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MTA Lendület Holographic QFT Group, Wigner Research Centre,

H-1525 Budapest 114, P.O.B. 49, Hungary

E-mail: hegedus.arpad@wigner.mta.hu

Abstract: In this paper we demonstrate, that the light-cone lattice approach for the

Massive-Thirring (sine-Gordon) model, through the quantum inverse scattering method,

admits an appropriate framework for computing the finite volume form-factors of local

operators of the model. In this work we compute the finite volume diagonal matrix elements

of the U(1) conserved current in the pure soliton sector of the theory. Based on the

systematic large volume expansion of our results, we conjecture an exact expression for the

finite volume expectation values of local operators in pure soliton states. At large volume

in leading order these expectation values have the same form as in purely elastic scattering

theories, but exponentially small corrections differ from previous Thermodynamic Bethe

Ansatz conjectures of purely elastic scattering theories.

Keywords: Bethe Ansatz, Integrable Field Theories, Lattice Integrable Models

ArXiv ePrint: 1705.00319

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2017)059

mailto:hegedus.arpad@wigner.mta.hu
https://arxiv.org/abs/1705.00319
https://doi.org/10.1007/JHEP08(2017)059


J
H
E
P
0
8
(
2
0
1
7
)
0
5
9

Contents

1 Introduction 1

2 Light-cone approach to the Massive-Thirring and sine-Gordon models 3

2.1 Algebraic Bethe ansatz 5

2.2 The DDV equations 7

2.3 The U(1) current in spin variables 9

3 Form-factors in the QISM framework 10

4 The computation of 〈en〉λ 13

4.1 The determination of Sa 14

5 The continuum limit 17

5.1 The solution of the equations 18

5.1.1 The charge density case 18

5.1.2 The case of J1(x) 19

6 The large volume expansion 20

7 Summary and outlook 25

A Conventions of Fourier transformation 26

1 Introduction

The computation of finite volume matrix elements of local operators is an important prob-

lem in integrable quantum field theories. These form-factors play important role in the

determination of heavy-heavy-light 3-point functions in the planar AdS5/CFT4 correspon-

dence [1], and they are fundamental ingredients of the form-factor perturbation theory [2].

In [3] the Massive Thirring (MT) model was formulated as the continuum limit of

an inhomogeneous 6-vertex model with appropriately chosen alternating inhomogeneities.

This integrable lattice regularization allowed one to compute the finite volume spectrum

of the theory by solving a set of nonlinear-integral equations (NLIE) [4]–[11]. Due to

the bosonization link between the Massive Thirring and sine-Gordon models [13, 14], this

method gave access to the finite volume spectrum of the sine-Gordon (SG) model as well.

The NLIE description of the finite volume spectrum was checked against direct field theo-

retical methods such as the Truncated Conformal Space Approach (TCSA) as well [10].

Nevertheless, the integrable lattice regularization of [3] gives access to compute matrix

elements of local operators of the MT model and of their bosonized counterparts in the SG
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model. The general framework for these computations is the Quantum Inverse Scattering

Method (QISM) [15]. In the past decades a remarkable amount of progress has been

achieved in the computation of form-factors and correlation functions of local spin operators

on the lattice [16]–[37]. One of the most important discovery was that local spin operators

can be expressed in terms of the elements of the Yang-Baxter algebra in an elegant way [17].

This made it possible to compute the matrix elements of local spin operators by using only

the Yang-Baxter algebra.

Relying on the light-cone lattice regularization of [3], in this paper our purpose is

to compute finite volume form-factors of local operators in the MT/SG theories. The

lattice Fermi fields of the regularized MT model are related to the spin operators by a

Jordan-Wigner transformation. This is why the results of the QISM for spin variables

are directly applicable to our model. Nevertheless, due to renormalization effects1 the

connection between lattice fields and the fields of the continuum theory can be very non-

trivial. Because of these subtleties in this paper we restrict ourselves to operators which are

related to the U(1) symmetry of the model. Since the U(1) symmetry is present in both the

lattice and the continuum theories, it makes easier to make a connection between the lattice

and the continuum fields. The principle is that conserved quantities of the regularized

theory are mapped to conserved quantities of the continuum model. In this manner we can

identify the two components of the conserved U(1) current2 of the continuum theory as

J0(xn) ∼
σz
2n+σz

2n−1

2 , J1(xn) ∼
σz
2n−σz

2n−1

2 .

Using the QISM techniques the diagonal matrix elements of Jµ can be computed on the

lattice and the continuum limit can be taken as well. The final results can be expressed in

terms of the counting-function of the theory, which satisfies a set of NLIEs [9]–[11], which

we will refer to as DDV equations. For the sake of simplicity, in our actual computations

we restricted ourselves to the pure soliton sector3 of the theory, but the computations could

be extended without any serious difficulties to other excited states of the model, as well.

For J0 we got the expected and quite trivial result, that the expectation value is equal

to the topological charge of the state divided by the volume. For J1 the result is not so

trivial. There the expectation value can be expressed by the solution of a linear integral

equation, whose kernel depend on the counting-function of the sandwiching state. These

equations can be solved analytically in the context of a systematic large volume expansion.

It turns out, that in accordance with [43], in the pure soliton sector, at large volume

in leading order the diagonal form-factors of Jµ can be expressed in terms of the so-

called connected-form factors of the operator in exactly the same way as in purely elastic

scattering theories [41, 42]. Nevertheless the exponentially small in volume corrections

differ from the TBA conjectures [38–42] of purely elastic scattering theories. The difference

arises in the form of the so-called dressed-form factors, which in our case are functionals of

the counting-function of the sandwiching state and the connected-form factors of Jµ (6.26).

Based on previous experiences in diagonally scattering theories, we conjecture that

in the pure soliton sector, our final formula (6.26) for the dressed form-factors hold for

1Here we think of normal ordering, renormalization constants and operator mixing.
2The corresponding conserved quantity is the toplogical charge in the SG model.
3In lattice terminology: we restrict ourselves to pure hole states over the antiferromagnetic vacuum.
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any operator, provided the connected form-factors of the operator under consideration are

substituted into (6.26).

The organization of the paper is as follows. In section 2. we summarize the light-

cone lattice approach to the MT model and determine the lattice counterparts of the U(1)

conserved current. The NLIE governing the finite volume spectrum of the model is also

reviewed in this section. In section 3. we provide the integrable QISM formulation of the

model. In section 4. the diagonal matrix elements of the operator σz
n are computed on the

lattice. The continuum equations, their solutions and the correct identification between

the lattice and continuum fields are presented in section 5. The systematic large volume

expansion and the determination of dressed form factors can be found in section 6. Our

summary and outlook can be found in section 7. The paper includes a short appendix

containing some Fourier-transforms being necessary for the computations.

2 Light-cone approach to the Massive-Thirring and sine-Gordon models

The continuum models we consider in this paper are the sine-Gordon theory,

LSG =
1

2
∂νΦ∂

νΦ+
µ2

β2
: cos (βΦ) : 0 < β2 < 8π, (2.1)

and the massive Thirring model:

LMT = Ψ̄(iγν∂
ν +m0)Ψ−

g

2
Ψ̄γνΨΨ̄γνΨ , (2.2)

where we use chiral representation for the fermions {γµ, γν} = 2ηµν :

Ψ =

(

ψL

ψR

)

, γ0 =

(

0 1

1 0

)

, γ1 =

(

0 1

−1 0

)

, γ5 = γ0γ1 = −η =

(

−1 0

0 1

)

.

By bosonization techniques, it was shown [13] that the two models can be mapped into

each other provided their coupling constants satisfy the relation:

1 +
g

4π
=

4π

β2
. (2.3)

There is a subtle point in the equivalence of the two theories [14], namely they are equivalent

only in the even topological charge sector of their Hilbert-spaces and they differ in the odd

topological charge sector.

The light-cone lattice approach of [3] provides an integrable lattice regularization of

the MT model in the even topological charge sector of theory. In this description the

space-time is discretized along the light-cone directions: x± = x± t with an even number

of lattice sites in the spatial direction. The sites of the light-cone lattice correspond to the

discretized points of space-time. The left- and right-mover fermion fields live on the left-

and right-oriented edges of the lattice. In this manner a left- and a right-mover fermion

field can be assigned to each site of the lattice. (See figure 1.)

Lattice fermion fields satisfy the anticommutation relations:

{ψA,n, ψB,m} = 0, {ψA,n, ψ
+
B,m} = δAB δnm, A,B = R,L, 1 ≤ m,n ≤ N. (2.4)
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Figure 1. The pictorial representation of the light-cone lattice.

