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1 Introduction

Perturbative calculations in quantum field theories may lead to divergent series. As an

example one can consider the pole mass of a quark in a gauge theory such as QCD. After

renormalization, which subtracts the UV divergences, the pole mass can be defined at each

finite order in perturbation theory, but it cannot be defined at all orders [1, 2].1 This can be

explained by the fact that the pole mass of a quark is not a physical quantity in a confining

theory like QCD, thus the perturbative series for the pole mass need not converge. In

addition to the pole mass, many perturbative calculations in physics yield divergent series

even if the quantities of interest are finite and well-defined. For instance, the ground-state

energy of the anharmonic oscillator

(

−
d2

dx2
+

1

4
x2 +

1

4
λx4

)

Φ(x) = E(λ) Φ(x) (1.1)

can be expanded in powers of the coupling constant λ, but it is not convergent for any

λ 6= 0 [4].

There are some summation methods that can be used to handle divergent series. For

instance, one can use the method of Borel resummation to assign analytic functions to a

class of divergent series. (See ref. [5] for a concise description of this method.) The Borel

sum of a divergent series involves an integration in the Borel plane from a base point to

infinity. The integration path is usually defined on the real axis from the origin to +∞.

But the choice of the integration path depends on the parameters of the series. In general,

1The pole mass is also IR finite at each order in perturbation theory [3].
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this method gives multiple Borel sums (for a divergent series) when there are multiple

integration paths that cannot be deformed to each other. Particularly, this method may

lead to ambiguous results when there are singularities on the positive real axis of the

Borel plane. From physical point of view, the singularities in the Borel plane can have

different origins. The factorial growth of number of Feynman diagrams at each order of

perturbation theory is a known source of these singularities. In theories with a running

coupling constant, there is also a different set of singularities that stem from the very fact

that the coupling constant runs. These singularities are called renormalon singularities,

and occur in quantities such as the pole mass of a quark in QCD.2

The pole mass can be expanded in powers of the coupling constant α as follows

mpole = m

(

1 +
∞
∑

n=0

rnα
n+1(m)

)

. (1.2)

Here m denotes the MS-renormalized mass at the scale µ = m. The coupling constant α

is also in the same scheme and scale. It turns out that for large values of n the coefficients

rn grow roughly like n!, and thus the power expansion eq. (1.2) is divergent. The large n

behavior of rn corresponds to a renormalon singularity in the Borel plane. It is known that

the leading renormalon of this expansion is independent of the mass m [7]. This statement

immediately implies that the derivative of mpole with respect to m is free of the leading

renormalon. This observation can be used as a starting point to develop a method to

investigate the leading renormalon of the pole mass. Such a method is the subject of this

paper.

The derivative of eq. (1.2) with respect to m reads

dmpole

dm
= 1 + y + 2β(α)y′ , (1.3)

where

y =
∞
∑

n=0

rnα
n+1 , (1.4)

β(α) =
1

2

dα(m)

d ln(m)
= −

(

β0α
2 + β1α

3 + β2α
4 + · · ·

)

. (1.5)

One can calculate y by solving the differential equation

y + 2β(α)y′ = f(α), (1.6)

where

f(α) ≡
dmpole

dm
− 1, f(0) = 0 . (1.7)

2Ref. [6] defines the term renormalon as “a singularity of the Borel transform related to large or small

loop momentum behavior”. See also ref. [6] for a discussion on the different sets of singularities in the Borel

plane.
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Eq. (1.6) is a first order differential equation with the following solution

y(α) =

∫ α

αbase

dα′

2β(α′)
f(α′) exp

(

−

∫ α

α′

dα′′

2β(α′′)

)

. (1.8)

Note that f(α) is free of the leading renormalon of the pole mass; hence, this renormalon is

generated through evaluating the integral in eq. (1.8). Therefore, one can study the leading

renormalon of the pole mass only by investigating the integral in eq. (1.8), or equivalently

the differential equation in eq. (1.6).

I proceed in two different ways to investigate the leading renormalon of the pole mass.

