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1 Introduction

Recently it has been demonstrated [1] that any theory of gravity in four asymptotically

flat dimensions has, at tree-level, a Virasoro or “superrotational” symmetry that acts on

the celestial sphere at null infinity. This verified conjectures in [2–6] and follows from the

newly discovered subleading soft graviton theorem [7]. Except for an anomaly arising from

one-loop exact infrared (IR) divergences [8–12], this subleading soft theorem extends to the

full quantum theory. However, the implications of this anomaly for the Virasoro symmetry

of the full quantum theory are not understood, and the exploration of such implications

comprises the subject of the present paper.

There are several open possibilities. One is that the Virasoro action is defined in the

classical but not in the quantum theory. If so, anomalous symmetries still have important

quantum constraints that would be interesting to understand. A second possibility is that

the Virasoro action acts on the full quantum theory, but that the generators and symmetry

action are renormalized at one-loop. This is suggested by the discussion in [13], where it is

pointed out that the very definition of a scattering problem in asymptotically flat gravity

requires an infinite number of exactly conserved charges and associated symmetries, as

well as by [14], which found that the anomaly vanishes with an alternate order of soft

limits. A third possibility is that the implications can only be properly formulated in a

Faddeev-Kulish [15–20] basis of states (constructed for gravity in [21]), in which case all

IR divergences are absent. After all, IR divergences preclude a Fock-basis S-matrix for

quantum gravity and, although we have become accustomed to ignoring this point, it is

hard to discuss symmetries of an object which exists only formally!

In this paper we give evidence which is consistent with, but does not prove, the second

hypothesis, which states that the Virasoro action persists to the full quantum theory but

requires the generators to have a one-loop correction. We use the recent construction

of a 2D energy-momentum tensor Tzz found in [22, 23], where z is a coordinate on the

celestial sphere, in terms of soft graviton modes. The tree-level subleading soft theorem [7]
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implies that insertions of Tzz in the tree-level S-matrix infinitesimally generate a Virasoro

action on the celestial sphere. At one-loop order, the subleading soft theorem has an IR

divergent term with a known universal form. This spoils the Virasoro action generated by

Tzz insertions. However, we show explicitly that the effects of the IR divergent term can

be removed by a certain shift in Tzz that is quadratic in the soft graviton modes. The

possibility that this could be achieved by a simple shift is far from obvious and requires a

number of nontrivial cancellations.

This does not demonstrate that there is a Virasoro action on the full quantum theory

generated by a renormalized energy-momentum tensor, as there may also be an IR finite

one-loop correction to the subleading soft theorem. At present, little is known about

such finite corrections. In all cases which have been analyzed [8, 9], the finite part of the

correction vanishes. Yet, there is no known argument that this should always be the case,

and this remains an open issue for us.

The outline of this paper is as follows. In section two we fix conventions and recall the

construction of the tree-level soft graviton energy-momentum tensor. We then reproduce

the derivation of the one-loop exact IR divergent corrections to the subleading soft graviton

theorem in section three. Finally, this divergence is rewritten in section four in terms of the

formal matrix element of another quadratic soft graviton operator, effectively renormalizing

the tree-level energy-momentum tensor.

2 Tree-level energy-momentum tensor

In this section, we review the derivation of the 2D tree-level energy-momentum tensor

living on the celestial sphere at null infinity [22, 23]. Asymptotic one-particle states are

denoted by |p, s〉, where p is the 4-momentum and s is the helicity, and such states are

normalized so that

〈p′, s′|p, s〉 = (2π)3
(
2p0
)
δss′δ

(3)(~p− ~p′) . (2.1)

