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1 Introduction

Bogomol’nyi-Prasad-Sommerfield (BPS) Wilson loops (WLs) in supersymmetric gauge the-

ories provide one of the main tools to test the AdS/CFT correspondence, being non-

protected operators that in many cases can be computed exactly at quantum level by

using localization techniques. Matching the weak coupling expansion of the exact result

with a field theory perturbative calculation and the strong coupling limit with the dual

string or brane configuration in AdS provides in fact a strong check of the correspondence.

In this paper we focus on 1/2 BPS WLs in superconformal gauge theories and their

string theory duals, in different realizations of the AdS/CFT correspondence. These WLs

are gauge invariant non-local operators that preserve half of the original supersymmetry

charges.

The prototype example of these operators is the 1/2 BPS WL in four-dimensional

N = 4 SYM theory constructed in [1] and dual to a fundamental string in AdS5 × S5

spacetime [1, 2].1 It corresponds to the holonomy of a generalized connection that includes

also a coupling to the scalar fields of the theory. Using localization, the exact value for

circular loops is given by a gaussian matrix model [7, 8]. At weak coupling it coincides

with the perturbative result of [7, 9], whereas at strong coupling it reproduces the type IIB

fundamental string result [1, 2, 7, 9].

A similar approach has led to the construction of 1/2 BPS WLs in three-dimensional

super Chern-Simons-matter (SCSM) theories. In particular, for the ABJ(M) models [10, 11]

this operator has been found in [12] as the holonomy of a superconnection that contains, in

addition to the gauge field, scalar and fermion matter fields in the bi-fundamental repre-

sentation of the gauge group. Less supersymmetric BPS WLs have been also constructed,

which still contain additional scalars and/or fermions. In particular, the bosonic 1/6 BPS

WL [13–15], dual to smeared fundamental strings or D-branes [13], plays an important role

in the exact evaluation of 1/2 BPS WL, since the two operators only differ by a Q-term,

where Q is the charge used to localize the functional integral [12]. The evaluation of the 1/2

BPS WL at weak coupling [16–18] and at strong coupling, via the M-theory AdS4 × S7/Zk
dual description [13–15] matches the exact result from localization [19–21].

One important feature of 1/2 BPS WLs in four-dimensional N = 4 SYM and three-

dimensional ABJ(M) theories is their uniqueness: for a specific set of preserved super-

charges, there is at most one single operator that is invariant under their action. This is

true both at classical and quantum level, and it is consistent with the uniqueness of the

localization result and the uniqueness of the string or M2-brane solutions in the corre-

sponding dual description.

More recently, the construction of 1/2 BPS WLs in N = 4 orbifold ABJM theory, and

more generally in quiver N = 4 SCSM theories with gauge group
∏r
`=1[U(N2`−1)×U(N2`)]

and alternating levels [22, 23], has been attacked [24, 25]. 1/2 BPS operators can be

defined locally for each pair of adjacent quiver nodes. Referring to the `- and `+ 1-nodes

it is given by the holonomy of a superconnection that contains couplings to scalars and

1In this paper we consider only WLs in fundamental representation. 1/2 BPS operators in more general

representations are dual to D5-branes or D3-branes in AdS5 × S5 [3–6].
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fermions in the bi-fundamental representation of the gauge groups U(N2`−1)× U(N2`), or

U(N2`)×U(N2`+1), and adjacent nodes.

The novel feature that emerges for the first time in this context is the lack of uniqueness.

In fact, at classical level two different WLs have been constructed that preserve the same

set of four supercharges [25]. The two operators, ψ1-loop Wψ1 and ψ2-loop Wψ2 in the

language of [25], are evaluated along the same contour but differ for the matter couplings.

Nevertheless, they are both cohomologically equivalent to the same 1/6 BPS WL, whose

expectation value can be exactly computed using localization.

The existence of two different 1/2 BPS WLs seems to be in contrast with the M-theory

dual description where in principle there should be one single M2-brane solution that is 1/2

BPS (see discussion in [25]). It also seems to be puzzling when compared to the localization

result that in principle provides a unique result, 〈Wψ1〉 = 〈Wψ2〉, being both the operators

Q-equivalent to the same 1/6 BPS WL.

In a perturbative setup, this puzzle has been solved in [26] by computing the two WLs

up to three loops.2 While at one and two loops they have the same expectation value that

coincides with the localization result [27], at three loops they start being different and the

localization result is matched only by the linear combination 1
2(Wψ1 +Wψ2) [26]. Therefore,

at weak coupling this combination seems to be the true BPS quantum operator. However,

this cannot be the end of the story. For N = 4 SCSM theories, a deeper comprehension

of the physical mechanism that leads to two different WLs preserving the same set of

supercharges would be desirable, as well as the construction of the corresponding duals in

M-theory and the identification of the actual BPS operator at strong coupling.

Motivated by the above discussion, in this paper we perform a systematic construction

of general 1/2 BPS WLs on the straight line and their string/M-theory duals, using the

heavy W-boson effective theory procedure and its dual counterpart in string/M-theory [1,

2, 9, 28].3 We begin by considering four-dimensional N = 4 SYM as a guideline, and then

move to three-dimensional SCSM theories with decreasing amount of supersymmetry.

Different 1/2 BPS WL can be obtained by Higgsing along different (independent)

directions in the scalar field space and/or choosing different massive modes corresponding

to heavy particles or antiparticles. Different Higgsing directions correspond to different

positions of the dual fundamental strings or M2-branes in the internal space and lead to

WLs that are simply related by R-symmetry rotations and then correspond to the same

quantum operator. Instead, choosing massive particle or antiparticle modes corresponds to

choosing fundamental string/M2-brane or fundamental anti-string/anti-M2-brane solutions

localized at the same position, and should lead to two physically distinguishable objects.

In all cases we construct two sets of independent WLs, one set (W operators) ob-

tained by Higgsing with heavy W-particles, the second one (W̃ operators) obtained by

Higgsing with heavy W-antiparticles, both with the same mass. We study the overlapping

2Precisely, the result of [26] holds for general N = 4 SCSM
∏r
`=1[U(N2`−1)×U(N2`)] quiver gauge theo-

ries with different ranks, but it cannot be extended to the case of equal ranks (N = 4 orbifold ABJM theory).
3In this paper we consider the M-theory dual description of three-dimensional SCSM theories. Often it

is more convenient to study SCSM theories in terms of a dual type IIB string theory, as done for example

in [29, 30].
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of supercharges preserved by different WLs, as well as the overlapping of supercharges

preserved by the dual fundamental strings or M2-branes. In all the cases we find perfect

matching between field theory and string/M-theory results. In fact, we manage to identify

the supercharges in string/M-theory with the supercharges in field theory, as well as the

supercharges preserved by the M2-/anti-M2-branes with the supercharges preserved by the

1/2 BPS WLs.

While for four-dimensional N = 4 SYM, operators in the same set preserve different su-

percharges simply related by an internal rotation, and two WLs along the same line in differ-

ent sets always preserve complementary sets of supercharges, for three-dimensional SCSM

theories the overlapping configuration of preserved supercharges becomes more interesting.

In ABJM theory we find that any couple of WLs in the same set, let’s say WI and

WJ with fixed I, J = 1, 2, 3, 4 and J 6= I, always share two supercharges, θIJ+ , εIJKLθ
KL
− .

Operators belonging to two different sets, WI and W̃J with J 6= I, share four supercharges

θIK+ , θJK− with K 6= I, J .

This overlapping becomes more stringent in N = 4 orbifold ABJM where it is possible

to find one particle and one antiparticle configurations corresponding to different Higgsing

directions in the scalar moduli space, which preserve exactly the same set of supercharges.

These are the remnants of the overlapped ABJM spectrum after the orbifold projection.

In fact, under the R-symmetry breaking SU(4) → SU(2) × SU(2) that implies the index

relabeling I → (i, ı̂), with i = 1, 2, ı̂ = 1̂, 2̂, we find that four pairs of operators, say the

pair W1, W̃2, the pair W̃1,W2, the pair W1̂, W̃2̂, and the pair W̃1̂,W2̂, preserve the same

set of supercharges (see table 4 and figure 4a). They are nothing but the ψ1- and ψ2-type

loops of [25]. Correspondingly, in M-theory in AdS4 × S7/(Zrk × Zr) background we find

that, contrary to the expectations, there exist pairs of M2- and anti-M2- branes at different

positions that preserve the same set of supercharges (see figure 4b). They are the duals of

ψ1- and ψ2-loops.

We generalize this construction to N = 4 SCSM quiver theories with gauge group and

levels
∏r
`=1[U(N2`−1)k × U(N2`)−k] and different group ranks. Again, we find that using

massive particles or antiparticles in the Higgsing procedure leads to the definition of two

different classes of WL operators, with special representatives that turn out to preserve the

same set of supercharges. In this case, the dual M-theory description is not known.

Our analysis enlightens the origin of the pairwise degeneracy of WL operators in N = 4

SCSM theories, both from a (classical) field theory perspective and from a M-theory point

of view. But at the same time it opens new questions. In fact, on one side the existence

in N = 4 orbifold ABJM theory of pairwise M2-brane embeddings that preserve the same

set of supercharges reconciles the WL degeneracy found in CFT with the AdS/CFT pre-

dictions, as both ψ1- and ψ2- WL operators have distinct dual counterparts. On the other

side, since the degeneracy persists at strong coupling, we cannot expect that the classical

degeneracy gets lifted by quantum corrections, as previously suggested [25, 26]. Rather,

the present result seems to point towards the fact that both ψ1- and ψ2- WLs could be

separately 1/2 BPS operators. As already mentioned, this should happen consistently
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with the localization result4 that predicts the same value for the two quantum operators.

A perturbative calculation for 1/2 BPS WLs in N = 4 orbifold ABJM could answer this

question, but it is not available yet. This is instead available for more general N = 4 SCSM

quiver theories with gauge group and levels
∏r
`=1[U(N2`−1)k×U(N2`)−k] for which we know

that the two results start being different at three loops [26], and the localization result is

matched by the unique BPS operator 1
2(Wψ1 + Wψ2). In this case it would be reasonable

to expect that in the corresponding dual M-theory description no pairwise degeneracy of

M2-brane embeddings would be present. Unfortunately, the M2-brane construction for this

more general case has not been done yet. Therefore, in the absence of further indications

it is difficult to clarify the whole picture and draw any definite conclusion.

