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1 Introduction and summary

Quantum black holes have finite entropy and a discrete spectrum of states. The details

of this spectrum are inaccessible in the semi-classical approximation: the density of states

one obtains from the Bekenstein-Hawking entropy is a smooth function of the energy. In

this work we address the question of how the discrete spectrum arises in 2d conformal field

theories and their holographic duals.

Maldacena suggested that one may address this question by studying the late time

behavior of correlation functions [1], which is a sharp probe of the discrete energy levels in

the spectrum. For unitary systems with discrete spectra, connected thermal correlators of
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the form 〈O(t)O(0)〉 (where O is a Hermitian operator) tend to decay exponentially until

times of order the entropy S, and then proceed to oscillate erratically about zero with an

RMS amplitude of order e−S .1 On the other hand, correlation functions computed in a

classical black hole background tend to decay exponentially forever. This decay is often

referred to as ‘information loss’.

Holography may be a useful setting for studying the question of how a discrete black

hole spectrum arises. From the boundary field theory point view, the fact that the spectrum

is discrete is trivial if we place the theory on a compact spatial manifold. Similarly, the

qualitative features of the late time behavior follow easily from mild assumptions about the

spectrum (such as the fact that the theory is chaotic). The challenge is then to describe

this behavior in ‘bulk language’, using objects that are natural from a gravity point of

view. In this work we focus on another quantity that is also sensitive to information loss

at late times.

1.1 Spectral form factor and information loss

Consider the thermal partition function Z(β), and let us analytically continue β → β + it.

The parameter t should be thought of as real time. Let En be the discrete energy levels,

each with degeneracy Nn, and consider the following quantity.

g(β, t) ≡ |Z(β + it)|2 =
∑
n,m

NnNme
−β(En+Em)+it(En−Em) . (1.1)

If we formally set β = 0 then (1.1) becomes a well-studied quantity in Quantum Chaos

called the spectral form factor (for reviews, see [5, 6]). We will use the same name to refer

to g(β, t) at any β. In the context of black hole physics this quantity was first discussed

in [7], and was recently studied in the context of information loss in the Sachdev-Ye-Kitaev

model [8, 9] in [10]. See also [4] for a related discussion.

At late times the double sum in (1.1) essentially localizes onto terms with En = Em.

As we review in section 2, the time average of g(β, t) obeys the bound

ḡ(β) ≡ lim
to→∞

1

to

∫ to

0
g(β, t)dt ≥ Z(2β) . (1.2)

The bound is saturated when the spectrum has no degeneracies. The non-zero time average

reflects a weighted counting of the discrete energy levels in the spectrum. The quantity on

the right-hand side is of order eS .

On the other hand, suppose we have a bulk theory with a black hole background

and focus on the BTZ black hole for simplicity. We approximate the exact partition

function by the BTZ black hole partition function Z(β) = exp
(
π2c
3β

)
, which is the dominant

contribution for temperatures above the Hawking-Page transition. We then find a spectral

form factor that decays to 1 at late times. If we also include the 1-loop determinant we

1By the notation e−S we mean that the quantity scales as e−ndof where ndof is the number of degrees

of freedom. We will be interested in 2d CFTs with large central charge c, for which ndof ∼ c. We note that

at very late times of order ee
S

we expect recurrences, which do not play a role in this work. See [2–4] for a

discussion of recurrences in the context of information loss.
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find that the spectral form factor decays to zero, representing no discrete states in the

corresponding spectrum.2 We see that the spectral form factor, just like the correlation

function, is sensitive to information loss. See [11, 12] for related discussions.

It was suggested in [1] that one may improve the situation by adding subleading bulk

saddle points such as thermal AdS3. It is easy to check that including the thermal AdS3

contribution indeed raises the time average, but this contribution is not sufficient for the

time average to obey the bound (1.2) at high temperature. Indeed, we will see that no

finite number of subleading saddles is enough to obey the bound (1.2) at high temperature.

For 2d conformal field theories, the question of information loss in the thermal two point

function was studied in [13] and for collapsing black holes in [14]. Recently, the authors

of [15–18] considered the four point function of two heavy operators OH , ∆H ∼ c, and

two light operators OL on the cylinder 〈OH |OL(φ, it)OL(0)|OH〉. This is a microcanonical

version of the calculation described above. In the large c limit, corresponding to the classical

black hole limit in the bulk, one finds that the correlation function reproduces the thermal

two-point function on a line, with temperature set by the heavy operator’s dimension and

thus decays in time. In [17, 18] it was speculated that perhaps the late time decay is

avoided (and information is restored) within each Virasoro block in an OPE expansion of

this four-point function. This question is difficult to answer because the relevant Virasoro

blocks are not known exactly.3

We are able to answer this question in our context, by considering instead the spectral

form factor, which has a decomposition in terms of Virasoro characters, analogous to

the Virasoro blocks that show up in the OPE expansion of the heavy-heavy-light-light

correlator.4 The Virasoro characters have known closed-form expressions, and each relevant

Virasoro character decays at late times. We conclude that in chaotic 2d theories information

is not restored kinematically in general, namely as a consequence of Virasoro symmetry,

but rather dynamically, due to an interplay between infinitely many characters. (Integrable

theories will be discussed separately. For such theories information loss still occurs at the

level of Virasoro characters, but is explicitly restored in the characters of the extended

chiral algebra.)

The authors of [20, 21] studied the discrete spectrum of chaotic 2d CFTs by working

directly with the thermal partition function. Our conclusion agrees with their results. The

authors of [20] considered a modular invariant partition function that is made up of the

vacuum character plus its modular images (appropriately regulated). They found that

the corresponding density of states is essentially smooth and captures almost none of the

discrete states. Here we advertise that if one is interested only in whether or not the

spectrum contains discrete states (rather than in the detailed properties of these states),

it is enough to check whether the time-averaged spectral form factor ḡ(β) vanishes, a

potentially simpler computation.

2That the BTZ partition function decays to 1 (if we do not include the 1-loop determinant) is related

to the fact that the inverse Laplace transform of e1/β is given by E−1/2I1(2E1/2) + δ(E) which includes a

single discrete state.
3See [19] for recent developments.
4The torus partition function can be written as a correlator involving 4 heavy twist operators. The

Virasoro characters are the blocks that appear in an OPE expansion of this correlator.
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Figure 1. The spectral form factor g(β, t) for the GUE ensemble of random matrices, using 50

matrices of rank 2,000 and computed with β = 5. At late times we have a period of close to linear

growth we call the ramp, folowed by a plateau.

This discussion of information loss has been phrased in terms of the boundary Virasoro

characters, but also has a natural bulk interpretation. The character which dominates at

high temperature corresponds to the bulk BTZ saddle. The O(1/c) correction to the

character corresponds to a one-loop determinant in the bulk. Therefore, a resolution of

information loss phrased in terms of Virasoro characters would probably shed light on how

information is restored in the bulk.

1.2 Late times and random matrix theory

The late time behavior of the spectral form factor is only sensitive to the structure of small

energy differences. We generally expect that if we probe any chaotic system at sufficiently

small energy differences, then the Hamiltonian can be approximated by a random matrix

chosen from a suitable Gaussian ensemble. The authors of [10] made the observation

that the late time behavior of chaotic theories should therefore be described by random

matrix theory (see [5, 6] for a review of RMT). This was verified for the Sachdev-Ye-Kitaev

model [8, 9] in [22]. We thus now turn to RMT as a guide for what to expect for the late

time behavior of the spectral form factor.

Figure 1 shows the spectral form factor for random matrices selected from the Gaussian

Unitary Ensemble (GUE). We will discuss this curve in more detail below. For now we

merely point out that (i) the shape of the curve before its minimum (the dip) is dominated

by the coarse-grained shape of the spectrum (in the case of Gaussian random matrices this

is Wigner’s semicircle law), and that (ii) after the dip time the curve starts probing the

discrete energy levels. In particular, the period of linear growth is related to the spectral

rigidity of random matrix energy levels (essentially the fact that energy levels repel).

In [10] it was conjectured that the existence of a dip time, followed by a period of linear

growth, is a generic feature of chaotic systems, including black holes. The value of the dip

time is non-universal and depends on the detailed properties of the theory, including the
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Figure 2. The spectral form factor g(β, t) for a single matrix, using the same parameters as figure 1.

The late time ramp and plateau are barely visible.

coarse-grained shape of the spectrum that determines the early time decay. Here we test

this conjecture in the context of 2d CFTs, and find evidence that the approximate dip time

is robust for chaotic CFTs dual to gravity.

In RMT (and in the SYK model) the spectral form factor is defined by averaging over

an ensemble of Hamiltonians. This averaging leads to a smooth curve at late times. In

trying to apply the conjecture to an ordinary quantum field theory, one has to confront the

fact that there is only one Hamiltonian. As a result, the late time behavior is expected to

be erratic. Figure 2 shows the spectral form factor computed from a single GUE matrix.

