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1 Introduction

It is expected that not all consistent Quantum Field Theories (QFTs) can arise as effec-

tive theories of ultraviolet physics which includes quantum gravity. Understanding the

precise nature of the constraints on QFTs is both theoretically interesting and can have

implications for phenomenological model building.

One such quantitative constraint is the Weak Gravity Conjecture (WGC) [1]. It states

that in a theory with a U(1) gauge symmetry, with gauge coupling g, there must exist a

state of charge q and mass m which satisfies the inequality

gqMp ≥ m. (1.1)

For this particular state gravity acts equally or more weakly than the U(1) force. The WGC,

and various modifications of it, have been studied intensively, see [2–24] for the most recent

results. The bound (1.1) was motivated in [1] by the requirement that extremal black holes

should be able to decay. It was also motivated through the statement that the particle

with the largest charge to mass ratio should not form gravitationally bound states. Such

states would be stable against decay by charge and energy conservation. It was argued

in [1] (see also [2]) that such a tower of stable states would be problematic for quantum
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gravity. The absence of such stable gravitationally bound states will play an important

role in our analysis.

While the decay of extremal black holes and no stable gravitationally bound states

are general principles, the formulation (1.1) is an application of them to simple Reissner-

Nordstrom (RN) black holes where only gravity and gauge fields play a role. In this paper

we will be interested in how the WGC is modified when scalar fields are present. We will

consider the most general (two-derivative) action of massless bosonic fields

L (−g)−
1

2 =
R

2
− gij (t) ∂µt

i∂µtj + IIJ (t)FI
µνFJ,µν +RIJ (t)FI

µν (⋆F)J,µν , (1.2)

with scalar fields ti and gauge fields AI , and propose the general formulation of the Weak

Gravity Conjecture for this. We first formulate it in anN = 2 supergravity context through

properties of extremal black holes, but propose that it generalises and can be understood as

the general statement forbidding stable gravitationally bound states. In short, it amounts

to the statement that there must exist a state on which the gauge force should be stronger

than gravity and the forces mediated by the scalar fields combined.

Another conjecture, termed the Refined Swampland Conjecture (RSC) [25, 26], states

that once a scalar field varies over a super-Planckian distance ∆φ ≥ Mp there is an infinite

tower of states, with mass scale m, whose mass decreases exponentially fast as a function

of the scalar field variation

m (φ+∆φ) ≤ m (φ) e
−α∆φ

Mp , (1.3)

where α is a constant which is determined by the choice of direction of the variation in

field space. The conjecture is based on an earlier weaker statement in [27] about infinite

distances in moduli space which we term the Swampland Conjecture, and is supported

primarily by evidence from string theory [25, 27–29].1 In [26] a general argument for the

RSC applied to fields which appear in a gauge coupling of a U(1) was presented based

on black hole physics. Nonetheless, the RSC has not yet been understood in terms of a

general principle in the same sense as the WGC.

In [25] it was pointed out that there exists a simple relation between field variations

and the RSC on one hand and the WGC on the other which arises in the presence of super-

symmetry. Its simplest formulation utilises the WGC applied to axions, rather than gauge

fields, combined with N = 1 supersymmetry. The WGC as applied to axions states that

fS ≤ Mp, where f is the axion decay constant and S is the action of the instanton coupling

to the axion. In the presence of supersymmetry both of these quantities are related to prop-

erties of the axion scalar superpartner, the saxion denoted t, so that the inequality can be

written as
√
gttt ≤ Mp. Here gtt is the metric on the single saxion field space. This implies

that for t ≥ Mp the proper field distance, as measured by the canonically normalised field,

grows at best logarithmically with t. The logarithmic growth is further tied to the exponen-

tial behaviour of the RSC (1.3) if the mass of the tower of states behaved as a power law in t.

1There are a number of papers studying closely related questions regarding super-Planckian variations

in string theory, see [15, 30–32] for the most recent work.
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In this paper we generalise this simple argument and show that indeed the WCG and

the RSC are, at least for certain scalar fields, in some sense superpartners. We consider the

framework of N = 2 supergravity and show that the same N = 2 identity which leads to

the general expression of the WGC also leads to a bound on the growth of proper distances

in field space. As an application, this will allow us to prove that any linear combination of

geometric moduli fields in Calabi-Yau or Calabi-Yau orientifold compactifications of string

theory has a proper field distance which grows at best logarithmically at super-Planckian

values. We also further identify a tower of states which becomes exponentially light as a

result of this logarithmic behaviour, providing new evidence for the RSC.

Within the N = 2 supergravity framework we also show that there must exist states

on which the scalar field forces themselves act stronger than gravity. We consider the possi-

bility that this is a general statement relating to bound states, but find that the arguments

for this require further work to establish clearly. We show that requiring the scalar force to

act stronger than gravity suggests that the WGC states depend exponentially on the scalar

fields for super-Planckian scalar field variations, which is the statement of the RSC. Ap-

plying it to axionic fields leads to evidence that the WGC state is part of an infinite tower.

2 The weak gravity conjecture with scalar fields

In this section we propose a generalisation of the WGC to the case when scalar fields are

present. Since the WGC is tied to extremal black holes, to first build up the intuition we

need to consider a large class of black holes in the presence of scalar fields. We do this

in the context of N = 2 supergravity where the framework of extremal black holes is well

understood. We then propose a generalisation of the WGC, independent of supersymmetry,

inspired by the black hole physics.

2.1 N = 2 extremal black holes and the weak gravity conjecture

Extremal black hole solutions ofN = 2 supergravity have been extensively studied. See [33]

for a review. The action takes the form

(−g)−
1

2 L =
R

2
− gij∂µz

i∂µzj + IIJFI
µνFJ,µν +RIJFI

µν (⋆F)J,µν . (2.1)

Here R denotes the Ricci scalar and we set Mp = 1. The FI are the electric field strengths

of U(1) fields and the magnetic field strengths GI are defined as

GI = − δL
δFI

= RIJFJ − IIJ ⋆ FJ , (2.2)

where ⋆ denotes the Hodge star. The zi are complex scalar fields, with field space metric

gij , which have components

zi = bi + iti . (2.3)

The indices are ranged such that I = 0, . . . , nV , and i = 1, . . . , nV , where nV is the number

of vector multiplets. The geometric structure on the field space is determined through

the periods
{

XI , FI

}

which are holomorphic functions of the scalar fields zi. These are
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related through a symplectic matrix FI = NIJX
J , which by supersymmetry determines

IIJ = Im [NIJ ] and RIJ = Re [NIJ ]. The Kahler potential for the scalar field-space metric

takes the form

K = − ln i
(

X
I
FI −XIF I

)

. (2.4)

In certain cases it is possible to go to special coordinates XI =
{

1, zi
}

. In those cases

the periods are also determined in terms of a prepotential F through FI = ∂XIF , and the

general expression for the symplectic matrix takes the form

NIJ = F IJ + 2i
ImFIKImFJLX

KXL

ImFMNXMXN
, (2.5)

where FIJ = ∂IFJ .