First, I develop a linear recurrence relation that reveals the structure of the leading renor-

malon as a function of the coefficients of the beta function. But, due to its linear nature, this

recurrence relation leaves an undetermined overall normalization. Next, I solve eq. (1.6)

and expand the solution in powers of α and then directly determine the large n behavior

of the expansion coefficients to obtain the overall normalization as well. Putting these two

ways together, this paper presents a method to study the renormalon divergence of quanti-

ties such as the pole mass. It should be emphasized that the calculations are perturbative

in nature.

This paper is organized as follows. Section 2 gives the details of the method. Section 3

gives the overall normalization for several quark flavors and extends the discussion to the

conformal window of QCD.

2 Renormalon in the pole mass: theoretical discussion

2.1 Leading renormalon from recurrence relation

It is known that the coefficients rn, in eq. (1.2), grow factorially as n tends to infinity. In

this subsection, I derive the large n behavior of rn, which is set by the coefficients of the

beta function. First I calculate f(α), defined in eq. (1.7), as follows

f(α) =
dmpole

dm
− 1

= y + 2β(α)y′

=
∞
∑

n=0

rnα
n+1 − 2

(

∞
∑

i=0

βiα
2+i

) (

∞
∑

n=0

rn(n+ 1)αn

)

=
∞
∑

n=0

(rn − 2 (β0nrn−1 + β1(n− 1)rn−2 + · · ·+ βn−1r0)) α
n+1 ; (2.1)

the power expansion of f(α) reads

f(α) =

∞
∑

k=0

r′k α
k+1 , (2.2)

where

r′k = rk − 2 (β0 k rk−1 + β1(k − 1)rk−2 + · · ·+ βk−1r0) . (2.3)

– 3 –
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Given the case that f(α) is free of the leading renormalon of y(α), the corresponding

divergence in rn must be exactly canceled in the right side of eq. (2.3). This amount of

information is enough to specify the pattern of divergence of rn for large values of n.

The case that the leading renormalon divergence of rn for large values of n cannot

propagate to r′k through eq. (2.3) can be expressed different. Let us focus on the quantity

in parentheses in the coefficient of αn+1 in eq. (2.1). It implies a recurrence relation

an = 2 (β0 nan−1 + β1(n− 1)an−2 + · · ·+ βn−1a0) , n ≥ 1 , (2.4)

which has a solution that diverges as n → ∞, but such a solution cannot propagate to the

sequence r′k through eq. (2.3). Putting an overall constant aside, the recurrence relation

in eq. (2.4) has only one solution. The large n behavior of this solution can be determined

using the ansatz

an = N (2β0)
n Γ(n+1+b)

Γ(1+b)

(

1+
s1
n+b

+
s2

(n+b)(n+b−1)
+

s3
(n+b)(n+b−1)(n+b−2)

+· · ·

)

.

(2.5)

Plugging this ansatz to eq. (2.4), one then obtains

b =
β1
2β2

0

, (2.6)

s1 = b2 − c2 , (2.7)

s2 =
(

(b2 − c2)
2 − b3 + 2bc2 − c3

)

/2 , (2.8)

s3 =
(

(b2 − c2)
3 − 3(b2 − c2)(b

3 − 2bc2 + c3) + 2b4 − 6b2c2 + 2c22 + 4bc3 − 2c4
)

/6 , (2.9)

where b is not a negative integer and

c2 =
β2
4β3

0

, c3 =
β3
8β4

0

, c4 =
β4

16β5
0

. (2.10)

This result is identical to the leading renormalon in the pole mass (see for instance refs. [6–

8]). It is straightforward to improve the ansatz by including more terms in eq. (2.5) and

calculating their corresponding coefficients.

