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aInstituto de F́ısica Teórica, Universidade Estadual Paulista,

Rua Dr. Bento Teobaldo Ferraz, 271 — Bloco II, 01140-070 São Paulo, SP, Brazil
bCentro de F́ısica do Porto e Departamento de F́ısica e Astronomia da

Faculdade de Ciências da Universidade do Porto,

Rua do Campo Alegre 687, 4169-007 Porto, Portugal

E-mail: aballonb@ift.unesp.br, rcarcasses@fc.up.pt, miguelc@fc.up.pt

Abstract: We develop a formalism where the hard and soft pomeron contributions to

high energy scattering arise as leading Regge poles of a single kernel in holographic QCD.

The kernel is obtained using effective field theory inspired by Regge theory of a 5-d string

theory. It describes the exchange of higher spin fields in the graviton Regge trajectory that

are dual to glueball states of twist two. For a specific holographic QCD model we describe

Deep Inelastic Scattering in the Regge limit of low Bjorken x, finding good agreement

with experimental data from HERA. The observed rise of the effective pomeron intercept,

as the size of the probe decreases, is reproduced by considering the first four pomeron

trajectories. In the case of soft probes, relevant to total cross sections, the leading hard

pomeron trajectory is suppressed, such that in this kinematical region we reproduce an

intercept of 1.09 compatible with the QCD soft pomeron data. In the spectral region of

positive Maldelstam variable t the first two pomeron trajectories are consistent with current

expectations for the glueball spectrum from lattice simulations.

Keywords: Deep Inelastic Scattering (Phenomenology), Strings and branes phenomenol-

ogy

ArXiv ePrint: 1704.08280

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2017)085

mailto:aballonb@ift.unesp.br
mailto:rcarcasses@fc.up.pt
mailto:miguelc@fc.up.pt
https://arxiv.org/abs/1704.08280
https://doi.org/10.1007/JHEP08(2017)085


J
H
E
P
0
8
(
2
0
1
7
)
0
8
5

Contents

1 Introduction 1

2 What is DIS data telling us about holographic QCD? 6

3 Low x DIS in holographic QCD 9

3.1 Kinematics 9

3.2 Regge theory in holographic QCD 10

3.3 Regge poles 13

4 Pomeron in holographic QCD 14

4.1 Effective Schrödinger problem 18

5 Fit of DIS data in IHQCD 20

5.1 The fit 22

5.2 Regge trajectories 23

6 Conclusions 25

A U(1) field in holographic QCD 26

B Numeric convergence 28

1 Introduction

Regge theory is the study of the analytic structure of the scattering amplitude in the so

called complex angular momentum J-plane. The assumption that the scattering amplitude

in the J-plane has a pole, the so called pomeron, such that there are no more singularities

at the right of it except at integer values, led to the explanation in the early 60s of the

total cross-section behavior with center of mass energy in pp and pp̄ experiments, among

others. This particular analytic structure suggest that the scattering amplitude in the so

called Regge limit of large s at fixed t, is dominated by the interchange of a infinite set of

particles of all spins: the ones belonging to the pomeron Regge trajectory [1].

Regge theory is particularly appealing since the amplitude obtained in the s-plane,

A(s, t) ∼ Γ
(
− j(t)

)
sj(t), analytically continued to the non-physical scattering region of

positive t, provides a connection with the exchanged spin J bound states of the theory,

whose mass is given by J = j(M2). This remarkable fact allowed to explain early scattering

data when meson trajectories are exchanged. It also led to the proposal that there exists

another set of resonances with the quantum numbers of the vacuum, associated with the

pomeron, which in principle will be a family of the so far unobserved glueballs. This idea
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Figure 1. Values of x and Q2 for the data points analysed in this paper [3]. Regge kinematics

restricts this domain to x < 0.01.

has been supported through the years by Donnachie and Landshoff, who showed in the early

90s that Regge theory provides an economical description of total elastic cross-sections [2].

This is known as the soft pomeron trajectory, with an intercept of around j(0) = 1.08, and

is well established as a model for total elastic cross-sections of soft particles (for example,

pp and pp̄ scattering).

Deep inelastic scattering (DIS) is another process where Regge theory is important. In

this case we consider the imaginary part of the amplitude for γ∗p→ γ∗p, at zero momentum

transfer (t = 0), which gives the total cross section for the scattering of an off-shell photon

with a proton. Single Reggeon exchange then predicts a total cross section determined by

the intercept, σ ∼ sj(0)−1. However this story is bit more evolved. In the γ∗p system there

are two kinematical quantities: the virtuality of the photon Q2 and the Bjorken x, which in

the Regge limit is related to s by s = Q2/x, with x� 1. When HERA data for DIS scatter-

ing came out, it was somehow surprising to observe that the rise of the cross section with 1/x

was actually faster than that predicted by the soft pomeron. The main difference is that,

instead of using two soft probes for the scattering process, the off-shell photon virtuality

can be well above the QCD confining scale. What is actually observed is a growth of the in-

tercept with Q2 from about 1.1 to 1.4. More concretely, if we write the total cross section as

σ
(
x,Q2

)
= f

(
Q2
)
x−ε(Q

2) , (1.1)

then the exponent ε grows with Q2. Figure 1 shows the latest data points from HERA
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Figure 2. The effective exponent ε(Q2) in DIS. Black dots are obtained by extrapolating the log

of the cross section at fixed Q2 with a straight line in log x. The corresponding error bars are at 3σ.

The red curve is our prediction for the effective exponent using the model proposed in this work.

experiment, restricted to the region of low x where Regge kinematics holds. In figure 2 we

see the observed behaviour of the exponent ε(Q2).

The behaviour of the exponent ε(Q2) for low Q2 is consistent with the observed inter-

cept of the soft pomeron for soft probes, but for hard probes (larger Q2) this is no longer

the case, suggesting the existence of another trajectory with a bigger intercept, the so called

hard pomeron. The nature of both pomerons, and in particular their relation, remains an

unsolved problem in QCD. Are the soft and hard pomerons the same or distinct trajecto-

ries? Our main motivation in this work is to use holography to shed light into this problem.

A very interesting proposal to resolve the above puzzle was again put forward by

Donnachie and Landshoff [4–8]. They proposed that the hard and soft pomerons are distinct

trajectories, with the hard pomeron intercept around 1.4. The soft pomeron would be

dominant in the soft region, since it is already well established to explain all soft processes,

and the hard pomeron with a bigger intercept would dominate in the hard processes. More

concretely, the idea is to write the cross section as

σ
(
x,Q2

)
=
∑
n

fn
(
Q2
)
x−εn , (1.2)

where the sum runs over distinct trajectories. Then the effect of summing over several

trajectories, which compete with each other as one varies the virtuality Q2, has the desired
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effect of producing a varying effective exponent ε(Q2), as shown in figure 2. We shall follow

this perspective and see that it follows naturally using the gauge/string duality as a tool

to study QCD strongly coupled phenomena.

Since QCD is well established as the theory of strong interactions, Regge theory should

be encoded on it. However, it turned out to be a remarkable hard problem to deduce the

pomeron J-plane analytic structure from QCD. This fact has its roots in that, even nowa-

days, we mostly know how to compute QCD quantities perturbatively. The most successful

approach has been that of the BFKL pomeron [9–11], also known as the hard pomeron, and

its generalisations. BFKL, in particular, predicts an amplitude for hadron scattering with

a branch cut structure in the complex angular momentum plane. Introducing a momentum

cut-off, it yields a discrete set of poles that can been confronted with HERA data [12]. This

approach has two undesired features: it does not cover the non-pertubative region of soft

probes and it requires a very large number of poles which results in a very large number

of fitting parameters.

The gauge/string duality gives an alternative approach to look at DIS [13, 14]. Of

particular importance to DIS at low x is the proposal that the pomeron trajectory is dual

to the graviton Regge trajectory [15]. This work sparked several phenomenological studies

that considered QCD processes mediated by pomeron exchange, which in general have been

very successful in reproducing experimental data [16–42]. In this paper we shall explore the

above Regge theory ideas for DIS in the new framework of the gauge/string duality. We

shall test our predictions using the specific holographic QCD model proposed in [43–45].

This model incorporates features of the strongly coupled QCD regime, like the spectrum of

glueballs and mesons, confinement, chiral symmetry breaking among others. It is therefore

an ideal ground to study processes dominated by the exchange of glueball trajectories.

Our main findings are summarized in figures 2 and 3. We show that low x DIS data, and

in particular the running of the effective exponent ε(Q2), can be reproduced considering

only the first four pomeron trajectories arising from the graviton trajectory in holographic

QCD. The glueball trajectories shown in figure 3 are fixed by DIS scattering data, but they

are also consistent with results of higher spin glueballs from lattice simulations [46, 47].

