integrals

In this appendix, we gather examples for the low-energy expansion of semi-abelian Z-

theory amplitudes (3.2). The expressions can be efficiently obtained by combining their

simplified (n−2)! representation (3.5) with the Berends-Giele recursion for non-abelian

Z-amplitudes [2] (using in particular the program BGap described in the reference).

Not all of the examples in this appendix follow the labelling of the Wα′-matrices given

in sections 3.3 or 3.4 and might require some straightforward permutations of all the legs in

ZΣ(τn) and the momenta on the right hand side. Our subsequent choice of labels is tailored

to reach all permutation-inequivalent arrangements of Σ and τn from the canonical field-

theory ordering τn → In ≡ 1, 2, . . . , n.

– 19 –



J
H
E
P
0
8
(
2
0
1
7
)
1
3
5

A.1 Semi-abelian five-point integrals

At five points, semi-abelian disk integrals ZΣ(τ5) with three non-abelian CP factors can

be found in (3.26). Their counterparts with four non-abelian CP factors allow for three

permutation-inequivalent arrangements of Σ and τ5:

Z1234(I5)=
(πα′)2

2

(

2−
s45+s34

s12
−
s45+s51

s23
−
s51+s12

s34

)

+
(πα′)4

24

(

2s251+2s245

+4s34s45+2s234+2s23s51+2s23s45+4s12s51+2s212−
s345+2s34s

2
45+2s234s45+s334
s12

−2s12s34−
s345+2s51s

2
45+2s251s45+s351
s23

−
s312+2s51s

2
12+2s251s12+s351
s34

)

+O(α′5)

Z1324(I5)=
(πα′)2

2

s51+s45
s23

+
(πα′)4

24

(

4s34s45+2s234−4s45s51−2s34s51+2s23s51

+2s23s45+4s12s51−2s12s45−4s12s34+2s212+
s351+2s45s

2
51+2s245s51+s345
s23

)

+O(α′5)

Z1243(I5)=
(πα′)2

2

(

s12+s51
s34

−
s45+s34

s12

)

+
(πα′)4

24

(

−
s345+2s34s

2
45+2s234s45+s334
s12

+
s351+2s12s

2
51+2s212s51+s312
s34

−2s251+2s245+4s34s51+4s34s45+2s23s51

−2s23s45−4s23s34−4s12s51−4s12s45+4s12s23

)

+O(α′5) (A.1)

The field-theory amplitudes along with the low-energy limit vanish in the setup of [24] since

the interaction vertices therein do not support any couplings to an odd number of pions.

A.2 Semi-abelian six-point integrals

Among the semi-abelian six-point integrals, any instance with r ≤ 3 non-abelian CP factors

is proportional to the NLSM amplitude by (3.19) and (3.24), e.g.

Zijk(I6) =
1

2
Z×(1, 2, . . . , 6) =

(πα′)4

2

(

(s12 + s23)(s45 + s56)

s123
+

(s23 + s34)(s56 + s61)

s234

+
(s34 + s45)(s61 + s12)

s345
− s12 − s23 − s34 − s45 − s56 − s61

)

+O(α′6) . (A.2)

Four non-abelian CP factors. Starting with four non-abelian CP factors, one obtains

inequivalent cases such as

Z1234(I6) = (πα′)2
(

1

s12

[

1−
s45 + s56

s123

]

+
1

s34

[

1−
s56 + s61

s234

]

+
1

s23

[

1−
s45 + s56

s123
−

s56 + s61
s234

]

−
s345 + s56
s12s34

)

+O(α′4) (A.3)

Z1324(I6) =
(πα′)2

s23

(

s45 + s56
s123

+
s56 + s61

s234
− 1

)

+O(α′4) (A.4)

Z1245(I6) = (πα′)2
(

1

s12
+

1

s45
−

s123 + s345
s12s45

)

+O(α′4) (A.5)
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Z1254(I6) = (πα′)2
(

s123 + s345
s12s45

−
1

s12
−

1

s45

)