It is useful to introduce

M ≡
(

I +RI−1R −RI−1

−I−1R I−1

)

, Q ≡
(

pI

qI

)

. (2.6)

and the notation

Q2 ≡ −1

2
QTMQ , QQ′ ≡ −1

2
QTMQ′ . (2.7)

There is an identity which will play a central role in our analysis [34]2

Q2 = |Z|2 + gijDiZDjZ . (2.8)

Here qI and pI are arbitrary constants, Z is the central charge

Z = e
K
2

(

qIX
I − pIFI

)

. (2.9)

The covariant derivative acts as

Diψ
j = ∂ziψ

j + Γj
ikψ

k +
p

2
(∂ziK)ψj , (2.10)

on an object ψj with Kahler weight p (Z has weight 1).

We are interested in black hole solutions to the action (2.1). The black hole electric

and magnetic charges
(

QI , P I
)

, as defined through the integration over a sphere at infinity,

1

4π

∫

S∞

F I = P I ,
1

4π

∫

S∞

⋆F I = QI , (2.11)

are related to quantised symplectic charges
(

qI , p
I
)

through

(

P I

QI

)

=

(

pI
(

I−1 · R · p
)I −

(

I−1 · q
)I

)

. (2.12)

2From the perspective of string theory there is an intuitive way to understand this structure within the

context of flux compactifications of type II string theories on Calabi-Yau manifolds. For example, in type

IIB both the U(1) field strengths and three-form NS fluxes arise from reduction on three-cycles. The right

hand side of (2.8) can then be understood as the N = 1 formula for the flux induced scalar potential in

terms of the superpotential. The important point is that the Kahler moduli and dilaton do not appear in

the superpotential and therefore obey a no-scale type relation such that their F-terms are equal to 4 |Z|2.
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The N = 2 supersymmetric extremal black hole solutions with charges
(

qI , p
I
)

have an

ADM mass given by the central charge

MADM = |Z|∞ . (2.13)

The subscript ∞ denotes the evaluation of the fields at their values at spatial infinity. We

will often drop this index leaving this implicit when the setting is sufficiently clear.

The WGC as stated in (1.1) arises from RN black holes which, in the electric case,

satisfy g2q2 = M2
ADM. We would like to write a generalisation of this for general N = 2

extremal black holes. To do this we must construct a field reparametrisation invariant

quantity. Using (2.13) and (2.8) leads to the natural generalisation

Q2 = M2
ADM + gijDiZDjZ . (2.14)

The attractor mechanism states that the values of the scalar fields on the horizon of an

extremal black hole are fixed in terms of the black hole charges as DiZ = 0. There are

therefore two types of extremal black holes. The first are where the scalar field values at

infinity differ from those on the black hole horizon so that there is a scalar field spatial

gradient. The second type, denoted double extremal black holes [35], are where the values

at infinity are equal to those on the horizon and the scalar fields have a constant spatial

profile. Such double extremal black holes therefore maximise the ADM mass of the black

hole relative to its charge at infinity.

It is informative to rewrite (2.14) as

Q2 = M2
ADM + 4gij∂iMADM∂jMADM . (2.15)

Here, since we have derivatives acting on MADM, we should think of it as the mass as a

function of the moduli zi, rather than just in the vacuum.

We would now like to follow the logic that particles should exist for the black hole to

be able to decay. This can be applied in the case of N = 2 supergravity, but the presence of

extended supersymmetry means that the black hole decay properties are highly restricted.

The supersymmetric black holes are BPS states and this means that they are at best

marginally stable, and sometimes only over special loci in field space termed curves of

marginal stability. When they do decay, it can only be to other BPS states.

The last term of (2.15) is positive definite. Therefore, for these extremal black holes

to be able to decay we can impose that there must exist a particle with mass m such that

Q2 ≥ m2. However, if the last term in (2.15) is non-vanishing we find a stronger constraint

that the particle must be strictly super-extremal. Indeed, since the particle must itself be

a BPS state, its mass is given by the central charge and therefore it satisfies

Q2 ≥ m2 + 4gij∂im∂jm. (2.16)

In fact, since it is BPS, the inequality in (2.16) is saturated. However, in the next section

we will utilise it as an inequality for more general, and possibly non-supersymmetric, cases.
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2.2 Generalisation to non-supersymmetric theories

It is interesting to consider if an analogous bound to (2.15) holds for black holes which are

only half-BPS or even not supersymmetric at all. It is possible to write for any extremal

black hole a black hole scalar potential which is the gauge kinetic terms as a function of

the scalar fields. This is precisely Q2 appearing in (2.14). If this scalar potential can be

written as

VBH = Q2 = W2 + 4gij∂iW∂jW , (2.17)

where W is a real function, termed the ‘fake superpotential’, then the ADM mass is given

by MADM = W|∞ and on the horizon the fields solve ∂iW = 0 [37, 38]. This is suggestive

that the bound (2.15) is tied to extremality rather than supersymmetry.

Even if (2.15) holds generally, it does not imply (2.16), at least not utilising only charge

and energy conservation. The requirement for decay can be stated as the existence of a

particle with a larger charge to mass ratio than the black hole. This can be written as

( Q2
BH

M2
ADM

)

= 1 + 4gij∂i lnMADM ∂̄j lnMADM ≤
(Q2

Particle

m2

)

. (2.18)

Here Q2
BH and Q2

Particle are the relevant expressions for the black hole and the particle,

with respective masses MADM and m. While the particle is required to be super extremal,

the particular expression (2.16) would require a replacement of MADM with m in (2.18).

It is natural to expect that the charge to mass relation for the particle should indeed only

involve m and not MADM , and that it should form a field reparametrisation invariant

quantity, which motivates a form (2.16). Further, as we change the values of the scalar

fields at infinity MADM also changes, and in order for the particle to maintain a decay

channel its mass needs to also change appropriately. This relation between the functional

field dependence of the black hole and the particle can motivate a relation between (2.18)

and (2.16). However, in the absence of N = 2 supersymmetry, it is unclear how to make a

sharp general argument for (2.16), rather than (2.18), using black hole decay.

To further motivate a general statement we can consider the physics captured by (2.15)

and (2.16). The inequality (2.16) can be phrased as the statement that the U(1) force

between two WGC states acts at least as strongly as the gravitational and scalar forces

combined. This can be seen by noting that the last term in (2.16) is the force due to the

exchange of the scalar fields zi induced by the cubic coupling of these fields to two WGC

states from the mass term.3 The scalar contribution can be simply calculated in the usual

way as the potential induced through the exchange diagram of the zi. The gauge force

contribution Q2 is substantially more complicated than the simple case gq in (1.1), but

this is due to it being a general expression for dyonic objects and in the background of

a non-vanishing θ-angle matrix RIJ . For BPS states the inequality becomes an equality

which is the expression of the no-force condition.

3Note that in going from the cubic coupling in the Lagrangian to the classical force coupling there is a

factor of two times the mass of the external states due to the change from relativistic to non-relativistic

wavefunction normalisation.
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In the context of the WGC this can be understood as a generalisation of the statement

that gravity is the weakest force. It amounts to forbidding gravitationally bound states of

the WGC states. Such states will be stable if the WGC states are those with the smallest

mass to charge ratio. The existence of such a tower of stable states was argued to be

problematic in [1] and [2]. The requirement of the absence of such bound states will play

a central role in our analysis, however, we will not focus on justifying this requirement as

a property of quantum gravity, but will assume it and study its consequences. The scalar

field contribution is positive definite on the side of gravity. This is because the scalar force

between equal charged particles is attractive. The positivity of the sum over all the scalar

forces is then ensured by the fact that the field space metric gij must be positive definite.

Therefore, we see that the absence of a bound state means that the gauge field repulsion

must overcome both the gravitational and scalar field attraction.