We finish this introduction discussing the validity of our approach. Firstly, our ap-

proach is strictly valid in the large-Nc limit where the scattering amplitude is dominated

by planar diagrams. A similar approximation is already done in the BFKL approach to

pomeron physics. Secondly, and most importantly, in our framework the ’t Hooft coupling

λ = g2
YMNc is not restricted to large values. The reason is that we want to access the

regime of hard scattering where the typical QCD coupling is not large. In this regime

the stringy corrections to the supergravity action should be important, thus bottom-up

approaches to the dual of QCD are more appropriate for our purposes, since they incor-

porate those corrections in a phenomenological way. For concreteness, we consider the

holographic QCD background of [43, 44] and extend it to describe the twist 2 operators

associated with higher spin glueballs in the pomeron Regge trajectory. The exchange of the

corresponding dual higher spin fields, that belong to the graviton Regge trajectory, can be

resumed by considering an infinite set of Witten diagrams and then using standard Regge

theory arguments. Our work is inspired by the stringy approach of [15]. However, despite
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Figure 3. The first four pomeron trajectories found in this paper. The blue labels are the intercepts

of each one. Shown are also the masses of the higher spin glueballs from lattice QCD data [46, 47],

which clearly seem to belong to the hard and soft pomeron trajectories. In green we plotted the

masses of vector mesons, which also contribute to DIS, but are expected to have a lower intercept

than the first pomeron trajectories considered in this paper.

its success, the approach in [15] is restricted to large λ corresponding to the IR regime. In

particular, when describing the equation for higher spin fields we will consider the most

general two-derivative terms and take a phenomenological approach to fix the correspond-

ing coefficients. This approach describes the deviations from the conformal limit in the IR

region. In the UV region we impose by hand that the higher spin field equation reproduces

free theory, i.e. that they are dual to twist two operators.

This paper is organized as follows. In section 2, we redo the computation by Donnachie

and Landshoff that tries to reproduce DIS data with a hard and a soft pomeron, deter-

mining the functions fn(Q2) in (1.2) from data analysis. Quite remarkably if we translate

these functions into the proper gauge/string duality language, they are nothing but wave

functions describing the normalizable modes of the graviton Regge trajectory. Section 3

presents the necessary formulae to study DIS using the gauge/string duality. The discus-

sion is standard and already scattered in existing literature. In section 4 we focus on the

pomeron trajectory, and in particular in constructing the analytic continuation of the spin

J equation that describes string fields in the graviton Regge trajectory. This discussion

extends that already presented in our previous work [48]. In section 5 we do the data anal-

ysis, fitting low x DIS data in the very large kinematical range of 0.1 < Q2 < 400 GeV2.

Our best fit has a χ2 per degree of freedom of 1.7, without removing presumed outliers

existing in data. This leads us to the pomeron Regge trajectories shown in figure 3. We

present our conclusions in section 6.
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2 What is DIS data telling us about holographic QCD?

The physics of the pomeron in the gauge/string duality was uncovered in [15] where

pomeron exchange was identified with the exchange of string states in the graviton Regge

trajectory. The amplitude for a 2 → 2 scattering process in the Regge limit is then of the

general form:

A(s, t) =

∫
dzdz̄ φ1(z)φ3(z)KP (s, t, z, z̄)φ2(z̄)φ4(z̄) , (2.1)

where the functions φk(z) represent the external scattering waves functions for a given

process and KP (s, t, z, z̄) is the so-called kernel of the pomeron which represents the tree

level interchange of the aforementioned string states. Leaving aside technicalities which

will be discussed in section 3, the pomeron kernel has the following dual representation

KP (s, t, z, z̄) =
∑
n

fn s
jn(t)−1ψn

(
jn(t), z

)
ψ∗n
(
jn(t), z̄

)
, (2.2)

where the sum runs over the graviton Regge trajectories jn(t) that arise from quantising

string states in the “AdS” box. The quantum number n plays a important role in this

work, since the contribution of the first few pomeron trajectories will be vital to reproduce

the DIS cross section. The prefactor fn depends on jn(t), it factorizes in z and z′, and it

has a functional form that depends on the specific QCD holographic dual. We shall see

that in general it has the form

fn = g
(
jn(t)

)
e(1−jn(t))A(z)eB(z) e(1−jn(t))A(z̄)eB(z̄) , (2.3)

where A is the usual conformal function in the 5D dual metric and the function B will be

determined by the background fields, for instance by the dilaton field Φ. For the specific

holographic model used in this paper we will have B = Φ−A/2.

The function ψn(z) in (2.2) is the n-th excited wave function of a Schrödinger problem.

We shall see that this fact follows from the spectral representation of the propagator of

spin J string fields in the graviton Regge trajectory that are exchanged in the dual 5D

geometry, analytically continued to J = jn(t). This is a highly non-trivial statement that

can be checked by looking at an amplitude of the form (2.1) and fitting it to data. Once

the external state functions φk and the specific functional form (2.3) are fixed, we can use

data to confirm, or disprove, this fact. More concretely, if we consider a process dominated

in the Regge limit by pomeron exchange and choose a specific holographic QCD model, we

can test this model since the data should know about the underlying Schrödinger problem

formulated in the dual theory.

We consider DIS, for which the p+γ∗ → X total cross section can be computed, through

the optical theorem, from the imaginary part of the amplitude (2.1) for p + γ∗ → p + γ∗

at zero momentum transfer. In this case two of the external state functions, say φ1,3(z),

represent the off-shell photon which couples to the quark bilinear electromagnetic current

operator, which is itself dual to a bulk U(1) gauge field. The insertion of a current operator

in a correlation function is then described by a non-normalizable mode of this bulk gauge

field. The other two functions, φ2,4(z̄), describe the target proton in terms of a bulk
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normalizable mode. We recall that, in QCD language, the functions φk(z) are known as

dipole wave functions of the external states.

We wish to find out if the available experimental data is compatible with the holo-

graphic recipe, leaving aside technicalities which will be discusses in section 3. As it is well

known, the imaginary part of the amplitude (2.1) at t = 0 is related to the structure function

F2(Q2, x). HereQ is the offshellness of the spacelike probe photon, whose dependence enters

through the external state wave functions φ1,3(z). The Maldelstam variable s is related to x

by the usual expression s = Q2/x, so we are in the low x regime. As a first approximation,

the integration over the variable z in the amplitude (2.1) can be done by considering a Dirac

delta function centred at z ∼ 1/Q. This is a good approximation only for large Q, i.e. near

the AdS boundary at z → 0, but it will be enough for the purpose of this section. In any

case it is a quick way to gain some insight about the shape of the kernel and the compatibil-

ity of our proposal with the experimental data. The z̄ integral can simply be done because

the expression factorizes and the external wave functions φ2,4(z̄) are normalizable, therefore

affecting the contribution of each Regge pole by an overall multiplicative constant. After

these steps the expression for F2, as we will see in the next section, drastically simplifies to

F2(Q2, x) = x
∑
n

cn

(
Q2

x

)jn
e(−jn+ 1

2
)A(1/Q)eΦ(1/Q)ψn(1/Q) , (2.4)

where the cn do not depent neither on x nor on Q, and we denoted by jn the intercept

values of each Reggeon jn(t = 0). Here we are keeping the right warp factor and dilaton

dependence, but if one takes the conformal limit, A(z) = − log(z) and Φ = const, the

qualitative result would be the same. Thus we predict a structure function of the form

F2(Q2, x) =
∑
n

fn(Q2)x1−jn , (2.5)

where fn(Q2) is the product of known functions and a Schrödinger wave function with

quantum number n (the n-th excited state). More concretely, a generic confining potential

would produce wavefunctions where its number of nodes can be used to label them: the

ground state would have one node, the first excited state would have two nodes and so on.

Let us now focus on the QCD side of the problem. Using Regge theory arguments Don-

nachie and Landshoff [5] proposed that the structure function has precisely the form (2.5).

We can do the same reasoning as them. In order to know more about the functions fn(Q2)

the simplest thing to do is to first consider some fixed values of the jn that are physically

reasonable, like j0 = 1.43 and j1 = 1.08. These are reasonable values for the intercepts of

the hard and soft pomeron, that are now unified in a single framework, since they appear

as distinct Regge trajectories of the dual graviton trajectory in a confining background.

Next, for a fixed value of Q2 we find the best coefficients f0 and f1 that match the data

with the formula f0 x
1−j0 +f1 x

1−j1 , then we can see how these coefficients evolve with Q2.

