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1 Introduction

T-dualisability is a rare property of non-linear sigma-models and it is not known what

necessary conditions must be imposed on a target space metric G, and closed 3-form field

H, such that the corresponding sigma-model has a T-dual with (Ĝ, Ĥ). On the other

hand, several sufficient conditions are known, giving various T-dualities like the Abelian

one [9, 16] or non-Abelian one [1, 5–7], both in turn included as special cases of Poisson-

Lie T-duality [10, 11]. Chatzistavrakidis, Deser and Jonke (CDJ in what follows) recently

proposed a new set of sufficient conditions which, they claimed, would give rise to new

examples of T-dual pairs [3]. Their dualisability conditions appear much less restrictive

than those previously described in T-duality research. It is the purpose of the present work

to show that, in reality, they are not less restrictive as they give rise to the same duality

pattern as that of traditional non-Abelian T-duality.

The proposal of CDJ for dualising a given sigma model on a targetM , is an extension of

the Roček-Verlinde approach [5, 15], which amounts to the introduction of an intermediate

gauge theory yielding the T-dual pair of sigma models upon eliminating different sets of

fields. It was traditionally thought that the Roček-Verlinde intermediate gauge theory

can be constructed only if the background of the sigma-model is isometric with respect

to the action of the Lie algebra g of the gauge group. However, CDJ have argued that

more general gaugings are possible if one uses the recently introduced Lie algebroid gauge

theory [12, 14, 17]. The construction of the Lie algebroid generalisation of the Roček-

Verlinde intermediate gauge theory requires the existence of a Lie algebroid bundle Q, over

the target M , as well as a fixed connection ∇ω on Q compatible with the sigma model
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background. As CDJ show, the compatibility of ∇ω, G and H can be expressed in a

particularly simple way for exact 3-form backgrounds H = dB where it reads:

Lρ(ea)G = ωb
a ∨ ιρ(eb)G, Lρ(ea)B = ωb

a ∧ ιρ(eb)B . (1.1)

Here ea form local frames of the Lie algebroid, the Lie derivatives are taken with respect

to the anchored frames ρ(ea), the symbols ∨ and ∧ stand respectively for the symmetrised

and anti-symmetrised direct products of 1-forms on M , and the 1-forms ωb
a are defined by

the relations

∇ωea := ωb
a ⊗ eb . (1.2)

Since the choice of the connection ∇ω seems largely arbitrary, it may appear from (1.1) that

a vast set of non-isometric backgrounds could be gauged, thus producing a new and rich T-

duality pattern. However, as we shall argue in this paper, this is not the case. The simplest

way to understand what is happening is to realise that the compatibility conditions (1.1),

as given by CDJ in ref. [3] are not written invariantly; upon a local changes of frames

e′a = P b
aeb, P

b
a ∈ C∞(M), they change to

Lρ(e′a)
G = ω′b

a ∨ ιρ(e′
b
)G, Lρ(e′a)

B = ω′b
a ∧ ιρ(e′

b
)B , (1.3)

where

∇ω′

e′a := ω′b
a ⊗ e′b . (1.4)

The components of the connection form ωb
a transform non-homogeneously upon a change

of the framing, and we may naturally question whether there exists a distinguished frame

êa for which they all vanish. This question can be answered in the affirmative, and this

fact follows from the Lie algebroid gauge invariance of the Roček-Verlinde intermediate

gauge theory. It is therefore always possible to write down an equivalent version of the

CDJ compatibility conditions (1.1) in the standard isometric form

Lρ(êa)G = 0 , Lρ(êa)B = 0 . (1.5)

Moreover, the gauge invariance of the intermediate gauge theory also requires that the

structure functions Ĉc
ab defined by the Lie algebroid brackets

[êa, êb] ≡ Ĉc
ab êc, (1.6)

be constants, and we thus recover the standard intermediate Yang-Mills gauge theory

leading to traditional non-Abelian T-duality [5, 7].

The plan of our paper is as follows: in section 2 we expose some useful preliminary

background on traditional non-Abelian T-duality. In section 3 we review the “T-duality

without isometry” proposal of CDJ and detail the field redefinitions which reproduce stan-

dard non-Abelian T-duality. In section 4 we work out the case of non-exact 3-form back-

ground H. In section 5 we provide a geometric interpretation of the field redefinitions from

the invariant perspective of Lie algebroid gauge theory. In section 6, we illustrate a few ex-

amples where, by simple field redefinitions, the traditional isometric Roček-Verlinde gauge

theory may look like a non-trivial Lie algebroid gauge theory. In particular, we unmask the

“non-isometric T-duality” example of CDJ presented in [3]. Finally, we end with a short

discussion.
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2 Preliminaries on the non-Abelian T-duality

To set up some technical and notational background, as well as remind the reader of the

gauging approach to T-duality, we review traditional non-Abelian T-duality obtained by

the Roček-Verlinde procedure [5–7]. We first restrict our attention to backgrounds for

which H = dB is an exact 3-form, postponing the study of cohomologically non-trivial

backgrounds to section 4.

Let a Lie group G act from the right on the target manifold M , let Ta be a basis of

the Lie algebra g ≡ Lie(G), and va the set of vector fields on M corresponding to the

infinitesimal right actions of the elements Ta. The Lie derivatives Lvavb then satisfy

Lvavb = [va, vb] = Cc
ab vc , (2.1)

where Cc
ab are the structure constants of g in the basis Ta.

Denoting the (Lorentzian) cylindrical world-sheet by Σ and introducing coordinates

Xi on M , we write the sigma model action with the background metric G and the 3-form

field H = dB as

S(Xi) =
1

2

∫

Σ
dXi ∧

(
Gij ∗ dX

j +BijdX
j
)
. (2.2)

Here d denotes the de Rham differential, ∗ (∗2 = 1) the Hodge star on the world-sheet Σ,

and the Xi are viewed as functions on Σ describing a string moving in M .

