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1 Introduction

Supersymmetry (SUSY) is a promising solution to the hierarchy problem [1]. However,

many new parameters induce significant flavor mixing or CP-violating processes which are

severely constrained by experiments. Hence, for generic SUSY breaking, superparticles

are required to be very heavy, reintroducing the (little) hierarchy problem. One way to

address this problem is to consider a carefully chosen mechanism of SUSY breaking such as

gauge mediation (for reviews, see refs. [2, 3]). On the other hand, since only the first two

generations of squarks and sleptons are relevant for flavor constraints, another possible path

is to assume only stops (and the left-handed sbottom) and higgsinos are light. Importantly,

it is these particles that are essential for the naturalness of electroweak symmetry breaking

(EWSB). This spectrum is also favored from the point of view that direct bounds on stop

and higgsino masses do not cause severe fine-tuning in spite of great advances in SUSY

searches at the Large Hadron Collider (LHC). This framework is called natural SUSY [4–6],

and is expected to ameliorate both direct collider constraints as well as indirect constraints

on CP violation. LHC searches have begun to encroach on the territory favored by natural

SUSY, so that even models of quite low-scale mediation of supersymmetry breaking are

likely to be tuned by a factor of 10 or 100, though there is some room to evade the most

severe bounds (for a wide range of perspectives on the current status of direct superpartner

searches, see [7–12]).

Meanwhile, the last few years have seen significant progress in precision low-energy

tests of CP violation. In 2013, the ACME collaboration improved the bound on the electron

electric dipole moment (EDM) by an order of magnitude using thorium monoxide [13].

Within the last year, the bound on the mercury EDM has also been improved by a factor of 4

by Graner et al. [14]. These are highly constraining probes of new CP-violating physics, the

former being an effective probe of electroweak CP violation and the latter of CP violation in

physics coupling to QCD. Because EDMs are dimension six operators, roughly speaking the
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scale of new physics probed by an experiment scales as the square root of the improvement

in the EDM bound, so these results have pushed the mass reach of EDMs up by a factor

of 2 or 3. Alternatively, for new physics of fixed mass, the constraint on new CP-violating

phases scales directly with the improved bound. Because naturalness favors new physics

at low mass, the required smallness of CP-violating phases is an important constraint on

model building. Our goal in this paper is to quantify what the current and near-future

EDM results tell us about the extent to which CP-violation is allowed in natural SUSY.

The effects of supersymmetric particles on EDMs have been extensively studied over

many years. For instance, the two-loop Barr-Zee-type diagrams [15] generate electron and

quark EDMs and chromo-EDMs (CEDMs) [16–21]. Possible SUSY contributions to the

experimentally measured EDMs have been extensively studied especially in the minimal

supersymmetric standard model (MSSM) [22–24]. However, it is timely to revisit the

impact of supersymmetry on EDMs in light of the scenarios that are currently most favored

by the LHC. One of the most important revisions to our understanding of supersymmetry

is the knowledge that the Higgs boson mass is an unexpectedly heavy 125 GeV. In the

context of the MSSM, achieving this mass without completely giving up on naturalness

requires large values of the left-right stop mixing parameter At (see [25] and references

therein). This tends to enhance the expected EDMs, for generic CP-violating phases.

Beyond the MSSM, other new physics operating at tree level could explain why the Higgs

is so heavy. Such physics generally introduces new possible sources of CP violation, which

have received little attention so far (though see [26, 27]). Thus, both due to improvements

in constraints on EDMs themselves and our altered perspective on the most plausible

forms that supersymmetry can take, it is timely to revisit the assessment of what EDM

experiments can tell us about SUSY.

The next few sections of this paper introduce some background material and develop

general results that will be useful later. They may be skipped by readers who are interested

in our conclusions but do not need all of the details of the derivations. In section 2, we

present a set of very general results for the two loop fermion EDMs (and, with straight-

forward changes, CEDMs) induced by an inner loop of charged particles connected to an

external fermion by one scalar and one vector (γh, γA, Zh, W∓H±, etc.). Although we are

aware of many specific results in the literature that rely on such calculations, we are not

aware of a previous reference that presents formulas valid for completely generic couplings

of the new particles, so we hope that these results may be useful for readers studying a range

of models not limited to SUSY.1 In section 3, we review the basics of natural SUSY includ-

ing BMSSM effects to lift the Higgs mass [30], and establish our notation. In section 4, we

provide a summary of the experimental status of paramagnetic, diamagnetic, and neutron

EDM measurements. In each case, we review which operators contribute: these include not

just fundamental fermion EDMs but also CP-violating four-fermion operators. We summa-

rize the computation of all of the ingredients, referring to appendices for some of the details.

With this preparation out of the way, the core results of the paper (where many readers

may wish to start their reading) begin in section 5 with a look at how two-loop effects of

1Several analytic two-loop results in the CP-conserving case have been presented in refs. [28, 29].
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stops constrain the phase arg(Atµ).2 We consider the MSSM, in which given other SUSY-

breaking parameters, the size of At is fixed (and large) to obtain the correct Higgs mass

of 125 GeV; and extensions of the MSSM in which the Higgs mass is lifted to 125 GeV by

unrelated physics, which we assume does not supply a dominant contribution to the EDMs.

We find that the present ACME experiment and the mercury EDM measurement give

comparable constraints on the stop sector (which is stronger depends on highly uncertain

nuclear physics), though an updated ACME result within the next year could surpass them.

Already the constraints probe parameter space well beyond the reach of the LHC for order-

one phases. In much of the parameter space, EDMs are a stronger indirect probe of the stop

sector than b→ sγ unless the CP-violating phase is 10−3 or smaller. In section 6 we consider

constraints on the phase arg(M2µ) from two-loop effects of charginos, which are highly

constrained throughout the natural parameter space by ACME. In section 7 we consider

constraints on phases of a new superpotential operator and soft term introduced to lift the

Higgs mass. The analysis of the EDMs in this scenario was initiated in refs. [26, 27]. We

improve the analysis by including important contributions which have not been discussed

in these references and are in fact dominant. We claim that severe constraints from the

current EDM measurements lead to fine tuning of the electroweak breaking when generic

CP-violating phases are assumed.

Importantly, as the EDM measurements continue to improve in the future — hopefully

with not just a bound but a discovery! — they will not simply continue to probe higher

and more unnatural masses, but also probe deeper into the regime of small CP-violating

phases at fixed mass. Since the mass reach of the EDMs for order-one phases already

significantly surpasses the LHC reach, this is quite important. At one time, the existence

of models like gauge mediation could have been taken as an indication that the CP problem

is readily solved. However, given that the µ-parameter sits uncomfortably within any model

of supersymmetry breaking, one may have had qualms. The situation is now worse: in the

MSSM away from the split SUSY limit, gauge mediation must be supplemented with a

means of generating a sufficiently large At. Beyond the MSSM, new interactions must be

added to explain the Higgs mass. The more complex the model, the more opportunities

there are for nonzero phases to enter. Even if phases enter the low-energy effective theory

indirectly, as experiments become more sensitive, subleading effects become visible. As a

result, we think that it will become increasingly interesting to carefully study not just the

low-energy theory of natural SUSY but detailed models of SUSY breaking to understand

which scenarios evade the SUSY CP problem and whether they will continue to escape the

downward march of experimental bounds.

2 Two-loop EDMs of elementary fermions

Many two-loop (“Barr-Zee”) contributions to fermion EDMs have been computed in the

literature, but are often presented in special cases [15, 19–21, 33]. The general structure

is an inner loop — possibly a sum of multiple diagrams — generating either an effective

2Cancellation among several contributions to the EDMs would relax constraints on the parameter space

of the MSSM [31, 32] although the cancellation is likely to require another tuning of the parameters.
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coupling of a photon to a scalar and vector or to two vectors. In certain limits, the EDM

can be understood through a two-step operator analysis. If we compute the inner loop

and take all legs on-shell, these correspond to effective Standard Model operators of higgs-

vector-vector type:

CP even : OBB = g′2h†hBµνB
µν , OWW = g2h†hW i

µνW
iµν , OWB = gg′h†σihW i

µνB
µν ,

CP odd : O
BB̃

= g′2h†hBµνB̃
µν , O

WW̃
= g2h†hW i

µνW̃
iµν , O

WB̃
= gg′h†σihW i

µνB̃
µν ,

(2.1)

or of “W boson dipole moment” type [16, 34, 35]:

CP even : OHB = ig′(Dµh)†(Dνh)Bµν , OHW = ig(Dµh)†σi(Dνh)W iµν ,

CP odd : O
HB̃

= ig′(Dµh)†(Dνh)B̃µν , O
HW̃

= ig(Dµh)†σi(Dνh)W̃ iµν . (2.2)

Notice that O
HB̃

and O
HW̃

(W boson EDMs) can be rewritten in terms of the first set

of CP-odd operators O
BB̃
,O

WW̃
, and O

WB̃
using equations of motion (see the appendix

of [36]). The CP-even versions of these operators, OHB and OHW , are traded for the first

set of CP-even operators together with four-fermion operators in the Warsaw basis [37] or

for the first set of CP-even operators plus the operators OW = ig
2 (h†σi

↔
Dµh)DνW i

µν and

OB = ig′

2 (h†
↔
Dµh)∂νBµν in other commonly-used bases like that of [38].3 (See [39] for a clear

recent discussion of electroweak physics and translations between various operator bases.)

After computing the inner loop in terms of a convenient basis of operators, we could then

use the one-loop anomalous dimension matrix [40] to compute how these dimension-six

operators feed into the dimension-six electron EDM operators.

In our analysis, we would like to keep multiple Higgs bosons in the theory — so that

h above may represent either Hu or H†d — and also consider regions of parameter space

where particles in the inner loop may be light compared to the Higgs being exchanged

in the outer loop. Hence we will work directly with two-loop computations rather than

one-loop matching and RG running. In cases with large logarithms, matching and running

may give more accurate (resummed) answers, but for now we apply the two-loop formulas

uniformly across parameter space. However, it is still convenient to carry out the two-loop

calculation by first computing the inner loop and then the outer loop — but to do so,

we will leave the particles in the inner loop off-shell. For the inner loop with an on-shell

photon of momentum q, one off-shell scalar S, and one off-shell vector V of momentum k,

we define the answer as iΓµνγV S(q, k), as shown in figure 1. Chromoelectric dipole moments

are computed in a very similar manner, with a gluon replacing the photon, and with V

required to be a gluon as well. Gauge invariance for the on-shell photon highly constrains

the form that ΓµνγV S(q, k) takes: essentially, it must match onto SFµνV
µν or SFµν Ṽ

µν .

3The discrepancy between CP-even operators, for which the second set does not reduce to the first set,

and CP-odd operators, for which it does, is due to the fact that equations of motion set DµF
µν = jν but

DµF̃
µν is exactly zero by the Bianchi identity. As a result, in the CP-even case, operators involving matter

currents enter the story in a way that they do not for CP-odd operators.
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Figure 1. Effective vertex of a photon, scalar S, and (in general massive) vector V computed from

the inner loop.

Anticipating the form that the loop integral will take, we parametrize the result as:

ΓµνγSV (q, k) =

∫ 1

0
dx

1

x(1− x)

[
cE

k2 − ∆̃
(qνkµ − ηµνq · k) +

cO

k2 − ∆̃
εµνρσqρkσ

]
. (2.3)

Here cE and cO (subscripts for “even” and “odd”) are, in general, functions of x and of

masses and couplings; ∆̃ in general depends on x and on masses but not on k and q. We

have kept only the linear dependence on q, because this is sufficient for computing EDMs.

Otherwise, we would not have been able to eliminate q-dependence from the denominators.

In the special case that S and V are real fields (for instance, a neutral Higgs boson and the

photon or Z), we can take cE and cO to be real. In the case that S and V are complex,

we label the vertex by the outgoing fields, and
(

ΓµνγSV

)∗
= ΓµνγS∗V ∗ .

In the case that the inner loop has only external vector lines — i.e., the W boson

EDM contributions — the calculation has already appeared in great generality in the

literature [35]. In this case the inner loop gives rise to a structure [41]

Γµνρ =

∫ 1

0
dx

1

x(1− x)

c̃O

k2 − ∆̃
εµνρσqσ, (2.4)

and adjoining the two W boson lines to the external fermion gives rise to an EDM.

Let us comment on other contributions to EDMs of elementary fermions and emphasize

the importance of Barr-Zee-type contributions. A one-loop diagram is possible only if a

new particle inside the loop has a lepton or baryon quantum number as in the case of

slepton or squark contributions in the MSSM. Some two-loop diagrams such as the so-called

rainbow diagrams also require new particles with lepton or baryon numbers. If we only add

new electrically charged fermions without these quantum numbers, two-loop Barr-Zee-type

diagrams are suppressed by only one power of small SM Yukawa couplings and are likely

to give the leading contributions. It is also the case when we introduce new electrically

charged scalars which do not mix with the Higgs boson h. Furthermore, in the case of

new scalars, such as stops, which have lepton or baryon quantum numbers but do not (or

hardly) couple to light fermions, the Barr-Zee contributions are dominant. The Barr-Zee-

type contribution from each of these new particles is gauge invariant by itself. This can be

understood from the fact that the inner loop of these particles can be replaced by the gauge-

invariant effective vertices corresponding to the operators of (2.1) and the expressions of

– 5 –
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EDMs are gauge invariant as long as the effective vertices are gauge invariant [42]. On the

other hand, if a new scalar is not only CP-violating but also mixes with the Higgs, there are

important two-loop diagrams other than the Barr-Zee type. In particular, the Barr-Zee

contribution from W boson loops gives nonzero EDMs in this case but the inclusion of

non-Barr-Zee diagrams is essential to obtain a gauge-invariant result. We encounter this

situation in the models discussed in section 7. A generic expression to include these non-

Barr-Zee contributions is presented in (4.6). However, in many cases, the Barr-Zee-type

diagrams give the most important contributions and are gauge invariant only by themselves.

2.1 Sign conventions

Before presenting concrete results, let us specify some conventions. We work in mostly-

minus signature and take the covariant derivative to be

Dµ ≡ ∂µ + igT aAaµ. (2.5)

In particular, for QED the Feynman rule for a charged fermion coupling to the photon is

−ieQγµ where Q = −1 for an electron. In some cases, the literature chooses the opposite

sign for the gauge field coupling in the covariant derivative, equivalent to a field redefinition

Aµ 7→ −Aµ.

The fermion EDM term in the Lagrangian is

L ⊃ − i

2
df sfσµνγ

5fFµν , (2.6)

leading to a matrix element

Mµ = −dfσµνγ5qν . (2.7)

Here σµν = i
2 [γµ, γν ]. Notice that if the form of (2.6) is kept fixed while the sign of

the covariant derivative in (2.5) is changed, the overall sign of the EDM df will change.

Alternatively, one could send Aµ 7→ −Aµ and change both signs. The computations of

EDMs that we present below agree with those in the literature except, in some cases, up

to signs. Choices of sign conventions are not always stated explicitly in the literature. We

have tried to consistently use (2.5) and (2.6) in all of our studies.

2.2 The outer loop

2.2.1 Neutral particle exchange

From the general form of ΓµνγSV (q, k), it is straightforward to compute the fermion EDM

induced by attaching the S and V lines to the fermion propagator. We treat the fermion

f as Dirac. Let us first assume that both S and V are neutral, and coupled to f via the

effective Lagrangian

L ⊃ Vµ sf
(
gVf γ

µ + gAf γ
µγ5
)
f + S sf

(
gSf + igPf γ

5
)
f. (2.8)

Thus the vertices have Feynman rules i(gSf + igPf γ
5) and i(gVf γ

ν + gAf γ
νγ5). In this case

gVf , g
A
f , g

S
f , and gPf are all real numbers. Because S and V are neutral, we should add

– 6 –
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Figure 2. Attaching the inner-loop vertex iΓµν to a fermion line to generate an electric dipole

moment.

Figure 3. Computation of the outer loop in the general case that S, V are complex fields. Again

we add two diagrams, but now the couplings are complex conjugates of each other.

together the two diagrams shown in figure 2. A useful identity is:∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

δ(x1 + x2 + x3 − 1)

x1A1 + x2A2 + x3A3
=

1

A3
j

(
A1

A3
,
A2

A3

)
, (2.9)

where

j(r, s) =
1

r − s

(
r log r

r − 1
− s log s

s− 1

)
(2.10)

is the same notation used in, for example, [20].

