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1 Introduction

In classical physics, black holes have a clear meaning as representing the inevitable endpoint

of the gravitational collapse of suitably dense configurations of matter. In the quantum

world, by contrast, the precise status of black hole solutions is a far more subtle question

that continues to provoke debate; see e.g. [2]. A basic question is whether standard black

hole geometries, realized in the quantum theory as coherent states of the gravitational

field, are in some sense close to the actual solutions resulting from the collapse of matter

in a particular microstate, or instead, do the actual solutions look dramatically different,

with the usual black hole only arising as an effective description after some sort of coarse

graining? Some version of the latter scenario seems nearly inescapable if one demands

that black hole evaporation be described by a unitary S-matrix governed by more-or-less

ordinary laws of physics (no macroscopic violations of locality, etc.) [3, 4].

The AdS/CFT correspondence offers a framework to address such questions without

resorting to ad hoc speculations. In this paper we consider observables that are under

good theoretical control, namely boundary correlation functions of low dimension operators

computed in the thermal ensemble. We pose the question: under what conditions are such

correlation functions, at sufficiently high temperature, accurately computed by Witten

diagrams in the standard black hole geometry?
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We work in the context of the AdS3/CFT2 correspondence, which provides several

technical advantages while retaining the essential physical elements present in higher di-

mensional examples. Our guiding philosophy is that we wish to deduce the emergence of

black hole physics while only making well-motivated assumptions about the CFT in the

low energy and low temperature regime. The key feature that allows us to proceed in this

manner is modular invariance of the CFT partition function and correlators. A number

of other works have used modular invariance to probe the AdS/CFT correspondence, for

example [5–13]. Our basic result can be stated as follows. Under some mild assumptions

corresponding to what one thinks of as a good holographic CFT at low energies, high tem-

perature correlation functions computed at large central charge are indeed given, order by

order in bulk perturbation theory, by Witten diagrams computed in the Euclidean BTZ

geometry, with deviations being exponentially small in the central charge.1 To see a break-

down of the black hole geometry at the level of thermal correlators one therefore needs

to either examine these exponentially small terms, or consider kinematical configurations,

such as large Lorentzian time separations, that take one outside our assumptions.

Our work is the natural extension of the work of Hartman, Keller, and Stoica (HKS) [1].

HKS assumed a sufficiently sparse spectrum of states at energies below the black hole

threshold, and then used modular invariance to deduce that at large c the thermal free

energy matches that of thermal AdS and BTZ in the low and high temperature regimes

respectively. We will assume the same sparseness conditions as HKS, and in addition

make some assumptions about the strength of couplings in the low energy theory. These

assumptions are described in more detail in the next section. We make reference to light

(L), medium (M), and heavy (H) operators,2 according to the value of their conformal

dimension ∆.3 Light operators obey ∆ < ∆c, where ∆c is held fixed as c → ∞. Medium

operators lie in the range ∆c < ∆ < c/12, where the upper limit is the black hole threshold.

Heavy operators obey ∆ > c/12, and create black hole microstates. Our approach is to

compute a quantity defined with respect to a given ∆c, perform an asymptotic expansion

in 1/c, and then send ∆c → ∞. We make the usual holographic CFT assumption of

large c factorization, which is the statement that correlators of light operators admit an

asymptotic expansion in powers of 1/
√
c, and that the spectrum of such operators organizes

into single-trace and multi-trace operators (a nice, general discussion may be found in [14]).

Our next assumption concerns the growth of light correlators computed in medium energy

states; we assume that such correlators grow at most polynomially in the medium energy

dimension, which, as we discuss, is the natural expectation. This assumption is necessary

to ensure that correlators of light operators computed at low temperature receive negligible

contributions from states of energy ∆ ∼ c, which would represent a breakdown of low energy

effective field theory. Finally we make a technical assumption regarding the expansion of

low temperature thermal correlators.

We then proceed to study the implications of modular invariance on one-point and

two-point thermal correlators. The one-point function is not so easy to study in isolation,

1In this work we only consider one-point and two-point correlators, but we expect our results to extend

to higher point correlators.
2Note that our usage of light, medium, and heavy differs from that of HKS.
3∆ = h+ h is the total scaling dimension.
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because when expanded as a sum over states the terms in the sum have no definite sign,

making it hard to deduce bounds. So we instead focus first on the two-point function, which

does admit an expansion in terms of positive quantities, and then later circle back to the

one-point function using these results. As already stated, our main result is that in the

high temperature regime, T > 1/2π, these correlators, to all orders in the 1/
√
c expansion,

are computed from Witten diagrams in the Euclidean BTZ geometry. Thermal one-point

functions have a typical size of 1/
√
c. From the bulk point of view, this is the statement

that scalar fields vanish in the classical limit, which we can think of as a version of a no-

hair theorem derived from CFT considerations. Of course, such a result is not surprising

given that HKS already established that the thermodynamics of the CFT is in universal

agreement with the hairless BTZ solution. We should also emphasize that this version of the

no-hair statement concerns solutions that dominate in the canonical ensemble; it allows for

the existence of novel solutions that dominate at fixed energy rather than fixed temperature.