The first two coefficients in the beta function, namely β0 and β1, are independent

of the choice of the scheme. The higher order coefficients, which are scheme dependent,

are usually given in the MS scheme. But, in order to simplify the calculations, one can

employ schemes in which the higher order coefficients have simple forms. Below, two special

schemes are discussed. First, consider the scheme in which

β(α) = −(β0α
2 + β1α

3) . (2.11)

To solve eq. (2.4) with this scheme, I use the z-transform3 and after a change of variable

as u = 1/z, I obtain

an = (2β0)
n n! a0

∮

C

du

2πi

1

un+1

e−ub

(1− u)1+b
, (2.12)

3See ref. [9] for the definition and applications of the z-transform.
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where C is a counter-clockwise closed path encircling the origin and crossing the right side

of the real axis at uc ∈ (0, 1). For a non-integer value of b, the branch cut of the integrand

is assumed to be on the real axis from u = 1 to +∞. One can easily verify that eq. (2.12)

yields the ansatz given in eq. (2.5) with βn = 0 for n > 1. When b is a negative integer,

the factorial divergence disappears. As second special scheme, let us consider a scheme in

which the beta function has the form

β(α) =
−β0α

2

1− (β1/β0)α
. (2.13)

This choice of the beta function, which will prove convenient in reducing the algebra, has

been employed in the literature in studies of renormalons. (See for instance refs. [10, 11].)

For this scheme, the exact solution of the recurrence relation in eq. (2.4) is

an = (2β0)
n Γ(n+ 1 + b)

Γ(2 + b)
a0 , n ≥ 1 . (2.14)

Note that, by setting βn = β0(β1/β0)
n for n > 1, the ansatz given in eq. (2.5) reduces to

eq. (2.14). One can also start from eq. (2.14) and, after a scheme conversion, derive the

ansatz in eq. (2.5).

I use the expression “pure-renormalon sequence” to refer to the sequence an, which

is the solution of the recurrence relation in eq. (2.4). The fact that the pure-renormalon

sequence (up to a constant) only depends on the coefficients of the beta function is not sur-

prising because renormalons are related to the notion of the running coupling constant [6]

and the running is governed by the beta function. For the sake of simplicity, hereafter

the discussion is restricted to the scheme with the beta function given in eq. (2.13) unless

otherwise stated. Having the sequence an determined in eq. (2.14), the objective is now to

calculate the overall normalization a0 such that

rn ∼ an , (2.15)

as n → ∞. The conventional overall normalization N , which is more often used in the

literature, is then

N ≡
a0

1 + b
. (2.16)

Note that the overall normalization N is not necessarily invariant under a change in the

scheme and scale. The scheme conversion is discussed below.

2.2 Overall normalization of the leading renormalon

It was discussed that the renormalon divergence is produced in the process of evaluating

the integral in eq. (1.8), and replacing it with a power series. Instead of working with

eq. (1.8), which gives the integral representation of the solution of eq. (1.6), it is easier to

use the formal solution

y(α) =
1

1 + 2β(α) d
dα

f(α) . (2.17)

– 5 –
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As mentioned above the discussion is restricted to a scheme in which the beta function is

given in eq. (2.13). To this end, one can use the expansion

αMS = α+

(

β2
β0

−

(

β1
β0

)2
)

α3 +
1

2

(

β3
β0

−

(

β1
β0

)3
)

α4 + · · · (2.18)

to convert a series in powers of the coupling constant αMS to a series in powers of α.

Defining u = β0/(β1α), eq. (2.17) reads

y(α) =
1

1 + b−1

1−u−1

d
du

f(α)

=
1

1 + b−1

1−u−1

d
du

∞
∑

k=0

r′k

(

β1
β0

u

)

−(1+k)

. (2.19)

Simplifying this formal expression, one can calculate the large-n behavior of the sequence

rn. This is discussed in detail in the appendix. Exploiting eq. (A.27), in the appendix, and

setting

ν = 1 , x = b , z = u , dk = r′k (β0/β1)
1+k , an = rn (β0/β1)

1+n , (2.20)

rn reads

rn ∼ Γ(1 + n+ b) b−n (β1/β0)
1+n

∞
∑

k=0

r′k
(1 + k) bk

Γ(2 + k + b)
(β0/β1)

1+k

∼
Γ(1 + n+ b)

Γ(2 + b)
(2β0)

n
∞
∑

k=0

r′k
(1 + k) Γ(2 + b)

Γ(2 + k + b)
(2β0)