Computing the inner loop, we find the general result for the SV contribution to the

EDM:

dSVf = − 1

16π2m2
S

∫ 1

0
dx

1

x(1− x)
j

(
m2
V

m2
S

,
∆̃

m2
S

)
gVf
(
cOg

S
f − cEgPf

)
. (2.11)

In computing the cO term, it is useful to know that εµναβγαγβ = −i [γµ, γν ] γ5. Notice that

the axial-vector coupling of V to the fermion drops out of the EDM calculation.

2.2.2 Charged particle exchange

Next we consider the more general case, illustrated in figure 3, in which the fields S and

V are complex and their couplings change the incoming fermion f to a different fermion

f ′. This is relevant for considering diagrams where the inner loop produces a vertex like

γW±H∓. In this case our effective Lagrangian is

L ⊃ Vµ sf
(
gVf ′fγ

µ + gAf ′fγ
µγ5
)
f ′ + S sf

(
gSf ′f + igPf ′fγ

5
)
f ′ + h.c., (2.12)

– 7 –
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Figure 4. Scalars φ and ω running in the inner loop to produce an effective γS∗V vertex. If φ

and ω are indeed distinct, there are two additional diagrams with exchanged labels φ↔ ω. In the

case V = W±, there are additional diagrams involving a W+W−γ vertex (see e.g. [18]), which are

necessary to obtain a gauge-invariant result.

and the coupling constants are no longer real: their complex conjugates appear in the

hermitian conjugate terms with f and f ′ interchanged. The novel feature here, relative

to the neutral case, is that two diagrams appearing in figure 3 have couplings which are

complex conjugates of each other.

In this case, we find

dS
∗V+SV ∗

f = − 1

16π2m2
S

∫ 1

0
dx

1

x(1−x)
j

(
m2
V

m2
S

,
∆̃

m2
S

)[
Re(cS

∗V
O gS

∗
ff ′g

V
f ′f )+Im(cS

∗V
O gP

∗
ff ′g

A
f ′f )

−Re(cS
∗V

E gP
∗

ff ′g
V
f ′f )+Im(cS

∗V
E gS

∗
ff ′g

A
f ′f )

]
. (2.13)

2.2.3 Example couplings

To clarify our conventions, we have listed the couplings gV,A,S,P for gauge and Higgs bosons

to electrons, up quarks, and down quarks in appendix A.1. Among the more important

are that gVf = −Qfe for photons, gVf = − g
2 cos θW

(T3 − 2Qf sin2 θW ) for Z bosons, and

gSf = −mf/v for the Standard Model Higgs (where, throughout the paper, we use the

convention v ≈ 246 GeV).

2.3 The inner loop

2.3.1 Scalars in the inner loop

We begin with scalars running in the loop. In this case we always have cO = 0. In general,

we can consider a vertex with outgoing photon Aµ, vector Vν , and scalar S∗ generated

by two scalars φ and ω running in the loop, as depicted in figure 4 at left. (The asterisk

here denotes conjugate; both S∗ and V are off-shell.) At right is a similar diagram with

outgoing V ∗ν and S. (If V and S are neutral, the two diagrams contribute to the same

amplitude.) The Feynman vertex for an outgoing vector V ∗ν , incoming φ with momentum

pφ, and outgoing ω with momentum pω is taken to be −igVφω(pφ + pω)ν . In the general case

of distinct scalars φ and ω this corresponds to the Lagrangian

L ⊃ igVφωVµ

[
ω†∂µφ− (∂µω†)φ

]
+ igV

∗
ωφV

∗
µ

[
φ†∂µω − (∂µφ†)ω

]
, (2.14)

– 8 –
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where gV
∗

ωφ = (gVφω)∗. The Feynman vertex for an outgoing scalar S∗, incoming φ, and

outgoing ω is denoted igSφω. In the general case where φ and ω are distinct, this corresponds

to the couplings

L ⊃ gSφωSω†φ+ gS
∗

ωφS
†φ†ω, (2.15)

where gS
∗

ωφ = (gSφω)∗.

Having fixed our conventions, we find that the contribution of the diagram at left to

ΓµνγS∗V is given by (2.3) with the choices

cS
∗V

E

∣∣∣
φω

= −
eQφNc

8π2
gV
∗

ωφ g
S
φω x(1− x)2,

∆̃S∗V
∣∣∣
φω

=
xm2

ω + (1− x)m2
φ

x(1− x)
, (2.16)

while the diagram at right contributes to the conjugate vertex ΓµνγSV ∗ :

cSV
∗

E

∣∣∣
φω

= −
eQφNc

8π2
gVφω g

S∗
ωφ x(1− x)2,

∆̃SV ∗
∣∣∣
φω

=
xm2

ω + (1− x)m2
φ

x(1− x)
. (2.17)

In general, when φ and ω are distinct scalars and ω also carries a charge, there will be

additional contributions where the roles of the two scalars are interchanged. In the special

cases that both S and V are neutral, we may directly add the two contributions (2.16)

and (2.17) together. In particular, when V is a photon, we must take ω = φ, gS
∗

ωφ = gSφω ≡
gS , gVφω = gVωφ = −eQφ, so that the result collapses to

cE = Nc

e2Q2
φ gS

4π2
x(1− x)2, ∆̃ =

m2
φ

x(1− x)
. (2.18)

In the case of stop loops, this matches the result of [17], although as written it takes a

different form: we can exploit the x 7→ (1−x) symmetry of the 1
x(1−x)j(0,

z
x(1−x)) factor to

add odd powers of (2x − 1)2 to the numerator of the integrand, replacing x(1 − x)2 with

x(1− x)/2.

2.3.2 Fermions in the inner loop

Now we consider the case of general fermions circulating in the inner loop. Again, in

general two distinct fermions can appear, which we label ψ and χ as shown in figure 5.

To facilitate comparisons with the literature, against our better judgment we work with

four-component Dirac fermion fields. The scalar Feynman rule for a vertex with outgoing

scalar S∗, incoming fermion ψ, and outgoing fermion χ is taken to be i(gSψχ + igPψχγ
5),

corresponding to the Lagrangian

L ⊃ Ssχ(gSψχ + i gPψχγ
5)ψ + S† sψ(gS

∗
χψ + i gP

∗
χψγ

5)χ, (2.19)
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Figure 5. Fermions ψ and χ running in the inner loop to produce an effective γS∗V vertex. The

physics is very similar to that of figure 4.

where gS
∗

χψ = (gSψχ)∗ and gP
∗

χψ = (gPψχ)∗. Similarly, the Feynman rule for an outgoing vector

V ∗ν , incoming ψ, and outgoing χ is taken to be i(gVψχγ
ν + gAψχγ

νγ5), corresponding to the

Lagrangian

L ⊃ Vµsχ(gVψχγ
µ + gAψχγ

µγ5)ψ + V †µ
sψ(gV

∗
χψγ

µ + gA
∗

χψγ
µγ5)χ, (2.20)

where gV
∗

χψ = (gVψχ)∗ and gA
∗

χψ = (gAψχ)∗.

For the general fermion loop at left in figure 5 we find a contribution to ΓµνγS∗V :

cS
∗V

E

∣∣∣
ψχ

=−
eQψNc

4π2

[
mχx

2(1−x)
(
gSψχg

V ∗
χψ+igPψχg

A∗
χψ

)
+(1−x)3mψ

(
gSψχg

V ∗
χψ−igPψχg

A∗
χψ

)]
,

cS
∗V

O

∣∣∣
ψχ

=−
eQψNc

4π2

[
mχx(1−x)

(
igSψχg

A∗
χψ−gPψχgV

∗
χψ

)
−(1−x)2mψ

(
igSψχg

A∗
χψ+gPψχg

V ∗
χψ

)]
,

∆̃S∗V
∣∣∣
ψχ

=
xm2

χ+(1−x)m2
ψ

x(1−x)
. (2.21)

The diagram at right contributes to the conjugate vertex ΓµνγSV ∗ :

cSV
∗

E

∣∣∣
χψ

=−
eQψNc

4π2

[
mχx

2(1−x)
(
gS
∗

χψg
V
ψχ−igP

∗
χψg

A
ψχ

)
+(1−x)3mψ

(
gS
∗

χψg
V
ψχ+igP

∗
χψg

A
ψχ

)]
,

cSV
∗

O

∣∣∣
χψ

=−
eQψNc

4π2

[
mχx(1−x)

(
−igS

∗
χψg

A
ψχ−gP

∗
χψg

V
ψχ

)
−(1−x)2mψ

(
−igS

∗
χψg

A
ψχ+gP

∗
χψg

V
ψχ

)]
,

∆̃SV ∗
∣∣∣
χψ

=
xm2

χ+(1−x)m2
ψ

x(1−x)
. (2.22)

As in the scalar case, we should also keep in mind that if χ is charged (and is not the same

field as ψ) then there are two additional diagrams to consider.

In the special case that V is a photon, we must take χ = ψ. When we include the two

diagrams with ψ lines propagating in both directions (or equivalently, cross the external

photon lines), we find a total contribution:

cE = Nc
e2Q2gS

2π2
(1− x)(2x2 − 2x+ 1)mψ 7→ Nc

e2Q2gS
4π2

[
(1− x)2 + x2

]
mψ,

cO = −Nc
e2Q2gP

2π2
(1− x)mψ 7→ −Nc

e2Q2gP
4π2

mψ, ∆̃ =
m2
ψ

x(1− x)
, (2.23)
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where the 7→ indicates not equality but equivalence when integrated; due to the x↔ 1− x
symmetry of the remaining factors we have added (x− 1/2) to (1− x) to produce 1/2.

3 Natural SUSY framework

3.1 Naturalness and tuning

The framework of natural or effective SUSY is based on assuming that particles that play a

key role in electroweak naturalness are relatively light. At tree level, these are the higgsinos

and heavy Higgs bosons; at one loop, the stops, winos, and binos; and at two loops, the

gluinos. Most other superpartners have small couplings to the Higgs and can be quite heavy.

Naturalness puts stringent constraints on chargino parameters. If we wish to have a

supersymmetric explanation for the hierarchy problem without significant fine-tuning, both

|µ| and |M2| are bounded above. Here we will provide a crude, but useful, characterization

of this tuning (for recent detailed comments on tuning and the role of corrections, see [43]).

The higgsino mass is controlled by the µ-parameter, which is directly relevant for minimiza-

tion of the Higgs potential, and the LEP experiments constrain this as µ & 100 GeV [44–47].

The parameter µ appears in the tree-level Higgs potential, implying significant fine tuning

when µ� mZ [48]. In particular, the degree of fine-tuning is approximately [48]

∆
H̃

=
2 |µ|2

m2
h

≈ 10

(
|µ|

280 GeV

)2

. (3.1)

On the other hand, the wino mass affects the Higgs potential only at one loop; it is often

ignored because it plays little role in collider production, but nonetheless is present in a

fully natural spectrum (see e.g. [6]), with:

∆
W̃

=
3g2

2

4π2m2
h

|M2|2 log
Mmed

|M2|
≈ 10

(
|M2|

1.0 TeV

)2

, (3.2)

where mh ≈ 125 GeV is the light physical Higgs boson mass and Mmed is the scale at which

SUSY breaking is mediated to Standard Model superpartners. In our numerical estimate

we have assumed a low mediation scale Mmed ≈ 100 TeV (in other words, we expect the

tuning to be larger in many models).

The heavy Higgs fields of the MSSM play an underappreciated role in natural SUSY.

Their masses can be naturally large, but only when tan β is also large [49–51]. The tuning

associated with taking large mA depends somewhat on the details of how we lift the Higgs

mass to 125 GeV, but for our purposes we will simply estimate

∆A ≈
2m2

A

m2
h tan2 β

≈ 10
( mA

1.4 TeV

)2
(

5

tanβ

)2

. (3.3)

This is an additional tuning, independent of the tuning associated with µ (but perhaps

correlated with it, in particular models). In [51] it was argued that b→ sγ constraints shut

off the prospect of simultaneously sending mA, tanβ →∞ consistent with naturalness. As

we will see below, if CP phases are generic, similar statements can be made about EDM

constraints.
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Light stops are also crucial because top/stop loops generate the up-type Higgs soft

mass squared m2
Hu

. Then, the degree of fine-tuning can be estimated by the sizes of stop

soft masses mQ3 , mu3 [49, 52],

∆t̃ ≡

∣∣∣∣∣2δm2
Hu

m2
h

∣∣∣∣∣ ≈
∣∣∣∣∣3y2

t

4π2

m2
Q3

+m2
u3 + |At|2

m2
h

log

(
Mmed

mstop

)∣∣∣∣∣ , (3.4)

where At is the A-parameter corresponding to the top Yukawa coupling yt and mstop ≡
(mQ3mu3)1/2 is the geometric mean of the two stop soft masses.

The gluino also has an important effect on naturalness because its running effect on

stop masses is significant. The lower bound on the gluino mass from direct searches depends

on its decay chains, but even in scenarios relaxing the bound such as R-parity violation, the

gluino mass is still required to be heavier than 1.2 TeV [8]. Numerically, the naturalness

bounds on winos and gluinos are similar for low mediation scales, so the additional attention

usually paid to gluinos is mostly due to its large production cross section at hadron colliders.

The gluino has little effect on our discussion of EDMs. Conversely, winos are much more

difficult to search for at colliders, but will play a key part in EDM constraints.

The first and second generations of squarks and sleptons, which can give rise to one-loop

EDMs of light quarks and electrons, can be quite heavy in natural SUSY. Hence, we will

not discuss one-loop EDMs of light fermions in this paper. They can play important roles,

even in PeV-scale split SUSY, but the details will hinge on questions of flavor physics

involving more assumptions or model-building; see for instance [53, 54]. In the natural

SUSY context it is possible that their effects are quite small. When the cutoff scale of the

theory is very high, such as the grand unification scale, these heavy scalars are required

to be not heavier than O(10) TeV because m2
Q3

is driven to be tachyonic by the two-loop

renormalization group (RG) effect [55]. In this case, we still need some alignment of their

soft masses to satisfy flavor constraints. This scenario can be realized, for example, by

considering theories with multiple copies of the Standard Model gauge groups and SUSY

breaking provided by gauge mediation [56]. On the other hand, when the cutoff scale of the

effective theory with only light multiplets — stops, the left-handed sbottom, higgsinos and

gauginos — is of order 10 TeV, the first and second generations of squarks and sleptons can

be heavy enough to satisfy flavor constraints. Warped/composite natural SUSY [57–59],

where the top and left-handed bottom quarks, the Higgs fields, the gauge fields and their

superpartners are composite or partially composite (In the 5D language, they are localized

at the IR brane or propagate in the bulk of the extra dimension), corresponds to this case.

This class of models does not need to assume any flavor alignment or CP conservation and

gives a good example of the scenario discussed in the present work. However, we do not

assume any specific model below, and the effects that we discuss may coexist with one-loop

effects of squarks and sleptons in some models.

3.2 Higgs sector physics

One of the tightest constraints on supersymmetry is the experimental measurement of the

125 GeV Higgs boson mass. In the MSSM, at tree level, the Higgs mass is bounded above
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by the Z boson mass. To explain why the Higgs has been observed to be much heavier

than the Z boson, we must either assume large loop corrections to the Higgs mass or new

tree-level physics beyond the MSSM. These different scenarios have implications for the

parameter space of SUSY which in turn affect the ways in which EDMs may arise. We will

consider a few different scenarios below.

The first scenario is that the Higgs boson mass is lifted by loops of stops with large

left-right mixing parameter At. This is the most natural region of MSSM parameter space

in light of the data, although it still requires a high degree of fine tuning (see, for in-

stance, [60]). As we will see below, two-loop EDMs induced by stops are proportional to

Im(Atµ), so the large At scenario can lead to detectably large EDMs. Although we will

not discuss it in this paper, it is also possible to lift the Higgs mass through loops of new

vectorlike particles beyond the MSSM [61–66]. Many of the conclusions that we will draw

about EDMs induced by stops in the MSSM with large A-terms in section 5.1 below would

also apply to new particles beyond the MSSM in these theories.