This was already done for a different set of data in [5], which served as a starting point for

the authors’ proposal for the f0,1(Q2) functional dependence. Of course the shape of the

functions depends on the choice of the intercepts but it is well motivated, given the vast

experimental evidence to fix the soft pomeron intercept around j1 = 1.08. Regarding j0 we

– 7 –
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Figure 4. Hard (red) and soft (blue) pomerons guess from data. Left panel presents the plots of

f0,1(Q) similar to [4]. The right panel shows the associated wavefunctions ψ0,1(z), after considering

the prefactor suggested by the gauge/gravity duality. The values j0 = 1.26, j1 = 1.08 have been

used, close to what we find later in the paper. Clearly the shape of the wave functions is that of a

ground state and of a first excited state of some Schrödinger operator.

should be open to different values, but the expectation is that it will be responsible for the

faster growth observer in DIS at higher values of Q2. The left panel of figure 4 shows the

result of this procedure for the values j0 = 1.26 and j1 = 1.08, close to what we will show

to be the intercepts that give the best fit in our model. The point we want to emphasize

is that apparently not much is learned from the shape of these functions.

However, if we divide the functions f0,1(Q2) by the appropriate functions, as given

by (2.4), the putative wave functions ψ0,1(z = 1/Q) of the Schrödinger problem emerge.

This remarkable fact is shown in the right panel of figure 4, which clearly meets our

expectations. We should remark that if we use instead j1 = 1.43, as first suggested by

Donnachie and Landshoff, we do not observe the oscillatory behavior expected for ψ1,

suggesting perhaps that this value is unphysical. In fact it is known that recent data

suggests a smaller j0 [7]. Indeed, as soon as we get below certain threshold value for j1
the oscillatory behaviour becomes evident with the first node of ψ1 localized very close to

the boundary. Moreover, the form of the wavefunctions in our kernel will be very similar

to the dashed lines in the figure. We take this as a strong evidence that the DIS data

has encoded the dynamics suggested by holographic QCD. In the next sections we will

proceed to phenomenologically construct the effective Schrödinger potential that leads to

the wavefunctions ψn(z) that fit best the data.

The discussion of this section was oversimplified, but it brings out the main idea.

In practice, the integral over z in the dual representation of the amplitude (2.1) is not

localized, since we also consider lower values of Q2. Also, to get a reasonable fit to the

data we need to include the first four pomeron Regge trajectories. This is fine because
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those trajectories will be dominant with respect to the 1/s corrections to the leading hard

pomeron trajectory. Eventually one would also need to include the exchange of meson

Regge trajectories, but that is for now left out of our work, since those trajectories are still

suppressed with respect to the first four Pomerons.

3 Low x DIS in holographic QCD

In this section we present the essential ingredients of the effective field theory description

for low x DIS in holographic QCD.1 First we briefly describe the kinematics of DIS and

its connection to forward Compton scattering amplitude via the optical theorem. Then we

present the holographic description of that amplitude, in the Regge limit, via the exchange

of higher spin fields. We finish the section deriving a formula similar to (2.5) which encodes

the Regge pole contribution to the DIS structure functions.

3.1 Kinematics

In DIS a beam of leptons scatters off a hadronic target of momentum P . Each lepton

interacts with the hadron through the exchange of a virtual photon of momentum q. DIS

is an inclusive process because the scattering amplitude involves the sum over all possible

final states. The relevant quantities are the virtuality Q2 = qµq
µ and the Bjorken variable

x = −Q2/(2P · q). Another quantity is the Mandelstam variable s = −(P + q)2, describing

the squared center of mass energy of the virtual photon-hadron scattering process.

The DIS cross section is described in terms of the hadronic tensor

Wµν = i

∫
d4x eiq·x〈H,P |

[
Jµ(x), Jν(0)

]
|H,P 〉 , (3.1)

where Jµ is the electromagnetic current operator and |H,P 〉 denotes a hadronic state H

of momentum Pµ. Current conservation and Lorentz invariance imply that Wµν has the

decomposition

Wµν = F1

(
x,Q2

)(
ηµν − qµqν

Q2

)
+

2x

Q2
F2

(
x,Q2

)(
Pµ +

qµ

2x

)(
P ν +

qν

2x

)
. (3.2)

The Lorentz invariant quantities F1(x,Q2) and F2(x,Q2) are the structure functions of

DIS. They determine completely the DIS cross section and provide information regarding

the partonic distribution in hadrons.

The optical theorem relates the hadronic tensor Wµν to the imaginary part of the

scattering amplitude describing forward Compton scattering. For a photon of incoming

momentum k1 and outgoing momenta −k3, and for a hadron of incoming momentum k2

and outgoing momenta −k4, this amplitude admits the following decomposition

AFC(q, P ) = i(2π)4δ4

(∑
i

ki

){
ξ2
T (q) F̃1

(
x,Q2

)
+

2x

Q2

(
ξT (q) · P

)2
F̃2

(
x,Q2

)}
, (3.3)

1Holographic approaches for DIS in the large x regime can be found in [14, 49–53].
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where we identified q = k1 = −k3 and P = k2 = −k4, and defined the transverse projection

of the virtual photon polarization ξµ as

ξTµ (q) =

(
ηµν −

qµqν
Q2

)
ξν . (3.4)

The DIS structure functions are then extracted from the relations

F1(x,Q2) = 2πImF̃1(x,Q2) , F2(x,Q2) = 2πImF̃2(x,Q2) . (3.5)

In DIS there are two interesting limits that are usually considered. The first is the

Bjorken limit, where Q2 → ∞ with x fixed. In this limit perturbative QCD provides a

good description of the experimental data in terms of partonic distribution functions. The

second interesting case is the limit of s → ∞, the so-called Regge limit of DIS, for which

Q2 is fixed and x ≈ −Q2/s is very small. In this limit the hadron becomes a dense gluon

medium so that the picture of the hadron made of weakly interacting partons is no longer

valid. As explained in section 2, in this paper we investigate DIS in the Regge limit (low

x) from the perspective of the pomeron in holographic QCD, which encodes the dynamics

of the dense gluon medium. We develop a five dimensional model for the graviton Regge

trajectory for a family of backgrounds dual to QCD-like theories in the large-N limit. Our

formalism leads to the existence of a set of leading Regge poles describing DIS in the Regge

limit, the first two interpreted as the hard and soft pomerons.

3.2 Regge theory in holographic QCD

Let us now consider the computation of the forward Compton scattering amplitude in

holographic QCD. We are interested in elastic scattering between a virtual photon and a

scalar particle with incoming momenta k1 and k2, respectively. In light-cone coordinates

(+,−,⊥), for the external off-shell photon with virtuality Q2 we take

k1 =

(√
s,−Q

2

√
s
, 0

)
, −k3 =

(√
s,
q2
⊥ −Q2

√
s

, q⊥

)
, (3.6)

while for the target hadron of mass M we take

k2 =

(
M2

√
s
,
√
s, 0

)
, −k4 =

(
M2 + q2

⊥√
s

,
√
s,−q⊥

)
. (3.7)

The Regge limit corresponds to s � t = −q2
⊥ and the case t = 0 corresponds to forward

Compton scattering. The momenta k1 and k2 are, respectively, identified with the q and

P defined in the previous subsection. As explained, we will extract the DIS structure

functions from the forward Compton amplitude.

First we define with generality the holographic model that may be used. We need to

define the external states in DIS and the interaction between them that is dominated by

a t-channel exchange of higher spin fields (those in the graviton Regge trajectory). Later

on, to compare with the data, we will use a specific holographic QCD model [43, 44], but

for now we will write general formulae that can be used in other models.
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The string dual of QCD will have a dilaton field and a five-dimensional metric that

are, respectively, dual to the Lagrangian and the energy-momentum tensor. In the vacuum

those fields will be of the form

ds2 = e2A(z)
[
dz2 + ηµνdx

µdxν
]
, Φ = Φ(z) , (3.8)

for some functions A(z) and Φ(z) whose specific form we assume is known. We shall use

greek indices in the boundary, with flat metric ηµν . We are defining the warp factor A(z)

with respect to the string frame metric.

In DIS the external photon is a source for the conserved U(1) current ψ̄γµψ, where

the quark field ψ is associated to the open string sector. The five dimensional dual of this

current is a massless U(1) gauge field A. We shall assume that this field is made out of

open strings and that is minimally coupled to the metric, so its effective action has the

following simple form

SA = −1

4

∫
d5X
√
−g e−ΦF abFab , (3.9)

where F = dA and we use the notation Xa = (z, xα) for five-dimensional points. We could

in principle have higher order terms in F and other couplings to the metric in the action,

but for the sake of simplicity we shall work with this action. As reviewed in appendix A,

after a convenient gauge choice, the gauge field components describing a boundary plane

wave solution with polarization ξ take the form

Aµ(x, z) = ξµ e
iq·xf

(
Q2, z

)
, Az(x, z) = eiq·xg

(
Q2, z

)
, (3.10)

where f and g satisfy the equations

eΦ−A∂z
(
eA−Φ∂zf

)
−Q2f = 0 , g = −iq · ξ

Q2
∂zf . (3.11)

Since we are computing an amplitude with a source for the electromagnetic current op-

erator ψ̄γµψ, the boundary conditions for f are those of a non-normalizable mode, i.e.

f
(
Q2, z = 0

)
= 1 and f

(
Q2, z →∞

)
= 0. Note that the field strength also takes a plane

wave form Fab(x, z) = eiq·xFab(q, z). As we shall see, a useful quantity is the stress-like

tensor

Fµa(q, z)F aν(−q, z) = −e−2A(z)
{
ξTµ (q) ξTν (q)

[
Q2f2 + (∂zf) 2

]
+ qµqν ξ

2
T (q)f2

}
. (3.12)

For the target we consider a scalar field Υ that represents an unpolarised proton. This

hadronic state is described by a normalizable mode of the form

Υ(x, z) = eiP ·xυ(z) . (3.13)

The specific details will not be important. We will simply assume that we can make the

integration over the point where this field interacts with the higher spin fields. The effect

of such an overall factor can be absorbed in the coupling constant.