If the Lie derivatives of the metric and the B field vanish

LvaG = 0, LvaB = 0 , (2.3)

then the sigma model (2.2) can be gauged in the standard Yang-Mills way. This means

that one introduces a world-sheet one-form A valued in the Lie algebra g ≡ Lie(G), a

world-sheet scalar η valued in the dual g∗, and the gauged action

S(Xi, A, η) =
1

2

∫

Σ
DXi ∧

(
Gij ∗DXj +BijDXj

)
+

∫

Σ
〈η, F (A)〉 . (2.4)

Here 〈· , ·〉 is the canonical pairing between g
∗ and g, F (A) is the standard Yang-Mills field

strength

F (A) := dA+A ∧A ≡

(
dAa +

1

2
Ca

bcA
b ∧Ac

)
Ta , (2.5)

and DXi are the covariant derivatives

DXi := dXi − viaA
a . (2.6)

If the isometry conditions (2.3) hold, the action (2.4) is gauge invariant with respect to the

following local infinitesimal gauge transformations:

δǫX
i = viaǫ

a, δǫA = dǫ+ [A, ǫ] ≡
(
dǫa + Ca

bcA
bǫc

)
Ta, δǫη = − ad∗ǫ η ≡ −Cc

abηcǫ
bT ∗a .

(2.7)

Here ǫ is a function on the world-sheet valued in g, and ad∗ denotes the co-adjoint action

of g on g
∗.
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Varying the Lagrange multiplier η forces the field strength to vanish, thereby imposing

that the gauge field A be pure gauge A = −dg g−1, and the action (2.4) becomes that of

the original model (2.2)

S(Xi,−dg g−1, η) =
1

2

∫

Σ
dY i ∧

(
Gij ∗ dY

j +BijdY
j
)
. (2.8)

Here Y i = gXi which means that Y i is obtained from Xi by applying the gauge transfor-

mation g. If instead, we eliminate the non-dynamical fields A from (2.4), as well as fixing

the gauge, we obtain the dual sigma model. The exact form of the dual action depends on

several factors; like whether or not the G action on M is free, or the presence of so-called

spectator fields. We do not give the complete account of all possible cases (the interested

reader can find it in [1, 2, 5, 8]), because our concern is different. We will show that the

Lie algebroid generalisation of the intermediate gauge theory proposed by CDJ in [3] can

be rewritten, using appropriate field redefinitions, in the standard non-Abelian T-duality

form (2.4). It follows that the CDJ proposal cannot describe more general T-duality pat-

terns than that of traditional non-Abelian T-duality.

3 CDJ gauge theory

CDJ generalised the structural data M,G,B, va considered in section 2 by including an

additional matrix valued 1-form ωa
b ≡ ωa

bidX
i on M , and by promoting the structure

constants Cc
ab to functions on M . The action of the intermediate gauge theory is then

proposed to be the following expression:1

S(Xi, A, η) =
1

2

∫

Σ
DXi ∧

(
Gij ∗DXj +BijDXj

)
+

∫

Σ
〈η, Fω(A,X)〉 , (3.1)

where the covariant derivatives DXi are as before (cf. (2.6)) and the generalized field

strength Fω(A,X) (borrowed from ref. [12]) is given by the formula

F a
ω(A,X) := dAa +

1

2
Ca

bc(X)Ab ∧Ac − ωa
biA

b ∧ (dXi − vicA
c) . (3.2)

CDJ then argued that a necessary condition for the infinitesimal gauge invariance of the

theory (3.1), required for T-duality applications, is given by

LvaG = ωb
a ∨ ιvbG , LvaB = ωb

a ∧ ιvbB . (3.3)

The infinitesimal gauge transformations themselves depend on ωa
b and they read (cf. [3])

δǫX
i = viaǫ

a ,

δǫA
a = dǫa + Ca

bcA
bǫc + ωa

bi(dX
i − viaA

a)ǫb , (3.4)

δǫηa =
(
−Cc

abηc + viaω
c
biηc

)
ǫb .

1The formulas appearing here are for exact 3-formH = dB, and are equivalent to the equations appearing

in [3] under this assumption. Non-trivial H, as considered in [3], is treated in section 4.

– 4 –



J
H
E
P
0
8
(
2
0
1
7
)
1
1
6

We point out that the conditions (3.3) are not sufficient to guarantee the gauge invariance.

This can be seen by evaluating the variation δǫFω(A,X) of the field strength:

δǫF
a
ω(A,X) = (dωa

b + ωa
c ∧ ωc

b)ǫ
b +O(A) +O(A2) , (3.5)

where O(A) and O(A2) stand for the terms linear and quadratic in A, respectively. The

variation δǫ〈η, Fω(A,X)〉 is required to vanish,

0 = δǫ〈η, Fω(A,X)〉 = 〈δǫη, Fω(A,X)〉+ 〈η, δǫFω(A,X)〉

= ηa(dω
a
b + ωa

c ∧ ωc
b)ǫ

b +O(A) +O(A2) . (3.6)

All three terms must vanish separately which means that the conditions (3.3) of the gauge

invariance have to be supplemented by, at least, one other one

dωa
b + ωa

c ∧ ωc
b = 0 . (3.7)

The condition (3.7) is easy to solve since it has the Maurer-Cartan form. Therefore, there

must exist a matrix Ka
b(X) such that

ωa
b = (K−1)ac dK

c
b . (3.8)