The second scenario is that the physics that lifts the Higgs mass does not contribute

directly to EDMs. An example is new tree-level D-term contributions, which can come

from extra gauge interactions of the Higgs fields [67–69]. As discussed in ref. [30], after

integrating out the massive gauge fields, the effect of the extension is encapsulated in

dimension-six Kähler potential operators. We do not expect no new CP-violating phases

beyond the MSSM in this case (in particular, if the new gauge field is abelian there are

not even new charginos that could mix with the usual ones) and ignore the correction to

the Higgs potential below. Nonetheless, we can still draw conclusions about the expected

size of EDMs based on naturalness arguments in such a scenario. For example, an A-term

will be generated radiatively from the gluino mass, so unless some tuning cancels it, this

will provide a minimum size to the EDM even when the A-term is not as large as in the

scenario with highly-mixed stops that raise the Higgs mass.

The third scenario that we will consider is that the Higgs mass is lifted by new tree-

level F -term contributions. We treat these as dimension-five operators beyond the MSSM,

a scenario that has been referred to as the BMSSM [30]. These effective operators could

serve as an approximate stand-in for scenarios like [60, 70, 71] with new degrees of freedom

in the Higgs sector. We will discuss this scenario in detail in section 7 below, but introduce

the basic idea here. The BMSSM involves two new operators of effective dimension five.

The superpotential of the Higgs sector includes one such operator,

WHiggs = µHu ·Hd +
λ

M
(Hu ·Hd)

2 , (3.5)

where Hu ·Hd = H+
u H

−
d −H

0
uH

0
d and M is some cutoff scale of the Higgs sector. In addition,

λ is a dimensionless coupling constant which is complex in general. The other leading higher

dimensional operator comes from the corresponding soft SUSY breaking term,

Lsoft ⊃
λmSUSY

M
(Hu ·Hd)

2 , (3.6)

where mSUSY is a SUSY breaking mass parameter whose absolute value is O(100) GeV.

This is also complex in general. With the new operators of (3.5) and (3.6), the scalar
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potential of the Higgs sector is given by

VHiggs = VMSSM +
{

2ε1
(
|Hu|2 + |Hd|2

)
Hu ·Hd + ε2 (Hu ·Hd)

2 + h.c.
}
, (3.7)

where VMSSM is the MSSM Higgs sector scalar potential and

ε1 ≡
λµ∗

M
= |ε1|eiφ1 , ε2 ≡ −

λmSUSY

M
= |ε2|eiφ2 . (3.8)

Note that the new operators provide two additional CP violating phases. We assume that

the cutoff scale of the Higgs sector is larger than several TeV. Then, (the absolute value of)

the two parameters ε1,2 are small. If we turn off ε1,2, this scenario reduces to the MSSM.

Hence, this is the most general case which we consider in this paper. A detailed discussion

of how the BMSSM scenario modifies the mass spectrum of higgses, charginos, neutralinos,

and stops is presented in section 7.1.

4 Calculations of the EDMs and experimental constraints

There are three main classes of experiments in EDM searches: the EDMs of paramag-

netic atoms/molecules, diamagnetic atoms and hadrons (for reviews of the EDMs, see e.g.

refs. [72, 73]). They are distinguished in terms of the underlying physics leading to EDMs.

In every case, the experimental measurement does not only directly probe EDMs of elemen-

tary fermions (as discussed in section 2), but a more general combination of CP violating

operators, generally including four-fermion operators. The world record in paramagnetic

systems has been given by the measurement of the EDM of the paramagnetic ThO molecule

by the ACME collaboration [13]. For diamagnetic atoms and hadrons, the best limits have

been provided by the mercury and neutron EDMs respectively. Among these three classes

of experiments, the EDMs of paramagnetic atoms and molecules do not suffer from hadronic

uncertainty in their calculations. Non-observation of these EDMs gives unambiguous and

stringent bounds on possibilities for physics beyond the Standard Model. We first consider

this class of measurements and then discuss the mercury and neutron EDMs.

4.1 Paramagnetic EDMs: operators probed and experimental status

The EDMs of paramagnetic systems are dominated by the electron EDM de and the

electron-nucleon interaction. The fermion EDM was defined in equation (2.6). The CP-odd

electron-nucleon interaction is

LeN ⊃ −iCS ēγ5eN̄N . (4.1)

Here, we have suppressed dependence on the isospin. The effective electron EDM as

measured with the paramagnetic ThO molecule, which is normalized to reduce to the

electron EDM in the case with CS = 0, is then given by [74]

dThO ≈ de + kCS , (4.2)

where k = 1.6× 10−15 GeV2 e cm. The experimental limit is imposed on the absolute value

of dThO. In paramagnetic systems, the effect of the electron EDM is enhanced and strongly

constrained from the measurement.
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The current limit of the effective electron EDM measured in paramagnetic systems has

been provided by the ACME experiment [13]:

|dThO| < dmax
e ≡ 8.7× 10−29 e cm. (4.3)

Projected future limits from improvements of ACME are [75]

ACME II : |dThO| < 0.5× 10−29 e cm, (4.4)

ACME III : |dThO| < 0.3× 10−30 e cm. (4.5)

Some of the important improvements that will play a role in ACME II have already been

demonstrated [76], and a new result is expected within the next year.

4.2 Paramagnetic EDMs: computation

4.2.1 The electron EDM

Let us consider contributions to the electron EDM. We will not consider the one-loop

diagrams with a selectron, as mentioned above, because sleptons play little role in natural

SUSY and incorporating them would require a careful treatment of flavor physics (but

see [53, 54]). There are many two-loop contributions to the electron EDM which can be

computed using the results we presented in section 2 and arise from diagrams shown in

figure 6 (there are also mirror graphs).4 These include effects of stops, tops, charginos, and

W bosons running in the inner loop, connecting to the outer loop by gauge fields and Higgs

bosons. Contributions with a Z boson [21] are small for the electron EDM, due to the small

vector coupling of the electron to Zs; they are more important for the EDMs of quarks.

The diagrams with stops, tops, charginos, and charged Higgs bosons in the inner loop

are all special cases of the results presented in section 2; specific choices of couplings to plug

in to the formulas are presented in more detail in appendix A and some selected results for

EDM contributions are presented in appendix B. The diagram with W bosons in the inner

loop cannot be derived from the general results of section 2, due to additional complications

associated with gauge invariance and the W couplings to the external fermions. In the

MSSM, this contribution appears at a higher loop order, but in the BMSSM with tree-level

CP violation in the Higgs sector there is a nonzero two-loop contribution in the present

setup and we cannot neglect it. The calculation of this contribution was initiated by Barr

and Zee in their original paper [15]. Ref. [42] has considered contributions from Nambu-

Goldstone modes and non-Barr-Zee-type diagrams and obtained a gauge invariant result

for the EDM. With our notation, the expression is

df
e

∣∣∣∣
W

= −Qf
4α

(4π)3

1

v

3∑
i=1

{(
3 +

m2
Hi

2m2
W

)
f

(
m2
W

m2
Hi

)
+

(
5−

m2
Hi

2m2
W

)
g

(
m2
W

m2
Hi

)}
× Im

{(
gSHif̄f + igPHif̄f

)
(− sin(α− β)O1i + cos(α− β)O2i)

}
,

(4.6)

4Ref. [77] has considered the rainbow diagrams. However, these diagrams give sub-dominant contribu-

tions in our setups.
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Figure 6. The two-loop diagrams dominantly contributing to the EDM of a fermion f (there are

also mirror graphs). The two top left diagrams include stop loops. The top right diagram denotes

contributions of top quark and chargino loops. The bottom left diagram shows the W EDM

contribution. The bottom middle diagram includes W boson loops. The bottom right diagram

shows the contribution of top/bottom quark loops through charged Higgs bosons.

𝐻𝑖

𝑓 𝑓

𝑓′ 𝑓′

𝑏𝐿 𝑏𝑅 ℎ∓

 𝑡𝑅
∗  𝑡𝐿

∗

𝐻𝑢
0

Figure 7. The CP-odd four fermion operators induced by the tree-level Higgs boson exchange

(left). Without new CP phases beyond the MSSM, the four fermion operators come from the

wrong-Higgs Yukawa coupling of bottom quarks induced by a stop/higgsino loop (right).

where the loop functions f and g are

f(z) =
z

2

∫ 1

0
dx

1− 2x(1− x)

x(1− x)− z
log

x(1− x)

z
,

g(z) =
z

2

∫ 1

0
dx

1

x(1− x)− z
log

x(1− x)

z
. (4.7)

4.2.2 The CP-odd electron-nucleon interaction

The electron-nucleon interaction also contributes to the EDMs of paramagnetic

atoms/molecules and also the EDMs of diamagnetic atoms and hadrons. To derive the

coefficient CS , we first consider CP-odd four fermion operators,

LFour−Fermi =
∑
f,f ′

Cff ′
(
f̄f
) (
f̄ ′ iγ5f

′) , (4.8)
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which generate the electron-nucleon interaction. From the physical Higgs boson couplings

with a Standard Model fermion f (A.5), these operators are induced by the tree-level Higgs

boson exchange as shown in the left diagram of figure 7. The coefficients Cff ′ are given by

Cff ′ =
3∑
i=1

gS
Hif̄f

gP
Hif̄ ′f ′

m2
Hi

. (4.9)

From these interactions, we find the coefficient of the electron-nucleon interaction,

CS ≈ Cde
29 MeV

md
+ Cse

49 MeV

ms
+ Cbe

74 MeV

mb
, (4.10)

where we have used ms〈N |s̄s|N〉 ' 49 MeV and mb〈N |b̄b|N〉 ' 74 MeV [78].

Without new CP phases beyond the MSSM, the CP-odd four fermion operators come

from the wrong-Higgs Yukawa couplings [22]. As shown in the right diagram of figure 7,

finite one-loop corrections of gauginos or higgsinos induce the wrong-Higgs Yukawa coupling

of bottom quarks,

Lbottom = − ybH0
d b

cbL − y′bH0 †
u bcbL + h.c. (4.11)

We present the detailed formulas in appendix A.2 based on [19]. The contribution

from the CP-odd four fermion operators is important for the EDMs of paramagnetic

atoms/molecules for a large tan β in the MSSM.

4.3 The neutron EDM: operators probed and experimental status

The most famous contribution to the neutron EDM comes from the theta term in the

Standard Model. This contribution can be removed by the usual Peccei-Quinn (PQ) sym-

metry [79] via a dynamical axion, which we assume here. In this case, the neutron EDM

is dominated by the EDMs and the CEDMs,

LCEDM = −igs
d̃f
2
f̄σµνγ5fG

µν , (4.12)

of up and down quarks. Here, gs is the SU(3)C gauge coupling and Gµν ≡ GaµνT
a (a =

1, · · · , 8) is the gluon field strength. In addition, the dimension-six Weinberg operator [80],

Lw =
1

3
wfabcGaµνG̃

νρbG µc
ρ , (4.13)

where fabc is the structure constant and G̃µν = 1
2ε
µνλσGλσ, and the four-fermion op-

erators (4.8) may give important contributions. Although these contributions suffer from

large QCD uncertainties, consistent calculations using QCD sum rule techniques have been

developed [23, 81, 82]. The result of the neutron EDM is summarized as [24]

dn = ∆dn(dq, d̃q) + ∆dn(w) + ∆dn(Cff ′) , (4.14)

∆dn(dq, d̃q) = (1.4± 0.6) (dd − 0.25 du) + (1.1± 0.5) e (d̃d + 0.5 d̃u) , (4.15)

∆dn(w) = ±e (20± 10) MeV × w , (4.16)

∆dn(Cff ′) = ±e 2.6× 10−3 GeV2 (Cbd + 0.75Cdb) /mb , (4.17)
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Figure 8. The one-loop contribution to the CEDM of a fermion f .

where dq, d̃q (q = u, d) are evaluated at the electroweak scale and these contributions have

been reliably calculated. The lattice calculation has also presented the result of the EDM

part [83] which is consistent with the QCD sum rule calculation. The calculations of the

Weinberg operator (4.16) and the four-fermion operators (4.17) still have large uncertainty

and even the signs are not determined. The Weinberg operator is evaluated at 1 GeV.

The current limit on the neutron EDM is [84]:

|dn| < dmax
n ≡ 2.9× 10−26 e cm. (4.18)

4.4 The neutron EDM: computation

The quark EDMs are generated by two-loop diagrams shown in figure 6, as in the case of

the electron EDM. For the CEDMs, the diagrams are similar to the ones shown in figure 6

with photons replaced by gluons. For instance, the stop contribution is expressed as

d̃q =
αs

64π3

3∑
i=1

gPHiq̄q
m2
Hi

2∑
a=1

ΓHi t̃∗a t̃aF (m2
t̃a
/m2

Hi) . (4.19)

The couplings ΓHi t̃∗a t̃a are defined in appendix A.3. The Weinberg operator is generated

by the two-loop gluino or higgsino exchange diagram [85]. However, the RG evolution of

this operator suppresses its contribution [86, 87]. Another contribution comes from the

CEDM of the bottom quark, which generates the Weinberg operator through a threshold

correction at the scale mb [23],

∆w(1 GeV) = 0.72w(mb) = −0.72× g3
s d̃b(mb)

32π2mb
= −0.68× g3

s d̃b(mZ)

32π2mb
. (4.20)

The b-quark CEDM is generated by one-loop diagrams with a higgsino exchange [88] as

shown in figure 8. The details of the calculation are presented in appendix B.3. The four-

fermion operators are generated by the neutral Higgs boson exchange and the coefficients

Cbd,db are given by (4.9).

4.5 The mercury EDM: operators probed and experimental status

The most important contribution to the EDMs of diamagnetic systems such as mercury is

given by the Schiff moment which mainly comes from CP-odd pion-nucleon interactions,
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LπNN ⊃ ḡ(0)N̄τaNπa + ḡ(1)N̄Nπ0. The coupling ḡ(1) is induced by the CEDMs d̃u,d [89]

and the four quark operators Cq1q2 . The coupling ḡ(0) is induced by the CEDMs d̃u,d.

The mercury EDM also has contributions from the electron EDM de and the CP-odd

electron-nucleon interactions. The resulting expression of the mercury EDM has been

estimated as [24]

dHg = 7× 10−3 e (d̃u − d̃d) + 10−2 de

− 1.4× 10−5 eGeV2

(
0.5Cdd
md

+ 3.3κ
Csd
ms

+ (1− 0.25κ)
Cbd
mb

)
+ 3.5× 10−3 eGeVCS + 4× 10−4 eGeV

(
CP −

〈σn〉Hg − 〈σp〉Hg

〈σ〉Hg
C ′P

)
,

(4.21)

where κ ≡ 〈N |mss̄s|N〉/220 MeV = 0.22 ± 0.045 ± 0.068 [78]. We have corrected

the relative coefficient of C ′P compared to CP from that of [24] according to [90];

it is approximately −1. The electron-nucleon interactions CP , C ′P are defined as

LeN ⊃ CP ēeN̄ iγ5N + C ′P ēeN̄ iγ5τ3N . They are given by

CP ' − 0.38 GeV
∑

q=c,s,t,b

Ceq
mq

,

C ′P ' − 0.81 GeV
Ced
md
− 0.18 GeV

∑
q=c,s,t,b

Ceq
mq

.

(4.22)

Note that the central value is shown in each term of (4.21) which has large uncertainty.

For example, the coefficient of de in the expression is highly uncertain [91]. Below, we will

use the estimated coefficient of d̃d in the above formula to make approximate comparisons

of the relative reach of the mercury EDM, electron EDM, and b → sγ for new physics.

However, in presenting exclusion plots in figures, our numerical results for the mercury

EDM use a more conservative constraint on the quark CEDMs d̃u, d̃d obtained by a likeli-

hood analysis explained in appendix C. We present results for two different nuclear physics

calculations of how dHg depends on pion-nucleon couplings: case (i) based on [92] and

case (ii) based on [93]. In both cases we marginalize over other uncertainties, for instance

arising from QCD sum rule estimates of how pion-nucleon couplings depend on quark

CEDMs. The two scenarios (i) and (ii) produce significantly different results, indicating

that the interpretation of the mercury EDM is overwhelmingly dominated by uncertainties

in nuclear physics that will have to be addressed by theorists in order to understand what

any future experimental observation of a nonzero result is telling us about new physics.

