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1 Introduction

Following the inception of black hole mechanics [1], it was soon realized their striking re-

semblance to the laws of thermodynamics [2, 3]. The subsequent discovery of Hawking

radiation [4] put the subject on a firm ground and made it clear that black hole thermody-

namics would offer indispensable insight into quantum gravity. It is particularly important

to uncover the microscopic dynamics that give rise to such macroscopic thermodynamic

description. Most notably, many authors have used various approaches to try and associate

a statistical origin to Bekenstein-Hawking entropy [5–7].

One striking implication of the area law is that Schwarzschild black hole has negative

specific heat. In particular, the black hole can not be in stable thermal equilibrium with

radiation held at the same temperature.1 This means a statistical fluctuation would cause

the hole to either grow indefinitely or evaporate away completely [8]. One could neverthe-

less stabilize the hole artificially by placing it in an isolated finite-volume box filled with

radiation whose energy is less than quarter of the hole mass [8].

In this paper we study the impact of quantum loops on the thermodynamics of 4-

dimensional Schwarzschild black hole. We inquire to what extent mass-less fluctuations

1It is also true that all asymptotically-flat black holes can not be in thermal equilibrium [9].
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could affect the thermal stability of the black hole. At first sight, this might seem like a

question that requires knowledge of a full theory of quantum gravity. In fact, this is not

entirely true and plenty of interesting features are revealed via the semi-classical treatment

of Euclidean quantum gravity. Building on earlier work2 [10], we analytically construct the

canonical partition function utilizing the framework of effective field theory (EFT).

Donoghue showed in [23] that general relativity and quantum field theory are perfectly

compatible if quantum general relativity is formulated as an effective field theory (EFT).

The theory is only valid below a cut-off scale, typically taken to be MP, above which the

effective description is replaced with the UV completion. The construction of the effective

theory was given in [23–25] and shares many practical features with chiral perturbation

theory - the more familiar EFT describing the low-energy dynamics of QCD.

The main advantage of the effective theory is the ability to separate out low-energy

physics. Being non-renormalizable the EFT has a poor UV behavior, yet, the unknown

physics is encoded solely in the Wilson coefficients of the most general local Lagrangian.

Any observable of the effective theory is expressed in terms of those measured Wilson

coefficients and hence the theory is fully predictive. More interesting are the contributions

induced by long-distance propagation of mass-less (light) degrees of freedom. The latter

comprise reliable predictions of quantum gravity since, by the very nature of the EFT, any

UV completion must reproduce these results at low energies.

Indeed, the EFT is very well-suited to study perturbative scattering amplitudes. In

a typical matrix element, long-distance physics manifests itself in non-analytic functions.

At the one-loop level, the latter are finite and fully calculable in the effective theory. This

insight was used in [26] to determine the leading quantum correction to the Newtonian

potential energy of two heavy masses. In general, low-energy predictions extracted from

the EFT comprise various theorems and tests of quantum gravity [27].

Clearly the gravitational effective theory must be tailored to go beyond scattering

amplitudes. Various questions in quantum gravity, in particular cosmology and black

hole physics, are amenable to the EFT treatment. It is then crucial to understand the

structure of loop-induced modifications to classical GR in full generality. To this end,

one primarily relies on the effective action as the central object and set out to consider

quantum fluctuations in a fixed classical background geometry. The UV part of quantum

loops induce local interactions fully encoded within the effective theory while the more

interesting low-energy portion induces non-local operators in the effective action.3

A short detour is given in section 2 to review the structure of non-localities in the

effective action of quantum gravity coupled to mass-less matter. As shown in [10], the Kerr-

Schild structure of Schwarzschild solution enables a precise determination of the effective

action. The formalism of the non-local heat kernel expansion [38–40] is used to express the

result as an expansion in gravitational curvatures [10]. We proceed to show in detail how to

compute the partition function at the one-loop level expanding around the Schwarzschild

2The focus in [10] was the logarithmic correction to Bekenstein-Hawking entropy which has also been

discussed in a host of papers [11–22].
3Loop-induced non-localities and various non-local models have started to receive considerable attention

with plenty of applications [28–37].

– 2 –



J
H
E
P
0
8
(
2
0
1
7
)
0
6
8

instanton. Although we only consider contributions to the partition function quadratic in

curvature, the curvature expansion offers a valuable tool to decide on the structure of the

partition function at higher curvature and loop-order.