The next step in our construction is to introduce the higher spin fields hb1...bJ that will

mediate the interaction terms between the external fields of the scattering process. These
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fields are dual to the spin J twist two operators made of the gluon field that are in the

leading Regge trajectory. There are also other twist two operators made out of the quark

bilinear. However, as we shall see, the corresponding Regge trajectories are subleading

with respect to the first pomeron trajectories here considered. Noting that the higher spin

field is in the closed string sector, and that the external fields are in the open sector, we

shall consider the minimal coupling

κJ

∫
d5X
√
−g e−Φ

(
Fb1aDb2 . . . DbJ−1

F abJ
)
hb1...bJ , (3.14)

for the gauge field Aa and

κ̄J

∫
d5X
√
−g e−Φ (ΥDb1 . . . DbJΥ) hb1...bJ , (3.15)

for the scalar field Υ. The higher spin field hb1...bJ is totally symmetric, traceless and

satisfies the transversality condition ∇b1hb1...bJ = 0. The latter fact implies we do not need

to worry in which external fields the derivatives in (3.14) and (3.15) act. However, there

can be other couplings to the derivatives of the dilaton field and also to the curvature

tensor. Here we consider only this leading term in a strong coupling expansion (that is,

the first term in the derivative expansion of the effective action). Below we simply assume

that the higher spin field has a propagator, without specifying its form. In the next section

we focus on the dynamics of this field in detail.

In the Regge limit, the amplitude describing the spin J exchange between the incoming

gauge field A
(1)
a ∼ eik1·x and scalar field Υ(2) ∼ eik2·x can be written as

AJ (k1, k2, k3, k4) = (iκJ) (iκ̄J)

∫
d5X

∫
d5X̄

√
−g(z) e−Φ(z)

√
−g(z̄) e−Φ(z̄) (3.16)

×
(
F− a

(1)(X)∂J−2
− F a−

(3)(X)
)

Π−···−,+···+(X, X̄)
(

Υ(2)(X̄)∂̄J+Υ(4)(X̄)
)
.

The fields A
(3)
a ∼ eik3·x and Υ(4) ∼ eik4·x represent the outgoing gauge and scalar fields.

The tensor Πa1...aJ ,b1...bJ (X, X̄) represents the propagator of the spin J field. After some

algebra the amplitude takes the form

AJ (k1, k2, k3, k4) = iV

(
4

s

)
κJ κ̄J

2J

∫
dz

∫
dz̄
√
g3(z)e−Φ(z)

√
g3(z̄)e−Φ(z̄) (3.17)

× F− a (k1, z)F a− (k3, z) Υ (k2, z̄) Υ (k4, z̄) [S(z, z̄)]J
[
eA(z)eA(z̄)GJ(z, z̄, t)

]
,

where V = (2π)4δ4(
∑
ki) and g3(z) is the determinant of the 3-d transverse metric given

by ds2
3 = e2A(z)

[
dz2 + dx2

⊥
]
. This is the metric on the transverse space of the dual

scattering process. The local energy squared for the dual scattering process is given by

S(z, z̄) = s e−A(z)e−A(z̄). The functionGJ(z, z̄, t) =
∫
d2l⊥e

−iq⊥·l⊥GJ(z, z̄, l⊥) is the Fourier

transform of the integrated propagator for a field of even spin J ,

GJ(z, z̄, l⊥) = i 2J
[
eA(z)eA(z̄)

]1−J
∫
dw+dw−

2
Π+···+,−···−(w+, w−, `⊥, z, z̄) , (3.18)
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and the light-cone coordinates w± are defined by the relation x − x̄ = (w+, w−, l⊥) with

l⊥ = x⊥ − x̄⊥. For the case of forward Compton scattering we have that k1 = −k3 = q,

k2 = −k4 = P and t = 0. Summing over the contribution of the fields with spin J =

2, 4, . . . , and using the result in (3.12), we obtain the amplitude

AFC(q, P ) = iV
(
4Q2

) ∫
dz

∫
dz̄ P24

(
P 2, z′

)
(3.19)

×
[
s

2Q2
ξ2
T (q)P13

(1)
(
Q2, z

)
+

2

s

(
ξT (q) · P

)2
P13

(2)
(
Q2, z

)]
χ(s, t = 0, z, z′) ,

where we have defined

P13
(1)
(
Q2, z

)
=
√
g3(z) e−Φ(z)e−2A(z)f2 ,

P13
(2)
(
Q2, z

)
=
√
g3(z) e−Φ(z)e−2A(z)

[
f2 +

1

Q2
(∂zf) 2

]
, (3.20)

P24

(
P 2, z̄

)
=
√
g3(z̄) e−Φ(z̄) Υ2

(
P 2, z̄

)
,

and χ(s, t, z, z̄) is the eikonal phase defined by

χ(s, t, z, z̄) = −
( π

4s

)∫ d J

2πi

[S(z, z̄)]J + [−S(z, z̄)]J

sin(πJ)

κJ κ̄J
2J

eA(z)+A(z̄)GJ(z, z̄, t) . (3.21)

In (3.21) we used a Sommerfeld-Watson transform to convert the sum in J = 2, 4, . . . into

an integral in the complex J-plane. Comparing the expressions (3.3) and (3.19) for the

forward Compton amplitude, and using (3.5), we extract the DIS structure functions for

holographic QCD:

2xF1

(
x,Q2

)
= 2π

(
4Q2

)∫
dz

∫
dz̄ P13

(1)
(
Q2, z

)
P24

(
P 2, z̄

)
Im
[
χ(s, t = 0, z, z̄)

]
,

F2

(
x,Q2

)
= 2π

(
4Q2

)∫
dz

∫
dz̄ P13

(2)
(
Q2, z

)
P24

(
P 2, z̄

)
Im
[
χ(s, t = 0, z, z̄)

]
. (3.22)

3.3 Regge poles

In the next section we will describe the dynamics of a higher spin field ha1...aJ . In particular,

we shall see how the propagator GJ(z, z′, t) admits a spectral representation associated

to a Schrödinger problem that describes massive spin J glueballs. Assuming that such

Schrödinger potential admits an infinite set of bound states for fixed J , we will show that

GJ(z, z̄, t) = eB(z)+B(z̄)
∑
n

ψn(J, z)ψ∗n(J, z̄)

tn(J)− t
. (3.23)

The function B(z) depends on the particular holographic QCD model and will be ob-

tained below for backgrounds of the form (3.8). The eigenfunctions and eigenvalues of the

Schrödinger equation are ψn(J, z) and tn(J), respectively. Plugging this result in (3.21)

and deforming the contour integral, so that we pick up the contribution from the Regge
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poles jn(t), we find that2

χ(s, t, z, z̄) = −
( π

4s

)
eA(z)+A(z̄)+B(z)+B(z̄) (3.24)

×
∑
n

κjn(t)κ̄jn(t)

2jn(t)

[
cot
(π

2
jn(t)

)
+ i
]

[S(z, z̄)]jn(t)j′n(t)ψn
(
jn(t), z

)
ψ∗n
(
jn(t), z̄

)
.

In DIS this result implies that the structure functions F1

(
x,Q2

)
and F2

(
x,Q2

)
take the

Regge form

2xF1

(
x,Q2

)
=
∑
n

gn x
1−jn(0)Q2jn(0)P̄13

(1,n)
(
Q2
)
,

F2

(
x,Q2

)
=
∑
n

gn x
1−jn(0)Q2jn(0)P̄13

(2,n)
(
Q2
)
, (3.25)

where we have defined the functions

P̄13
(i,n)

(
Q2
)

=

∫
dz P13

(i)
(
Q2, z

)
e(1−jn(0))A(z)eB(z)ψn

(
jn(0), z

)
, (i = 1, 2) , (3.26)

and the couplings

gn = −2π2κjn(0)κ̄jn(0)

2jn(0)
j′n(0)

∫
dz P24

(
P 2, z

)
e(1−jn(0))A(z)eB(z)ψ∗n

(
jn(0), z

)
. (3.27)

Notice that in (3.25) we have already used the relation s = Q2/x, valid in the Regge limit

of DIS. The couplings gn include our ignorance of the hadron dual wave function, which

appears in the integrand of (3.27), as well as the local couplings in the dual picture between

the external fields and the spin J field. The formula (3.25) has the expected form (2.5)

advocated by Donnachie and Landshoff.