An n-particle S-matrix element is denoted by

Mn ≡ 〈out|S|in〉 , (2.2)

where |in〉 ≡ |p1, s1; · · · ; pm, sm〉 and 〈out| ≡ 〈pm+1, sm+1; · · · ; pn, sn|. Consider the ampli-

tude

M±n+1(q) ≡ 〈out; q,±2|S|in〉 , (2.3)

consisting of n external hard particles along with an additional external graviton that has

momentum pn+1 ≡ q, energy p0
n+1 ≡ ω, and polarization ε±µν . Denoting the same amplitude

without the extra external graviton asMn, the tree-level soft graviton theorem states that

lim
ω→0
M±n+1(q) =

[
S(0)±
n + S(1)±

n +O(q)
]
Mn , (2.4)

where the leading and subleading soft factors are given by

S(0)±
n =

κ

2

n∑
k=1

pµkp
ν
kε
±
µν(q)

pk · q
, S(1)±

n = − iκ
2

n∑
k=1

ε±µν(q)pµkqλ

pk · q
J λνk , (2.5)
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respectively. Here, κ ≡
√

32πG is the gravitational coupling constant, and J λνk is the total

angular momentum operator for the kth particle.

Asymptotically flat metrics in Bondi gauge take the form

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 +DzCzzdudz +Dz̄Cz̄z̄dudz̄ + · · · .

(2.6)

Here, γzz̄ ≡ 2
(1+zz̄)2 is the round metric on the S2 and Dz is the associated covariant

derivative. The coordinates (u, r, z, z̄) are asymptotically related to the standard Cartesian

coordinates according to

x0 = u+ r , xi = rx̂i(z, z̄) , x̂i(z, z̄) =
1

1 + zz̄
(z + z̄,−i(z − z̄), 1− zz̄) . (2.7)

A massless particle with momentum pk crosses the celestial sphere at a point (zk, z̄k). In

the helicity basis, the particle momentum and polarization can be parameterized by an

energy ωk and this crossing point. It follows from (2.7) that

pµk =ωk

(
1,
zk+z̄k
1+zkz̄k

,
−i(zk−z̄k)

1+zkz̄k
,
1−zkz̄k
1+zkz̄k

)
, k= 1, · · · ,n ,

ε+
µ (pk) =

1√
2

(−z̄k,1,−i,−z̄k) , ε−µ (pk) =
1√
2

(−zk,1, i,−zk) ,

qµ(z) =ω

(
1,
z+z̄

1+zz̄
,
−i(z−z̄)

1+zz̄
,
1−zz̄
1+zz̄

)
≡ωq̂µ(z) ,

ε+
µ (q) =

1√
2

(−z̄,1,−i,−z̄) , ε−µ (q) =
1√
2

(−z,1, i,−z) ,

(2.8)

where the soft graviton polarization tensor is taken to be ε±µν = ε±µ ε
±
ν .

Now, the perturbative fluctuations of the gravitational field have a mode expansion

given by

hout
µν

(
x0, ~x

)
=
∑
α=±

∫
d3q

(2π)3

1

2ωq

[
ε̄αµν(q)aout

α (~q)eiq·x + εαµν(q)aout
α (~q)†e−iq·x

]
, (2.9)

where aout
α (~q)† and aout

α (~q) are the standard creation and annihilation operators for gravi-

tons obeying the commutation relations[
aout
α (~p), aout

β (~q)†
]

= (2π)3 (2ω)δαβδ
(3) (~p− ~q ) . (2.10)

The transverse components of the metric fluctuations near I +are given by

Cz̄z̄(u, z, z̄) ≡ κ lim
r→∞

1

r
∂z̄x

µ∂z̄x
νhout

µν

(
u+ r, rx̂(z, z̄)

)
. (2.11)

The large-r saddle-point approximation yields

Cz̄z̄(u, z, z̄) = − iκ

8π2
ε̂z̄z̄

∫ ∞
0

dωq

[
aout
−
(
ωqx̂

)
e−iωqu − aout

+ (ωqx̂
)†
eiωqu

]
, (2.12)
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where

ε̂z̄z̄ =
1

r2
∂z̄x

µ∂z̄x
νε+
µν(q) =

2

(1 + zz̄)2
. (2.13)

Note that (2.12) is an intuitively plausible result since it states that the graviton field

operator at a point (z, z̄) on the celestial sphere has an expansion in plane wave modes

whose momenta are aimed towards that point.