The rest of the paper is organized as follows. In section 2 we briefly review the

physical picture of the heavy W-boson effective theory obtained by Higgsing procedure

and its string counterpart. In section 3, 4, 5 we investigate 1/2 BPS WLs and their string

theory or M-theory duals in, respectively, four-dimensional N = 4 SYM theory, ABJM

theory, and N = 4 orbifold ABJM theory. In section 6 we consider the 1/2 BPS WLs

and Higgsing procedures in more general N = 4 SCSM theories with alternating levels.

We conclude with a discussion of our results in section 7. In appendix A we give spinor

conventions and useful spinorial identities in three dimensions. In appendix B we collect

the infinite mass limit for the relevant free field theories. In appendix C we give details

to determine the Killing spinors in AdS5 × S5 spacetime. In appendix D we determine

the Killing spinors in AdS4 × S7 spacetime. Appendix E contains the detailed Higgsing

procedure for general N = 4 SCSM theories. Finally, in appendix F we first determine

the Killing spinors in the AdS7 × S4 spacetime and then use these results to construct 1/2

BPS M2- and anti-M2-brane configurations that could be possibly dual to 1/2 BPS Wilson

surfaces in six-dimensional N = (2, 0) superconformal field theory.

2 The Higgsing procedure

The guideline that we follow to identify a BPS WL and its dual in string or M-theory is

the derivation of these operators through the Brout-Englert-Higgs mechanism applied on

both sides of the AdS/CFT correspondence. The idea originates from [1, 2], and has been

realized explicitly for four-dimensional N = 4 SYM theory in [9] and for ABJM theory

in [28]. Here we briefly review this technique in the tantalizing example of four-dimensional

N = 4 SYM theory.5

In a generic gauge theory, a WL along the timelike infinite straight line xµ = τδµ0
corresponds to the phase associated to the semiclassical evolution of a very heavy quark

in the gauge background. Since in N = 4 SYM theory there are no massive particles, one

can introduce them by a Higgsing procedure. Precisely, starting from the N = 4 SYM

theory with gauge group SU(N + 1), one breaks the gauge symmetry to SU(N)×U(1) by

4Comparison with localization results makes sense only once we perform a Wick rotation to euclidean

space and map the straight line to the circle by a conformal transformation.
5The procedures in [9] and [28] are similar but not completely equivalent. In this paper we adopt the

latter one.
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(a) A string stretching between a stack of

N D3-branes and one extra D3-brane.

×

(b) The string in the AdS5 × S5 geometry.

Figure 1. The Higgsing procedure of four-dimensional N = 4 SYM theory in the dual string theory

description. In (a) the magenta line is the Wilson loop. In (b) the blue cross on S5 represents the

point where the string is localized in the internal space.

introducing an infinite expectation value for some of the scalar fields and eventually gets

N = 4 SYM theory with gauge group SU(N) coupled to some infinitely massive particles.

The corresponding Wilson operator turns out to be the holonomy of the actual gauge

connection that appears in the resulting heavy particle effective lagrangian.

The string theory dual of the Higgsing procedure is shown in figure 1. It corresponds

to starting from a stack of N + 1 coincident D3-branes and then moving one of the D3-

branes to infinity in some particular direction. One can excite one fundamental string that

connects the extra D3-brane with the remaining N D3-branes. The worldline of the end-

point of this string in the worldvolume of the N D3-branes is precisely the Wilson loop.

By taking the near horizon limit of the N D3-branes, we get the AdS5 × S5 geometry with

a fundamental string stretching from the UV to IR in AdS5 spacetime and being localized

in the compact S5 space.

There is a one-to-one correspondence between the Higgsing procedure in field theory

and the dual string theory construction. In fact, the direction in which the extra D3-brane

moves, and therefore its localization in the internal space, is related to the direction of

the expectation value in the scalar field space of N = 4 SYM theory. Moreover, we have

the freedom to excite 1/2 BPS fundamental strings or anti-strings between the stack of

N D3-branes and the extra probe brane. In the field theory language this corresponds to

exciting different massive modes, that is massive particles or antiparticles. As we are going

to show in the next section, fundamental strings and anti-strings localized at the same

position in S5 preserve complementary sets of supercharges, and they are dual to different

WLs that also preserve complementary sets of supercharges.

This procedure can be easily generalized to M-theory in AdS4 × S7/(Zrk × Zr) back-

grounds where different configurations of M2-branes or anti-M2-branes give rise to different

sets of Wilson loop operators. A pair of M2- and anti-M2-branes localized at the same point

preserve complementary sets of supercharges, and are dual to different WLs that also pre-

serve non-overlapping sets of supercharges.
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3 Four-dimensional N = 4 super Yang-Mills theory

As a warm-up, and also to fix our notations, in this section we review the Higgsing procedure

for four-dimensional N = 4 SYM theory. We construct different (independent) 1/2 BPS

WLs and focus on the spectrum of the corresponding preserved supercharges.

3.1 1/2 BPS Wilson loops

Using ten-dimensional N = 1 SYM theory formalism, the field content of the theory is

given by one gauge field Aµ, six scalars φI with I = 4, 5, · · · , 9 and one ten-dimensional

Majorana-Weyl spinor λ, all in the adjoint representation of the SU(N) gauge group. The

corresponding lagrangian is

L = −1

4
Tr(FµνF

µν + 2DµφID
µφI − [φI , φJ ][φI , φJ ]) +

i

2
Tr[λ̄(γµDµλ+ iγIφIλ)] (3.1)

with Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], DµφI = ∂µφI + i[Aµ, φI ], λ̄ = −λ†γ0 and Dµλ =

∂µλ+ i[Aµ, λ]. The bosonic part of the supersymmetry (SUSY) transformations are

δAµ = iλ̄γµ(θ + xµγµϑ), δφI = iλ̄γI(θ + xµγµϑ) (3.2)

Here θ is the ten-dimensional Majorana-Weyl spinor with positive chirality associated to

Poincaré supercharges, and ϑ is the Majorana-Weyl spinor with negative chirality associ-

ated to superconformal charges.

On a time-like infinite straight line xµ = (τ, 0, 0, 0), we define the general 1/2 BPS

WL [1, 2, 5]

W = P exp

(
− i

∫
dτA(τ)

)
(3.3)

with generalized connection

A = A0 − φInI (3.4)

and preserved supercharges

γ0In
Iθ = −θ, γ0In

Iϑ = ϑ (3.5)

Here nI is a constant vector in R-symmetry space, with δIJn
InJ = 1.

As particular cases, we consider a set W of 1/2 BPS WLs with six independent repre-

sentatives WI associated to the generalized connections

AI = A0 − φI (3.6)

The corresponding preserved supercharges are selected by

γ0Iθ = −θ, γ0Iϑ = ϑ (3.7)

Similarly, we introduce a second set W̃ with representatives W̃I associated to

ÃI = A0 + φI (3.8)

– 7 –
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which lead to preserved supercharges

γ0Iθ = θ, γ0Iϑ = −ϑ (3.9)

Although the six 1/2 BPS WLs in class W are related by SU(4) ∼= SO(6) R-symmetry

rotations, the relation among the corresponding preserved supercharges is interesting. Since

matrices γ0I , γ0J with I 6= J do not commute, there is no overlapping among supercharges

preserved by the W loops. The same is true for the six WLs in class W̃ . Moreover,

WI and W̃I with the same I-index always preserve complementary sets of supercharges.

In conclusion, there is no overlapping among the supercharges preserved by these WL

representatives. This is a property that we will meet also in the gravity dual construction

of section 3.3.

3.2 Wilson loops from Higgsing

Following the original idea of [1, 2], we now briefly review the Higgsing construction of

WLs in N = 4 SYM theory.

Starting with N = 4 SU(N + 1) SYM theory, we break the gauge group to SU(N) by

the following choice6

Aµ =

(
Aµ Wµ

W̄µ 0

)
, φJ =

(
φJ RJ

R̄J vJ

)
(3.10)

where vJ = vnJ , v > 0, δIJnInJ = 1. To be definite we choose nJ = δIJ with fixed

I = 4, · · · , 9. Taking v →∞ leads to particles with infinite mass, m = v.

The v-flux breaks half of the supersymmetries. The massive vector field Wµ has three

complex degrees of freedom, W± = W1±iW2, W3, while working in unitary gauge (RI = 0),

we are left with five scalars Ri, with i 6= I. These fields build up the bosonic part of the

four-dimensional N = 2 massive vector multiplet according to the following assignment

spin 1 1/2 0 −1/2 −1

degeneracy 1 4 6 4 1

field W+ · · · W3, Ri · · · W−

Since we are interested in the low-energy dynamics of massive particles and their

interactions with the SU(N) SYM theory, we focus on terms in the lagrangian that are

non-vanishing in the v → ∞ limit. Inserting the ansatz (3.10) into (3.1), we obtain the

following lagrangian for the bosonic massive particles

L = −1

2
W̄µνW

µν − v2W̄µW
µ + 2vW̄µφIW

µ

−DµR̄iD
µRi − v2R̄iRi + 2vR̄iφIRi (3.11)

where Wµν = DµWν −DνWµ, DµWν = ∂µWν + iAµWν , DµRi = ∂µRi + iAµRi.

6We label gauge fields in SU(N + 1) and SU(N) theories with the same letters, as long as this does not

cause confusion.
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We now have two possibilities. If we use particle modes

Wµ =
1√
2v

(0, w1, w2, w3)e−imt , Ri =
1√
2v
rie
−imt (3.12)

the non-relativistic lagrangian can be reduced to the following form (see appendix B)

L = iw̄aD0wa + ir̄iD0ri (3.13)

where D0wa = ∂0wa + iAIwa, D0ri = ∂0ri + iAIri, and the new connection is

AI = A0 − φI (3.14)

This is exactly the connection in (3.6) that defines WLs in the W set.