The rest of this paper is organized as follows. In section 2, we review the HKS argument

that we extend to prove our main result. In section 3 we state and motivate the assumptions

necessary for our argument. In section 4, we use the modular bootstrap to prove one of

our main results: under our assumptions, thermal two-point functions of light operators

are determined by the light sector of the theory to all orders in an asymptotic expansion

in 1/
√
c. In section 5, we show that our two-point function result implies that thermal

one-point functions of light operators are also determined by the light sector in the same

way. We conclude with a brief discussion of possible extensions of this work. Appendix A

contains certain calculational details that we omitted in section 4.

2 Review of the HKS argument

In this section we review results from ref. [1] for the partition function of a 1+1-dimensional

large-c CFT living on a circle. We first divide the spectrum into light (L) and heavy (H)

states,

L = {E ≤ ǫ} , H = {E > ǫ} . (2.1)

However, we bring to the reader’s attention that in all other parts of this paper we use a

different definition of “light” (as in the introduction); in this section only we are adopting

the terminology in HKS. Energy is related to scaling dimension as

E = ∆− c

12
. (2.2)

The L,H contributions to the partition function are

ZL =
∑

L

e−βE , ZH =
∑

H

e−βE , (2.3)

where β is the inverse temperature and the sum is over all states in the relevant range.

HKS use modular invariance to show that at large c a theory with a sufficiently sparse light

spectrum obeys logZ ≈ logZL ≈ βc/12 at temperature β > 2π. The precise meaning of

≈ will become apparent.
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The L,H contributions to the modular-transformed partition function (β → β′ =

4π2/β) are denoted

Z ′
L =

∑

L

e−β′E , Z ′
H =

∑

H

e−β′E . (2.4)

Modular invariance implies

ZL − Z ′
L = Z ′

H − ZH . (2.5)

What ZL gains under modular transformation, ZH loses.

Assume β > 2π. We want a bound on ZH = Z ′
H − ZL + Z ′

L relative to ZL. Because

every term in the partition function sum is positive, ZH can be bounded in terms of Z ′
H ,

ZH =
∑

H

e(β
′−β)Ee−β′E ≤ e(β

′−β)ǫZ ′
H . (2.6)

This implies a bound on ZH − Z ′
H ,

ZH − Z ′
H ≤ Z ′

H(e(β
′−β)ǫ − 1). (2.7)

We can now use modular invariance (2.5) to exchange ZH − Z ′
H for Z ′

L − ZL to obtain a

bound on Z ′
H in terms of ZL,

Z ′
H ≤ (1− e(β

′−β)ǫ)−1(ZL − Z ′
L) ≤ (1− e(β

′−β)ǫ)−1ZL. (2.8)

According to (2.6) this bound translates into a bound on ZH in terms of ZL.

ZH ≤ e(β
′−β)ǫ

1− e(β′−β)ǫ
ZL. (2.9)

It follows that

lnZL ≤ lnZ = ln(ZL + ZH) ≤ lnZL − ln(1− e(β
′−β)ǫ). (2.10)

Using modular invariance, one obtains a similar expression for β < 2π. So far, everything

holds for an arbitrary compact, unitary, CFT.

We now consider a family of CFTs with a large c limit. Taking ǫ to be independent of

c, we then have that at large c,

logZ =

{

logZL +O(c0), β > 2π,

logZ ′
L +O(c0), β < 2π .

(2.11)

Next, it’s easy to see that logZL = βc/12 +O(c0) provided that the following sparseness

condition is obeyed,

ρ(E) . e2π(E+ c
12

) = e2π∆ E ≤ ǫ, (2.12)

where . is defined in footnote 4. We will have more to say about this assumption in the

next section. Under this assumption we then have

logZ =

{

βc/12 +O(c0), β > 2π,

β′c/12 +O(c0), β < 2π .
(2.13)
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This result for the partition function implies a Cardy density of states for E > c/12,

ρ(E) ≈ e2π
√

c
3
E , E > c/12, (2.14)

where the smooth function ρ(E) is obtained by averaging the microscopic density of states

over a small energy window.

ρ(E) is non-universal for 0 < E < c/12. However, the assumption (2.12) implies

log ρ(E) ≤ πc/6 + 2πE in this range, and at large c. These states never dominate in the

canonical ensemble.

The main takeaway message is that the sparseness assumption together with modular

invariance at large c implies a universal result for the leading behavior (in c) of the canonical

partition function, and this result furthermore matches the partition function obtained from

AdS3 gravity in the classical limit.

3 Assumptions

In this section we lay out the precise assumptions that will be invoked in our correlation

function analysis, and discuss the motivation for these assumptions, which come from

expectations about which properties we expect of a CFT with a “good” holographic dual.