Then left- and right-mover fields live on the odd and even edges of of the light-cone lattice

respectively:

ψR,n = ψ2n, ψL,n = ψ2n−1, 1 ≤ n ≤ N
2 . (2.5)

In this regularization, the variables ψn are used to formulate the model and they are related

to the commonly used spin variables by a Jordan-Wigner transformation:

ψ+
n = σ+

n

n−1
∏

l=1

σz
l , ψn = σ−

n

n−1
∏

l=1

σz
l . (2.6)

The UL and UR light-cone evaluation operators of the model are given by inhomogeneous

transfer matrices of the 6-vertex model with appropriate alternating inhomogeneities as

follows.

Let us consider the 6-vertex model with the following R-matrix:

R(λ) =













1 0 0 0

0 sinh(λ)
sinh(λ−iγ)

sinh(−iγ)
sinh(λ−iγ) 0

0 sinh(−iγ)
sinh(λ−iγ)

sinh(λ)
sinh(λ−iγ) 0

0 0 0 1













, (2.7)

where λ is the spectral parameter and γ is the anisotropy parameter which encodes the

coupling dependence of the MT model. The coupling dependence of γ is given by:

γ =
π

p+ 1
, 0 < p < ∞, (2.8)

where p parameterizes the coupling constant of the SG and MT models by the formula:4

β2

4π
=

1

1 + g
4π

=
2p

p+ 1
. (2.9)

4This parameterization is introduced to relate our results easier to the DDV equation.
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The R-matrix (2.7) acts on the tensor product of two linear spaces both being isomorfic

to C2. As usual, the R-matrix acting on V1(λ1)⊗ V2(λ2) is denoted by R12(λ1 − λ2). The

monodromy matrix acts on V0 and the quantum space of the model H = ⊗N
i=1 Vi and is

given by:

T (λ|~ξ) = R01(λ− ξ1)R02(λ− ξ2) . . . R0N (λ− ξN ) =

(

A(λ) B(λ)

C(λ) D(λ)

)

[0]

, (2.10)

where ~ξ is the N -dimensional inhomogeneity vector given by:

~ξ = {ξ−, ξ+, ξ−, ξ+, . . . , ξ−, ξ+}, (2.11)

with

ξ± = ±ρ− iγ2 . (2.12)

Here the parameter ρ is part of the regularization scheme. This is why it depends on the

lattice spacing or equivalently on the number of lattice sites. This dependence is given by

the formula:

ρ = γ
π
ln 4

M a
= γ

π
ln 2N

ML
, (2.13)

where M is the physical mass of fermions (solitons), a denotes the lattice spacing, N is the

number5 of lattice sites of the 6-vertex model and L is the volume. Due to the integrability

of the model the transfer matrixes form a commutative family of operators on the quantum

space of the model:

T (λ|~ξ) = Tr0 T (λ|~ξ),
[

T (λ|~ξ), T (λ′|~ξ)
]

= 0. (2.14)

The UL and UR light-cone evaluation operators of the regularized MT model are given by

the transfer matrices:

UL = ei
2
a
(H−P ) = T (ξ+|~ξ), U+

R = e−i
2
a
(H+P ) = T (ξ−|~ξ), (2.15)

where H is the Hamiltonian and P is the momentum of the model. From this description

it follows that the eigenstates of the Hamiltonian are the eigenvectors of the commuting

transfer matrices. These eigenvectors can be obtained via the algebraic Bethe Ansatz

technique [15].

2.1 Algebraic Bethe ansatz

In the framework of algebraic Bethe Ansatz method, the eigenstates of the mutually com-

muting family of transfer matrices (2.14) are constructed by acting with a product of

B-operators on the reference state |0〉, which is the completely ferromagnetic Sz =
N
2 state

of the model:

|~λ〉 = |λ1, λ2, .., λm〉 = B(λ1)B(λ2) . . . B(λm) |0〉, Sz|~λ〉 = (N2 −m)|~λ〉. (2.16)

5In this convention, in the light-cone lattice the number of lattice sites in spatial direction is N
2
. See

figure 1.
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Such a state is an eigenstate provided the spectral parameters in the argument of the

B-operators satisfy the Bethe equations:

N
∏

i=1

sinh(λa − ξi − iγ)

sinh(λa − ξi)

m
∏

b=1

sinh(λa − λb + iγ)

sinh(λa − λb − iγ)
= −1, a = 1, . . . ,m. (2.17)

The eigenvalues of the transfer matrices can also be expressed in terms of the Bethe-roots:

T~λ(µ|
~ξ) =

m
∏

k=1

sinh(µ− λk + iγ)

sinh(µ− λk)
+

N
∏

i=1

sinh(µ− ξi)

sinh(µ− ξi − iγ)

m
∏

k=1

sinh(µ− λk − iγ)

sinh(µ− λk)
. (2.18)

The Bethe-equations can be reformulated in terms of the so-called counting-function Zλ(λ):

(−1)δ ei Zλ(λa) = −1, δ = m (mod 2), a = 1, ..,m, (2.19)

where

(−1)δ ei Zλ(λ) =
N
∏

i=1

sinh(λ− ξi − iγ)

sinh(λ− ξi)

m
∏

b=1

sinh(λ− λb + iγ)

sinh(λ− λb − iγ)
. (2.20)

For the proper definition of Zλ(λ) the logarithm of (2.20) should be taken, such that the

counting function should be continuous along the real axis. This can be achieved by defining

the function [8]:

φν(λ) = −i log
sinh(iγ2ν − λ)

sinh(iγ2ν + λ)
, 0 < ν, φν(0) = 0, |Imλ| < ν. (2.21)

The function φν(λ) can be continued analytically to the regime |Imλ| > ν by the require-

ments that its logarithmic discontinuities should run parallel to the real axis and it should

be an odd function on the entire complex plane. Using this analytically continued φν(λ),

the definition of the counting-function specified to the inhomogeneities (2.12) is given by

the formula [8]:

Zλ(λ) =
N

2
(φ1(λ− ρ) + φ1(λ+ ρ))−

m
∑

k=1

φ2(λ− λk). (2.22)

Using Zλ(λ), the Bethe-equations (2.17) can be reformulated in their logarithmic form by

the formula:

Zλ(λa) = 2π Ia, Ia ∈ Z+ 1+δ
2 a = 1, ..,m. (2.23)

We note that the role of δ is to determine whether the quantum numbers Ia should be inte-

gers or half-integers. The vacuum of the field theory corresponds to the δ = 0, Sz = 0, anti-

ferromagnetic vacuum of the lattice-model.6 This state is formed by N/2 real Bethe-roots,

such that to all quantum numbers satisfying the inequality Zλ(−∞) ≤ 2π Ia ≤ Zλ(∞)

there exist a real Bethe-root in (2.23). The excitations above this vacuum are character-

ized by complex Bethe-roots and holes, where holes are such real solutions of (2.19), which

are not Bethe-roots. In the logarithmic form of the equations quantum numbers can be

assigned to holes as well:

Zλ(hk) = 2π Ik, Ik ∈ Z+ 1+δ
2 k = 1, ..,mH , (2.24)

where hk denotes the positions of the holes and their number is denoted by mH .

6According to (2.19), the δ = 0 requirement implies that N
2

must be even on the lattice.
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2.2 The DDV equations

The DDV equations7 [4]–[11] reformulate the Bethe-equations (2.17) in terms of a set

of nonlinear-integral equations, such that only those objects enter the equations, which

characterize the excitations. In this paper we will compute diagonal form factors in the

pure soliton sector of the theory, thus we recall here the form of the DDV equation only

for the pure soliton- or equivalently for pure hole states. The DDV equation for this sector

was derived first in [7]. Here we present the equations in rapidity variables i.e. θ = π
γ
λ,

because of two reasons. First, this way it is easier to find connection to the literature of the

DDV equation [5]–[11], and on the other hand at the stage of our final results it is better to

work in this convention, since in the field theory this variable corresponds to the rapidity of

particles. We recall the DDV equation for both the lattice and for the continuum theories.

To do so, first we relate the lattice counting function in rapidity variables to Zλ(λ) of (2.22).