Beyond the dip time the fluctuations become large and the features of figure 1 are barely

visible (see also [23]). However, as explained in [10], one can replace ensemble averaging

by time averaging over a parametrically small window (in the limit of a large Hilbert

space dimension), restoring the late time features. It is therefore meaningful to discuss

the random matrix theory ramp and plateau at late times even in an ordinary quantum

field theory.

In this work we estimate the dip time at which a generic 2d CFT crosses over into the

RMT regime. This is done by estimating the shape of the early decay of the curve using

modular invariance, and assuming that at late times we have the linear growth predicted by

RMT. Our estimate relies on identifying the dominant contribution from a single Virasoro

character at each point in time. We estimate that the spectral form factor decays at late

times in an erratic way, with an envelope that decays as

g(β, t) . exp

(
π2c

3β

)
· 1

t
. (1.3)

We will see this implies a parametrically long period of linear growth following the dip

time. We expect the same to be true of black holes in AdS3.
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1.3 Summary of results

Here is a brief summary of the key points of this paper.

1. We consider the spectral form factor |Z(β + it)|2 as a probe of the spectrum. At

early times it diagnoses the mean density of states, while at late times its behavior

serves as a useful diagnostic of the discreteness of the spectrum [10]. As in the case

of two-point functions, a decay at late times indicates that we are not probing the

discrete states of the spectrum, and signals information loss.

2. In 2d CFTs the partition function has an expansion in terms of the Virasoro char-

acters. Each character decays at late times, and therefore Virasoro symmetry is not

enough in general to restore information.

3. We identify a universal contribution to the early time behavior of the spectral form

factor, which follows from Virasoro symmetry and modular invariance. It includes

sharp peaks at times t = 2πn for integer n, where the height of the peaks decays as a

power law in time. We conjecture that this is contribution dominates the early time

behavior in generic 2d CFTs.

4. In chaotic theories we expect the late time behavior (t & ec) to be described by

random matrix theory. In particular, we expect there to be a characteristic time

scale (the ‘dip time’) beyond which the RMT description is valid. Based on our

(uncontrolled) analysis of the early time behavior, we conjecture that the dip time

scales as ec. Beyond the dip time we expect there to be a period of linear growth

(with large fluctuations) that is parameterically long at large c and high temperature.

5. For certain integrable models, or BPS sub-sectors of generic models, we identify a

precise infinite set of bulk saddles which restore the information naively lost in the

leading thermodynamic approximation.

The rest of the paper is organized as follows. In section 2 we discuss the spectral form

factor and information loss in 2d CFTs. In section 3 we review the Virasoro character

expansion and the modular properties of the torus partition function, and provide simple

estimates of its decay before the dip time. Then, in section 4 we give an improved estimate

of the decay by identifying the dominant character at any rational time. We conclude

that these contributions are not sufficient to avoid information loss. In section 4.4 we

estimate the dip time, beyond which we expect the system to have an effective random

matrix theory description. In section 5 we discuss integrable theories. We show that for

certain integrable theories, or BPS sectors of generic theories, information is restored by

identifying the dominant saddle point at each particular time using modular invariance.

Appendix A gives a short review of black holes in AdS3.

2 Spectral form factor

In this section we define the spectral form factor and discuss its properties in relation to

information loss. Consider a unitary quantum field theory with a holographic dual. Place

– 6 –
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the theory on a compact manifold so that it has a discrete spectrum. The spectrum consists

of energy levels En, each with degeneracy Nn. The density of states is given by

ρ(E) =
∑
n

Nnδ(E − En) . (2.1)

The thermal partition function at inverse temperature β is

Z(β) ≡ Tr
(
e−βH

)
=
∑
n

Nne
−βEn . (2.2)

We assume for simplicity that this function is finite for any β > 0 (this is always true for

2d CFTs). Let us generalize the partition function and define

Z(β + it) ≡ Tr
(
e−βH−iHt

)
=
∑
n

Nne
−βEn−iEnt . (2.3)

One can obtain this function by analytically continuing Z(β), taking β → β + it. The

parameter t is conveniently thought of as real time. We then define the spectral form

factor by

g(β, t) ≡ |Z(β + it)|2 =
∑
n,m

NnNme
−β(En+Em)+it(En−Em) . (2.4)

This is an important quantity in the study of random matrix theory [5, 6].

In this work we will study the late time behavior of g(β, t). In a general chaotic

theory this behavior is complicated as it involves a sum over many oscillators with different

frequencies (En − Em). Things simplify if we only consider the long-time average, where

only terms with En = Em contribute.

ḡ(β) ≡ lim
to→∞

1

to

∫ to

0
g(β, t)dt =

∑
n

N2
ne
−2βEn . (2.5)

We see that, on average, g(β, t) approaches a non-zero value at late times. In (2.5) we

implicitly assumed that there is a minimal level spacing in the spectrum.

The long-time average obeys the bound

ḡ(β) ≥ Z(2β) . (2.6)

The bound is saturated when the spectrum has no degeneracies.5 In this case the late-time

average of g, namely Z(2β), is exponentially smaller than the initial value Z2(β). Indeed,

in general we have

Z(2β)

Z(β)2
= exp

[
−2β

∫ 2β

β

S(β′)

β′2
dβ′
]
. (2.7)

For a CFT in d spacetime dimensions the right-hand side is equal to exp
[
−2
d

(
1− 1

2d

)
S(β)

]
.

5In 2d CFTs the spectrum always has degeneracies coming from descendant states. It is natural to

expect, however, that in a chaotic 2d CFT there are no degenerate primaries.
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2.1 Information loss

We now consider the long-time average ḡ(β) in the context of the AdS3/CFT2 duality.

Consider a 2d CFT on a circle of length L = 2π that has a holographic bulk dual, and

assume as before that the theory has a discrete spectrum. At high tempereature the

thermal state of the theory is dual to a BTZ black hole. Its partition function is given

approximately by Z(β) = exp
(
8π2k/β

)
where k = c/24 and c is the central charge of

the field theory. This is an approximation to the full partition function of the quantum

theory. The BTZ contribution to the spectral form factor can be computed by continuing

β → β + it, and it decays at late times as

|Z(β, t)|2 ∼ exp

(
16π2kβ

t2

)
. (2.8)

In taking the late time limit we will always keep β (the real part) fixed. In this approx-

imation we find that the time average is 1, violating the bound (2.6). This is a form of

information loss. The BTZ contribution to the partition function is given by the modular

image of the vacuum state. As we will see below, no finite number of additional primary

operators is sufficient to avoid information loss.

Let us think clearly about what this means. Given an approximate partition function

Z(β) we can compute the corresponding density of states ρ(E) by an inverse Laplace

transform. For the BTZ black hole this is well approximated at high energies by the Cardy

formula ρcardy(E) = e4π
√

2kE , which is an approximation to the density of states in the dual

field theory. The important difference between this and the exact density of states (2.1) of

the quantum theory is that the Cardy density is a smooth and finite function of the energy

(see [11] for a related discussion in the context of large N gauge theories). Indeed, given

a partition function of the form Z(β) =
∫
dEρs(E)e−βE where ρs is a smooth and finite

function, it is easy to see that the time-averaged spectral form factor violates the bound

regardless of the details of ρs.

We see that the late time behavior of the spectral form factor directly probes the

discreteness of the spectrum of the theory. In particular, the time-averaged ḡ(β) counts

discrete states in the spectrum (weighted by a Boltzmann factor and by degeneracy).

Information loss occurs when we approximate the density of states by a smooth function

that does not capture the individual energy levels. This type of information loss occurs in

classical black holes in arbitrary dimension. Equivalently, it occurs in the dual field theory

when we use the thermodynamic approximation to the partition function.

3 2d CFTs

In this section we discuss in more detail the torus partition function and spectral form factor

in 2d CFTs, focusing on theories with large central charge. We discuss possible corrections

to the leading answer (including certain non-perturbative corrections) and show that they

are not sufficient to restore information in the spectral form factor.

Consider the partition function of a 2d CFT on a torus with parameter τ = iβ
2π + µ

2π .

From now on we set the chemical potential µ = 0. The partition function can be written

– 8 –
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as a sum over all states,

Z(τ, τ̄) =
∑
(h,h̄)

Nh,h̄q
h−kq̄h̄−k . (3.1)

Here q(τ) ≡ exp(2πiτ), Nh,h̄ is the degeneracy of the state with conformal weights (h, h̄),

and we took the central charges to be cL = cR = c = 24k for convenience. All states have

h, h̄ ≥ 0.