In stating our assumptions we are thinking in terms of a family or sequence of CFTs such

that we can take c → ∞ within this space of CFTs. Each member of the family is assumed

to be a compact, unitary, CFT.

In the following, light, medium, and heavy operators are defined as having scaling

dimensions:

L = {0 ≤ ∆ ≤ ∆c} , M =

{

∆c < ∆ ≤ c

12
+ ǫ

}

, H =

{

∆ >
c

12
+ ǫ

}

. (3.1)

Here ǫ is held fixed as c → ∞. The cutoff ∆c is taken to infinity after performing the

large-c expansion.

Assumption 1: sparse spectrum. This condition is widely discussed in the AdS/CFT

literature, e.g. [14, 15], and a specific version of it was noted in the last section. At the crud-

est level, we should demand that as c → ∞ the number of local operators with dimension be-

low any fixed value should remain finite. A diverging number of operators could invalidate

the usual loop expansion in the bulk: a growing number of light fields running in loops could

make loop diagrams compete with or dominate over tree diagrams. HKS assume a specific

version of this statement, namely that the density of operators at dimension ∆ should obey4

ρ(∆) . e2π∆ , ∆ ≤ c

12
+ ǫ̃ . (3.2)

The quantity ǫ̃ is eventually taken to zero; we distinguish it from the quantity ǫ introduced

below, which remains finite at large c.

4Following HKS, the inequality ex . ey means that limx/y ≤ 1. So, for example, the right hand side of

the inequality in (3.2) could be multiplied by a polynomial in ∆.
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As reviewed in the previous section, HKS showed that their sparseness assumption on

the light spectrum implied that

ρ(∆) . e2π∆ , ∆ ≤ c

6
, (3.3)

as well as

ρ(∆) ≈ e2π
√

c
3
(∆− c

12
) , ∆ >

c

6
. (3.4)

The density of states (3.4) coincides with Cardy’s formula, but now in a different regime

of validity, since the derivation of Cardy’s formula is only valid for ∆ ≫ c at fixed c.

The results of HKS can also be stated in terms of the partition function as,

Z(β) ≈
{

e
βc
12 , β > 2π

e
π2c
3β , β < 2π .

(3.5)

These partition functions coincide with those of thermal AdS or BTZ solutions in the bulk.

We should note that the sparseness condition (3.2) is rather mild, allowing in particular

for a stringy growth of states.

Assumption 2: factorization of light correlators. We now make a standard assump-

tion that corresponds to having a weakly coupled low energy field theory in the bulk. Let

{Oi} be a collection of operators whose dimensions are all bounded in the large c limit.

We assume the asymptotic expansion5

〈0|O1(x1) . . . On(xn)|0〉 ∼
∞
∑

k=0

1

ck/2
G(k)

n (xi) , c → ∞ . (3.6)

We also assume that the light operator spectrum can be organized into single-trace and

multi-trace operators. Namely, we have a collection of single-trace operators whose con-

nected k > 2 point functions amongst each other vanish in the large c limit. Then we have

multi-trace operators whose dimension in the large c limit equals the sum of dimensions

of their single-trace constituents, and whose correlators in the large c limit are obtained in

terms of their constituents by Wick contractions.

The objects G
(k)
n (xi) computed for single-trace operators are what one computes in the

bulk via Witten diagrams in AdS, order by order in the bulk loop expansion. Following [15],

we expect that there is a one-to-one correspondence between such CFT correlators that

obey crossing constraints and those obtained from theories in AdS. Note though that since

the sparseness condition allows for the bulk theory to be stringy in nature, when we refer

to “Witten diagrams” we are not demanding that the bulk theory necessarily be local with

higher derivative interaction terms suppressed at the AdS scale, rather we also admit the

case of bulk amplitudes computed from a worldsheet construction with string tension at

the AdS scale. The question of whether a more restrictive sparseness condition, along with

modular invariance, implies locality below the AdS scale is discussed in [16].

5We assume that operators are normalized such that their two-point functions have unit coefficient.
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Assumption 3: growth of light correlators in medium energy states. To state

this assumption, we let {Oi} denote a collection of light operators, with ∆i < ∆c, where

the cutoff ∆c is held fixed as c → ∞, and we let OA denote a medium operator, obeying

∆c < ∆A < c
12 + ǫ. Our assumption is that for all sufficiently large ∆c and c, there exists

some number K and positive number p (which are allowed to depend on n and on the

positions xi) such that

|〈A|O1(x1) . . . On(xn)|A〉| < K(∆A)
p . (3.7)

Essentially, we are allowing light correlators in medium states to grow with c as long as

they do so in a sub-exponential manner.