+O(α′4) (A.6)

Z1425(I6) =
(πα′)4

12

(

3
(s23+s34)(s56+s61)

s234
+ 2s36

)

+O(α′5) (A.7)

Z1235(I6) = (πα′)2
(

1

s12
+

1

s23

)(

1−
s45 + s56

s123

)

+O(α′4) (A.8)

Z1325(I6) =
(πα′)2

s23

(

s45 + s56
s123

− 1

)

+O(α′4) . (A.9)

Apart from the exception (A.7) mentioned in section 3.5, the leading low-energy behaviour

ties in with table (3.37), and a cyclic permutation of (A.3) matches the doubly partial

amplitude

A6(1
Σ, 2Σ, 3φ, 4φ, 5φ, 6φ) =

1

s56

(

1−
s12 + s23

s123

)

+
1

s34

(

1−
s12 + s16

s612

)

−
s12 + s234
s34s56

+
1

s45

(

1−
s12 + s23

s123
−

s12 + s16
s612

)

(A.10)

involving two pions Σ and four bi-adjoint scalars φ3 in section 3.2 of [24]. Note that

Z1245(τ6) differs from −Z1254(τ6) at the orders α′≥4 suppressed in (A.5) and (A.6).

Five non-abelian CP factors. With five non-abelian CP factors, we have eight in-

equivalent six-point cases

Z12345(I6) =
(πα′)2

2

(

1

s12

[

2−
s45 + s56

s456

]

+
1

s23

[

2−
s45 + s56

s456
−

s56 + s61
s561

]

+
1

s34

[

2−
s56 + s61

s561
−

s61 + s12
s612

]

+
1

s45

[

2−
s61 + s12

s612

]

−
s345 + s56
s12s34

−
s61 + s123
s23s45

−
s123 + s345
s12s45

)

+O(α′4) (A.11)

Z12435(I6) =
(πα′)2

2

(

s345 + s56
s12s34

+
1

s34

[

s56 + s61
s561

+
s61 + s12

s612
− 2

])

+O(α′4) (A.12)

Z13425(I6) =
(πα′)2

2

s56 + s61
s34s561

+O(α′4) (A.13)

Z14325(I6) = −
(πα′)2

2

(

1

s23
+

1

s34

)

s56 + s61
s561

+O(α′4) (A.14)

Z13524(I6) =
(πα′)4

12
(2s45 + 2s12 + s56 + s61 − 2s123 − 2s345) +O(α′5) (A.15)

Z13254(I6) =
(πα′)2

2

(

s45 + s56
s23s123

−
s61 + s123
s23s45

)

+O(α′4) (A.16)

Z12453(I6) =
(πα′)2

2

(

s45 + s56
s12s123

+
s61 + s12
s45s345

−
s123 + s345
s12s45

)

+O(α′4) (A.17)

Z12354(I6) =
(πα′)2

2

(

1

s45

[

s61 + s12
s345

+
s123 + s345

s12
+

s61 + s123
s23

− 2

]

−
s45 + s56

s123

[

1

s12
+

1

s23

])

+O(α′4) , (A.18)
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where also (A.15) starts at higher order (πα′)4 as compared to the generic expectation

from table (3.37). Again, the low-energy limits do not have any counterparts in [24] by the

odd number of NLSM pions.

A.3 Semi-abelian seven-point integrals

The low-energy limit of the seven-point integral with r = 3 non-abelian CP factors

Z123(I7)=−(πα′)4
(

1

s12

[

(s34+s45)(s67+s712)

s345
+
(s45+s56)(s712+s123)

s456

+
(s56+s67)(s123+s34)

s567
−s34−s45−s56−s67−s712−s123

]

+
1

s23

[

(s45+s56)(s71+s123)

s456
+
(s56+s67)(s123+s234)

s567
(A.19)

+
(s67+s71)(s234+s45)

s671
−s45−s56−s67−s71−s123−s234

]