The full partition function can also be written as a sum over Virasoro characters,

Z(τ, τ̄) = |χ0(τ)|2 +
∑
(h,h̄)

nh,h̄χh(τ)χ̄h̄(τ̄) . (3.2)

Here we use the notation f̄(z) = f(z̄). Each term captures the contribution from a Virasoro

primary with dimensions (h, h̄) and its descendants, and we have isolated the vacuum

contribution from the sum. Each character appears with degeneracy nh,h̄. The characters

are given by

χ0(τ) = (1− q)q
−k+ 1

24

η(τ)
,

χh(τ) =
qh−k+ 1

24

η(τ)
, h > 0 ,

(3.3)

where η(τ) is the Dedekind eta function. These expressions are exact even at finite c.

We assume the theory is modular invariant, which means

Z(γ(τ), γ(τ̄)) = Z(τ, τ̄) , γ(τ) =
aτ + b

cτ + d
, γ ∈ SL(2,Z) . (3.4)

We can write the partition function as a sum over states after performing any SL(2,Z)

transformation γ. We will refer to the γ-image of a particular character as the contribution

of that character in the γ frame.

To obtain the high-temperature approximation to the partition function we can write

the sum over characters in the S frame.

Z(τ, τ̄) = χ0(−1/τ)χ̄0(−1/τ̄) +
∑
(h,h̄)

nh,h̄χh(−1/τ)χ̄h̄(−1/τ̄) . (3.5)

The first term, which is the vacuum character contribution in the S frame, is the dominant

contribution at high temperatures (when β < 2π) [24]. It is given by

ZBTZ(τ, τ̄) ≡ χ0(−1/τ)χ̄0(−1/τ̄) =
2π

β

1

|η(τ)|2
(

1− e−4π2/β
)2

exp

[
8π2

β

(
k − 1

24

)]
.

(3.6)

In writing this we used the fact that η(−1/τ) =
√
−iτ · η(τ). The leading part of (3.6) at

large c comes from the vacuum state itself. It also has an O(1/c) correction coming from

the sum over the vacuum’s descendants.

– 9 –
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Much of this structure is echoed on the gravitational side. The asymptotic symmetry

algebra of pure gravity in AdS3 is the Virasoro algebra, with central charge c = 3`
2G [25].6

The contribution of thermal AdS3 to the partition function can be evaluated exactly, and

is given by the vacuum character contribution

Zvac(τ, τ̄) ≡ χ0(τ)χ̄0(τ̄) . (3.7)

In the bulk, the leading contribution comes from evaluating the action of the classical

gravity solution, while the O(1/c) correction is due to a 1-loop determinant. There are no

higher order corrections so this result is 1-loop exact in bulk language.

The contribution of the BTZ black hole geometry is given by the vacuum character

in the S frame, eq. (3.6). Here, again, the leading large c contribution comes from the

classical (black hole) solution, and there is an O(1/c) 1-loop determinant.

More generally, as we review in appendix A, at fixed temperature and chemical po-

tential there are an infinite number of classical bulk solutions that are related by SL(2,Z)

transformations [26].7 The solution that corresponds to γ ∈ SL(2,Z) makes a contribution

to the partition function equal to χ0(γ(τ))χ̄0(γ(τ̄)). For a general theory, there will be

many additional contributions to the partition function that correspond to states involving

matter fields.

3.1 Analytic continuation to real time

Equation (3.5) is a useful starting point for the analytic continuation β → β + it to real

time because (i) at t = 0 the vacuum character contribution provides a good approxima-

tion, and (ii) this dominant contribution has a clear bulk interpretation as the BTZ black

hole. This contribution remains dominant at sufficiently early times. We now discuss the

various pieces of eq. (3.5) after analytic continuation to late times. We will find that the

contribution coming from each individual character decays to zero at late times, violating

the bound (2.6).

We start by focusing on the contribution of the vacuum character (3.6), which is equal

to the BTZ black hole contribution and is the dominant contribution at high temperature.

We analytically continue β, taking

τ =
i(β + it)

2π
, τ̄ = − i(β + it)

2π
. (3.8)

Notice that after analytic continuation τ̄ is not the complex conjugate of τ . After a time of

order a few βs we find that the vacuum character contribution to the spectral form factor

decays as8

|ZBTZ(τ, τ̄)|2 ∼ 1

t6
exp

(
16π2β

β2 + t2
k

)
. (3.9)

6Here ` is the AdS length, and G is the 3d Newton constant.
7The family of solutions is labeled by elements of Γ∞\SL(2;Z), where we quotient by τ → τ + 1 on

the left.
8The continued eta function η(τ) oscillates in time, never giving a substantial contribution to (3.9).
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The leading, vacuum state contribution decays exponentially to an O(1) amplitude at times

t ∼
√
k. The subleading contribution coming from the descendents is then responsible

for the 1/t6 power law decay down to zero. Curiously, including additional states (the

vacuum’s descendents) in the S-frame makes the violation of the bound (2.6) worse.

Next, the contribution to (3.5) coming from each non-vacuum character can be writ-

ten as

χh(−1/τ)χ̄h̄(−1/τ̄) =
2π

β

1

|η(τ)|2
exp

[
8π2

β

(
k − 1

24
− h+ h̄

2

)]
, (3.10)

and deacys as

χh(−1/τ)χ̄h̄(−1/τ̄) ∼ 1

t
(3.11)

at late times, regardless of the conformal dimensions. (In writing these equations we

assumed for simplicity that neither h nor h̄ are equal to zero, i.e. we are excluding additional

conserved currents.) We arrive at the following conclusion: including a finite number of

characters in the S-frame does not bring us closer to obeying the bound (2.6).

4 Universal late time decay

In this section we will attempt to understand universal properties of the late time partition

function in AdS3/CFT2. For gravity in weakly curved AdS3 the partition function under-

goes a phase transition between the dominant low temperature saddle, thermal AdS3, and

the high temperature saddle, the BTZ black hole [27]. The partition function in these two

regimes is given approximately by

logZ(β) =


2βk , β > 2π

8π2k

β
, β < 2π

+O(1) . (4.1)

This phase structure is replicated in sufficiently sparse, large c CFTs [24]. As long as

the number of states grows sub-exponentially, the partition function is dominated by the

vacuum state at low temperatures, and by the vacuum state in the S frame at high temper-

atures. As discussed above, starting with the dominant high temperature contribution and

continuing β analytically to real time does not reproduce the correct late time behavior.

The spectral form factor satisfies the bound (2.6),

ḡ(β) = lim
to→∞

1

to

∫ to

0
|Z(β + it)|2dt ≥ Z(2β) , (4.2)

while the thermal partition function corresponding to the BTZ black hole leads to a decay-

ing spectral form factor (3.9). This contribution decays exponentially to an O(1) amplitude

at times of order
√
k. As we will show, this decay significantly underestimates the correct

late time behavior of the partition function.

In section 4.1 we identify a universal contribution to the partition function which de-

cays significantly slower than (3.9). Then, in section 4.2 we estimate corrections to the

– 11 –
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universal decay using Cardy’s formula, and find that they are negligible in this approxima-

tion (though with important caveats). We also show that the free compact boson exhibits

the universal early time behavior identified in section 4.1. In section 4.3 we give a refined

version of the universal contribution to the partition function for all times and tempera-

tures. This, together with the late time plateau for the spectral form factor, lends evidence

to a universal picture for the time dependence of the partition function that we lay out in

section 4.4.

4.1 Universal contribution

The partition function (3.5) expanded in the S frame is dominated by the vacuum character

at t = 0. This suggests a strategy for approximating the partition function at later times:

at any given time, identify the apropriate modular transformation such that the image of

the vacuum character in this frame is larger than in any other frame.

Consider the partition function at times tn ≡ 2πn, with corresponding modular pa-

rameters

τn =
i(β + itn)

2π
, τ̄n = − i(β + itn)

2π
, n ∈ Z . (4.3)

To study the partition function at these discrete times, it is convenient to perform a time-

dependent modular transformation γn(τ) ≡ −1/(τ + n).

γn(τn) =
2πi

β
, γn(τ̄n) = − 2πi

β + 2itn
. (4.4)

This transformation removes all of the holomorphic time dependence. It maximizes the

contribution from the vacuum character among all modular transformations. Explicitly,

the vacuum character in the γn frame is given by

Zvac(γn(τn), γn(τ̄n)) = χ0

(
2πi

β

)
χ̄0

(
− 2πi

β + 4iπn

)

=

√
4π2

β(β − 4πin)
·

exp
[
4π2

(
k − 1

24

) (
1
β + 1

β+4πin

)]
∣∣∣η ( iβ2π)∣∣∣2

×
(

1− e−
4π2

β

)(
1− e−

4π2

β+4πin

)
. (4.5)

It decays at late times (large n) as

Zvac(γn(τn), γn(τ̄n)) ∼ e4π2k/β

t
3/2
n

. (4.6)

Notice that the vacuum state itself decays in this frame to the exponentially large value

e4π2k/β , which is much larger than the asymptotic value of the vacuum state in the S frame.