It turns out that the conditions (3.3), together with (3.7), are necessary but still not

sufficient to guarantee the gauge invariance. In order to find the full set of conditions to

be imposed, we perform the following field redefinitions:

Âa = Ka
bA

b , η̂a = ηb(K
−1)ba . (3.9)

In terms of the new fieldsXi, Âa and η̂a, the action (3.1) of CDJ acquires the following form:

S(Xi, Â, η̂) =
1

2

∫

Σ
DXi ∧

(
Gij ∗DXj +BijDXj

)
+

∫

Σ
η̂a

(
dÂa +

1

2
Ĉa

bc(X)Âb ∧ Âc

)
,

(3.10)

where

Ĉa
bc := Ka

d

(
(K−1)eb(K

−1)f cC
d
ef + (K−1)ebv

i
e∂i(K

−1)dc − (K−1)ecv
i
e∂i(K

−1)db

)

(3.11)

and

DXi = dXi − viaA
a = dXi − v̂iaÂ

a, v̂ia := vib(K
−1)ba . (3.12)

Furthermore, upon the field redefinitions (A, η) → (Â, η̂), the gauge transformation formu-

las (3.4) simplify2

δǫ̂X
i = v̂iaǫ̂

a ,

δǫ̂Â
a = dǫ̂a + Ĉa

bc(X)Âbǫ̂c , (3.13)

δǫ̂η̂a = −Ĉc
ab(X)η̂cǫ̂

b ,

2Our field redefinitions are in some sense inverse to those considered in [13] in the different context of

the Yang-Mills-Higgs gauge theory.
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where

ǫ̂a = Ka
b ǫ

b . (3.14)

Remarkably, upon the field redefinitions, the gauge invariance conditions (3.3) guar-

anteeing the gauge invariance of the first term in the action (3.10) become the isometry

conditions

Lv̂aG = 0, Lv̂aB = 0, (3.15)

which can be established directly from (3.3):

Ka
b Lv̂aG = Ka

bLvc(K−1)caG = LvbG− (K−1)ac dK
c
b ∨ ιvaG = LvbG− ωa

b ∨ ιvaG = 0 ,

and similarly,

Ka
b Lv̂aB = Ka

bLvc(K−1)caB = LvbB − (K−1)acdK
c
b ∧ ιvaB = LvbB − ωa

b ∧ ιvaB = 0 .

Now we turn to the second term in the action (3.10), i.e. the one containing the Lagrange

multiplier η. It is easy to calculate the variation of the action (3.10) with respect to the

gauge transformations (3.13) provided that the isometry conditions (3.15) are fulfilled:

δǫ̂S(X
i, Â, η̂) =

∫

Σ
η̂a(∂iĈ

a
bc)ǫ̂

cDXi ∧ Âb . (3.16)

The gauge invariance thus require that the structure functions Ĉa
bc be constants.3 We

observe that our field redefinitions (3.9) permit us to rewrite the action (3.1) of CDJ gauge

theory precisely in the Roček-Verlinde form (2.4) corresponding to isometric non-Abelian

T-duality. Consequently, the approach of CDJ cannot give any T-duality pattern not

already contained in the traditional non-Abelian T-duality story.

4 Inclusion of non-exact 3-form background H

Let H be a closed 3-form on the target manifold M which is not exact. In this case H

cannot be written globally as dB for any 2-form field B but we can introduce an auxiliary

2-form field C on M and write down the following action:4

S(Xi, A, η) =
1

2

∫

Σ
DXi ∧

(
Gij ∗DXj + CijDXj

)
+

∫

Σ
〈η, Fω(A,X)〉

+
1

6

∫

Σ3

HijkdX
i ∧ dXj ∧ dXk −

1

2

∫

Σ
CijdX

i ∧ dXj . (4.1)

Here Σ3 is a volume for which the world-sheet Σ is the boundary.

3It is not difficult to conclude that there exists no modification of the gauge transformation formula

δǫηa =
(
−Cc

abηc + viaω
c
biηc

)
ǫb such that the modified gauge invariance criteria would permit any possibil-

ity other than ωa
b = (K−1)acdK

c
b and Ĉa

bc constants.
4Note that if H = dB then C can be identified with B and the action (4.1) reduces to (3.1) as it should.
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The action (4.1) was introduced by CDJ in order to study “T-duality without isometry”

in the presence of the non-exact 3-form background H. The gauge invariance conditions5

of the action (4.1) with respect to the gauge transformations (3.4) read

LvaG = ωb
a∨ιvbG, LvaC = ωb

a∧ιvbC , ιva(H−dC) = 0, dωa
b+ωa

c∧ωc
b = 0 .

(4.2)

The last condition can be solved as in section 3, yielding

ωa
b = (K−1)ac dK

c
b . (4.3)

With the field redefinitions

Âa = Ka
bA

b, η̂a = ηb(K
−1)ba , (4.4)

the action (4.1) and the gauge transformations (3.4) acquire the following form

S(Xi, Â, η̂) =
1

2

∫

Σ
DXi ∧

(
Gij ∗DXj + CijDXj

)
+

∫

Σ
η̂a

(
dÂa +

1

2
Ĉa

bc(X)Âb ∧ Âc

)

+
1

6

∫

Σ3

HijkdX
i ∧ dXj ∧ dXk −

1

2

∫

Σ
CijdX

i ∧ dXj , (4.5)

and

δǫ̂X
i = v̂iaǫ̂

a ,

δǫ̂Â
a = dǫ̂a + Ĉa

bc(X)Âbǫ̂c , (4.6)

δǫ̂η̂a = −Ĉc
ab(X)η̂cǫ̂

b .