The outline of the paper is as follows. After reviewing previous results in section 2,

we move in section 3 to compute the free energy where we elucidate the meaning of the

form factor ln�. The free energy is used in section 4 to investigate the thermodynamic

stability, primarily highlighting the impact of particle content on the fate of the black hole.

Section 5 addresses the important question about the possible effects of including higher

curvature and loop corrections. Section 6 is devoted to pin down some open questions that

could be addressed using our formalism.

2 Non-local effective action in Kerr-Schild spacetime: review

In this section we briefly review the construction of the one-loop effective action on a fixed

background Kerr-Schild (KS) geometry due to mass-less degrees of freedom. Consequently,

the effective action is utilized in the next section to determine the partition function of

quantum gravity at the one-loop level. Throughout we adopt the effective field theory

treatment of quantum gravity [23–25]. The results displayed here were derived in a previous

work [10], hence the reader familiar with the latter can skip to the next section.

The effective action is the central object in semiclassical gravity as well as quantum

gravity [41–43]. It elegantly encodes the effects of quantum fluctuations on the dynamics

of the classical background geometry, and is computed efficiently using the background

field method [44]. The effective action has many applications; for example, in studying

back-reaction on the classical geometry, in studying the thermal properties of black holes

and in determining the UV divergences of the theory in a simple and covariant fashion.

For a massive theory, the construction of the effective action is performed using a

covariant approach primarily due to De Witt [45]. In the absence of self interactions the

result appears as a local expansion containing a tower of operators with ever-rising powers

of derivatives of the metric, the so called DeWitt-Seeley-Gilkey expansion [40, 45, 46].

These gravitational operators are suppressed by the mass of the matter field, in particular,

all operators are analytic in derivative operators. Indeed, this expansion is not generically

useful. On the one hand, the latter is completely useless when the spacetime curvature

is large compared to the mass squared of the field in question. More importantly, on the

other hand, mass-less fluctuations is impossible to handle using this approach.

The difficulty in dealing with operators without an intrinsic mass scale is the non-

locality omnipresent in the effective action. On physical grounds, mass-less fluctuations do

not have a natural IR cut-off and thus can propagate over long distances. This consequently

leads to non-local behavior in the effective action: the IR portion of quantum gravity

is genuinely non-local. Similar to non-analytic functions in matrix elements, these non-

localities comprise reliable predictions of quantum gravity and are fully calculable using

the EFT framework.

The best available formalism to compute the effective action is based on a curvature ex-

pansion that contains non-analytic functions of derivative operators. The latter are referred

– 3 –
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to as form factors and an important example will appear below. This non-local expansion

is drastically distinct from the more familiar derivative (energy) expansion described above

in that it is a genuine expansion in curvatures. The main themes of the formalism were

first presented in [38, 39]. Nevertheless, various subtleties arise in the construction that

were discussed at length in [47] and a consistent framework was proposed.

In [10], it was observed that working on fixed KS geometry yields an unambiguous

result for the form factors. The defining property of KS spacetimes is that the full metric

takes the special form [48]

gµν = ηµν − kµkν (2.1)

where the vector kµ = gµνkν is null with respect to both the full and flat metrics

gµνkµkν = ηµνkµkν = 0 . (2.2)

It is important to stress here that the above comprises a covariant ansatz for the

metric, i.e. it does not depend on the existence of a special coordinate system. Nevertheless,

recognizing a spacetime to be of the KS type is indeed easier in certain coordinates than

others. It is quite remarkable that both Schwarzschild and Kerr solutions fall in this class.

Thanks to the KS ansatz, Roy Kerr was able to obtain his celebrated solution in closed

form [49–51]. Here, we are primarily concerned with Schwarzschild black hole where the

null vector, in standard Cartesian coordinates, takes the form

kµ =

√
2GM

r

(
1,

x

r

)
. (2.3)

When substituted back into eq. (2.1), the reader might recognize the Schwarzschild

metric as expressed by Eddington. A detailed solution of Einstein equation starting with

KS ansatz was first given in [52] and reviewed in [10].