The power law decay is due entirely to the O(1/c) piece of the vacuum character.

– 12 –
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Figure 3. The spectral form factors corresponding to the BTZ black hole contribution gBTZ(β, t)

(blue) and corresponding to the dominant image of the vacuum gn(β, t) (red). Here, for t 6= 2πn,

we interpolate by taking n = integer part(t/2π). This accounts for the discontinuities in the red,

dashed line. The peaks of this contribution are attained at discrete times tn (purple dots). Going to

the late dominant frame does not avoid late time decay, violating the late time bound (2.6) (black,

dotted). Inset: the dominant contribution at tn (purple) with a fit to a t−3 power law (black).

The vacuum character contribution to the spectral form factor in this frame then

decays as

gn(β, tn) ≡ |Zvac(γn(τn), γn(τ̄n))|2 ∼ e8π2k/β

t3n
. (4.7)

Figure 3 shows gn(β, t) compared with the late time bound (2.6) and the decay from the

vacuum character in the S frame. Notice that the amplitude of the power law decay in (4.7)

is in fact greater than the value of the late time bound (2.6), Z(2β) ≈ exp
(

4π2k
β

)
. Next,

let us consider the contribution of a non-vacuum character Zh,h̄(τ, τ̄) = χh(τ)χ̄h̄(τ̄). We

assume that the state is ‘light’, namely that the conformal weights h, h̄ are fixed as we

take k large. We will also assume for simplicity that there are no extra currents, i.e. h, h̄

are both strictly positive. At time tn the γn frame again maximizes the contribution of

the character among all SL(2,Z) frames. At late times this contribution to the partition

function decays as

Zh,h̄(γn(τn), γn(τ̄n)) ∼ e4π2k/β

t
1/2
n

. (4.8)

The faster decay compared with the vacuum character (4.6) can be traced back to the fact

that the vacuum character has an additional (1−q) factor that decays as 1/tn. The matter

character contribution to the spectral form factor behaves at late times as

g(h,h̄)
n (β, tn) ≡ |Zh,h̄(γn(τn), γn(τ̄n))|2 ∼ e8π2k/β

tn
. (4.9)

– 13 –



J
H
E
P
0
8
(
2
0
1
7
)
0
7
5

In section 4.3 we will generalize these considerations and find a universal contribution

to the spectral form factor for arbitrary rational times. The result will be bounded above

by (4.9) if we replace tn by a rational time. We conjecture that the universal contributions

from the vacuum (4.7) together with the contribution from the light states (4.9) correctly

describe the spectral form factor for generic non-integrable CFTs up to the dip time.

For a putative CFT that is dual to pure gravity there are no light matter fields, and we

conjecture that correct description is given by (4.7). We provide an argument for this in the

next subsection. As discussed in the introduction, beyond the dip time we expect another

universal contribution, one due to random matrix theory, to become dominant and lead to

a ramp and a plateau.

This universal contribution we have identified, (4.9), has a nice connection with clas-

sical bulk saddles. As we review in appendix A, for each n there is a black hole solution in

the bulk, with the contribution Zvac(γn(τ), γn(τ̄)) to the gravitational partition function.

We can thus identify the universal decay of the spectral form factor with the contribution

of these black hole solutions.

4.2 Dominance of the universal contribution

In the previous subsection we identified a universal contribution to the partition function.

It is natural to ask for what class of theories (if any) this contribution correctly describes

the early time behavior of the partition function. In this section we show that this is the

case for at least one theory. We then argue that the universal contribution is the dominant

one at early times in a large class of theories.

First, consider the theory of a free compact scalar with internal radius r.9 The partition

function (with τ = iβ
2π ) is given by

Z =
1

|η(τ)|2
∞∑

n,m=−∞
e−β(n2r2+m2/4r2) =

θ3(e−2βr2
)θ3(e−β/2r

2
)

|η(τ)|2
. (4.10)

The spectral form factor has a period that is determined by the radius r. By choosing r

appropriately (either very large or very small) one can have a long period, exposing the

universal behavior (4.9) at early times. The result is shown in figure 4.10

We now argue that the universal contribution identified in the previous subsection

provides a good approximation to the partition function before the dip time even in generic

2d CFTs, namely before the universal contribution due to random matrix theory becomes

dominant. The argument has important caveats that will be discussed below.

9We are thankful to Alexandre Belin for useful discussions.
10Note that, due to the small central charge, c = 1, the behavior of the initial decay is somewhat different

than the universal large k behavior identified previously. As in that case, the heights of the peaks of the

partition function exhibit an initial power law decay. In this case, however, there is no exponential decay.

Never the less, the behavior is reproduced by the modular images of the free bosonic vacuum character. The

difference stems from the fact that the free boson vacuum character looks different than the c > 1 Virasoro

vacuum. Zc=1
vac (γn(τn), γn(τ̄n)) = 1/η(γn(τn))η(γn(τ̄n)), which has a pure power law decay at large n.
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Figure 4. The spectral form factor of a compact scalar, displaying the behavior (4.9) of the

universal contribution at times t = 2πn. The subleading peaks at times t = 2πn + π can also be

explained using universal properties such as modular invariance, as will be discussed in section 4.3.

The dashed lines show the 1/t envelope of the leading and subleading peaks.

Focusing again on the discrete times tn = 2πn the full partition function can be written

as a sum over states in the γn frame,

Z(β + itn) = Z(γn(τn), γn(τ̄n)) = e
4π2k
β e

4π2k
β+4πin

1 +
∑
h,h̄>0

Nh,h̄e
−4π2h
β e

−4π2h̄
β+4πin

 . (4.11)

The factor in front on the right-hand side is equal to the vacuum state contribution in the

γn frame. This is the amplitude of the universal contribution (4.6). Our goal is to argue

that the sum (4.11) is well approximated by the universal contribution, (4.6), until the dip

time. We begin by explaining why the sum over the heavy states gives a subdominant

contribution to the partition function, and then why the light states and descendants

reproduce the amplitude and power law decay of (4.6).

The correction to the leading amplitude in (4.11) is

f ≡
∑
h,h̄>0

Nh,h̄e
−4π2h
β e

−4π2h̄
β+4πin

=
∑

h<k||h̄<k

Nh,h̄e
−4π2h
β e

−4π2h̄
β+4πin

︸ ︷︷ ︸
fL

+
∑
h,h̄>k

Nh,h̄e
−4π2h
β e

−4π2h̄
β+4πin

︸ ︷︷ ︸
fH

(4.12)

In the second line we separated the sum over all states into a sum fL over ‘light’ states,

and a sum fH over ‘heavy’ states. Let us discuss these two sums separately.

Heavy states. We consider first the sum over heavy states, which we can write as

fH = e
−4π2k
β e

−4π2k
β+4πin

∫ ∞
0
dĥ dˆ̄h ρ(ĥ, ˆ̄h)e

−4π2ĥ
β e

−4π2ˆ̄h
β+4πin . (4.13)
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Here ĥ ≡ h − k, and ρ(ĥ, ˆ̄h) is the density of heavy states. This density of states can be

approximated by the Cardy density ρc [28], which is defined by the equation

e2πik( 1
τ
− 1
τ̄ ) =

∫ ∞
0
dĥ dˆ̄h ρc(ĥ,

ˆ̄h)e2πiτĥe−2πiτ̄ ˆ̄h . (4.14)

The integral on the right is exactly the integral that appears on the right-hand side of (4.13)

if we approximate the full density of states ρ by the Cardy density ρc, and replace τ = 4π2i
β

and τ̄ = − 4π2i
β+2itn

. Therefore, in the Cardy approximation we find that

fH ≈ e
−4π2k
β e

−4π2k
β+2itn e

k(β+itn)
π . (4.15)

In the large k, high temperature limit we see that fH � 1 at arbitrarily late times, and so

the contribution from the heavy states cannot significantly change the amplitude in (4.11).

It is instructive to verify that this suppression of heavy states does not rely on detailed

properties of the Cardy distribution. The solution to (4.14) is

ρc(ĥ,
ˆ̄h) = ρc(ĥ)ρc(

ˆ̄h) , (4.16)

ρc(ĥ) = δ(ĥ) + 2π

√
k

ĥ
· I1

(
4π
√
kĥ
)

= δ(ĥ) +

(
k

4ĥ3

)1/4

e4π
√
kĥ
[
1 +O(ĥ−1/2)

]
. (4.17)

In the last line we expanded to leading order in large ĥ. It is easy to check that this

leading piece (including the ĥ−3/4 factor) also leads to a suppressed contribution from the

heavy states.