The bound that we find from scenario (ii) could be interpreted as conservative.

The most recent experimental limit on the mercury EDM is [14]

|dHg| < dmax
Hg ≡ 7.4× 10−30 e cm. (4.23)

All of the necessary ingredients to compute the mercury EDM have already been discussed

in the previous subsections.
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5 Stop contributions

We now numerically study implications on the parameter space of CP-violating natural

SUSY from the present and projected EDM measurements. As discussed in section 3.2, we

consider three scenarios to lift up the Higgs boson mass. The first scenario is the MSSM

with near-maximal stop mixing. The large At-term with a CP-violating phase

φt ≡ arg(Atµb
∗
µ) (5.1)

leads to sizable EDMs (because we can always rotate Hd to remove a phase in bµ, we will

sometimes simply denote this phase by arg(Atµ)). The second scenario is to introduce

extra gauge interactions of the Higgs fields. After integrating out the massive gauge fields,

the Higgs mass is increased by dimension six operators in the Kähler potential of the Higgs

fields. As in the first scenario, there is no new CP-violating phase beyond the MSSM. The

A-term can now be relatively small, but it will nonetheless be induced by renormalization

group effects, so the phase φt originates from arg(Mg̃µ). Finally, we consider the scenario

where the new Higgs interactions of (3.5) and (3.6) lift the Higgs boson mass. In this

scenario, we concentrate on two new phases associated with the new Higgs interactions.

Because the physics of these phases is rather different from that of φt, we postpone the

discussion until section 7. Thus, in the remainder of this section, we consider φt 6= 0 and

set all other CP-violating phases in the MSSM to zero for simplicity.

We find that one of the most important effects of the stops is the generation of quark

CEDMs, which are strongly constrained by the experimental tests of the mercury EDM.

These contributions may be readily understood through the general 2-loop formulas of

section 2. (The first calculations may be found in [17].) The CEDMs are generated with

an inner loop with two external gluons and one pseudoscalar Higgs boson A0. In terms of

the stop mass eigenstates, the relevant couplings are the diagonal ones:

L ⊃ gA0

t̃a t̃a
A0t̃†at̃a, (5.2)

where in the small-mixing limit,

gA
0

t̃a t̃a
≈ (−1)a+1y2

t v
|µAt|

m2
t̃1
−m2

t̃2

arg(µAt). (5.3)

This coupling may be substituted where the general gSφω appears in equation (2.16). More

general expressions for the couplings of stops to the Higgs, valid also in the presence of

additional Higgs-sector phases, are given in the appendix A.3.

From this we can extract, based on our general results, the CEDM of the down quark:

d̃d =
αs

64π3

md

m2
A

y2
t tanβ

|µAt|
m2
t̃1
−m2

t̃2

sin(φt)
[
F (m2

t̃1
/m2

A)− F (m2
t̃2
/m2

A)
]
, (5.4)

where F (z) =
∫ 1

0 dx
x(1−x)
z−x(1−x) log x(1−x)

z . A similar expression holds for the up quark, but is

suppressed in the large tan β limit. These expressions may be easily understood in the limit

mt̃ � mA by first integrating out the stops to produce an effective A0GaµνG
aµν operator
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and then computing the mixing of this operator with the quark CEDM, using the limit

F (z) → − 1
6z log z for z � 1. The mercury EDM is approximately dHg/e ≈ −7 × 10−3d̃d

(assuming the central value) whereas the electron EDM de/e is controlled by a formula

similar to the right-hand side of (5.4) but with αsmd → 2NcQ
2
tαme. (The factor of 2

comes from tr(T aT b) = 1
2δ
ab in the CEDM case.) In other words, for a given point in

parameter space, we expect the ratio of mercury EDM to electron EDM (as inferred from

ThO) to be about ∣∣∣∣dHg

de

∣∣∣∣ ≈ 7× 10−3αsmd

2NcQ2
tαme

≈ 0.4, (5.5)

whereas the measured bound for mercury currently reaches to EDMs that are smaller by

a factor of about ∣∣∣∣dmax
Hg

dmax
e

∣∣∣∣ ≈ 7.4× 10−30e cm

8.7× 10−29e cm
≈ 0.09, (5.6)

so the mercury measurement is currently more constraining for stops by a factor of slightly

more than 4 in the EDM or ∼ 2 in stop mass. However, as described before, the mercury

EDM suffers from large theoretical uncertainty and it may not be appropriate to assume

the formula using the central value like dHg/e ≈ −7×10−3d̃d. More careful treatments will

be performed in numerical studies.

Although the CEDM, via the measurement of mercury, is likely to be currently the

strongest EDM constraint on stops, in the near future an improved bound on the electron

EDM from the ACME collaboration is expected to surpass the current constraint from

mercury.

5.1 The MSSM with the near-maximal stop mixing

We first consider the MSSM with large At terms in order to explain the 125 GeV Higgs

boson mass with relatively light stops (see, for instance, ref. [25] and references therein).

As discussed above, the dominant effect will be two-loop EDMs and CEDMs, which for

down-type fermions are tan β-enhanced. In addition, a stop/higgsino loop induces the

wrong-Higgs Yukawa coupling of bottom quarks which generates a CP-odd four fermion

operator as in (4.9) and (A.12). From the expression of (4.10), the contribution from the

CP-odd electron-nucleon interaction is given by

CS ≈ Cbe
74 MeV

mb
. (5.7)

Then, we can discuss current and projected constraints on stop masses from the param-

agnetic ThO molecule in terms of the effective EDM (4.2). For the neutron EDM, there

are the stop contributions to the quark EDMs and the CEDMs, together with CP-odd

four fermion operators, with total given in (4.14). The mercury EDM constraint can be

calculated from the likelihood analysis given in appendix C.

We now numerically analyze current and projected constraints on stop masses from

the EDM of the paramagnetic ThO molecule and the neutron and mercury EDMs. For

simplicity, we assume mQ3 = mu3 = mstop. For each choice of mstop, tanβ, and mA, the

absolute value of At is fixed to obtain the correct Higgs boson mass. We use the SusyHD
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Figure 9. EDM constraints on the stop parameter space in the MSSM, where stop loops with

large A-term lift the Higgs mass to 125 GeV. The horizontal axis shows the common stop soft mass

mstop = m̃Q3 = m̃u3 . At left we fix mA = 400 GeV and vary tan β on the vertical axis; at right

we fix tan β = 10 and vary mA on the vertical axis. In the brown/green shaded region, no choice

of At is sufficient to achieve the correct Higgs mass. In the rest of the parameter space, at each

point we choose At to achieve mh = 125 GeV. Regions of parameter space to the left of the solid

blue contours are excluded by measurements of ThO. Red solid and dashed contours denote the

mercury EDM constraints for the cases (i) and (ii) discussed in appendix C), respectively. The blue

dashed and dot-dashed contours (“ACME II” and “ACME III”) are future projections. The dotted

green lines display the stop fine tuning (3.4) and tree-level Higgs fine tuning (3.3). We have fixed

|µ| = 350 GeV in these figures.

code [94] for this calculation of the Higgs boson mass. There are still moderately large

theoretical uncertainties in Higgs mass calculations; see [95, 96] for recent discussions. If

an EDM is detected in the future, and we wish to interpret it in the MSSM, a careful

assessment of such uncertainties would be desirable. For now, we expect that our results

give a reasonably accurate view of the constraints on parameter space.

Figure 9 shows constraints on stop masses, tan β, and mA in the MSSM with near-

maximal stop mixing. In the dark shaded region, no choice of At suffices to obtain mh =

125 GeV. Away from this region, At is always selected to obtain the correct Higgs mass.

We take |µ| = 350 GeV and assume that the masses of the first and second generations of

squarks, the right-handed sbottom and sleptons are 10 TeV and the three gaugino masses

are 2 TeV. When varying tan β we fix mA = 400 GeV and when varying mA we fix tan β =

10. The plot illustrates that the strongest current constraints come from measurements of

ThO and Hg, ruling out stops above 2 to 3 TeV over a wide range of moderately large tan β

and pseudoscalar Higgs masses below the TeV scale. One can evade the constraint by lifting

the pseudoscalar Higgs mass above about 3 TeV, but at the price of introducing additional
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Figure 10. EDM constraints on stop parameter space. This is very similar to figure 9, except that

we no longer assume the MSSM, so the A-term is not constrained by the Higgs boson mass. Instead,

we take into account the expected size of an A-term induced by RG running from the gluino mass,

as in (5.8). The red solid and dashed contours (“Hg (i)” and “Hg (ii)”) denote the mercury EDM

constraint for the two nuclear physics computations discussed in appendix C.

tree-level fine-tuning in the Higgs sector. In the MSSM, achieving a large enough Higgs

mass always requires worse than percent-level tuning from stop loops, but for large CP

phases this is made significantly worse by the EDM constraint. The figures also illustrate

that the upcoming update from ACME II is expected to significantly improve over the

current constraint from mercury, while ACME III will push the bounds on stop masses

out to nearly 10 TeV. The neutron EDM constraint is not shown because it is currently

substantially weaker than the ThO and Hg constraints.

Because EDMs are dimension six operators, bounds on masses of new particles roughly

scale as the square root of the sensitivity to the EDM. However, for fixed masses, the EDM

measurements directly probe smaller CP violating phases. Stop and pseudoscalar Higgs

masses near 1 to 2 TeV are currently constrained only for nearly-maximal CP violating

phases, but ACME III constrain such masses to have percent-level phases or smaller. This

is potentially a very powerful constraint on models of supersymmetry breaking.

5.2 Extra gauge interactions

Our second scenario raises the Higgs mass through new interactions that do not significantly

influence the EDMs, for example by new abelian gauge interactions of the Higgs fields.

After integrating out the massive gauge fields, the Higgs mass is uplifted by dimension six

operators in the Kähler potential of the Higgs fields. As in the first scenario, there is no

new CP-violating phase beyond the MSSM. Now we no longer have the constraint that At
must be chosen to achieve a correct Higgs mass. However, the gluino mass Mg̃ leads to a
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sizable At by the running correction,

δAt ≈ −
2

3π2
g2
sMg̃ log

(
Mmed

Mg̃

)
≈ −790 GeV

(
Mg̃

2 TeV

)
log(Mmed/Mg̃)

log(50)
. (5.8)

Here, gs is the color gauge coupling. The choice of Mg̃ at 2 TeV is motivated by the

approximate upper end of current collider searches, and involves mild tuning for electroweak

symmetry breaking [12, 43]. That is, we necessarily expect this size of At without unnatural

tuning. (See section 3.1 of [51] for a more detailed discussion of the expected size of At
induced from the gluino mass, including a figure showing results including a more careful

solution of the RGEs.)

Figure 10 shows the constraints on stop masses and tan β from the paramagnetic EDM

and the mercury EDM in the scenario with extra gauge interactions of the Higgs fields. The

curves are similar to those shown in the MSSM case, but due to the smaller values of the

A-terms considered, the reach is more modest. Nonetheless, again the mercury EDM (for

the case (i)) already constrains the region where stops and pseudoscalars are below 1 TeV,

and future ACME improvements (labeled “ACME II” and “ACME III”) will push toward

large mass regions with tuning of a part in a thousand, and to CP violating phases of order

10−2 in the sub-TeV mass region. In this scenario, because the Higgs mass is assumed to

be decoupled from the spectrum of stops, there is at least a chance that a fully natural

model could be realized. Figure 10 shows that in the region of possibly low fine-tuning,

order-one CP violating phases are already excluded.

5.3 Comparison to the b → sγ constraint on stops and higgsinos

The EDM induced from stop loops depends on the off-diagonal terms in the stop mass ma-

trix, being proportional to arg(Atµb
∗
µ). A number of other precision CP-even observables

depend on the value of Atµ, and it is interesting to ask how the new physics reach of EDMs

compares to that of such observables. Interestingly, these observables depend crucially on

left-right stop mixing, and thus are nonzero even in the “stop blind spot” region of param-

eter space in which the lighter stop mass eigenstate decouples from the Higgs boson. The

blind spot is difficult to probe with traditional precision electroweak observables [97, 98].

The deviation of the b → sγ branching ratio from that predicted by the Standard

Model is one interesting new physics observable induced by loops of stops and higgsinos.

The leading dependence is roughly [99]

∆bsγ ≡
δBr(B → Xsγ)

Br(B → Xsγ)SM
≈ 1.28 tanβ

Atµm
2
t

m2
Q̃3
m2
ũ3

log
m
Q̃3
mũ3

µ2
. (5.9)

The recently updated Standard Model prediction [100] is Br(B → Xsγ)SM ≈ (3.36 ±
0.23) × 10−4 while the experimental result is Br(B → Xsγ)exp ≈ (3.43 ± 0.21 ± 0.07) ×
10−4 [101, 102]. (The Standard Model result has moved closer to the central value of the

experiments.) Ignoring the slight asymmetry between positive and negative corrections,

we can take the experimental bound to be |∆bsγ | . ∆max
bsγ ≡ 0.2 at 95% CL.

Thus, in the ratio of the deviation of the b → sγ rate from the Standard Model

prediction and the mercury (or electron) EDM, the magnitude of Atµ and tanβ drop out.
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In the limit µ ≈ mA, mt̃1
≈ mt̃2

� mA, the expressions simplify even more, and we find:

∣∣∣∣ dHg

∆bsγ

∣∣∣∣ ≈ 2.3× 10−26 sin(φt) e cm ≈ 620 sin(φt)

∣∣∣∣∣ dmax
Hg

∆max
bsγ

∣∣∣∣∣ . (5.10)

In other words, in the region of parameter space where the stops are significantly heavier

than the pseudoscalar Higgs, the CP phase φt must be of order 10−3 or smaller in order for

the b→ sγ constraint to be as important as the mercury EDM constraint. In the opposite

limit mA � mt̃1
,mt̃2

, the EDM decouples while the b→ sγ constraint remains unchanged.

As a result, the b→ sγ constraint is stronger in this region of parameter space, though for

order-one CP violating phase and stop masses near a TeV it does not dominate until mA &
40 TeV, well outside the natural range of parameters even for quite large values of tan β.

The experimental bound on b → sγ is often viewed as one of our most important

indirect constraints on natural realizations of supersymmetry [51, 103, 104]. Here we have

shown that, in any scenario in which the phase of Atµ is larger than about 10−3, the EDM

constraint will be even more important. This tightens the argument of [51] that there can

be no natural decoupling of the heavy Higgs bosons at large tan β consistent with precision

bounds, unless one can build a model in which the CP phase is naturally very small.

6 EDM constraints in the chargino sector

In this section we will discuss constraints from electric dipole moments arising from the

relative phase between wino and higgsino masses, i.e. those proportional to arg(µM2b
∗
µ).

These arise from charginos running in 2-loop Barr-Zee-type diagrams [19, 105]. In the

context of split supersymmetry, in which we decouple all new particles except neutralinos,

charginos, and gluinos, the dominant contributions arise from two-loop Barr-Zee diagrams

involving exchange of the light Higgs boson [20, 106]. As emphasized in [36], similar bounds

would play a role in the much more general context of vectorlike fermion dark matter

coupled to the Higgs boson. In the larger context of natural supersymmetry, the additional

Higgs bosons play a major role and can mediate the dominant chargino effects at large

tanβ [21]. We will take these two scenarios in turn, first focusing on the split-SUSY-like

limit of a single light Higgs boson and then turning on the effects of additional Higgs bosons.

Because charginos carry no color charge or flavor charge, they do not lead to two-loop

CEDMs of quarks or to four-fermion operators. Only their two-loop contributions to the

EDMs de and dq will play a role. As a result, they influence the mercury EDM only through

de, which is more tightly constrained by the ThO EDM.