Given this general understanding we can formulate the conjecture more generally.

Consider a theory with gauge kinetic matrices IIJ and RIJ , and massless real scalar fields

ti with field space metric gij as in (1.2). There need not be any relation, including the index

ranges, between the gauge kinetic matrices and the field space metric. The conjecture is

then that there must exist a particle, with mass m, satisfying a bound

Q2 ≥ m2 + gijµiµj . (2.19)

Here µi are the (non-relativisitic) couplings of the WGC state to one ti. If we write the

mass as a function of the fields ti then

µi = ∂tim. (2.20)

The inequality (2.19) ensures that there are no gravitationally bound states of the particle.

The existence of a particle satisfying (2.19) is motivated by considering the particle with

the smallest mass to charge ratio in which case a gravitationally bound state is stable.

There are stronger versions of the WGC which state that the particle may satisfy other

criteria. For example, that it should hold for the particle of minimal charge [1], and the

generalisation of this that it should hold for an infinite tower of particles which is the

Lattice WGC [11, 17]. In string theory it appears that both of these are true, and it is

certainly conceivable that (2.19) should indeed hold for these stronger constraints on the

properties of the particles.

A natural question which arises is whether we should take (2.19) to hold over all of

the scalar field space or only certain loci? We can utilise the N = 2 setting to gain some

intuition. A BPS black hole can only decay over loci of marginal stability. If the charges

of the black hole are relatively prime then this is a strict sub-locus of the full field space.

This suggests that perhaps we should impose (2.19) only over sub-loci of the field space.

However, the BPS nature of the states that the black hole decays to ensures that they satisfy

an equality version of (2.19) over all field space. Therefore, it natural to expect that (2.19)

should be taken to hold over all of field space, but that this does not necessarily mean that

the extremal black hole can decay to the particle at all points in field space. A more refined

conclusion can be reached by thinking about the existence of stable gravitationally bound
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states. The particle with the largest charge to mass ratio should not form a gravitationally

bound state since it would be stable. As we move around field space it could happen that

a different particle becomes the one with the largest charge to mass ratio. Then now we

can allow for gravitationally bound states of the original particle since they could decay

to the new particle. Therefore, the natural conclusion is to impose that at any point in

field space there is one state which satisfies (2.19) but that this may not be the same state

over all of field space. In the presence of multiple gauge fields it is natural to expect that

the transition between WGC states should correspond to loci of marginal stability. In our

analysis we will assume that indeed (2.19) should hold for at least one state at any point in

field space, but note that in terms of requiring black hole decay there is a possibility that

it should only hold over sub-loci of field space. It is also worth noting that in any single

direction in charge space the loci of marginal stability are just the whole field space, since

the charges are not relatively prime, and so these subtleties do not play a role.

The minimal requirement, in the presence of N U(1)s, is that the relation (2.19) should

apply to N particles with charge vectors spanning an N -dimensional space. In the absence

of scalar fields, the charge (over mass) vectors needed to be such that their convex hull

includes the unit circle [3]. The unit circle is the configuration space of RN black hole. How-

ever, for more general black holes this space is very different. It is unclear how to formulate

generally a natural stronger statement than the minimal one. Certainly one possibility is to

require that a WGC state exists for every charge choice, which is the Lattice WGC [11, 17].

Note that the bound (2.19) implies that as the strength of the gauge coupling goes to

zero not only does the mass of the WGC state vanish but also all its interactions with any

scalar field. This appears to be a strong statement in the sense that the weak coupling

limit g → 0 is leading to quite drastic behaviour. This is consistent with the picture of the

magnetic WGC of g forming a cutoff mass scale of the theory.

If we consider the state with the largest charge to mass ratio to be light, so send

m → 0, we recover a constraint on the charges and couplings of light states. This imposes

non-trivial constraints on field theories at energy scales far below the Planck scale. It is

also interesting to note that if there is a cancellation between the gauge and scalar forces

to a large degree, then it forces the mass scale of the state to be very light.

The analysis so far has applied to massless gauge fields and massless scalar fields. In

light of the possible infrared implications of (2.19), it is interesting to consider how it

would be modified for massive force mediators. Consider how a theory consistent with the

WGC should behave. We start with massless gauge and scalar fields. We then deduce a

constraint as in (2.19). Now we give the gauge or scalar fields a small mass. It seems that

as long as this mass if sufficiently smaller than the mass of the WGC state it should not

modify the mass of the WGC state. Similarly, it seems unlikely that it would modify the

coupling to scalar fields. Therefore, if the mass of the gauge or scalar fields is below the

mass scale of the WGC state we may expect that (2.19) should hold.

However, it is unclear if an analysis of bound states supports this expectation. The

classical long range force analysis relies on taking the mass of the force mediators much

smaller than that of the WGC states. We can consider first the possibility that the repulsive

force carrier has a mass. At sufficiently large distances gravity will always beat a massive
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force carrier. Therefore, if the repulsive force mass, in this case the gauge field mass, is

non-vanishing we will always have bound states.4 It is then natural to wonder what the

role of (2.19) would be. In this case it would ensure that the length scale of these states

will behave like the inverse mass of the carrier. Also this length scale will increase as we

build up charge. This is in contrast to the case when (2.19) is violated in which case their

length scale can be arbitrarily small. So if we give a small mass to the carrier then as long

as we satisfy (2.19) we do have bound states but they are over very large distances which

seems less problematic from a quantum gravity perspective. Having stated this, by taking

a sufficiently large number of the WGC states it appears to be possible to form a black

hole with a radius much larger than the scale at which the repulsive force can act. It is

unclear to us what the implications of this are.

If the attractive scalar force gains a mass then we could imagine violating (2.19) and

still not forming bound states at scales much larger than the inverse mass. However, we

could form bound states at arbitrarily small distance scales. Such states would only be

classically bound through a barrier rather than by charge and mass conservation, so it is

not clear if they are problematic.

It is therefore difficult to reach a conclusive statement on if, and how, (2.19) should

be modified when the gauge or scalar fields have a mass. It would be very interesting to

try and understand this better as it could have important implications for the infrared

consequences of (2.19).

Of course, a natural question which arises is whether gravity acts weaker than the

scalar field forces themselves. We explore this in section 4.

It is interesting to invert the reasoning and utilise the logic that (2.19) captures the

fact that there should be no stable bound states to impose a constraint on the struc-

ture of extremal black holes. This appears to suggest that an expression involving a fake

superpotential, as in (2.17), should be general for extremal black holes.

3 Distances in moduli space

Having studied how the WGC is formulated in the presence of scalar fields, we now turn

to the seemingly unrelated topic of distances in field space. This is the topic of the Refined

Swampland Conjecture as stated in (1.3). There is a closely related conjecture made in [25]

that field distances grow logarithmically for super-Planckian distances. Of course, logarith-

mically is a meaningless statement without specifying what it is logarithmic in. In [25] the

fields were closed string axions, and the proper field distance behaved logarithmically in the

field obtained by reducing the higher dimensional Ramond-Ramond and Neveu-Schwarz

fields on a cycle. In this section we will primarily consider moduli fields of Calabi-Yau

compactifications, and aim to show that proper field distances grow logarithmically in the

fields obtained by reducing the Kahler J and holomorphic three-form Ω on cycles, or in

other words, in the volume of the cycles.