After integrating out the matter sector and graviton at one-loop, the effective action

is composed of two pieces

Γ[ḡ] = Γlocal[ḡ;µ] + Γln[ḡ;µ] (2.4)

where ḡ refers to the background KS metric. The local contribution is nothing but the

renormalized EFT action4

Γlocal[ḡ;µ] =

∫
d4x

(
M2

P

2
R+ cr1(µ)R2 + cr2(µ)RµνR

µν

+ cr3(µ)RµναβR
µναβ + cr4(µ)∇2R+O

(
R3
))

(2.5)

where the renormalized couplings are scale-dependent. The other piece is non-local repre-

senting the long-distance portion of quantum loops

Γln[ḡ;µ] = −
∫
d4x

(
αR ln

(
�
µ2

)
R+ β Rµν ln

(
�
µ2

)
Rµν

+ γ Rµναβ ln

(
�
µ2

)
Rµναβ + Θ ln

(
�
µ2

)
�R+O

(
R3
))

(2.6)

4It is of particular importance to realize that Newton’s constant does not get renormalized when one

considers only mass-less fields. Consistent with the EFT power-counting, the one-loop divergences are

proportional to R2 terms.
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α β γ Θ

Scalar 5 -2 2 -6

Fermion -5 8 7 —

U(1)boson -50 176 -26 —

Graviton 430 -1444 424 —

Table 1. The coefficients appearing in the effective action due to massless fields of various spins [10].

All numbers are divided by 11520π2.

where � is the flat-space d’ Alembertian and the operator ln (�) is our first example of

a form factor. Notice here that we only consider the action up to second order in curva-

ture. Section 5 is devoted to discuss the effects of including higher curvature corrections.

Listed in table 1, the different coefficients are spin-dependent and come straight out of the

computation.

The renormalization group (RG) properties of the effective action will be of most

importance later. Indeed, the renormalized action is invariant under RG flow by virtue of

the beta function of the various coefficients [10]

cr1(µ) = cr1(µ?)− α ln

(
µ2

µ2?

)
cr2(µ) = cr2(µ?)− β ln

(
µ2

µ2?

)
cr3(µ) = cr3(µ?)− γ ln

(
µ2

µ2?

)
cr4(µ) = cr4(µ?)−Θ ln

(
µ2

µ2?

)
. (2.7)

3 Free energy of Schwarzschild black hole

In this section, we utilize the results from last section to compute the partition function for

the canonical ensemble of quantum gravity coupled to mass-less matter. The construction

commences analogously to thermal field theory [53–55]

Z(β) =

∫
DΨDg e−SE−S∂ . (3.1)

Here, Ψ is any matter field, g is a Euclidean metric, SE is the Euclidean action of the

theory and S∂ is the Hawking-Gibbons-York boundary action given by [55, 57]

S∂ = − 1

8πG

∫
∂M

√
γ(K −K0) . (3.2)

The boundary action ensures the variational problem is well posed. It clearly does not

contribute to the equations of motion but nevertheless plays a crucial role in black hole

thermodynamics. To define the canonical ensemble, one has to impose boundary conditions

on the variables of the path integral. The prescription is to integrate over positive-definite

metrics5 which approach the flat metric on IR3×S1 [53–55]. The matter fields appearing in

the path integral are subject to boundary conditions appropriate for the canonical ensemble.

5The asymptotic behavior of such metrics is determined by requiring finite action [55].
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Among the various attempts to discuss the thermal properties of black holes, the

Euclidean approach stands out as a self-consistent framework. In a semi-classical evaluation

of the partition function, the black hole appears as an extremal point of the Euclidean action

yielding a non-trivial contribution to the partition function. Most notably, the Euclidean

approach was successful in reproducing the Bekenstein-Hawking entropy for Schwarzschild

black hole [54]. Moreover, the formalism is readily extended to handle rotating and charged

black holes by constructing the grand canonical partition function as well as (A)dS black

holes [56].

We evaluate the partition function using the semi-classical (~→ 0) approximation by

expanding around a background metric which extremizes the action

gµν = ḡµν + κhµν (3.3)

where ḡµν is also known as a gravitational instanton, hµν is the metric fluctuation and κ =√
32πG. If ḡ is a KS space-time, then one could readily perform an analytic continuation

on the effective action to obtain the partition function at the one-loop level. This yields [10]

lnZ = Γlocal[ḡ] + Γln[ḡ]− S∂ (3.4)

where now

Γln[ḡ] = −
∫
d4x

[
αR ln

(
−∆

µ2

)
R+ βRµν ln

(
−∆

µ2

)
Rµν

+ γRµναβ ln

(
−∆

µ2

)
Rµναβ −Θ ln

(
−∆

µ2

)
∆R

]
, (3.5)

and ∆ being the 4D flat Laplacian on IR3 × S1. We truncated the partition function at

second order in the curvature expansion and devote section 5 to discuss possible effects of

higher curvature contributions.