The bulk intuition behind this assumption is the following. We expect there to exist

bulk solutions with scalar fields taking macroscopic values, but which are not so heavy

as to create black holes. Finite gravitational back reaction allows for fields taking values

φ ∼ √
c, so that the matter stress tensor behaves as Tµν ∼ c ∼ G−1

N . If now we compute the

n-point function of the CFT operator Oφ dual to the bulk field φ, we will obtain a result

that behaves as cn/2. Our assumption allows for such behavior, but rules out a stronger

exponential growth.

Assumption 4: large c expansion of light thermal correlator. Finally we make

what is, we believe, a rather mild assumption imposed purely on the light operators, i.e.

those with ∆ < ∆c as c → ∞. Working on the cylinder, we define the light contribution

to the thermal correlator as6

G
(L)
2 (φ, t;β) =

eβc/12

Z(β)

∑

L

e−β∆L〈L|O(φ, t)O(0, 0)|L〉 , ∆L,∆O < ∆c . (3.8)

For β > 2π, we perform an asymptotic expansion in 1/
√
c (as in Assumption 2), and then

take ∆c → ∞ to obtain

G
(L)
2 (φ, t;β) =

∞
∑

k=0

1

ck/2
G

(L,k)
2 (φ, t;β) . (3.9)

The nontrivial assumption here is the existence of the limit ∆c → ∞ for all the coeffi-

cient functions G
(L,k)
2 (φ, t;β); in principle it is possible that the functions appearing in

the large c expansion grow with ∆c, as could potentially occur if the matrix elements

〈L|O(φ, t)O(0, 0)|L〉 are permitted to grow exponentially in ∆c for ∆L ∼ ∆c.

Given this assumption, the objects G
(L,k)
2 (φ, t;β) are what one obtains in the bulk

computation of the two-point correlator in thermal AdS from Witten diagrams. In such a

computation only light fields propagate in the bulk, with the contribution of virtual heavy

states assumed to be exponentially suppressed.

6We just consider the two-point function here, since that is all we will use, but the generalization is

obvious.
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4 Two-point function analysis

In this section we show that the Euclidean thermal two-point function of a light operator

is fixed by data about the light spectrum. Our result will be

〈O(φ, t)O(0, 0)〉β ≈







eβ
c
12

Z(β)

∑

A,B∈L e−β∆Aet∆ABeiφJAB | 〈A|O|B〉 |2, β > 2π

eβ
′ c
12

Z(β)

(

2π
β

)2∆
∑

A,B∈L e−β′∆Ae
2πφ
β

∆ABe
i 2πt

β
JAB | 〈A|O|B〉 |2, β < 2π

(4.1)

where ≈ indicates equality up to corrections that are suppressed exponentially in ∆c, ǫ,

or c. The summation variables A and B run over a basis of light states with dimensions

∆A,∆B and spins JA, JB. ∆AB stands for ∆A − ∆B and similarly for JAB. All matrix

elements lacking a temperature-indicating subscript are to be evaluated on a cylinder (with

circumference 2π) and whenever the position of an operator O is left implicit it is to be

understood as φ = 0, t = 0.

The important point is that the right hand side of equation (4.1) depends only on the

dimensions and OPE coefficients of light operators.

The low temperature case of equation (4.1) will be established using the assumptions

of section 3 along with the constraint of modular covariance, which reads

〈O(φ, t)O(0, 0)〉β =

(

2π

β

)2∆〈

O

(

2π

β
t,
2π

β
φ

)

O(0, 0)

〉

β′

, β′ =
(2π)2

β
. (4.2)

With the low temperature result in hand, a final application of equation (4.2) immediately

yields the high temperature result.

The starting point of our analysis is the expression for the two-point function at any

temperature obtained from cutting the path integral along two time slices that separate

the operators O and inserting complete sets of states A,B,

〈O(φ, t)O(0, 0)〉β =
eβc/12

Z(β)

∑

A

∑

B

e−β∆Aet∆ABeiφJAB | 〈A|O|B〉 |2 . (4.3)

The right hand side of equation (4.3) will sometimes be denoted G(φ, t;β) for brevity.

Given that each state A,B can be light, medium, or heavy, G(φ, t;β) has nine contribu-

tions to consider. We will refer to these contributions as G(LL), G(LM), . . . G(MH), G(HH),

where the first superscript refers to A and the second to B. We wish to prove the top case

of equation (4.1), which states that when β > 2π the function G is equal to G(LL) up to

exponentially small corrections from the other eight contributions. In subsection 4.1 we ar-

gue from our assumptions that the seven contributions G(Mx), G(xM), G(LH), G(HL) are all

small, where x stands for L, M , orH. This leaves G(HH). We then present in subsection 4.2

an HKS-like argument that modular covariance demands G(HH) to be small.

4.1 Bounding the medium and off-diagonal contributions

In this subsection we use the assumptions about the light spectrum laid out in section 3

to argue that many of the contributions to equation (4.3) are small.