Alternatively, we can use antiparticle modes

Wµ =
1√
2v

(0, w1, w2, w3)eimt , Ri =
1√
2v
rie

imt (3.15)

and we get the non-relativistic lagrangian

L = iTrwaD0w̄a + iTrriD0r̄i (3.16)

where D0w̄a = ∂0w̄a − iw̄aÃI , D0r̄i = ∂0r̄i − ir̄iÃI , with the connection Ã being

ÃI = A0 + φI (3.17)

This is indeed the connection (3.8) that enters the definition of 1/2 BPS WLs in the W̃ set.

WI and W̃I preserve complementary sets of supercharges and they describe the evolu-

tion of massive particles and their antiparticles, as can be seen in (3.12) and (3.15).

An alternative, but equivalent procedure starts by Higgsing in the opposite direction

in the scalar field space, that is choosing vJ = −vδIJ with v > 0 in ansatz (3.10). In this

case, by exciting modes (3.12) we get connection (3.8) that defines the W̃I loop, whereas

exciting modes (3.15) we obtain connection (3.6) that defines WI .

Since we have two different, but equivalent ways to generate the two classes of WL

operators, we will call them W
(1)
I ,W

(2)
I and W̃

(1)
I , W̃

(2)
I although they represent the same

operator. While this classification for the N = 4 SYM case seems quite redundant, it will

become non-trivial when dealing with their string theory duals in the next subsection.

3.3 Fundamental strings in AdS5×S5 spacetime

We now determine the fundamental string solutions in AdS5 × S5 dual to the 1/2 BPS WL

we have constructed.

Type IIB string AdS5 × S5 background with self-dual five-form flux is described by

ds2 = R2(ds2
AdS5

+ ds2
S5)

Fµ̃ν̃ρ̃σ̃λ̃ =
4

R
εµ̃ν̃ρ̃σ̃λ̃, Fı̃̃k̃l̃m̃ = − 4

R
εı̃̃k̃l̃m̃ (3.18)

with εµ̃ν̃ρ̃σ̃λ̃ and εı̃̃k̃l̃m̃ being the volume forms of AdS5 and S5, respectively.
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For the unit AdS5 we choose the Poincaré coordinates

ds2
AdS5

= u2(−dt2 + dx2
1 + dx2

2 + dx2
3) +

du2

u2
(3.19)

with u→∞ being the boundary. Embedding S5 in R6 ∼=C3 as

z1 = cos θ1 eiξ1 = x4 + ix6

z2 = sin θ1 cos θ2 eiξ2 = x5 + ix8

z3 = sin θ1 sin θ2 eiξ3 = x7 + ix9 (3.20)

with θ1,2 ∈ [0, π2 ], ξ1,2,3 ∈ [0, 2π], we get to the unit S5 metric

ds2
S5 = dθ2

1 + cos2 θ1dξ
2
1 + sin2 θ1(dθ2

2 + cos2 θ2dξ
2
2 + sin2 βdξ2

3) (3.21)

Note that the R6 ∼=C3 is along the perpendicular directions of the stack of D3-branes before

the near horizon limit is taken.

The Killing spinors for the AdS5 × S5 geometry are determined in appendix C, follow-

ing the procedure in [31]. They are given in eqs. (C.8), (C.9), (C.10), (C.11).

We now consider a fundamental string embedded in AdS5 × S5 spacetime as

t = σ0, x1,2,3 = 0, u = σ1 (3.22)

with σ0,1 being the string worldsheet coordinates. We localize the string at some point on

S5, that is parameterized by a uniform vector nI in C3 ∼= R6

n4 = cos θ1 cos ξ1, n5 = sin θ1 cos θ2 cos ξ2, n6 = cos θ1 sin ξ1

n7 = sin θ1 sin θ2 cos ξ3, n8 = sin θ1 cos θ2 sin ξ2, n9 = sin θ1 sin θ2 sin ξ3 (3.23)

The supercharges preserved by the fundamental string are given by7

γ04ε = −εc (3.24)

with εc being the charge conjugate of ε.8

Using the explicit expression (C.8) for the Killing spinor we obtain

h−1γ04hε1 = −εc1, h−1γ04hε2 = εc2 (3.25)

where h has been defined in (C.9). Expressing ε1 and ε2 as in (C.11), this is equivalent to

h−1γ04hθ = −θ, h−1γ04hϑ = ϑ (3.26)

where θ, ϑ are constant Majorana-Weyl spinors with respectively positive and negative

chiralities. It turns out that [5]

h−1γ04h = γ0In
I (3.27)

7The names string and anti-string are interchangeable, and we choose the sign here for convenience of

comparison to Wilson loops.
8For a generic spinor ε, εc is defined as the charge conjugate εc = B−1ε∗, where B is given in terms

of gamma matrices, and satisfies the condition B−1γ∗
AB = γA. The explicit form of B can be found, for

example, in [32]. In Majorana basis we have εc = ε∗.
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string position preserved supercharges

F
(1)
1 z1 = 1 θ1 = ξ1 = 0 γ04θ = −θ, γ04ϑ = ϑ

F
(2)
1 z1 = i θ1 = 0, ξ1 = π/2 γ06θ = −θ, γ06ϑ = ϑ

F
(3)
1 z1 = −1 θ1 = 0, ξ1 = π γ04θ = θ, γ04ϑ = −ϑ
F

(4)
1 z1 = −i θ1 = 0, ξ1 = 3π/2 γ06θ = θ, γ06ϑ = −ϑ
F

(5)
1 z2 = 1 θ1 = π/2, θ2 = ξ2 = 0 γ05θ = −θ, γ05ϑ = ϑ

F
(6)
1 z2 = i θ1 = π/2, θ2 = 0, ξ2 = π/2 γ08θ = −θ, γ08ϑ = ϑ

F
(7)
1 z2 = −1 θ1 = π/2, θ2 = 0, ξ2 = π γ05θ = θ, γ05ϑ = −ϑ
F

(8)
1 z2 = −i θ1 = π/2, θ2 = 0, ξ2 = 3π/2 γ08θ = θ, γ08ϑ = −ϑ
F

(9)
1 z3 = 1 θ1 = θ2 = π/2, ξ3 = 0 γ07θ = −θ, γ07ϑ = ϑ

F
(10)
1 z3 = i θ1 = θ2 = π/2, ξ3 = π/2 γ09θ = −θ, γ09ϑ = ϑ

F
(11)
1 z3 = −1 θ1 = θ2 = π/2, ξ3 = π γ07θ = θ, γ07ϑ = −ϑ
F

(12)
1 z3 = −i θ1 = θ2 = π/2, ξ3 = 3π/2 γ09θ = θ, γ09ϑ = −ϑ

Table 1. The twelve different fundamental strings at different positions and their preserved su-

percharges. A similar table can be constructed for anti-string F̄
(i)
1 solutions. The corresponding

preserved charges are obtained by changing the sign of the r.h.s. of the Killing spinor equations.

so that (3.26) becomes

γ0In
Iθ = −θ, γ0In

Iϑ = ϑ (3.28)

These equations have exactly the same structure as the ones in eq. (3.5) defining the super-

charges preserved by a general 1/2 BPS WL. Therefore, we are led to identify the Killing

spinor components θ, ϑ in AdS5 × S5 with the Poincaré supercharges θ and superconformal

charges ϑ of four-dimensional SYM theory [5]. The spectrum of preserved supercharges

depends on the particular string configuration, as we now describe.

We consider twelve different string configurations, F
(i)
1 , i = 1, · · · , 12, localized at

twelve different positions in the compact space. Their positions are explicitly listed in ta-

ble 1, both in terms of complex coordinates in C3 ∼= R6 and in terms of angular coordinates.

Solving constraint (3.28) for each specific string solution we obtain the corresponding pre-

served supercharges in the fourth column of table 1. In particular, we note that strings

localized at opposite points in S5, that are F
(i)
1 and F

(i+2)
1 solutions with i = 1, 2, 5, 6, 9, 10,

preserve complementary sets of supercharges. In fact, the corresponding Killing spinor

equations always differ by a sign on the r.h.s.

Similarly, we can consider twelve fundamental anti-string configurations, F̄
(i)
1 , localized

at the same internal points listed in table 1. The corresponding preserved supercharges are

obtained by solving the constraint

γ0In
Iθ = θ, γ0In

Iϑ = −ϑ (3.29)

for each anti-string configuration. It turns out easily that the fundamental string and

anti-string configurations localized at the same point preserve complementary sets of su-
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percharges, whereas F
(i)
1 and F̄

(i+2)
1 , or F

(i+2)
1 and F̄

(i)
1 , with i = 1, 2, 5, 6, 9, 10, located at

opposite points always preserve the same set of supercharges.

Therefore, organizing the 12+12 (anti)string configurations in terms of the correspond-

ing preserved supercharges, we find twelve pairs of fundamental string/anti-string solutions,

such that each pair preserves the same set of supercharges. There is no overlapping of pre-

served supercharges between different pairs. These pairs are in one-to-one correspondence

with the twelve pairs of 1/2 BPS WLs (W
(1)
I ,W

(2)
I ) and (W̃

(1)
I , W̃

(2)
I ) discussed in sec-

tion 3.1.

In conclusion, each 1/2 BPS operator can be obtained by two different Higgsing proce-

dures in CFT, which in the dual description correspond to localize one fundamental string

at some point in S5 and one fundamental anti-string at the opposite point.

4 ABJM theory

In the same spirit of the previous section, we now apply the Higgsing procedure in ABJM

theory [10] to build two different sets of 1/2 BPS WLs by assigning vev to different scalars

and/or exciting different massive modes. Moreover, in the dual AdS4 × S7/Zk description

we identify the corresponding M2- and anti-M2-brane solutions wrapping the M-theory

circle and being localized at different positions in the compact space. Both in field theory

and in the dual constructions we discuss the spectra of preserved supercharges and their

possible overlapping.

The field content of U(N)k × U(N)−k ABJM theory is given by two gauge fields

Aµ and Bµ, four complex scalars φI and four Dirac fermions ψI , I = 1, 2, 3, 4, in the

bi-fundamental representation (N, N̄) of the gauge group. The corresponding hermitian

conjugates φ̄I = (φI)† and ψ̄I = (ψI)† belong to the bi-fundamental representation (N̄ ,N).