3.1 Comments on the gravitational instanton

Here we provide important comments regarding the gravitational instanton appropriate for

our case. Let us start by using eq. (2.3) to write the full Schwarzschild metric

ds2 =

(
1− 2GM

r

)
dt2? −

(
1 +

2GM

r

)
dr2 − 4GM

r
dt?dr − r2dΩ2 (3.6)

where t? is the KS time coordinate related to the usual Schwarzschild time as t = t? +

2GM ln(2GM/r− 1). There are two important features: the metric is both regular across

the horizon and not static when expressed in standard spherical (Cartesian) coordinates of

the flat metric.

According to our formalism, the background instanton in eq. (3.5) is defined as usual

via the analytic continuation t? → −iτ , where the Euclidean time is periodic defining the

temperature of the canonical ensemble. Doing so one sees immediately that the resulting

metric is complex, i.e. quasi-Euclidean. This is different from the familiar real Euclidean

section obtained by continuing the Schwarzschild time coordinate [54]. Nevertheless, this

– 6 –
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situation is customary for any stationary spacetime and pauses no concern at all. Within

the Euclidean approach, Brown et al. have elucidated the use of complex geometries in

deriving black hole thermodynamics6 [58]. As we shall see, the instanton action is real and

recovers all thermodynamic relations derived using the real Euclidean section.

It is remarkable that the resulting metric, albeit complex, is positive-definite. An

immediate consequence is that r = 2GM is a fixed point of the Killing field ∂/∂τ and the

space ends there as usual. On the other hand, the regularity across the horizon implies

that the period of Euclidean time can not be fixed because the metric does not possess

a conical singularity. Nevertheless, it is fully consistent to fix the temperature by simply

envoking the zeroth law of black hole thermodynamics, i.e. T = κ/2π, where κ being the

surface gravity of the hole.

3.2 What exactly is the logarithm?

It is clear that to evaluate the partition function one needs to understand how the operator

ln ∆ is represented in position space. This is our task in the current section. First of all, one

needs to impose the appropriate thermal boundary conditions on matter and gravitational

fluctuations. A useful way to accomplish this is by implementing the following identity for

the logarithm

ln

(
−∆

µ2

)
= −

∫ ∞
0

dm2
[
(−∆ +m2)−1 − (µ2 +m2)−1

]
. (3.7)

For a boson (fermion) field, the inverse operator is interpreted to be the 2-point function

subject to periodic (anti-periodic) boundary conditions. For example, we have

Gbosons(τ, ~x) = β−1
∑
n

∫
d3q

(2π)3
ei(ωnτ+i~q·~x)

ω2
n + q2 +m2

, ωn =
2πn

β
. (3.8)

To speak of thermodynamic equilibrium, one only considers stationary metrics as saddle

points. In this case, integration over the thermal circle is readily done at the onset. Using

eq. (3.8) in eq. (3.5), one gets

Γln[ḡ] = −β
∫
d3xd3x′

[
αRL(~x− ~x′)R+ βRµνL(~x− ~x′)Rµν

+ γRµναβL(~x− ~x′)Rµναβ −ΘL(~x− ~x′)∆R
]
. (3.9)

where

L(~x− ~x′) ≡ ln

(
−∇2

µ2

)
δ(3)(~x− ~x′) (3.10)

The character of the operator is better revealed in momentum space. Setting ~x′ = 0 for

simplicity, we get

L(~x) =

∫
d3q

(2π)3
ln

(
~q2

µ2

)
ei~q·~x . (3.11)

6In this regard, see also the discussion in [59].
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As it stands, the above integral is ill-defined due to the rapid oscillation of the exponential

factor at |~q| → ∞. Even more problematic is the apparent short-distance divergence of

the integral, i.e. when ~x → 0. We shall now present an appropriate method to define the

non-local kernel - L(~x) - as a distribution. One starts by imposing a regulator as follows

L(~x) = lim
ε→0

∫
d3q

(2π)3
ln

(
~q2

µ2

)
ei~q·~xe−εq . (3.12)