4 Pomeron in holographic QCD

In the large s scattering regime the lowest twist two operators dominate in the OPE of the

currents appearing in the computation of the hadronic tensor. Therefore we consider here

the interchange of the gluonic OJ twist 2 operators of the form

OJ ∼ tr
[
Fβα1Dα2 . . . DαJ−1F

β
αJ

]
, (4.1)

where D is the QCD covariant derivative. In the singlet sector there are also twist 2 quark

operators of the form ψ̄γα1Dα2 · · ·DαJψ, but these are subleading because the correspond-

ing Regge trajectory has lower intercept. From a string theory perspective the equations

of motion for the higher spin fields dual to OJ should come by requiring their correspon-

dent vertex operator to have conformal weights (1, 1) in the background dual to the QCD

vacuum. We shall follow an effective field theory approach, proposing a general form of

the equation in a strong coupling expansion, and then use the experimental data to fix the

unknown coefficients. The proposed equation will obey two basic requirements, namely to

2This procedure is standard in Regge Theory (see e.g. [1]).
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be compatible with the graviton’s equation for the case J = 2 and to reduce to the well

known case in the conformal limit (pure AdS space with constant dilaton).

Let us consider first the conformal case (A(z) = log(L/z) and constant dilaton). In

AdS space the spin J field obeys the equation(
∇2 −M2

)
ha1···aJ = 0 , (LM)2 = ∆(∆− 4)− J , (4.2)

where L is the AdS length scale and ∆ is the dimension of OJ . Note that this field is sym-

metric, traceless (hbba3···aJ = 0) and transverse (∇bhba2···aJ = 0). This equation is invariant

under the gauge transformation δha1...aJ = ∇a1Λa2...aJ with ∇2Λa2...aJ = 0, but we will

modify this in such a way that this gauge symmetry will be broken, as expected for a dual of

a QFT with no infinite set of conserved currents. This is trivially achieved by changing the

value of M in (4.2) away from the unitarity bound ∆ = J+2. The transversality condition

allows us to consider as independent components only the components hα1...αJ , along the

boundary direction. These can be further decomposed into irreducible representations of

the Lorentz group SO(1, 3), so that the traceless and divergenceless sector hTTα1...αJ
decouple

from the rest and describe the OJ in the dual theory. Finally note that we can analyse the

asymptotic form of the spin J equation of motion (4.2) near the boundary, with the result

hα1...αJ ∼ z
4−∆−JJ + . . .+ z∆−J〈OJ〉+ . . . (4.3)

where J denotes the source for OJ . Since under the rescaling z → λz the AdS field hα1...αJ

has dimension J , we conclude that the operator OJ and its source have, respectively, di-

mension ∆ and 4 − ∆, as expected. In the case that concerns us, since QCD is nearly

conformal in the UV, we can do a similar analysis near the boundary.

Next let us consider the case J = 2, where we have some control. This is the case of

the energy-momentum tensor dual to the graviton. To describe the TT metric fluctuations

we need to assume what is the dynamics of this field. The simplest option is to consider

an action for the metric and dilaton field of the form

S = M3N2
c

∫
d5X
√
−g e−2Φ

[
R+ 4 (∂Φ)2 + V (Φ)

]
, (4.4)

where we work in the string frame. The field Φ is the dilaton without the zero mode,

that is absorbed in the gravitational coupling. This class of theories can be used to study

four dimensional theories where conformal symmetry is broken in the IR. To make use of

the AdS/CFT dictionary one usually impose AdS asymptotics for A(z), which leads to

a constraint on the UV form of the potential V (Φ). This is a good approximation for

large-Nc QCD because it is nearly conformal in the UV.3 The way conformal symmetry is

broken in the IR is determined by the potential V (Φ). As shown in [44], the confinement

criteria and the spectrum of glueballs with spin J = 0, 2 constrain strongly the form of the

potential V (Φ) in the IR.

3Due to asymptotic freedom conformal symmetry is actually broken mildly in the UV by QCD logarith-

mic corrections.
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Figure 5. Expected form of the ∆ = ∆(J) curve (in blue). Free theory is the oblique dashed line.

At infinite coupling the curve degenerates to the graviton horizontal line (in brown). Resuming

perturbation theory one obtains, away of the spectral region, the BFKL curve (in red).

For the gravitational theory with action (4.4), the TT metric fluctuations around a

background of the form (3.8) are given by(
∇2 − 2e−2A(z)Φ̇∇z + 2Ȧ2e−2A(z)

)
hTTαβ = 0 . (4.5)

The term with the dilaton arises because we work in the string frame; the other term comes

from the coupling of metric fluctuations to the background Riemann tensor Racbdh
cd, with

Rαµβν = Ȧ2e2A (ηανηµβ − ηαβηµν) and Rαzβz = −Äe2Aηαβ . In the case of pure AdS

space (4.5) simplifies to (
∇2 −M2

)
hTTαβ = 0 , (4.6)

with (LM)2 = −2, as expected for the AdS graviton. We shall assume that our equation

reduces to the simple form (4.5) in the case J = 2. Of course there could be higher order

curvature corrections to this equation. Also, in the QCD vacuum there are scalar operators

with a non-zero vev that do not break Lorentz simmetry. The corresponding dual fields will

be non-zero and may couple to the metric, just like the above curvature and dilaton terms.

Our goal is to write a two derivative equation for the spin J fields using effective field

theory arguments in an expansion in the derivatives of the background fields. For this it

is important to look first at the dimension of the operator OJ , which can be written as

∆ = 2+J+γJ , where γJ is the anomalous dimension. In free theory the operator has critical

dimension ∆ = 2 + J . Knowledge of the curve ∆ = ∆(J) is important when summing

over spin J exchanges, since this sum is done by analytic continuation in the J-plane, and

then by considering the region of real J < 2. Figure 5 summarizes a few important facts

about the curve ∆ = ∆(J). Let us define the variable ν by ∆ = 2 + iν, and consider the

inverse function J = J(ν). The figure shows the perturbative BFKL result for J(ν), which

is an even function of ν and has poles at iν = 1. This curve is obtained by resuming log x

terms in leading order perturbation theory. Beyond perturbation theory, the curve must

pass through the energy-momentum tensor protected point at J = 2 and ∆ = 4. We shall
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use a quadratic approximation to this curve that passes through this protected point,

J(ν) ≈ J0 −Dν2 = 2 +D∆(∆− 4) , 4D = 2− J0 . (4.7)

The use of a quadratic form for the function J(ν) is known as the diffusion limit and it

is used both in BFKL physics and in dual models that consider the AdS graviton Regge

trajectory (see for instance [38]).

Let us now construct the proposal for the symmetric, traceless and transverse spin J

field ha1...aJ in the dilaton-gravity theory (4.4). After decomposing this field in SO(1, 3)

irreps, the TT part hTTα1···αJ decouples from the other components and describes the prop-

agating degrees of freedom. The proposed equation has the form(
∇2 − 2 e−2AΦ̇∇z −

∆(∆− 4)

L2
+ JȦ2e−2A+ (4.8)

+ (J − 2)e−2A
(
a Φ̈ + b

(
Ä− Ȧ2

)
+ c Φ̇2

))
hTTα1...αJ

= 0 ,

where a, b and c are constants. Several comments are in order: (i) For J = 2 this equation

reduce sto the graviton equation (4.5); (ii) In the AdS case all terms in the second line

vanish and the equation reduces to (4.2) for the TT components; (iii) The second term

comes from the tree level coupling of a closed string, as appropriate for the graviton Regge

trajectory in a large N approximation; (iv) This action contains all possible terms of

dimension inverse squared length compatible with constraints (i) and (ii) above. Notice

that the term Φ̇Ȧ is absent because it reduces to other two derivative terms of A and Φ by

the equations of motion. Also, note that the terms with two z derivatives are accompanied

by a metric factor gzz = e−2A from covariance of the 5-d theory. The exception is the first

term, which itself includes the 5-d metric ∇2 = gab∇a∇b, and the third that is a mass term

related to the dimension of the dual operator, which requires a length scale L.

It is important to realize that (4.8) is not supposed to work for any J . Instead, we

are building the analytic continuation of such an equation, which we want to use around

J = 2. We expect this to be the case for large coupling, which is the case for the dense

gluon medium observed in the low x regime. In practice, we will look at the first pomeron

poles that appear between 0.6 . J . 1.5 (for t = 0, as required in the computation of

the total cross section). This justifies why we left the coefficients a, b, c in the second line

of (4.8) constant and consider only the first term in the J expansion around 2.