6.1 EDM constraints on charginos alone

If we have only one light Higgs, as in split supersymmetry, the chargino EDM is induced

through two-loop diagrams of γh, Zh, and WW type, as computed in [20]. The Zh diagram

is highly subleading for the electron EDM, but relevant for quark EDMs. We include all

contributions. As explained in [106], the leading logarithmic dependence of the calculation
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Figure 11. Constraints on chargino parameter space from the ACME constraint (and future

projections) on the electron EDM de, in the limit when all particles except charginos and neutralinos

are decoupled. Notice that masses are in TeV. In both figures the CP-violating phase is taken to

be π/4. The left figure shows the case tan β = 2 whereas the right figure shows tan β = 10.

Regions to the lower left of the blue curves are (or will be) probed by the ACME measurement.

We have de ∝ sin 2β ∼ 1/ tanβ, so the constraints are weaker at large tan β. Dotted green lines

show contours of fine tuning arising from the effects of the higgsino and wino masses on the Higgs

potential at tree level and one loop, respectively. The dark orange shaded regions involve a tuning

purely within the chargino sector (unrelated to electroweak naturalness) and so are disfavored.

can be understood by first integrating out the charginos at one loop to obtain

e2

16π2
(arg detMC̃)FµνF̃

µν =
e2

8π2

Im(g2M2µHu ·Hd)

|M2µ− g2Hu ·Hd|2
FµνF̃

µν (6.1)

and then considering the one-loop anomalous dimension mixing this operator with a

fermionic EDM.

In figure 11 we show contours in the (M2, µ) plane corresponding to the current ACME

bound, |de| < 8.7 × 10−29e cm, as well as to projected future results (labeled “ACME II”

and “ACME III”). Because the EDM contribution decreases at large tan β, we present

two different results at tan β = 2 and 10 respectively. We can see that in either case, the

parameter space with phase arg(µM2b
∗
µ) = π/4 and chargino masses below 1 TeV is already

excluded. The next improvement will probe masses above 10 TeV. This is an extremely

powerful constraint on supersymmetric parameter space. Some clues to the interesting

range of values for M2 and µ come from naturalness, gauge coupling unification, and dark

matter. The higgsinos play a crucial role in precision unification of gauge couplings, but

they can be as heavy as 1000 TeV while maintaining precise unification [107].

As discussed in section 3.1, naturalness puts stringent constraints on chargino pa-

rameters, preferring higgsinos below 300 GeV and winos below 1 TeV if we wish to avoid

more than a factor of 10 tuning. To illustrate the degree of fine-tuning, we depict
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∆
H̃,W̃

= 30, 1000 with dotted green lines in figure 11. We see that in the natural region of

chargino parameter space, large CP-violating phases are already excluded!

A secondary naturalness consideration is that if the higgsino is much heavier than the

wino, there is a one-loop threshold correction to the wino mass [108–110],

δM∗2 =
g2

16π2
µ sin(2β)

[
log(m2

A/|µ|2)

1− |µ|2/m2
A

]
, (6.2)

where we have taken bµ real so that sin 2β = 2bµ/m
2
A. In theories where µ is on the same

order as the scalar soft masses — e.g. when the Giudice-Masiero mechanism makes it of

order m3/2 and the soft masses are as well — the term in brackets is order-one. Even in the

(mini-)split supersymmetry context, where we assume a fine tuning of the Higgs mass, it

would take an additional fine tuning — and one without obvious anthropic motivation — to

make the wino much lighter than this threshold correction. The shaded dark orange region

at the upper left in figure 11 is the region excluded by this “naturalness” consideration

(taking m2
A = 2|µ|2 for concreteness). The region in which |M2| � |µ| is disfavored by

similar logic, but it has generally been of less theoretical interest and so we cut off the plot

at values of M2 too low for it to be relevant.

A final consideration is dark matter. In the limit |M1|, |µ| � |M2|, the thermal relic

abundance of wino dark matter will overclose the universe unless |M2| . 3 TeV. In the

opposite limit |M1|, |M2| � |µ|, the thermal relic abundance of higgsino dark matter will

overclose the universe unless |µ| . 1 TeV. In more general mixed scenarios, a sizable admix-

ture of at least one of wino or higgsino should be present in the lightest neutralino, because

binos alone have no significant annihilation channels. As a result, thermal neutralino dark

matter is always expected to have a mass below about 3 TeV. In many nonthermal dark

matter scenarios, for instance in cases of moduli or gravitino decays, one produces more

dark matter than in the thermal context. As a result, if the lightest neutralino is stable,

this provides a strong preference for the parameter space in the lower-left corner of fig-

ure 11. (The literature on neutralino dark matter is vast; some useful entry points for

physics mentioned in this paragraph include references [111–116].)

Since naturalness and dark matter both prefer that we have charginos in the range

below a few TeV, we will now zoom in on the lower-left corner of our plot and examine the

future ACME reach in more detail. In particular, because ACME I has already ruled out

a large part of the parameter space with large CP-violating phases, it is useful to phrase

the constraints in terms of the largest allowed phase for a given point in parameter space.

We show this in figure 12 for the case of tan β = 2. The light Higgs contribution we plot

scales as sin(2β), so the case tan β = 10 would be roughly a factor of 4 more pessimistic

than tan β = 2, essentially shifting each label to the curve to its left. The left-hand panel

shows the current constraint: all of the parameter space with electroweak tuning a factor

of 30 or less is already at least mildly constrained at small tan β. ACME II will bring the

constraint on the phase arg(M2µb
∗
µ) to percent level in this region of low electroweak tuning,

and the next generation will probe phases at the 10−4 to 10−3 level. Of course, such a small

phase does not necessarily require tuning in the sense that a large µ requires tuning for

electroweak symmetry breaking. Nonetheless, the requirement of such small phases will be a
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Figure 12. A closer look at the low mass region: constraints on the chargino phase φ = arg(M2µb
∗
µ)

as a function of the chargino mass parameters, with the current ACME electron constraint (left)

and two future projections. Regions below and to the left of the blue curves are excluded. Again, we

have superimposed dotted green contours of electroweak fine tuning associated with large higgsino

or wino masses.

strong constraint on possible mechanisms of supersymmetry breaking. Alternatively, there

is great discovery potential in this low-mass, small-phase region of parameter space. The

improvement in mass reach for a fixed phase scales as the square root of the improvement

in measurement of de, but the improvement in phase for fixed mass scales linearly.

6.2 EDM constraints on charginos in the 2HDM context

The EDM constraint on pure charginos is very important in the context of split supersym-

metry, motivated by gauge coupling unification and dark matter independent of natural-

ness. But this is not the full story. In versions of mini-split supersymmetry with scalars

below the PeV scale, one-loop EDMs arising from phases in sfermion mass matrices are

potentially as important as the chargino effects [53, 54]. On the other hand, in theories of

natural SUSY the chargino contributions can be even larger than what we have computed

so far due to the effects of the heavy Higgs fields, which have tan β-enhanced couplings to

the electron. This point has previously been emphasized in [21]. As we have discussed in

section 3.1, the heavy Higgs fields of the MSSM play an underappreciated role in natural

SUSY, leading to tree-level fine tuning if mA is large unless tan β is correspondingly large.

However, large tan β can be constrained through predictions of enhanced new physics ef-

fects in processes like b → sγ. Here we will explore how EDM constraints behave as a

function of mA and tanβ.

The left-hand panel of figure 13 shows, for a fixed choice of M2 and µ, how the electron

EDM varies with mA and tanβ. The parameters are chosen so that this point is marginally

excluded by the current ACME measurement in the mA → ∞ decoupling limit when

tanβ = 2. We see that even at tan β = 10, when the EDM in the mA →∞ limit is safe by

about a factor of 4, this choice of M2 and µ is excluded when the heavy Higgses are lighter

than about 8 TeV. Furthermore, notice that taking the chargino-only limit that we plotted

in figure 11 is associated with significant tuning cost; keeping mA light enough to pay only

a factor of 30 tree level tuning, for example, increases the EDM by at least a factor of 2

(and much more when tan β is large).
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Figure 13. Effect of including the full set of Higgs fields in two-loop chargino EDM contributions.

Left: blue contours show the ratio of the electron EDM to the value 8.7 × 10−29e cm marginally

excluded by ACME. We have fixed M2 and µ to values for which the electron EDM saturates the

current ACME constraint at tan β = 2 and mA → ∞. When mA is in the natural region, the

electron EDM is significantly larger than when the heavy Higgses are decoupled. Green dotted

lines indicate tree level tuning associated with the heavy Higgs fields. Right: here we show the

current exclusion contours in the (M2, µ) plane for several different choices of phase (π/4 for blue

dashed curves, π/40 for orange solid curves), mA (in GeV), and tan β. Regions to the left and

below the curves are excluded.

The right-hand panel of figure 13 shows current exclusion contours in the (M2, µ) plane

as the phase arg(M2µb
∗
µ), mA, and tan β are varied. The case mA = 10 TeV, tanβ = 2 is

comparable to the result shown above in figure 12; for larger tan β the effects of the extra

Higgses are very important, and for smaller values of mA at or below the TeV scale the

current measurement probes phases an order of magnitude smaller than are accessible in

a theory with only a single light Higgs boson.

6.3 Comparison to collider and dark matter search constraints

Collider searches have so far covered only a small slice of chargino parameter space. LEP

ruled out theories with light charginos; roughly speaking, we can view the LEP bound

as stating that the lightest chargino should have mass above 100 GeV (though the precise

bound depends on further details of the spectrum and decay chain). One of the more

successful LHC searches is for the “disappearing track” signature of a wino LSP [117, 118],

which constrains |M2| & 280 GeV in the limit |M1|, |µ| → ∞. The key point is that the

charged wino is very nearly degenerate with the neutral wino and hence has a somewhat

long lifetime, leaving a track that vanishes when it decays and the charge is transferred

to a soft pion or electron [119–121]. To reinterpret the LHC Run 1 bound as a constraint

on chargino parameter space, we use the lifetime computation and two-loop radiative wino

mass splitting from [122]. However, note that their expression for the approximate tree-level
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Figure 14. Constraints on chargino parameter space from collider searches. We take M1 = 3M2,

as in anomaly mediation, so that the LSP is either mostly wino-like or mostly higgsino-like. Highly

wino-like LSPs are constrained by the ATLAS and CMS searches for disappearing tracks (left-hand

corners of the plot), while points with charginos lighter than about 100 GeV are constrained by

LEP (band in the center of the plot). The dashed green line is the higgsino mass at which the tree

level tuning for electroweak symmetry breaking is a factor of 30.

splitting between wino mass eigenstates substantially underestimates the mixing induced

when the higgsinos and binos are both below the TeV scale; we have instead computed the

tree level splitting by directly diagonalizing the mass matrices. In much of the parameter

space the tree level mixing-induced wino mass splitting is large enough that the decay is

relatively prompt and the particle escapes the LHC disappearing track constraints. Inter-

estingly, we find that the precise shape of the excluded region is highly sensitive to the

relative phase of M1 and µ, although we only show results for real M1 and µ because the

EDM constraint is far stronger than the LHC bound in the presence of generic CP-violating

phases. We show the constraints from LEP’s chargino exclusion and from the ATLAS Run

1 disappearing track search (which gives a very slightly stronger bound than the corre-

sponding CMS search) in figure 14. Additional searches that constrain electroweakinos,

such as searches for multi-lepton final states, may place weak additional bounds but have

not yet dramatically exceeded the reach of LEP, except in cases with light sleptons or in

certain cascades with a light bino. Fully interpreting the collider constraints goes beyond

the scope of this paper (see, for instance, [123] or the very recent [124], which also looks at

the disappearing track constraint across parameter space).

Mixed gaugino-higgsino dark matter is significantly constrained by direct detection

results, of which the latest and most powerful are from LUX [125], PandaX-II [126], and

Xenon1T [127]. Mostly-wino and mostly-higgsino dark matter are strongly constrained

by searches for gamma rays from their annihilation, either directly (line searches) or via

electroweak gauge bosons. Significant constraints come from Fermi-LAT dwarf galaxy

searches [128, 129]. Our choice of |µ| = 350 GeV for plots in section 5 is in part based on

having the possibility of higgsino dark matter heavy enough to have escaped Fermi-LAT

– 30 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
1

bounds. A full update of the current constraints on electroweakino dark matter, or review of

the literature, is beyond the scope of this paper, but we note that nearly pure higgsino-like

dark matter with mass near a TeV is significantly outside the reach of any current or near-

future dark matter detection or collider experiment. EDMs, especially the future updates

from ACME, provide a uniquely powerful window on this region of parameter space.

Recent work drawing similar conclusions about the interplay between dark matter

direct and indirect detection, EDM measurements, and collider searches may be found

in [36, 130]. Vectorlike electroweak particles, with chargino-like quantum numbers but

more general couplings, may play a role in theories more general than SUSY. Adding such

particles to a supersymmetric theory could help explain the Higgs mass and provide new

dark matter candidates [66]. Because such a scenario involves larger Yukawa couplings

than the higgsinos have, the EDM contributions would be even larger than the chargino

contributions in the MSSM.

7 Higgs interactions beyond the MSSM

In this section, we discuss the case that the Higgs mass is lifted by new tree-level interactions

beyond the MSSM that can involve CP-violating phases. First, we derive the mass spectrum

of this extension of the MSSM. Then, we present the bounds on EDMs in this scenario

arising from the new phases.

7.1 Spectrum and couplings in the BMSSM

Recall from section 3.2 that the BMSSM involves two new operators,

W ⊃ λ

M
(Hu ·Hd)

2,

Lsoft ⊃
λmSUSY

M
(Hu ·Hd)

2.

We now summarize the mass spectrum of the Higgs sector, following the discussion of

refs. [26, 27, 30]. The Higgs scalar fields can be parametrized as

Hu =

(
H+
u

1√
2

(vu + hu + iau)

)
, Hd = eiθ

(
1√
2

(vd + hd + iad)

H−d

)
. (7.1)

Here, vu,d are the vacuum expectation values (VEVs) satisfying v2 = v2
u+v2

d ' (246 GeV)2

and tan β = vu/vd. We have put a physical phase θ to Hd by using a U(1)Y transformation.

For later purposes, we define

ε1r ≡ |ε1| cos(φ1 + θ) , ε1i ≡ |ε1| sin(φ1 + θ) ,

ε2r ≡ |ε2| cos(φ2 + 2θ) , ε2i ≡ |ε2| sin(φ2 + 2θ) .
(7.2)

Without CP violation in the Higgs sector, the mass eigenstates are divided into the CP-even

and odd parts,(
h

H

)
=

(
cα −sα
sα cα

)(
hu
hd

)
,

(
G0

A

)
=

(
sβ −cβ
cβ sβ

)(
au
ad

)
, (7.3)
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where h, H are the lighter and heavier CP-even mass eigenstates, A is the CP-odd eigen-

state and G0 is the would-be Nambu-Goldstone mode. We write sin β as sβ for simplicity

of expressions. The mixing angle α is given by

sin 2α = −
(m2

A +m2
Z) sin 2β + 4ε1rv

2

m2
H −m2

h

, cos 2α = −
m2
A −m2

Z + 2ε2rv
2

m2
H −m2

h

cos 2β . (7.4)

Here, mZ is the Z boson mass, m2
A is the eigenvalue corresponding to the state A and m2

h,

m2
H are the lighter and heavier eigenvalues of the following 2 × 2 matrix,

M2
S = m2

A

(
c2
β −sβcβ

−sβcβ s2
β

)
+m2

Z

(
s2
β −sβcβ

−sβcβ c2
β

)

− 2v2ε1r

(
s2β 1

1 s2β

)
+ 2v2ε2r

(
c2
β 0

0 s2
β

)
.

(7.5)

In the case with a moderate tan β and m2
A � m2

Z , we have α ≈ β − π
2 . We assume this

case below.