The sign of the exponent in the regulator is dictated by Feynman’s prescription, i.e. ~x2 →
~x2 + iε. The angular integrals are readily done and three structures emerge

L(~x) = (L1(~x) + L2(~x)− L3(~x))− lnµ2 δ(3)(~x) (3.13)

where

L1(~x) =
i(γE − 1)

2π2r2
lim
ε→0

(
1

r − iε
− 1

r + iε

)
L2(~x) =

i ln r

2π2r2
lim
ε→0

(
1

r − iε
− 1

r + iε

)
L3(~x) =

1

4πr2
lim
ε→0

(
1

r − iε
+

1

r + iε

)
. (3.14)

Each term in the above is a well-defined distribution as we now show. Notice that both

L1(~x) and L2(~x) vanish identically unless r = 0. Integrating against a smooth function one

finds

L1(~x) = 2(1− γE)δ(3)(~x), L2(~x) = −2 lim
ε→0

(ln ε) δ(3)(~x) . (3.15)

The last piece - L3(~x) - is straightforward as it would yield the principal-value of an integral.

Finally, one obtains7

L(~x− ~x′) = − 1

2π
lim
ε→0

[
P
(

1

|~x− ~x′|3

)
+ 4π(ln(µε) + γE − 1)δ(3)(~x− ~x′)

]
. (3.16)

The precise application of the principal-value and the limiting procedure will be crucial to

obtain a well-behaved finite result when the non-local function is integrated over in the

partition function.

3.3 Exact evaluation of the partition function

Now that we are armed with an exact expression for the logarithm, we proceed to evaluate

the partition function of Schwarzschild black hole. In this case, only the piece involving

the Riemann tensor in eq. (3.5) contributes. It will suffice to present an explicit compu-

tation using only few components of the Riemann tensor, which are determined easily for

Schwarzschild metric using eq. (2.3). For instance, consider the following structure8

(2)

Γ ln ⊂
∫
d3x d3x′

(1)

Rittj(x)L(~x− ~x′)R
(1)

ittj(x′)

7See [60] for an alternative derivation.
8The super(sub)-script refers to the power of G.
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where both indices (ij) are being summed over and

(1)

Rittj(x) =
GM

r3

(
3xixj
r2
− δij

)
. (3.17)

The non-local kernel, eq. (3.16), give rise to two integrals as follows

I(M, ε) = − 1

2π

∫
d3x d3x′

(1)

Rittj(x)P
(

1

|~x− ~x′|3

)
R
(1)

ittj(x′) (3.18)

J(µ, ε) = −2(ln(µε) + γE − 1)

∫
d3x

(1)

RittjR
(1)

ittj . (3.19)

The second equation above is a local contribution readily evaluated

J(µ, ε) = − 2π

GM
lim
ε→0

(ln(µε) + γE − 1) . (3.20)

Moving on to the first integral we find

I(M, ε) = −3(GM)2

2π

∫
d3x d3x′ P

(
1

|~x− ~x′|3

)
3(~x · ~x′)2 − (rr′)2

(rr′)2
. (3.21)

With the above form, it is advisable to switch to spherical polar coordinates. Here comes

the most important point of the derivation: how to obtain the principal-value of the above

integral? We devise the prescription of imposing the principal-value on the radial portion

of the integral in eq. (3.21) and show that it yields a well-behaved result. Without loss of

generality, if we first evaluate the d3x′ integral then spherical symmetry allows us to align

the z′-axis along ~x. One finds

I(M, ε) = −3(GM)2 lim
ε→0

∫
d3x

r

[ ∫ r−ε

2GM

dr′

r′

∫ 1

−1
du

3u2 − 1

(r2 + r′2 − 2rr′u)3/2

+

∫ ∞
r+ε

dr′

r′

∫ 1

−1
du

3u2 − 1

(r2 + r′2 − 2rr′u)3/2

]
. (3.22)

The above step explicitly describes our prescription. Performing the du integral, the re-

maining integrals are fully regularized and one finds

I(M, ε) = − 2π

GM

[
ln

(
2GM

ε

)
+ constant

]
. (3.23)

Putting everything together, the factor ln ε cancels out leaving a finite result as promised

(2)

Γ ln ⊂ −
2π

GM
ln(2GMµ) . (3.24)

Here, we absorbed all numerical constants in ln µ which amounts to a finite renormalization.