Finally let us consider the third term in (4.8). This mass term is determined by the

analytic continuation of the dimension of the exchanged operators ∆ = ∆(J). We will

write the following formula

∆(∆− 4)

L2
=

2

l2s
(J − 2)

(
1 +

d√
λ

)
+

1

λ4/3
(J2 − 4) , (4.9)

where λ = eΦ is the ’t Hooft coupling, d is a constant and ls is a length scale set by the

QCD string, which will be one of our phenomenological parameters. The first term follows

directly from the diffusion limit (4.7), relating the scales L and ls via D. The diffusion
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limit is a strong coupling expansion, so it is natural that the dimension of the operators

gets corrected in an expansion in 1/
√
λ. This is the reason for adding the second term

in (4.9), following exactly what happens in N = 4 SYM [54, 55]. This term can be added

to correct the IR physics, but it is still subleading in the UV, when compared with the last

term. The effect of this correction is to make the scale ls dependent of the energy scale,

while keeping the general shape of curve ∆ = ∆(J) in figure 5. The last term in (4.9) was

added simply to reproduce the correct free theory result that is necessary to be obeyed near

the boundary in the UV. More concretely, in order to obtain a scaling of the form (4.3),

with the free dimension ∆ = J + 2, we need this last term. This follows by considering

the asymptotic value of the background fields and then analysing our spin J equation near

the boundary to obtain hTT+···+ ∼ z2. This behaviour is important since it implies Bjorken

scaling at the UV. We can regard (4.9) as an interpolating function between the IR and UV

that matches the expected form of the dimension of the spin J operator in both regions.

This is the same type of approach followed in phenomenological holographic QCD models.

To sum up, we shall consider the effective Reggeon equation (4.8), with (4.9), to

describe the exchange of all the spin J fields in the graviton Regge trajectory. This equation

contains 5 parameters that will be fixed by the data, namely the constants a, b, c, d and ls.

We finish the analysis of the spin J equation with a remark. In the same lines of [56]

we can try to write a quadratic effective action for the spin J symmetric, traceless and

transverse field, such that its SO(1, 3) irrep TT part obeys the proposed free equation.

Such an action would have the form

I =
1

2

∫
d5X
√
−g e−2Φ

[
∇bha1...aJ∇

bha1...aJ −M2(z)ha1...aJh
a1...aJ + . . .

]
, (4.10)

where the dots represent terms quadratic in ha1...aJ that are higher in the derivatives of

either ha1...aJ or the background fields. Since in the QCD vacuum only scalars under the

SO(1, 3) irrep decomposition are allowed to adquire a vev, the mass term in (4.10) includes

all such possibilities. We are also treating the dilaton field in a special way, by allowing

a very specific coupling in the overall action. In particular, other scalar fields could also

have a non-trivial coupling to the kinetic term.4 It is simple to see that our proposal (4.8),

with (4.9), corresponds to setting

M2(z) = −J e−2AȦ2 +m2(z) , (4.11)

with

m2(z) = (J − 2)

[
2

l2s

(
1 +

d√
λ

)
+
J + 2

λ4/3
+ e−2A

(
a Φ̈ + b

(
Ä− Ȧ2

)
+ c Φ̇2

)]
. (4.12)

4.1 Effective Schrödinger problem

The amplitude (3.16) computes the leading term of the Witten diagram describing the

exchange of the spin J field in the Regge limit, whose propagator obeys the equation

(DΠ)a1···aJ ,b1···bJ (X,X ′) = ie2Φga1(b1 · · · g|aJ | bJ )δ5(X,X ′)− traces , (4.13)

4Since we write a 5-d action, one could also have fields with a vev proportional to the 5-d metric ηab.

An example is the background Riemann tensor that can couple to the spin J field (for instance, the metric

fluctuations do). However, for traceless fields only mass terms of the type written in (4.10) will survive.
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for some second order differential operator D whose action on the TT part of the spin

J field is defined by (4.8). For Regge kinematics, however, we are only interested in the

component Π+···+,−···− of the propagator, in the limit where the exchanged momentum has

q+ = O(1/
√
s) ∼ 0, as can be seen from the kinematics of the external photons (3.6). Thus,

we can take ∂+h
TT
+···+ = 0, which implies that the + · · ·+ component of (4.8) decouples from

the other components, taking the following form5{[
∂z + 2Ȧ− 2Φ̇

] [
∂z − Ȧ

]
+∇2

⊥ −m2(z)e2A
}
e(1−J)AhTT+···+ = 0 . (4.14)

This equation can be re-casted as a 1-d quantum mechanics problem, that is, setting

hTT+···+ = eiq·xe(J−1)AeB(z)ψ(z) , (4.15)

with q+ = 0, and choosing B(z) = Φ− A/2 to cancel the term linear in the derivative ∂z,

equation (4.14) takes the Schrödinger form[
∂2
z + t− V (z)

]
ψ(z) = 0 , (4.16)

where t = −q2
⊥ and the potential V is given by

V (z) =
3

2

(
Ä− 2

3
Φ̈

)
+

9

4

(
Ȧ− 2

3
Φ̇

)2

+m2(z)e2A . (4.17)

The energy spectrum for each integer J quantises t = tn(J), therefore yielding the glueball

masses (although we only expect the proposed equation to be a good approximation for

analytically continued values of J around J = 2, and certainly not in the asymptotic

regime of large J). As expected, for J = 2 this potential reduces to the one obtained from

linearized Einstein equations, since m2(z) = 0 for J = 2.

Finally we can consider the integrated propagator GJ(z, z′, l⊥) defined in (3.18). This

is the scalar propagator obtained from integrating the component Π+···+,−···− of the full

propagator along the light-rays. From the differential equation (4.14) if follows that[
∆3 − e−2A(z)

(
2Φ̇∂z + 2Ȧ2 + Ä− 2ȦΦ̇

)
−m2(z)

]
GJ(z, z′, l⊥) = −e2Φδ3(x, x′) , (4.18)

where here x = (z, x⊥) and x̄ = (z̄, x̄⊥) are points in the scattering transverse space with

metric ds2
3 = e2A(z)

[
dz2 + dx2

⊥
]
, and ∆3 is the corresponding Laplacian. It is now clear

that writing

GJ(z, z̄, t) = eB(z)ψ(z) , (4.19)

the homogeneous solution to (4.18) is exactly given by the Schrödinger problem of (4.16).

Moreover, using the spectral representation
∑

n ψn(z)ψ∗n(z̄) = δ(z − z̄), we conclude that

GJ(z, z̄, t) = eB(z)+B(z̄)
∑
n

ψn(z)ψ∗n(z̄)

tn(J)− t
. (4.20)

This result was used in subsection 3.3 to derive the contribution of Regge poles to the DIS

structure functions. Notice that both the eigenvalues tn and the functions ψn depend on

J .
5For example, the bulk Laplacian projected in the boundary indices gives ∇2hα1...αJ =(

eJA(z)∇2
0e
−JA(z) − JA′ (z)2 e−2A(z)

)
hα1...αJ +O(1/

√
s), where ∇2

0 is the bulk scalar Laplacian.
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5 Fit of DIS data in IHQCD

In this section we will test the previous phenomenological model for DIS against the com-

bined H1-ZEUS data points for x < 0.01 from [3], as shown in figure 1. We will look for the

optimal values of the free parameters in the structure function F2(x,Q2) given in (3.25).

This function depends on the couplings gn to each Reggeon, given by (3.27), and on the

parameters ls, a, b, c and d in (4.12) that characterize the analytic continuation of the

graviton Regge trajectory. At the end of the day we will fix the shape of the first glueball

Regge trajectories, which then can be compared with the known higher spin glueball data

obtained from lattice computations. Not only we are able to fit DIS data, we shall see that

our results are also compatible with the most recent results we have found so far for the

higher spin glueball spectrum [46, 47]. This is expected, since the spectral and scattering

data ought to be connected consistently.

Although we kept in the previous sections our discussion of pomeron physics general,

we need to use a specific holographic QCD model to test our ideas. As in our previous

work [48], we shall consider the Improved Holographic QCD (IHQCD) model proposed

in [44]. The QCD vacuum is described by a dilaton gravity theory with an action of the

form (4.4). The potential V (Φ) is then judicially chosen such that the theory reproduces

the QCD beta function in the UV and confines in the IR. In our fit we will consider data

points with Q2 as large as 400 MeV. For this reason we need to start close to the AdS

boundary at zmin ≡ e−A0 = 0.0067 with λ0 = 0.0337462. These initial values of A(z)

and λ(z) are consistent with the choice of ΛQCD = 0.292GeV which gives the value of the

lowest mass of the spin 2 glueball proposed originally in [44]. For the maximum value of

the holographic variable we chose zmax = 6. Eventually we have changed zmax to a bigger

value, the results showing no sensitivity.6

Next we need to compute the non-normalizable modes associated to the current opera-

tor sourced by the off-shell photon, as explained in section 3.2 (equations (3.10) and (3.11)).