−k (n → ∞) . (2.21)

Recalling eqs. (2.14) and (2.16), the overall normalization of the leading renormalon of the

pole mass is then

N =
a0

1 + b
=

∞
∑

k=0

r′k
Γ(1 + b)

Γ(2 + k + b)

1 + k

(2β0)k
. (2.22)

Note that because r′k are free of the leading renormalon in the pole mass, the large k

behavior of r′k is governed by higher order renormalons in the pole mass, which grow

roughly as (β0)
k Γ(1 + k).4 Therefore the expression in eq. (2.22) converges. In practice,

one needs to truncate the series and calculate N using

Nkmax
=

kmax
∑

k=0

r′k
Γ(1 + b)

Γ(2 + k + b)

1 + k

(2β0)k
. (2.23)

The constant N is not independent of the scheme. But, as discussed in [6], N is

invariant if the coupling constant of two schemes, denoted by α and α̃, are related by

α = α̃+O(α̃3) . Note that there are several works that use different methods and present

different series to calculate the overall normalization of the leading renormalon [12–14]. A

quick comparison shows that their truncated series are not identical with eq. (2.23).

4Here I assume that the leading and next-to-leading renormalons are the dominant sources of divergence.

See ref. [6] for the discussion on the different sets of known singularities in the Borel plane and their distance

from the origin of the Borel plane.
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3 Renormalon in the pole mass: numerical calculations

3.1 Large number of flavor

Now I investigate eq. (2.22) in the limit of large number of flavors. At leading order in this

limit, one can keep only β0 and drop all βn for n > 0 and set b = 0. Then, eq. (2.22) reads

N |(large nf )
=

∞
∑

k=0

r′k
1

k!

1

(2β0)k

= r0 +
∞
∑

k=1

(rk − 2β0 k rk−1)
1

k!

1

(2β0)k

= ((1− 2u)B[y](u))|u=1/2

=
4

3π
e5/6 , (3.1)

where B[y](u) is the Borel transform of y =
∑

∞

n=0 rnα
n+1, which is

B[y](u) =
∞
∑

n=0

rn
n!

(

u

β0

)n

. (3.2)

Note that this is identical to B[δm/m](u) defined in eq. (4.3) of ref. [15], i.e.,

B[y](u) = B[δm/m](u) =
1

3π

(

6 e5u/3(1− u)
Γ(u)Γ(1− 2u)

Γ(3− u)
+

G̃0(u)

u

)

, (3.3)

where G̃0(u) is finite at u = 1/2.

One might wonder how eq. (2.22) numerically converges to N for large number of

flavors. Using the numerical values of rn provided in table 1 of ref. [16], eq. (2.23) gives

[0.4244, 0.9944, 0.9349, 0.9714, 0.9659, 0.9770, 0.9746, 0.9769, 0.9762] , (3.4)

for kmax = 0, 1, · · · , 8. Note that the last number, N ≈ 0.9762, is close to the exact result

4

3π
e5/6 ≈ 0.97656 . (3.5)

3.2 Finite number of flavors

The relation between the pole mass and the MS mass is known up to order α4
s [17]. In

this subsection, I use this relation to calculate r′k for several values of nl ranging from 0 to

6, and determine the overall normalization of the leading renormalon using the truncated

expression in eq. (2.23). The results, for kmax from 0 to 3, are listed in table 1. For each

number of flavors, I take the last column of table 1 as the central value of N and twice of

the difference of the last two columns as a conservative estimate of the truncation error.

For instance, for nl = 3, we obtain

N = 0.535± 0.010 . (3.6)

There are several calculations of the overall normalization of the leading renormalon in the

pole mass. For some recent calculation see refs. [8, 18]. Considering the uncertainties, the

results of this paper are in agreement with them.
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nl

kmax
0 1 2 3

0 0.299 0.501 0.577 0.592

1 0.299 0.494 0.566 0.576

2 0.301 0.487 0.554 0.558

3 0.304 0.483 0.539 0.535

4 0.310 0.480 0.522 0.505

5 0.319 0.482 0.498 0.463

6 0.335 0.489 0.461 0.396

Table 1. The values of N obtained from the truncated expression in eq. (2.23) for kmax from 0 to

3, and for nl from 0 to 6.