– 8 –
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4.1.1 Medium contributions

The sum of the three quantities G(Mx) is given by

G(ML) +G(MM) +G(MH) =
eβc/12

Z(β)

∑

A∈M
e−β∆A 〈A|O(φ, t)O(0, 0)|A〉 (4.4)

where we used the fact that B runs over a complete set of states. Assumptions 1 and 3

above bound the size of this sum as follows:

∣

∣

∣
G(ML) +G(MM) +G(MH)

∣

∣

∣
≤ eβc/12

Z(β)

∫ ∞

∆c

d∆ e(2π−β)∆K∆p . (4.5)

The factor of e2π∆ comes from the upper bound on the density of states in assumption

1. The upper limit of integration has been set to infinity rather than c/12 + ǫ, a valid

step because doing so only makes the inequality weaker. When β > 2π the integral is

exponentially small at large ∆c and we conclude that the three contributions7 G(Mx) are

exponentially small in ∆c.

Exchanging A and B in equation (4.3) is equivalent to transforming (φ, t) to (−φ, β−t),

so we conclude that G(xM) is also small.

4.1.2 Heavy-light contributions

We now argue8 that the contributions G(LH), G(HL) are suppressed exponentially in c when

β > 2π. Because of the symmetry in A,B mentioned above, it is sufficient to focus on

G(LH). Setting φ = 0 for the moment, the contribution in question is

G(LH) =
eβc/12

Z(β)

∑

A∈L

∑

B∈H
e−β∆Ae(t−t0)∆ABet0∆AB |〈A|O|B〉|2 . (4.6)

A constant t0 in the range 0 < t0 < t has been introduced to be used in the next step.

Obviously the right hand side of equation (4.6) is independent of t0. The factor e(t−t0)∆AB

in the summand above is no larger than e(t−t0)(∆c−c/12), and since each term in the sum is

positive this implies

G(LH) ≤ e(t−t0)(∆c−c/12) e
βc/12

Z(β)

∑

A∈L

∑

B∈H
e−β∆Aet0∆AB |〈A|O|B〉|2 . (4.7)

The inequality only weakens upon extending the sum over B ∈ H to a sum over all states:

G(LH) ≤ e(t−t0)(∆c−c/12) e
βc/12

Z(β)

∑

A∈L
e−β∆A 〈A|O(0, t0)O(0, 0)|A〉 . (4.8)

7To proceed from smallness of the left hand side of (4.5) to smallness of the three terms individually, we

note that when φ = 0 each of the three terms is positive and that taking φ nonzero can only decrease each

term’s absolute value.
8A similar argument appears in [17]. Indeed, exponential suppression of G(LH) is a manifestation of

their result that the OPE converges exponentially fast.
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The first factor on the right hand side is exponentially small. Meanwhile, the rest of that

expression is zeroth-order in c by assumption 4. So equation (4.8) tells us the heavy-

light contribution is exponentially small in c relative to eβc/12. The extension to φ 6= 0

is immediate, because each term in equation (4.3) only decreases in absolute value upon

taking φ nonzero. We conclude that G(LH), G(HL) are suppressed exponentially in c.

4.2 Heavy-heavy bound from modular covariance

In this subsection, we use modular covariance to show that the contribution to equa-

tion (4.3) from states A,B that are both heavy is suppressed, at β > 2π, relative to

the full sum. The argument, which parallels that of [1], is independent of any assumptions

about the CFT spectrum, OPE coefficients, or the size of the central charge. All we require

is that ǫ is large enough for the quantity

δ =

(

β

2π

)2(∆+2)

e−|β−β′|ǫ (4.9)

to be small. We will find that G(HH) is suppressed relative to G by a factor of δ.

Modular covariance of equation (4.3) leads to an equivalent expression for the two-point

function:

〈O(φ, t)O(0, 0)〉β =

(

2π

β

)2∆ eβ
′c/12

Z(β)

∑

A

∑

B

e−β′∆Ae
β′

2π
φ∆ABe

2π
β
itJAB | 〈A|O|B〉 |2. (4.10)

We will call the right hand side of (4.10) G̃(φ, t;β) just as the right hand side of (4.3)

was called G(φ, t;β). The left hand sides of those equations are identical so of course

G(φ, t;β) = G̃(φ, t;β). This is the modular crossing equation. We will find that it puts

nontrivial constraints on the matrix elements 〈A|O|B〉.
We now Fourier expand G(φ, t;β) and G̃(φ, t;β) as functions of φ and t.