This is done by solving the equation for the U(1) gauge field in the bulk for each of

the Q2 available in the data. The dependence of the structure function F2(x,Q2) on

the external probe arises from the shape of the function P13
(2)
(
Q2, z

)
defined in (3.20),

since this function is then integrated along z in (3.26). In figure 6 we plot the function

P13
(2)
(
Q2, z

)
Q2e−2A for several values of Q2.

At this point we can confirm that the approximation of the external photon wave

functions to the integral (3.26) by a Dirac delta function, as assumed in section 2, only

works for large values of Q2. Writing the integrand in (3.26) as P13
(2)
(
Q2, z

)
Q2e−2A ×

function(z), it is simple to see that the first function behaves as a delta function for large

Q, while the function(z) is smooth enough such that the integral gets no contribution

from the boundary at z = 0. This is the reason why we kept our discussion of section 2

at a more qualitative level, since in the reconstruction of the wave functions in figure 4

we did the replacement z ∼ 1/Q. Clearly such replacement is a gross approximation for

6For the interested reader we have release our spectral code under a MIT License, which you can find

at github https://github.com/rcarcasses/schrodinger.
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Figure 6. The function previously approximated to a delta function in section 2. The quality of

the approximation clearly decreases as Q2 become smaller.

many of the values of Q we are considering.7 An honest computation would involve solving

numerically an integral equation for the ψ0,1 given the experimental f0,1(Q), with a kernel

of the form shown in figure 6. Nevertheless we would expect that this correction will not

introduce any new extreme point for the wavefunction but to deform it in a non trivial way

in the region where the delta function approximation is bad, giving still the right number

of nodes for each ψ, which is really the point we wanted to emphasize in section 2.

Let us remark that, in contrast with the external off-shell photon with varying vir-

tuality Q2, the target proton wave function does not require a detailed description of the

holographic dual Υ(P 2, z). The dependence on that normalizable mode was carried by

P24(P 2, z) and absorbed in the coupling constants gn, as shown in (3.27).

Following our program we define an error function depending of the phenomenological

parameters αi. This defines a optimization problem where we wish to find the values of αi
that minimize the quantity

χ2 ≡
N∑
k=1

(
F2(Q2

k, xk;αi)− F
exp
2 (Q2

k, xk)

σk

)2

, (5.1)

which is just a weighted least square fit where the weight is the inverse of the error in

the measurement, such that quantities with bigger error affect less the result. A widely

accepted criteria for the quality of a fit is that the quantity χ2
d.o.f. ≡ χ2/(N −Npar), where

Npar is the number of parameters to be fitted, is closer to one.

7In fact it is puzzling how such approximation, which leads to a closed formula for F2 using a hard wall

model [37], works very well with results comparable to those presented in this paper.
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Figure 7. Plot of the experimental F2 data versus the prediction of our model. We cover a very

large kinematical window with x < 0.01 and 0.1 < Q2 < 400 in GeV2, in a total of 249 points. The

χ2
d.o.f. of this fit is 1.7.

5.1 The fit

We proceed to find the optimal values for the phenomenological parameters. As explained

in the introduction and shown in figure 1 we consider data points with x < 0.01 to be in the

limit of Regge kinematics. Let us remind ourselves that in our derivation we have dropped

terms of order 1/s. Such terms are sub-leading with respect to the first trajectories as long

as their intercept does not differ from the leading one at most by unit. This validates our

choice of retaining the first daughter trajectories.

We have found that with only two trajectories it is possible to provide a good fit

for the DIS data, but unfortunately the second intercept does not correspond to the soft

pomeron. As explained before, it is desirable that the second intercept matches that of

the soft pomeron given the experimental evidence from total cross sections of soft probes.

We have also found that fixing the intercept of the second trajectory to 1.08 ∼ 1.09, and

performing the fit with only two Pomerons, does not provide a good fit.

Thus the most reasonable thing to do is to fix the soft pomeron intercept and include

a third or a fourth trajectory in our fit, similar to [5], but in our case these trajectories are
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Pomeron equation coefficients coupling Intercept

a = −4.35 g0 = 0.175 j0 = 1.17

b = 1.41 g1 = 0.121 j1 = 1.09

c = 0.626 g2 = 0.297 j2 = 0.969

d = −0.117 g3 = −1.63 j3 = 0.900

ls = 0.153 — —

Table 1. The nine parameters for our best fit. As an output we also show the intercept of the first

four pomeron trajectories (in fact we forced the second trajectory to have the soft pomeron value,

so only the other values are a prediction of the model).

associated to glueballs instead of mesons. The reason we stopped at the fourth trajectory

is that it is enough to obtain a good quality fit. We found that these trajectories still have

an intercept above the mesons one, i.e. jn > 0.55, so they are important and should be

taken into account.8 Figure 7 shows our best fit from which we obtained χ2
d.o.f. = 1.7. The

corresponding parameters are listed in the table 1 and more details can be found in the

appendix B.

In figure 8 we show, for each pomeron, the wave function and corresponding potential

in the associated Schrödinger problem. As anticipated the wavefunctions resemble those

of section 2 with some sort of deformation, specially for large z, due to the use of the

right functions for the external off-shell photon. Recall that, as we vary the spin J in the

Reggeon equation (4.16), the intercept of the n-th trajectory is given by the value of J

for which the energy of the n-th excited state crosses zero. Thus the wave function shown

in each figure is the zero energy state for the potential shown in the same figure. We see

that as J decreases the potential spreads to the IR region. This fact is at the heart of the

decrease of the effective intercept with a decreasing virtuality Q2 shown in figure 2 in the

introduction. In other words, as the process becomes more localized in the IR the wave

function of the hard-pomeron is very suppressed, leading to more important contributions

from the other daughter trajectories. The potential also shows a very sharp minimum near

the UV, that localizes the hard pomeron wave function near the boundary. However, we do

not fully understand the two minima behaviour exhibited by the potential. For instance,

it could be that this is just an artifact of the specific interpolation between the IR and UV

physics in the holographic QCD background considered here. Nevertheless, we believe the

most important fact here is that the wave functions are smooth and are more spread across

the IR in the case of the daughter trajectories.

5.2 Regge trajectories

The power of Regge theory relies on the fact that spectrum and scattering physics are

related in a very natural way. In the conventional approach one organizes the spectrum in

Regge trajectories J = j(M2), for integer J . Then one considers processes where particles

8This is subtle: if the meson trajectories bend in the same way as the glueball ones then their intercepts

will raise. We plan to analyse mesons’ contribution in a future work.
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Figure 8. Wavefunctions and corresponding potential for optimal phenomenological values for the

hard and soft pomerons, and also for the other daughter trajectories considered in the fit. The

normalized wavefunctions have been scaled by 5 in this figure.

in a given trajectory jn(t) are exchanged. Regge theory predicts that the contribution

of the trajectory jn(t) to the cross section behaves as sjn(t), where the function jn(t) is

analytically continued to negative t.

Here we are following a similar strategy. First we construct a phenomenological model

and then fix the unknown coefficients by confronting the model to scattering data. In fact,

since we consider a total cross section for an inelastic process, the scattering data we used is

directly related to the value of each Regge trajectory at t = 0. We can then look how each

Regge trajectory behaves for positive and negative t. The plot of the first four pomeron

Regge trajectories considered in this work was presented in figure 3 in the introduction. It

is rewarding to see that the first two trajectories, that is the hard and soft pomeron, pass

reasonably well through the known lattice QCD data for the masses of the higher spin glue-

balls. One should keep in mind, though, that we are using a phenomenological holographic

QCD model, and also that this lattice data refers to pure glue with SU(3) gauge group.
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An interesting feature of our leading Regge trajectories is that they coincide in shape

with what was recently proposed to be the universal behaviour for weakly coupled theories

with massive higher spin fields [57], where the authors argue that j(t) ∼ t + . . . for large

positive t and that j(t) = const for large negative t. Another interesting fact of figure 3 is

that the trajectories are very close to each other in the scattering region of t¡0. We comment

on possible implications to elastic differential cross sections of soft probes in the conclusions.

6 Conclusions

In this paper we have shown how holographic QCD can be effectively used to address an

essentially non-perturbative problem in QCD, that of the pomeron Regge trajectories. The

construction is general, but to test it against experimental data we have considered the

Improved Holographic QCD background proposed in [43–45]. More specifically we have

been able to explain satisfactory DIS data in the x < 0.01 region, covering a large region

for the photon virtuality Q2. Moreover, the same Regge trajectories that describe DIS

data are compatible with the lattice data for the higher spin glueball spectrum.