The relation is given by ZN (θ) = Zλ(
γ
π
θ). The DDV equation for ZN (θ) in the pure hole

sector reads as:

ZN (θ) =
N

2
{arctan [sinh(θ −Θ)] + arctan [sinh(θ +Θ)]}+

mH
∑

k=1

χ(θ −Hk) (2.25)

+

∞
∫

−∞

dθ′

2πi
G(θ − θ′ − iη)L

(+)
N (θ′ + iη)−

∞
∫

−∞

dθ′

2πi
G(θ − θ′ + iη)L

(−)
N (θ′ − iη),

where χ(θ) is the soliton-soliton scattering phase and G(θ) is its derivative:

G(θ) = −i
d

dθ
logS++

++(θ) =

∞
∫

−∞

dω e−i ωθ sinh( (p−1)πω
2 )

2 cosh(πω2 ) sinh(p π ω
2 )

, (2.26)

0 < η < min(pπ, π) is an arbitrary positive contour-integral parameter, which must be

smaller than the distance of the first pole of G(θ) from the real axis. Furthermore, L
(±)
N (θ)

denotes the nonlinear combinations of ZN (θ):

L
(±)
N (θ) = ln

(

1 + (−1)δ e±i ZN (θ)
)

, (2.27)

Θ = ln 2N
ML

is the inhomogeneity parameter and Hk = π
γ
hk denote the positions of the

holes in the rapidity convention. They are subjected to the quantization equations:

ZN (Hk) = 2π Ik Ik ∈ Z+ 1+δ
2 k = 1, ..,mH . (2.28)

A counting-equation [8] can be derived, which tells us how the number of excitation char-

acterizing objects is related to the spin or equivalently to the conserved quantum number

of the state. For pure hole states without special objects8 the counting-equation on the

lattice takes the form:

mH = 2Sz − 2
[

1
2 + Sz

p+1

]

, (2.29)

7A detailed review on the DDV equations can be found in [12].
8Special objects are points on the complex plane, where the L

(±)
N (θ) jumps along the integration contour

due to going though the branch cut of the logarithm. For more detail see for example [8, 12].
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where here [. . .] stands for integer part. Since Sz =
N
2 −m, this equation tells us that, on a

lattice with even number of sites, only states with even number of holes exist. The lattice

counting-function ZN (θ) depends on the number of lattice sites N. It has a continuum

limit, which is just its N → ∞ limit [5, 6]:

Z(θ) = lim
N→∞

ZN (θ), L±(θ) = lim
N→∞

L
(±)
N (θ) = ln

(

1 + (−1)δ e±i Z(θ)
)

. (2.30)

With these notations the continuum DDV equations are just the N → ∞ limit of the

lattice ones (2.25):.

Z(θ) = ℓ sinh θ +

mH
∑

k=1

χ(θ −Hk) +

∞
∫

−∞

dθ′

2πi
G(θ − θ′ − iη)L+(θ

′ + iη)

−

∞
∫

−∞

dθ′

2πi
G(θ − θ′ + iη)L−(θ

′ − iη),

(2.31)

where ℓ = ML with L being the volume and M is the soliton mass. The energy and

momentum of these hole states in the continuum read as:

E = M

mH
∑

k=1

coshHk −
M

2πi

∑

α=±

α·

∞
∫

−∞

dθ sinh(θ + i α η)Lα(θ + i α η), (2.32)

P = M

mH
∑

k=1

sinhHk −
M

2πi

∑

α=±

α·

∞
∫

−∞

dθ cosh(θ + i α η)Lα(θ + i α η). (2.33)

Since in the large volume limit Lα(θ + i α η) → 0, from (2.32) and (2.33) it can be seen

that in the large volume limit the holes correspond to the rapidities of the solitons. This is

why in the sequel we will refer to holes as solitons. It also turns out [8] that the counting

equation (2.29) changes in the continuum and it reads:9

Q = mH , (2.34)

where Q is the U(1) (topological) charge of the continuum model.

The choice10 of δ is crucial in the continuum theory. In the even charge sector of the

theory δ = 0. In the odd charge sector the choice δ = 0 corresponds to the MT fermions,

while the δ = 1 choice describes the SG solitons [9]–[11].

Though in this paper we will make computations only in the twistless case, which can

describe only the even topological charge sector of the model, we note that in [46] it has

been shown that the odd charge sector can also be investigated from the lattice, if the

6-vertex model with an twist angle ω = π
2 is considered.

9For pure soliton states without special objects.
10On the lattice the actual value of δ can be influenced by the parity of N

2
.
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2.3 The U(1) current in spin variables

Our purpose is to compute the finite volume form-factors of local operators of the MT/SG

models in the framework of QISM. To achieve this plan, the first step is to relate the lattice

operators to the continuum ones. Due to renormalization effects, this is a complicated task

in general. To avoid complications11 coming from renormalization effects we will restrict

our attention to operators related to the U(1) symmetry of the model. The U(1) symmetry

is present in both the lattice and the continuum theories, thus it is plausible to assume

that the U(1) conserved charge of the lattice theory is mapped to the U(1) charge of the

continuum theory.

The counting equations (2.29) and (2.34) suggest12 the Q ∼ 2Sz identification between

the lattice and continuum conserved quantities. This helps us to define the correct normal

ordering for the lattice fermion fields as follows. Assuming the Q ∼ 2Sz relation, the

lattice topological charge can be expressed by lattice fermion fields using a Jordan-Wigner

transformation (2.6):

Q ∼ 2Sz =
N
∑

n=1

σz
n =

N
∑

n=1

(

ψ+
n ψn − 1

2

)

. (2.35)

In the continuum theory the topological charge is given by the integral:

Q =

L
∫

0

dx
(

: Ψ+
RΨR : (x)+ : Ψ+

LΨL : (x)
)

, (2.36)

which can be approximated on the lattice by the discrete sum:

Q ≈

N
2

∑

n=1

(

: ψ+
2nψ2n : + : ψ+

2n−1ψ2n−1 :
)

. (2.37)

The comparison of (2.35) and (2.37) offers a natural definition for the normal ordering of

lattice Fermi-fields:

: ψ+
n ψn := ψ+

n ψn − 1
2 = σz

n. (2.38)

Our purpose is to determine the lattice counterparts of the conserved current belonging to

the U(1) current of the MT model. The index-0 component of the current is the charge

density. This can be computed from (2.35) and (2.38):

Q ∼ 2Sz =

N
2

∑

n=1

(σz
2n + σz

2n−1) =

N
2

∑

n=1

a
σz
2n + σz

2n−1

a
=

N
2

∑

n=1

a · j0(na) →

L
∫

0

dx j0(x), (2.39)

where a = 2L
N

is the lattice constant and the index-0 component of the current at the

lattice sites can be expressed in terms of lattice spin variables as:

j0(na) =
σz
2n + σz

2n−1

a
=

N

L

σz
2n + σz

2n−1

2
. (2.40)

11Here we mostly think of operator mixing.
12At least for large enough values of p, when the integer part becomes zero.

– 9 –



J
H
E
P
0
8
(
2
0
1
7
)
0
5
9

In the continuum theory the conserved current is given by:

Jµ =: Ψ̄ γµΨ :, µ = 0, 1. (2.41)

which can be written in component fields as:

J0 =: Ψ+
RΨR : + : Ψ+

LΨL :,

J1 =: Ψ+
RΨR : − : Ψ+

LΨL : .
(2.42)

Since left- and right-mover fields live on the odd and even links of our lattice respectively,

comparing (2.40) and (2.42) gives immediately the index-1 component of the current in

terms of spin variables:

j1(na) =
σz
2n − σz

2n−1

a
=

N

L

σz
2n − σz

2n−1

2
. (2.43)

Consequently (2.40) and (2.43) indicates that the computation of form factors of the current

Jµ is reduced to compute form factors of σz
n on the lattice. This can be achieved within

the framework of QISM [17, 18].

We close this section with an important remark concerning the continuum limit and

our notations. It can be recognized, that as far as the notation is concerned, we made

difference between the continuum and the lattice notations of the U(1) current. Namely,

Jµ(x) denotes the current in the continuum field theory, while jµ(x) denotes the lattice

analog of the continuum current, the derivation of which was based on the identification of

the topological charge of the continuum field theory with 2Sz of the corresponding lattice

theory. However, in section 5.1. it will turn out that the two quantities are not equal, but

only proportional. We just anticipate their relation, which is given by the formula (5.10):

Jµ(x) =
p

p+1 jµ(x), µ = 0, 1. (2.44)

We note, that the renormalization factor p
p+1 tends to 1, as p tends to infinity in accordance

with the indication of (2.29).

3 Form-factors in the QISM framework

In the previous section we argued that the computation of form-factors of the U(1) current

of the MT/SG model is equivalent to the determination of the form-factors of σz
n on the

lattice. Our approach to compute the finite volume form-factors of local operators having

lattice counterparts, consists of two steps; first one should compute the form-factors on

the lattice. The result will depend on the number of lattice sites N . Then the N → ∞

limit of the lattice result gives the required result for the continuum theory.13 We will

demonstarate, that this method works fine by the computation of the diagonal matrix

elements of the U(1) current. The details of the computations enlight, that the diagonal

matrix elements of other combinations of local Fermi fields and their derivatives can also

13In many cases the careful analysis of renormalization constants is also necessary.
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be computed by this method. Moreover, this procedure gives a theoretical framework also

for the computation of nondiagonal matrix elements of the operators.

