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1 Introduction

The Seiberg-Witten (SW) solution [1, 2] of the prepotential of N' = 2 supersymmetric gauge
theory enables us to understand both weak and strong coupling physics of the theory such
as instanton effects, the duality of the BPS spectrum [1, 2] and nonlocal superconformal
fixed point [3, 4]. In the weak coupling region, the Nekrasov partition function [5, 6],
where the gauge theory is defined in the {2-background [7], provides an exact formula of
the prepotential including the nonperturbative instanton effects. The Nekrasov partition
function can be computed with the help of the localization technique. At strong coupling
region, however, we do not know the localization method to reproduce the prepotential
around the massless monopole point.

The Nekrasov function is related to the conformal block of two dimensional conformal
field theory [8, 9] and also the partition function of topological string theory [10]. The
analysis of the conformal block with insertion of the surface operator [11-13] leads to
the concept of the quantum Seiberg-Witten curve. The solution of the quantum curve
gives the low-energy effective theory of the {2-deformed theories, which are parametrized
by two deformation parameters €; and ep. In the Nekrasov-Shatashvili limit [14] of the



()-background, where one of the deformation parameters €y is set to be zero, the quantum
curve becomes the ordinary differential equation. The quantum SW curve is obtained from
the quantization procedure of the symplectic structure defined by the SW differential [15]
where the parameter €; plays a role of the Planck constant A. In particular, the SW curve for
SU(2) Yang-Mills theory becomes the Schrodinger equation with the sine-Gordon potential
and the higer order corrections to the deformed period integrals in the weak coupling have
been calculated by using the WKB analysis [16]. This was generalized to N' = 2 SU(N)
SQCD [17]. Note that the SW curve for N' = 2* SU(2) gauge theory corresponds to
the Lamé equation and the deformed period integrals also have been calculated by using
the WKB analysis [18, 19]. One can derive the Bohr-Sommerfeld quantization conditions
which are nothing but the Baxter’s T-Q relations of the integrable system [17, 20, 21]. The
deformed period integral agrees with that obtained from the Nekrasov partition function.

It is interesting to study perturbative and non-pertubative quantum corrections in the
strong coupling region of the moduli space, which might change the strong coupling dynam-
ics of the theory. In [22], the perturbative corrections around the massless monopole point
in the N' = 2 SU(2) super Yang-Mills theory have been studied. In [23], the 1-instanton cor-
rection in & to the dual prepotential has been calculated. In [24-27], the non-perturbative
aspects of the 1 expansion in A/ = 2 theories have been studied. The purpose of this work is
to study systematically perturbative corrections in A to the prepotential at strong coupling
where the BPS monopole becomes massless for N' = 2 SU(2) SQCD with Ny = 1,2,3,4
hypermultiplets. We investigate quantum corrections to the period integrals of the SW
differential and the prepotential up to the fourth order in the deformation parameter h.

This paper is organized as follows: in section 2, we review the quantization of the SW
curve and the quantum periods for N' = 2 SU(2) SQCD. In section 3, we show that the
quantum correction can be expressed by acting the differential operator on the undeformed
SW periods in detail. In section 4, we calculate the quantum periods in the weak coupling
region for N/ =2 SU(2) SQCD and confirm that they agree with those obtained from the
Nekrasov partition function. In section 5, we study the expansions of the periods around
the massless monopole point in the moduli space. We consider how the effective coupling
and the massless monopole point are deformed by A. In section 6, we add some comments
and discussions.

2 Quantum SW curve for N/ = 2 SU(2) SQCD

The Seiberg-Witten curve for N' = 2 SU(2) gauge theory with Ny (=0,...,4) hypermul-
tiplets is given by

N | >l

K(p) — 5 (K1 (p)e™ + K_(p)e™™) = 0, (2.1)

_ _Ny _
where A = A?Vf 2 With AN, being a QCD scale parameter for Ny < 3 and A = /g for
Ny = 4. Here ¢ = €™V and 7y denotes the UV coupling constant [8, 28]. K(p) and



K (p) are defined by

P —u, Ny=0,1
A4
(o) — P’ —u+ g, Ny=2 59
(p) = 2 As my+ma+m (22)

4
I+ 9P —u+gpd>iymi+ &3, ;mimy, Np=4

and
Ny Ny
K.(p)=[[+my), K-p= [ @+my, (2.3)
j=1 j=Ni+1
where u is the Coulomb moduli parameter and my,...,my, are mass parameters. N, is

a fixed integer satisfying 1 < N, < Ny. The curve (2.1) can be written into the standard
form [29]

y? = K(p)* — K1 (p) K- (p) (2.4)
by introducing y = AK | (p)e* — K(p). The SW differential is defined by
K_
A = pdlog — — 2mipdzx. (2.5)
Ky

Let o and (8 be a pair of canonical one-cycles on the curve. The SW periods are defined by
a= /p(x)dx, ap = /p(m)daﬁ, (2.6)
a B

where p(x) is a solution of (2.1). Then the prepotential F(a) is determined by

_ 97(a)

ap = — (2.7)

The SW differential defines a symplectic form dAgy = dp Adx on the (p, z) space. The
quantum SW curve is obtained by regarding the coordinate p as the differential operator
—ih%. We have the differential equations

T

<K(—maz)) - %(eﬂq(—maw)e% + e—ﬁK(—ihax)e—’5> U(z) =0, (2.8)
where 0, = 8%. Here we take the ordering prescription of the differential operators as
in [17]. This differential equation is also obtained by observing the relation between the
quantum integrable models and the SW theory in the Nekrasov-Shatashvili (NS) limit of
the Q-background [16]. The same differential equation is also obtained from the insertion of
the degenerate primary field corresponding to the surface operator in the two-dimensional
conformal field theory [11-13].

In this paper, we will choose N such that the differential equation becomes the second
order differential equation of the form:

(07 + f(2)0z + g(2))¥(x) = 0. (2.9)



Then we convert this equation into the Schrédinger type equation by introducing W(x) =
exp(—3 [ f(a)dz)y(z):
(=107 + Q(x)¢(x) =0, (2.10)

where Q(z) = —75 (=39, f — 1%+ g). In the case of SU(2) SQCD, it is found that Q(z)
is expanded in A as

Q(z) = Qo(x) + F*Qa(x). (2.11)
The quantum SW periods are defined by the WKB solution of the equation (2.10):
Z’ x
v =esp (5 [ Pwy). (2.12)
where
P(y) = 1"pa(y) (2.13)
n=0

and po(y) = p(y). Substituting the expansion (2.13) into (2.10), we have the recursion
relations for p,(x)’s. Note that p,(z) for odd n becomes a total derivative and only pa, ()
contributes the period integral. The first three ps,,’s are given by

po(l‘) =1 Qg, (214)
@ i 02Qo
0
pala) = T (97Qu)’ n i 95Q0  10Q205Q0 n i03Q2 Q3 (2.16)

1356z 768 3 5 5 o8
Qg Qg 3205 BQ; Qg
up to total derivatives. Then the quantum period integral II = [ P(z)dx = (a,ap) along
the cycles o and § can be expanded in £ as

=10 4+ 1@ 4+ @ 4 ... (2.17)

where TT?") .= [ py,, (x)dz.