Of most importance is the following lesson: Γln must be proportional to ln(2GMµ). It is

then straightforward to finish the computation in the manner we just described.9 Taking

9In fact, looking at eq. (3.24) one can extract the final result by simply computing the coefficient of ln µ

in the partition function.
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into account the local contributions from the bulk and boundary terms, one reaches the

partition function at the one-loop order

lnZ(β) = − β2

16πG
+ 64π2

[
c3(µ) + 2 Ξ ln(µβ)

]
(3.25)

where we used β = 8πGM and

Ξ =
1

11520π2
(2Ns + 7Nf − 26NV + 424) (3.26)

counts the contribution of various species. Using this expression one can immediately

recover the logarithmic correction to Bekenstein-Hawking entropy [10–22]. Notice here

that our quasi-Euclidean instanton yields the correct tree-level partition function.

3.4 Free energy: scale independance and dimensional transmutation

With the partition function at our disposal, one proceeds to write down the free energy of

Schwarzschild black hole

F (β) =
β

16πG
− 64π2

β

(
c3(µ) + 2 Ξ ln(µβ)

)
. (3.27)

Notice in particular that the free energy is invariant under RG flow which must be the case

since it is a physical quantity. A simple computation shows

d

d lnµ
F (β) = 0 (3.28)

using the RG equation of the Wilson coefficient eq. (2.7). Hence, dimensional transmutation

allows us to trade off the constant c3 with a mass scale via

c3(µ) = −2 Ξ ln(µβQG) . (3.29)

Substituting back in eq. (3.27), we arrive at

F (β) =
β

16πG
− 128π2Ξ

β
ln

(
β

βQG

)
(3.30)

which is manifestly free of the unphysical scale µ. The scale βQG is intrinsically tied

to the UV completion of quantum gravity. The constant c3, and thus βQG, could in

principle be determined either by matching onto the full theory at some scale or using

experimental input. Armed with an expression for the free energy, the next section is

devoted to investigate the thermodynamic stability.

4 Thermodynamic stability

In classical thermodynamics, an isolated system would be in stable equilibrium if and only

if the entropy is a concave function of all extensive parameters [61]. This follows simply

from the second law of thermodynamics and basic properties of the entropy. Consider a
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random fluctuation that transfers an amount of energy ∆U from one part of the system,

say initially containing energy λU , to the rest of the system. If this process increases the

entropy, then it is allowed by the second law. Suppressing dependance on further extensive

variables, stability then requires

S(λU −∆U) + S((1− λ)U + ∆U) ≤ S(U) (4.1)

where 0 ≤ λ ≤ 1. The entropy is assumed to be a first-order homogeneous function, and

thus one easily uncovers the condition of concavity10

λS(U1) + (1− λ)S(U2) ≤ S(λU1 + (1− λ)U2) . (4.2)

This condition comprises a global criterion of stability since the size of the fluctuation ∆U

is arbitrary. Reinstating all extensive variables one finds analogously that stability requires

the entropy to be a concave function of all extensive variables. This requires the Hessian

of the entropy to be positive definite, and in particular

∂2S

∂U2
≤ 0 (4.3)

which implies the positivity of the heat capacity in stable systems.

One can now inquire about the stability of a system exchanging energy with a heat

reservoir at constant temperature. A series of steps shows that the Helmholtz free energy

must satisfy [61, 62]
∂2F

∂T 2
< 0 (4.4)

which derives directly from the fact that the system plus the reservoir comprise an isolated

system whose stability requires the total entropy to be concave.

A close look at eq. (3.30) reveals that the sign of Ξ plays the dominant role in determin-

ing the stability of the black hole. This is controlled by the particle content of the theory.

4.1 Case I: Ξ < 0

This case emerges in a theory with large number of gauge fields. For example, if we neglect

the graviton contribution then the minimal standard model falls in this class. Rescaling

the free energy by the Planck temperature TP = (8πG)−1/2, we show various plots of the

free energy in figures 1 and 2. In particular, we observe that lowering the scale TQG has the

same effect as increasing the number of gauge fields. Let us define Σ = |Ξ| and compute

the second derivative of the free energy

∂2F

∂T 2
=

(8πG)−1

T 3
− 128π2Σ

T
. (4.5)

Clearly, this becomes negative at a critical temperature

TC =

√
90

(26NV − 7Nf − 2Ns − 424)
TP . (4.6)

10We defined U1 = U −∆U/λ and U2 = U −∆U/(1− λ).
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Figure 1. The free energy as a function of the temperature of Schwarzschild black hole at tree

level and including the one-loop contribution. Without loss of generality, we exclude the graviton

and set Ns = Nf = 0.