Here

ǫ̂a = Ka
b ǫ

b , (4.7)

Ĉa
bc ≡ Ka

d

(
(K−1)eb(K

−1)f cC
d
ef + (K−1)ebv

i
e∂i(K

−1)dc − (K−1)ecv
i
e∂i(K

−1)db

)
,

(4.8)

and

DXi = dXi − viaA
a = dXi − v̂iaÂ

a , v̂ia = vib(K
−1)ba . (4.9)

As in section 3, the gauge invariance requires that the structure functions Ĉa
bc be constants

and the conditions (4.2) become the standard isometry conditions

Lv̂aG = 0 , Lv̂aC = 0 , ιv̂a(H − dC) = 0 . (4.10)

The gauge theory (4.5) thus boils down to the Roček-Verlinde Yang-Mills theory underlying

standard non-Abelian T-duality in the presence of the WZ term.

5The gauge invariance conditions originally written in [3], or in [4], use the notation θa := −ιvaC and

therefore look slightly different.
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5 Lie algebroid gauged sigma models

So far we have been using the coordinates Xi on M , in order to compare more directly

our calculations with those of CDJ. However, we have obtained our principal insights

invariantly, using the language of the Lie algebroid gauged sigma models [12]. We consider

it appropriate to include this invariant perspective in the present paper, as it highlights

the geometric origin of the field redefinitions (3.9).

Recall that a Lie algebroid is a vector bundle Q over the manifold M , equipped with

a Lie bracket [· , ·]Q on the space of sections Γ(Q) and with an anchor homomorphism

ρ : Q → TM intertwining the bracket [· , ·]Q with the standard Lie bracket of vector fields

[· , ·]TM . Given a background metric G, a 2-form B on M , and a connection ∇ω : Γ(Q) →

Ω1(M)⊗Γ(Q) on the vector bundle Q, we can define the CDJ gauge theory invariantly. It

is a classical field theory on the world-sheet Σ with the action

S(X,A, η) =
1

2

∫

Σ
‖TX − ρ(A)‖2G +

∫

Σ
X∗

AB +

∫

Σ
〈η, (X∗d∇

ω

)A−
1

2
QT ω(A ∧, A)〉 . (5.1)

The dynamical fields of the theory are: a map X : Σ → M , a 1-form A on Σ with values

in the pull-back bundle X∗Q and a section η of the dual pull-back bundle X∗Q∗. The

expression Fω(A,X) := (X∗d∇
ω

)A − 1
2

QT ω(A ∧, A) takes values in Λ2T ∗Σ ⊗X∗Q and it

is conveniently referred to as the Lie algebroid field strength.

Let us explain in more detail the notation. First we note that the connection ∇ω :

Γ(Q) → Ω1(M) ⊗ Γ(Q) on the vector bundle Q induces the so-called linear connection
Q∇ω : Γ(Q) → Γ(Q∗)⊗ Γ(Q) on the Lie algebroid Q, defined by the relation

Q∇ω
s1
s2 := ∇ω

ρ(s1)
s2, s1, s2 ∈ Γ(Q).

To the linear connection Q∇ω on Q is then associated the Q-torsion QT ω which is C∞(M)-

bilinear form on Γ(Q)× Γ(Q) with values in Γ(Q):

QT ω(s1, s2) :=
Q∇ω

s1
s2 −

Q∇ω
s2
s1 − [s1, s2]Q. (5.2)

It must be mentioned that by writing QT ω(A ∧, A) as in eq. (5.1) we have used somewhat

short-hand notation, with the purpose not to make the expression too heavy from the

notational point of view. In reality, we should have written rather X∗ QT ω(Ǎ ∧, Ǎ)
∣∣
X(u)

,

where u ∈ Σ and Ǎ is any section of Ω1(M,Q) with the property X∗Ǎ
∣∣
X(u)

= A(u) (here

X∗ stands for the pull-back of differential forms and ·
∣∣
X(u)

means the restriction to the

algebroid fiber over the point X(u)). It is the crucial property of C∞(M)-bilinearity of the

torsion which guarantees that the ambiguity of the choice of the lifted section Ǎ does not

influence the value of the field strength Fω(A,X).

Recall also that X∗d∇
ω

stands for the standard pull-back of the extension of the

connection ∇ω to the differential forms valued in Q and ‖TX − ρ(A)‖G means taking

simultaneously the G-norm of the covariant tangent map TX − ρ(A) in X∗TM and the

Minkowski (indefinite) norm of 1-forms on the world-sheet Σ. Finally, X∗
AB stands for the

covariant pull-back of the differential form, which is the 2-form on Σ given at every point

u ∈ Σ by contracting B in X(u) with (TX − ρ(A)) ∧ (TX − ρ(A)).

– 8 –



J
H
E
P
0
8
(
2
0
1
7
)
1
1
6

To achieve our invariant description of CDJ theory, we have to define infinitesimal

gauge transformations of the fields X,A and η. The infinitesimal parameters ǫ of this

transformations must be sections of the pull-back bundle X∗Q and the first of the trans-

formations (3.4) evidently reads

δǫX = ρ(ǫ). (5.3)

To write invariantly the second and the third of the transformations (3.4) is, however, more

subtle, since putative invariant variations δǫA or δǫη do not make sense, because both A

and η live in the pull-back bundles which themselves change with the variation of X. This

means that, at a given u ∈ Σ, we cannot subtract the field A(u) from the transformed field

Aǫ(u) in order to define a variation δǫA(u), being unable to subtract two vectors living

in different spaces: A(u) lives in the algebroid fiber over X(u) whereas Aǫ(u) lives in the

algebroid fiber over X(u)+ δǫX(u). Fortunately, we have the connection ∇ω which we can

use to parallel transport the vector Aǫ(u) from X(u) + δǫX(u) to X(u); the result of this

parallel transport we denote as A
‖
ǫ (u) and it now makes perfect sense to define a “parallel”

invariant variation δ
‖
ǫA by the formula

δ‖ǫA := A‖
ǫ (u)−A(u). (5.4)