Now we study the equations satisfied by the quantum SW periods. It has been shown
that the undeformed (or classical) SW periods () obey the third order differential equa-
tion with respect to the moduli parameter u called the Picard-Fuchs equation [30-35]. Note
that d,po is the holomorphic diffrential on the curve. When we write the curve (2.4) in the
form

4
v =] —e), (2.18)
=1

where the weak coupling limit corresponds to es — e3 and e; — e4, we can evaluate the
periods

9,110 = / Aupodr = / dp (2.19)
y



by the hypergeometric function. Then by using quadratic and cubic transformations [35,
36], one finds that in the weak coupling region, where u is large, the classical periods 9,00
and Guag) are given by

V2 5
dya = ~—(=D) VAR 1 2.20
ua =5 (=D)” 12 12°77) (2:20)
V2 1 [3 1 5 1 1 5
=i—(—D) 1 —1 12F 1 —F, 1 2.21
Ouap =i=5-(=D)™ 12712°7°) o\ ) (2:21)
where z = —% and the weak coupling region corresponds to z = 0. Here A and D for

the curve (2.18) are defined by

A =T](ei —¢;)?, (2.22)
1<J

D= Z e? -6 H e — Z eZejer + ele er + eiejer). (2.23)
1<J 1<j<k

A is the discriminant of the curve. F(«, ;7;2) and Fi(«, 8;7; z) are the hypergeometric
functions defined by

|

= (@)n(B)n ( 1 1 2 ) .
Fi(a, B;1;2) = F(a, B;1;2) Inz + + - 2"
T;) (n!)2 Z at+r  B+r 1+

r=0

(2.24)

Changing the wvariable from 2z to wu, the hypergeometric differential equation for
F (12, 152, 1; z) leads to the Picard-Fuchs equation for an( ! Tt takes the form

o311(0) o211(0) O11(0)

6U3 +p1 aug +p2 8“ = 05 (225)
where p; and py are given by
_ (=Dt 3 - (1+a+p)z
pP1 = W - @ Z(l — Z) 8u27 (226)
Oa(=D)'*  0u(=D)'*[ Oz  y—-(1+a+p) af 2

with @ = &5, 8 = & and v = 1. For the SW curve (2.1) with Ny < 3, the Picard-Fuchs
equations (2.25) agree with those in [33, 34]. Note that for massless case, the Picard-Fuchs
equation turns out to be the second order differential equation for TI(¥) [32].

The higher order correction II*) to the SW period (9 is determined by acting a
differential operator @, on I1(¥) [10, 20, 22, 37]:

e = &, 1. (2.28)



There are various ways to represent the differential operator Oy. For example, one can use
the first and second order differential operators with respect to u to express II%) as

o - (x1. 2 +x2. 2\ o (2.29)
 ou? u ' ’
Let us study the simplest example, the Ny = 0 theory. We have the quantum SW
curve (2.10) with the sine-Gordon potential:
2

ﬁ(eix + 7). (2.30)

Qla) = —u—

The SW periods T1(9) satisfy the Picard-Fuchs equation [30]:

52110 1

- n® =o. 2.31
ou? 4(A§ — u?) (2:31)

The discriminant A and D are given by
A =256AF (v —Ag), D =12A5—16u’. (2.32)

The second and fourth order quantum corrections are given by [10, 16, 22]

19 190
()R — 2 )11
. <12 ou? T 8u> 1, (2.33)
8 4,2 52 3 4
@ — 75A8 — du* + 153A%u? 0 ~w—15Agu 9 . (2.34)
5760 (u2 — A)2  Ou? 2880 (u2 — A}) 2 du

With the help of the Picard-Fuchs equation (2.31), we find a simpler formula for ow:

7 ot 1 9 5 02
() — [ 1,2 IR - ()
Il (1440 out T 18" 0w T 384 6u2) . (2:35)

In the weak coupling region where u > A3, substituting (2.32) into (2.20) and (2.21),
(0)

we can obtain a(¥ and a D
with respect to u. The quantum SW periods can be obtained by applying (2.33) and (2.35)

by expanding (2.20) and (2.21) around u = oo and integrating

on a(u) and ap(u):
Ao [A2\*? 12 1 [A2\?? 35 [/A2\"?
a(u)= ~ <0> e | _<0> _ (0) 4
2 16v2\ u Ao\ 64v2\ u 20482 \ u
N (A%)”i%(A%)”ﬁ... .
A3\ 256v2 \ u 163842 \ u ’
i A 12 1 13 [(A2\*?
- |4 1 e 2220
ap(u) o [ V2a(u) OgA2 (8\F 1u 3/2 >+A0< 6 96 < » ) +

L1 e (AT
A3\ 720u3/2 1280 \ w

, (2.36)




up to the fourth order in A. It has been checked that the quantum curve reproduces the
prepotential obtained from the NS limit of the Nekrasov partition function [16, 22].

We can also consider the quantum SW periods in the strong coupling region. For
example, at u = :l:A% where monopole/dyon becomes massless, by solving the Picard-
Fuchs equation in terms of hypergeometric function, we can compute the SW periods [31].
For the computation of the deformed SW periods, it is convenient to use (2.35) rather
than (2.34) since the coefficients in (2.34) become singular at u = A3. We then find the
expansion of the SW periods around u = Ag, which are given by [22]

. a a2 ik (1 5 U
o= (55, g )+ (e (1))
ikt 17 721 a
+A3(_65536+2097152(1\g)+"'>+""
. a . a3 iR (1 /a\"' 5
aD(U)10g25AO+Z<—2A0—64A8+“'>+AO(24<A(2)> +192+“')

it (AT AT
A3\ 1440 \ AZ 2560 \ A2

where % :=u — A(Q). In the following sections, we will generalize these results and compute

a(t)

o
o

, (2.37)

the quantum corrections to the SW periods at strong coupling region for the Ny =1,2,3,4
cases.

3 Quantum periods for Ny > 1

Let us study the quantum SW periods for SU(2) theory with Ny > 1 hypermultiplets. We
will choose N4 of (2.3) such that the differential equation (2.8) become the second order
differential equation. Then we convert the quantum SW curve into the Schrédinger type
equation (2.10). The quantum SW periods are given by the integral of (2.15) and (2.16).
These periods can be represented as @kH(O) with some differential operators @k We will
find the second and fourth order corrections to the SW periods. In the following, Ay,
stands for A and Dy, for D in (2.22) and (2.23) for the Ny theory.

Ny =1 theory. In the theory with Ny = 1 hypermultiplet, we can take N, =1 in the
SW curve (2.1) without loss of generality. The quantum curve is written as the Schrédinger
type equation with the Tzitzéica-Bullough-Dodd type potential:
1 . 1 ) 1 )
Qx) = —f/ﬁ’/zrnle“E —u— —A3e? — 7A§/2e_”, (3.1)
2 16 2
where Q(x) = 0. The SW periods ITI9) satisfy the Picard-Fuchs equation (2.25) with
Ay = —A9(256u® — 256u2m? — 288umi A3 + 256m3 AT + 27A9), (3.2)
Dy = —16u? + 12m A3, '
It is also found to satisfy the differential equation with respect to the mass parameter m:

H211(0) B H211(0) A1)
omiou © ou? “Dou

(3.3)



where
16miu — 9Ai{’ m

8(m? —3u)’ T Tam?—3u

We will calculate the corrections of the second and fourth orders in & [37] to the period

by = — (3.4)

integrals using (2.15) and (2.16). These corrections are expressed in terms of the basis
9,11 and 92110

n® — 1i2 + XZQ 11 (3.5)
2 ou? 2 du ’
0? 0
() — 12 227 ) 1o
I1 ( 152 + X, au) I, (3.6)

where the coefficients in (3.5) are given by

~ —9AYmy — 16miu + 24u?