3.3 Near conformal window of QCD

Now I discuss the leading renormalon in a region close to the conformal window of QCD.

The first two coefficients of the beta function, namely β0 and β1, are scheme independent

and they are positive for small values of flavors. There is a region in which β0 is positive

and β1 is negative, which indicates the presence of a non-trivial zero in the beta function in

this region [19]. One can use eq. (2.22) to study the leading renormalon in this region, but

this relation should be treated carefully for nl at vicinity of 16.5, where β0 vanishes and

b blows up. In other words, the assumptions under which eq. (2.22) is derived might be

problematic when β0 vanishes and b becomes large. Here I discuss two important possible

obstacles in calculations of N in this region. First, the factorial growth of the coefficients

due to the leading renormalon appears only for large values of n. A lower limit of n for

which the factorial growth is noticeable depends on b. A rough estimate for the lower

limit of n can be obtained based on a discussion in the appendix. Taking advantage of

eq. (A.17), the heuristic condition for n is

|b| < 1 + n . (3.7)

As this condition implies, when b becomes large, the pattern of factorial growth in the

coefficients appears only for very large values of n. Therefore, any method that estimates

N by comparing the exactly known coefficients rn and the expectations based on the leading

renormalon may fail if n is not large enough. For instance, ref. [8] uses such a comparison

and finds that N tends to zero in the range nl ∈ (12, 23). Ref. [18] confirms this behavior,

however it is then discussed that the extracted value of N is completely unreliable in this

region, and the smallness of N is therefore a technical artifact of the method they use,

which ceases to be valid when b becomes large. This argument is consistent with the spirit

of eq. (3.7).

The other important thing to be discussed is that eq. (2.22) is basically derived for the

scheme with beta function defined in eq. (2.13), i.e., r′k are the coefficients of the expansion

in powers of α with the beta function given in eq. (2.13). As discussed before, one should

use eq. (2.18) to convert a series in powers of αMS to a series in powers of α. As it is

– 8 –
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evident from eq. (2.18), this conversion should be treated carefully when β0 is nearly zero.

Indeed, the conversion of the schemes becomes singular when β0 vanishes and consequently

the scheme dependence of N should be treated carefully.

Before discussing the scheme conversion let us write eq. (2.22) in a form useful for the

current discussion. For large values of b, one can follow the discussion in the appendix and

take advantage of eq. (A.30) to show that eq. (2.22) can be expanded as

N =

(

1

1 + b
f ′(α) + · · ·

)∣

∣

∣

∣

α=1/b1

. (3.8)

Recall that the coupling constant α is supposed to be in the scheme with the beta function

given in eq. (2.13). In order to proceed, it must be discussed carefully how to obtain f(α)

from fMS(αMS), which is the corresponding expression in the MS scheme.

For the sake of simplicity, let us define an intermediate scheme in which the beta

function is given in eq. (2.11) and the coupling constant is denoted by α, and convert the

expression for the pole mass that is given as a series in powers of αMS to a series in powers

of α using

αMS = α+
β2
β0

α3 +
1

2

β3
β0

α4 + · · · . (3.9)

Note that this relation does not make any problem in the calculation of N even for very

small values of β0. The main difficulty appears in expressing α in terms of α. Let us define

the auxiliary independent and dependent variables t and T as follows

t ≡ b1α (3.10)

T (t) ≡ b1α =
∞
∑

n=0

cnt
n , (3.11)

where c0 = 1 and c1 = 0. Using the beta functions of both schemes, one can easily derive

a differential equation to calculate T (t) as follows

dα

d ln(µ)
=

dα

d ln(µ)

dT

dt
(3.12)

⇒ T 2(1 + T ) =
t2

1− t
T ′ . (3.13)

The family of solutions that are analytic at the origin have expansions as T (t) = t+O(t2).