The Bondi news tensor Nzz = ∂uCzz has Fourier components

Nω
zz ≡

∫
dueiωuNzz , Nω

z̄z̄ ≡
∫
dueiωuNz̄z̄ . (2.14)

The zero mode of the news tensor is defined by

N
(0)
z̄z̄ ≡

1

2
lim
ω→0

(
Nω
z̄z̄ +N−ωz̄z̄

)
= − κ

8π
ε̂z̄z̄ lim

ω→0

[
ωaout
−
(
ωx̂
)

+ ωaout
+

(
ωx̂
)†]

. (2.15)

Similarly, the first zero energy moment of the news is defined by

N
(1)
z̄z̄ ≡ −

i

2
lim
ω→0

∂ω
(
Nω
z̄z̄ −N−ωz̄z̄

)
=
iκ

8π
ε̂z̄z̄ lim

ω→0

(
1 + ω∂ω

) [
aout
−
(
ωx̂
)
− aout

+

(
ωx̂
)†]

. (2.16)

All of these quantities have nonvanishing S-matrix insertions even as ω → 0. The operator

N
(0)
z̄z̄ projects onto the leading Weinberg pole in the soft graviton theorem [24], so its matrix

elements are tree-level exact and are given by

〈 out |N (0)
z̄z̄ S| in 〉 = − κ

8π
ε̂z̄z̄ lim

ω→0
ωS(0)−

n 〈 out |S| in 〉 , (2.17)

where

S(0)−
n = − κ

2ω
(1 + zz̄)

n∑
k=1

ωk(z − zk)
(z̄ − z̄k)(1 + zkz̄k)

. (2.18)

In a similar fashion, N
(1)
z̄z̄ projects onto the subleading O(1) term in the soft graviton

theorem. At tree-level, its matrix elements are given by

〈 out |N (1)
z̄z̄ S| in 〉 =

iκ

8π
ε̂z̄z̄S

(1)−
n 〈 out |S| in 〉 , (2.19)

where

S(1)−
n =

κ

2

n∑
k=1

(z − zk)2

z̄ − z̄k

[
2hk
z − zk

− Γzkzkzkhk − ∂zk + |sk|Ωzk

]
. (2.20)

In this expression, Γzzz is the connection on the asymptotic S2, hk and h̄k are the conformal

weights given by

hk ≡
1

2
(sk − ωk∂ωk

) , h̄k ≡
1

2
(−sk − ωk∂ωk

) , (2.21)

and Ωz is the corresponding spin connection.1 As was demonstrated in [22], (2.19) implies

that insertions of the operator

Tzz ≡
4i

κ2

∫
d2w

γww̄

z − w
D3
wN

(1)
w̄w̄ (2.22)

1The zweibein is
(
e+, e−

)
=
√

2γzz̄
(
dz, dz̄

)
and Ω±± = ± 1

2

(
Γz
zzdz − Γz̄

z̄z̄dz̄
)
.

– 4 –



J
H
E
P
0
8
(
2
0
1
7
)
0
5
0

into the tree-level S-matrix reproduce the Ward identity for a 2D conformal field theory:

〈out|TzzS|in〉 =

n∑
k=1

[
hk

(z − zk)2
+

hk
z − zk

Γzkzkzk +
1

z − zk
(∂zk − |sk|Ωzk)

]
〈out|S|in〉 . (2.23)

3 One-loop correction to the subleading soft graviton theorem

The matrix element (2.17) is exact because the leading Weinberg pole in the soft graviton

expansion is uncorrected. On the other hand, the subleading theorem which governs the

O(1) terms in the soft graviton expansion does have quantum corrections that modify the

matrix element (2.19) [8]. These corrections are known to be one-loop exact, and arise from

IR divergences in soft exchanges between external lines. Indeed, they must be present in

order to cancel (within suitable inclusive cross-sections) IR divergences that arise from the

Weinberg pole. The divergent part of this one-loop correction was derived in [8], which we

will now review.