X, = :
? 48 (4m? — 3u)
) (3.7)
2 Bu—2mj
27 12 (4md - 3u)’
and the coefficients in (3.6) are given by
1 AP 9 2 4 2
X! = (-864/\ 4350 1192m? + 441
47 1440(4m? — 3u)A? v (4350miu 4 1192my + dd1e)
— 49152 myu? (—455miu’ + 609miu — 204m$ + 267u?) (3.9)
+ 768A8 (—19593miu’ + 42348miu® — 22624mSu + 6400m] + 8235u*)
+131072u* (15miu® + 6miu — 2m$ + 9u®) — 729A1% (615u — 1792m§)>,
A12
2 _ 1 6 2,2 4 6 3
Xi= T A (24/\1 (—1080m3u? + 4254mfu — 800mS$ + 1215u%)
— 768A%myu (—185m?u? + 267miu — 80m$ + 159u®) (3.9)

+2048u” (15miu® + 6miu — 2m§ + 9u®) — 81AYmy (235m7 + 6u)).

We will compare the quantum prepotential with the NS limit of the Nekrasov partition
function in the weak coupling region in the next section. The above representation of the
period integrals is suitable to consider the decoupling limit to the pure SU(2) theory, which
is defined by m; — oo and Ay — 0 with m3A$ = A being fixed. In the decoupling limit,
the second and fourth order corrections (3.5) and (3.6) agree with (2.33) and (2.34).

In section 5, we will study the deformed period integrals in the strong coupling region,
where the monopole/dyon becomes massless. In this case, the discriminant A; of the
curve has a zero of the first order where the coefficients in (3.5) and (3.6) become singular.
Since the SW periods I1(9) satisfy the Picard-Fuchs equation (2.25) and the differential
equation (3.3), the differential operator Oy in (2.28) for the higher order corrections is
defined modulo such differential operators. We note that the coefficients of the differential
operator for II? can be rewritten as

1 1 1 1
X21 = éu + gmlbla X22 = ﬁ + gmlcl. (310)



Using the Picard-Fuchs equation (2.25) and the differential equation (3.3), we find that the
second order correction to the SW periods can be expressed as

1 0? 0 0 0
n? = — (2u— +2m;—— 4+ — | 1. A1
12 < Y ou? e dmy Ou + 3u> (3:.11)

In the similar way, we find that the fourth order correction to the SW periods is expressed
as

1 o o3 0?
) - - 27 Z i
o = — <28u S+ 12U + 81 .
o o , 0 0P o &\ |

Since all the coefficients are now regular when A; = 0, we can easily calculate the quantum
SW periods at the various strong coupling points in the Coulomb branch.

Ny = 2 theory. In the case of Ny = 2, we can choose N; =1 or Ny = 2 in (2.3) for
the SW curve (2.1). The corresponding quantum curves are the second order differential
equation in both cases and can be written in the form of the Schrodinger type equation
but they have apparently different Q(x):

A . A2
Q(r) = —u — 72 (mye™ + mae™i) — §2 cos2z, (Ny=1) (3.13)
Q(z) = _eixA% + A%(Q%I(ml - m2)2 —2)+ 8A2€ix(m1m2 —u) + 16u
a 4(_2 + ei:cA2)2
eixA2

+ h? (Ny =2) (3.14)

2(—2 + 6”/\2)2 ’
where for the N = 2 case Q(z) includes the A? term. Although the quantum curves look
quite different, they are shown to give the same period integrals. One reason is that the

SW periods in both cases satisfy the same Picard-Fuchs equation with the discriminant Ao
and Ds:

A12
Ay = % — 3A%mymy — A3 (Su2 — 36 (m% + m%) u+ 27mi 4 27Tm3 + Gm%mg)
+ 256A5u> (u — m%) (u — m%) — 32ASmymy (1Ou2 -9 (m% + m%) u+ Sm%m%) ,
3
Dy = _ZAg +12A3myms — 16u?, (3.15)

and the differential equations

52110 1 (1) 2110 (1) o110

_ = 1
Om10u Lo <b2 Ou? te ou |’ (3.16)
52110 1 (2) 92110 (2) o110

_ 1
8m28u L2 <b2 8u2 + 02 8 ’ (3 7)



where

= AL+ 8mymaAd + 32[Am2m3 — Su(m? + m3) + 2],

bg ) _ 3A2m1 4A2m2(3m1 - 9m2 + 8u) — 64m2u(m% —u),

cg ) — 4A2 5mao + 32m1(m% - u),

b§2) = 3A5my — AA3my (3m3 — 9mi + 8u) — 64myu(m3 — ),

e§Y = 4NZmy + 32mo(m? — u). (3.18)

Since the SW periods are uniquely determined from the Picard-Fuchs equation with per-
turbative behaviors around singularities, the SW periods do not depend on the choice of
N_. We can also check by explicit calculation that the second and fourth order corrections
are given by

1 92 L3 o 0 o 0 Bl
@) _ o 9N\ 9\ o
II (2“3 5 (mlaml T au> + au> o, (3.19)
1 ot &3 92
(4) _ 9 o7
II 360{ 8u? 0 4+120ua 3 +75 2
+42 ({ um éi—i—um—a (973 +% m—(9 8—24—771—8 372
Yom, oul 2 Oy Oud 4 Yom, ouz " 2 0ms 0ul

63 0% o2 9% o2 126 o o

+ T <m%3m%8u2 + mg@m%(’?zﬂ) — Mmag By ﬁmgauz] n©®,  (3.20)
which are independent of ;. Here we adapt the expression such that all the coefficients
do not have any singularity at singular points in the moduli space. Thus we conclude that
the quantum SW periods, at least up to the fourth order in %, do not depend on the choice
of N4 [17].

As explained in the previous sections, the expressions (3.19) and (3.20) are not a
unique way to represent the quantum corrections. With the help of the Picard-Fuchs
equation (2.25) and the differential equation (3.16), we can rewrite (3.19) in terms of a
basis 9211 and 9,11 as

1 1 o 11 9]
(2) _ (1) (2) (1) (2) (0)
II [<3u+4L (m1by " + maby )) 902 + <6+4L (micy’ + macsy )) au]ﬂ ,

(3.21)
where Lo, bgl), e 052) are given in (3.18). In the decoupling limit where my — oo and
Ay — 0 with mgA3 = A$ being fixed, we have the SW periods of the Ny = 1 theory.
Furthermore, it can be checked that the second and fourth order corrections to the SW
periods become those of the Ny = 1 theory.

Ny = 3 theory. In the case of Ny =3, we can choose N; =1 or 2 in (2.8). Otherwise,

we obtain the third order differential equation. We will take Ny = 2 without loss of
generality. The quantum curve is the Schrodinger type equation (2.10) with

,10,



—2ix . .
Q(x)= € (—4A3—4e3”A§/2 (m3As+8mymy —8u)—e*™* (A§—24m3A3+64u)

16( 2+ewA1/2)

iz A L1/2
4(m1m2)264iwA3+4eiwA§/2(A38m3))+fﬂ e 5. (3.22)
2(—2+eiIA§/2)

The SW periods satisfy the Picard-Fuchs equation and the differential equations with

respect to the mass parameter m; (i = 1,2,3) and the moduli parameter u. Since these
equations are rather complicated, we will write down them for the theory with the same
mass m := mq = mo = mg. In this case the discriminant Az and D3 become
A3 (8m? 4+ Agm — 8u) ? (256A3 (8m® — 3mu) + 8A3 (3m? + u) + 3A3m — 2048u?)
4096 ’
(3.23)

Ag=—

A4 9m?2
D3 = 12A4 A — ) —16u> .24
3= o T m> + 3< 1 ) 6u (3.24)

Then the Picard-Fuchs equation is obtained by substituting (3.23) and (3.24) into (2.25).
We can also confirm that the SW periods satisfy the differential equation:
9*11(0) 9*11(0) o1

omou = bs ou? e ou (3:25)

where
3m (A3 + 24A3m — 128u) 12m

16 (16m? — Agm — 4u) - (Ag — 16m) + 4u’
We can also calculate the Picard-Fuchs equation for general mass case based on Ag

by =

(3.26)

and Ds. In this case we can check that the quantum corrections to the SW periods II(¥)
are expressed as

2 3
mmzlcy_lﬁ>6'+1 020 50

; © 3.27
6" 3843 ) 9u2 2i:1m8m¢8u 12 9u : (3.27)

n“ —

1 290 47 /2411 1 3 1 02
T (5, RIPY B 7 ) @ 571
6 384

10 dut T20\ 476" " 384°%) 9 T 10002

i Sy Lg)m Ll O 18, 0 O ,
3842 ) " om0 T 120" om; 02 (3.28)

ZZ o 09 PN\ Iqo

— L ]8mi omj Ou?