+
(s67+s71)(s34+s45)

s345s671
−
s34+s45
s345

−
s45+s56
s456

−
s56+s67
s567

−
s67+s71
s671

+2

)

+O(α′6).

agrees with the expression for A7(1
φ, 2φ, 3φ, 4Σ, 5Σ, 6Σ, 7Σ) given in (2.25) of [24]. Moreover,

there are three additional cases which cannot be obtained from relabellings of (A.19):

Z124(I7)=(πα′)4
(

1

s12

[

(s34+s45)(s67+s712)

s345
+
(s45+s56)(s712+s123)

s456

+
(s56+s67)(s123+s34)

s567
−s34−s45−s56−s67−s712−s123

]

+
(s67+s71)(s34+s45)

s345s671
−
s34+s45
s345

−
s45+s56
s456

−
s56+s67
s567

−
s67+s71
s671

+2

)

+O(α′6)

Z125(I7)=(πα′)4
(

1

s12

[

(s34+s45)(s67+s712)

s345
+
(s45+s56)(s712+s123)

s456

+
(s56+s67)(s123+s34)

s567
−s34−s45−s56−s67−s712−s123

]

(A.20)

+
(s67+s71)(s34+s45)

s345s671
+
(s67+s71)(s23+s34)

s234s671
+
(s23+s34)(s56+s67)

s234s567

−
s23+s34
s234

−
s34+s45
s345

−
s45+s56
s456

−
s56+s67
s567

−
s67+s71
s671

+2

)

+O(α′6)

Z135(I7)=(πα′)4
(

2−
s23+s34
s234

−
s45+s56
s456

−
s56+s67
s567

−
s67+s71
s671

−
s71+s12
s712

+
(s67+s71)(s23+s34)

s234s671
+
(s23+s34)(s56+s67)

s234s567
+
(s45+s56)(s71+s12)

s456s712

)

+O(α′6).

For selected examples with r ≥ 4 non-abelian CP factors, the low-energy expansion starts

at higher orders as compared to table (3.37) such as

Z14725(I7) = −π2α′5ζ3s36 +O(α′6)

– 22 –
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Z135724(I7) = −
(πα′)4

12

s56 + s67
s567

+ π2α′5ζ3(s56 + s67) (A.21)

−
π2α′5ζ3
2s567

(s67 + s56)(s234 + s123 + s12 + s23 + s34) +O(α′6) .
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[67] J.M. Drummond and É. Ragoucy, Superstring amplitudes and the associator,

JHEP 08 (2013) 135 [arXiv:1301.0794] [INSPIRE].

[68] J. Broedel, O. Schlotterer and S. Stieberger, α′-expansion of open superstring amplitudes,

http://mzv.mpp.mpg.de.

[69] M.B. Green and M. Gutperle, Symmetry breaking at enhanced symmetry points,

Nucl. Phys. B 460 (1996) 77 [hep-th/9509171] [INSPIRE].

[70] S. Stieberger and T.R. Taylor, New relations for Einstein-Yang-Mills amplitudes,

Nucl. Phys. B 913 (2016) 151 [arXiv:1606.09616] [INSPIRE].

[71] D. Nandan, J. Plefka, O. Schlotterer and C. Wen, Einstein-Yang-Mills from pure Yang-Mills

amplitudes, JHEP 10 (2016) 070 [arXiv:1607.05701] [INSPIRE].

[72] L. de la Cruz, A. Kniss and S. Weinzierl, Relations for Einstein-Yang-Mills amplitudes from

the CHY representation, Phys. Lett. B 767 (2017) 86 [arXiv:1607.06036] [INSPIRE].

[73] O. Schlotterer, Amplitude relations in heterotic string theory and Einstein-Yang-Mills,

JHEP 11 (2016) 074 [arXiv:1608.00130] [INSPIRE].

[74] Y.-J. Du, F. Teng and Y.-S. Wu, Direct evaluation of n-point single-trace MHV amplitudes

in 4d Einstein-Yang-Mills theory using the CHY formalism, JHEP 09 (2016) 171

[arXiv:1608.00883] [INSPIRE].