It is well known that in simple setups, such as torodial compactifications, it is indeed the

case that field distances grow logarithmically in the moduli. However, there are no general

4In section 4 we will also consider repulsive scalar forces, and the analysis will apply equally then.
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results for more complicated constructions such as Calabi-Yau compactifications. Given

the complexity of a typical Calabi-Yau moduli space, if a general result exists then it is

likely that there is an underlying general reason for this. As discussed in the introduction,

in [25] it was pointed out that a simple relation between field distances and the WGC

arises in the presence of supersymmetry. This relation will form a guiding principle for the

analysis in this section. Logarithmic growth of field distances is not sufficient to prove the

RSC. One still needs to show that there is an infinite tower of states whose mass depends,

as a power law, on the moduli. This will be the topic of section 3.2.

3.1 Logarithmic growth of field distances

Consider a field space spanned by real fields ti. We would like to analyse a proper field

distance along a direction in field space. Consider this direction to be of the form

ρ =
∑

i

hit
i . (3.1)

Here the hi are arbitrary constants but we can, with full generality for the purpose of

analysing distances in field space, normalise them such that

Max {|hi|} = 1 . (3.2)

The proper distance along this direction can be written as

∆φ =

∫ ρf

ρi

(

hig
ijhj

)− 1

2 dρ , (3.3)

where gij is the metric on the field space and the field ρ varies from its initial values ρi to

its final one ρf . We present a derivation of (3.3) in appendix A.

Evaluating (3.3) is a difficult task. Even for a small number of fields inverting the field

space metric is a non-linear problem which quickly becomes intractable. If we consider

that a typical Calabi-Yau moduli space can contain hundreds such fields it is clear that

forcing an explicit calculation of (3.3) in such cases is not feasible.

In the previous section we showed that the generalisation of the WGC to N = 2

systems is based on the identity (2.8). With the relation between the WGC and field

distances discussed at the start of this section in mind, we can look to (2.8) for a possible

result on field distances. We would primarily like to obtain a result for moduli fields in

Calabi-Yau compactifications of string theory. In this case both the Kahler and complex

structure moduli span a moduli space supporting so-called special geometry. This mean

that they can be described in an N = 2 framework with a cubic prepotential. In the

so-called large volume regime, which is ti ≫ 1, the prepotential takes the form

F = −1

6
Kijk

XiXjXk

X0
. (3.4)
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Given this prepotential we have (see for example [39])

K = − ln
4κ

3
,

gij = − 3

2κ

(

κij −
3κiκj
2κ

)

, gij = −2κ

3

(

κij − 3titj

κ

)

, (3.5)

IIJ = −κ

6

(

1 + 4gijb
ibj −4gijb

j

−4gijb
j 4gij

)

, IIJ = −6

κ

(

1 bi

bi 1
4g

ij + bibj

)

. (3.6)

Here we define

κ = Kijkt
itjtk , κi = Kijkt

jtk , κij = Kijkt
k . (3.7)

Supersymmetry relates the inverse gauge kinetic metric IIJ to the inverse field space metric

gij . Therefore, by choosing the charges qI = (0, hi) and pI = 0 in (2.8), and setting the

axions to zero bi = 0, we obtain the relation5

hig
ijhj =

4κ

3

(

|Z|2 + gijDiZDjZ
)

= ρ2 +
4κ

3
gijDiZDjZ . (3.8)

The crucial property of (3.8) is that the last term is positive definite, this is all we need to

use and so let us write (3.8) as

hig
ijhj = ρ2 + F (ρ)2 , (3.9)

where F (ρ)2 = 4κ
3 gijDiZDjZ.

We can now utilise (3.9) in (3.3) to obtain an upper bound on the proper field distance

∆φ. Since we are interested in an upper bound, we are free to simply drop the F 2 term

in (3.9). However, this term has a crucial role as a regulator for the ρ → 0 regime. Since

hig
ijhj is a norm for a vector with a positive definite metric, it can only vanish at singular

points in moduli space away from the large volume regime. Therefore (3.9) implies that as

ρ → 0, within the large volume geometric regime, F must tend to a minimum finite value.

Let us denote the minimum value of hig
ijhj , for the interval ρi ≤ ρ ≤ ρf , by ρ2M . Let us

also assume, for simplicity and with generality, that ρ is positive and that ρi ≤ ρM ≤ ρf .

Then we can write

∆φ ≤
∫ ρM

ρi

1

ρM
dρ+

∫ ρf

ρM

1

ρ
dρ = 1− ρi

ρM
+ ln

(

ρf
ρM

)

. (3.10)

Therefore we find that the proper field distance grows at best logarithmically with ρ for

∆φ ≥ 1, with a prefactor which is smaller than, or equal to, one. This holds for any linear

combination of moduli for any Calabi-Yau. The result provides further evidence for the

conjecture made in [25] that field distances grow logarithmically for ∆φ ≥ 1.

Utilising the results in [40], it can be checked that the first α′ correction to the metric,

which for N = 2 appears at α′3, modifies the prepotential in such a way that −1
2e

−KIij 6=
gij .6 Therefore the bound hig

ijhj ≥ ρ2 is modified. It would be interesting to see what

results could be obtained away from the large volume regime, though it appears unlikely

that this regime can support large field variations.

5We are free to set bi = 0 since the metric gij does not depend on the bi.
6This also shows that this equality does not hold for an arbitrary N = 2 system.
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3.1.1 Moduli of Calabi-Yau orientifolds

The results on moduli so far applied to Calabi-Yau compactifications. Another often-

studied class of compactifications are Calabi-Yau orientifolds. These compactifications

preserve N = 1 supersymmetry but they are not completely general N = 1 theories and

still support an underlying N = 2 structure.

We consider orientifold projections in type IIA since they can be written in a more

universal manner. However, they capture the physics of their type IIB duals (as well as

heterotic duals and possible F-theory uplifts). The effective action and N = 2 → N = 1

projection are described in detail in [39]. The action on the Kahler moduli is very simple,

it is a truncation of the index range of the fields. Therefore the N = 2 analysis carries

through unchanged. The complex-structure moduli sector is more complicated because it is

a projection from a special quaternionic manifold spanned by the N = 2 hypermultiplets,

which includes a special Kahler submanifold spanned by the complex-structure moduli,

onto a different Kahler sub-manifold spanned by the N = 1 chiral multiplets (which is

in fact special Lagrangian). The projection acts by splitting the hypermultiplets into two

type of chiral multiplets whose scalar components we denote

Nk =
1

2
ξk + ilk , Tα = iξ̃α + τα . (3.11)

The index range of k and α sum to that of the I on the original N = 2 special Kahler man-

ifold. If the 0 index value of the I lies in the k range then these are dual to type IIB O3/O7

orientifolds, while if the 0 index is in the α range they are dual to type IIB O5/O9 orien-

tifolds. The fields lk and τα are projections from theN = 2 special Kahler periods such that

lk = Re
(

CXk
)

, τα = −2Re (CFα) . (3.12)

Here C is the compensator field which is related to the four-dimensional dilaton D through

C = e−iθ−D+ 1

2
K , where K is the appropriately truncated complex-structure Kahler poten-

tial (2.4) and θ is an angle defining the calibration of the special Lagrangian sub-manifold

in the quaternionic space.