The coefficients are not singular when Az = 0. With help of the Picard-Fuchs equation and
the differential equation with respect to the mass parameters, we can rewrite the quantum
SW periods (3.27) and (3.28) in terms of a basis 9,119 and 9211, For the equal mass
case, we find that

5 1 1 0? 5 1 0
n® = [(Bu- oas gt ) o (S gmea) 21O (329)

— 11 —



In this expression, however, the coefficients become singular at the point where Ag = 0.
But this representation is useful to discuss the decoupling limit to the Ny = 0 theory. In
the decoupling limit; m — oo and Az — 0 with m3A3 = A} being fixed, the SW periods
for Ny = 3 theory agree with those for the Ny = 0 theory. Moreover, we can show that
the second and fourth order corrections to the quantum SW periods become those of the
Ny =0 theory in this limit.

Ny = 4 theory. In the case of Ny =4, we will take N; =2 in (2.8). Otherwise, we get
the third or fourth order differential equation. The quantum curve can be written in the
form of the Schrodinger-type equation with

672190

4 (—4,/qcos(x) +q + 4)2
+ 4\/516“5 (m%q + miq —mamy(q + 8) — mymeq + SU)
— % (q ((m% + m3 4+ m3 + mi) q— 24 (mimg + m3m4)) + 16(q + 4)u)

Q(x)

<4\/§e3"“c (m%q + m2q — mima(q + 8) — mamyq + 8u)

— 4qe*™ (my — ma) 2 — 4q (m3 — my) 2)

ge ' (qe*™ — 8,/qe"™ + q + 4e** 4+ 4
+ K2 .
2 (—4/gcos(z) + g + 4)°

(3.30)

For simplicity, we consider the case that all the hypermultiplets have the same mass:
m:=my = mo = ms = myg. The SW periods I1(°) satisfy the Picard-Fuchs equation (2.25)
with the discriminant A4 and D4 which are given by

2242 (m2 - u)4 (m4(q —16)q + 8m3qu + 16u2)
(¢ —4)r° ’
16 (—m*q ((¢ — 12)%q — 192) — 8m?(q — 8)q*u — 16((q — 4)q + 16)u?)

Dy = CETL . (331)

Ay =

The quantum corrections to the SW periods are expressed in terms of the basis 9, I1(?) and
9211, The second order correction is given by

n® — Xliz XQQ 110 3.32
- 2 2 + 2 ou ) ( : )
where
!l _ —18m*q + m*q® — 8m2u + 10m?qu + 24u?
2 96m2 ’ 3 33
. (3.33)
y2_ _—2m +m*q + 6u
2 48m?
The fourth order correction is
9?2 0
n = <Xiau2 + X428u> 1, (3.34)
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where

1
46080m2 (m?2 —u)* (m2q—4m?,/q+4u) ? (m2q+4m?,/q+4u) ?

><(7m14q8—399m14q7+8484m14 6 _80616m'1¢° +312480m** ¢* —284544m 3

+153600m g% +175m2¢ u—7196m 2 ¢®u+96504m*2¢°u—436320m2¢*u
+266496m 2 > u—789504m 2 ¢?u+1848m 'Y ¢%u? —51624m 1 ¢°u% 4+403488m 0 gt v
—896256m % ¢3u? +2328576m % u? 4313344m % qu’ +10648m8 P u?

—190176m8 ¢*u® 4820224m8 ¢*u® — 1501184m8 ¢?u® —921600m8 qu 4 35968 mS ¢*u*
—377984m P u +881664mS ¢>u* — 26624m S qu* —8192mu* +70656m* ¢>u®
—344064m* ¢*u® —325632m* qu® +24576m*u’ + 73728 m? ¢*u’ +12288m?qu’

+319488m2u +30720qu7+122880u7),
1
23040m2 (m?2 —u)’ (m2q74m2\f+4u)2(m2q+4m2\f+4u)2
X (7m12q7—287m12 64+3780m'?¢° —15816m'2¢* +1440m"'?¢* — 38400m' ¢

+147m 0 ¢%u—4032m° ¢Pu+29736m 0 ¢ u— 55872m 0 3 u+225408m1° ¢>u+30720m O qu
+1260m3¢°u? —21768m8 ¢*u® +88704m8 ¢ u? — 221952m8 > u® — 133632m3 qu?
+5608m°¢*u —56768m8 ¢3u +147456m° ¢?u +7168m° qu — 2048mSu?

+13536m*¢3u* —64512m*¢*u* —58368m* qut +6144m*u* +16512m2¢%u’ +3072m2qu’®

+79872m*u® 4-7680qu° +3o720u6) : (3.35)

In the decoupling limit m — oo and ¢ — 0 with m*q = AJ being fixed, the SW periods
coincide with those for the Ny = 0 theory. We can also show that the second and fourth
order corrections of the quantum SW periods (3.32) and (3.34) in this limit agree with
those for the Ny = 0 theory .
We can also consider the massless limit, where the Picard-Fuchs equation becomes a
simple form:
o’m1©® 1 o
ou? * 2u Oou

Note that the coefficients X} and X7 in (3.32) and (3.34) become singular in the massless
limit m — 0. In the massless case, it is found that (3.32) and (3.34) are replaced by

2
@ _ (_ug 9  (a=4q 0\
I < Yot iew 5g) 1 (3.37)

@ _ (~26a+11¢ 9 (¢—4)(=52+35¢%) 9 (¢—4)°¢* &*
N 2304  Ou? 4608u2 dq 288u2  0¢?

(3.36)

) n®,  (3.38)

where these formulas include the derivative with respect to ¢ in addition to the wu-
derivatives.