G(φ, t;β) =

∞
∑

n=0

∞
∑

m=0

Gnm cos(nφ) cos

(

2πmt

β

)

, (4.11a)

G̃(φ, t;β) =
∞
∑

n=0

∞
∑

m=0

G̃nm cos(nφ) cos

(

2πmt

β

)

. (4.11b)

Again, the two functions are equal so Gnm = G̃nm. Only cosine modes appear because the

functions are even under the reflections φ → 2π−φ and t → β− t. Performing the Fourier

transforms term by term inside the sums (4.3), (4.10) yields

Gnm = 2β
eβc/12

Z(β)

∑

A,B
|JAB |=n

(

∆AB

(

e−β∆B − e−β∆A
)

β2∆2
AB + (2πm)2

)

| 〈A|O|B〉 |2 (4.12a)

G̃nm = 2β′
(

2π

β

)2∆ eβ
′c/12

Z(β)

∑

A,B
|JAB |=m





∆AB

(

e−β′∆B − e−β′∆A

)

β′2∆2
AB + (2πn)2



 | 〈A|O|B〉 |2 . (4.12b)
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When ∆A = ∆B the summands of (4.12a), (4.12b) are to be defined via their limits as

∆A → ∆B, which are finite and nonnegative.

Note that the contribution from any pair of states A,B to either sum (4.12a), (4.12b)

is nonnegative. This fact is central to the argument below, which parallels the original one

applied by HKS to the partition function. We begin by separating out the heavy-heavy

contribution to each sum (4.3), (4.10):

G(φ, t;β) = G(L)(φ, t;β) +G(HH)(φ, t;β) (4.13a)

G̃(φ, t;β) = G̃(L)(φ, t;β) + G̃(HH)(φ, t;β) . (4.13b)

We define G(HH) to be the contribution to (4.3) from states A,B that are both heavy, as

above. Meanwhile G(L) is the contribution from all other pairs of states.9 G̃(HH), G̃(L) are

defined in the same way.

The Fourier modes of G(HH), G̃(HH) are found by restricting sums (4.12) to heavy

states:

G(HH)
nm =4β

∑

A∈H

∑

B,∆B≥∆A

|JAB |=n

(

1

2

)δAB e−βEA

Z(β)

(

−∆AB

(

1−eβ∆AB
)

β2∆2
AB+(2πm)2

)

|〈A|O|B〉|2 (4.14a)

G̃(HH)
nm =4β′

(

2π

β

)2∆
∑

A∈H

∑

B,∆B≥∆A

|JAB |=n

(

1

2

)δAB e−β′EA

Z(β)





−∆AB

(

1−eβ
′∆AB

)

β′2∆2
AB+(2πn)2



|〈A|O|B〉|2 .

(4.14b)

Above we used the symmetry in A,B of equations (4.12) to arrange for ∆A to be less than

or equal to ∆B inside the sum. For proper counting we introduced a factor of 2(1/2)δAB

which is 1 if A = B and 2 otherwise. (There is no loss of generality in assuming B runs

over the same basis as A.)

It’s important to keep in mind for what follows that β > 2π. Following HKS we note

that we can bound the Boltzmann factor in equation (4.14a) for G
(HH)
nm in the following way

e−βEA = e−(β−β′)EAe−β′EA ≤ e−(β−β′)ǫe−β′EA . (4.15)

This is the step in which it is important that the lightest heavy state has energy ǫ larger

than zero. We then use the fact that every term in the sum G
(HH)
nm is positive to write

G(HH)
nm ≤ 4βe−(β−β′)ǫ

∑

A
heavy

∑

B,∆B≥∆A

|JAB |=n

(

1

2

)δAB e−β′EA

Z(β)

(

−∆AB

(

1− eβ∆AB
)

β2∆2
AB + (2πn)2

)

| 〈A|O|B〉 |2 .

(4.16)

The quantity in parentheses in (4.16) is bounded by

(

−∆AB

(

1− eβ∆AB
)

β2∆2
AB + (2πn)2

)

≤
(

β

β′

)





−∆AB

(

1− eβ
′∆AB

)

β′2(∆2
AB + (2πn)2



 . (4.17)

9Note that G(L) is distinct from G(LL) (although the conclusion of subsection 4.1 is that these functions’

difference is small).
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To check (4.17), first note that the denominator on the left is ≥ the one on the right. And

second note that the fraction (1−eβ∆AB )/(1−eβ
′∆AB ) is an increasing function of ∆AB < 0

and so is bounded from above by its limit as that difference goes to zero, which is β/β′.
From (4.17) it follows that

G(HH)
nm ≤ 4β2

β′ e
−(β−β′)ǫ

∑

A∈H

∑

B,∆B≥∆A

|JAB |=n

(

1

2

)δAB e−β′EA

Z(β)





−∆AB

(

1−eβ
′∆AB

)

β′2∆2
AB+(2πn)2



|〈A|O|B〉|2.

(4.18)

We recognize the right hand side as proportional to G̃
(H)
mn and conclude that

G(HH)
nm ≤ δG̃(HH)

mn (4.19)

with δ being the constant defined in equation (4.9).