However, CP violation enables the three physical Higgs bosons h, H, A to mix with

each other while the would-be Nambu-Goldstone mode G0 remains unchanged. The mass-

squared matrix is then given by

M2
H =

 m2
h 0 m2

hA

0 m2
H m2

HA

m2
hA m2

HA m2
A

 , (7.6)

where the off-diagonal elements are

m2
hA = 2v2sβ−αε1i − v2cβ+αε2i ,

m2
HA = 2v2cβ−αε1i − v2sβ+αε2i ,

(7.7)

at the order of ε1,2. The mass-squared matrix (7.6) can be diagonalized by an orthogonal

matrix O,

OTM2
HO = diag

(
m2
H1
,m2

H2
,m2

H3

)
. (7.8)

Here, m2
H1
≤ m2

H2
≤ m2

H3
are the three eigenvalues corresponding to the eigenstates

H1, H2, H3. At the order of ε1,2, the charged Higgs boson mass matrix is diagonalized as(
H+
u

H−d
∗

)
=

(
sβ + i cβη cβ + i sβη

−cβ + i sβη sβ − i cβη

)(
G+

H+

)
, (7.9)

where H+ is the physical mass eigenstate, G+ is the would-be Nambu-Goldstone mode and

η is given by

η =
v2 (ε1i − sβcβ ε2i)

m2
A

. (7.10)

The charged Higgs boson mass is approximately obtained as

m2
H± ' m

2
A +m2

W + ε2rv
2 , (7.11)
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where mW is the W boson mass. At the order of ε1,2, the minimum condition
∂VHiggs

∂θ = 0

gives

tan θ =
v2 (ε2is2β − 2ε1i)

s2β

(
m2
H± −m

2
W

)
+ v2 (ε2rs2β − 2ε1r)

. (7.12)

For a small tan β, the phase θ is O(ε1,2).

Let us next consider the chargino and neutralino mass spectra. In the presence of the

new operator of (3.5), we have new higgsino interactions [30],

LHiggs ⊃ −
ε1
µ∗

[
2(Hu ·Hd)(H̃u · H̃d) + 2(H̃u ·Hd)(Hu · H̃d)

+ (Hu · H̃d)(Hu · H̃d) + (H̃u ·Hd)(H̃u ·Hd)

]
+ h.c. ,

(7.13)

where H̃u,d denote the fermion components of the Higgs chiral superfields. These terms pro-

vide not only additional contributions to the chargino and neutralino masses but also new

Higgs-chargino/neutralino interactions which contribute to the two-loop EDMs induced by

chargino loops. The chargino mass matrix in the basis of (W̃+, H̃+
u , W̃

−, H̃−d ) is given by

MC̃ =

(
0 XT

X 0

)
, X =

(
MW̃

g√
2
vsβ

g√
2
vcβe

−iθ µ− ε1v2

µ∗ sβcβe
iθ

)
. (7.14)

Here, MW̃ is the Wino mass and g is the SU(2)L gauge coupling. The matrix X can be

diagonalized by a singular value decomposition,

CR
†
XCL = diag (mχ̃1 ,mχ̃2) , (7.15)

where CL,R are unitary matrices and mχ̃1 ≤ mχ̃2 . The neutralino mass matrix in the basis

of (B̃, W̃ 0, H̃0
d , H̃

0
u) is given by

MÑ =


MB̃ 0 −g′

2 vcβe
−iθ g′

2 vsβ
0 MW̃

g
2vcβe

−iθ −g
2vsβ

−g′

2 vcβe
−iθ g

2vcβe
−iθ ε1

µ∗ v
2s2
β −µ+ 2 ε1v

2

µ∗ sβcβe
iθ

g′

2 vsβ −g
2vsβ −µ+ 2 ε1v

2

µ∗ sβcβe
iθ ε1v2

µ∗ c
2
βe

2iθ

 , (7.16)

where MB̃ is the Bino mass and g′ is the U(1)Y gauge coupling. This symmetric complex

matrix can be diagonalized by a unitary matrix N ,

NTMÑN = diag
(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
. (7.17)

Here, mχ̃0
1
≤ mχ̃0

2
≤ mχ̃0

3
≤ mχ̃0

4
are four real, positive eigenvalues.

Finally, we present the masses and physical eigenstates of the third generation squarks.

In the MSSM with the new superpotential interaction (3.5), the stop mass-squared matrix

is given by

M2
t̃
=

 m2
Q3

+m2
t +∆ũL −mt

∣∣∣µcotβeiθ−A∗t− ε1
µ∗ v

2c2
βe

2iθ
∣∣∣e−iδt

−mt

∣∣∣µ∗cotβe−iθ−At−
ε∗1
µ v

2c2
βe
−2iθ

∣∣∣eiδt m2
u3 +m2

t +∆ũR

 ,
(7.18)
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Figure 15. The lightest neutral Higgs boson mass (in unit of GeV) as a function of |ε1,2| (left) and

choice of |ε| to realize the correct Higgs mass (right) in the BMSSM scenario. We take tan β = 5

and mA = 400 GeV. For the left panel, we assume φ̃1,2 ≡ π − φ1,2 = 0.1. The dashed lines denote

the tree-level Higgs mass. The green shaded region may give the correct Higgs mass, taking account

of radiative corrections from top/stop loops. For the right panel, we assume |ε1| = |ε2| and the

tree-level Higgs mass at 120 GeV, relying on the radiative corrections to explain the rest.

where ∆ũL = m2
Z cos 2β

(
1
2 −

2
3 sin2 θW

)
, ∆ũR = m2

Z cos 2β
(

2
3 sin2 θW

)
and mt is the top

quark mass. The phase δt = arg(µ∗ cotβ e−iθ − At −
ε∗1
µ v

2c2
β e
−2iθ) in the mass-squared

matrix can be absorbed by redefinition of the right-handed stop, t̃R → eiδt t̃R. Diagonalizing

this matrix, we write smaller and larger eigenvalues as m2
t̃1

and m2
t̃2

respectively. These

correspond to physical stop masses. The eigenstates are given by

t̃1 = t̃L cos θt − t̃R sin θt , t̃2 = t̃L sin θt + t̃R cos θt . (7.19)

Here, the mixing angle θt is

tan(2θt) = −
2mt

∣∣∣µ cotβ eiθ −A∗t − ε1
µ∗ v

2c2
β e

2iθ
∣∣∣

m2
Q3

+ ∆ũL −m2
u3 −∆ũR

. (7.20)

Since the right-handed sbottom does not exist in the low-energy effective theory of natural

SUSY, the lighter eigenstate b̃1 of the sbottom mass-squared matrix is simply given by the

left-handed sbottom b̃L.

7.2 EDMs in the BMSSM

We first investigate the parameter space of the BMSSM to realize the correct Higgs boson

mass. Figure 15 shows the lightest neutral Higgs boson mass (in unit of GeV) as a function

of |ε1,2| (left) and choice of |ε| to realize the correct Higgs mass (right) in the BMSSM

scenario. We take tan β = 5 and mA = 400 GeV. For the left panel, we assume φ̃1,2 ≡
π−φ1,2 = 0.1. The dashed lines denote the tree-level Higgs mass. The green shaded region
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Figure 16. EDM constraints on the CP-violating phases φ̃1,2 in the BMSSM scenario. We take

mA = 400, 800 GeV for the left and right panels respectively. Regions of parameter space to outside

the solid blue and red contours are excluded by measurements of ThO and Hg (the case (i)),

respectively. The mercury EDM constraint for the case (ii) is weak and not shown in the figures.

The blue dashed and dot-dashed contours (“ACME II” and “ACME III”) are future projections.

We have fixed |ε1,2| = 0.1, tanβ = 5 and µ = 350 GeV in these figures.

may give the correct Higgs mass, taking account of radiative corrections from top/stop

loops. We can see that the Higgs boson mass is easily lifted up with mild values of |ε|. For

the right panel, we assume |ε1| = |ε2| and the tree-level Higgs mass at 120 GeV, relying on

the radiative corrections to explain the rest. The size of contributions from the new Higgs

interactions also depends on their CP phases.

Let us now present numerical analyses of the EDMs in the BMSSM scenario. We

assume only nonzero CP phases in the new Higgs interactions and set all the CP phases of

the MSSM to zero to simplify our analyses. Due to smallness of the masses of the Standard

Model particles, the dominant contributions to the EDMs come from the Barr-Zee diagrams

with loops of W bosons and top quarks. We find that the W boson is the dominant con-

tribution to the electron EDM, while top quark loops dominate the quark CEDMs and so

are crucial for the mercury EDM. Such top quark loops have been computed in the MSSM

in [19, 24] and studied in the BMSSM context in [26, 27]; they may be easily computed from

the general formulas of section 2. The W loop contributions are computed with the general

formula (4.6) following from the results in [42], and to the best of our knowledge their impor-

tance for the BMSSM has not been previously pointed out in the literature. We have also

checked the chargino contributions, using various expressions collected in appendix A which

are valid in the BMSSM; we have found that they are subdominant to the top and W loops.

Figure 16 shows EDM constraints on the CP-violating phases φ̃1,2 in the BMSSM

scenario. We take mA = 400, 800 GeV for the left and right panels respectively. Regions of

parameter space to the right of and above the solid blue and red contours are excluded by
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measurements of ThO and Hg (the case (i)), respectively. The mercury EDM constraint

for the case (ii) is weak and not shown in the figures. The blue dashed and dot-dashed

contours (“ACME II” and “ACME III”) are future projections. We have fixed |ε1,2| = 0.1,

tanβ = 5 and µ = 350 GeV in these figures. We can see that the current constraints lead to

about 10 percent tuning in the CP phases of the new Higgs interactions and the situation

is improved to less than one percent in future projections.

8 Conclusions

In this paper we have studied implications of EDM measurements on the parameter space

of CP-violating natural SUSY. We have found that significant constraints on order-one CP-

violating phases for superpartners near the TeV scale already exist from the measurements

of ThO and Hg. Currently the mercury constraints, being sensitive to chromoelectric dipole

moments of quarks induced by new physics with QCD charge (like stops), are somewhat

stronger or comparable depending on which choice of nuclear physics calculation we follow,

but the ThO constraints are crucial for new physics with only electroweak interactions.

Moreover, if the ACME collaboration delivers results at the level of their estimated future

reach, these will overtake mercury EDMs as stronger constraints even for the case of stops.

We have studied a few different scenarios and sources of CP-violating phases. Bounds

on stops are strongest in the MSSM, where large A-terms are required to explain the heavy

mass of the Higgs boson. However, this scenario is already rather fine-tuned, and we found

that if some other new physics lifts the Higgs mass, there are still important constraints

even on the smaller A-terms induced under RG running by the gluino mass. We have also

found that the relative phase of gaugino masses and µ is strongly constrained by EDMs

induced by charginos running in loops. We expect these charginos to be at or below the

TeV scale for several reasons, including naturalness, gauge coupling unification, and the

possibility that they constitute a fraction of the dark matter in our universe. As a result,

these EDM constraints, which come entirely from the electron EDM, are important not

only in natural SUSY but also in split SUSY, and they have cousins in any new physics

scenario with purely electroweak new matter. Finally, we have found that if we add new

superpotential Higgs interactions (and associated soft SUSY-breaking terms) to explain

why the Higgs is heavy, the phases of these new interactions can directly induce important

EDMs. A relative phase can appear in the VEVs of the up- and down-type Higgs bosons,

inducing scalar-pseudoscalar mixing. The associated EDM effects have been considered

previously in [26, 27]. We have found that the most important contributions come from

loops of Standard Model particles interacting with the full Higgs sector of the 2HDM. This

includes the top quark, which plays the dominant role in CEDMs of quarks, and the W

boson, which plays the dominant role in the electron EDM. The latter effect appears to

have been omitted in previous studies. As in the other cases, we find that there are already

strong constraints on the phases of the new physics in the natural parameter space.

We have also made some comparisons of EDMs to other effects of new physics. For

instance, stop EDMs depend on the same combination of parameters appearing in b→ sγ,

and are a stronger constraint unless the CP-violating phase is quite small. Most of the two-
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loop EDMs we have studied are also associated with modifications to the rate of h → γγ

or h → gg. Dark matter direct detection can depend on some of the same parameters

appearing in chargino-induced EDMs, if neutralinos are the dark matter. An interesting

consequence of all of this is that if a nonzero EDM is measured in the future, for each hy-

pothesis about its underlying origin, there is usually a clear prediction of a lower bound on

the rate of some other new physics effect. Quantifying such lower bounds would be an im-

portant step in clarifying and understanding the physics giving rise to any observed EDM.

It would be timely to revisit which favored models of supersymmetry breaking have

a SUSY CP problem, and how completely the problem is solved in the viable models.

Although conventional wisdom holds that the CP problem is more readily solved in gauge

mediation than in gravity mediation, it has been claimed that certain models of modulus

mediation have enough structure to evade the CP problem [131]. A recent analysis of one

incarnation of modulus mediation argued that the electron EDM should not be larger than

about 5 × 10−30 e cm [132] — precisely the level that ACME II will probe. Meanwhile,

gauge mediation, which has traditionally dodged flavor and CP problems with little effort,

faces a renewed challenge in that the new physics that either lifts the Higgs mass directly

or generates a large A-term (e.g. [133]) must not reintroduce the problem.

We should not view the SUSY CP problem as simply another engineering hurdle to

solve, or module to tack on to a theory. We believe that it is worth asking for any given

model: how large are the expected phases, if we don’t add extra layers of ingenuity to

squash them? Are there subleading effects that might generate phases at the 10−2 or 10−3

level — the size of loop factors, say — even in models that solve the CP problem to leading

order? For example, in the chargino sector, a null result at ACME II could already imply

that arg(M2µ) . 10−2 over the entire region of interest for either naturalness or dark

matter. This is a constraint that is of great interest for split supersymmetry as well as for

natural SUSY. The coming years will bring important new experimental progress, and we

should be prepared for a positive answer as well as a negative one.
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A Relevant couplings

A.1 Gauge boson and higgs couplings to Standard Model fermions

To clarify the conventions used in section 2, we tabulate the couplings gV,A,S,P for gauge

and Higgs bosons to Standard Model fermions. First, we have the case where Vµ is the

photon of QED. In that case we have

Aµ : −gVf 7→ Qfe, gAf 7→ 0, (A.1)

where Qf is the charge of the particle and e > 0 is the QED coupling constant. Next

consider the Z boson:

Zµ : gVf 7→ −
g

2 cos θW
(T3 − 2Qf sin2 θW ), gAf 7→

g

2 cos θW
T3. (A.2)

Finally we have the W boson, linking any two fermions f and f ′ that lie in the same

doublet:

Wµ : gVff ′ 7→ −
g

2
√

2
, gAff ′ 7→

g

2
√

2
. (A.3)

Note that because these couplings are real, gVf ′f = (gVff ′)
∗ = gVff ′ .

Next we consider the Higgs bosons of the MSSM. These couple to Standard Model

fermions through the Yukawa couplings

L ⊃ −yeece−LH
0
d+yee

cνLH
−
d −ydd

cdLH
0
d+ydd

cuLH
−
d −yuu

cuLH
0
u+yuu

cdLH
+
u +h.c. (A.4)

in notation where the left-handed Weyl fermion fields are Q = (uL dL)T , uc, dc, L =

(νL e
−
L )T , ec and the Higgs doublets are Hu = (H+

u H
0
u)T , Hd = (H0

d H
−
d )T . In the BMSSM,

where the Higgs bosons mix with each other, the physical Higgs boson couplings with a

Standard Model fermion f are given by

LHf̄f =
3∑
i=1

(
gSHif̄f f̄f + igPHif̄f f̄γ5f

)
Hi , (A.5)

where

gSHif̄f = −
mf

v

1

sinβ
(cαO1i + sαO2i) , gPHif̄f =

mf

v

cosβ0

sinβ
O3i , for T f3 = +1/2 ,

gSHif̄f = −
mf

v

1

cosβ
(−sαO1i + cαO2i) , gPHif̄f =

mf

v

sinβ0

cosβ
O3i , for T f3 = −1/2 .

(A.6)

In the MSSM and BMSSM at tree level we have β± = β0 = β, but in general this relation-

ship is corrected.