In the following sections, we will compute the quantum SW periods both in the weak
and strong coupling regions and compute the deformed (dual) prepotentials.
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4 Deformed periods in the weak coupling region

In this section, for the completeness, we will discuss the expansion of the quantum
SW periods in the weak coupling region and compute the deformed prepotential for
the Ny theories [37, 38]. Then we compare the prepotential with the NS limit of the
Nekrasov partition function [17]. Note that the deformed prepotentials for Ny = 1,2,4
are obtained from the classical limit of the conformal blocks of two dimensional conformal
field theories [39-41]. The SW periods (2.6) around u = oo have been given by (2.20)
and (2.21) [35]. The quantum SW pe(gi)ods can be obtained by acting the differential

operators on the SW periods a(?) and a D

41 N;y<3

In the case of Ny = 1, the discriminant A; and D; is given by (3.2). Expanding (% (u)
and ag) (u) around u = oo and substituting them into (3.11) and (3.12), we obtain the
expansions around u = oco. They are found to be

U Ai’m ( )3/2 3A6( )5/2

NG 210,/2
(A ()7 1A ()7 ssagme (1) »
- 26,/2 212,/2 211\[ T (4.1)
pa [ Am (D)% 6308 (1) 273A9m ( )2
4
) 16w LR 7A3m1
aD(u): 2\/>7T fa()(m—SlogA%> (6\F+\/»+US/21+"'>
4
1 m? — A3, — 2L
o <_4\/ﬁ B 12u§/z +— ;5/2 2t (4.2)
4 3
1 7m2 m o 127A7my
4 1 96 2560
- (160u3/2 + 240ud/? * u’/? * *

Solving w in terms of a in (4.1) and substituting it into ap, ap becomes a function of a.
Then integrating it over a, we obtain the deformed prepotential:

1 ert 2k (2kn n
Fila,h) = 5— | FY +ZZH () : (4.3)

k=0n=1

where the first few coefficients of .7-"1(%’”) (k=0,1,2) are listed in the table 1. The pertur-
bative part FP**(a,h) of the prepotential is given by

2

3m
1_ 2 omy
A2—|— .7: —a“loga— 1 (4.4)

e 1y a—ianleri i 1 N 7 O*F! N
12 %796 9az " 16 576002 ' 210.32.5 9a? !

FP(a,h) = —§a210g
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1 Fl(%,l) ]:.(2k;2) ]__1(%,3) ]__1(%,4)

L A3y, | —3A1 | 5AYmE | TAYmy
0|5z A1 8192 | 16384 393216
1 A3 _15A9 | 21Am7

1 0 356011 |~ 55536 | 65336
9 0 0 A3my 63A8

2048 | 524288

Table 1. The coefficients of the prepotential for the Ny = 1 theory.
where F! is defined as [33]

.7-"51:<a+$%>210g<a+n\;%>+<a—n\;%>210g (a—n\}%)- (4.5)

In a similar way, we can calculate the deformed prepotentials for Ny = 2 and 3 theories,
which are expanded as

1 pert Qk; an n
Fiy(a,h) = 5~ [fo h) + kZO;h , (4.6)
where some coefficients F ](\?k ) (k = 0,1,2) are given in appendix A. The perturbative
parts are given by
ert 2 a2 1 2 2 3 2 2
FY"(a,h)=—a logﬁ—l—f}'s —2a loga—z(ml—i—mQ) (4.7)
1 9*F2 1 1 7 0'F?
h? — 5l —)4+rt( - S ) 4.
* ( %796 9a? +8>+ ( 576002  210-32.5 dat >+ ’
1 a2 1 °.3
pert . 3 2 2
Fs (a,h)——fa logA2 5}—3 —3a loga—;4mi (4.8)

12 (= Lioga ia2JT§+i T (R 07 4o
12 96 a2 ' 16 5760a% " 210.32.5 9a’ ’

where F.'/ (N§ =2,3) is defined as [34]

fz(<;>(;)<;>(;)) o)

These deformed prepotentials are shown to be consistent with the decoupling limits.
We now compare the prepotentials for Ny = 1,2,3 theories with the NS limit of the
Nekrasov partition functions. By rescaling the parameters h, m; (i =1,2,3), and A N, as

27ri.7-'(a, h) — .7-'((1,61), ANf — 22/(4_Nf)\/§ANf, h— \/561, m; — \/imi,

and then shifting the mass parameters : m; — m; + €/2 for a fundamental matter or
m; — €/2 — my; for an anti-fundamental matter, we find that the prepotential agrees with
that obtained from the Nekrasov partition [5].
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42 Ny=4

In the case of Ny = 4, after rescaling of the y and x by a factor of 1 — £ in the SW curve,

we can apply the formulas (2.20) and (2.21). Expanding around ¢ = 0 and integrating over

(0)

u, we have the SW periods a(®) and a p in the weak coupling region.

To simplify the formulas, we consider the equal mass case m := mj = mg = ms = My,
where the discriminant Ay and Dy are given in (3.31). The deformed prepotential is

Fi=5- [fpe“ (a, h) + ZZHQkafk’")q”] : (4.10)

k=0n=1

where the perturbative part is given by
1
FP™a,h) = a®logq + 5]—";1 —4a*loga (4.11)

1 1 9*F] 1 7 oF:
h? | o s h4 _ s .
* ( 12 1°8(0) = 56 52 > * ( 57602 210325 da > L

Ao((er) el B ) () o

(2k,n)

where

The first several coefficients F for k =0,1,2 are given in appendix A.3. By rescaling

the parameters h, m and ¢ as
2miF(a,h) = Fla,e1),  q—4q, h—V2, m—V2m, (4.13)

we find that (4.10) agrees with the prepotential obtained from the NS limit of the Nekrasov
partition function of the theory with the equal mass, where the mass parameter must be
shifted as m; — m;+e€/2 for a fundamental matter or m; — €/2—m;, for an anti-fundamental
matter (i =1,---4).

For the massless case m = 0, the Picard-Fuchs equation (3.36) has a solution of the
form:

n® = f(gyuz, (4.14)

where

V2 F<15108(q—4)2q2> (4.15)

10 == ngr 1o 1271275 (@ - 40+ 167
Then, using (3.37) and (3.38), the second and fourth order corrections to the SW periods
can be written as

e = U (a2 050 ). (4.16)

2
H(4)—_9216u3/2<(11q—26)f(<1)+2(q—4)<16(q—4) 88f(2) (350 —52)af(q ))>.(4.17)

It is found that the prepotential obtained from (4.14), (4.16) and (4.17) coincides with (4.10)
for m = 0.
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4.3 Deformed effective coupling constant

From the relation (2.29) and the Picard-Fuchs equation (2.25), we can compute the de-
formed effective coupling. Differentiating (2.29) with respect to u and applying the Picard-
Fuchs equation (2.25), we find

0 82 8
where
1 X2k
Yo+ = —p1Xo), + ou + X3, (4.19)
0X?2
Vi, o= —pa Xy + =5 2 (4.20)

Then taking the u-derivative of the quantum SW period IT = Y77 B2RIIR) | we have

0 02 0
M= (Vi— +Y,— | 1™ 4.21
ou ( our T 28u> ’ (4:21)
where
=> Wy,  Ya=1+4) WY, (4.22)
n=1 n=

The deformed effective coupling is defined by

Ouap
= ) 4.23
Boa (4.23)
. . . . (0) Oua g) .
The leading correction to the classical coupling constant 7\ = B is given by
=70 (1 + 12V, o, log 7@ + (’)(h4)) . (4.24)

Therefore the leading correction to the effective coupling constant is determined by a
dimensionless constant Y3 in (4.19). Also 9, log 7(0) is proportional to the beta functions
at the weak coupling.

We will evaluate the coefficient Y21 for some simple cases, where all hypermultiplets
have the same mass m. For Ny = 0, from the coefficients X4 and X3 in (2.33) and
p1 = u22_7“A4, one finds

0
Y= - ——— . 4.25
278 6(u2—AY) (4.25)

In a similar way we can compute the coefficient Y3' for N ¢ = 1. The results are the

followings: for Ny = 1, we have

1 1 1 O A 3
1 u—=1
Y5 = 1 ( m+ bl> a-g (u+ mby) ( A + p— 3u) . (4.26)
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For Ny = 2, we have

1 3m 1 Oy 8(3m? —2u) ¢
1 e — [N — J— —_—
Y2 =5 + < 1 21)2) C2 <3u—i— 1 —b ) < A, 8m2 — 8u+A% ool E (4.27)

where

1
by = E(b;” +02), o= — (Y + ). (4.28)
For Ny = 3, we have
1 24m? + 8u + mAs c3

5 (3 5 O3
Yy =>4 (Sm—2bs) — | 2u— -——A3 b — =
2 4+(2m 63> <6“ 343 T m3><A3 —8m2+8u—mA3m)’
(4.29)

where b3 and c3 is given by (3.26). For Ny = 4, we find

_ 2
Yy = 1-a_ dsu 1 (2(4 —5¢)u — m?*(q — 18)q — 2u > <aUA4 + k > - (4.30)

m2 Ay m? —u

We have confirmed that the above formulas are consistent with the decoupling limit and
the deformed periods agree with those obtained from the NS limit of the Nekrasov partition
function explicitly up to the fourth order in A.