The ABJM lagrangian in components can be written as the sum of four terms

LCS =
k

4π
εµνρTr

(
Aµ∂νAρ+

2i

3
AµAνAρ−Bµ∂νBρ−

2i

3
BµBνBρ

)
Lk = Tr(−Dµφ̄

IDµφI+iψ̄Iγ
µDµψ

I)

Lp =
4π2

3k2
Tr(φI φ̄

IφJ φ̄
JφK φ̄

K+φI φ̄
JφJ φ̄

KφK φ̄
I+4φI φ̄

JφK φ̄
IφJ φ̄

K−6φI φ̄
JφJ φ̄

IφK φ̄
K)

LY =
2πi

k
Tr(φI φ̄

IψJ ψ̄J−2φI φ̄
JψI ψ̄J−φ̄IφI ψ̄JψJ+2φ̄IφJ ψ̄Iψ

J (4.1)

+εIJKLφI ψ̄JφKψ̄L−εIJKLφ̄IψJ φ̄KψL)

where εIJKL, εIJKL are the totally anti-symmetric Levi-Civita tensors in four dimensions

(ε1234 = ε1234 = 1) and the covariant derivatives are given by

DµφI = ∂µφI + iAµφI − iφIBµ

Dµφ̄
I = ∂µφ̄

I − iφ̄IAµ + iBµφ̄
I

Dµψ
I = ∂µψ

I + iAµψ
I − iψIBµ (4.2)
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The ABJM action is invariant under the following SUSY transformations [33–36]

δAµ = −2π

k

(
φI ψ̄Jγµε

IJ + ε̄IJγµψ
J φ̄I
)

δBµ = −2π

k

(
ψ̄JφIγµε

IJ + ε̄IJγµφ̄
IψJ

)
δφI = iε̄IJψ

J , δφ̄I = iψ̄Jε
IJ (4.3)

δψI = γµεIJDµφJ + ϑIJφJ +
2π

k
εIJ
(
φJ φ̄

KφK − φK φ̄KφJ
)

+
4π

k
εKLφK φ̄

IφL

δψ̄I = −ε̄IJγµDµφ̄
J + ϑ̄IJ φ̄

J − 2π

k
ε̄IJ
(
φ̄JφK φ̄

K − φ̄KφK φ̄J
)
− 4π

k
ε̄KLφ̄

KφI φ̄
L

with the definitions εIJ = θIJ + xµγµϑ
IJ , ε̄IJ = θ̄IJ − ϑ̄IJxµγµ, and θIJ and ϑIJ denoting

Poincaré and conformal supercharges respectively. The SUSY parameters satisfy

θIJ = −θJI , (θIJ)∗ = θ̄IJ , θ̄IJ =
1

2
εIJKLθ

KL

ϑIJ = −ϑJI , (ϑIJ)∗ = ϑ̄IJ , ϑ̄IJ =
1

2
εIJKLϑ

KL (4.4)

4.1 1/2 BPS Wilson loops

As in [12], one can construct the 1/2 BPS WLs along the straight line Γ : xµ = τδµ0

WI = P exp

(
− i

∫
Γ
dτLI(τ)

)
, I = 1, 2, 3, 4 (4.5)

as the holonomy of the superconnection9

LI =

 A
√

4π
k ψ

I
+√

4π
k ψ̄I− B

 ,
A = A0 − 2π

k (φI φ̄
I − φiφ̄i)

B = B0 − 2π
k (φ̄IφI − φ̄iφi)

(4.6)

In the above formula the I index is fixed and there is summation for index i 6= I. The

corresponding preserved Poincaré supercharges are (note that θIJ and θ̄IJ are not linearly

independent)

θIj+ , θ
ij
− , θ̄Ij−, θ̄ij+ i, j 6= I (4.7)

For BPS WLs along infinite straight lines, the preserved Poincaré and conformal super-

charges are similar, and in this paper we just consider the Poincaré supercharges, and

the conformal supercharges can be inferred easily. Due to relations (4.4), the preserved

supercharges can be equivalently written as

θIj+ , θ
ij
− or θIj+ , θ̄Ij− i, j 6= I (4.8)

WI operators are class II 1/2 BPS WLs in [37, 38], up to some R-symmetry rotations.

Similarly, there are 1/2 BPS WLs W̃I still defined as in (4.5) but with superconnection

L̃I =

 Ã
√

4π
k ψ

I
−

−
√

4π
k ψ̄I+ B̃

 ,
Ã = A0 + 2π

k (φI φ̄
I − φiφ̄i)

B̃ = B0 + 2π
k (φ̄IφI − φ̄iφi)

(4.9)

9We use spinor decompositions (A.13) and (A.14).
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Wilson loop preserved supercharges

W1 θ12
+ , θ13

+ , θ14
+ , θ23

− , θ24
− , θ34

−

W̃1 θ12
− , θ13

− , θ14
− , θ23

+ , θ24
+ , θ34

+

W2 θ12
+ , θ23

+ , θ24
+ , θ13

− , θ14
− , θ34

−

W̃2 θ12
− , θ23

− , θ24
− , θ13

+ , θ14
+ , θ34

+

W3 θ13
+ , θ23

+ , θ34
+ , θ12

− , θ14
− , θ24

−

W̃3 θ13
− , θ23

− , θ34
− , θ12

+ , θ14
+ , θ24

+

W4 θ14
+ , θ24

+ , θ34
+ , θ12

− , θ13
− , θ23

−

W̃4 θ14
− , θ24

− , θ34
− , θ12

+ , θ13
+ , θ23

+

Table 2. The 1/2 BPS WLs in ABJM theory and the preserved Poincaré supercharges. We have

not included θ̄IJ supercharges, since they are not linearly independent from θIJ .

They preserve the complementary set of Poincaré supercharges

θIj− , θ
ij
+ , θ̄Ij+, θ̄ij− i, j 6= I (4.10)

W̃I operators correspond to class I 1/2 BPS WLs in the classification of [37, 38], up to

some R-symmetry rotations.

Table 2 summarizes the “natural” representatives of the two classes of 1/2 BPS WLs

and their preserved supercharges. Each WL preserves six real Poincaré plus six real su-

perconformal charges, and so a total of twelve real supercharges. WI and W̃I for a fixed

I-index preserve complementary sets of supercharges. It is important to note that there

are non-trivial overlappings among the supercharges preserved by different WLs. Precisely,

any couple of WLs in the same set, let’s say WI and WJ with I 6= J , always share two

Poincaré supercharges θIJ+ , εIJKLθ
KL
− . Operators belonging to two different sets, W̃I and

WJ 6=I , share four Poincaré supercharges θIK− , θJK+ , K 6= I, J . The amount of the overlap-

ping supercharges between each pair of WLs are shown in figure 2a.

The 1/2 BPS WLs introduced above are special cases of a general 1/2 BPS Wilson

loop W with superconnection

L =

A0 + 2π
k (δIJ − 2αI ᾱJ)φI φ̄

J
√

4π
k ᾱIψ

I
+√

4π
k ψ̄I−α

I B0 + 2π
k (δIJ − 2αI ᾱJ)φ̄JφI

 (4.11)

where ᾱI = (ᾱ1, ᾱ2, ᾱ3, ᾱ4), αI ≡ (ᾱI)
∗, |α|2 ≡ ᾱIα

I = 1. The corresponding preserved

Poincaré and conformal supercharges are

ᾱIθ
IJ
+ , αI θ̄IJ−, ᾱIϑ

IJ
+ , αI ϑ̄IJ− (4.12)

Similarly, we can introduce a 1/2 BPS Wilson loop W̃ with superconnection

L̃ =

A0 + 2π
k (−δIJ + 2αI ᾱJ)φI φ̄

J
√

4π
k ᾱIψ

I
−

−
√

4π
k ψ̄I+α

I B0 + 2π
k (−δIJ + 2αI ᾱJ)φ̄JφI

 (4.13)
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W1

W
˜
1

W2

W
˜
2

W3

W
˜
3

W4

W
˜
4

(a) Overlapping supercharges of 1/2 BPS

Wilson loops.

M2
(1)

M
–

2

(1)

M2
(2)

M
–

2

(2)

M2
(3)

M
–

2

(3)

M2
(4)

M
–

2

(4)

(b) Overlapping supercharges of M2- and

anti-M2-branes.

Figure 2. Amount of overlapping supercharges between each pair of 1/2 BPS WLs in ABJM

theory and between each pair of M2- and anti-M2-branes in AdS4 × S7/Zk. A red solid line means

that the two WLs or branes share 2/3 of preserved supercharges. A blue dashed line means that the

two WLs or branes share 1/3 of preserved supercharges. Two WLs or branes that are not directly

connected by any line have no common preserved supercharges.

where |α|2 = 1, and preserved supercharges

ᾱIθ
IJ
− , αI θ̄IJ+, ᾱIϑ

IJ
− , αI ϑ̄IJ+ (4.14)

When ᾱI = δJI with fixed J = 1, 2, 3, 4, the general operator W coincides with WJ in (4.6),

while W̃ is exactly W̃J in (4.9).

4.2 Wilson loops from Higgsing

The Higgs construction of fermionic 1/2 BPS WL in ABJM theory has been proposed

in [28]. We now review this construction by generalizing it in order to obtain both W and

W̃ kinds of operators.

We start with U(N + 1) × U(N + 1) ABJM theory and break it to U(N) × U(N) by

choosing the following field configurations

Aµ =

(
Aµ Wµ

W̄µ 0

)
, Bµ =

(
Bµ Zµ

Z̄µ 0

)

φJ =

(
φJ RJ

S̄J vJ

)
, φ̄J =

(
φ̄J SJ

R̄J v̄J

)

ψJ =

(
ψJ ΩJ

Σ̄J 0

)
, ψ̄J =

(
ψ̄J ΣJ

Ω̄J 0

)
(4.15)
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with vJ = vᾱJ , |α|2 = 1, v > 0. In principle, we could perform Higgsing along this general

direction. However, in order to be definite and avoid clutter of symbols, we consider the

special case ᾱI = δ1
I .