The charged Higgs boson couplings with Standard Model fermions are given by

LH±f↑f↓=
g√

2mW

∑
(f↑,f↓)=(u,d),(ν,`)

H+f↑

(
mf↑ g

L
H+f↑f↓

1−γ5

2
+mf↓ g

R
H+f↑f↓

1+γ5

2

)
f↓+h.c.,

(A.7)

where

gL
H+f↑f↓

= cotβ + iη , gR
H+f↑f↓

= tanβ − iη . (A.8)
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A.2 Loop-induced wrong Higgs Yukawa coupling

The explicit calculation of a stop/higgsino loop gives [19]

Jb ≡
y′b
yb
≈ |yt|

2

16π2
A∗tµ

∗I(m2
t̃1
,m2

t̃2
, |µ|2) =

|yt|2

16π2
|Atµ| I(m2

t̃1
,m2

t̃2
, |µ|2)e−iφt , (A.9)

where the loop function I is

I(p, q, r) =
pq log(p/q) + qr log(q/r) + pr log(r/p)

(p− q)(q − r)(p− r)
. (A.10)

Then, the bottom Yukawa coupling yb is related to the bottom quark mass as

yb =
gmb√

2mW cosβ (1 + Jb tanβ)
. (A.11)

The physical Higgs boson couplings with a bottom quark are given by

gSHib̄b = −mb

v

1

yb (1 + Jb tanβ)

{
Re(yb)

−sαδ1i + cαδ2i

cosβ
+ Re(ybJb)

cαδ1i + sαδ2i

cosβ

− Im(yb) δ3i tanβ + Im(ybJb) δ3i

}
,

gPHib̄b = −mb

v

1

yb (1 + Jb tanβ)

{
− Im(yb)

−sαδ1i + cαδ2i

cosβ
− Im(ybJb)

cαδ1i + sαδ2i

cosβ

− Re(yb) δ3i tanβ + Re(ybJb) δ3i

}
.

(A.12)

These results enter into the calculation of four-fermion operators that contribute to the

measured EDMs.

A.3 Stop couplings with Higgs bosons

We here summarize the relevant stop interactions with the neutral Higgs bosons. The

trilinear couplings are given by

−LHt̃∗ t̃ =
(
κLuhu + κLd hd

)
t̃∗Lt̃L +

(
κRu hu + κRd hd

)
t̃∗Rt̃R

+
{

(κ̃uhu + κ̃dhd + iκ̃AA) t̃∗Rt̃L + h.c.
}
,

(A.13)

where

κLu =
2m2

t

sβv
−

2sβm
2
Z

v

(
1

2
−Qts2

W

)
, κLd =

2cβm
2
Z

v

(
1

2
−Qts2

W

)
, (A.14)

κRu =
2m2

t

sβv
−

2sβm
2
Z

v
Qts

2
W , κRd =

2cβm
2
Z

v
Qts

2
W ,

κ̃u =

(
mt

sβv
At +

ε∗1
µ
mtv

c2
β

sβ
e−2iθ

)
e−iδt , κ̃d =

(
−mt

sβv
µ∗e−iθ + 2

ε∗1
µ
mtvcβe

−2iθ

)
e−iδt ,

κ̃A =

{(
mt

sβv
At −

ε∗1
µ
mtv

c2
β

sβ
e−2iθ

)
cβ +

(
mt

sβv
µ∗e−iθ − 2

ε∗1
µ
mtvcβe

−2iθ

)
sβ

}
e−iδt .
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In terms of mass eigenstates, the stop interactions with the Higgs bosons Hi (i = 1, 2, 3)

are written as a 2 × 2 matrix for the two stop eigenstates t̃a (a = 1, 2). The diagonal part

which are relevant for our calculations is given by

LHt̃∗ t̃ =

2∑
a=1

3∑
i=1

ΓHi t̃∗a t̃aHit̃
∗
at̃a+··· (A.15)

≡
2∑

a=1

3∑
i=1

[
Γhu t̃∗a t̃a (cαO1i+sαO2i)+Γhd t̃∗a t̃a (−sαO1i+cαO2i)+ΓAt̃∗a t̃aO3i

]
Hit̃
∗
at̃a+··· .

The matrix O diagonalizes the Higgs boson mass-squared matrix as presented in section 3.

The coefficients are given by:

Γhu t̃∗ t̃ =

(
s2tRe(κ̃u)−c2

tκ
L
u−s2

tκ
R
u −c2tRe(κ̃u)−stct

(
κLu−κRu

)
+iIm(κ̃u)

−c2tRe(κ̃u)−stct
(
κLu−κRu

)
−iIm(κ̃u) −s2tRe(κ̃u)−s2

tκ
L
u−c2

tκ
R
u

)
,

Γhd t̃∗ t̃ =

(
s2tRe(κ̃d)−c2

tκ
L
d−s2

tκ
R
d −c2tRe(κ̃d)−stct

(
κLd−κRd

)
+iIm(κ̃d)

−c2tRe(κ̃d)−stct
(
κLd−κRd

)
−iIm(κ̃d) −s2tRe(κ̃d)−s2

tκ
L
d−c2

tκ
R
d

)
,

ΓAt̃∗ t̃ =

(
−s2tIm(κ̃A) c2tIm(κ̃A)+iRe(κ̃A)

c2tIm(κ̃A)−iRe(κ̃A) s2tIm(κ̃A)

)
. (A.16)

A.4 Chargino couplings with Higgs bosons

In terms of the four-component spinor notation, (χ̃−j )T =
(

(χ̃−j )α (χ̃+
j )†α̇

)
(j = 1, 2), the

chargino couplings with the Higgs bosons are in total presented as

LHχ̃+χ̃− = − g

2
√

2

3∑
i=1

Hi

2∑
j,k=1

(
aHiχ̃+

j χ̃
−
k

¯̃χ−j χ̃
−
k + i bHiχ̃+

j χ̃
−
k

¯̃χ−j γ5χ̃
−
k

)
, (A.17)

where the coefficients are given by

aHiχ̃
+
j χ̃

−
k

=(−sαO1i+cαO2i)
(
e−iθCR2k

∗
CL1j+e

iθCR2jC
L
1k

∗)
+(cαO1i+sαO2i)

(
CR1k

∗
CL2j+C

R
1jC

L
2k

∗)
−iO3i

[
sinβ

(
e−iθCR2k

∗
CL1j−eiθCR2jCL1k

∗)
+cosβ

(
CR1k

∗
CL2j−CR1jCL2k

∗)]
−
√

2vsinβ

g
(−sαO1i+cαO2i)

(
ε1
µ∗ e

iθCR2k
∗
CL2j+

ε∗1
µ
e−iθCR2jC

L
2k

∗
)

−
√

2vcosβ

g
(cαO1i+sαO2i)

(
ε1
µ∗ e

iθCR2k
∗
CL2j+

ε∗1
µ
e−iθCR2jC

L
2k

∗
)

−i

√
2vsin2β

g
O3i

(
ε1
µ∗ e

iθCR2k
∗
CL2j−

ε∗1
µ
e−iθCR2jC

L
2k

∗
)

−i

√
2vcos2β

g
O3i

(
ε1
µ∗ e

iθCR2k
∗
CL2j−

ε∗1
µ
e−iθCR2jC

L
2k

∗
)
, (A.18)

bHiχ̃
+
j χ̃

−
k

=i(−sαO1i+cαO2i)
(
e−iθCR2k

∗
CL1j−eiθCR2jCL1k

∗)
+i(cαO1i+sαO2i)

(
CR1k

∗
CL2j−CR1jCL2k

∗)
+O3i

[
sinβ

(
e−iθCR2k

∗
CL1j+e

iθCR2jC
L
1k

∗)
+cosβ

(
CR1k

∗
CL2j+C

R
1jC

L
2k

∗)]
−i

√
2vsinβ

g
(−sαO1i+cαO2i)

(
ε1
µ∗ e

iθCR2k
∗
CL2j−

ε∗1
µ
e−iθCR2jC

L
2k

∗
)
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−i

√
2vcosβ

g
(cαO1i+sαO2i)

(
ε1
µ∗ e

iθCR2k
∗
CL2j−

ε∗1
µ
e−iθCR2jC

L
2k

∗
)

+

√
2vsin2β

g
O3i

(
ε1
µ∗ e

iθCR2k
∗
CL2j+

ε∗1
µ
e−iθCR2jC

L
2k

∗
)

+

√
2vcos2β

g
O3i

(
ε1
µ∗ e

iθCR2k
∗
CL2j+

ε∗1
µ
e−iθCR2jC

L
2k

∗
)
. (A.19)

A.5 W boson couplings with charginos and neutralinos

The interaction of a chargino, neutralino and W boson is expressed as

Lχ̃0χ̃±W∓ = −g χ̃+
i γ

µ

(
GLij

1− γ5

2
+GRij

1 + γ5

2

)
χ̃0
j W

+
µ + h.c. , (A.20)

where

GLij = −CL1i
∗
N2j +

1√
2
CL2i
∗
N4j , GRij = −CR1i

∗
N∗2j −

1√
2
CR2i
∗
N∗3j . (A.21)

A.6 Charged Higgs couplings with charginos and neutralinos

The charged Higgs couplings with charginos and neutralinos are

LH±χ̃0χ̃∓ =
g√
2

2∑
i=1

4∑
j=1

H+χ̃0
j

(
gL
H+χ̃0

j χ̃
−
i

1− γ5

2
+ gR

H+χ̃0
j χ̃
−
i

1 + γ5

2

)
χ̃−i + h.c. , (A.22)

where the coefficients are

gL
H+χ̃0

j χ̃
−
i

= (sβ−icβη)
(
CR2i
∗
(N2j+N1jtW )−

√
2CR1i

∗
N3j

)
+

2ε1v

gµ∗
(cβ+isβη)CR2i

∗(
sβN3j+e

iθcβN4j

)
, (A.23)

gR
H+χ̃0

j χ̃
−
i

= −(cβ+isβη)
(
CL2i
∗(
N∗2j+N

∗
1jtW

)
+
√

2CL1i
∗
N∗4j

)
+

2ε∗1v

gµ
(sβ−icβη)CL2i

∗(
sβN

∗
3j+e

−iθcβN
∗
4j

)
.

B Selected formulas for EDM contributions

B.1 The W EDM contribution

The chargino/neutralino loops coupled to the W boson through the couplings in section A.5

contribute to the W EDM which in turn induces fermion EDMs at two loops [16, 20]

as shown in the bottom left diagram of figure 6. The W EDM contribution with

chargino/neutralino loops is then given by

df
e

∣∣∣∣WEDM

χ̃0−χ̃±
=
T f3 α

2

8π2s4
W

2∑
i=1

4∑
j=1

Im
(
GLijG

R∗
ij

)mfmχ̃imχ̃0
j

m4
W

∫ 1

0

dx

1−x
J

(
0,
xrWχ̃i+(1−x)rWχ̃0

j

x(1−x)

)
.

(B.1)

Here, rWχ̃i = (mχ̃i/mW )2, rWχ̃0
j

= (mχ̃j
0/mW )2, and the loop function J(z, z′) is

J(z, z′) =
1

z − z′

(
z log z

z − 1
− z′ log z′

z′ − 1

)
. (B.2)

– 41 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
1

B.2 The charged Higgs and top/bottom loop contributions

The charged Higgs contribution to the EDM for a fermion f with top/bottom quark loops

is given by

df
e

∣∣∣∣
H±, tb

=

(
3g2

32π2

)(
g2

32π2mW

)(
me

mW

)
|Vtb|2 Im

(
gL ∗
H+f↑f↓

gR
H+f↑f↓

)
(QtFt +QbFb) ,

(B.3)

where Vtb is a component of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and the loop

functions are

Ft =

∫ ∞
0

dQ2

∫ 1

0
dx

m2
t (1− x)(2− x)Q2

(m2
H+ +Q2)(m2

t + xQ2)(m2
W +Q2)

,

Fb =

∫ ∞
0

dQ2

∫ 1

0
dx

m2
tx(2− x)Q2

(m2
H+ +Q2)(m2

t + xQ2)(m2
W +Q2)

.

(B.4)

B.3 CEDM of the bottom quark

Here we present the calculation of the b-quark CEDM as shown in figure 8. The generic

interactions of a chargino or neutralino (denoted as χ collectively) with a fermion f and a

sfermion f̃ ′ are given by

Lχff̃ ′ = gL
χff̃ ′

(χ̄PLf) f̃
′∗ + gR

χff̃ ′
(χ̄PRf) f̃

′∗ + h.c. , (B.5)

where PL,R = 1∓γ5
2 and the relevant couplings are

gL
χ̃±i bt̃1

= −g CL1i cos θt −
√

2mt

vsβ
e−iδtCL2i sin θt ,

gL
χ̃±i bt̃2

= −g CL1i sin θt +

√
2mt

vsβ
e−iδtCL2i cos θt ,

gR
χ̃±i bt̃1

=

√
2mb

vcβ
CR2i cos θt , gR

χ̃±i bt̃2
=

√
2mb

vcβ
CR2i sin θt ,

gL
χ̃0
i bb̃1

=
g√
2
N2i −

√
2

(
Qb +

1

2

)
N1i , gR

χ̃0
i bb̃1

= −
√

2mb

vcβ
N∗3i .

(B.6)

Then, the contributions to the CEDM of the bottom quark from chargino and neutralino

loops are given by

d̃b
∣∣
χ̃±

=
1

16π2

2∑
i=1

2∑
a=1

mχ̃i

m2
t̃a

Im
[(
gR
χ̃±i bt̃a

)∗
gL
χ̃±i bt̃a

]
B(m2

χ̃i/m
2
t̃a

) ,

d̃b
∣∣
χ̃0 =

1

16π2

4∑
i=1

mχ̃0
i

m2
b̃1

Im
[(
gR
χ̃0
i bb̃1

)∗
gL
χ̃0
i bb̃1

]
B(m2

χ̃0
i
/m2

b̃1
) ,

(B.7)

where

B(z) =
1

2(1− z)2

(
1 + z +

2z log z

1− z

)
. (B.8)
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Figure 17. The mercury EDM constraint on the quark CEDMs. The left and right panels corre-

spond to the case (i) and (ii). The outer regions of the contours are excluded. The blue and orange

contours denote the constraints at 68% and 90% C.L. respectively.

C Likelihood analysis of the mercury EDM constraint

The mercury EDM suffers from large theoretical uncertainty and it may not be appropriate

to consider the mercury EDM constraint in terms of the central value for each contribution

quoted from the literature in (4.21). In this appendix, we present a likelihood analysis of the

constraint as the best effort to extract implications on physics beyond the standard model

from the mercury EDM measurement. Here, we only consider the most important contri-

butions from the quark CEDMs and derive a constraint on the CEDMs at some probability.

For the theoretical calculation of the mercury EDM, we follow the discussion of ref. [90].

The mercury EDM is related to the Schiff moment S as dHg = −2.46 × 10−17e cm ×
S

e fm3 and the Schiff moment can be parametrized in terms of the CP-odd pion-nucleon

interactions, LπNN ⊃ ḡ(0)N̄τaNπa + ḡ(1)N̄Nπ0, as

S ≈ 13.17×
[
(a0 + b) ḡ(0) + a1 ḡ

(1)
]
, (C.1)

where the uncertainty of the overall coefficient is negligible. The coefficients a0, a1, b are

determined by nuclear calculations. So far, several groups have presented results which

span a wide range of values. Here we use the results of two recent calculations,

(i) a0 = (0.002− 0.010) e fm3 , a1 = (0.057− 0.090) e fm3 ([92]),

(ii) a0 = (0.009− 0.041) e fm3 , a1 = (−0.027− 0.005) e fm3 ([93]),
(C.2)

and b = (0.002− 0.013) e fm3 for both cases. Notice that the two results are not very com-

patible with each other, so it seems inappropriate to simply average them, as is sometimes

done in the literature. Rather, the discrepancy suggests that at least one of the approxi-

mation schemes used is getting the physics wrong in a systematic way. Further theoretical

work on the structure of the mercury nucleus will be needed to clarify the situation.
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We next relate the CP-odd pion-nucleon interactions to the quark CEDMs by using

the QCD sum rule technique. We follow the calculation of ref. [89] where ḡ(0), ḡ(1) are given

in terms of the quark CEDMs d̃u,d and some undetermined parameters such as a the choice

of generalized nucleon interpolating current and the infrared cutoff. We parametrize the

CP-odd pion-nucleon interactions in terms of the quark CEDMs as

ḡ(0) = c(0) × 10−12 d̃u + d̃d
10−26 cm

|〈q̄q〉|
(225 MeV)3

,

ḡ(1) = c(1) × 10−12 d̃u − d̃d
10−26 cm

|〈q̄q〉|
(225 MeV)3

.