Solving the differential equation and imposing the condition c1 = 0, one obtains

(

1 +
1

T

)

e−
1

T =
1

t
e−

1

t . (3.14)

The solution to this equation can be written in terms of the Lambert W function as5

T (t) =
−1

1 +W
(

−1
t e

−
1

t
−1

) . (3.15)

5See ref. [20] for the definition and properties of the Lambert W function.
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In order to avoid the discussion on different Riemann sheets of the W function, I use an

alternative representation

T (t) ≡
t

1 + tX(t)
, (3.16)

where X(t) is implicitly defined by

eX = 1 + t+ tX . (3.17)

Here, only the solution of X(t) that is analytic at the origin is of interest. The Taylor

expansion of this solution reads

X(t) = t+
1

2
t2 + · · · . (3.18)

Both X(t) and T (t) are singular at t = −1/W (−1), which restricts the convergence of the

Taylor expansions in eqs. (3.11) and (3.18) to

|t| . 0.7275 . (3.19)

Therefore, the Taylor expansion in eq. (3.11) diverges at t = 1, i.e., α = 1/b1. This is the

very point in which eq. (3.8) should be evaluated. Thus, the sequence of scheme conversions

fMS(αMS) ↔ f(α) ↔ f(α) (3.20)

is problematic at α = 1/b1 if one wishes to use Taylor expansions for the scheme conversions.

4 Conclusion

In this paper, I introduced a method to study the leading renormalon in the pole mass.

This method yields a linear recurrence relation that reveals the structure of the leading

renormalon. The recurrence relation depends only on the coefficients of the beta function.

This is not surprising because renormalons are related to the notion of running coupling

constants and the running is governed by the beta function. This method also gives an

expression to calculate the overall normalization of the leading renormalon. The overall

normalization of the leading renormalon of the pole mass was then calculated for several

values of quark flavors, and was discussed for the near-conformal window of QCD.
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A Large-order behavior of an asymptotic expansion

In this appendix we investigate the expression

F (z, x) =
1

1 + x−1

1−z−1

d
dz

f0(z) , (A.1)

which is the formal solution of the first order differential equation
(

1 +
x−1

1− z−1

d

dz

)

F (z, x) = f0(z) . (A.2)

The solution can be expanded as

F (z, x) =
∞
∑

n=0

fn(z)x
−n , (A.3)

where

fn(z) =

(

−1

1− z−1

d

dz

)n

f0(z) . (A.4)

Given f0(z), one can derive fn(z) and in turn calculate F (z, x).

This problem can be tackled using integral representation of F (z, x), which involves

the Lambert W function. But in this appendix we wish to work explicitly with eqs. (A.3)

and (A.4). First, let us introduce a set of formal series defined in terms of the gamma

function and its derivatives as

gn(z; ν) ≡
∞
∑

k=0

Γ(k)(ν + n+ k)

Γ(ν)Γ(k + 1)
z−(ν+n+k) . (A.5)

These set of series can be generated from g0(z; ν), using the following relation

gn(z; ν) =

(

−1

1− z−1

d

dz

)n

g0(z; ν) . (A.6)

This can be proved by induction as follows

−1

1− z−1

d

dz
gn(z; ν) =





∞
∑

j=0

z−j





∞
∑

k=0

Γ(k)(ν + n+ k)

Γ(ν)Γ(k + 1)
(ν + n+ k) z−(ν+n+1+k)

=
∞
∑

j=0

∞
∑

k=0

Γ(k)(ν + n+ k)

Γ(ν)Γ(k + 1)
(ν + n+ k) z−(ν+n+1+k+j)

=
∞
∑

m=0

m
∑

j=0

Γ(m−j)(ν + n+m− j)

Γ(ν)Γ(m− j + 1)
(ν + n+m− j) z−(ν+n+1+m)

=
∞
∑

m=0

Γ(m)(ν + n+ 1 +m)

Γ(ν)Γ(m+ 1)
z−(ν+n+1+m)

= gn+1(z; ν) . (A.7)
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In the third equality we reordered the terms and defined m = k + j, and in the fourth

equality we exploit the identity

Γ(m)(t+ 1) =
m
∑

j=0

Γ(m+ 1)