It is convenient to work in the unitary gauge where we set R1 = R̄1 = S1 = S̄1 = 0.

We are then left with three-dimensional massive N = 3 vector multiplets

(Wµ,Ω
i, Ri,Ω

1) and (Zµ,Σi, S
i,Σ1), i = 2, 3, 4 (4.16)

with mass m = 2πv2

k .

Inserting this ansatz into the ABJM lagrangian and taking the limit v →∞ the terms

relevant for the dynamics of the massive particles can be organized as

L = Lv + Ls + Lf1 + Lf2 + Lf3 (4.17)

where we have defined

Lv =
k

2π
εµνρ(W̄µDνWρ−Z̄µDνZρ)−W̄µ(v2+φI φ̄

I)Wµ−Z̄µ(v2+φ̄IφI)Z
µ

+2vW̄µφ1Z
µ+2vZ̄µφ̄

1Wµ (4.18)

Ls = −DµR̄
iDµRi−DµS̄iD

µSi− 4π2v4

k2
(R̄iRi+S̄iS

i) (4.19)

−4π2v2

k2

(
2R̄i(−φ1φ̄

1+φjφ̄
j)Ri−R̄iφiφ̄jRj+2S̄i(−φ̄1φ1+φ̄jφj)S

i−S̄iφ̄iφjSj
)

Lf1 = iΩ̄1γ
µDµΩ1+

2πiv2

k
Ω̄1Ω1+

2πi

k
Ω̄1(−φ1φ̄

1+φiφ̄
i)Ω1+Ω̄Iγ

µψIZµ+Z̄µψ̄Iγ
µΩI (4.20)

+iΣ̄1γµDµΣ1−
2πiv2

k
Σ̄1Σ1−

2πi

k
Σ̄1(−φ̄1φ1+φ̄iφi)Σ1+Σ̄Iγµψ̄IWµ+W̄µψ

IγµΣI

Lf2 = iΩ̄iγ
µDµΩi− 2πiv2

k
Ω̄iΩ

i+
2πi

k
(Ω̄iφJ φ̄

JΩi−2Ω̄iφjφ̄
iΩj+2vΩ̄iψ

1Si+2vS̄iψ̄1Ωi)

+iΣ̄iγµDµΣi+
2πiv2

k
Σ̄iΣi−

2πi

k
(Σ̄iφ̄JφJΣi−2Σ̄iφ̄jφiΣj+2vΣ̄iψ̄1Ri+2vR̄iψ1Σi)

+
4πiv

k
(εijkΩ̄iφjΣk−εijkΣ̄iφ̄jΩk) (4.21)

Lf3 = −4πi

k
(Ω̄1φiφ̄

1Ωi+Ω̄iφ1φ̄
iΩ1−Σ̄1φ̄iφ1Σi−Σ̄iφ̄1φiΣ1) (4.22)

Before choosing the non-relativistic modes, one has to redefine the subleading orders

of fields [28]. There is some freedom in doing it. We choose the following field redefinitions

Wµ →
(

1 +
φ1φ̄

1

2v2

)
Wµ +

φ1

v
Zµ , Zµ →

(
1 +

φ̄1φ1

2v2

)
Zµ +

φ̄1

v
Wµ

Ri → Ri +
φiφ̄

j

2v2
Rj , Si → Si +

φ̄iφj
2v2

Sj

Ω1 → Ω1 , Ωi → Ωi +
1

v
εijkφjΣk +

1

2v2
φj(φ̄

iΩj − φ̄jΩi)

Σ1 → Σ1 , Σi → Σi +
1

v
εijkφ̄

jΩk +
1

2v2
φ̄j(φiΣj − φjΣi) (4.23)

which are slightly different from but equivalent to that in [28].
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As for the N = 4 SYM theory, we can now choose the modes either corresponding to

particle or antiparticle excitations. Exciting particles amounts to choose

Wµ =

√
π

k
(0, 1,−i)w e−imt , Zµ =

√
π

k
(0, 1, i)z e−imt

Ωi = u−ω
i e−imt , Σi = u+σi e−imt

Ri =

√
k

4π

1

v
ri e−imt , Si =

√
k

4π

1

v
si e−imt

Ω1 = u+ω
1 e−imt , Σ1 = u−σ1 e−imt (4.24)

where u± are bosonic spinors defined in (A.9).

The Higgsing procedure breaks half of the supersymmetries. The non-relativistic mode

excitations organize themselves in N = 3 SUSY multiplets as follows [28]

spin 1 1/2 0 −1/2 spin −1 −1/2 0 1/2

degeneracy 1 3 3 1 degeneracy 1 3 3 1

mode w ω2,3,4 r2,3,4 ω1 mode z σ2,3,4 s2,3,4 σ1

Inserting expressions (4.24) in the previous lagrangian, after some long but straight-

forward calculation, we obtain the non-relativistic lagrangian

L = i(w̄D0w+r̄iD0ri+ω̄ID0ω
I+z̄D0z+s̄iD0s

i+σ̄ID0σI) (4.25)

+

√
4π

k
(−w̄ψ1

+σ1−ω̄1ψ
1
+z−σ̄1ψ̄1−w−z̄ψ̄1−ω

1+r̄iψ1
+σi+ω̄iψ

1
+s

i+σ̄iψ̄1−ri+s̄iψ̄1−ω
i)

where for w, ri and ωI we have defined D0 = ∂0 + iA, whereas for z, si and σI we have

D0 = ∂0 + iB, with A and B defined in (4.6) and acting on the left. Defining

Ψ1 =

(
w ω1

σ1 z

)
, Ψ̄1 =

(
w̄ σ̄1

ω̄1 z̄

)

Ψi =

(
ri −ωi

−σi si

)
, Ψ̄i =

(
r̄i −σ̄i

−ω̄i s̄i

)
(4.26)

the previous result can be written in the compact form

L = iTrΨ̄ID0ΨI (4.27)

with D0ΨI = ∂0ΨI + iL1ΨI and L1 being just the connection (4.6).

Similarly, we can choose antiparticle modes

Wµ =

√
π

k
(0, 1, i)w eimt , Zµ =

√
π

k
(0, 1,−i)z eimt

Ωi = u+ω
i eimt , Σi = u−σi eimt

Ri =

√
k

4π

1

v
ri eimt , Si =

√
k

4π

1

v
si eimt

Ω1 = u−ω
1 eimt , Σ1 = u+σ1 eimt (4.28)
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Inserting these expressions in lagrangian (4.17), in the limit v →∞ we obtain

L = iTr(wD0w̄+riD0r̄
i+ωID0ω̄I+zD0z̄+siD0s̄i+σID0σ̄

I) (4.29)

+

√
4π

k
Tr(σ1w̄ψ

1
−−zω̄1ψ

1
−−wσ̄1ψ̄1++ω1z̄ψ̄1++σir̄

iψ1
−−siω̄iψ1

−−riσ̄iψ̄1++ωis̄iψ̄1+)

where we have defined D0 = ∂0 − iÃ for w̄, r̄i and ω̄I , and D0 = ∂0 − iB̃ for z̄, s̄i and σ̄I ,

with Ã and B̃ given in (4.9) and acting on the right. With definitions

Ψ1 =

(
w −ω1

σ1 z

)
, Ψ̄1 =

(
w̄ σ̄1

−ω̄1 z̄

)

Ψi =

(
ri −ωi

σi si

)
, Ψ̄i =

(
r̄i σ̄i

−ω̄i s̄i

)
(4.30)

the previous result can be written in the following compact form

L = iTrΨID0Ψ̄I (4.31)

with D0Ψ̄I = ∂0Ψ̄I − iΨ̄I L̃1, and L̃1 being exactly the connection in (4.9).

Applying the same procedure with vJ = vδiJ , i = 2, 3, 4, or equivalently applying R-

symmetry rotations, we generate all WI and W̃I previously defined in section 4.1. Further-

more, Higgsing in the general direction with vJ = vᾱJ we could get the general 1/2 BPS

Wilson loops W and W̃ corresponding to superconnections (4.11) and (4.13), respectively.

An analogue procedure can be used to construct 1/2 BPS WLs in the more general

U(N)k × U(M)−k Aharony-Bergman-Jafferis (ABJ) theory with N 6= M [11, 34]. The

general structure of the operators is still the one in (4.5), (4.6), (4.9) with the matter fields

now in the bi-fundamental representation of U(N)×U(M). The Higgsing procedure works

exactly as for the ABJM theory and we can classify WLs in two main sets, depending

whether we excite particle or antiparticle modes. The configuration of preserved super-

charges can be still read in table 2 and the overlapping of the preserved supercharges can

be seen in figure 2a.

4.3 M2-branes in AdS4×S7/Zk spacetime

For the ABJM theory we now investigate the gravity dual of the Higgsing procedure by

constructing different M2-brane embeddings that correspond to the previous 1/2 BPS WLs.

In particular, we will be interested in classifying M2-brane configurations in terms of their

sets of preserved supercharges.

ABJM theory is dual to M-theory on the AdS4 × S7/Zk background with self-dual

four-form flux, described by

ds2 = R2

(
1

4
ds2

AdS4
+ ds2

S7/Zk

)
Fµ̃ν̃ρ̃σ̃ =

6

R
εµ̃ν̃ρ̃σ̃ (4.32)

with εµ̃ν̃ρ̃σ̃ being the AdS4 volume form.
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We use the AdS4 metric in the form

ds2
AdS4

= u2(−dt2 + dx2
1 + dx2

2) +
du2

u2
(4.33)

whereas, in order to write the unit S7 metric, following [13], we embed it in C4 ∼= R8 with

coordinates zi, i = 1, 2, 3, 4, parametrized as

z1 = cos
β

2
cos

θ1

2
eiξ1 , ξ1 = −1

4
(2φ1 + χ+ ζ)

z2 = cos
β

2
sin

θ1

2
eiξ2 , ξ2 = −1

4
(−2φ1 + χ+ ζ)

z3 = sin
β

2
cos

θ2

2
eiξ3 , ξ3 = −1

4
(2φ2 − χ+ ζ)

z4 = sin
β

2
sin

θ2

2
eiξ4 , ξ4 = −1

4
(−2φ2 − χ+ ζ) (4.34)

with β, θ1,2 ∈ [0, π], ξ1,2,3,4 ∈ [0, 2π], and so φ1,2 ∈ [0, 2π], χ ∈ [0, 4π], ζ ∈ [0, 8π]. The ζ

direction is the M-theory circle. The metric of unit S7 is then

ds2
S7 =

1

4

[
dβ2 + cos2 β

2

(
dθ2

1 + sin2 θ1dϕ
2
1

)
+ sin2 β

2

(
dθ2

2 + sin2 θ2dϕ
2
2

)
+ sin2 β

2
cos2 β

2
(dχ+ cos θ1dϕ1 − cos θ2dϕ2)2

+

(
1

2
dζ + cos2 β

2
cos θ1dϕ1 + sin2 β

2
cos θ2dϕ2 +

1

2
cosβdχ

)2]
(4.35)

The quotient space S7/Zk is generated by the identification zi ∼ exp
(

2πi
k

)
zi, or equivalently

ζ ∼ ζ − 8π

k
(4.36)

We now study M2- and anti-M2-brane configurations and the corresponding preserved

supercharges.