The N = 1 theory inherits a truncated N = 2 structure. The truncation is imposed

through

Im
(

CXk
)

= Re (CFk) = Re (CXα) = Im (CFα) = 0 . (3.13)

We can therefore write down a projection of equation (2.8). We consider a linear combi-

nation of the moduli fields

ρ = qkl
k +

1

2
pατα . (3.14)

The projection of (2.8) then gives, after some calculation (utilising primarily appendices B

and C of [39]),

|(qk, pα)|2 = ρ2 +G (ρ)2 . (3.15)

Here |(qk, pα)|2 denotes the norm of the linear combination vector as appearing in (3.3),

and G (ρ)2 denotes a positive definite contribution. We therefore obtain again a logarithmic

growth bound (3.10).
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3.2 Masses of towers of states

Having established the logarithmic behaviour of the field distance in the moduli, we can

turn to the dependence of towers of states on the field distance and therefore to the

RSC (1.3). This dependence will also determine the exponent factor α in the RSC (1.3).7

While we established that the dependence of ∆φ on ρ is logarithmic for any values of

the hi, to prove the Refined Swampland Conjecture we need to restrict to the case hi ≥ 0.

This does not mean that for some negative hi the RSC can be avoided, only that the form

of the inequality (3.10) only allows for a strict proof for positive hi. With this restriction,

let us denote the index choice i = M as the one for which the term hM tM is the largest

one in ρf . Then we can write

ρf ≤ nhM tM(f) , ρi ≥ hM tM(i) , (3.16)

where tM(i) denotes the initial value of tM , tM(f) its final value, and n is the number of fields

appearing in ρ. Therefore we have

tM(f)

tM(i)
≥ 1

n

ρf
ρi

≥ 1

n
e∆φ′

, (3.17)

where we define ∆φ′ = ∆φ− 1+ ρi
ρc
. We have therefore established that at least one of the

ti increases exponentially in ∆φ′.

Within a string theory compactification setting the fields ti control the sizes of cycles.

There is an infinite tower of modes whose mass decreases as a power of the size of these

cycles. For example, in type IIA string theory if the ti are Kahler moduli they directly

measure the volumes of cycles and so the mass of KK modes. If they are complex-structure

moduli then they are mirror dual to Kahler moduli in type IIB string theory which measure

the size of cycles and therefore have KK towers associated to them. The precise dependence

of the KK mass on ti depends on the extra dimensional geometry as well as which geometric

quantity the ti are measuring. For a torodial setup we have M i
KK ∼ 1

ti
. But more generally

we can parameterise it as

M i
KK ∼

(

ti
)−α

, (3.18)

so that
M i

KK,(f)

M i
KK,(i)

≤ nαe−α∆φ′

. (3.19)

The exponential dependence on ∆φ of an infinite tower of states matches the RSC.

The KK masses M i
KK dependence on the ti is expected to take the rough form of

κ−
1

2

(

ti
)− 1

d (see for example [41] for an analysis). The first factor comes from the modifica-

tion of the string scale relative to the Planck scale. The second factor is the inverse length

scale of the cycle, where d is the dimension of the cycle.8 So, say for IIA, we therefore

7It is worth noting that the result (3.10) does not imply that α ≥ 1 in the RSC since the mass dependence

on ρ is an additional ambiguity.
8Note that the Nk moduli in section 3.1.1 come from the reduction of the NS form B2 rather than J .

However, they are still expected to control the mass of an infinite tower of states in a string theory setup

since they contribute to the ‘stringy’ volume of the cycle.
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expect a rough bound of α ≥ 1
2 for electric (two-cycle) moduli and α ≥ 1

4 for magnetic

(four-cycle) moduli. However, it is difficult to prove a general statement on a lower bound

for α for general Calabi-Yau and Calabi-Yau orientifold compactifications.

There is another infinite tower of states which are the wrapped branes on the cycles.9

These are particles for even cycles in IIA and odd cycles in IIB. For odd cycles in IIA the

relevant states are strings whose tension is controlled by the cycle, but we will henceforth

consider the particles case. When there is a large number of them they can be described as

a classical charged extremal black hole with a mass given by (2.13). The mass of a small

number of probe wrapped branes is still given by the central charge |Z| with small charge

vectors. Looking at unit charged vectors, and applying the cubic prepotential as in (3.4),

we have electric and magnetic mass scales

m0
e =

√

3

4κ
, mi

e =

√

3

4κ
ti , mm

i =

√

3

4κ

κi
2
, mm

0 =
1

6

√

3κ

4
. (3.20)

Since tM must appear at least linearly in κ we have

me
0 ≤

√

3

4tM(f)
≤

√

3nhM
4ρf

≤
√

3n

4
e−

∆φ′

2 . (3.21)

In the last inequality we used the fact that hM ≤ 1 and that for hi ≥ 0 we have that ρi ≥ 1

in the large volume regime. Note that also, either the mass scale mi
e or mm

i , depending on

how tM appears in κ, have exponentially decreasing bounds.

The towers of states (3.20) are particularly interesting because they are in some sense

more general than the KK states. This is because they can be argued to be present generally

from an N = 2 supergravity perspective without referring to a string compactification.

Indeed, they can be associated to the towers of states of the Lattice WGC [11, 17]. They

are therefore important with respect to the generality of our results. Within a string

compactification setting, however, they are, at least in a generic large volume limit, heavier

than the KK modes and so we expect that practically the strongest bound on the effective

field theory comes from KK towers.

Note that (3.21) is a bound on the mass rather than on the mass variation as in (3.19).

The reason for this is that a variation of tM may not influence κ very much if the other

moduli were much larger than tM(f). Therefore, we can not prove that the states become

exponentially lighter, but only that their mass is restricted by an exponentially decreasing

bound. This is a slightly weaker statement than the RSC. It is not clear which version

should be imposed generally: that the mass scale decreases exponentially or that the

bound on the mass scale decreases exponentially. Of course, for all practical purposes, the

9Note that there is a subtlety in whether to count the multiply wrapped branes as different states or not.

This is a question of the Calabi-Yau geometry to do with whether there is an appropriate representative

cycle in the homology class of each wrapping. We assume that this holds and that there is indeed such a

tower of states. This statement is likely to depend on the region in field space we are in. Looking at two

extreme limits: in the case of a conifold, ti → 0, it is expected that only one state becomes massless [36].

While in the decompactification limit, which is the one of relevance here, it is more natural to expect an

infinite tower of states.
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difference is not of great importance in that if the tower mass scale was very low to start

off with it would only place a stronger restriction than the RSC on the breakdown of the

effective field theory.10 But it is worth pointing out this subtlety.

4 Gravity as the weakest force

In section 2 we reached the conclusion that the gauge forces should act more strongly

than the gravitational and scalar forces combined. In this section we consider the relative

magnitude of the scalar and gravitational forces. We follow similar methodology to the

gauge force analysis where we first establish relations between the forces acting on the

WGC states within the N = 2 context. We will then propose general relations based on

capturing the relevant physics, however, this generalisation is much more complicated than

in section 2 and it is less clear if it holds. In section 3 we established connections between

the gauge force statement and distances in moduli space and the RSC. It is therefore

natural to explore if a statement on scalar forces also has implications for the field space.

We show that indeed ties to the RSC can be established.