In this section we collect the most important formulas being necessary for the compu-

tations. Consider the following vector of the Hilbert-space:

|~λ〉 = B(λ1)B(λ2) . . . B(λm) |0〉. (3.1)

This is called Bethe-state if the numbers λj are arbitrary and is called Bethe-eigenstate if

all λj are solutions of the Bethe equations (2.17). Then the corresponding “bra” vector is

given by:

〈~λ| = 〈0|C(λm) . . . C(λ2)C(λ1). (3.2)

To get all form-factors of the current, one should be able to compute the lattice form

factors:
〈~µ|σz

n|
~λ〉

√

〈~λ|~λ〉 〈~µ|~µ〉
, (3.3)

where both |~µ〉 and |~λ〉 are Bethe-eigenstates, but in this paper we will focus on computing

only the diagonal matrix elements:

〈σz
n〉λ =

〈~λ|σz
n|
~λ〉

〈~λ|~λ〉
, (3.4)

which turns out to be a much simpler problem.

Here we recall the most important formulas [18], which are necessary to perform our

calculations. In the computations only the Yang-Baxter algebra and the elements of the

monodromy matrix (2.10) are used. This is why it is important to express the local spin

operators in terms of the A,B,C,D operators of the monodromy matrix (2.10). It has

been done in [17] and the relations are summarized by the formula:

Eab
n =

n−1
∏

i=1

(A+D)(ξi) Tab(ξn)

N
∏

i=n+1

(A+D)(ξi), a, b = 1, 2, (3.5)

where the operator En is given in terms of spin operators as follows:

E11
n =

1

2
(1n + σz

n), E12
n = σ−

n , E21
n = σ+

n , E22
n =

1

2
(1n − σz

n). (3.6)

In our actual computations we use the 22-component of (3.5):

en =
1

2
(1n − σz

n) =
n−1
∏

i=1

(A+D)(ξi) D(ξn)
N
∏

i=n+1

(A+D)(ξi), (3.7)

where for short we introduced the notation en = 1
2(1n − σz

n). We compute the expectation

values of en on the lattice, since apart from a trivial constant and sign it is equal to the

required matrix element 1
2〈σ

z
n〉λ. We note, that the lattice part of our computations is a

special case of the computations done in [18] for the emptiness formation probability. This

is why we will mostly use the logic and formulas of [18].
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To compute 〈en〉λ from (3.7), one should know how the operator D(ξn) acts
14 on the

“bra”-vector (3.2). This is given by the following formula [18]:

〈0|

m
∏

k=1

C(λk)D(ξn) =

m
∑

a=1

1

r(λa)

m
∏

k=1

sinh(λa − λk − i γ)

sinh(λa − ξn)
m
∏

k=1
k 6=a

sinh(λa − λk)

〈0|

m
∏

k=1
k 6=a

C(λk)C(ξn), (3.8)

where we explicitely exploited that ξn is one of the inhomogeneities of the vertex model

and introduced:

r(λ) =
N
∏

j=1

sinh(λ− ξj − i γ)

sinh(λ− ξj)
. (3.9)

As a consequence of (3.9) and (2.17) it satisfies the identities:

m
∏

k=1

r(λk) = 1,
1

r(ξj)
= 0, j = 1, . . . , N. (3.10)

The last ingredient necessary for the computations is the scalar product of a Bethe-state

and a Bethe-eingenstate. Let |µ〉 an arbitrary Bethe-state in the sense of (3.1) and |λ〉 be

a Bethe-eigenstate. Then their scalar product is given by the formula [36]:

〈~µ|~λ〉 = 〈~λ|~µ〉 =
N
∏

l=1

1

r(µl)
·

detH(~µ|~λ)
∏

j>k

sinh(µk − µj) sinh(λj − λk)
, (3.11)

where H(~µ|~λ) is an m×m matrix with entries:

Hab(~µ|~λ) =
sinh(−iγ)

sinh(λa − µb)









r(µb)

m
∏

k=1

sinh(λk − µb − i γ)

sinh(λa − µb − i γ)
−

m
∏

k=1

sinh(λk − µb + iγ)

sinh(λa − µb + i γ)









.

(3.12)

The special case of the formula (3.11), when both states correspond to the same Bethe-

eigenvector,15 gives the Gaudin formula:

〈~λ|~λ〉 =

m
∏

j=1

m
∏

k=1

sinh(λj − λk − i γ)

∏

j>k

sinh(λk − λj) sinh(λj − λk)
· detΦ(~λ), (3.13)

where Φ(~λ) is the Gaudin-matrix, which can be obtained from the counting-function (2.22)

as follows:

Φab(~λ) = −i
∂

∂λb
Zλ(λa|~λ), a, b = 1, ..,m, (3.14)

14We just note that the factors coming from the (A + D)-wings of (3.7) give scalar factors since the

sandwiching states are eigenstates of (A+D).
15If the two eingenstates are different the scalar product is zero.
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where we indicated, that the counting-function should be considered as a function of the

Bethe-roots. This Bethe-root dependence can be read off from (2.22).

From (3.12) it can be seen, that the matrix element Hab(~µ|~λ) depends on only one sin-

gle component of the vector ~µ. This observation makes possible remarkable simplifications,

when diagonal form-factors are computed. In this case one needs to compute scalar prod-

ucts, when the components of the vector ~µ take values either from the set of Bethe-roots

{λj}j=1,..m or from the set of inhomogeneities {ξk}k=1,..N of the model. In these cases the

matrix elements of H(~µ|~λ) take the form:

Hab(~µ|~λ)
∣

∣

µb→λc
= (−1)m−1

m
∏

j=1

sinh(λc − λj − i γ)Φac(~λ), a, b, c = 1, ..,m. (3.15)

1

r(µb)
Hab(~µ|~λ)

∣

∣

µb→ξc
=

(−1)m sinh(−i γ)
m
∏

j=1
sinh(ξc − λj + iγ)

sinh(λa − ξc) sinh(λa − ξc − i γ)
, a, b, c = 1, ..,m. (3.16)

4 The computation of 〈en〉λ

Now we are in the position to compute 〈en〉λ on the lattice. First the contribution of the

eigenvalues of the transfer-matrices are lifted:

〈en〉λ =
m
∏

k=1

sinh(ξn − λk)

sinh(ξn − λk + i γ)
· 〈D(ξn)〉λ. (4.1)

As a consequence of (3.8) the expectation value 〈D(ξn)〉λ can be written as:

〈D(ξn)〉λ =
〈~λ|D(ξn)|~λ〉

〈~λ|~λ〉
=

m
∑

A=1

1

r(λA)

m
∏

k=1

sinh(λA − λk − i γ)

sinh(λA − ξn)
m
∏

k=1
k 6=A

sinh(λA − λk)

·
〈~µ(A)|~λ〉

〈~λ|~λ〉
, (4.2)

where ~µ(A) is an m-component vector, which differs from ~λ only in its Ath component,

which is equal to the inhomogeneity corresponding to the nth site:

µ
(A)
k =

{

λk, k 6= A,

ξn, k = A.
k = 1, ..,m. (4.3)

Due to (3.15) and (3.16) using some simple determinant identities, 〈~µ(A)|~λ〉 can be writ-

ten as:

〈~µ(A)|~λ〉 =
m
∏

j=1

sinh(ξn − λj + i γ)

sinh(ξn − λj − i γ)
·

m
∏

b=1

m
∏

j=1
sinh(µ

(A)
b − λj − i γ) · det Ĥ(~µ(A)|~λ)

m
∏

j>k

sinh(µ
(A)
k − µ

(A)
j ) sinh(λj − λk)

, (4.4)
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where the m×m matrix Ĥ(~µ(A)|~λ) is given by:

Ĥab(~µ
(A)|~λ) =

{

Φ̃ab(~λ), b 6= A,

Va ≡ − sinh(−i γ)
sinh(λa−ξn) sinh(λa−ξn−i γ) , b = A.

(4.5)

Here

Φ̃ab(~λ) = Φab(~λ)
1

r(λb)
, a, b = 1, ..,m. (4.6)

As a consequence of (3.10) detΦ(~λ) = det Φ̃(~λ), thus in (3.13) the Φ(~λ) → Φ̃(~λ) replace-

ment can be done. Using (4.3), (4.4) and (4.5) one obtains:

〈~µ(A)|~λ〉

〈~λ|~λ〉
=

m
∏

j=1
j 6=A

sinh(λA − λj)

sinh(ξn − λj)
·

m
∏

j=1

sinh(ξn − λj + i γ)

sinh(λA − λj − i γ)
r(λA)

(

Φ−1(~λ) · Ĥ(~µ(A)|~λ)
)

AA
,

(4.7)

where apart from simplifying the multiplicative factors, we used (3.13) with the Φ → Φ̃

replacement and computed the ratio of the determinants of Ĥ(~µ(A)|~λ) and Φ̃(~λ) as the

determinant of Φ̃−1(~λ) · Ĥ(~µ(A)|~λ). As a consequence of (4.5), the latter matrix differs from

the unity matrix only in its Ath column. Thus its determinant could also be computed as

an expression of matrix elements of Φ̃−1(~λ) and Ĥ(~µ(A)|~λ).