In appendix D we provide the Killing spinors of AdS4 × S7, eq. (D.8), in terms of two

constant spinors ε1 and ε2 that can be decomposed in two different ways, one way given

in (D.12), and the second way given in (D.22). The first decomposition is more suitable

when constructing explicitly M2- and anti-M2-brane configurations that have the same

properties of the 1/2 BPS Wilson loops WI and W̃I obtained by Higgsing. The second way

is instead more suitable to perform the correct identification of Killing spinors in M-theory

with Poincaré and conformal supercharges in field theory. It is also useful for identifying

the supercharges preserved by the M2- and anti-M2-branes at a general position with the

supercharges preserved by the general 1/2 BPS Wilson loops W and W̃ corresponding to

superconnections (4.11), (4.13). Therefore, it is worth analyzing the two decompositions

separately.

For Killing spinors in AdS4 × S7/Zk, the quotient (4.36) leads to

(γ3\ + γ58 + γ47 + γ69)ε1 = (γ3\ + γ58 + γ47 + γ69)ε2 = 0 (4.37)
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Decomposing ε1 and ε2 as in (D.12) this constraint corresponds to

s1 + s2 + s3 + s4 = 0 (4.38)

so that only six of the eight states in (D.12) survive

(s1, s2, s3, s4) = (+ +−−), (+−+−), (+−−+), (−+ +−), (−+−+), (−−++) (4.39)

This is consistent with the fact that there are 24 real supercharges in ABJM theory, with

12 real Poincaré supercharges and 12 real conformal supercharges.

We want to realize M2-brane embeddings preserving half of the supersymmetries, which

are dual to the 1/2 BPS WL operators WI , W̃I constructed in section 4.2. To this end, we

consider a M2-brane with coordinates (σ0, σ1, σ2) embedded in the AdS4 × S7/Zk space-

time (4.32) as

t = σ0, x1 = x2 = 0, u = σ1, ζ = σ2 (4.40)

and localized in S7/Zk.

In the presence of this M2-brane supersymmetry is broken by the condition [13]

γ03\ε = ε =⇒ h−1γ03\hε1 = ε1, h−1γ03\hε2 = ε2 (4.41)

with h being defined in (D.9). Explicitly, we have

h−1γ03\h = cos2 β

2

(
γ03\cos2 θ1

2
+γ058sin2 θ1

2

)
+sin2 β

2

(
γ047cos2 θ2

2
+γ069sin2 θ2

2

)
+cos2 β

2
cos

θ1

2
sin

θ1

2

[
(γ038+γ05\)cos(ξ1−ξ2)+(γ035−γ08\)sin(ξ1−ξ2)

]
+sin2 β

2
cos

θ2

2
sin

θ2

2

[
(γ049+γ067)cos(ξ3−ξ4)+(γ046+γ079)sin(ξ3−ξ4)

]
+cos

β

2
sin

β

2

{
cos

θ1

2
cos

θ2

2

[
(γ037+γ04\)cos(ξ1−ξ3)+(γ034−γ07\)sin(ξ1−ξ3)

]
+cos

θ1

2
sin

θ2

2

[
(γ039+γ06\)cos(ξ1−ξ4)+(γ036−γ09\)sin(ξ1−ξ4)

]
+sin

θ1

2
cos

θ2

2

[
(γ048+γ057)cos(ξ2−ξ3)−(γ045+γ078)sin(ξ2−ξ3)

]
+sin

θ1

2
sin

θ2

2

[
(γ059+γ068)cos(ξ2−ξ4)+(γ056+γ089)sin(ξ2−ξ4)

]}
(4.42)

In general, a M2-brane localized in S7/Zk except for the M-theory circle is 1/2 BPS.

In order to make the discussion more explicit, we consider four special configurations and

classify the corresponding preserved supercharges.

1) For a M2-brane at position |z1| = 1, z2,3,4 = 0 (β = θ1 = 0), we have

γ03\ε1 = ε1, γ03\ε2 = ε2 (4.43)

which leads to the constraint s1 = +. According to (4.39), it preserves three states.

The M2-brane is 1/2 BPS, and we call it M
(1)
2 .
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2) Similarly, for a M2-brane M
(2)
2 localized at |z2| = 1, z1,3,4 = 0 (β = 0, θ1 = π) we

have

γ058ε1 = ε1, γ058ε2 = ε2 (4.44)

and this leads to the constraint s2 = +. This is still compatible with three states

in (4.39). We call this 1/2 BPS solution M
(2)
2 .

3) A M2-brane at position |z3| = 1, z1,2,4 = 0 (β = π, θ2 = 0) corresponds to the

condition

γ047ε1 = ε1, γ047ε2 = ε2 (4.45)

which is solved by s3 = +. We call this 1/2 BPS solution M
(3)
2 .

4) Finally, we consider a M2-brane localized at |z4| = 1, z1,2,3 = 0 (β = θ2 = π), which

gives

γ069ε1 = ε1, γ069ε2 = ε2 (4.46)

This is solved by s4 = +. We will call it M
(4)
2 solution.

In addition, we can consider anti-M2-brane solutions. In the presence of an anti-M2-

brane supersymmetry is broken by

γ03\ε = −ε =⇒ h−1γ03\hε1 = −ε1, h−1γ03\hε2 = −ε2 (4.47)

The classification of solutions works as before with all the plus signs on the r.h.s. of (4.43)–

(4.46) replaced by minus signs. We can then construct four 1/2 BPS anti-brane solutions

localized at the same positions as the previous brane solutions. We will call these solutions

M̄
(I)
2 , I = 1, 2, 3, 4.

In table 3 we summarize the eight different M2-brane/anti-M2-brane solutions together

with their positions and preserved supercharges, i.e., components of the Killing spinors.

It turns out that, while M
(I)
2 and M̄

(I)
2 solutions always preserve complementary sets

of supercharges, there are non-trivial overlappings of supercharges corresponding to M2-

and anti-M2-branes located at different points. The precise structure of this overlapping is

shown in figure 2b. Notably, this reproduces exactly the same configuration of overlappings

for WI and W̃I WLs in ABJM theory, given in figure 2a. The fact that the two pictures

are identical strongly supports the conjecture that W1,2,3,4 operators are respectively dual

to M
(1,2,3,4)
2 M2-branes, and W̃1,2,3,4 WLs are dual to M̄

(1,2,3,4)
2 anti-M2-branes. As a

further confirmation, in section 4.2 it was shown that the pair (WI , W̃I) emerges from

Higgsing in the φI direction, and correspondingly here we have shown that the pair (M
(I)
2 ,

M̄
(I)
2 ) is localized at the same position |zI | = 1, zj = 0, j 6= I. Therefore, there is

one-to-one correspondence between the Higgsing direction in the scalar field space in the

superconformal field theory and the position where the M2-/anti-M2-brane resides.

Supported by this first evidence, we now investigate the identification of supercharges in

gravity and field theory for more general configurations.10 To this end, it is worth using the

10We thank the JHEP referee for suggesting the possibility to perform this general analysis.

– 21 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
0

brane position preserved supercharges

M
(1)
2 |z1| = 1 β = θ1 = 0

s1 = + (+ +−−), (+−+−), (+−−+)

M̄
(1)
2 s1 = − (−+ +−), (−+−+), (−−++)

M
(2)
2 |z2| = 1 β = 0, θ1 = π

s2 = + (+ +−−), (−+ +−), (−+−+)

M̄
(2)
2 s2 = − (+−+−), (+−−+), (−−++)

M
(3)
2 |z3| = 1 β = π, θ2 = 0

s3 = + (+−+−), (−+ +−), (−−++)

M̄
(3)
2 s3 = − (+ +−−), (+−−+), (−+−+)

M
(4)
2 |z4| = 1 β = θ2 = π

s4 = + (+−−+), (−+−+), (−−++)

M̄
(4)
2 s4 = − (+ +−−), (+−+−), (−+ +−)

Table 3. The 1/2 BPS M2- and anti-M2-branes in AdS4 × S7/Zk spacetime, their positions, and

the supercharges they preserve.

second way of decomposing Killing spinors, given in (D.22). Using decompositions (D.13)

and (D.14), constraints (4.37) lead to

(Γ3\ + Γ58 + Γ47 + Γ69)η = 0 (4.48)

In terms of the eigenstates (D.16) this amounts to

t1 + t2 + t3 + t4 = 0 (4.49)

and only six of the eight states (D.17) for the η spinor survive

(t1, t2, t3, t4) = (+ +−−), (+−+−), (+−−+), (−+ +−), (−+−+), (−−++) (4.50)

In the present order we call them ηi, i = 2, 3, 4, 5, 6, 7. We rename ηi, θ
i and ϑi in (D.22) as

η2 = η12 = −η21, η3 = η13 = −η31, η4 = η14 = −η41

η5 = η23 = −η32, η6 = −η24 = η42, η7 = η34 = −η43

θ2 = θ12 = −θ21, θ3 = θ13 = −θ31, θ4 = θ14 = −θ41

θ5 = θ23 = −θ32, θ6 = −θ24 = θ42, θ7 = θ34 = −θ43

ϑ2 = ϑ12 = −ϑ21, ϑ3 = ϑ13 = −ϑ31, ϑ4 = ϑ14 = −ϑ41

ϑ5 = ϑ23 = −ϑ32, ϑ6 = −ϑ24 = ϑ42, ϑ7 = ϑ34 = −ϑ43 (4.51)

Then, defining η̄IJ = ηcIJ , θ̄IJ = θIJc = (θIJ)∗ and ϑ̄IJ = ϑIJc = (ϑIJ)∗ we write ε1, ε2 as

ε1 =

4∑
i=2

(θi ⊗ ηi + θ̄i ⊗ η̄i) =
1

2
θIJ ⊗ ηIJ =

1

2
θ̄IJ ⊗ η̄IJ

ε2 =

4∑
i=2

(ϑi ⊗ ηi + ϑ̄i ⊗ η̄i) =
1

2
ϑIJ ⊗ ηIJ =

1

2
ϑ̄IJ ⊗ η̄IJ (4.52)
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where θIJ , θ̄IJ satisfy relations (4.4) as a consequence of (D.21). It is therefore tempting

to identify θIJ , θ̄IJ , ϑIJ , ϑ̄IJ components of the Killing spinors in AdS4 × S7/Zk with the

supercharges in ABJM theory.