4.1 A scalar weak gravity conjecture

In the N = 2 supergravity setting the key equation for the gauge forces was (2.8). This

was interpreted as the self interaction of the WGC states. We now would like to consider

interactions between different states. The relevant relation generalising (2.8) reads (see [43,

44] for useful texts)

|Z|
∣

∣Z ′
∣

∣+Re
(

4gij∂i
∣

∣Z ′
∣

∣ ∂j |Z|
)

= QQ′Re





ZZ
′

∣

∣

∣ZZ
′
∣

∣

∣



− 1

2

(

qIp
′I − q′Ip

I
)

Im





ZZ
′

∣

∣

∣ZZ
′
∣

∣

∣



 .

(4.1)

The first term in (4.1) is the gravitational force and the second is the force mediated by

the scalars. The gauge force is given by QQ′. The last term is only non-vanishing if the

interacting states are not mutually local. We henceforth restrict to mutually local states

and so take it to vanish. Now the important point is that we can consider two states with

a vanishing gauge force between them QQ′ = 0. In this case we see that the scalar forces

cancels the gravitational force. Therefore for states with vanishing vector interactions the

scalar forces act repulsively.

In the case of gauge forces we were able to argue that the N = 2 results should

hold generally due to the interpretation as forbidding gravitationally bound states. We

can attempt to apply the same logic also for the relative magnitude of the scalar and

gravitational forces in the case when the gauge vector forces vanish. However, we will see

that there is an important difference in this case. The absence of a stable gravitationally

bound state requires that the scalar forces act stronger than gravity. We can therefore

conjecture that if we consider two WGC states of mass m and m′, which are mutually local

10It is analogous to the statement that forbidding a monopole from being a black hole, as in [1], could be

resolved by some other states, not necessarily gravitational, before the collapse to a black hole. As is the

case for an SU(2) monopole.
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and have vanishing gauge interactions, then, for the general theory (1.2), the scalar forces

must act repulsively and at least as strong as gravity

− gij (∂tim)
(

∂tjm
′
)

≥ mm′ . (4.2)

It can also be seen from (4.1) that if the gauge force is non-vanishing, then its magnitude is

equal to the scalar and gravitational forces combined, which can be taken as a conjecture

generalising (2.19). Note that we observe already a striking statement: the existence of

two U(1) gauge fields requires the existence of a scalar field. The role of the field is to stop

the gravitational bound state made from the possible orthogonal charge choice.

Note that we consider mutually local states because the N = 2 formalism only makes

sense in such cases. However, if we consider a purely magnetic state and a purely electric

one, then they will again not exert any gauge force. This is clear even if we can not describe

them simultaneously as local states in a field theory.11 Applying the same logic therefore

implies that again the scalar force must act repulsively and stronger than gravity. This

also implies that the presence of a scalar field is required even by a single gauge field to

stop stable gravitationally bound dyonic states.

Having stated the natural generalisation of (4.1) as (4.2), the arguments for this gen-

eralisation are far less clear than in the gauge case in section 2. The first fundamental

difference is that while the analysis in section 2 was regarding the implications of the pres-

ence of massless scalar fields, here we are requiring the presence of a scalar field, which is

a much stronger statement. This also means that we must state how a mass for this field

can affect the setup. The idea is that the scalar field can be massive. Then (4.2) ensures

that if a bound state exists then its radius is set by the inverse mass of the scalar field.

This is analogous to the discussion in section 2 regarding the meaning of the WGC when

the gauge field is massive.

The second fundamental difference is in considering a bound state of two orthogo-

nal states compared to a bound state of the same particle. The difference is in how a

tower of states could arise. Consider, for illustration purposes, the case of a single electri-

cally charged state, denoted (1, 0), and a single magnetically charged state, denoted (0, 1).

The same analysis applies to two orthogonal electric states in the case of multiple U(1)s.

Then let us violate (4.2) and see if a tower of stable gravitationally bound state can be

constructed.

One way to create a tower is to consider forming a bound state from the single charged

states, so of charge (1, 1). And then considering an orthogonal dyonic state to it. Or in

other words, performing an electric-magnetic rotation so the bound state is purely electric

and then adding a magnetic state in this new frame to it. However, this is unsatisfactory for

a number of reasons. One reason is that it is not clear that with an arbitrary gauge kinetic

matrix this can be done since the charges are quantised while the moduli are continuous.

Another reason is that the next state in the tower has twice the charge of another state in

11Note however that the structure of the gravitationally bound state is more complicated than that of

two electric states which are orthogonal with multiple U(1)s because a gravitational orbit will induce a

relative velocity of the particle and therefore a U(1) force.
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the theory and so can decay to two such states. This must somehow be forbidden for the

tower to be stable, and it is unclear to us how. Yet another reason is that the original bound

will have a dipole U(1) moment due to its finite size, which would induce a gauge interaction.

Another way to consider forming a tower of stable states is to consider a tower of (1, 1)

bound states. These states will feel a gauge repulsion, but this could be overcome by the

attraction. If the (1, 0) and (0, 1) states are precisely extremal, as in the N = 2 setting,

then a violation of (4.2) would imply a tower of stable states. More generally we should

require a constraint as in (2.19) for the (1, 1) bound state itself

Q2
B ≥ m2

B + gijµB
i µ

B
j , (4.3)

where the B subscript denotes that this is a bound state. If (4.3) holds then even if (4.2)

is violated there would still not be a tower of stable gravitationally bound states.

In the absence of scalar fields, if the constituents of the bound state are precisely

extremal, then (4.3) is violated and we have a stable tower. Heavy states in this tower

are extremal black holes along this charge direction. Requiring them to decay, or that the

tower of stable states is absent, means that the constituents can not be precisely extremal

but must be slightly super-extremal. This is the convex hull condition as studied in [3–5].

If (4.3) is violated and we have a tower, and also stable black holes, then another

solution is to propose that this must decay and therefore there should exist a super-extremal

particle for each charge lattice, this is the reasoning for the Lattice WGC [11]. We see that

the scalar fields offer an alternative, we can demand that (4.2) or (4.3) must hold once all

the scalar fields are accounted for, including massive ones. Then the bound states are such

that their radius is limited by the mass of the scalar. This may be less problematic from

a quantum gravity perspective.

Note that if we retain the Lattice WGC, and consider the lattice of charges to be

populated by states, then we must consider forming a tower from bound states of (m, 0)

with (0, n). By themselves each of (m, 0) and (0, n) are not expected to be stable. If the

charge to mass ratio in the tower of states of the Lattice WGC decreases as we move up the

ladder then we have a decay channel (0, n) → n (0, 1). However, a gravitationally bound

state can be stable against this decay. This depends on whether the increase in the charge

to mass ratio due to the gravitational binding energy is larger than the decrease due to

having a higher state in the tower. Understanding this would require understanding the

structure of the tower and of the bound state better.

In summary, it is not clear what is a possible generalisation of (4.1), and what are

the resulting implications. We considered (4.2) and (4.3) as possibilities. However, the

uncertainty in the stability of the tower of bound states, and in what problems such a

tower causes, means that their generality is on less firm footing than that of (2.19).

We are also interested in the relative magnitude of the scalar and gravitational forces

for the interaction of a state with itself. The relevant N = 2 equation here is [34]

Q2 (F ) = |Z|2 − gijDiZDjZ . (4.4)

Here Q2 (F ) is defined in the same way as in (2.7) but with NIJ → FIJ . In the same way

that we interpreted (2.8) as a bound on the sum of the scalar and gravitational forces, (4.4)
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gives information on their relative magnitude. The matrix IIJ is negative definite. The

matrix Im (F )IJ has nV strictly positive eigenvalues and one strictly negative eigenvalue.