5 Deformed periods around the massless monopole point

In this section, we consider the quantum SW periods in the strong coupling region of the
theories with Ny = 1,2, 3 hypermultiplets, where a BPS monopole/dyon becomes massless.
In particular we will consider the point in the u-plane such that the deformed BPS monopole
becomes massless ap(u) = 0. The dual SW period ag) becomes zero at the massless
monopole point where the discriminant A of the SW curve and also z = —27A /4D3 become
zero. In the following, we explicitly calculate the expansion of the quantum SW periods
around the classical massless monopole point. The periods around the dyon massless point
can be analyzed in the same manner.

First we will give some general arguments on the quantum SW periods around the
massless monopole point. The solution to the Picard-Fuchs equation around the massless
monopole point are given by [35]

0 _ Q g (L5
8“ D - ( D) F<12,12,1,Z ) (51)

(0):Q_D —1/4 31 19F L5 1: _LF 15 1 2
Gua > (=D [% 12712°°7) T \127 12 %) | (52)

Let ug be the massless monopole point in the u-plane, where A becomes zero. In general,
z and (—D)l/ 4 have the following expansion around

z = irnﬁ", (=D)~1/4 = Z spu”, (5.3)
n=1
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where 4 = u — ug. Substituting (5.3) into (5.1) and (5.2) and integrating with respect to
u, the SW periods can be given in the following form

a) (@) =" Bua, (5.4)
n=1
(@) = i lag) () {log(rll/lﬂ) — %log 12} + Z Apu |, (5.5)
n=1

where a constant of integration for ag) is fixed by the condition ag) (0) = 0 and a9 (2) is

given up to constant which is independent of #. The integer [ is defined as the smallest
integer which gives nonzero r, i.e. r,, =0 (n < 1) and r; # 0. B,, and A,, are expressed in
terms of r,, and s,. First three terms of B, and A, are given by

80
B =i,
! 2
.
B:—(s + sor (1)>’ 5.6
2= 55 (% orrf (5.6)

Ay = —1Byq,
l 7"l+1 1 Z 1
dp=lpy iy 57
2 2 2+ 2 1+2ﬂ807“19 ) (5.7)
l 41 2 rie i) 1 i 1
Ag=—-Bs+ LBy 2 _Hl)\-p 4+ M) 4 Zsor2g®@
3 33 + 3 2+ p 2”2 3 + 5v3 (sore + s17m1)9" + Qsorlg ,
where

£ — (1/12),,(5/12)n

n!

n) _ (1/12),,(5/12), — 1 1 2
o ;(1/12+7’+5/12+7‘_1+r>' (5.8)

9

The higher order corrections in @ can be calculated in a similar way. Once the SW
periods around the massless monopole point are obtained, the quantum SW periods can
be calculated by applying the differential operators as is in the weak coupling region.
Thus what we have to do is to obtain the explicit value of ug, which is one of the zero

1/4 around wy. However, for general mass

of A, and the series expansion of z and (—D)
parameters, the expression of wug is slightly complicated. Therefor we only give explicit
expression of the quantum SW periods in simpler cases; massless hypermultiplets and
massive hypermultiplets with the same mass.

Before going to these examples, we will discuss an interesting phenomena due to the
quantum corrections. Although the undeformed SW period ag) (u) becomes zero at the
monopole massless point u = wug, the deformed SW period ap(u) is not zero at the same

value of u. This means that the massless monopole point is shifted in the u-plane by the

,19,



quantum correction. In fact, the quantum SW period ap around u = 0 takes the form

tha(D ) where

a? =" BPRan, (5.9)
n=0

2) and B(()4) are observed to be non-zero

Here BY) := B, in (5.4) with B") = 0 and B\, B
by explicit calculation. We then find the massless monopole point Uy of the deformed
theory is expressed as

Uo = uo + huy + hlug + - ; (5.10)

where u; and uo are determined by

(2)

B

Uy = —ﬁ, (5.11)
1
(4) (2) (0>

Uy = _By B u?. (5.12)

20T g —
Bgo) Bgo) B(O)
We will compute these corrections explicitly in the following examples.

5.1 Massless hypermultiplets

We discuss the case where mass of the hypermutitplets is zero. This case gives a simple
and interesting example since the moduli space admits some discrete symmetry. We will
consider the massless monopole point in the moduli space. The solution of the Picard-Fuchs
equation around the massless monopole point ug has been studied in [32].

Ny = 1. Forthe Ny = 1 theory, the massless monopole point is ug = —3A%/28/3. Around
ug the z and (—D1)~ /4 is expanded as

QU3 92/8 .5, 47104 P
U — U .
A? 3A% 27A6 ’

14 ) 91/3 22 ~ 28/3 Y
(—D1) =t 31/3A4 T 33/2A:1,)u+ 33/2A?u T (5.14)

(5.13)

z2=—

from which we can read off the coefficients r,, and s,, in the expansions (5.3).

Substituting these coefficients into (5.4) and (5.5), we can obtain the SW periods
(a'®) (u),ag) (u)). Then, using the relations (3.11) and (3.12), we obtain the expansion of
the quantum SW periods around @ = 0:

- a a? T
ap(u)= <21/6.31/2A1 T 21/2.35/2A3 +25/6.311/2A5 +>

h? 5 35 U 665 U 515
+E 219/6.35/2 +27/2,39/2 A2 223/6 315/2 A2 Jr ( : )
Rt [ 2471 144347 U 1964347 ﬂ
+ [T% 615/2 + 953/6.319/2 /T% + 555/6 323/2 255/6.. 323/2 +
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2k,1 2k,2 2k,3 2k,4
R

D1
_ 5.1 _ 515 1
0 0 3 12 (1) 1152 &(1)2
1| 21 425 1 _ 3275 1 _ 50645 1
96 &(1) 4608 &(1)2 110592 (1)3 294912 &(1)2
9| 104263 1 | 757333 1 7173929 1 4749125675 1

5308416 &(1)3 | 28311552 &(1)% |~ 1019215872 &(1)5 | 32614907904 &(1)°

Table 2. The coefficients of the dual prepotetials for the N; = 1 theory, where &(1) = —3%/2.
2-17/6 [32].
i N i , @ e 208°
a(@) =5 |ap(a)| —ir+ 085173 33 A2 T\ "o gz, 23/2.35/2A3  25/6.313/2)% e
i 1 @\ " 13 101 [ @
+/Tl ( 923/6.31/2 (A%) + 219/6.37/2 + 69/2 <A§> +> (5-16)

il 7 a\"? 29 @\’ 107 a\ "
+1T:13 915/2.31/2 5 E +247/6,35/2,5 /T% +249/6.39/2 [T% R AR

Inverting the series of ap in terms of @, we obtain @ as a function of ap. Substituting «

into a and integrating a with respect to ap, we obtain the dual prepotential:

2 2 4
1 ap h Th
B = a2 1og (22) — o
Foi(ap,h) = ol ap log (Al) 15 108 (ap) 576002,
(5.17)
2 (2k,n) D
t2 )M (m) ad (m) |
k=0n=1
(2k,n)

where the first several coeflicients 717" (k = 0,1,2) are listed in the table 2.