Equation (4.19) is analogous to the starting point, equation (2.6), of HKS’s analysis

for the partition function: G(HH), G̃(HH) and δ play the roles of ZH , Z ′
H and e(β

′−β)ǫ,

respectively. From that starting point a clever modular invariance argument (reviewed in

section 2) showed that the heavy contribution to the low temperature partition function is

suppressed relative to the light contribution. In appendix A we apply the same argument

to the two-point function’s Fourier modes. The result is

G(HH)
nm ≤ δ

G
(L)
mn + δG

(L)
nm

1− δ2
. (4.20)

The right hand side of this result is suppressed by a factor of δ relative to G
(L)
mn and

G
(L)
nm, which are of order unity by the results of section 4.1. We conclude that G

(HH)
nm

is suppressed by δ relative to unity. That this holds for every Fourier mode implies the

function G(HH)(φ, t;β) is itself suppressed by a factor of δ. That is, it is exponentially

small in the parameter ǫ.

4.3 Conclusion of this section

From the results of subsections 4.1 and 4.2, equation (4.1) is established. At β > 2π, the

right hand side of that equation is what one computes using Witten diagrams in thermal

AdS. To be precise, if one expands the right hand side in powers of 1√
c
and then takes the

limit ∆c → ∞ order-by-order one recovers the Witten diagram expansion in powers of 1√
c
.

At β < 2π the same conclusion holds with thermal AdS replaced by a BTZ black hole of

the appropriate temperature. This follows from the low temperature statement by bulk

modular invariance: the Euclidean BTZ black hole of inverse temperature β is isometric to

thermal AdS at inverse temperature β′, and the isometry involves exchanging the angular

and time coordinates as in equation (4.2).

5 One-point function

With our two-point function result in hand, we now turn to the one-point function. We

first derive an upper bound on the one-point function. We start with the decomposition

– 12 –
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of the two-point function,

〈O(0, β/2)O(0, 0)〉β =
1

Z(β)

∑

A,B

e−
β
2
(EA+EB)|〈A|O|B〉|2 . (5.1)

The right hand side is bounded below by the contribution from A = B, hence

〈O(0, β/2)O(0, 0)〉β ≥ 1

Z(β)

∑

A

e−βEA |〈A|O|A〉|2 . (5.2)

Now, using the elementary fact that x2 ≥ 2x− 1 for real x, we obtain

〈O(0, β/2)O(0, 0)〉β ≥ 2

Z(β)

∑

A

e−βEA |〈A|O|A〉| − 1 . (5.3)

(5.3) implies a bound on the contribution to the one-point function from any collection of

states,
1

Z(β)

∑

A∈ψ
e−βEA |〈A|O|A〉| ≤ 1 + 〈O(0, β/2)O(0, 0)〉β

2
, (5.4)

where ψ denotes any subspace of the full Hilbert space. Since |〈O〉β | ≤
1

Z(β)

∑

A e−βEA |〈A|O|A〉| we also deduce a bound on the full one-point function

|〈O〉β| ≤
1 + 〈O(0, β/2)O(0, 0)〉β

2
. (5.5)

These are exact bounds, valid in any theory for any temperature. For our purposes, the

main fact we will use is that since the two-point function is finite in the large c limit, the

same is true of the left hand side of (5.4).

We now show that for β > 2π the contributions to the one-point function from medium

and heavy states are exponentially suppressed compared to the light state contribution.

For the medium state contribution we proceed as in (4.5),

∣

∣

∣

∣

∣

1

Z(β)

∑

A∈M
e−βEA〈A|O|A〉

∣

∣

∣

∣

∣

≤ 1

Z(β)

∑

A∈M
e−βEA |〈A|O|A〉|

≤ e
βc
12

Z(β)

∫ ∞

∆c

d∆e(2π−β)∆K∆p . (5.6)

For β > 2π the last expression is exponentially small in ∆c. For the heavy contribution we

note that
∣

∣

∣

∣

∣

1

Z(β)

∑

A∈H
e−βEA〈A|O|A〉

∣

∣

∣

∣

∣

≤ 1

Z(β)

∑

A∈H
e−βEA |〈A|O|A〉| (5.7)

together with (5.4) implies that the heavy contribution has a finite large c limit. In par-

ticular, this holds for any β sufficiently greater than 2π such that δ ≪ 1. But then for any

larger β the right hand side is exponentially small in c, since Z(β)−1e−βEA is exponentially

small for all heavy states.
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Since the medium and heavy state contributions are exponentially small, we conclude

that

〈O〉β ≈ 1

Z(β)

∑

A∈L
e−βEA〈A|O|A〉 , β > 2π (5.8)

as desired. A modular transformation then gives the high temperature result,

〈O〉β ≈
(

2π

β

)∆ 1

Z(β)

∑

A∈L
e
− 4π2

β
EA〈A|O|A〉 , β < 2π (5.9)

Since the three-point coefficients 〈A|O|A〉 of single-trace operators fall off at least as fast as

1/
√
c according to Assumption 2, it follows that the generic one-point function of a single-

trace operator is O(1/
√
c). Double-trace operators can have O(1) expectation values, in

accord with (5.5).