Inserting (4.7) into (4.2) and the result into (4.1) one ends up with the simple result:

〈en〉λ = −
m
∑

A=1

(

Φ−1(~λ) · Ĥ(~µ(A)|~λ)
)

AA
. (4.8)

Using (4.5), this can be written in components as:

〈en〉λ = −
m
∑

a=1

m
∑

b=1

Φ−1
ab (

~λ)Vb = −
m
∑

a=1

Sa, (4.9)

where Sa is the solution of the set of linear equations:

m
∑

b=1

Φab(~λ)Sb = Va, a = 1, ..,m. (4.10)

4.1 The determination of Sa

In this subsection we show that equation (4.10) for the vector Sa can be formulated as a set

of linear-integral-equations containing the counting-function of the model. The advantage

of this formulation is that it allows one to take the continuum limit in a straightforward

manner.

The first step is to compute the matrix elements of Φ(~λ) from (3.14):

Φab(~λ) = −i Z ′
λ(λa) δab − 2π iK(λa − λb|γ), a, b = 1, ..m, (4.11)

where

K(λ|γ) =
1

2π

sin(2 γ)

sinh(λ− i γ) sinh(λ+ i γ)
. (4.12)
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Now an important remark is in order. From (4.11) it can be seen, that apart form the δab
term, the ab matrix element of Φ(~λ) is given by a function of two variables taken at the

arguments λa and λb, and similarly from (4.5) it is obvious that Va is an analytic function

taken at the position λa. This suggests that the components of the unknown vector Sa

should be sought in the following form:

Sa = X(λa), a = 1, . . . ,m, (4.13)

where X(λ) is supposed to be an analytic (meromorphic) function on the complex-plane.16

The advantage of such an Ansatz becomes obvious in the large N -limit, because summation

for the large number of components becomes a convolution integral plus a remnant sum.17

To transform the sum in (4.10) into an integral we should use the following lemma [6, 8].

Lemma. Let {λj}j=1,..,m solutions of the Bethe-equations (2.17) and let f(λ) a meromor-

phic function, which is continuous and bounded on the real axis. Denote p(f) its pole located

the closest to the real axis. Then for |Imµ| < |Im p(f)| the following equation holds:

m
∑

j=1

f(µ− λj) =

mC
∑

j=1

f(µ− cj)−

mH
∑

j=1

f(µ− hj) +

∞
∫

−∞

dλ

2π
f(µ− λ)Z ′

λ(λ)−

−
∑

α=±

∞
∫

−∞

dλ

2π
f(µ− λ− i α η)Z ′

λ(λ+ i α η)F (λ)
α (λ+ i α η),

(4.14)

where

F
(λ)
± (λ) =

(−1)δ e±i Zλ(λ)

1 + (−1)δ e±i Zλ(λ)
, (4.15)

furthermore hj and cj denote the positions of holes and complex Bethe-roots respectively.

η is a small positive contour-integral parameter which should satisfy the inequalities:

0 < η < min{|Im p±λ |}, |Imµ± η| < |Im p(f)|, (4.16)

where p±λ denotes those complex18 poles of F
(λ)
± (λ), which are located the closest to the

real axis.

The summation formula (4.14) can be extended to the |Imµ| > |Im p(f)| domain by an

analytical continuation procedure being similar to the analytical continuation of the DDV

equation to the whole complex plane [8].

Using the Ansatz (4.13) and the formula (4.11) together with the parameteriza-

tions (2.11), (2.12), the linear equations (4.10) take the form:

− i Z ′(λa)X(λa)− 2π i

m
∑

b=1

K(λa − λb|γ)X(λb) = 2π iK(λa − ρn|
γ
2 ), a = 1, ..,m, (4.17)

16The thermodynamic limit for the ground state expectation value was treated by the same tacit assump-

tion in [18].
17The convolution integral comes from the “Dirac-see” of real roots and the remnant sum is related to

finite number of excitations above this see.
18I.e. not real.
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where ρn = +ρ if n is even and ρn = −ρ otherwise with ρ given by (2.13). We trans-

form (4.17) into integral equations with the help of (4.14). Since in (4.14) the integrand

always contains a factor Z ′
λ(λ), it is convenient to parameterize the function X(λ) as:

X(λ) =
G(λ)

Z ′
λ(λ)

. (4.18)

Then using (4.14), for the case of pure hole states, the linear equations can be rewritten in

the form of the following linear set of integral equations:

G(λ) +

∞
∫

−∞

dλ′K(λ− λ′|γ)G(λ′)−

−
∑

α=±

∞
∫

−∞

dλ′K(λ− λ′ − i α η|γ)G(λ′ + i α η)F (λ)
α (λ′ + i α η) =

= −2πK(λ− ρn|
γ
2 ) +

mH
∑

j=1

K(λ− hj |γ)Xj ,

(4.19)

where

Xj = X(hj), j = 1, . . . ,mH , (4.20)

such that they should satisfy the discrete set of equations:

Xj =
G(hj)

Z ′
λ(hj)

, j = 1, . . . ,mH . (4.21)

Similarly, (4.14) allows us to rephrase (4.9) as:

〈en〉λ =

mH
∑

j=1

Xj −

∞
∫

−∞

dλ

2π
G(λ) +

∑

α=±

∞
∫

−∞

dλ

2π
G(λ+ i α η)F (λ)

α (λ+ i α η). (4.22)

Acting19 (1 +K)−1 on (4.19), the equations take the form:

G(λ)−
∑

α=±

∞
∫

−∞

dλ′Gλ(λ− λ′ − i α η)G(λ′ + i α η)F (λ)
α (λ′ + i α η) =

= −
π

γ

1

cosh
(

π
γ
(λ− ρn)

) +

mH
∑

j=1

2πGλ(λ− hj)Xj ,

(4.23)

where Gλ(λ) is related to the kernel of DDV equation (2.26) by:

Gλ(λ) =
1

2γ
G
(

π
γ
λ
)

, with γ = π
p+1 . (4.24)

19Appendix A. contains some Fourier-transforms, which are necessary to do these computations.
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With the help of the integrated form of (4.23), the term
∞
∫

−∞

dλ
2π G(λ) can be eliminated

from (4.22). Finally, one ends up with the following formula for the expectation value:

〈en〉λ = 1
2 − 1

2〈σ
z
n〉λ,

1
2〈σ

z
n〉λ = −

1

2(1− γ
π
)







mH
∑

j=1

Xj +
∑

α=±

∞
∫

−∞

dλ

2π
G(λ+ i α η)F (λ)

α (λ+ i α η)







.
(4.25)

Equations (4.23), (4.21) and (4.25) constitute our final lattice results, which serve as the

starting point to compute the continuum limit of the expectation values of the U(1) current

of the MT/SG theories.

5 The continuum limit

The continuum limit is the appropriate N → ∞ of our equations. Using (2.13), the

equations (4.21), (4.23) and (4.25) can be expanded at large N in a series of 1
N
, such that

the leading power is 1
N
. From (2.40) and (2.43) one can see, that the continuum result will

be proportional to this leading order coefficient:

Gcont(λ) ∼ lim
N→∞

N G(λ), Xcont
j ∼ lim

N→∞
N Xj . (5.1)

All equations we have for the computation of the expectation value of σz
n are linear. This

is why using (2.40) and (2.43), one can take their appropriate linear combinations to get

the continuum expressions corresponding to the components of the U(1) current. The

equations in the continuum limit and in rapidity convention take the form:

G(µ)(θ)−
∑

α=±

∞
∫

−∞

dθ′

2π
G(θ − θ′ − i α η)G(µ)(θ′ + i α η)Fα(θ

′ + i α η) =

= −Kµ(θ) +

mH
∑

j=1

G(θ −Hj)X
(µ)
j ,

X
(µ)
j =

G(µ)(Hj)

Z ′(Hj)
, j = 1, . . . ,mH , µ = 0, 1.

(5.2)

〈jµ(x)〉H = −
p+ 1

p







mH
∑

j=1

X
(µ)
j +

∑

α=±

∞
∫

−∞

dθ′

2π
G(µ)(θ′ + i α η)Fα(θ

′ + i α η)







, (5.3)

where

F±(θ) =
(−1)δ e±i Z(θ)

1 + (−1)δ e±i Z(θ)
, (5.4)

and the operator dependent source term reads as:

Kµ(θ) =

{

M cosh(θ), µ = 0,

M sinh(θ), µ = 1.
(5.5)
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Here the index µ = 0, 1 corresponds to the lower index of the current Jµ, G(θ) is the

kernel (2.26) of the DDV equation, and η is a small positive contour integral parameter

which must satisfy the inequalities:

0 < η < min{|Im p
(±)
j |}, |Im θ ± η| < min(1, p)π, (5.6)

where p
(±)
j denotes those poles of F±(θ) which are not real.