Ny = 2,3. For Ny = 2, the massless monopole point is vy = A%/& Then z and
(—Dy)~/* are expanded as

108, 432 4 3456 ,

Z—A—%u Agu AS a4, (5.18)
1 a  3a?
D) VA = %27 5.19
(=D2) A, A3 2A3 (519
Then we have
(w)=i i u’ N 3u° N
ap\u)=t 91/27\,  23/2A3 " 25/2A3
in? (1 5 (4 35 (@)’
o (w—w<ﬂ>+z/(ﬂ> *) 20

bt 17 721 [ @ 10941 / @ \ 2
T\ Tt \ag) e \az) )t

— 921 —



a(u>_i 2ap()lo iﬂ, 20 3@ N 1243 N
o D g4A% 21/2A2 23/2A§ 25/21\8

R G S S (R (S A (5.21)
Ay \ 25/2.3 \ A2 27/2.3  29/2.3 \ A3 ‘

Lt a1 (a5 faT
A3\ 211/2.32.5 \ A3 213/2.5 \ A3 215/2.3.5 \ A}

For Ny = 3, the massless monopole point is ug = 0. Then z and (—Dg)_1/4 are
expanded as

222 . 33 4 231 . 33 - 234 . 35 .5 6
= AS u A w’ + A2 a4 (5.22)
4 256 . 36864

—Dg) VA= o g 5.23
(=Ds) As T A3 A} (523

z

Then we have

25/2,& 213/2,&2 911 373
ap(u) =1 + + +e

As A3 A3
in2 (1 [ i\’
RLN 13/2 (% 19 g2 2
L <21/2+2 <A§> 2195 (Ag) + ) (5.24)
+ﬁ 95/2 . 54 9112 43 (L) 49252 1941 (L 2+---
A3 A3 A |

? _ 16w .
a(u) = Py [4@D(u) logﬁ +1 <_
3

27/2,& 915/2 372 929/2 373
Y R C R

ih2 1 /a\ b 272 21/2.99 /g
S el il 2
Y ( e <A§> Tyt <A§>+ (5:25)

Lt T (a1 e\ T AT
As \ 22172325 \ A2 29/2.3.5 \ A2 23/2.5 \ A3 ’

We then obtain the deformed dual prepotentials for the Ny = 2 and 3 theories, which are
given by

. 2 2 4
7 ap h Th
Fpolap,h) = — [2a% 1o () + —log(ap) — —— +
pa(ap,h) = oo | 2ap log | - 5 loslan) 2880a2,
o oo , ok . (5.26)
2 (2k,;m) [ 4D
DA (A2> S D2 <A2>
k=0n=1
for Ny = 2 and
. 2 2 4
1 ap h Th
Fpslap,h) = — |4a? 1o <> + —log(ap) — ——— +
ps(ap, h) = g |dap log | 37 5 198(00) = {15007
2 (2k,m) [ @D
P (g) A ()
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(2k,1) (2k,2) (2k,3) (2k,4)
k| Fpa FDo F Do FDo
_ 1.1 51
0 0 6 2(2) 64 2(2)2
1| 31 17 1 205 1 315 1
16 &(2) 256 2(2)2 6144 3(2)3 16384 3(2)%
o| 185 _1 | 2043 1 | 69001 1 | 1422949 1
32768 2(2)3 | 524288 &(2)7 | 10485760 &(2)5 | 201326592 &(2)0

Table 3. The coefficients of the dual prepotential for the Ny = 2 theory, where ¢(2) = —i275/2 [32].

k f'(2k’1) f(Qk’Q) f(2k73) J,—_-(Zk:,4)

D3 D3 D3 D3
_ 1 5 1
0 0 12 Z(3) 32 7(3)2
1] 11 | _5 1 | _19 1 8 1
BZ(3) 128 2(3)2 1024 2(3)3 8192 &(3)2

9|37 __1 239 1 | 5221 1 102949 1
49152 3(3)3 | 262144 &(3)* | 5242880 &(3)5 | 100663296 &(3)0

Table 4. The coefficients of the dual prepotential for the N; = 3 theory, where &(3) = i2713/2 [32].

for Ny = 3, where the first several coefficients JF 1(92 ]’f,fn) (Ny = 2,3) are listed in the table 3

and the table 4.

The dual prepotentials include the classical term and one loop term as (4.4), (4.7)
and (4.8) in the weak coupling region. These terms also appear in the pure SU(2)
theory [22].

Now we compute the shifted massless monopole point Uy in the u-plane in these ex-
amples. Using the expansion of ap, we obtain

;

2 132 9 4 _
Ap — 2P +32768A(2)h +o Np=0
307 542 1571 24

2 D p2_ 1571 g ... . Ny=1

I (5.28)
A2 159 9 14 _
5 —sh +256A§h e Ny =2
122 4 34 _

In next subsection, we will discuss the expansion around the massless monopole point
ug for the theory with massive hypermultipltes with the same mass.

5.2 Massive hypermultiplets with the same mass

We consider the case that all the hypermultiplets have the same mass m :=mq = --- =
mpy,. The classical massless monopole point ug corresponds a solution of the discriminant
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AN

; = 0. In the u-plane, it is found as follows;

_ —64m* — 216A%m + sm?2H,"* — H}/®

ug = 173 N for Nf = 1, (529)
24H,/
A3
Uy = —§ + Aom, for Nf =2, (530)
1 2
w = = <A3 — 96Asm + /A3 (As + 64m) 3) , for Ny =3 (5.31)
where
Hy = 729AS — 512m5 4 4320A%m> 4 3v/3 (27A] — 64A1m?) 3/2. (5.32)
In the decoupling limit m — oo and Ay, — 0 with mif Agéf_Nf ) A} being fixed, these

points become the massless monopole point Ag of the Ny = 0 theory. If we consider
the massless limit, these points become the massless monopole points for the massless Ny
theory.
We first discuss the Ny = 1 theory. Here we consider the small mass |m| < Ay, where
ug is expanded around m = 0 as [42]
302 Aym om?

UO:_W_21/3+?+.”. (533)

From (5.4), one obtains the expansion of the SW period ag) around u = ug

©) /- 1 23/2m2 L 1 217/6m
(W) =\ 55 g, weag ) T\ ey Pamear ) T
(5.34)

where 4 = u—ug. By using the relations (3.11) and (3.12), we get the quantum SW periods
up to the fourth order in A around u = ug:

(2),~\ 5 m _ 35 om
ap (@)= 213/6,35/2A1_25/6,37/2A%+”' tu 27/2,39/2A?+21/6,311/2A411+"' o
(5.35)

()~ [ 2471 613m N 144347 26495m
ap (@)= 615/2A3 N 931/6.315/2 \4 o)t 953/6.319/2\5 t 29/2.321/2\6 T

(5.36)

From these expansions, we find that the monopole massless point Uy is given by (5.10)
where

U‘O — —W — 21/3 + 3 + cee
B 5 n m n 5m?2 n
B R PTE NS W TYERETY v ’
1571 613 11329m?
s = m m (5.37)

_ + + NI
222/3 . 37A% 25 . 37A? 211/3 . 39A411
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For Ny = 2, we find that the massless monopole point Uy is found to be (5.10) where

A2
up = _§2 + A2m7
o m — 2A2
T T 5om — 16A,
9 (—8A3 +m3 — 2Aom? — 26A2
Uy — (=843 +m 2m 3m) (5.38)
20485 (Ay — 2m) 4
In the case of |m| < Ag, we have
A2
uy = —f + Aom,
1 3m 3m? n
= _ o
"7 U8 16A,  8AZ ’
9 405m  2385m>
=— - — 5.39
“27 T056A2 T 1024A3 10243 (5:39)
For Ny = 3 with |m| < As, we have
3A
uy = — 83m—3m2+-~ :
1 N 6m  336m? N
L7y T A, A2 ’
4 131904m?
P 888m  131904m (5.40)

BT A T

in (5.10). Note that the first terms in the expansions of u; and wug correspond to those in
the massless limit.