Figure 2. The free energy as a function of the temperature of Schwarzschild black hole at tree

level and including the one-loop contribution. Without loss of generality, we exclude the graviton

and set Ns = Nf = 0. Here, we fix TQG/TP = 0.001.

The quantum correction, accurate up to quadratic order in curvatures, is able to render the

black hole thermodynamically stable. In the large-NV limit, the critical temperature could

be made parametrically smaller than the Planck temperature. One remarkable feature of

this result is that it is insensitive to the UV scale TQG. Only the low-energy content of the

theory is needed to decide on the possible thermodynamic stability of Schwarzschild black

hole.

4.2 Case II: Ξ > 0

This case is particularly interesting as it arises if the particle content is that of the standard

model plus a single graviton. Using eq. (4.4) we clearly see that thermal stability is not

attained in this case. Various plots of the free energy are shown in figures 3 and 4, where we

scaled the free energy by the Planck temperature TP = (8πG)−1/2. The main observation

– 12 –
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Figure 3. The free energy as a function of the temperature of Schwarzschild black hole at tree

level and including the one-loop contribution. Without loss of generality, only the contribution of

the graviton to Ξ is considered.

is that the loop correction forces the free energy to develop a minimum. Both the position

of the minimum and the value of the free energy are controlled by the number of particles

as well as the scale TQG.

The existence of a minimum in the free energy has important consequences because it

corresponds to the vanishing of the entropy. The entropy reads

Sbh(T ) = −∂F
∂T

=
T 2
P

2T 2
+ 128π2Ξ

(
ln
TQG

T
− 1

)
, (4.7)

which vanishes at the solution to the following transcendental equation

T

TQG
= e(λ/T

2−1), λ =
T 2
P

256π2Ξ
. (4.8)

Recalling that TQG > 0, the above equation must admit one solution. The crucial aspect

of this result is manifest in figure 3. If the scale TQG is low enough in Planck units, the

temperature at which the entropy vanishes is parametrically sub-Planckian. We offer few

remarks about this result in section 6.

5 Higher curvature and loops

All results obtained so far were derived using the partition function accurate up to second

order in curvatures. It is crucial to understand if and how higher curvature corrections

could change the main conclusions drawn from the analysis. Here we have to distinguish

between the gravitational and matter sectors. One one hand, the latter is one-loop exact

and one can accurately determine the effect of the missing corrections. On the other, matter

contribution is dominant in the large-N limit and one can safely ignore quantum gravity.

– 13 –
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Figure 4. The free energy as a function of the temperature of Schwarzschild black hole at tree

level and including the one-loop contribution. Without loss of generality, only the contribution of

the graviton to Ξ is considered. Here, N is an overall multiplicative factor to mimic the effect of

increasing Ns (Nf ) and TQG/TP = 0.001.

5.1 Matter sector

Higher order corrections in this case are purely non-local. Only the O(R2) terms of the

renormalized EFT action, eq. (2.5), receive contribution from mass-less minimally coupled

(MMC) fields. One could understand this on dimensional grounds: divergences from MMC

fields can only be proportional to quadratic curvature invariants due to the absence of a

mass scale in the problem. However, higher curvature non-local operators in eq. (2.6)

indeed receive contributions from the matter sector. An example of an operator possibly

appearing at cubic order reads

lnZ ⊂
∫
d4xR ρσ

µν R γβ
ρσ

1

�
R µν
γβ . (5.1)

One can determine the effect of the above operator by observing the scaling properties of

the partition function. In particular, eq. (5.1) is invariant under a scale transformation

of the background metric ḡ → Λ2ḡ and hence contributes at most a numerical constant

to lnZ. Hence, such an operator has no effect on the stability criterion, eq. (4.4), albeit

changing the entropy by an inconsequential constant. Extrapolating this analysis, one can

deduce that all higher curvature non-local operators are likewise scale invariant and thus

bear no consequence on the stability of the black hole.