At the notation of the expectation value, we denoted that in the continuum limit we

think of the state as if it was characterized by the holes. For completeness we give how the

continuum quantities of (5.2) are related to those of the lattice:

G(0)(θ) = lim
N→∞

N
2L

{

γ
π
G(e2n)( γ

π
θ) + γ

π
G(e2n−1)( γ

π
θ)
}

,

G(1)(θ) = lim
N→∞

N
2L

{

γ
π
G(e2n)( γ

π
θ)− γ

π
G(e2n−1)( γ

π
θ)
}

,
(5.7)

where at the right hand side we indicated as an upper index the lattice operator, the un-

known of whose linear problem20 should be considered. Finally we note that formula (5.3)

for 〈jµ(x)〉H is not the final answer to the expectation value of the U(1) current. In the

next subsection at the investigation of the charge density, it will turn out that 〈jµ(x)〉H is

still not the real expectation value of the U(1) current in the quantum field theory, but it

should be modified with an appropriate renormalization factor.

5.1 The solution of the equations

In this section we relate the equations (5.2) describing the expectation values of the U(1)

current to the counting-function of the DDV-equation (2.31) corresponding to the sand-

wiching state. Indeed it turns out that the solutions of (5.2) are related to certain deriva-

tives of Z(θ). The solutions we get, imply the relation (2.44).

5.1.1 The charge density case

Let us start with the µ = 0 case, which corresponds to the expectation value of the charge

density. Comparing (5.2) with the derivative of the DDV equation (2.31) with respect to

θ, it turns out that the solution of (5.2) can be expressed in terms of the counting-function

by the formulas as follows:

G(0)(θ) = − 1
L
Z ′(θ),

X
(0)
j = − 1

L
, j = 1, ..,mH .

(5.8)

Inserting (5.8) into (5.3), one obtains the following result for the expectation value of j0
between mH solitons:

〈j0(x)〉H = p+1
p

mH

L
. (5.9)

This formula requires some explanation. In the quantum field theory each soliton carries

topological charge Q = +1. The expectation value of the topological charge in an mH

20Here by linear problem we mean, the linear problem which enables one to compute the expectation

value. Namely, the set of equations: (4.21) and (4.23), (4.25).
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soliton state is 〈Q〉H = mH . Since the charge is the integral of the charge density operator,

whose expectation value has no space-time dependence, in the continuum theory the ex-

pectation value of the charge density should be mH

L
. It can be seen, that the result in (5.9)

agrees with the expected one apart from a global coupling dependent factor of p+1
p
. We

got (5.9) by identifying the topological charge of the continuum field theory with twice

the z-component of the spin of the lattice model, Q ∼ 2Sz. In view of the quantum field

theory interpretation, formula (5.9) suggests that instead of (2.40) and (2.43) the correct

identification between the lattice and continuum operators is given by the formulas:

J0(x)|x=na = p
p+1 j0(x)|x=na =

p

p+ 1

N

L

σz
2n + σz

2n−1

2
,

J1(x)|x=na = p
p+1 j1(x)|x=na =

p

p+ 1

N

L

σz
2n − σz

2n−1

2
.

(5.10)

Consequently, we conclude that 〈jµ(x)〉H given in (5.2) is not the final answer in the

quantum field theory (QFT), because it has to be modified by the renormalization factor

Zp =
p

p+1 . Thus, the real QFT result is given by:

〈Jµ(x)〉H = −

mH
∑

j=1

X
(µ)
j −

∑

α=±

∞
∫

−∞

dθ′

2π
G(µ)(θ′ + i α η)Fα(θ

′ + i α η). (5.11)

To summarize: (5.2) and (5.11) constitutes our final equations for computing the diagonal

matrix elements of Jµ(x).

5.1.2 The case of J1(x)

The equations (5.2) also for µ = 1 are related to a certain derivative of the counting-

function. The counting-function depends on the spectral parameter θ, on ℓ = ML the

dimensionless length of the system and on the hole positions,21 which are also ℓ dependent.

Then, differentiating (2.31) with respect to ℓ, one can recognize that G(1)(θ) of (5.2) is

related to the ℓ-derivative of the counting-function as follows:

G(1)(θ) = −M
d

dℓ
Z(θ| ~H(ℓ), ℓ),

X
(1)
j = MH ′

j(ℓ), j = 1, ..,mH ,

(5.12)

where we explicitly wrote out the Hj and ℓ dependence of Z(θ). With the help of (5.12),

one can show that 〈J1(x)〉H can also be rephrased as the ℓ-derivative of a quantity, which

can be expressed directly in terms of the solution of the DDV equations;

〈J1(x)〉H = −M
d

dℓ
Λ1(ℓ),

Λ1(ℓ) =

mH
∑

j=1

Hj(ℓ)−

∞
∫

−∞

dθ

2π i
{L+(θ + i η)− L−(θ − i η)} .

(5.13)

21Specifying the state, the quantum numbers of holes in the continuum version of (2.28) are fixed. I.e.

They are ℓ independent.
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We note, that in (5.13) L+ and L− have different signs under the integration. This

fact has a remarkable consequence concerning the TBA description of this expectation

value. Namely, if one considers the TBA description [45, 46] of the model at the points

1 < p ∈ Z+, where the system is described by a Dp+1-type TBA-system, then it becomes

obvious, that (5.13) cannot be expressed in terms of the Y-functions corresponding to the

massive TBA node.22 This implies, that the TBA conjectures [38–42] for purely elastic

scattering theories, cannot be valid in this non-diagonally scattering theory. Earlier a

similar conclusion has been drawn in [53].

6 The large volume expansion

In this section we solve our equations (5.2) in the context of a systematic large volume

expansion. The actual form of the representation we get, is very similar to those conjec-

tured for purely elastic scattering theories [38–42]. Nevertheless, since our model is not a

diagonally scattering theory, our large volume series differs from these TBA conjectures.

In this section we will strongly rely on the method described in [42] for the computation

of the diagonal matrix elements of the trace of the stress-energy tensor in purely elastic

scattering theories. We can do this, because the DDV equation (2.31) is formally similar to

the TBA-equations of a purely elastic scattering theory containing two types of particles.

To clarify this analogy better, as a first step we reformulate the DDV equation as a two-

component TBA equation. Eq. (2.31) contains Z(θ) along three different lines; along the

real line and on the lines θ±i η with θ ∈ R. When solving the equations, one has to compute

Z(θ) on all these 3 lines. To get a closed set of equations, we have to consider (2.31) with

left-hand sides Z(θ± i η) as well. The two equations for Z(θ± i η) formally look like a two

component TBA equation of a diagonally scattering theory. Let ε±(θ) = Z(θ ± i η) and

L±(θ) = ln(1 + (−1)δ e±i ε±(θ)), then the TBA-like form of (2.31) reads as:

εα(θ) = Sα(θ) +
∑

β=±

∞
∫

−∞

dθ′

2π
ϕαβ(θ − θ′)Lβ(θ

′), α = ±, (6.1)

where Sα(θ) is the source term:

Sα(θ) = ℓ sinh(θ + i α η) +

mH
∑

k=1

χ(θ + i α η −Hk), (6.2)

and

ϕαβ(θ) = iG(θ + i (α− β) η), α, β = ±, (6.3)

is a symmetric matrix kernel. From the point of view of our later computations, the fact

that the different quantities in (6.1) are complex, does not matter. The only important

property is that the kernel (6.3) is symmetric, i.e. ϕαβ(θ) = ϕβα(−θ).

22This is so, because the relation between L± and Y1 the massive Y-function is given by [46]: L+(θ +

iπ
2
) + L−(θ − iπ

2
) = ln(1 + Y1(θ)).
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In a completely analogous way the linear equations (5.2) can also be rephrased by

considering them along the lines θ ± i η. In (5.2) the left-hand side describes the action of

the linear operator on the unknown function and the right-hand side is the source term of

the linear problem. Since these equations are linear, it is worth to consider the solutions

of (5.2) with different “elementary” source terms, from which the solution of the physical

problem can be obtained by linear combinations. Consider in general the linear problems:

G
[α]
A (θ)−

∑

β=±

∞
∫

−∞

dθ′

2π
ψαβ(θ − θ′)G

[β]
A (θ′)F

[β]
β (θ′) = f

[α]
A (θ), α = ±, (6.4)

where for any function f(θ) we introduced the notation: f [±](θ) = f(θ ± i η), and

ψαβ(θ) = 1
i
ϕαβ(θ) is a symmetric kernel. In (6.4) f

[α]
A (θ) denotes the elementary source

term indexed by A.