To perform the exact identification, in C4 ∼= R8 we use complex coordinates

z1 = x3 + ix\, z̄1 = z̄1̄ = x3 − ix\

z2 = x5 + ix8, z̄2 = z̄2̄ = x5 − ix8

z3 = x4 + ix7, z̄3 = z̄3̄ = x4 − ix7

z4 = x6 + ix9, z̄4 = z̄4̄ = x6 − ix9 (4.53)

The metric then reads ds2
C4 = dzIdz̄I = gIJ̄dz

Idz̄J̄ with non-vanishing components g11̄ =

g22̄ = g33̄ = g44̄ = 1. Correspondingly, we introduce gamma matrices

g1 =
1√
2

(γ3 − iγ\), g1̄ =
1√
2

(γ3 + iγ\)

g2 =
1√
2

(γ5 − iγ8), g2̄ =
1√
2

(γ5 + iγ8)

g3 =
1√
2

(γ4 − iγ7), g3̄ =
1√
2

(γ4 + iγ7)

g4 =
1√
2

(γ6 − iγ9), g4̄ =
1√
2

(γ6 + iγ9) (4.54)

that satisfy the algebra {gI , gJ} = {gĪ , gJ̄} = 0, {gI , gJ̄} = 2gIJ̄ . For later convenience,

we also define g0 = γ0.

Considering the decomposition (D.14), we also define

G1 =
1√
2

(Γ3 − iΓ\), G1̄ =
1√
2

(Γ3 + iΓ\)

G2 =
1√
2

(Γ5 − iΓ8), G2̄ =
1√
2

(Γ5 + iΓ8)

G3 =
1√
2

(Γ4 − iΓ7), G3̄ =
1√
2

(Γ4 + iΓ7)

G4 =
1√
2

(Γ6 − iΓ9), G4̄ =
1√
2

(Γ6 + iΓ9) (4.55)

In C4 we introduce the unit vector

αI =

(
cos

β

2
cos

θ1

2
eiξ1 ,cos

β

2
sin

θ1

2
eiξ2 ,sin

β

2
cos

θ2

2
eiξ3 ,sin

β

2
sin

θ2

2
eiξ4

)
(4.56)

ᾱI ≡ (αI)∗= ᾱĪ =

(
cos

β

2
cos

θ1

2
e−iξ1 ,cos

β

2
sin

θ1

2
e−iξ2 ,sin

β

2
cos

θ2

2
e−iξ3 ,sin

β

2
sin

θ2

2
e−iξ4

)
that satisfies αI ᾱI = gIJ̄α

I ᾱJ̄ = 1. Localizing the M2- or anti-M2-brane in the compact

space at the point described by this vector, it turns out that (4.42) can be written as

h−1γ03\h = −ig0IJ̄α
I ᾱJ̄ = iγ0 ⊗ ΓGIJ̄α

I ᾱJ̄ (4.57)
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whereas (4.52) becomes

ε1 = ᾱIθ
IK ⊗ αJηJK + αI θ̄IK ⊗ ᾱJ η̄JK

ε2 = ᾱIϑ
IK ⊗ αJηJK + αI ϑ̄IK ⊗ ᾱJ η̄JK (4.58)

Inserting in (4.41) and using

(ΓGIJ̄α
I ᾱJ̄)(αKηKL) = (αKηKL)

(ΓGIJ̄α
I ᾱJ̄)(ᾱK η̄

KL) = −(ᾱK η̄
KL) (4.59)

we find that the (θIJ , ϑIJ) supercharges preserved by a generic M2-brane satisfy

γ0ᾱIθ
IJ = −iᾱIθ

IJ , γ0α
I θ̄IJ = iαI θ̄IJ

γ0ᾱIϑ
IJ = −iᾱIϑ

IJ , γ0α
I ϑ̄IJ = iαI ϑ̄IJ (4.60)

These are indeed supercharges (4.12) preserved by a general Wilson loop W . Similarly, a

general anti-M2-brane at the position specified by αI preserves supercharges satisfying

γ0ᾱIθ
IJ = iᾱIθ

IJ , γ0α
I θ̄IJ = −iαI θ̄IJ

γ0ᾱIϑ
IJ = iᾱIϑ

IJ , γ0α
I ϑ̄IJ = −iαI ϑ̄IJ (4.61)

which are supercharges (4.14) preserved by a general W̃ operator.

In summary, we have proved that the supercharges in AdS4 × S7/Zk preserved by a

M2- or anti-M2-brane embedded as in (4.40) and localized in the internal space at a point

described by vector (4.56) can be identified with the Poincaré and conformal supercharges

in ABJM theory preserved by general W or W̃ 1/2 BPS operators.

5 N = 4 orbifold ABJM theory

In all the previous examples, we have given evidence of the fact that different, independent

1/2 BPS WL operators can share at most a subset of preserved supercharges. Therefore,

for each configuration of 1/2 conserved supersymmetries there is at most one WL operator

that is invariant under that set. The same property emerges in the spectrum of string/M2-

brane solutions dual to these operators.

We now consider N = 4 SCSM theories where, as we will discuss, such a uniqueness

property is lost and one can find pairs of different WL operators or dual brane configurations

sharing exactly the same preserved supersymmetries. We begin by considering the N = 4

orbifold ABJM theory and postpone to the next section the discussion for more general

N = 4 SCSM theories.

The N = 4 orbifold ABJM theory with gauge group and levels [U(N)k×U(N)−k]
r can

be obtained from the U(rN)k ×U(rN)−k ABJM theory by performing a Zr quotient [39].

To begin with, the field content is given by rN × rN matrix fields Aµ, Bµ, φI , ψ
I with

I = 1, 2, 3, 4. Under the Zr projection each matrix is decomposed into r × r blocks and

each block is an N×N matrix. Moreover, the R-symmetry group SU(4) ∼= SO(6) is broken

to SU(2)× SU(2) ∼= SO(4), and consequently the I index is decomposed as

I = 1, 2, 4, 3→ i = 1, 2, ı̂ = 1̂, 2̂ (5.1)
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Aμ
(2ℓ-1)

Bμ
(2ℓ)

-kk ϕ

(2ℓ-1) ψ(2ℓ-1)

i

ϕ(2ℓ-1)
 ψ

i

(2ℓ-1)

ϕ
i

(2ℓ) ψ(2ℓ)


ϕ(2ℓ)
i

ψ

(2ℓ)

ϕ
i

(2ℓ-2) ψ(2ℓ-2)


ϕ(2ℓ-2)
i

ψ

(2ℓ-2)

Figure 3. A slice of the quiver diagram of N = 4 orbifold ABJM theory with gauge group and

levels [U(N)k×U(N)−k]r. The quiver diagram is closed, so index identifications (2r+ 1) = (1) and

(2r) = (0) are understood.

In particular, the SUSY parameters are now labeled as Poincaré supercharges θîı, θ̄îı and

superconformal charges ϑîı, ϑ̄îı, and they are subject to the constraints

(θîı)∗ = θ̄îı, θ̄îı = εijεı̂̂θ
j̂

(ϑîı)∗ = ϑ̄îı, ϑ̄îı = εijεı̂̂ϑ
j̂ (5.2)

where the antisymmetric tensors are defined as ε12 = ε1̂2̂ = 1.

Explicitly, the original ABJM fields are decomposed as

Aµ = diag(A(1)
µ , A(3)

µ , · · · , A(2r−1)
µ ), Bµ = diag(B(0)

µ , B(2)
µ , · · · , B(2r−2)

µ )

φi = diag(φ
(0)
i , φ

(2)
i , · · · , φ(2r−2)

i ), φ̄i = diag(φ̄i(0), φ̄
i
(2), · · · , φ̄

i
(2r−2))

φı̂ =



0 φ
(1)
ı̂

0 φ
(3)
ı̂

. . .
. . .

0 φ
(2r−3)
ı̂

φ
(2r−1)
ı̂ 0


, φ̄ı̂ =



0 φ̄ı̂(2r−1)

φ̄ı̂(1) 0

φ̄ı̂(3)

. . .

. . . 0

φ̄ı̂(2r−3) 0



ψi =



0 ψi(1)

0 ψi(3)

. . .
. . .

0 ψi(2r−3)

ψi(2r−1) 0


, ψ̄i =



0 ψ̄
(2r−1)
i

ψ̄
(1)
i 0

ψ̄
(3)
i

. . .

. . . 0

ψ̄
(2r−3)
i 0


ψı̂ = diag(ψı̂(0), ψ

ı̂
(2), · · · , ψ

ı̂
(2r−2)), ψ̄ı̂ = diag(ψ̄

(0)
ı̂ , ψ̄

(2)
ı̂ , · · · , ψ̄(2r−2)

ı̂ ) (5.3)

A slice of the corresponding necklace quiver diagram is shown in figure 3, where arrows indi-

cate that matter fields are in the fundamental representation of one gauge group (outgoing

arrow) and in the anti-fundamental of the next one (incoming arrow).