It is clear that the knowledge of the parallel variation δ
‖
ǫA fully determines the infinitesi-

mally transformed gauge field Aǫ(u) and vice versa, since those two quantities are tied by

the parallel transport. The concrete formula for δ
‖
ǫA is then given by the following nice

invariant expression

δ‖ǫA = (X∗∇ω)ǫ− QT ω(A, ǫ). (5.5)

Here X∗∇ω stands for the standard pull-back of the connection ∇ω and the torsion term

at some u ∈ Σ should be understood as X∗ QT ω(Ǎ, ǫ̌)
∣∣
X(u)

, where Ǎ and ǫ̌ are any sections

of the respective bundles Ω1(M,Q) and Q fulfilling the properties X∗Ǎ
∣∣
X(u)

= A(u) and

ǫ̌
∣∣
X(u)

= ǫ(u). As before, it is the C∞(M)-bilinearity of the torsion which guarantees that

the ambiguities in the choices of the lifted sections Ǎ and ǫ̌ do not influence the value of

the parallel variation δ
‖
ǫA.

The same philosophy we use for the description of the infinitesimal gauge transforma-

tion of the Lagrange multiplier η with the result

δ‖ǫ η = − QT ∗ω
ǫ η. (5.6)

Here the operator QT ∗ω
ǫ : Q∗ → Q∗ is obtained by the transposition of the C∞(M)-linear

operator QT ω
ǫ : Q → Q defined itself in terms of the torsion as

QT ω
ǫ s := QT ω(ǫ, s), s ∈ Γ(Q). (5.7)

Of course, the invariant formulas can be worked out in components, upon a choice of

some local coordinates Xi on M and local frames ea on the algebroid Q.6 Explicitly, we

6By the local frames we mean C∞(M) bases in the spaces of the local sections of the algebroid bundle Q.
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introduce 1-forms Aa(u) on Σ, scalars ηa(u) on Σ, vector fields va on M , 1-forms ωb
a on

M and structure functions Ca
bc(X) on M by the relations:

A = Aa(u)ea
∣∣
X(u)

, η = ηa(u)e
∗
a

∣∣
X(u)

, va = ρ(ea), ∇ωea = ωb
a ⊗ eb, [eb,ec]Q = Ca

bc(X)ea.

(5.8)

Inserting all those data in our invariant action (5.1), we recover straightforwardly the

component action (3.1) of CDJ.

We now give a more detailed calculation, illustrating how to recover the component

gauge transformation (3.4) from the invariant formulas (5.3), (5.5) and (5.6). First we

concentrate on the most involved case of the transformation of the gauge field A. Using

the parametrisation A = Aa(u)ea
∣∣
X(u)

, we set, respectively,

Aǫ(u) ≡ Aa
ǫ (u)ea

∣∣
X(u)+ρ(ǫ)(u)

, δ‖ǫA(u) ≡ δ‖ǫA
a(u)ea

∣∣
X(u)

, δǫA
a(u) := Aa

ǫ (u)−Aa(u).

(5.9)

If the frames ea were covariantly constant, then A
‖
ǫ (u) would be equal to Aa

ǫ (u)ea
∣∣
X(u)

,

hence, following (5.4), the components of the parallel variation δ
‖
ǫA

a(u) would be equal

to the ordinary variations δǫA
a(u). However, if ea are not covariantly constant, there is

a correction proportional to the covariant derivative ∇ω
ǫ ea = ιǫω

b
aeb which we find to be

equal to

δ‖ǫA
a = δǫA

a + ιǫω
a
bA

b. (5.10)

Now the formula (5.5) worked out in components yields

δ‖ǫA
a = dǫa + ωa

bidX
iǫb − (ιvbω

a
c − ιvcω

a
b − Ca

bc(X))Abǫc. (5.11)

Combining the equations (5.10) and (5.11), we find

δǫA
a = dǫa + ωa

ci(dX
i − vibA

b)ǫc + Ca
bc(X)Abǫc, (5.12)

which is nothing but the CDJ gauge transformation (3.4).

The case of the field η is even simpler. First we find

δ‖ǫ ηa = δǫηa − ιǫω
c
aηc, (5.13)

and then eq. (5.6) written in components gives

δ‖ǫ ηa = (−Cc
ab + ιvaω

c
b − ιvbω

c
a) ǫ

bηc . (5.14)

Combining the equations (5.13) and (5.14), we finally find

δǫηa =
(
−Cc

abηc + viaω
c
biηc

)
ǫb , (5.15)

which is nothing but the third of the CDJ gauge transformation (3.4).

Next we have to clarify the question of the gauge symmetry of the invariant CDJ ac-

tion (5.1) with respect to the gauge transformations (5.3), (5.5) and (5.6). We have already

learned from the component calculations, that this gauge symmetry is not automatic but

requires some compatibility of the background data G, B, Q and ∇ω. We have found three

compatibility conditions which, written invariantly, become:
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1. For every section χ of the bundle Q, it must hold

Lρ(χ)G = (ρ(∇ωχ)⊗ Id + Id⊗ ρ(∇ωχ))G , (5.16)

Lρ(χ)B = (ρ(∇ωχ)⊗ Id + Id⊗ ρ(∇ωχ))B , (5.17)

where ρ(∇ωχ) ∈ T ∗M ⊗ TM is viewed as the linear operator on T ∗M ;

2. The connection ∇ω on the algebroid bundle Q must be flat;

3. For any two sections s, t ∈ Γ(Q), the following implication must hold

∇ωs = ∇ωt = 0 =⇒ ∇ω[s, t]Q = 0 . (5.18)