If the argument of the “elementary” solution is not shifted, we denote it simply GA(θ)

and it satisfies the equations:

GA(θ)−
∑

β=±

∞
∫

−∞

dθ′

2π
ψαβ(θ −θ′− i α η)G

[β]
A (θ′)F

[β]
β (θ′) = fA(θ), α = ±. (6.5)

The elementary solutions from which the physical solutions of (5.2) and (5.11) can be

combined are characterized by their source terms in (6.5) and they are as follows:

GKµ(θ) ↔ fKµ(θ) = Kµ(θ), µ = 0, 1. (6.6)

Gj(θ) ↔ fj(θ) = −G(θ −Hj), j = 1, . . . ,mH , (6.7)

Gu(θ) ↔ fu(θ) = 1. (6.8)

As a consequence of equations (6.4), for any pair of indexes the following identities hold:

∑

α=±

∞
∫

−∞

dθ

2π
f
[α]
A (θ)G

[α]
B (θ)F [α]

α (θ) =
∑

α=±

∞
∫

−∞

dθ

2π
f
[α]
B (θ)G

[α]
A (θ)F [α]

α (θ). (6.9)

Now we show how the exact Gaudin-matrix enters the large volume expansion and

how one can express the solutions of (5.2) in terms of the elementary solutions (6.6)–(6.8).

First, we consider the integral equation in (5.2) as if X
(µ)
j s were arbitrary parameters.

Then using (6.4) and (6.6)–(6.8) the solution can be written as:

G(µ)(θ) = −GKµ(θ)−

mH
∑

j=1

Gj(θ)X
(µ)
j . (6.10)

However we know from (5.2) that X
(µ)
j s are not independent from G(µ)(θ), but they are

related by: G(µ)(Hj) = X
(µ)
j Z ′(Hj). Inserting this relation into (6.10) taken at θ = Hk,

one ends up with the discrete set of equations for X
(µ)
j as follows:

mH
∑

j=1

{

Z ′(Hk) δjk + Gj(Hk)
}

X
(µ)
j = −GKµ(Hk), k = 1, . . . ,mH . (6.11)
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From (2.31) and (2.28), it follows that the matrix entering (6.11) is nothing, but the Gaudin-

matrix of physical excitations over the Dirac-see, which we call exact Gaudin-matrix:

Φ̂kj( ~H) =
d

dHj
Z(Hk| ~H) = Z ′(Hk) δjk + Gj(Hk), j, k = 1, ..,mH . (6.12)

Using (6.10), (6.11) and (6.12) finally we get:

X
(µ)
k = −

mH
∑

j=1

Φ̂−1
kj (

~H)GKµ(Hj), k = 1, ..,mH . (6.13)

G(µ)(θ) = −GKµ(θ) +

mH
∑

k=1

mH
∑

j=1

Gk(θ) Φ̂
−1
kj (

~H)GKµ(Hj). (6.14)

The last missing piece is the expression of 〈Jµ(x)〉H in terms of the “elementary” solutions.

This can be computed by inserting (6.13) and (6.14) into (5.11) and by using the identity:

∑

α=±

∞
∫

−∞

dθ

2π
G
[α]
j (θ)F [α]

α (θ) = 1− Gu(Hj), j = 1, ..,mH , (6.15)

which can be derived by using (6.9). The final result is as follows:

〈Jµ(x)〉H =
∑

α=±

∞
∫

−∞

dθ

2π
G
[α]
Kµ

(θ)F [α]
α (θ) +

mH
∑

k=1

mH
∑

j=1

Gu(Hj) Φ̂
−1
jk (

~H)GKµ(Hk). (6.16)

The first term in (6.16) corresponds to the so-called vacuum contribution [41, 42]. Con-

structing the all order large volume solution of (6.4) for A = Kµ, it can be written as an

infinite series similar to that of LeClair and Mussardo [38–40]. Performing carefully the

calculations one obtains for the vacuum piece the result as follows:

〈Jµ(x)〉H
∣

∣

vac
=

∞
∑

n+=0

∞
∑

n−=0

1

n+!n−!

∫ n++n−
∏

i=1

dθi
2π

n+
∏

i=1

F+(θ + i η)

n++n−
∏

i=n++1

F−(θ − i η)

×F
Jµ
c (θ1+i η, . . . , θn++i η, θn++1−i η, . . . , θn++n−−i η),

(6.17)

where F
Jµ
c denotes the connected diagonal form factors of the operator Jµ(x) between pure

soliton states. Since Jµ is a conserved current, its connected form-factors can be determined

by simple modifications of the arguments of references [38] and [39]. The explicit form of

F
Jµ
c is given by the compact formula:23

F
Jµ
c (θ1, θ2, . . . , θn) =

∑

σ∈Sn

Kµ(θσ(n))
n−1
∏

j=1

G(θσ(j) − θσ(j+1)), (6.18)

where σ denotes the elements of the the symmetric group Sn.

23In (6.18) the 〈θ|θ′〉 = 2π δ(θ − θ′) normalization for the continuum states is assumed.
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Before turning to the second term is the r.h.s. of (6.16) it is worth to recall the con-

jecture of [41, 42] for the diagonal matrix elements of local operators in purely elastic

scattering theories.

The conjecture for purely elastic scattering theories states, that the exact finite volume

expectation value of any local operator O(x) can be written as:

〈H1, . . . , Hn|O(x)|H1, . . . , Hn〉 =
1

ρ(H1, .., Hn)

×
∑

{H+}∪{H−}

DO({H+}) ρ({H−}|{H+}),
(6.19)

where ρ( ~H) is the determinant of the exact Gaudin-matrix:

ρ(H1, .., Hn) = det Φ̂( ~H), (6.20)

the sum in (6.19) runs for all bipartite partitions of the rapidities of the sandwiching state:

{H1, .., Hn} = {H+} ∪ {H−}, such that

ρ({H+}|{H−} = det Φ̂+( ~H), (6.21)

with Φ̂+( ~H) being the submatrix of Φ̂( ~H) corresponding to the subset {H+}. The most

important part in (6.19) is the form of the so-called dressed-form factor DO({H+}). It is

expressed as an infinite sum in terms of the connected diagonal form-factors of the theory:

DO({H1, . . . , Hl}) =

∞
∑

n1,..,nk

1
∏

i

ni!

∞
∫

−∞

∑
i ni
∏

j=1

dθj

2π
[

1 + e
εβj (θj)

]

× FO
2l,2n1,..,2nk

(H1, .., Hl, θ1, . . . , θ
∑

i ni
),

(6.22)

where εβj
(θj) is the pseudoenergy of the particle of type βj in the TBA equations of the

model and FO
2l,2n1,..,2nk

is the connected diagonal form factor of the operator O in the theory,

such that ni denotes the number of particles of type βi in the set {θ1, .., θ∑
i ni

}.

Now we can turn to compute the second term in the r.h.s. of (6.16). In this paper we

consider the expectation values of Jµ between pure soliton states. In the SG/MT model

solitons scatter diagonally among themselves. In this respect the pure soliton sector is very

similar to a purely elastic scattering theory. Consequently, we expect a final result similar

to the conjecture (6.19) for the soliton expectation values of Jµ. This is why we will show

that the second term in the right-hand side of (6.16) can be brought into the form of (6.19)

such that our dressed form factors are defined as the coefficients of ρ({H−}|{H+})
ρ(H1,...,Hn)

in the sum.

The expression we want to bring into the form of (6.19) reads as follows:24

〈Jµ(x)〉H
∣

∣

ex
=

mH
∑

k=1

mH
∑

j=1

Gu(Hj) Φ̂
−1
jk (

~H)GKµ(Hk). (6.23)

24The term corresponding to {H+} = ∅ is given by the vacuum contribution (6.17).
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Our sandwiching state is composed of mH -solitons. The key point in the computation is

that the inverse Gaudin-matrix can be expanded in terms of its minors as follows [42, 44].

Φ̂−1
ij =

Cij

det Φ̂
, i, j = 1, ..,mH , (6.24)

where Cij is the co-factor matrix. It is given by:

Cij =











det Φ̂({i}), i = j,
mH−2
∑

n=0

∑

{α}

(−1)n+1 Φ̂iα1 Φ̂α1α2 . . . Φ̂αnj det Φ̂({j, i, α1, . . . , αn}), i 6= j,
(6.25)

where {α} = {1, 2, . . . ,mH} \ {i, j} and Φ̂({I}) denotes the matrix obtained by omitting

from Φ̂ the rows and columns indexed by the set {I}.

First, one has to construct the all order large volume solution25 of (6.4) for A ∈

{u,K0,K1} and to insert (6.24) with (6.25) into (6.23). Then after the careful bookkeeping

of the terms being identical due to appropriate permutations of the variables, one obtains

the following expression for the dressed form factors between soliton states for Jµ:

DJµ({H1, . . . , Hn}) =
∞
∑

n+=0

∞
∑

n−=0

1

n+!n−!