We now mention an important caveat regarding the argument above, which relies on

the assumption that the density of states is well-approximated by the Cardy density for

heavy states. One can apply the same argument to the S image of the vacuum at time

t = 2πn (instead of to the γn image), and again conclude that the corrections to the image

of the vacuum state due to heavy states are negligible. But the S image of the vacuum

simply decays in time and does not exhibit the peaks seen in the γn frame, leading to a

contradiction. Perhaps the simplest resolution of this problem is that there are subleading

corrections to the Cardy density that reproduce the peaks when working in the S frame.

We showed that the detailed properties of the Cardy density are not important for the

argument to work, and so such corrections should take a special form. We hope to return

to this question in future work.

Light states. The contribution from light states is more subtle. To constrain the con-

tribution of the light states, we would like to appeal to sparsity. In other words, we would

like to consider theories without too many light states. However, we always have, at the

very least, Virasoro descendants of the vacuum. As the light state contribution,

fL =

∫
h<k||h̄<k

dh dh̄ ρ(h, h̄)e
−4π2h
β e

−4π2h̄
β+4πin , (4.18)
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has no suppression, it is difficult to argue that the light states give an O(1) contribution

at late times. Indeed, if this were the case, it would contradict the power law decay of

our universal contribution (4.9). To address this fact, and to give teeth to the assumption

of sparsity, we turn our attention to the expansion of the partition function in terms of

characters rather than states.

Light and heavy characters. The universal contribution (4.9) contains an amplitude

and a subleading power-law decay, which comes from summing over descendants. The

descendants include heavy states which contribute to the Cardy relation (4.14). To show the

dominance of the full contribution (4.9) (including the power law decay) we re-expand the

partition function in characters instead of in states, in the γn frame. We define σn ≡ γn(τn)

and σ̄n ≡ γn(τ̄n) to reduce clutter.

Z(β + it) = Z(σn, σ̄n) = χ0(σn)χ̄0(σ̄n))

+
∑

h<k||h̄<k

nh,h̄χh(σn)χ̄h̄(σ̄n)

+ e
−4π2k
β e

−4π2k
β+4πin

∫ ∞
0
dĥ dˆ̄h ρχ(ĥ, ˆ̄h)χĥ(σn)χ̄ˆ̄h

(σ̄n) . (4.19)

Here ρχ(ĥ, ˆ̄h) denotes the density of characters with conformal dimensions (h, h̄), and we

took out factors of qk as in (4.13). As before, ĥ ≡ h − k. The term χ0(σn)χ̄0(σ̄n)) is the

universal vacuum contribution (4.7). The sum on the second line is the contribution from

light characters.

The primaries we are describing as light here consist of any state with either h or h̄

smaller than k. These are referred to as censored primaries in [21]. One way to justify

limiting the number of such states, is that those with either h � h̄ or h̄ � h are close to

conserved currents, and we expect there to be few such states in a typical chaotic CFT.

More generally, we would like to consider CFTs that are dual to gravitational theories

without too much matter. For us, sparseness means simply that the contribution from

these light primaries is well approximated by the vacuum character, with at most an order

one number of additional light primaries.11

Finally, on the last line we have the contribution of the heavy characters, which we

claim is negligible in the Cardy approximation. We can approximate the density of the

heavy characters by a Cardy density ρχ ≈ ρχ,c, which is defined by the equation

e2πik( 1
τ
− 1
τ̄ ) =

∫ ∞
0
dĥ dˆ̄h ρχ,c(ĥ,

ˆ̄h)χĥ(τ)χ̄ˆ̄h
(τ̄) . (4.20)

As in the case of heavy states, the integral on the right-hand side is the same integral that

appears in (4.19), and the same argument implies that this contribution will be negligible.

It is worth briefly connecting this argument back to the case of the free boson and

discussing what role a sparse light spectrum played in getting the early time universal

11Note, this is more strict then what is sometimes imposed (see [24] for instance), and requires a separation

of scales between the AdS length and the string scale in the bulk.
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decay shown in figure 4. This behavior manifests itself when the radius of the boson is

taken to be very large, or very small, providing a long enough period to see the power law

decay. For simplicity, let’s focus on the case r � 1. In this case the winding modes, m 6= 0

in (4.10), are parametrically heavy. The contribution of the light modes is then given by,

ZL(γn(τn), γn(τ̄n)) =
1

η(γn(τn))η̄(γn(τ̄n))

∞∑
`=−∞

eiπ`
2r2(γn(τn)−γn(τ̄n))

=
θ3

[
exp

(
− 8π2r2(β+itn)

4π2n2+(β+itn)2

)]
η(γn(τn))η̄(γn(τ̄n))

∼ 1

t
1/2
n

,

(4.21)

exhibiting the same power law decay as the vacuum. Here we can view the r → 0 limit as

producing a sparser light spectrum by decoupling the winding modes. If instead we take

r ∼ 1, so that there is no separation between momentum and winding modes, there is no

early time window for which the partition function decays.

The arguments above seem to imply a decaying spectral form factor at arbitrarily late

times, but we know that they must fail at some point in order for the lower bound (2.6)

on the plateau height to be satisfied. In particular, the assumption that the density of

characters is well approximated by the Cardy density becomes invalid at sufficiently late

times. The left-hand side of (4.20) includes only the vacuum state. In the full theory the

left-hand side includes other states, whose contribution becomes important at late times.

In this work we assume that at late times the only important physical effects are the

universal decay before the dip time, and the random matrix theory behavior of a ramp +

plateau beyond it. This is equivalent to assuming that the density of characters ρχ is well

approximated by the Cardy density until the dip time.

4.3 Rational times and hot saddles

So far we focused on the discrete times tn = 2πn. The story at generic times is slightly

more elaborate. We begin by considering the times tn+1/2 = 2π(n + 1/2), n ∈ Z, and

the corresponding modular parameters τn+1/2 and τ̄n+1/2. There are now two modular

transformations of the vacuum that vie for dominance at high temperatures: γn and γ2,2n+1,

where we define γc,d(τ) ≡ aτ+b
cτ+d (where a, b are uniquely determined from c, d). Indeed, we

have our previous choice,

Zvac(γn(τn+1/2), γn(τ̄n+1/2)) = exp

[
4π2k

β + iπ
+

4π2k

β − 4iπn− iπ
+O(k0)

]
. (4.22)

And we have the competing modular frame,

Zvac(γ2,2n+1(τn+1/2), γ2,2n+1(τ̄n+1/2)) = exp

[
π(π−iβ)k

β
− iπk(−iβ+4πn+π)

π(4n+ 2)− iβ
+O(k0)

]
.

(4.23)
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Figure 5. Here, we show the upper half-plane tiled by fundamental domains of SL(2; Z). As

we increase the temperature, which corresponds to lowering the red line, we cross more and more

fundamental domains.

At late times (large n) we compare the two contributions,

log
∣∣Zvac(γn(τn+1/2), γn(τ̄n+1/2))

∣∣ ≈ 4π2βk

β2 + π2
+O(k0) , and (4.24)

log
∣∣Zvac(γ2,2n+1(τn+1/2), γ2,2n+1(τ̄n+1/2))

∣∣ ≈ π2k

β
+O(k0) . (4.25)

For sufficiently high temperature, β < π√
3
, the second contribution is larger and gives the

dominant contribution, while for π√
3
< β < 2π the first contribution dominates.

More generally, for any rational time, tn/m = 2πn
m , there exists an inverse temperature,

βm,n, such that for β < βm,n, the vacuum in the modular frame γm,n gives a bigger

contribution than the vacuum in any other frame.

We can understand this from the Γ∞\SL(2;Z) tiling of the upper half plane, see fig-

ure 5. As we increase temperature, we decrease Im(τ), and intersect more and more

fundamental domains. Each such fundamental domain corresponds to a different modular

image of the vacuum dominating. At a given temperature, we can refine our identification

of the universal contribution to the partition function,

Z?(β, tn/m) ≡ χ0(γ?(τn/m))χ̄0(γ?(τ̄n/m)) . (4.26)

Here γ? is the modular transformation that maximizes the vacuum character contribution

at given temperature and time.12 At high temperatures, (4.26) gives a complicated contri-

bution to the partition function. See figure 6 for an example. At late times, it is easy to

check that taking the decaying result, e8π
2k/β

t3n
, for the spectral form factor, and replacing

tn by an arbitrary time tn/m, leads to a result that is always greater than or equal to |Z?|2.

12Explicitly, given τn/m, τ̄n/m it is defined by

γ∗ ≡ argmax
γm,n

|χ0(γm,n(τn/m))χ̄0(γm,n(τ̄n/m))|2 . (4.27)
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Figure 6. Here, in the top line, we display the behavior of our universal contribution, g?(β, t) at

various temperatures. On the bottom line, for comparison, we display the spectral form factor for

a sample modular invariant function, ψ2(τ), defined in section 5. As we increase temperature both

are controlled by more and more saddles.