If the conditions (2) and (3) are fulfilled we say that the Lie algebroid (Q,∇ω) is

admissible. By the component calculations, we have established that to every admissible

Lie algebroid (Q,∇ω) there is a naturally associated Lie algebra g(Q,ω), consisting of

covariantly constant local sections of Q. The structure of the Lie algebra g(Q,ω) is induced

from the Lie algebroid bracket [· , ·]Q and the condition (1) implies that the action of g(Q,ω)

on the sigma model background (G,B) — via the anchor map — is isometric. Therefore

every CDJ theory is locally equivalent to the standard intermediate gauge theory used to

derive the traditional non-Abelian T-duality. From the global point of view, it may happen

that the Lie algebra g(Q,ω) action on non-simply connected targets M cannot be made

global by parallel transport.7 In such a case, the CDJ proposal would give a new insight

on subtle topological issues related to the standard non-Abelian T-duality, rather than a

recipe to produce new genuinely non-isometric T-dual pairs of sigma models.

Let us finish this section by stressing that, from the Lie algebroid vantage point, it

does not have any invariant meaning to say that “a non-isometric action of a Lie algebra on

M is gauged”. This is because the local imput data M,G,B, va, ω
a
b, C

c
ab(X) used by CDJ

to construct their intermediate gauge theory can be equally well replaced by equivalent

data M,G,B, v̂a, ω̂
a
b, Ĉ

c
ab(X) without changing the T-duality pattern. Given two local

anchored frames va and v̂a, the structure constants Cc
ab and Ĉc

ab may be related by a

non-constant matrix Ka
b(X), and as we shall illustrate with examples in the next section,

those two sets of structure constants may even define two non-isometrically acting non-

isomorphic Lie algebras, the gauging of which yields the same T-dual pair of sigma models!

We conclude this section by emphasising that it is solely the Lie algebroid structure

(Q,∇ω) that has invariant meaning in the CDJ theory. Recall, however, that the gauge

invariance of the CDJ theory based on the admissible Lie algebroid requires the existence of

the preferred covariantly constant framing on Q for which the anchored action on the sigma

model background (G,B) is isometric. Moreover, the structure functions of the covariantly

constant frames must be constant and they thus define the preferred Lie algebra g(Q,ω).

In this case saying “the isometric action of the Lie algebra g(Q,ω) on M is gauged” does

have an invariant meaning, and it is in this way that the standard non-Abelian T-duality

input (i.e. the isometric action of some Lie algebra on the target) is recovered from the

structure of the admissible Lie algebroid (Q,∇ω).

7This could happen, for example, by considering targets of the form of coset of Lie group by its discrete

subgroup.
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6 Examples

Let M be the manifold R
3 parametrised by global Cartesian coordinates (X1, X2, X3),

equipped with the metric

ds2 = (dX1)2 +
(
dX2 −X1dX3

)2
+ (dX3)2 (6.1)

and vanishing B-field.

Let Q = TM be the tangent Lie algebroid of M (with the identity anchor map) and

let ∇̂ be a flat connection on TM defined by declaring that the following global frame êa

is covariantly constant:

êa = {∂1 +X3∂2, ∂2, ∂3} . (6.2)

This structure (TM, ∇̂) defines the admissible Lie algebroid in the sense of section 5,

since the structure functions of the covariantly constant framing êa are all constant. In

fact the only non-vanishing ones are Ĉ2
31 = −Ĉ2

13 = 1. Let us now establish that

the Lie derivatives Lêa of all three differentials dX1, dX2 −X1dX3, dX3 vanish for every

a = 1, 2, 3. This can be seen either by a direct calculation or by remarking that the forms

dX1, dX2 − X1dX3, dX3 form a basis in the space of the left-invariant 1-forms on the

Heisenberg group H consisting of the matrices of the following form:

H =







1 X1 X2

0 1 X3

0 0 1


 , X1, X2, X3 ∈ R





,

while êa form the basis in the space of right-invariant vector fields in H. Either way,

we conclude that the Lie derivatives Lêa of the metric (6.1) vanish since the metric is

constructed from the left-invariant forms dX1, dX2 −X1dX3, dX3.

We have now all ingredients to define the Lie algebroid gauged sigma model and its

action reads

Ŝ(X, Â, η̂) =
1

2

∫

Σ

(
(dX1−Â1)∧∗(dX1−Â1)+(dX3−Â3)∧∗(dX3−Â3)

)

+
1

2

∫

Σ
(dX2−X3Â1−Â2−X1(dX3−Â3))∧∗(dX2−X3Â1−Â2−X1(dX3−Â3))

+

∫

Σ
(η̂1dÂ

1+η̂2(dÂ
2+Â3∧Â1)+η̂3dÂ

3) . (6.3)

The gauge transformations are

δǫX
1 = ǫ1, δǫX

2 = ǫ2 +X3ǫ1, δǫX
3 = ǫ3,

δǫÂ
1 = dǫ1, δǫÂ

2 = dǫ2 + Â3ǫ1 − Â1ǫ3, δǫÂ
3 = dǫ3,

δǫη̂1 = ǫ3η̂2, δǫη̂2 = 0, δǫη̂3 = −ǫ1η̂2 .