The loop expansion of the n-particle scattering amplitude is

Mn =
∞∑
`=0

M(`)
n κ2` , (3.1)

where we factored out the κ2 term that comes along with each additional loop.2 In dimen-

sional regularization with d = 4 − ε, the divergent part of the one-loop n-point graviton

scattering amplitude is universally related to the tree amplitude according to [25, 26]

M(1)
n

∣∣∣
div

=
σn
ε
M(0)

n , (3.2)

with

σn ≡ −
1

4(4π)2

n∑
i,j=1

(pi · pj) log
µ2

−2pi · pj
. (3.3)

The O
(
ε−1
)

singularity is due exclusively to IR divergences because pure gravity is on-shell

one-loop finite in the UV and has no collinear divergences. Using (3.2) and applying the

tree-level soft theorem involving a negative-helicity soft graviton, we obtain

M(1)−
n+1 (q)

∣∣∣
div

q→0−−−→ σn+1

ε

(
S(0)−
n + S(1)−

n

)
M(0)

n . (3.4)

We would like to expand the above equation in powers of the soft energy ω. To proceed,

we separate σn+1 into two terms, one with the soft graviton momentum q and one without:

σn+1 = σn + σ′n+1 , σ′n+1 ≡ −
1

2(4π)2

n∑
i=1

(pi · q) log
µ2

−2pi · q
. (3.5)

2In addition, there is a factor of κn−2 in each M(`)
n due to the n external lines.
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Note that σ′n+1 = O(ω) as the logω term vanishes by momentum conservation, while

σn = O
(
ω0
)
. We then find, up to O

(
ω0
)
,

M(1)−
n+1

∣∣∣
div

q→0−−−→
(
S(0)−
n + S(1)−

n

)
M(1)

n

∣∣∣
div

+
σ′n+1

ε
S(0)−
n M(0)

n −
1

ε

(
S(1)−
n σn

)
M(0)

n , (3.6)

where S
(1)−
n in the last term acts only on the scalar σn. The anomalous term consists of the

last two terms on the right-hand-side of the above equation and is O
(
ω0
)
. It is a universal

correction to the subleading soft theorem from IR divergences.

Thus far, we have been focusing on the IR divergent part of the one-loop amplitude.

However, the one-loop amplitude also has a finite piece:

M(1)
n = M(1)

n

∣∣∣
div

+ M(1)
n

∣∣∣
fin
. (3.7)

It is expected from [8] that

M(1)−
n+1

∣∣∣
fin

q→0−−−→
(
S(0)−
n + S(1)−

n

)
M(1)

n

∣∣∣
fin

+ ∆finS
(1)−
n M(0)

n , (3.8)

where ∆finS
(1)−
n is the one-loop finite correction to the negative-helicity subleading soft

factor S
(1)−
n . Given that the subleading soft graviton theorem is one-loop exact [8], it

follows that the all-loop soft graviton theorem is

M−n+1
q→0−−−→

[
S(0)−
n + S(1)−

n + κ2

(
σ′n+1

ε
S(0)−
n − 1

ε

(
S(1)−
n σn

)
+ ∆finS

(1)−
n

)]
Mn , (3.9)

where the terms in square brackets proportional to κ2 are the IR divergent and finite parts

of the anomaly.

Little appears to be currently known about ∆finS
(1)−
n . In all explicitly checked cases,

including all identical helicity amplitudes and certain low-point single negative-helicity

amplitudes, it was demonstrated that there are no IR finite corrections to the subleading

soft graviton theorem [8, 9], implying ∆finS
(1)−
n = 0 for these cases. Nevertheless, we are

unaware of any argument indicating that this term always vanishes, or on the contrary that

its form is universal. In the absence of such information, we will restrict our consideration

to the universal divergent correction given in (3.6).

4 One-loop correction to the energy-momentum tensor

The one-loop corrections (3.9) to the subleading soft factor are expected to result in cor-

rections to the tree-level Virasoro-Ward identity (2.23). In this section, we show that this

is indeed the case. Moreover, we find that the effects of the universal divergent correction

in (3.6) can be eliminated by a corresponding one-loop correction to the energy-momentum

tensor. That is, whenever we have ∆finS
(1)−
n = 0, the shifted energy-momentum tensor

obeys the unshifted Virasoro-Ward identity (2.23).