This means that if we consider the WGC states, there is a basis where nV of them have

scalar forces acting strictly stronger than gravity, and one of them has gravity acting strictly

stronger. The odd one out is due to the graviphoton which has no scalar superpartners. In

other words, we can say that for each scalar field there is one WGC state for which gravity

is the weakest force.12

We can formulate (4.4) generally as

gij (∂tim) (∂tjm) > m2 , (4.5)

for the general theory (1.2). In the N = 2 case the spectrum of states satisfying this

was such that there was one (electric and one magnetic) state which violated (4.5) and all

the others satisfied it. It appears that this structure is general if the states are precisely

extermal. Consider only electric states for now, and for simplicity just one canonically

normalised scalar field so that (4.2) reads

|∂tm|
∣

∣∂tm
′
∣

∣ ≥ mm′ . (4.6)

This must hold for all state with vanishing gauge interactions, which are therefore or-

thogonal with respect to the matrix M in (2.6). Now say that one state was such that

|∂tm| < m, then all the other orthogonal states must have |∂tm| > m. Therefore we deduce

that at most one state can violate a non-strict inequality version of (4.5), and that if it

does then (4.5) becomes a strict inequality for all the other states.

The generality of (4.5), away from theN = 2 framework, cannot be directly deduced by

thinking about the existence of bound states since both the scalars and gravity act attrac-

tively. It is possible that it can be deduced from (4.2) or (4.3), but this is not clear. We can

propose that (4.5) holds generally, but leave building more evidence for this for future work.

We can denote the statements (4.2), or more generally (4.3), and (4.5) as the Scalar

WGC. We repeat, that the argument for them is much less strong than that of (2.19).

With respect to the generality of the conjecture, there are two natural possibilities. The

first is that it should hold as a statement about the scalar interaction of the WGC states

associated to gauge fields. We can term this the Gauge-Scalar WGC. The second is that it

should hold completely generally even in the absence of gauge fields, we can term this the

General Scalar WGC. This is the more general statement that gravity truly is the weakest

force, so for each scalar force there is a state on which gravity acts more weakly. We

can again motivate it in terms of forbidding gravitationally bound states, however, in the

absence of an associated gauge symmetry it is unclear what could lead to the stability of

such states. It is possible that one could associate some, at best approximately conserved,

charge to the scalar fields. For example, a shift symmetry. However, in the absence of a

solid argument for the stability of bound states coupled to scalar fields only, the evidence

for the General Scalar WGC remains rather weak. Due to the combination of the Scalar

and Gauge WGCs being the single statement that gravity is the weakest force we will often

12There are 2nV real scalar fields, and nV electric plus nV magnetic WGC states.
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refer to them both jointly as the WGC. The rest of the analysis in this section holds for

either version of the scalar conjectures.

Before proceeding it is worth mentioning another interesting identity in N = 2

gijDiDj |Z|2 = nV |Z|2 + gijDiZDiZ . (4.7)

We can interpret this as a relation between the four-point coupling, the mass and the

three-point coupling of the WGC states to the scalar fields. It is possible to phrase it as

a bound that the four-point coupling for two scalar fields to two WGC states should be

larger than the coupling of two gravitons to two WGC states.13 It would be interesting to

see if there is a general interpretation for the physics of equation (4.7).14

4.2 The refined swampland conjecture and gravity as the weakest force

The bound (4.5), which states that gravity is the weakest force, can be thought of as

differential equation in the mass of the WGC states. Regardless, of whether we are at

this point able to strongly motivate (4.5), it is informative to consider its implications. In

general, these are complicated coupled non-linear differential equations. But to illustrate

the key point consider a simple theory of a single canonically normalised scalar field t.

Then, for all but one of the states we have,

|∂tm| > m . (4.8)

Consider a power-law form m = tp, then (4.8) gives

|p| > t . (4.9)

This will be violated for large enough t. Indeed, to satisfy the inequality for arbitrarily

large t the mass must be an exponential

m = e−αt , (4.10)

with |α| > 1. Therefore for large t the behaviour of the mass of the WGC states must be

exponential, but this is precisely the Swampland Conjecture (if we also ask that the lattice

of charges is populated) [27]. Indeed, we see that the behaviour asymptotes to exponential

quickly for t > 1, so that we recover the Refined Swampland Conjecture.15 We also find

a lower bound on α, which has important phenomenological implications. Note that (4.2)

implies that the sign of α is opposite for states with vanishing gauge interactions. This

means that there is always one state for which α is positive and so its mass decreases.

13The factor nV appears because the WGC states only couple to one combination of gauge fields but to

all the moduli. This can be seen by restricting to electric charges so that the WGC state couples to just

one linear combination of axions, and calculating the relation for the axions bi and moduli ti separately.

The factor of nV the only appears in the coupling to the moduli ti.
14We can formulate a Scalar WGC based on (4.7) which would suggest nm2 + gij (∂tim) (∂tjm) ≤

1

2
gij∇ti∇tjm

2, where n is the number of fields coupling to the WGC state.
15The behaviour where the power in a power law must increase with the field displacement is the same

as that found in [26].
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In other words, we find some evidence towards the idea that the RSC can be understood

as the statement that there must exist a state on which the force that the scalar field

mediates acts more strongly than gravity. So the RSC and WGC are not just related by

supersymmetry, but they are together forming the general statement that gravity is the

weakest force.

It is interesting to consider how this conclusion is compatible with periodic axions. We

can consider the N = 2 framework and take the bi to be the axions. Then the exponential

behaviour (4.10) is incompatible with the axion periodicity. How this is resolved can be

understood as follows. Consider applying (4.8) to a state of charges (q, p). Now if we take

bi = n+ bi
′

, with bi
′ ≤ 1 and n being some integer, then we can instead consider a different

state with charges (q′, p′) such that m
(

bi, p, q
)

= m
(

bi
′

, p′, q′
)

. The conjecture is that

there must exist a state for which (4.8) holds, but this does not have to be the same state

for all values of the field.16 This means that effectively, by choosing different states as we

move around the axion field space, we can consider bi ≤ 1, and so there is no required

exponential behaviour (4.10). Note that this argument ties the existence of periodic fields,

axions, with the WGC states populating a full lattice. This can be viewed as evidence for

a scalar version of the Lattice WGC.17

We showed how axions escape the exponential behaviour through an infinite tower of

states. For a monotonic function m (t) we require such an infinite tower. If we allow for an

oscillatory function it is possible to satisfy (4.8) with only two states interchanging their

role as the WGC state.18 Note that in string theory this is the relevant case for axion fields

which only appear through world-sheet instanton corrections (so exponentially inside the

periods). However, the period of the oscillations must be less than one. The period could

be made longer by including more and more states, until we reach the infinite tower of the

non-oscillatory case. It is interesting to see a connection between many states and field

distances. Note also that the field distance excursion need not be tied to the period length

in an axion monodromy type scenario, and so such scenarios are not constrained by this.

Therefore, we can not say for certain, even for the simple one-field case, that the mass

must be exponential. We can make the statement that if |∂tm|
m

increases monotonically (or

stays constant) then it must be an exponential with exponent |α| > 1. We can also expect

exponential behaviour if the mass of the tower of states behaves as mn (t) = nf (t), where

f is an arbitrary function and n is an integer denoting the state in the tower. Then since
|∂tmn|
mn

is independent of n it is not possible for the states to replace each other as the WGC

states. A thorough proof or analysis of when the exponential behaviour is present requires

more work but, having stated the caveats, the exponential behaviour (4.10) is certainly com-

pelling in terms of evidence towards a connection between the Scalar WGCs and the RSC.