[75] F. Cachazo and H. Gomez, Computation of contour integrals on M0,n, JHEP 04 (2016) 108

[arXiv:1505.03571] [INSPIRE].

[76] C. Cardona, B. Feng, H. Gomez and R. Huang, Cross-ratio identities and higher-order poles

of CHY-integrand, JHEP 09 (2016) 133 [arXiv:1606.00670] [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevLett.118.121601
https://arxiv.org/abs/1612.00868
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00868
https://doi.org/10.1088/1126-6708/2002/07/071
https://arxiv.org/abs/hep-th/0208121
https://inspirehep.net/search?p=find+EPRINT+hep-th/0208121
https://doi.org/10.1088/1126-6708/2005/03/055
https://arxiv.org/abs/hep-th/0503182
https://inspirehep.net/search?p=find+EPRINT+hep-th/0503182
https://arxiv.org/abs/hep-th/0509042
https://inspirehep.net/search?p=find+EPRINT+hep-th/0509042
https://doi.org/10.1103/PhysRevD.74.126007
https://arxiv.org/abs/hep-th/0609175
https://inspirehep.net/search?p=find+EPRINT+hep-th/0609175
https://doi.org/10.1016/j.nuclphysb.2013.08.009
https://arxiv.org/abs/1304.7918
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7918
https://doi.org/10.1016/j.nuclphysb.2015.11.005
https://arxiv.org/abs/1507.01582
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01582
https://projecteuclid.org/euclid.ijm/1255988264
https://doi.org/10.1023/A:1016377828316
https://arxiv.org/abs/math/0606419
https://inspirehep.net/search?p=find+EPRINT+math/0606419
https://doi.org/10.1103/PhysRevLett.106.111601
https://arxiv.org/abs/0910.0180
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.0180
https://doi.org/10.1007/JHEP08(2013)135
https://arxiv.org/abs/1301.0794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0794
http://mzv.mpp.mpg.de
https://doi.org/10.1016/0550-3213(95)00608-7
https://arxiv.org/abs/hep-th/9509171
https://inspirehep.net/search?p=find+EPRINT+hep-th/9509171
https://doi.org/10.1016/j.nuclphysb.2016.09.014
https://arxiv.org/abs/1606.09616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.09616
https://doi.org/10.1007/JHEP10(2016)070
https://arxiv.org/abs/1607.05701
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.05701
https://doi.org/10.1016/j.physletb.2017.01.036
https://arxiv.org/abs/1607.06036
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06036
https://doi.org/10.1007/JHEP11(2016)074
https://arxiv.org/abs/1608.00130
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.00130
https://doi.org/10.1007/JHEP09(2016)171
https://arxiv.org/abs/1608.00883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.00883
https://doi.org/10.1007/JHEP04(2016)108
https://arxiv.org/abs/1505.03571
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03571
https://doi.org/10.1007/JHEP09(2016)133
https://arxiv.org/abs/1606.00670
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00670

	Introduction
	Review
	Semi-abelian Z-theory amplitudes
	A structural perspective
	Simplified representation of abelian Z-theory amplitudes
	Deriving the BCJ numerators of the NLSM

	Examples of semi-abelian Z-amplitudes
	r <= 2 non-abelian generators
	r=3 non-abelian generators
	r=4 and r=5 non-abelian generators

	General form of the semi-abelian cal W(alpha')-matrix
	Structure of the low-energy expansion

	NLSM coupled to bi-adjoint scalars in semi-abelian Z-theory
	Summary and overview
	Amplitude relations: NLSM+phi**3 versus pure phi**3
	r=3,4 bi-adjoint scalars
	General form of the W-matrix in field theory

	Comparison with CHY integrands

	Conclusions
	Expansions of semi-abelian disk integrals
	Semi-abelian five-point integrals
	Semi-abelian six-point integrals
	Semi-abelian seven-point integrals