The tree-level matrix elements of the operator N
(1)
z̄z̄ are given by (2.19). At one-loop

level, the matrix elements acquire a divergent correction of the form

〈out|N (1)
z̄z̄ S|in〉

∣∣∣
div

=
iκ3

8π
ε̂z̄z̄ lim

ω→0

(
1+ω∂ω

)(σ′n+1

ε
S(0)−
n − 1

ε

(
S(1)−
n σn

))
〈out|S|in〉 . (4.1)
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It immediately follows from (2.22) that the IR divergent one-loop correction to the Tzz
Ward identity is given by

〈out|∆TzzS|in〉

= − κ

2πε

∫
d2w

γww̄

z − w
D3
w

[
ε̂w̄w̄ lim

ω→0
(1 + ω∂ω)

(
σ′n+1S

(0)−
n − (S(1)−

n σn)
)]
〈out|S|in〉 ,

(4.2)

where

〈out|TzzS|in〉|div ≡ 〈out|∆TzzS|in〉 . (4.3)

It is far from obvious, but nevertheless possible, to rewrite this in terms of the zero modes

of the Bondi news. This computation is done explicitly in appendix A, and we find that

∆Tzz can be expressed as

∆Tzz = − 2

πκ2ε

∫
d2w

γww̄

z − w

(
2N (0)

wwDwN
(0)
w̄w̄ +Dw

(
N (0)
wwN

(0)
w̄w̄

))
. (4.4)

Hence, the shifted energy-momentum tensor, given by

T̃zz = Tzz −∆Tzz , (4.5)

obeys the unshifted Ward identity

〈out|T̃zzS|in〉 =
n∑
k=1

[
hk

(z − zk)2
+

hk
z − zk

Γzkzkzk +
1

z − zk
(∂zk − |sk|Ωzk)

]
〈out|S|in〉 (4.6)

to all orders, whenever ∆finS
(1)−
n = 0.

This result seems interesting for a number of reasons. First of all, note that while the

renormalized soft factor contains logarithms and explicit dependence on the renormalization

scale, such terms do not appear in the anomalous contribution to the energy-momentum

tensor. Furthermore, the fact that the divergence takes the form of a matrix element

involving only the local operators N
(0)
ww(w) and N

(0)
w̄w̄(w) allows us to perform an “IR renor-

malization” of the operator Tzz by subtracting away the divergent operator. The form of

the divergence, when rewritten in terms of the soft graviton operators, is reminiscent of

the forward limit of a scattering amplitude. However, it remains to be seen whether or not

there are finite corrections to the Ward identity (4.6) and, if so, whether or not they can

be eliminated by a further finite shift of the energy-momentum tensor.

A IR divergence of one-loop Tzz correction

In this appendix, we explicitly compute the matrix elements of ∆Tzz given in (4.2) by

〈out|∆TzzS|in〉

= − κ

2πε

∫
d2w

γww̄

z − w
D3
w

[
ε̂w̄w̄ lim

ω→0
(1 + ω∂ω)

(
σ′n+1S

(0)−
n − (S(1)−

n σn)
)]
〈out|S|in〉 .

(A.1)

– 7 –
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For completeness, we recall the expressions for the leading and subleading tree-level soft

factors:

S(0)±
n =

κ

2

n∑
k=1

pµkp
ν
kε
±
µν(q)

pk · q
, S(1)±

n = − iκ
2

n∑
k=1

ε±µν(q)pµkqλ

pk · q
J λνk . (A.2)

Since S
(1)−
n acts on a scalar in (A.1), the action of Jkµν is given by

Jkµνσn = −i
[
pkµ

∂

∂pνk
− pkν

∂

∂pµk

]
σn . (A.3)

Using (A.2), (A.3), and momentum conservation, it follows that

∆divS
(1)−
n ≡ 1

ε

[
σ′n+1S

(0)−
n −

(
S(1)−
n σn

)]
=

κ

4(4π)2ε

n∑
i,j=1

[
(pi · ε−)2

pi · q
(pj · q) log

pj · q
pi · pj

− (pi · ε−)(pj · ε−) log
µ2

−2pi · pj

]
.