There is a natural parameter one could have chosen to tune, which is ΛQCD. In IHQCD

this is equivalent to choose some A0 and λ0 at a given value of z = z0. This parameter was

left fixed to the same value the authors of [43, 44] suggest, since in the original papers it

was fixed such that the mass of the scalar glueball coincides with that of lattice QCD. In

our case changing it would lead simply to a rescaling of all dimensionful quantities in the

model, like for instance the unknown coefficients we were fitting, and it has the effect of

shrinking/expanding the t axis of figure 3. Since we are also confronting our model with

spectral data, we decided not to change that number. At most we could match exactly the

mass of the lightest spin two glueball, but our hard pomeron trajectory already passes very

close to that point as can be see from figure 3, so we decided not to use such extra freedom.

Our works points towards the solution of a long standing problem in QCD, namely the

nature of the hard and soft pomeron. In our framework both arise as distinct Regge tra-

jectories made of glueballs. In the dual picture they originate from the graviton trajectory,

which degenerates in many trajectories once it is quantized in the asymptotically AdS space

(which can be thought as a gravitational box). The way these trajectories appear in DIS

data, by means of a wave function of a Schrödinger problem, clearly calls for a reconstruc-

tion of the holographic dual of QCD. Somehow this is what we have done for the graviton

Regge trajectory associated with higher spin glueballs. We considered a holographic QCD

model that describes the QCD vacuum, and then used effective field theory arguments to re-

construct the analytic continuation of the spin J equation of motion that best fits the data.

An important point that pops up from the analysis of figure 3 is that eventually meson

trajectories will also contribute to the scattering (either in DIS, as we vary the virtuality

Q2, or in differential cross sections for elastic processes, as we vary t). This was well noticed

in the work of Donnachie and Landshoff and we expect that including the dynamics of the

higher spin fields dual to the mesons might improve the quality of our fit.

Requiring several trajectories to explain the DIS data is also compatible with the pic-

ture of having a branch cut structure in the J-plane that turns into a set of poles due to
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the breaking of conformal invariance. In fact, DIS data was also successfully reproduced

using a hardwall model with a conformal pomeron [37]. Moreover, the perturbative ap-

proach that uses the BFKL pomeron also breaks conformal invariance and then considers

several daughter trajectories [12]. However, in that case one needs to consider a very large

number of trajectories, leading to a very large number of free parameters in the model. We

believe holographic QCD is better suited to address pomeron physics, because the whole

construction is better suited to study strongly coupled phenomena.

An interesting direction to pursue is to attempt to explain elastic differential cross-

sections of soft probes, which are determined by the Regge trajectories in the small negative

t region. We expect that the leading trajectory will be suppressed, because the hard-

pomeron wave function is more localized around the UV region. However, as we move

in t the trajectories are very close to each other which brings the possibility of observing

interference between them. For instance, for pp scattering there is a dip observed around

t ∼ −1GeV2. Current approaches which have attempted to explain this data using linear

trajectories suggest that terms beyond single Reggeon exchange are needed, such as eikonal

or triple gluon exchange inspired terms, to perform a good fit, like for example in [7]. We

believe that since our trajectories are non-linear and slightly fluctuating in that kinematical

region, they could also lead to an explanation of those interesting features without further

considerations.
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A U(1) field in holographic QCD

As explained in subsection 3.2, the five dimensional gauge field dual to a U(1) current is

described by the action (3.9). The corresponding field equations are

∂b

[√
−g e−ΦF ba

]
= 0 . (A.1)

It is convenient to split these equations in (z, xµ) components:

�Az − ∂z(∂µ̂Aµ̂) = 0 , (A.2)

eΦ−A∂z

[
eA−Φ∂zA

µ̂
]

+�Aµ̂ − ∂µ̂
[
eΦ−A∂z(e

A−ΦAz) + ∂ν̂A
ν̂
]

= 0 ,

where µ̂ is raised with ηµν and � = ηµν∂µ∂ν .
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Figure 9. Evolution of best fit parameters with the number of interpolation points N .

Decomposing the gauge field Aµ̂ into its divergenceless and divergenceful parts, i.e.

Aµ̂ = Aµ̂⊥ + ∂µ̂φ , (∂µ̂A
µ̂
⊥ = 0) , (A.3)

the field equations (A.2) reduce to

eΦ−A∂z

[
eA−Φ∂zA

µ̂
⊥

]
+�Aµ̂⊥ = 0 ,

Az = ∂zφ . (A.4)

Now consider the Lorentz-like gauge

eΦ−A∂z(e
A−ΦAz) + ∂ν̂A

ν̂ = 0 . (A.5)

Under that gauge φ satisfies same equation as Aµ̂⊥. For a plane-wave ansatz we get

Aµ(x, z) = ξµ e
iq·xf

(
Q2, z

)
,

Az(x, z) = eiq·xg
(
Q2, z

)
, (A.6)
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where f and g satisfy the equations

eΦ−A∂z
(
eA−Φ∂zf

)
−Q2f = 0 ,

g = −iq · ξ
Q2

∂zf , (A.7)

and ξµ is the polarization, which can be decomposed as

ξµ = ξ⊥µ +
q · ξ
Q2

qµ . (A.8)

B Numeric convergence

For the specific model we consider in this paper, configurations for the potential with a

very large dip close to z = 0 appear for the 3rd and 4th trajectories, as can be seen in

figure 8, requiring a careful analysis of the precision of the computation. As commented in

the paper, we have used mainly a Chebyshev algorithm for solving the Schrödinger problem

in which functions in the interval [zmin, zmax] are discretized in N points. We have done

first our minimization procedure starting with N = 250, and then gradually increased it to

N = 400, 800 and 1000. At each one of these values of N , using as a starting point the best

values obtained from the previous N , we run our minimization routine always obtaining a

χ2 ∼ 1.7. In figure 9 it is shown the evolution of the best fit parameters with N , in the

paper we reported values for the N = 1000 case.
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holographic QCD, Phys. Rev. D 93 (2016) 035005 [arXiv:1508.00008] [INSPIRE].

[49] C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic scattering from gauge

string duality in the soft wall model, JHEP 03 (2008) 064 [arXiv:0711.0221] [INSPIRE].

[50] C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic scattering from gauge

string duality in D3-D7 brane model, JHEP 09 (2008) 114 [arXiv:0807.1917] [INSPIRE].

[51] C.A. Ballon Bayona, H. Boschi-Filho, N.R.F. Braga and M.A.C. Torres, Deep inelastic

scattering for vector mesons in holographic D4-D8 model, JHEP 10 (2010) 055

[arXiv:1007.2448] [INSPIRE].

[52] E. Koile, S. Macaluso and M. Schvellinger, Deep inelastic scattering structure functions of

holographic spin-1 hadrons with Nf ≥ 1, JHEP 01 (2014) 166 [arXiv:1311.2601] [INSPIRE].

[53] E. Koile, N. Kovensky and M. Schvellinger, Deep inelastic scattering cross sections from the

gauge/string duality, JHEP 12 (2015) 009 [arXiv:1507.07942] [INSPIRE].

[54] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[55] L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-Reggeon exchange,

arXiv:0710.5480 [INSPIRE].

[56] A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys.

Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

[57] S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from massive higher

spins: the asymptotic uniqueness of the Veneziano amplitude, arXiv:1607.04253 [INSPIRE].

– 31 –

https://arxiv.org/abs/hep-lat/0508002
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0508002
https://doi.org/10.1016/j.physletb.2004.11.036
https://arxiv.org/abs/hep-ph/0409183
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B605,344%22
https://doi.org/10.1103/PhysRevD.93.035005
https://arxiv.org/abs/1508.00008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00008
https://doi.org/10.1088/1126-6708/2008/03/064
https://arxiv.org/abs/0711.0221
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0221
https://doi.org/10.1088/1126-6708/2008/09/114
https://arxiv.org/abs/0807.1917
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.1917
https://doi.org/10.1007/JHEP10(2010)055
https://arxiv.org/abs/1007.2448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2448
https://doi.org/10.1007/JHEP01(2014)166
https://arxiv.org/abs/1311.2601
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2601
https://doi.org/10.1007/JHEP12(2015)009
https://arxiv.org/abs/1507.07942
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07942
https://doi.org/10.1007/JHEP12(2012)091
https://arxiv.org/abs/1209.4355
https://inspirehep.net/search?p=find+J+%22JHEP,1212,091%22
https://arxiv.org/abs/0710.5480
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.5480
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://arxiv.org/abs/hep-ph/0602229
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D74,015005%22
https://arxiv.org/abs/1607.04253
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.04253

	Introduction
	What is DIS data telling us about holographic QCD?
	Low x DIS in holographic QCD
	Kinematics
	Regge theory in holographic QCD
	Regge poles

	Pomeron in holographic QCD
	Effective Schroedinger problem

	Fit of DIS data in IHQCD
	The fit
	Regge trajectories

	Conclusions
	U(1) field in holographic QCD
	Numeric convergence