4.4 Dip time estimate

In this section we derive an upper bound on the time at which the spectral form factor of

a generic chaotic CFT is expected to cross over to random matrix theory behavior. We

call this the dip time. The derivation assumes that the universal contribution computed

in previous sections correctly describes the late time behavior of the spectral form factor

up to exponentially late times, right up to the dip time td.

The universal contribution, which we shall call the slope, is bounded from above by

gslope(β, t) ∼
e8π2k/β

ts
, (4.28)

where s = 3 for the vacuum character in the γn frame, and s = 1 for non-vacuum characters

(where both h, h̄ are non-zero). While the result (4.28) was derived for the discrete times

tn = 2πn, as we saw in section 4.3 it provides an upper bound on the universal contribution

and that will suffice for the purpose of deriving a bound.13

The decaying contribution (4.28) cannot be the full answer for a theory with a discrete

spectrum at arbitrarily late times, because it violates the bound (2.6). Going to late times

in the spectral form factor is equivalent to probing small energy differences in the spectrum.

We expect the properties of the spectrum at small energy differences (and therefore the

behavior of the spectral form factor at very late times) to be goverened by random matrix

theory [10]. As described in section 1.2, random matrix theory gives another universal

contribution. While this contribution is expected to have large fluctuations, on average its

behavior is relatively simple. Roughly speaking, it grows linearly in time until the plateau

time tp, beyond which it levels off at its asymptotic value which we shall denote gp.

In this section we estimate the dip time td, which is the crossover time from the

universal decay of (4.28) to the random matrix theory behavior. We find that the ratio

13Notice that the universal contribution at non-integer times is exponentially smaller in k than (4.28).

Therefore, in practice we expect the random matrix theory contribution (the ramp) to ‘peak through’ at

non-integer times even before our estimate of the dip time. We thank Steve Shenker for pointing this out.
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tp/td is exponentially large in k, which implies that there is a long period during which we

expect the spectral form factor to grow linearly (on average) in a generic theory.

To get the late time behavior of the ramp and the plateau, recall that the thermody-

namic partition function is given by the BTZ black hole partition function, Z(β) = e8π2k/β .

The plateau height gp is bounded below by Z(2β) (it can be pushed higher by degeneracies,

which we ignore for now).

gp ≥ Z(2β) = e4π2k/β . (4.29)

The plateau time can be approximated by counting the available states at 2β, so it is

given by14

tp ≈ eS(2β) = e8π2k/β . (4.30)

The ramp grows linearly in time, and should reach the plateau height at the plateau time.

The spectral form factor on the ramp is then given by

gramp(t) =
gpt

tp
≥ e−4π2k/βt . (4.31)

The dip time td is defined by gslope(td) = gramp(td), and is given by

td = exp

(
12π2k

(1 + s)β

)
(4.32)

For both the vacuum and matter contributions it is parametrically smaller than the

plateau time:

tp
td

= exp

(
2s− 1

s+ 1

4π2k

β

)
. (4.33)

4.5 Fine spectral probe

As we have seen discreteness of the spectrum in the original SL(2,Z) frame is a necessary

and sufficient condition for the partition function not to decay at late times. However,

modular invariance means that we should be able to present the partition function as a

sum over states in any SL(2;Z) frame.

Z(τ, τ̄) =
∑
h,h̄

e2πi(hγ(τ)−h̄γ(τ̄)) . (4.34)

In other frames, discreteness of the spectrum is not sufficient to guarantee the correct

late time behavior, for instance a discrete set of states in the BTZ frame, may certainly

decay. Thus, the late time behavior probes slightly different features of the spectrum when

viewed in each frame. Of course, if we have a modular invariant spectrum these are all

equivalent, but if one doesn’t know a-priori that a given spectrum is modular invariant,

14The factor of 2 comes from the two terms in the exponent e−β(En+Em) that appears in the sum over

energy states.
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Figure 7. As an example here we plot the time dependence of an exact modular invariant function,

ψ2(τ) (defined in section 5), and a function built out of a Cardy-like number of states at the same

dimensions. The left figure compares the exact spectrum in black with the Cardy spectrum in red,

while the left figure shows the difference in the time dependence.

the late time behavior in other frames provides a detailed probe. To demonstrate this

phenomenon, consider the time dependence depicted in figure 7, where we compare the

exact partition function, to the behavior of an approximate partition function built out of

a discrete spectrum with exponentially small modifications to the degeneracies. For long

enough times, these two putative partition functions diverge despite the similarity in their

spectra. In this way, the time dependence in different frames probes detailed aspects of

the CFT spectrum.

5 Information restoration in integrable theories

So far we have discussed information loss in chaotic CFTs. In section 4 we have identified

a decaying universal contribution to the spectral form factor, and commented on the ex-

pected late time behavior from random matrix theory. In integrable theories we can say

significantly more about the time dependence of the spectral form factor.15 Such theories

are not chaotic and are not described by random matrix theories at small energy differences.

Therefore, their spectral form factors do not exhibit a dip, ramp, and plateau at late times.

Nevertheless, such theories do exhibit information loss at the level of individual Virasoro

characters: each Virasoro character still decays to zero at late times. It is interesting to

ask how information is restored in these simpler cases.

In this section we will answer this question for chiral CFTs. The existence of chiral

CFTs with large central charge that are dual to some form of semiclassical gravity is

somewhat speculative [29–37]. Here we will work under the assumption that such theories

do exist, and that they have a sensible bulk interpretation (though the calculation itself

will be done purely in field theory).

We will identify a set of modular transformations whose vacuum images are sufficient

to restore information. In generic non-chiral theories, the same set of transformations is

responsible for the universal late time decay discussed in section 4. In chiral theories, these

transformations are enough to avoid the late time decay.

15The same techniques can be applied to BPS subsectors of generic theories.
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While we will focus on chiral theories, we note that much of what we say here also

applies to holomorphic objects in general non-chiral theories, such as the elliptic genus

which counts BPS states in theories with N = (1, 1) supersymmetry.

We now turn to a brief review of the properties of chiral CFTs. In two spacetime

dimensions, the vector representation of the Lorentz group is reducible into left-moving

and right-moving representations. Chiral conformal field theories are theories of purely

left-moving degrees of freedom in Lorentzian signature, or purely holomorphic fields in

Euclidean signature. The symmetry algebra of these theories contains a single left-moving

copy of the Virasoro algebra, and correspondingly a chiral CFT is labeled by a single central

charge c. Operators are labeled by a single conformal dimension, h = ∆ = J , where J is

the spin.

The torus partition functions of chiral CFTs can be written in a similar fashion to a

generic 2d CFT.

Z(τ) =
∑
h≥0

Nhq
h−k =

∑
h≥0

nhχh(τ) , k ≡ c

24
∈ Z . (5.1)

We again will be focusing on the case of modular invariant theories,

Z (γ(τ)) = Z (τ) , γ(τ) =
aτ + b

cτ + d
, γ ∈ SL(2;Z) . (5.2)

Modular invariant chiral CFTs are quite rigid. First, k and all conformal dimensions h

must be integers. For this reason, the spectral form factor is periodic in time with an

O(1) period. Second, the partition function is both modular invariant and meromorphic.

Such functions are uniquely determined by their poles and by the constant piece in the q

expansion (5.1) about τ = i∞.

As above, we will focus on sparse theories with Nh . e2πh, for which the thermal

partition function undergoes a sharp phase transition in temperature.

logZ(β) =


kβ , β > 2π

4π2k

β
, β < 2π

+O(1) . (5.3)

At high temperature the BTZ contribution dominates and is given by

ZBTZ(τ) = χ0(−1/τ) , (5.4)

where τ = iβ
2π as before.16

We again analytically continue β → β + it, with the modular parameter given by

τ =
iβ

2π
− t

2π
. (5.5)

16We are calling this the ‘BTZ partition function’ because it is dual to the contribution from the BTZ

configuration in chiral gravity. See appendix A for details.
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We consider the spectral form factor g(β, t) = |Z(β + it)|2. Just as in the non-chiral case,

the BTZ contribution decays to zero at late times,

|ZBTZ(τ)|2 ∼ 1

t3
exp

[
8π2kβ

β2 + t2

]
. (5.6)

We see that we have a phenomenon of information loss even in chiral theories.

It is now easy to see how information is restored. The partition function is manifestly

2π-periodic in time as a result of modular invariance, Z(τ) = Z(τ + 1). At time tn = 2πn,

n ∈ Z, the partition function is dominated by the modular image χ0(γn(τn)) of the BTZ

contribution. This image is simply equal to γ0(−1/τ0) due to the periodicity. As advertised,

the modular transformation at time tn is the same one that gives the universal late time

decay discussed in section 4.