Γ(m+ 1− j)
(t− j) Γ(m−j)(t− j) . (A.8)

This identity can be proved as follows. Starting from Γ(t+ 1) = tΓ(t), one can show

Γ(m)(t+ 1) = tΓ(m)(t) +mΓ(m−1)(t) . (A.9)

Shifting the parameters and variables, one finds

Γ(m−1)(t) = (t− 1) Γ(m−1)(t− 1) + (m− 1) Γ(m−2)(t− 1) . (A.10)

Plugging this into eq. (A.9) yields

Γ(m)(t+ 1) = tΓ(m)(t) +m (t− 1) Γ(m−1)(t− 1) +m(m− 1)Γ(m−2)(t− 1) . (A.11)

It is straightforward to repeat the procedure and derive eq. (A.8). Note that, using the

integral representation of the gamma function, the series in eq. (A.5) can be summed up,

which yields

gn(z; ν) =
z−(ν+n)

Γ(ν)

∫

∞

0
dt e−t+ t

z
ln(t)tn+ν−1 . (A.12)

Assuming ℜ(ν+n) > 0, for any non-zero value of z, one can always choose the integration

path to infinity in such a way that the integral remains finite. Eq. (A.7) can be also verified

using eq. (A.12).

Now we return to eqs. (A.3) and (A.4), and calculated F (z, x) for the case f0(z) =

g0(z; ν). For this special case we find that fn(z) = gn(z; ν) and consequently

F (z, x) =

∞
∑

n=0

gn(z; ν)x
−n

=
∞
∑

n=0

∞
∑

k=0

Γ(k)(ν + n+ k)

Γ(ν)Γ(k + 1)
x−n z−(ν+n+k)

=
∞
∑

m=0

m
∑

k=0

Γ(k)(ν +m)

Γ(ν)Γ(k + 1)
x−(m−k) z−(ν+m)

=

∞
∑

m=0

(Γ(ν +m+ x)−Rm(x; ν +m) )
x−m

Γ(ν)
z−(ν+m) . (A.13)

In the third equality we reordered the terms and defined m = n + k, and in the fourth

equality we defined

Rm(x; ν +m) ≡

∫ x

0
dt

(x− t)m

Γ(m+ 1)
Γ(m+1)(ν +m+ t) . (A.14)
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Now constructing a power expansion for F (z, x) as

F (z, x) =
∞
∑

n=0

an(x) z
−(ν+n) , (A.15)

we conclude that the large n behavior of an(x) is

an(x) ∼
Γ(ν + n+ x)

Γ(ν)
x−n . (A.16)

Here n is assumed to be large enough such that Rn(x; ν + n) is negligible compared to

Γ(ν + n + x). This assumption is particularly very important when x is a large number.

Based on the convergence radius of the Taylor expansion of Γ(y) about y = ν +n, one can

argue that n must obey the condition

|x| < ν + n (A.17)

when ν is a real positive number. This condition restricts the range of n that an(x) behaves

asymptotically as eq. (A.16).

Now we extend the calculation to the case that f0(z) is a linear combination of

g0(z; ν) as

f0(z) =
∞
∑

l=0

cl g0(z; ν + l) . (A.18)

We wish to calculate F (z, x), expand it as eq. (A.15) and derive the large n behavior of

an(x). Since we are dealing with a linear problem, it is straightforward to repeat the

calculations and derive the large n behavior of an(x). We obtain

an(x) ∼ Γ(ν + n+ x)x−n
n
∑

l=0

cl
xl

Γ(ν + l)
(A.19)

as n → ∞. This expression is derived based on the approximation that led to eq. (A.16).

This approximation might be problematic when l ≈ n. However, we assume that the series

in the above expression is finite when n → ∞, and we assume that n is large enough such

that we can ignore the approximation. This issue will be addressed again in a discussion

after eq. (A.27).