In [9] it was pointed out that modular invariance implies that the one-point function

in the high temperature limit behaves as

〈O〉β ≈
(

2π

β

)∆ 1

Z(β)
e
− 4π2

β
Eχ〈χ|O|χ〉 , β → 0 , (5.10)

where |χ〉 denotes the lightest state such that 〈χ|O|χ〉 6= 0. This results holds for all c.

It was further noted that this asymptotic formula for the one-point function has a simple

bulk interpretation in terms of a χ particle winding around the BTZ horizon. What we

have shown here is that in a large c theory satisfying our assumptions, the analogous result

holds, except now we should sum over all light states winding around the horizon, including

multiparticle states. This then yields the one-point function for all β < 2π.

6 Discussion

We conclude with a few comments.

Our main CFT result is that, under our assumptions, one and two point correlators of

light fields at any temperature are determined entirely by light spectrum data. Translated

into bulk gravity language, the statement is that thermal AdS and the BTZ black hole

emerge as the universal backgrounds for the computation of thermal one and two-point

functions of light operators, and only the propagation of light fields on these backgrounds

need be considered. One obvious extension is to generalize to n-point functions of light

operators. We anticipate no fundamental obstacles here, although the analysis will become

more complicated.

Our result for the thermal two-point function assumes that the time separation is

purely Euclidean and is held fixed as c → ∞. Indeed, we expect our results to breakdown

if we instead allow for Lorentzian time separations that can grow with c, since in this case

we would otherwise violate bounds on the size of such correlators: perturbative Witten dia-

grams yield a result that decays exponentially to zero at late times, whereas unitarity places

a lower bound on the long time average [18]. It would be interesting to explore in detail

the regime of validity of our results once we relax the conditions on the time arguments.
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It may be instructive to compute correlators in symmetric product orbifold theories

as an explicit realization of our assumptions. Such theories are known [1] to saturate

the density of states allowed by the HKS analysis, and their correlators admit a 1/
√
c

expansion. Of course, such theories, being free, are far from having a bulk description in

terms of Einstein gravity (for example, they are not chaotic [19]), but this is the price paid

for calculability on the CFT side. Some related computations were carried out in [20].

It would be very interesting if analogous statements to what we have shown here could

be established in higher dimensions. On general grounds we expect a similar result to hold,

but it is clear that new issues arise. Namely, modular invariance acts in a more complicated

way in higher dimensions, relating CFTs on distinct spaces to one another rather than just

changing the temperature [21–24]. The bulk analog of this statement is that the black hole

solution — AdS-Schwarzschild — is no longer locally AdS as for BTZ, but depends on the

details of the bulk theory, such as the presence of higher derivative terms and so on. The

story will thus necessarily be more intricate.
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A Details of modular crossing analysis

In subsection 4.2 we showed that the heavy contributions to the Fourier modes of the

two-point function satisfy an inequality (4.19), which we repeat here for convenience:

G(HH)
nm ≤ δG̃(HH)

mn . (A.1)

The indices n,m are transposed between the left and right hand sides. To treat this

complication it is convenient to combine the above relation and its image under n ↔ m

into a single inequality:

(

G
(HH)
nm

G
(HH)
mn

)

≤
(

0 δ

δ 0

)(

G̃
(HH)
nm

G̃
(HH)
mn

)

. (A.2)

We use a vector inequality such as (A.2) to indicate that the comparison holds separately

for each component.

Our argument so far has not invoked modular invariance. That is, we have not yet

used the fact that G
(HH)
nm +G

(L)
nm = G̃

(HH)
nm +G̃

(L)
nm. We use it now. Since G̃

(L)
nm is nonnegative,

modular invariance implies G
(L)
nm ≥ G̃

(HH)
nm −G

(HH)
nm , which in light of equation (A.2) implies

(

G
(L)
nm

G
(L)
mn

)

≥
(

1 −δ

−δ 1

)(

G̃
(HH)
nm

G̃
(HH)
mn

)

. (A.3)

One can multiply both sides of a strict vector inequality by a matrix as long as every

element of the matrix is nonnegative. In particular as long as |δ| < 1 we can multiplying
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both sides of (A.3) by the inverse of the matrix on the right hand side. The result is

(

G̃
(HH)
nm

G̃
(HH)
mn

)

≤ 1

1− δ2

(

1 δ

δ 1

)(

G
(L)
nm

G
(L)
mn

)

. (A.4)

Inequality (A.4) is the analog of (2.8) in the HKS argument. We now substitute (A.4) into

the right hand side of the original inequality (A.2), a valid step because the matrix there

has nonnegative elements, to get

(

G
(HH)
nm

G
(HH)
mn

)

≤ δ

1− δ2

(

δ 1

1 δ

)(

G
(L)
nm

G
(L)
mn

)

. (A.5)

The above relation is analogous to (2.9) in the HKS argument. The upper component is

G(HH)
nm ≤ δ

G
(L)
mn + δG

(L)
nm

1− δ2
, (A.6)

which is equation (4.20).
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