(6.4)

Since we are gauging the isometry, we are doing the standard non-Abelian T-duality, nev-

ertheless, for the sake of illustration, we go on further with the well-known procedure how

to recover from (6.3) the T-dual pair of sigma models.
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Varying the Lagrange multipliers η̂a we obtain the Maurer Cartan relations

dÂ1 = 0 , dÂ2 + Â3 ∧ Â1 = 0 , dÂ3 = 0 , (6.5)

which can be solved in full generality as

Â1 = −dx1, Â2 = −dx2 + x1dx3, Â3 = −dx3. (6.6)

Plugging the solution (6.6) into the action (6.3), we recover the original sigma model

corresponding to the metric (6.1) and the vanishing B-field:

Ŝ(Y k) =
1

2

∫

Σ

(
dY 1 ∧ ∗dY 1 + (dY 2 − Y 1dY 3) ∧ ∗(dY 2 − Y 1dY 3) + dY 3 ∧ ∗dY 3

)
, (6.7)

where8

Y 1 := X1 + x1 , Y 2 := X2 + x2 + x1X3 , Y 3 := X3 + x3 . (6.8)

In order to recover the dual sigma model, we first make in (6.3) the following field

redefinitions:

B̂1 := Â1 − dX1, B̂2 := Â2 − dX2 +X3Â1 +X1(dX3 − Â3), B̂3 := Â3 − dX3,

(6.9)

µ̂1 := η̂1 −X3η̂2, µ̂2 := η̂2, µ̂3 := η̂3 +X1η̂2,

(6.10)

in terms of which the action (6.3) becomes

Ŝ(B̂, µ̂) =
1

2

∫

Σ

(B̂1∧∗B̂1+B̂2∧∗B̂2+B̂3∧∗B̂3)−

∫

Σ

(dµ̂1∧B̂1+dµ̂2∧B̂2+dµ̂3∧B̂3− µ̂2B̂
3∧B̂1) .

(6.11)

Varying B̂ in Ŝ(B̂, µ̂) gives

B̂1 = −
1

1 + µ̂2
2

(µ̂2dµ̂3+∗dµ̂1), B̂2 = −∗dµ̂2, B̂3 =
1

1 + µ̂2
2

(µ̂2dµ̂1−∗dµ̂3). (6.12)

Inserting (6.12) back into Ŝ(B̂, µ̂) gives the dual sigma model:

Ŝ(µ̂) =
1

2

∫

Σ

1

1 + µ̂2
2

(
dµ̂1 ∧ ∗dµ̂1 + (1 + µ̂2

2)dµ̂2 ∧ ∗dµ̂2 + dµ̂3 ∧ ∗dµ̂3 + 2µ̂2dµ̂1 ∧ dµ̂3

)
.

(6.13)

There is a simple reason why we have chosen to work out this particular example of

the non-Abelian T-duality. It is because CDJ have applied in [3] their “T-duality without

isometry” recipe exactly on the sigma model background (6.1).9 Our point is to emphasize

that CDJ did not obtain anything new but just the same dual model (6.13) as we did by

8The field redefinitions (6.8) reflect the group multiplication law in the Heisenberg group H and the new

fields Y can be interpreted as X acted upon by the non-infinitesimal gauge transformation “x” obtained

by exponentiating the gauge transformations (6.4).
9CDJ wrote in [3] that they dualised the Heisenberg nilmanifold but the computation that they performed

therein concerns, in reality, the Heisenberg group target.
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gauging the isometry (cf. eq. (4.19) of ref. [3]). We also understand the reason why this fact

is not coincidental. Indeed, it occurs because CDJ just used a different framing in order

to write the same invariant Lie algebroid (TM, ∇̂) gauge theory in components. Actually,

the framing of CDJ was formed by the following basis of the left-invariant vector fields on

the group H

e′a = {∂1, ∂2, X
1∂2 + ∂3}, (6.14)

and because the Lie derivatives of the left-invariant forms with respect to the left-invariant

vector fields do not vanish (for non-Abelian Lie groups), the background sigma model

metric (6.1) is not invariant. Of course, the non-invariance of the metric can be seen also

from the formula (5.16) since the framing e′a is not covariantly constant.

CDJ used the frame e′a to carry out the non-isometric gauging of the Heisenberg group

acting on itself from the right, but we have already explained in section 5 that only gauging

with respect to the covariantly constant frame has invariant meaning. In fact, the gauging

of CDJ is not even the only possible non-isometric gauging based on an action of a Lie

group. Indeed, we can even consider the non-isometric gauging of the sigma model (6.7)

by the action of the Abelian translation group R
3 on itself! We achieve that by choosing

yet a third frame ea for which the structure functions Ca
bc all vanish. It reads simply

ea = {∂1, ∂2, ∂3}. (6.15)

The framing ea is neither covariantly constant nor does it leave the metric (6.1) invariant.

From the relation

êa = eb(K
−1)ba, K =




1 0 0

−X3 1 0

0 0 1


 , (6.16)

it easily follows that the input data of the CDJ gauge theory is the metric (6.1), B = 0,

the frame ea and the matrix valued 1-form ω given by

ω =




0 0 0

−dX3 0 0

0 0 0


 . (6.17)

The action (3.1) of the CDJ gauge theory can be specified for those data and the direct

calculation yields, without surprise, again the dual pair (6.7), (6.13) of sigma models.

Remark. We note that whenever an n-dimensional group manifold G admits a global coor-

dinate system X1, . . . , Xn, then every G-isometric background can be either T-dualised by

the standard isometric gauging based on the G action on itself or by the CDJ non-isometric

gauging of the Abelian group R
n generated by the coordinate vector fields ∂1, . . . , ∂n.