For any function that can be expanded as eq. (A.18), the large n behavior of an(x)

can be calculated using eq. (A.19). For instance, let us consider

f0(z) = z−(ν+m) , (A.20)

where m is a non-negative integer. Its expansion in terms of g0(z; ν) reads

z−(ν+m) =
∞
∑

l=m

c(ν,m,l) g0(z; ν + l)

=
∞
∑

l=m

c(ν,m,l)

∞
∑

k=0

Γ(k)(ν + l + k)

Γ(ν + l)Γ(k + 1)
z−(ν+l+k)

=
∞
∑

n=m

n−m
∑

k=0

c(ν,m,n−k)
Γ(k)(ν + n)

Γ(ν + n− k)Γ(k + 1)
z−(ν+n) , (A.21)
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where the unknown coefficients c(ν,m,l) are defined for l ≥ m, and they can be calculated

from the linear algebraic system of equations

n−m
∑

k=0

c(ν,m,n−k)
Γ(k)(ν + n)

Γ(ν + n− k)Γ(k + 1)
= δnm . (A.22)

Considering the identity

y

N !

dN

dyN
Γ(y +N)

Γ(y + 1)
= δN0 , (A.23)

and setting N = n−m, one finds that

c(ν,m,l) =
(ν +m) Γ(ν + l)

Γ(l −m+ 1)

(

d

dy

)l−m 1

Γ(y + 1)

∣

∣

∣

∣

∣

y=ν+m

, (A.24)

where l ≥ m. We also define c(ν,m,l) = 0 for l < m. Now one can immediately calculate

the large n behavior of an(x) using eq. (A.19). Thus, for f0(z) = z−(ν+m), the result reads

an(x) ∼ Γ(ν + n+ x)x−n
n
∑

l=0

c(ν,m,l)
xl

Γ(ν + l)

∼ Γ(ν + n+ x)x−n+m (ν +m)
n−m
∑

k=0

xk

Γ(k + 1)

(

d

dy

)k 1

Γ(y + 1)

∣

∣

∣

∣

∣

y=ν+m

∼
Γ(ν + n+ x)

Γ(1 + ν +m+ x)
(ν +m)x−n+m (n → ∞) . (A.25)

To obtain the third line from the second line, we assumed that (n − m) is large enough

such that we can neglect the higher order terms in the Taylor expansion of the reciprocal

gamma function. Note that the reciprocal gamma function is analytic at all finite points of

the complex plane, therefore we cannot obtain an estimate for the lower value of n similar

to eq. (A.17).

We now derive the large n behavior of an(x) for

f0(z) =

∞
∑

m=0

dm z−(ν+m) . (A.26)

For this general case, eq. (A.25) implies

an(x) ∼ Γ(ν + n+ x)x−n
∞
∑

m=0

dm
(ν +m)xm

Γ(1 + ν +m+ x)
(n → ∞) . (A.27)

Note that this expression is derived based on the approximation that was used in deriva-

tion of eq. (A.25), but that approximation is not correct when m & n. However, we do

not modify eq. (A.27) because we assume that the series in eq. (A.27) is convergent and

therefore
∞
∑

m≈n

dm
(ν +m)xm

Γ(1 + ν +m+ x)
(A.28)

tends to zero as n → ∞.
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Now we briefly discuss the large x behavior of eq. (A.27). For this purpose, we first

expand xm in terms of ratios of the gamma functions as follows

xm =
m
∑

l=0

S(m,l)
Γ(1 + ν +m+ x)

Γ(1 + ν + l + x)
, (A.29)

where S(m,0) = 1, S(m,1) = −m
(

ν+ m+1
2

)

and so on. Plugging eq. (A.29) to eq. (A.27) and

changing the order of sums over m and l, we find

an(x) ∼ Γ(ν + n+ x)x−n
∞
∑

l=0

1

Γ(1 + ν + l + x)

∞
∑

m=l

(ν +m) dm S(m,l)

∼ Γ(ν + n+ x)x−n

(

− d
dzf0(z)

Γ(1 + ν + x)
+ · · ·

)∣

∣

∣

∣

∣

z=1

(A.30)

as n → ∞. This relation can be used to investigate the large x behavior of an(x).
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