(A.4)

Momentum conservation implies that (A.4) is independent of both the soft energy ω and

the renormalization scale µ. It follows that (A.1) becomes

〈out|∆TzzS|in〉 = − κ

2π

∫
d2w

γww̄

z − w
D3
w

(
ε̂w̄w̄∆divS

(1)−
n

)
〈out|S|in〉 . (A.5)

Before proceeding, it is useful to define the quantity

ε̂w̄ ≡ ∂w̄x̂i(w)ε+
i (q(w)) =

√
2

1 + ww̄
, (A.6)

so that ε̂w̄w̄ = ε̂w̄ε̂w̄. It is then straightforward to show that

D2
w

(
ε̂w̄ε

−) = 0 ,

D2
wq = 0 ,

Dw̄Dw

(
ε̂w̄w̄

(pi · ε−)2

pi · q̂

)
= −2πωiδ

(2)(w − zi) ,

(A.7)

where qµ = ωq̂µ. Using the first of the above identities, we have

D3
w

(
ε̂w̄w̄(pi · ε−)(pj · ε−) log

µ2

−2pi · pj

)
= 0 , (A.8)

which implies

D3
w

(
ε̂w̄w̄∆divS

(1)−
n

)
=

κ

4(4π)2ε

n∑
i,j

D3
w

(
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · q) log

pj · q
pi · pj

)
. (A.9)

To evaluate this, we distribute the covariant derivatives via the product rule and first

compute the term

n∑
i,j=1

D3
w

(
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · q)

)
log

pj · q
pi · pj

= −2πγww̄

n∑
i,j=1

ωi

[
(pj · q̂)Dwδ

(2)(w − zi) + 3(pj · ∂wq̂)δ(2)(w − zi)
]

log
pj · q̂
pj · p̂i

,

(A.10)

– 8 –



J
H
E
P
0
8
(
2
0
1
7
)
0
5
0

where we have used the last two identities of (A.7) along with momentum conservation.

Similarly, using (A.7) and momentum conservation, we find

3
n∑

i,j=1

Dw

[
Dw

(
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · q)

)
Dw

(
log

pj · q
pi · pj

)]

= 3
n∑

i,j=1

Dw

[
ε̂w̄w̄

(pi · ε−)2

pi · q
(pj · ∂wq)2

pj · q

]
, (A.11)

and

n∑
i,j=1

ε̂w̄w̄
(pi · ε−)2

pi · q
(pj · q)D3

w

(
log

pj · q
pi · pj

)
=

n∑
i,j=1

ε̂w̄w̄
(pi · ε−)2

pi · q
2

(pj · q)2
(pj · ∂wq)3 . (A.12)

Finally, using momentum conservation and the relationship between the soft momenta and

polarization vectors [23]

ε+
µ = ∂w

(
1

√
γww̄

q̂µ

)
, (A.13)

we find
n∑
j=1

(pj · ∂wq̂)2

pj · q̂
=

n∑
j=1

ε̂ww
(pj · ε+)2

pj · q̂
. (A.14)

Substituting (A.10), (A.11), and (A.12) into (A.9), and then using (2.17) along with (A.14),

we find

〈out|∆TzzS|in〉 = − 2

πκ2ε

∫
d2w

γww̄

z − w

〈
out
∣∣∣ [−2N

(0)
w̄w̄DwN

(0)
ww + 3Dw

(
N (0)
wwN

(0)
w̄w̄

)]
S
∣∣∣in〉

= − 2

πκ2ε

∫
d2w

γww̄

z − w

〈
out
∣∣∣ [2N (0)

wwDwN
(0)
w̄w̄ +Dw

(
N (0)
wwN

(0)
w̄w̄

)]
S
∣∣∣in〉 ,

(A.15)

which is precisely (4.4).
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