5.1 Saddle point expansion

Our next goal is to describe, in bulk language, the mechanism by which information is

restored. The modular-invariant partition function includes contributions from SL(2,Z)

images of the vacuum character. They are dual to a family of black holes in the bulk. In

this section we will explain that the partition function can be written as a sum over these

saddle point contributions. This description of the partition function is evocative of a bulk

path integral. In the next section we will discuss how information is restored in this saddle

point expansion, and what this may teach us about the bulk.

As mentioned above, meromorphic modular invariant functions are entirely fixed by

their poles and their constant term. For a chiral CFT, this means that the full parti-

tion function,

Z(τ) =

k∑
h=0

Nhq
h−k

︸ ︷︷ ︸
ZL(τ)

+

∞∑
h=k+1

Nhq
h−k

︸ ︷︷ ︸
ZH(τ)

,
(5.7)

is fixed by the light spectrum — those states with h ≤ k. Here the generating function for

the light states is denoted by ZL.

The way in which the spectrum of heavy states is fixed is relatively simple, and goes

back to the work of Rademacher [38, 39].17 We would like to complete ZL(τ) into a

fully modular invariant function. One way to do this is to sum over the modular group,

SL(2;Z). One generator, τ → τ + 1 acts trivially on q, so we only actually need to sum

over Γ∞\SL(2;Z).

Z(τ) =
∑′

γ∈Γ∞\SL(2;Z)

ZL(γ(τ)) . (5.8)

Here, the sum runs over the elements,

Γ∞\SL(2;Z) =

{
γ(τ) =

aτ + b

cτ + d
: ad− bc = 1, c = 0, a = 1||0 ≤ a < c

}
, (5.9)

17This mathematical structure is essentially the same for the generating functions of BPS states alluded

to at the beginning of this section [40].
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which can be parameterized by the pair (c, d) satisfying gcd(c, d) = 1. The sum is primed to

indicate that there is a regularization needed. There is some freedom in how to regularize,

but choices that preserve modular invariance can differ by at most an additive constant.18

The sum takes on a particularly attractive meaning when thought of in the context of

large k CFTs dual to large radius gravity.

Z(β) = ZL(β) + ZL(4π2/β) +
∑′

Γ∞\SL(2;Z)
c≥1,d>0

ZL(γc,d(τ))
∣∣∣
τ=iβ/2π

≈ eβk + e
4π2k
β +

∑′

Γ∞\SL(2;Z)
c≥1,d>0

ZL(γc,d(τ))
∣∣∣
τ=iβ/2π

(5.10)

It is tempting to identify this sum with the sum over bulk geometries. In this descrip-

tion the first and second terms correspond to the vacuum and BTZ black hole respectively,

and the remaining terms correspond to the subleading geometries Mc,d and their appro-

priate generalization for gravitational theories with matter. As we review in appendix A,

this can be made precise in the context of chiral gravity.

5.2 Late time behavior in saddle point expansion

Equipped with our expression of the partition function as an infinite sum over saddles, (5.8),

we can gain more insight into how the thermal partition function avoids late time decay.

Initially, at high temperatures, the partition function is well approximated by the BTZ

contribution.

Z(β + it) ≈ ZBTZ(β + it) = e
4π2k
β+it , 0 < t� β . (5.11)

This contribution, however, quickly begins to underestimate the partition function. Focus-

ing on times t ≈ tn = 2πn and taking n > 0, the dominance of the BTZ saddle is eclipsed

by the appropriate saddle, labeled by (c, d) = (1, n).

Z(β + it) ≈ Z(γn(τ))
∣∣∣
τ=

i(β+it)
2π

≈ e
4π2k

β+i(t−2πn) , 0 < t� β . (5.12)

For each integer n the given saddle goes from subdominant to dominant and then expo-

nentially decays again. Only by summing over this infinite class of saddles do we get a

partition function that exhibits the appropriate, non-decaying behavior, see figure 8.

For non-integer time, we again have the spaghetti like behavior of section (4.3). For

each time t = n/m there is a phase transition such that for all β < βm,n we are domi-

nated by the (m,n) saddle. In this way, reproducing the correct late time behavior at all

temperatures depends crucially on including the appropriate set of saddles.

18One simple way to regularize is to promote Z(τ) from a modular invariant function to a modular form

of weight w, Zw(γ(τ)) = (cτ + d)wZw(τ) =
∑
γ∈Γ∞\SL(2;Z)

ZL(γ(τ))
(cτ+d)w

. The partition function Z(τ) is then

defined by analytic continuation.
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Figure 8. The spectral form factor g(β, t) (dashed-dotted), and the contribution of six individual

saddles gn(β, t), n = 0, . . . , 5 (solid lines). Each individual saddle gn is dominant around t = tn
and exponentially sub-dominant at other times.

5.3 Discretizing the spectrum

Throughout this paper we have emphasized the connection between the late time behavior

of the spectral form factor and the discrete nature of the spectrum. In this section we

review how the naively smooth spectral density is rendered discrete by the SL(2; Z) saddle

point expansion. Including a large but finite number of saddles in the expansion yields a

smooth density of states with sharp peaks around the locations of the underlying states,

while including all saddles leads to a fully discrete density of states (cf. eq. (5.22)).

To be concrete, we will study weight w modular forms ψn;w, with polar part consisting

of a single pole of weight n.

ψn;w(τ) ≡ 1

qn
+O(q) . (5.13)

They have the following property under modular transformation.

ψn;w (γ(τ)) = (cτ + d)wψn;w(τ) . (5.14)

To make contact with the previous discussion, the functions ψn;0 can be used as a basis for

constructing a partition function. Strictly speaking, the manipulations we present are only

valid for w > 1, but we may think of introducing w as a regulator.19 The final results can

be analytically continued to w = 0. They match careful computations performed in the

w < 1 regime with a subtraction based scheme [38, 39]. For w = 0 the only holomorphic

modular function is a constant, and so any scheme that preserves modular invariance is

guaranteed to reproduce the same modular function, up to a constant. This constant may

be important for understanding whether theories of pure 3d gravity exist [33, 36], but will

not effect our discussion here.

19A special case of this is the differential regularization advocated in [20, 41].
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Given any T invariant function, f(τ + 1) = f(τ), we may write,

Fw(τ) =
∑

γ∈Γ∞\SL(2;Z)

1

(cτ + d)w
f(γ(τ)) . (5.15)

To see how Fw(τ) transforms, we apply an element of SL(2;Z).

Fw(γ(τ)) =
∑

γ′∈Γ∞\SL(2;Z)

1

(c′γ(τ) + d′)w
f(γ′(γ(τ)))

=
∑

γ′′∈Γ∞\SL(2;Z)

(
cτ + d

c′′τ + d′′

)w
f(γ′′(τ))

= (cτ + d)wFw(τ) .

(5.16)

The one subtlety in the above argument is working with the cosets, Γ∞\SL(2;Z) rather

then the full group, but as f is T invariant, and {c, d} do not change when acting with T

on the left, we are free to work in the coset space.

We are interested in the special case,

ψn;w(τ) =
∑

γ∈Γ∞\SL(2;Z)

e−2πinγ(τ)

(cτ + d)w

=
1

qn
+
∑
m≥0

N (n;w)
m qm .

(5.17)

In terms of a real inverse temperature, we can write

ψn;w(β) = eβn +

∫ ∞
0

d∆ ρ(n;w)(∆)e−β∆ , (5.18)

and perform an inverse Laplace transform to read off the density of states. The term

involving the density of states can be written explicitly as,∫ ∞
0

d∆ ρ(n;w)(∆)e−β∆ =
∑

γ∈(Γ∞\SL(2;Z))∗

e−2πinγ(τ)

(cτ + d)w
, (5.19)

where the ∗ indicates that we have dropped the identity contribution from the modular

sum. Performing the inverse Laplace transform gives,

ρ(n;w)(∆) =
1

2πi

∑
γ∈(Γ∞\SL(2;Z))∗

∫ ε+i∞

ε−i∞
dβ eβ∆ e

−2πinγ(τ)

(cτ + d)w
. (5.20)

It is useful to organize the sum over Γ∞\SL(2;Z) as a double sum first over

Γ∞\SL(2;Z)/Γ∞, and a sum over right action by T `. Then, by using the identity,

1

2πi

∫ ε+i∞

ε−i∞
dβ eβ∆ e

−2πinγ(τ)

(cτ + d)w
= −2π

(
−i
√

∆

n

)w−1
e2πi(∆ d

c
−na

c
)

c
Iw−1

(
4π

c

√
n∆

)
, (5.21)
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we can write the density as,

ρ(n;w)(∆) = −2π

c−1∑
d=0: (c,d)=1

∞∑
`=−∞

e2πi∆`

(
−i
√

∆

n

)w−1
e2πi(∆ d

c
−na

c
)

c
Iw−1

(
4π

c

√
n∆

)

= −2π

c−1∑
d=0: (c,d)=1

∞∑
s=−∞

δ(∆− s)

(
−i
√

∆

n

)w−1
e2πi(∆ d

c
−na

c
)

c
Iw−1

(
4π

c

√
n∆

)
.