(C.3)

To estimate the numerical coefficients c(0), c(1), we assume flat probability profiles for the

undetermined parameters with a certain range presented in ref. [89] (with the Borel param-

eter fixed at M2 = 0.8 GeV2) and investigate the distributions of the coefficients c(0), c(1).

The means of c(0), c(1) are (0.47, 1.48) and the standard deviations are given by (0.37, 8.21).

Let us now derive a constraint on the quark CEDMs by a likelihood analysis. We use

the above distributions of the coefficients c(0), c(1) and further assume flat probability pro-

files for the coefficients a0, a1, b within the range denoted in (C.2) to obtain the distribution

of the coefficients of d̃u, d̃d in the expression of the mercury EDM dHg = cud̃u+cdd̃d. Then,

we fit the distribution by a two-dimensional normal distribution. With appropriate nor-

malization, we find the probability distribution Ptheory(cu, cd). The case (i) in (C.2) shows

a stronger correlation between cu and cd than the case (ii) because the range of values in a0

is smaller than that in a1 for the case (i) while a0 and a1 are comparable for the case (ii).

This fact is reflected to the final constraint. We define the likelihood function of d̃u, d̃d as

L(d̃u, d̃d) =

∫ ∞
−∞

dcu

∫ ∞
−∞

dcd Pexp(data|dHg = cud̃u + cdd̃d)× Ptheory(cu, cd), (C.4)

where Pexp(data|dHg) comes from the present constraint of the mercury EDM (4.23) at

2σ. Then, we evaluate the delta log-likelihood ∆ lnL ≡ lnL(0, 0)− lnL(d̃u, d̃d).

Figure 17 shows the mercury EDM constraint on the quark CEDMs. The left and

right panels correspond to the case (i) and (ii) respectively. The outer regions of the

contours are excluded. The blue and orange contours denote the constraints at 68% and

90% C.L. respectively. Since a0 and a1 are comparable for the case (ii) and the down quark

CEDM contribution to the mercury EDM is canceled between the terms of ḡ(0) and ḡ(1),

the constraint on d̃d for the case (ii) is milder than that for the case (i).
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calculations in (non-)minimal supersymmetry at both high and low scales, JHEP 01 (2017)

079 [arXiv:1609.00371] [INSPIRE].

[97] N. Craig, M. Farina, M. McCullough and M. Perelstein, Precision Higgsstrahlung as a probe

of new physics, JHEP 03 (2015) 146 [arXiv:1411.0676] [INSPIRE].

– 49 –

https://doi.org/10.1103/PhysRevD.87.114510
https://arxiv.org/abs/1301.1114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1114
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,38,1440%22
https://doi.org/10.1103/PhysRevLett.63.2333
https://doi.org/10.1103/PhysRevLett.63.2333
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,63,2333%22
https://doi.org/10.1103/PhysRevD.63.073015
https://arxiv.org/abs/hep-ph/0010037
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0010037
https://doi.org/10.1103/PhysRevD.67.015007
https://arxiv.org/abs/hep-ph/0208257
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0208257
https://doi.org/10.1103/PhysRevLett.115.212002
https://arxiv.org/abs/1506.04196
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04196
https://doi.org/10.1103/PhysRevLett.97.131801
https://arxiv.org/abs/hep-ex/0602020
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0602020
https://doi.org/10.1016/0370-2693(90)91432-B
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B237,216%22
https://doi.org/10.1103/PhysRevLett.64.1709
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,64,1709%22
https://doi.org/10.1103/PhysRevD.42.2423
https://doi.org/10.1103/PhysRevD.42.2423
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D42,2423%22
https://doi.org/10.1016/S0370-2693(97)01482-2
https://arxiv.org/abs/hep-ph/9707409
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9707409
https://doi.org/10.1016/S0370-2693(02)01263-7
https://arxiv.org/abs/hep-ph/0109044
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0109044
https://doi.org/10.1007/JHEP04(2014)076
https://doi.org/10.1007/JHEP04(2014)076
https://arxiv.org/abs/1308.6283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6283
https://doi.org/10.1007/JHEP05(2013)168
https://arxiv.org/abs/1301.1681
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1681
https://doi.org/10.1103/PhysRevC.72.045503
https://doi.org/10.1103/PhysRevC.72.045503
https://arxiv.org/abs/nucl-th/0507031
https://inspirehep.net/search?p=find+EPRINT+nucl-th/0507031
https://doi.org/10.1103/PhysRevC.82.015501
https://arxiv.org/abs/1003.2598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2598
https://doi.org/10.1007/JHEP07(2015)159
https://arxiv.org/abs/1504.05200
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05200
https://doi.org/10.1016/j.physrep.2016.01.001
https://arxiv.org/abs/1601.01890
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01890
https://doi.org/10.1007/JHEP01(2017)079
https://doi.org/10.1007/JHEP01(2017)079
https://arxiv.org/abs/1609.00371
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00371
https://doi.org/10.1007/JHEP03(2015)146
https://arxiv.org/abs/1411.0676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0676


J
H
E
P
0
8
(
2
0
1
7
)
0
3
1

[98] J. Fan, M. Reece and L.-T. Wang, Precision natural SUSY at CEPC, FCC-ee and ILC,

JHEP 08 (2015) 152 [arXiv:1412.3107] [INSPIRE].

[99] W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the

Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].

[100] M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays,

Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].

[101] BaBar collaboration, J.P. Lees et al., Measurement of B(B → Xsγ), the B → Xsγ photon

energy spectrum and the direct CP asymmetry in B → Xs+dγ decays, Phys. Rev. D 86

(2012) 112008 [arXiv:1207.5772] [INSPIRE].

[102] Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of

b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].

[103] K. Ishiwata, N. Nagata and N. Yokozaki, Natural supersymmetry and b→ sγ constraints,

Phys. Lett. B 710 (2012) 145 [arXiv:1112.1944] [INSPIRE].

[104] K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01

(2013) 057 [arXiv:1206.5303] [INSPIRE].

[105] D. Chang, W.-F. Chang and W.-Y. Keung, New constraint from electric dipole moments on

chargino baryogenesis in MSSM, Phys. Rev. D 66 (2002) 116008 [hep-ph/0205084]

[INSPIRE].

[106] N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split

supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

[107] N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural

supersymmetry, arXiv:1212.6971 [INSPIRE].

[108] D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the

minimal supersymmetric Standard Model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211]

[INSPIRE].

[109] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets,

JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

[110] T. Gherghetta, G.F. Giudice and J.D. Wells, Phenomenological consequences of

supersymmetry with anomaly induced masses, Nucl. Phys. B 559 (1999) 27

[hep-ph/9904378] [INSPIRE].

[111] S. Mizuta and M. Yamaguchi, Coannihilation effects and relic abundance of Higgsino

dominant LSP(s), Phys. Lett. B 298 (1993) 120 [hep-ph/9208251] [INSPIRE].

[112] T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking,

Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

[113] U. Chattopadhyay, D. Choudhury, M. Drees, P. Konar and D.P. Roy, Looking for a heavy

Higgsino LSP in collider and dark matter experiments, Phys. Lett. B 632 (2006) 114

[hep-ph/0508098] [INSPIRE].

[114] J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on

thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249]

[INSPIRE].

[115] N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys.

B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

– 50 –

https://doi.org/10.1007/JHEP08(2015)152
https://arxiv.org/abs/1412.3107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3107
https://doi.org/10.1007/JHEP01(2013)160
https://arxiv.org/abs/1211.1976
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1976
https://doi.org/10.1103/PhysRevLett.114.221801
https://arxiv.org/abs/1503.01789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01789
https://doi.org/10.1103/PhysRevD.86.112008
https://doi.org/10.1103/PhysRevD.86.112008
https://arxiv.org/abs/1207.5772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5772
https://arxiv.org/abs/1412.7515
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7515
https://doi.org/10.1016/j.physletb.2012.02.052
https://arxiv.org/abs/1112.1944
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1944
https://doi.org/10.1007/JHEP01(2013)057
https://doi.org/10.1007/JHEP01(2013)057
https://arxiv.org/abs/1206.5303
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5303
https://doi.org/10.1103/PhysRevD.66.116008
https://arxiv.org/abs/hep-ph/0205084
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0205084
https://doi.org/10.1016/j.nuclphysb.2004.12.026
https://arxiv.org/abs/hep-ph/0409232
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0409232
https://arxiv.org/abs/1212.6971
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6971
https://doi.org/10.1016/S0550-3213(96)00683-9
https://arxiv.org/abs/hep-ph/9606211
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9606211
https://doi.org/10.1088/1126-6708/1998/12/027
https://arxiv.org/abs/hep-ph/9810442
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9810442
https://doi.org/10.1016/S0550-3213(99)00429-0
https://arxiv.org/abs/hep-ph/9904378
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9904378
https://doi.org/10.1016/0370-2693(93)91717-2
https://arxiv.org/abs/hep-ph/9208251
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9208251
https://doi.org/10.1016/S0550-3213(99)00748-8
https://arxiv.org/abs/hep-ph/9906527
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9906527
https://doi.org/10.1016/j.physletb.2005.09.088
https://arxiv.org/abs/hep-ph/0508098
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0508098
https://doi.org/10.1016/j.physletb.2007.01.012
https://arxiv.org/abs/hep-ph/0610249
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0610249
https://doi.org/10.1016/j.nuclphysb.2006.02.010
https://doi.org/10.1016/j.nuclphysb.2006.02.010
https://arxiv.org/abs/hep-ph/0601041
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0601041


J
H
E
P
0
8
(
2
0
1
7
)
0
3
1

[116] T. Moroi, M. Nagai and M. Takimoto, Non-thermal production of wino dark matter via the

decay of long-lived particles, JHEP 07 (2013) 066 [arXiv:1303.0948] [INSPIRE].

[117] ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest

neutralino based on a disappearing-track signature in pp collisions at
√
s = 8 TeV with the

ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].

[118] CMS collaboration, Search for disappearing tracks in proton-proton collisions at√
s = 8 TeV, JHEP 01 (2015) 096 [arXiv:1411.6006] [INSPIRE].

[119] C.H. Chen, M. Drees and J.F. Gunion, Searching for invisible and almost invisible particles

at e+e− colliders, Phys. Rev. Lett. 76 (1996) 2002 [hep-ph/9512230] [INSPIRE].

[120] C.H. Chen, M. Drees and J.F. Gunion, Addendum/erratum for ‘searching for invisible and

almost invisible particles at e+e− colliders’ [hep-ph/9512230] and ‘a nonstandard

string/SUSY scenario and its phenomenological implications’ [hep-ph/9607421],

hep-ph/9902309 [INSPIRE].

[121] J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-F. Su, Discovering supersymmetry at

the Tevatron in wino LSP scenarios, Phys. Rev. Lett. 83 (1999) 1731 [hep-ph/9904250]

[INSPIRE].

[122] M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at

two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].

[123] T.A.W. Martin and D. Morrissey, Electroweakino constraints from LHC data, JHEP 12

(2014) 168 [arXiv:1409.6322] [INSPIRE].

[124] T. Han, F. Kling, S. Su and Y. Wu, Unblinding the dark matter blind spots, JHEP 02

(2017) 057 [arXiv:1612.02387] [INSPIRE].

[125] LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the

complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

[126] PandaX-II collaboration, A. Tan et al., Dark matter results from first 98.7 days of data

from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400]

[INSPIRE].

[127] XENON collaboration, E. Aprile et al., First dark matter search results from the

XENON1T experiment, arXiv:1705.06655 [INSPIRE].

[128] Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation

from milky way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data,

Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

[129] H.E.S.S. collaboration, H. Abdallah et al., Search for dark matter annihilations towards

the inner galactic halo from 10 years of observations with H.E.S.S., Phys. Rev. Lett. 117

(2016) 111301 [arXiv:1607.08142] [INSPIRE].

[130] N. Nagata and S. Shirai, Higgsino dark matter in high-scale supersymmetry, JHEP 01

(2015) 029 [arXiv:1410.4549] [INSPIRE].

[131] J.P. Conlon, Mirror mediation, JHEP 03 (2008) 025 [arXiv:0710.0873] [INSPIRE].

[132] S.A.R. Ellis and G.L. Kane, Theoretical prediction and impact of fundamental electric dipole

moments, JHEP 01 (2016) 077 [arXiv:1405.7719] [INSPIRE].

[133] A. Basirnia, D. Egana-Ugrinovic, S. Knapen and D. Shih, 125 GeV Higgs from tree-level

A-terms, JHEP 06 (2015) 144 [arXiv:1501.00997] [INSPIRE].

– 51 –

https://doi.org/10.1007/JHEP07(2013)066
https://arxiv.org/abs/1303.0948
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0948
https://doi.org/10.1103/PhysRevD.88.112006
https://arxiv.org/abs/1310.3675
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3675
https://doi.org/10.1007/JHEP01(2015)096
https://arxiv.org/abs/1411.6006
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.6006
https://doi.org/10.1103/PhysRevLett.76.2002
https://arxiv.org/abs/hep-ph/9512230
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9512230
https://arxiv.org/abs/hep-ph/9902309
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9902309
https://doi.org/10.1103/PhysRevLett.83.1731
https://arxiv.org/abs/hep-ph/9904250
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9904250
https://doi.org/10.1016/j.physletb.2013.03.015
https://arxiv.org/abs/1212.5989
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5989
https://doi.org/10.1007/JHEP12(2014)168
https://doi.org/10.1007/JHEP12(2014)168
https://arxiv.org/abs/1409.6322
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6322
https://doi.org/10.1007/JHEP02(2017)057
https://doi.org/10.1007/JHEP02(2017)057
https://arxiv.org/abs/1612.02387
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.02387
https://doi.org/10.1103/PhysRevLett.118.021303
https://arxiv.org/abs/1608.07648
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.07648
https://doi.org/10.1103/PhysRevLett.117.121303
https://arxiv.org/abs/1607.07400
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07400
https://arxiv.org/abs/1705.06655
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06655
https://doi.org/10.1103/PhysRevLett.115.231301
https://arxiv.org/abs/1503.02641
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02641
https://doi.org/10.1103/PhysRevLett.117.111301
https://doi.org/10.1103/PhysRevLett.117.111301
https://arxiv.org/abs/1607.08142
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.08142
https://doi.org/10.1007/JHEP01(2015)029
https://doi.org/10.1007/JHEP01(2015)029
https://arxiv.org/abs/1410.4549
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4549
https://doi.org/10.1088/1126-6708/2008/03/025
https://arxiv.org/abs/0710.0873
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.0873
https://doi.org/10.1007/JHEP01(2016)077
https://arxiv.org/abs/1405.7719
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7719
https://doi.org/10.1007/JHEP06(2015)144
https://arxiv.org/abs/1501.00997
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.00997

	Introduction
	Two-loop EDMs of elementary fermions
	Sign conventions
	The outer loop
	Neutral particle exchange
	Charged particle exchange
	Example couplings

	The inner loop
	Scalars in the inner loop
	Fermions in the inner loop


	Natural SUSY framework
	Naturalness and tuning
	Higgs sector physics

	Calculations of the EDMs and experimental constraints
	Paramagnetic EDMs: operators probed and experimental status
	Paramagnetic EDMs: computation
	The electron EDM
	The CP-odd electron-nucleon interaction

	The neutron EDM: operators probed and experimental status
	The neutron EDM: computation
	The mercury EDM: operators probed and experimental status

	Stop contributions
	The MSSM with the near-maximal stop mixing
	Extra gauge interactions
	Comparison to the b -> s gamma constraint on stops and higgsinos

	EDM constraints in the chargino sector
	EDM constraints on charginos alone
	EDM constraints on charginos in the 2HDM context
	Comparison to collider and dark matter search constraints

	Higgs interactions beyond the MSSM
	Spectrum and couplings in the BMSSM
	EDMs in the BMSSM

	Conclusions
	Relevant couplings
	Gauge boson and higgs couplings to Standard Model fermions
	Loop-induced wrong Higgs Yukawa coupling
	Stop couplings with Higgs bosons
	Chargino couplings with Higgs bosons
	W boson couplings with charginos and neutralinos
	Charged Higgs couplings with charginos and neutralinos

	Selected formulas for EDM contributions
	The W EDM contribution
	The charged Higgs and top/bottom loop contributions
	CEDM of the bottom quark

	Likelihood analysis of the mercury EDM constraint 