We can perform a similar calculation of Uy up to the fourth order in & for general m.
We find that the massless monopole point is shifted by the h-correction. In figure 1, we
have plotted the graphs of the deformed massless monopole point as a function of m/A Ny
where we take h = 1. For Ny = 2, Uy is singular at the Argyres-Douglas point where
m/As = 1/2. This is because the ratios of BY in (5.11) and (5.12) are divergent. For
Ny =1 and 3, however, their ratios are finite. In order to study the quantum SW periods
near the Argyres-Douglas point, we need to rescale the Coulomb moduli and the mass
parameters appropriately, which would be left for future work.

6 Conclusions and discussion

In this paper, we have studied the low-energy effective theory of N = 2 supersymmetric
SU(2) gauge theory with Ny hypermultiplets in the NS limit of the Q-background. The
deformation of the periods of the SW differential is described by the quantum spectral
curve, which is the ordinary differential equation and can be solved by the WKB method.
The quantum spectral curve and the Picard-Fuchs equations for the SW periods provide an
efficient tool to solve the series expansion with respect to the Coloumb moduli parameter
and the deformation parameter 2. We have found a simple formula to represent the second
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Figure 1. The graphs of ug, ug + A2u; and ug + h%u; + h*ug with respect to m/An, for Ny =1,2
and 3 where we choose i = 1.

and fourth order corrections to the SW periods which are obtained by applying some
differential operators acting on the SW periods. In the weak coupling region we solved
the differential equations up to the fourth order in h. We have explicitly checked that the
quantum SW periods gives the same prepotential as that obtained from the NS limit of
the Nekrasov partition function.

We then studied the quantum corrections expansion around the monopole massless
point. By solving the Picard-Fuchs equations for the SW periods, we have quantum cor-
rections to the dual SW period ap. We then found that the monopole massless points in the
u-plane are shifted by the quantum corrections. It is interesting to explore the higher order
corrections and how the structure of the moduli space is deformed by the quantum correc-
tions. It is also interesting to study the expansion around the Argyres-Douglas point [3, 4,
43, 44] in the u-plane where the mutually non-local BPS states are massless. A generaliza-
tion to the theories with general gauge group and various hypermultiplets is also interesting.
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A .7:(2k ™) for the Ny = 2,3 and 4 theories

In this appendix we explicitly write down some coefficients in the expansion of the prepo-
tentials for Ny = 2, 3,4 theories in the weak coupling region.

Al Ny=2

For the Ny = 2 theory the first four coefficients of the classical part of the prepotential
n (4.6) are

4
o1 _ A LNV
T2 = Joge T gplemimes
F02) _ 3A2m1 _ 3A3m3
2 8192 8192 ’
F03) _ 5A3 5A3m3m3  5ASmims
2 134217728 16384 196608 '
2 134217728 134217728 393216 393216

The coeflicients in the second order correction to the prepotential are

FY =o,
4
(22) _ Ay
2 8192 256
2 65536 65536
21A8 21A3m2m3  35ASmyms
F24) _ 2 211 2 A9
2 134217728 + 65536 + 786432 (A.2)
For the fourth order corrections they are
]_—(4 A)
]_-(4 2) _
]__(4 3) A% A%mlmg
16384 2048 ’
P27 = T ha08s T Baaoss (A-3)
A2 N;y=3
For Ny = 3 the coefficients of the prepotential in the expansion (4.6) are given by
3 A2,,2
(0.1)_ A Agmi 1, A4
3 3355443fLZ 4096 +32 SIS, (A4)

S 33554432 8192 32768
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0,3) 5A% + 5 m? 5A§m§1 5A3mimamam?
3 7 4503599627370496 103079215104 134217728 196608

4 2
+225A3m imy 5A3m1m2m3 7A3m1m2m3

oy 33554432 16384 268435456
.r@A%—jé C 63A3m? 7ASm! _21A§nﬁnﬂnyn3_+§:_;mA@n%n2
S 2251799813685248 103079215104 268435456 134217728

-I-Z 35A5m? m? 7A3m m M1Moams3 3AImimaoms 147A3m1m2m3
34359738368 393216 137438953472 33554432

for the classical part,

2
(2,1 _ A3
73 16384’
4 3 a2
(272) o 5A3 A3m 7/\
3 T 134217728 Z} 8102 a5 MMM,
f(273) _ 5Ag i 65A Z 15A3m m? 35A§m1m2m3
3 412316860416 268435456 65536 786432
(24) _ 105A8 23: 35A5m? n 21A%3m] n 35A3mymomsam?
3 9007199254740992 103079215104 = 134217728 786432
N Z 147A3mzm3 | 63A3mimoms | 21A3mim3m3 (A5)
67108864 536870912 65536 '
for the second order in A and
F =0,
2
@2 _ A3
3 32768’
(1) _  141A S A2m2 Agmamoms
F, — 3 Z o ,
372147483648 16384 2048
3 4, 2 63A2 2 3
(4,4) 133A3 147A3mi 3m m; 343A3m1m2m3 A
_ _ _ 6
7 1649267441664 Z Z 524288 6291456 (A-6)

— 268435456
for the fourth order in h.

A3 Ny=4

For the Ny = 4 theory the coefficients of the prepotential (4.10) are given by

2 4
o1 _a  m
1 s 13202
13a2  11m? 3mS 5mS8
.
1024 2048a2  2048a* = 16384aS
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03) 23a? 17m* mO 15m8 7m0 3m!?

(
T4 = 12988 T 1633402 204847 | 6553648  98304a° | 262144a10”
FO) _ 2701a” N 1791m*  1125m° N 6095m®  1673m'"
478388608 ' 8388608a2  8388608at ' 6710886445 3355443248
2727m!? 715mM 1469m16 AT
13421772810 13421772812 | 2147483648414 (A7)
for the classical part,
21 _ m!
i = 256a4’
Fo m? N s5m*  15m° N 21m?® 7
4096a2  4096a*  16384a5 = 65536a8
F23) _ m? N smt - 5mP N 91m®  43m'? N 55m12
47 1638442 16384a* 1228846 262144a® 26214440 1572864012’
FeH _ 235m? N 2487m*  8935m° N 11235m®  38337m!°
4 1677721642 ' 3355443204 67108864a8 ' 67108864a® 268435456410
43505m 12 29549m 14 18445m16 A8
536870012012  1073741824a'® ' 4204967296410 (A-8)
for the second order in h, and
(4,1) m*
4 7204848’
]__(4,2)7 1 B m? + Tm* - 63m?° + 219m?8
4 76553602 8192a* ' 16384aS 131072a® ' 1048576410’
Fas_ 1 m? N 119m*  133m° N 1689m®  253m'° N 1495m!2
4 726214402 32768a* ' 78643245 39321648 ' 4194304610 104857642 ' 2516582444’
Flaa_ 235 973m? N 24571m*  9457m® N 63835m8
4 268435456a2 134217728a* 53687091246 67108864a8 268435456010
625537m0 1765673m12 353325m 4 985949m 6

B 2147483648a12 * 8589934592q 14 - 4294967296a16 * 68719476736a18’
for the fourth order in A.

(A.9)
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