Our second example directly generalizes the first one in the sense we replace the Heisen-

berg group H by an arbitrary Lie group G. We shall work invariantly since we shall no

longer need to make comparison with the coordinate calculations of CDJ.
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Our Lie algebroid Q is now the tangent bundle TG and we pick the flat connection ∇ω

by declaring that the right-invariant vector fields on G are covariantly constant. We write

the sigma model action, which we want to gauge, as

S(g) =
1

2

∫

Σ
(g−1dg ∧ ∗g−1dg)G +

1

2

∫

Σ
(g−1dg ∧ g−1dg)B. (6.18)

Here g−1dg is the left-invariant Maurer-Cartan form on G and the background geometry

is encoded in the choice of two non-invariant bilinear forms (· , ·)G and (· , ·)B defined on

the Lie algebra g of a Lie group G, the former symmetric and the latter antisymmetric. In

other words, the metric G and the 2-form B underlying this particular sigma model action

are obtained by the left-transport of the bilinear forms (· , ·)G and (· , ·)B to every point of

the group manifold.

The CDJ gauge theory corresponding to the right-invariant framing is now the standard

Roček-Verlinde Yang-Mills theory, traditionally used to work out the standard non-Abelian

T-dual of the model (6.18). It can be also obtained without knowing anything about Lie

algebroids, just by gauging the rigid left action of the group G on itself which is the

symmetry of the action (6.18):

S(g, Â, η) =
1

2

∫

Σ
(g−1Dg∧∗g−1Dg)G+

1

2

∫

Σ
(g−1Dg∧g−1Dg)B+

∫

Σ
〈η̂, dÂ−Â∧Â〉. (6.19)

Here Â and η̂ are respectively g-valued 1-form and g
∗-valued 0-form on the world-sheet Σ

and the covariant derivative is defined as

g−1Dg := g−1dg − g−1Âg. (6.20)

Note also the form of the field strength dÂ − Â ∧ Â. From the (invariant) CDJ point

of view, it comes from the fact that the torsion of the flat connection leaving the right-

invariant vector fields covariantly constant coincides precisely with the commutator on the

Lie algebra g. For that matter, this is coherent with the appearance of the minus sign

in the field strength which reflects the fact that the structure constants corresponding to

the infinitesimal left action of G on itself pick a minus sign with respect to the structure

constants of the Lie algebra g.

The gauged action (6.19) has the following left gauge symmetry

(g, Â, η̂) → (ĥg, ĥÂĥ−1 + dĥĥ−1,Ad∗
ĥ
η̂) , (6.21)

or, infinitesimally,

δǫ̂(g, Â, η̂) = (ǫ̂g, dǫ̂− [Â, ǫ̂], ad∗ǫ̂ η̂). (6.22)

Here ĥ and ǫ̂ are smooth maps from the world-sheet Σ to the Lie group G and the Lie

algebra g, respectively. Note in particular, that the expression g−1Dg turns out to be gauge

invariant, which immediately explains the gauge invariance of the part of the action (6.19)

not containing the Lagrange multiplier.

We now switch from the natural isometric right-invariant framing to non-natural non-

isometric left-invariant one, and wish to rewrite the CDJ gauge theory (6.19) accordingly.
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To work this out, we can depart directly from the invariant action (5.1), but it is simpler

to do it by making the appropriate field redefinitions in the action (6.19), induced by the

change of the frame. For that, it is enough to note that the “new” gauge transformation now

hits the sigma model configuration g from the right, which implies that the g-dependent

frame-changing operator K in eq. (3.14) is simply K = Adg. Indeed, writing

h = g−1ĥg , (6.23)

gives infinitesimally

ǫ = Adg−1 ǫ̂, (6.24)

which, following eq. (3.14), fixes K = Adg.

With this choice of K the remaining field redefinitions are dictated by eq. (3.9):

A = g−1Âg, η = Ad∗g−1 η̂ . (6.25)

The covariant derivative g−1Dg, the action (6.19) and the gauge tranformations (6.21)

then become, respectively,

g−1Dg = g−1 dg −A , (6.26)

S(g,A, η) =
1

2

∫

Σ
(g−1Dg ∧ ∗g−1Dg)G +

1

2

∫

Σ
(g−1Dg ∧ g−1Dg)B

+

∫

Σ
〈η, dA+A ∧A+ g−1Dg ∧A+A ∧ g−1Dg〉 . (6.27)

(g,A, η) → (gh,A− g−1dg + (gh)−1 d(gh), η) . (6.28)

Note that the infinitesimal version of the gauge transformations (6.28) read

δǫ(g,A, η) = (gǫ, dǫ+ [A, ǫ] + Adg−1Dg ǫ, 0) . (6.29)

We remark that the gauged sigma model action (6.27), as well as the infinitesimal gauge

transformations (6.29), have now indeed the CDJ form (3.1), (3.4), where the 1-form ω

with values in End(g) is invariantly written as

ω = adg−1dg . (6.30)

If a reader would look just at the gauge theory action (6.27) as well as at the infinitesimal

gauge transformations (6.29), without knowing how we have obtained them, they would

probably believe they have some exotic gauging of the right action of the group G on itself.

Our point is that this CDJ non-isometric exotic right gauging is just the standard isometric

left gauging in disguise, therefore it cannot give rise to any new T-duality pattern.

7 Conclusion and outlook

We have ruled out the proposal of Chatzistavrakidis, Deser and Jonke in the sense that

it does not give rise to a new pattern of genuinely non-isometric T-duality. Nevertheless,
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we see some room to apply the invariantly formulated CDJ gauge theory of section 5 to

study some subtle topological effects within the framework of the traditional non-Abelian

T-duality. This possibility might take place if there exist admissible Lie algebroids (Q,∇ω)

for which the invariant Lie algebra g(Q,ω) would act just locally on the target manifold M

and could not be extended to a global action. It is plausible to expect that this situation

may occur for which the targets M are of the form of the quotient of a Lie group by one

of its discrete subgroups. The CDJ theory could then take into account the phenomena of

winding strings on non-contractible cycles of M .
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