16There is a subtle point here because the periodicity of the bi requires the full charge lattice
(

qI , p
I
)

which includes the graviphoton charge. This means that the re-arrangement of states is such that generically

the states for which gravity acts weaker than the scalars, and the one state on which this is not true, get

mixed up. Nonetheless, there is always a basis at each point in field space for which 2nV states have gravity

as the weakest force.
17It also suggests that the Lattice WGC for gauge fields [11, 17] may be understood in terms of the

periodic structure of expectation values of line operators.
18I thank Arthur Hebecker for pointing this out.
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5 Summary

We studied aspects of the Weak Gravity Conjecture in the presence of scalar fields. We

utilised the structure of N = 2 black holes to formulate the WGC generally for arbitrary

scalar field-space metric and gauge kinetic function. The conjecture can be phrased as the

statement that there must exist a particle on which the gauge force should act stronger than

gravity and the scalar forces combined. The underlying principle is that the WGC particles

should not form a tower of stable gravitationally bound states. There are arguments for

why this should be the case in [1, 2]. We did not develop these further but took the absence

of such states as an assumption and used it to formulate the conjecture. The results are

therefore reliant on this assumption and it would be very interesting to develop the quantum

gravity reasoning for the absence of such towers more rigorously. The conjecture would also

follow from requiring the decay of extremal black holes if they exhibit certain structures

which are present in an N = 2 supersymmetric context. There are examples and evidence

towards this possibility within the so-called ‘fake superpotential’ formalism [37, 38]. The

conjecture exhibits the interesting property that it remains non-trivial even for states with

a very light mass, and therefore has an interesting infrared limit.

The WGC bound is marginally satisfied by BPS states in N = 2 supergravity. This

can be shown utilising an N = 2 identity. We showed that this identity can be utilised

to extract information on the behaviour of field distances in scalar field spaces. As an

application we presented a proof that for any linear combination of moduli in Calabi-

Yau or Calabi-Yau orientifold compactifications, the proper field distance grows at best

logarithmically with the moduli for super-Planckian distances. We also identified infinite

towers of states whose mass decreases exponentially as a result. This general proof presents

new evidence for the Refined Swampland Conjecture developed in [25, 26].

We showed in the N = 2 supergravity setting that scalar field forces also act at least

as strongly as gravity on the WGC states associated to the gauge fields. We considered two

statements generalising this, (4.2) and (4.5). The two statements together were termed the

Gauge-Scalar WGC. However, the evidence for this in terms of a tower of stable gravitation-

ally bound states is weaker than in the case where we consider only a single state forming a

tower. Establishing the existence of a tower, or other evidence for the Gauge-Scalar WGC,

away from the N = 2 setting, requires further work.

We also formulated a General Scalar WGC which states that the property of the WGC

states, of having scalar fields act stronger on them than gravity, is independent of their

connection to the gauge fields. So that for every scalar field there must exists a state

on which gravity acts weaker than the scalar field. This amounts to directly imposing

that ‘gravity is the weakest force’. It can be motivated by forbidding gravitationally bound

states, but in the absence of the gauge symmetry it is even more unclear how their stability

is ensured and therefore is less motivated than the Gauge-Scalar WGC.

We showed that the Scalar WGCs naturally lead to the behaviour of the mass of

the WGC states to be exponential in the scalar field expectation value, as in the RSC.

This introduces a candidate general physical principle behind the RSC. We were unable

to show that the RSC is implied by the Scalar WGCs with generality due to the latter
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being formulated as complicated coupled non-linear differential equations for the mass.

Even in the simple case of a single scalar field we showed that there are ways to avoid the

exponential behaviour. One way is if there are a large number of states which play the role

of the WGC state at different points in field space. Applying this to axions we argued that

in fact there must be an infinite tower of such states. Another possibility is if the WGC

mass is oscillatory.

In the single scalar field case we were able to show, up to certain assumptions, that the

exponential behaviour is such that the exponent is bound to be larger than one |α| > 1.

This bound can have important implications for large field inflation because it implies

a lower bound how fast the tower of WGC states becomes light for super-Planckian dis-

tances.19 This in turn limits the energy scale of the effective theory of inflation and therefore

places a direct bound on the magnitude of the primordial gravitational waves that could

be produced. The most conservative application of this bound does not yet yield numbers

comparable with current experiments. For example, if we take the initial mass scale of the

tower of states to start at the Planck scale, and impose that the Hubble scale during infla-

tion should be lower than the tower mass scale, then we find for the tensor-to-scalar ratio

r < 1. This conservative bound can be easily sharpened by additional restrictions on the ef-

fective theory. Of course, this assumes the possible application of the exponential behaviour

to the inflaton, which is subject to the assumptions and subtleties discussed in this work.

If true, the Gauge-Scalar WGC has some striking conclusions. It implies that the

existence of gauge fields requires the existence of scalar fields. Otherwise, there would be

nothing to stop forming gravitationally bound states when the gauge interaction vanishes.

Further, the couplings of the gauge fields are tied to the cubic coupling of the scalar fields,

through the properties of the WGC states. We are seeing the emergence of supersymmetric

vector multiplets. This leads to the striking possibility that the WGC, or similar general

reasoning about quantum gravity, could imply the existence of high scale supersymmetry.

In M-theory there are no constant coupling parameters, so that all the parameters

in four-dimensions are functions of scalar fields. This means that, in contrast to gauge

fields, every state in the theory must couple to some scalar field. It therefore allows for

the possibility of a Super WGC, which is that gravity is the weakest force acting on any

state. At least this could hold at sufficiently short distance scales above the mass of the

scalars. Of course, there is no sufficiently strong evidence for such a strong statement,

but we simply want to point out that the existence of scalar field forces means that this

possibility is at least not ruled out.
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A Derivation of field space distance formula

In this appendix we derive the formula (3.3), which appeared already in [25], for the

distance in field space along the direction ρ = hit
i. We consider the kinetic term

LKin = −gij∂t
i∂tj . (A.1)

We now perform a coordinate change to σi defined by ∂ti = M ij∂σj for some matrix Mij

with inverse M ij . Note that this is not equivalent to the coordinate change ti = M ijσj
since Mij is not constant in general. The kinetic terms now read

LKin = −gijM
ikM jl∂σk∂σl . (A.2)

We now split the ∂σi into ∂σ0 = ∂ρ and ∂σλ. We parameterise the matrix M as

M i0 = gijlj . (A.3)

The lj are chosen such that

gijM
i0M jλ = gijg

illlM
jλ = ljM

jλ = 0 . (A.4)

This means that there is no kinetic mixing between ρ and the σλ. The equations (A.4) fix

the li to be proportional to M0i. With the appropriate normalisation we then find

M i0 =
gijM0j

gklM0kM0l
. (A.5)

The kinetic terms then take the form

LKin = − 1

gklM0kM0l
(∂ρ)2 + . . . , (A.6)

where the . . . denote kinetic terms where ρ does not appear. Now from the definition we

have

∂ρ = M0i∂t
i , (A.7)

which implies that M0i = hi, leading to (3.3).
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