5.2 Gravitational sector

The story is more complicated in this case. Although the previous analysis still holds true

for pure gravity at the one-loop level, the structure of the partition function is richer at two

loops and beyond. For example, according to the EFT power counting, the divergences of

two-loop quantum gravity are proportional to O(R3) and have been determined long ago

– 14 –



J
H
E
P
0
8
(
2
0
1
7
)
0
6
8

in [63]. Hence, a new local operator in eq. (2.5) would be renormalized11

lnZ ⊂ dr(µ)

M2
P

∫
d4xR ρσ

µν R γβ
ρσ R µν

γβ . (5.2)

Once again, we can use scaling arguments to understand the effect induced by such an

operator. Under the transformation ḡ → Λ2ḡ, one simply sees that lnZ picks a non-

trivial correction proportional to T 2/T 2
P. As expected, the effect of higher curvature local

operators is negligible below the Planck temperature.

Next, how about the non-local operators generated from higher loops? Without fur-

ther computation, it is difficult to determine the exact form of these corrections. Never-

theless, RG invariance enables us to make a strong statement: the logarithmic correction

in eq. (3.27) is exact to any loop order. Following the effective theory power counting, the

beta function of the Wilson coefficients, eq. (2.7), does not receive any contributions from

higher graviton loops. Hence, the analysis we presented is quite robust especially if one

invokes a large number of matter fields.

6 Discussion

A full understanding of black hole thermodynamics could be our guide to uncover a consis-

tent theory of quantum gravity. Even though this goal seems to be far ahead, various ques-

tions could be addressed employing effective field theory techniques. Quantum GR is a self-

consistent effective theory valid up to the Planck scale. Most importantly, the effective the-

ory enables us to extract reliable predictions from the low-energy portion of quantum loops.

The latter manifests in non-local operators in the effective action, or likewise the partition

function, while the unknown UV physics is encoded in the renormalized Wilson coefficients.

We reconsidered the thermodynamic stability of Schwarzschild black hole taking mass-

less quantum loops into account. At the one-loop level, we were able to analytically con-

struct the partition function relying on various techniques. We utilized the non-local heat-

kernel expansion, the underlying KS structure of Schwarzschild solution and lastly an ap-

propriate expansion in curvatures. The results we presented are complete up to quadratic

order in curvatures. Within our approach, it was quite straightforward to uncover the

structure of the higher curvature operators that were ignored in our analysis.

The free energy shows a strong dependance on the particle content of the theory and

two distinct cases emerge. If gauge fields dominate the theory, thermal stability is achieved

at a mass proportional to
√
NVMP. The latter conclusion is insensitive to the short-distance

details of quantum gravity. Otherwise, as in the standard model, stability is never achieved

but the free energy develops a minimum at which the quantum-corrected entropy vanishes.

Although it is not entirely clear what the latter result entails, it may certainly point to a

stable ultra-Planckian remnant as a possible end state of Hawking evaporation.12 We also

showed that our conclusions are largely insensitive to the missing higher curvature/loop

corrections.

11Here, we express the operator for KS backgrounds (
√
g = 1).

12This possibility could be motivated by the generic properties of remnants, see [64] for a review.
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There is quite a few open questions that one hopes to address in the future. First, it is

straightforward to employ our formalism to study the thermal stability of Kerr black hole.

It is crucial to investigate if quantum loops could play a similar role in this case as well.

Second, studying charged black holes could be attempted with our formalism albeit the

fact that gauge fields possess non-trivial background solution. Lastly, it is fascinating that

the system’s entropy vanishes at perhaps sub-Planckian temperatures. The implications of

this feature warrant a thorough consideration.

Note added. The anonymous referee has raised the issue concerning the sensitivity of our

conclusions to the UV details of quantum gravity. Here, we elaborate on this point. Indeed,

the EFT is designed to accurately describe the physics only within its regime of validity.

In our case, this applies to black holes with masses large compared to the Planck scale. All

details of the UV are then encoded in the Wilson coefficients of the EFT. Precisely, the

result in eq. (4.6) does not depend on TQG. In that concrete sense, the stability condition

is insensitive to the UV. If, moreover, we have a large number of particles then the black

hole is ultra-Planckian that the EFT treatment is fully adequate to describe the physics.

The effect of higher loop orders, within the EFT, was throughly discussed in section 5.
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