(5.22)

The delta function in the last line is exactly the discreetness of the spectrum we were

after. Notice that including a finite number of saddles, by placing a cutoff on |`|, leads to a

smooth density of states that becomes progressively sharper around the discrete states as

we increase the cutoff. Put differently, by including an increasing number of saddles in the

expansion we can witness the discreteness of the spectrum emerge out of the smooth density.

6 Discussion

In this paper we have examined the time dependence of the partition function in two-

dimensional conformal field theories. We identified a universal contribution which decays

slowly in time. By apealing to the late time behavior of random matrix theory we were able

to conjecture a dip time, where we expect the crossover to RMT to set in. In integrable

models, in particular chiral conformal field theories, we were able to identify an infinite

set of saddle point contributions to the partition function, corresponding to black holes in

the bulk, which serve to restore information for all time. All of these discussions, however,

leave open many avenues of future inquiry.

One important question is when do the correction to the Cardy formula (4.20) describ-

ing the density of characters become important enough to affect the late time behavior.

In theories with sufficiently sparse spectra, we expect such corrections to be responsible

for the late time transition to random matrix theory behavior. They may also affect the

universal decay worked out in section 4 before the dip time. A possible starting point for

investigating these questions is to include non-vacuum states on the left-hand side of (4.20).

An important assumption we use was sparsity of the light spectrum in gravitational

theories. An obvious question is how the notion of sparsity imposed here connects to

other such criteria one may wish to impose for a conformal field theory dual to gravity.

For instance those coming from requiring a Hawking-Page phase transition, appropriate

behavior of Rényi entropies, saturation of Lyapunov bounds, or from demanding a bulk

point singularity [24, 42–50].

We have mentioned that the discussion of information loss in integrable theories can

in principle be applied to counts of BPS states in generic supersymmetric theories. It

would be interesting to study this in detail. It would be especially interesting if one can

leverage information about how the BPS spectrum solves its information paradox to make

statements about the full supersymmetric theory.

As we investigate the analytically continued partition function at higher and higher

temperature, it’s time dependance becomes very featured, see figure 6. For our universal
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contribution, as well as for chiral CFTs, there are spikes that occur at regular, rational

times. An ambitious question is whether there is an experimental observable (perhaps

considering a two point function rather than a partition function) which might be able to

detect these rational spikes for experimentally realizable 1+1d systems.
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A Euclidean black holes in AdS3

In this appendix we review some basic facts about thermal solutions to the vacuum Einstein

equations. The gravitational action in three dimensional negatively curved space is,

S =
1

16πG

∫
√
gd3x

(
R+

2

`2

)
+

1

8πG

∫
d2x
√
γ

(
K +

1

`

)
(A.1)

with equations of motion,

G`µν = Rµν −
1

2
Rgµν −

1

`2
gµν = 0 (A.2)

We are interested in thermal, finite volume, asymptotically AdS3 solutions, that is solutions

whose conformal boundary is a torus. The most familiar such example is thermal AdS3.

The metric is given by,

ds2 = (1 + r2)dt2 +
dr2

1 + r2
+ r2dφ2 . (A.3)

Here, φ = φ+ 2π is an angular coordinate, and we identify t = t+β for thermal AdS3 with

inverse temperature β. The coordinates t and φ parameterize the boundary torus, which

is filled in by the radial coordinate, r. the φ cycle is contractible.

Another familiar finite temperature solution is the BTZ black hole [51]. This can be

represented by the metric,

ds2 = (r2 − r2
+)dt2 +

dr2

r2 − r2
+

+ r2dφ2 , (A.4)

where r ≥ r+, φ is again periodic, φ = φ + 2π, and t is periodic, with periodicity set by

ensuring the black hole is non-singular at the horizon, t = t+ 2π/r+. At the horizon, the t
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cycle shrinks to zero size, while the φ cycle does not. So the role of φ and t have switched

in terms of which cycle is contractible.

The AdS3 and BTZ metrics look different, and have a different choice for which cycle

is contractible, but in fact, the Euclidean BTZ black hole at temperature, β = 2π/r+ is

diffeomorphic to thermal AdS3, at β′ = 2π/β = r+. To see this, we simply define the new

coordinates,

φ′ = r+t

t′ = −r+φ

r′ =

√(
r

r+

)2

− 1 ,

(A.5)

With this, the periodicities are, φ′ = φ′+2π and t′ = t′+2πr+. The φ′ cycle is contractible,

and the metric is the usual AdS3 metric, (A.3), with primed coordinates.

A.1 SL(2;Z) black holes

The above story can be generalized in a number of ways, but the basic picture remains the

same. Firstly we can consider solutions at finite temperature and finite chemical potential.

For thermal AdS3 at finite chemical potential we keep the metric (A.3), but impose the

more general identification,

z ≡ φ+ it = z + 2π = z + 2πτ . (A.6)

Here we have defined the complex modulus, τ = (µ+ iβ)/2π.

We also have spinning BTZ black holes with finite temperature and chemical potential.

The metric,

ds2 =
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2

(
dφ+ i

r+r−
r2

dt

)2

(A.7)

is only non-singular if z = z + 2πm+ 2πnτ , with τ = i/(r+ + r−).

Again this euclidean black hole is diffeomorphic to pure thermal AdS3 with chemical

potential. This can be seen directly, by defining,

φ′ = r+t− ir−φ

t′ = −r+φ− ir−t

r′ =

√
r2 − r2

+

r2
+ − r2

−
.

(A.8)

This gives the AdS3 metric in the primed variables, with the identification, z = z+ 2πm+

2πnτ ′, with τ ′ = −1/τ = i(r+ + r−).
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In this way we can view the BTZ black hole at τ as AdS3 at −1/τ . This is possible as

the transformation τ → −1/τ is part of the modular group, SL(2;Z), which preserves the

boundary torus.

More generally, at a fixed temperature and chemical potential, we have an SL(2; Z)

family of black holes. These were originally introduced in [26] and have been discussed

extensively, for instance [20, 40].

These black holes are all diffeomorphic to AdS3, but with modulous γ(τ) = aτ+b
cτ+d , for

γ ∈ SL(2;Z). We thus naively have a family of solutions labeled by four integers, subject

to the constraint, ad− bc = 1. However, the definition of τ in the quotient (A.6) is slightly

redundant, τ ∼ τ + 1, and so the inequivalent configurations are really labeled by elements

of Γ∞\SL(2;Z), ie relatively prime integers (c, d), and are denoted Mc,d.

A.2 Black hole partition function

We are interested in evaluating the gravitational partition function around the classical

saddles, Mc,d. As each is diffeomorphic to AdS3, it is sufficient to evaluate the partition

function around the metric (A.3).

At the classical level, this involves evaluating the action (A.1) on the classical solution,

and gives,

logZvac ∼ −2πik(τ − τ̄) (A.9)

Here we have used the identification, c = 24k = 3`
2G .

Either by using the correspondence with the dual 2d CFT, or by explicit computa-

tion [52] the full quantum partition function around the classical saddle can be evaluated,

giving the one loop exact result,

logZvac = −2πi(k − 1/24)(τ − τ̄) + log
(
|1− q|2

)
− log

(
|η(τ)|2

)
. (A.10)

In evaluating these expressions, we have used the Einstein-Hilbert action, (A.1). We

will also be interested in the story for chiral gravity [30, 53, 54], for which the action is

modified with a gravitational Chern-Simons term.

Sχ =
1

16πG

∫
d3x
√
−g
[
R+ 2− 1

2
εµνρΓκµγ

(
∂νΓγκρ +

2

3
ΓγνδΓ

δ
ρκ

)]
+ Sbdy , (A.11)

where the appropriate boundary term was discussed in [55]. The equations of motion are

given by,

G`µν + Cµν = 0 , (A.12)

where C is the Cotton tensor,

Cµν = ενρµ ∇ν
(
Rρν −

1

4
gρνR

)
. (A.13)
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As G`µν = 0→ Cµν = 0 any solution to the vacuum Einstein equations is a solution to chiral

gravity.20 In particular the metrics, Mc,d are still classical solutions and we can again ask

what their contribution to the partition function yields.

At the classical level, we must now evaluate the action (A.11) on Mc,d. This gives,

logZvac ∼ −2πikτ . (A.14)

which again is enhanced to the full character by one-loop corrections. Here, in mapping

from the gravitational result to the cft, we have used the fact that the asymptotic symmetry

algebra of chiral gravity consists of a single chiral Virasoro algebra with

c = 24k =
3`

G
. (A.15)
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