∫ n++n−
∏

i=1

dθi
2π

n+
∏

i=1

F+(θi + i η)

n++n−
∏

i=n++1

F−(θi − i η)

× F
Jµ
c (H1, H2, . . . , Hn, θ1+i η, . . . , θn++i η, θn++1−i η, . . . , θn++n−−i η). (6.26)

Then the expectation value of Jµ between pure soliton states is given by a formula being

completely analogous to (6.19):

〈H1, . . . , HmH
|Jµ(x)|H1, . . . , HmH

〉 =
1

ρ(H1, .., HmH
)

×
∑

{H+}∪{H−}

DJµ({H+}) ρ({H−}|{H+}),
(6.27)

with DJµ({H+}) is given by (6.26). The result (6.26) requires some interpretation in view

of previous results for purely elastic scattering theories [41, 42], which we summarized

in (6.19). If one compares our results (6.27), (6.26) to the purely elastic TBA conjec-

tures (6.19), (6.22), it is easy to recognize that the difference is present only in the actual

form of the dressed form factors. Moreover at leading order in the volume, when the in-

tegral terms in (6.26) and (6.22) can be neglected, in accordance with [43] our formula

agrees with the conjecture for purely elastic scattering theories [47, 48]. The reason for

this might be, that pure soliton states form a purely elastic scattering subsector in the

scattering theory of the SG/MT model. On the other hand, if one takes a look at the

exponentially small in volume corrections, which are given by the integral terms in (6.26)

and (6.22), it becomes obvious that (6.22) cannot describe26 the SG/MT model by sim-

ply substituting the massive pseudoenergy of the TBA equations [45, 46] of the SG-model

25In the actual computations it is convenient to write GA(Hj) → G[±]
A (Hj ∓ i η) and iterate the two-

component equations (6.4).
26The same fact was recognized in [53].
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into (6.22). This is because at the level of exponentially small in volume corrections, the

interactions between solitons and antisolitons will also contribute. Apart from the differ-

ences between (6.26) and (6.22) there is a remarkable similarity, too. Namely both formula

contains the connected diagonal form factors of the operator sandwiched. Though we com-

puted explicitely the diagonal matrix elements of only the components of the U(1) current

of the SG/MT model, based on the remarkable similarity of our result with those obtained

in purely elastic scattering theories [41, 42], we make the following conjecture:

Conjecture. For any local operator O(x) in the SG/MT model the expectation value in

an n-soliton state is given by (6.19), such that the dressed form factors are given by the

formula:

DO({H1, . . . , Hn}) =
∞
∑

n+=0

∞
∑

n−=0

1

n+!n−!

∫ n++n−
∏

i=1

dθi
2π

n+
∏

i=1

F+(θi + i η)

n++n−
∏

i=n++1

F−(θi − i η)

× FO
c (H1, H2, . . . , Hn, θ1+i η, . . . , θn++i η, θn++1−i η, . . . , θn++n−−i η), (6.28)

where FO
c denotes the connected diagonal form factors of O(x) in pure soliton states and

F±(θ) are an appropriate nonlinear expressions (5.4) of the counting function of the con-

tinuum theory.

The further analytical and numerical tests of our conjecture are left for future investi-

gations.

7 Summary and outlook

In this paper we argued that, through the light-cone lattice approach, the QISM admits

an appropriate framework for computing the finite volume form factors of the Massive-

Thirring and sine-Gordon theories. We demonstrated that the QISM works efficiently,

when the diagonal matrix elements of local operators are computed.

Our approach is similar to that of [49, 50], where the finite temperature one-point

functions of all local operators of the sine-Gordon model have been computed, which cor-

responds to finite volume vacuum expectation values in our language. The main difference

between the two approaches is that, the authors of [49, 50] work in a picture, when the

compactified direction is time and the compactification length corresponds to the inverse

temperature, while we work in the other possible channel, when the space is compactified.

This allows us to consider form factors of operators between all possible excited states of

the model. Consequently, our method allows one to extend the results of [49, 50] from

vacuum expectation values to compute diagonal matrix elements of local operators of the

Massive-Thirring/sine-Gordon models. To be more precise our approach works for oper-

ators, which are composed of Fermi fields and their derivatives in the MT model and for

their bosonized counterparts in the SG model.

Nevertheless, in this paper we considered only a simple operator, the U(1) current of

the theory and computed its diagonal matrix elements between pure soliton states. Our

results are given by the formulas (5.2) and (5.11). The computation of an expectation

value consists of three steps:
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1. First one should solve the DDV equation (2.31) for the sandwiching state.

2. Then, one should solve the linear equations (5.2).

3. Finally, the solution of (5.2) should be inserted into (5.11).

The whole procedure can be written in the form of a systematic large volume expan-

sion (6.27), (6.26), in which the diagonal connected form factors of Jµ arise. The remarkable

similarity of the large volume series of Jµ to the large volume series conjectures for diag-

onal matrix elements of local operators in purely elastic scattering theories [38–42] made

us to conjecture, that formulas (6.19) and (6.28) describe the pure solitonic finite volume

expectation values of any local operators of the Massive-Thirring/sine-Gordon models.

Beyond the results of this paper a lot of interesting questions are still open. It would

be important to test the conjecture (6.27) and (6.28) for other operators than Jµ. As it was

demonstrated in [51, 52] the truncated conformal space approach could be an appropriate

method for these investigations. It would be also interesting to know how the large volume

series formulas (6.19), (6.28) and (6.27), (6.26) should be modified, when expectation values

between not pure soliton states are considered. And finally the computation of non-diagonal

finite volume form factors would be also of great importance.

Beyond the spin +1
2 light-cone lattice approach of [3], in the literature there exist other

integrable lattice regularizations for the sine-Gordon model, which are based on spin −1
2

spin chains [16, 54–58]. In the framework of the spin −1
2 lattice approach of [54], local

operators [59, 60] and their form factors [60] have been computed on the lattice, but the

continuum results are still missing. It would be also very interesting to see, whether this

spin −1
2 approach also allows one to compute diagonal matrix elements of local operators

of the continuum theory. Results of [57] could be helpful in relating the results of the two

approaches, since in this paper it has been shown that the continuum equations of the spin

−1
2 regularization can be mapped to those of the spin +1

2 approach.
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A Conventions of Fourier transformation

In this short appendix we summarize our conventions for Fourier-transformation and pro-

vide the Fourier-transform of some functions we used in section 4.1.

Our convention for the Fourier-transform of a function f is given by:

f̃(ω) =

∞
∫

−∞

dx eiωx f(x). (A.1)
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The inverse transformation reads as:

f(x) =

∞
∫

−∞

dx

2π
e−iωx f̃(ω). (A.2)

The Fourier-transform of the convolution two functions f and g is given by the product of

individual Fourier-transforms:

(f ⋆ g)(x) =

∞
∫

−∞

dy f(x− y) g(y), (̃f ⋆ g)(ω) = f̃(ω) g̃(ω). (A.3)

When deriving the linear equations (4.23) one needs the Fourier-transform of K(λ|γ)

of (4.12). It is given by the formula:

K̃(ω|γ) =
sinh

[

πω
2

(

1− 2γ
π

)]

sinh
(

πω
2

) . (A.4)

The following inverse transform played important role at the determination of the source

term in (4.23):

∞
∫

−∞

dx

2π
e−iωλ K̃(ω|γ2 )

1 + K̃(ω|γ)
=

1

2 γ

1

cosh(πλ
γ
)
. (A.5)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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[32] M. Dugave, F. Göhmann, K.K. Kozlowski and J. Suzuki, Thermal form factor approach to

the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive

regime, J. Phys. A 49 (2016) 394001 [arXiv:1605.07968] [INSPIRE].

[33] J.S. Caux, R. Hagemans and J.M. Maillet, Computation of dynamical correlation functions

of Heisenberg chains: the gapless anisotropic regime, J. Stat. Mech. 9 (2005) P09003

[cond-mat/0506698].

[34] J.-S. Caux and J.-M. Maillet, Computation of dynamical correlation functions of Heisenberg

chains in a field, Phys. Rev. Lett. 95 (2005) 077201 [cond-mat/0502365] [INSPIRE].

[35] A.G. Izergin, Partition function of the six-vertex model in a finite volume, Sov. Phys. Dokl.

32 (1987) 878.

[36] N.A. Slavnov, Calculation of scalar products of wave functions and form factors in the

framework of the algebraic Bethe Ansatz, Theor. Math. Phys. 79 (1989) 502.

[37] S.L. Lukyanov and V. Terras, Long distance asymptotics of spin spin correlation functions

for the XXZ spin chain, Nucl. Phys. B 654 (2003) 323 [hep-th/0206093] [INSPIRE].

[38] A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT,

Nucl. Phys. B 552 (1999) 624 [hep-th/9902075] [INSPIRE].

[39] H. Saleur, A Comment on finite temperature correlations in integrable QFT,

Nucl. Phys. B 567 (2000) 602 [hep-th/9909019] [INSPIRE].

[40] B. Pozsgay, Mean values of local operators in highly excited Bethe states,

J. Stat. Mech. 1101 (2011) P01011 [arXiv:1009.4662] [INSPIRE].

[41] B. Pozsgay, Form factor approach to diagonal finite volume matrix elements in Integrable

QFT, JHEP 07 (2013) 157 [arXiv:1305.3373] [INSPIRE].
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