5.1 1/2 BPS Wilson loops

1/2 BPS WLs in N = 4 orbifold ABJM theory can be easily obtained by taking the Zr
quotient of ABJM 1/2 BPS WLs constructed in section 4.1.
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We start by considering W1 operator, i.e., (4.5) with I = 1. Its connection (4.6)

decomposes as

L1 =



A(1) 0 f
(1)
1

A(3) 0 f
(3)
1

. . .
. . .

. . .

A(2r−3) 0 f
(2r−3)
1

A(2r−1) f
(2r−1)
1 0

0 f
(2r−1)
2 B(0)

f
(1)
2 0 B(2)

f
(3)
2

. . .
. . .

. . . 0 B(2r−4)

f
(2r−3)
2 0 B(2r−2)



(5.4)

with the definitions

A(2`−1) = A
(2`−1)
0 +

2π

k
(−φ(2`−2)

1 φ̄1
(2`−2) + φ

(2`−2)
2 φ̄2

(2`−2) + φ
(2`−1)
ı̂ φ̄ı̂(2`−1))

B(2`) = B
(2`)
0 +

2π

k
(−φ̄1

(2`)φ
(2`)
1 + φ̄2

(2`)φ
(2`)
2 + φ̄ı̂(2`−1)φ

(2`−1)
ı̂ )

f
(2`−1)
1 =

√
4π

k
ψ1

(2`−1)+, f
(2`−1)
2 =

√
4π

k
ψ̄

(2`−1)
1− (5.5)

The connection can be re-organized as

L1 = diag(L
(1)
1 , L

(2)
1 , · · · , L(r)

1 ) with L
(`)
1 =

(
A(2`−1) f

(2`−1)
1

f
(2`−1)
2 B(2`)

)
(5.6)

This time we have the freedom to define double-node operators W
(`)
1 , with ` = 1, 2, · · · , r,

corresponding to the L
(`)
1 superconnection localized at quiver nodes 2` − 1 and 2`. One

can easily show that all these WLs preserve Poincaré supercharges (θ1ı̂
+ , θ

2ı̂
− , θ̄1ı̂−, θ̄2ı̂+).

Therefore, we can define a “global” W1 operator as the holonomy of the complete L1 su-

perconnection. This is nothing but W1 =
∑r

`=1W
(`)
1 , and preserves the same supercharges.

With a similar procedure, but starting from W2 in eq. (4.5) we can construct 1/2 BPS

WL W2 =
∑r

`=1W
(`)
2 preserving Poincaré supercharges (θ2ı̂

+ , θ
1ı̂
− , θ̄2ı̂−, θ̄1ı̂+). From W4

operator in eq. (4.5) we construct W1̂ =
∑r

`=1W
(`)

1̂
with preserved Poincaré supercharges

(θi1̂+ , θ
i2̂
− , θ̄i1̂−, θ̄i2̂+). Finally, from W3 we obtain W2̂ =

∑r
`=1W

(`)

2̂
preserving Poincaré

supercharges (θi2̂+ , θ
i1̂
− , θ̄i2̂−, θ̄i1̂+).

Alternatively, we can do the orbifold projection starting from the ABJM superconnec-

tion L̃1, i.e., (4.9) with I = 1. The corresponding superconnection in N = 4 SCSM theory

then reads

L̃1 = diag(L̃
(1)
1 , L̃

(2)
1 , · · · , L̃(r)

1 ) (5.7)
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Wilson loop preserved supercharges

W1 θ11̂
+ , θ12̂

+ , θ21̂
− , θ22̂

−

W̃1 θ11̂
− , θ12̂

− , θ21̂
+ , θ22̂

+

W2 θ21̂
+ , θ22̂

+ , θ11̂
− , θ12̂

−

W̃2 θ21̂
− , θ22̂

− , θ11̂
+ , θ12̂

+

W1̂ θ11̂
+ , θ21̂

+ , θ12̂
− , θ22̂

−

W̃1̂ θ11̂
− , θ21̂

− , θ12̂
+ , θ22̂

+

W2̂ θ12̂
+ , θ22̂

+ , θ11̂
− , θ21̂

−

W̃2̂ θ12̂
− , θ22̂

− , θ11̂
+ , θ21̂

+

Table 4. The 1/2 BPS WLs in N = 4 orbifold ABJM theory and the supercharges they preserve.

We have not shown θ̄iı̂ supercharges, since they are not independent.

where

L̃
(`)
1 =

(
Ã(2`−1) f̃

(2`−1)
1

f̃
(2`−1)
2 B̃(2`)

)
, f̃

(2`−1)
1 =

√
4π

k
ψ1

(2`−1)−, f̃
(2`−1)
2 = −

√
4π

k
ψ̄

(2`−1)
1+

Ã(2`−1) = A
(2`−1)
0 +

2π

k
(φ

(2`−2)
1 φ̄1

(2`−2) − φ
(2`−2)
2 φ̄2

(2`−2) − φ
(2`−1)
ı̂ φ̄ı̂(2`−1))

B̃(2`) = B
(2`)
0 +

2π

k
(φ̄1

(2`)φ
(2`)
1 − φ̄2

(2`)φ
(2`)
2 − φ̄ı̂(2`−1)φ

(2`−1)
ı̂ ) (5.8)

We then define double-node WLs W̃
(`)
1 with ` = 1, 2, · · · , r as the holonomy of the L̃

(`)
1

superconnections, and the “global” operator W̃1 =
∑r

`=1 W̃
(`)
1 . They all preserve super-

charges (θ1ı̂
− , θ

2ı̂
+ , θ̄1ı̂+, θ̄2ı̂−).

From WLs W̃2,4,3 of the ABJM theory, we obtain 1/2 BPS operators W̃2 =
∑r

`=1 W̃
(`)
2 ,

W̃1̂ =
∑r

`=1 W̃
(`)

1̂
and W̃2̂ =

∑r
`=1 W̃

(`)

2̂
respectively, with corresponding preserved Poincaré

supercharges given in the summarizing table 4.

According to the classification of [37, 38], W1 and W2 operators (and the corresponding

double-node operators) belong to class II, up to some R-symmetry rotations; W̃1 and

W̃2 belong to class I, whereas WLs W1̂, W2̂, W̃1̂ and W̃2̂ were not considered therein.

In particular, W1 (or the double-node version W
(`)
1 ) is the ψ1-loop that was constructed

in [24, 25]. Wilson loop W̃2 (or W̃
(`)
2 ) corresponds to the ψ2-loop of [25].

Each WL preserves four real Poincaré plus four real superconformal charges. Therefore,

they are all 1/2 BPS operators. From table 4 it is easy to realize that there is non-trivial

overlapping of preserved supercharges among different WLs, as shown in figure 4a. In

particular, we see that there are four pairs of WLs that preserve exactly the same set of

supercharges (WLs connected by a red line in figure 4a). Therefore, as already mentioned,

in the N = 4 orbifold ABJM theory the uniqueness property of WLs corresponding to a

given set of preserved supercharges is no longer valid. This is in fact the result already

found in [25] for the (ψ1-loop, ψ2-loop) pair.
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W1

W
˜
1

W2

W
˜
2

W2

W
˜
2

W1

W
˜
1

(a) Overlapping supercharges of 1/2 BPS

Wilson loops.

M2
(1)

M

–

2

(1)

M2
(2)

M

–

2

(2)

M2
(3)

M

–

2

(3)

M2
(4)

M

–

2

(4)

(b) Overlapping supercharges of M2- and

anti-M2-branes.

Figure 4. Amount of overlapping supercharges between each pair of 1/2 BPS WLs in N = 4

orbifold ABJM theory and between each pair of M2- and anti-M2-branes in AdS4 × S7/(Zrk × Zr).

A red solid line means that the two WLs or branes preserve exactly the same supercharges. A blue

dashed line means that the two WLs or branes share 1/2 of preserved supercharges. Two WLs or

branes that are not directly connected by any line have no common preserved supercharges.

Starting from W1 or W2 operators defined above, we can apply a R-symmetry rotation

and obtain a 1/2 BPS Wilson loop W with connection

L = diag(L(1), L(2), · · · , L(r)), L(`) =

(
A(2`−1) f

(2`−1)
1

f
(2`−1)
2 B(2`)

)

A(2`−1) = A
(2`−1)
0 +

2π

k

[(
δij − 2αiᾱj

)
φ

(2`−2)
i φ̄j(2`−2) + φ

(2`−1)
ı̂ φ̄ı̂(2`−1)

]
B(2`) = B

(2`)
0 +

2π

k

[(
δij − 2αiᾱj

)
φ̄j(2`)φ

(2`)
i + φ̄ı̂(2`−1)φ

(2`−1)
ı̂

]
f

(2`−1)
1 =

√
4π

k
ᾱiψ

i
(2`−1)+, f

(2`−1)
2 =

√
4π

k
ψ̄

(2`−1)
i− αi (5.9)

where ᾱi = (ᾱ1, ᾱ2), αi = (ᾱi)
∗, |α|2 = ᾱiα

i = 1. The corresponding preserved super-

charges are

ᾱiθ
îı
+, αiθ̄îı−, ᾱiϑ

îı
+, αiϑ̄îı− (5.10)

Similarly, we can construct the 1/2 BPS Wilson loop W∧ with connection

L∧ = diag(L
(1)
∧ , L

(2)
∧ , · · · , L(r)

∧ ), L
(`)
∧ =

(
B(2`) f

(2`)
1

f
(2`)
2 A(2`+1)

)

B(2`) = B
(2`)
0 +

2π

k

[
φ̄i(2`)φ

(2`)
i +

(
δ ı̂̂ − 2αı̂ᾱ̂

)
φ̄̂(2`−1)φ

(2`−1)
ı̂

]
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A(2`+1) = A
(2`+1)
0 +

2π

k

[
φ

(2`)
i φ̄i(2`) +

(
δ ı̂̂ − 2αı̂ᾱ̂

)
φ

(2`+1)
ı̂ φ̄̂(2`+1)

]
f

(2`)
1 =

√
4π

k
ψ̄

(2`)
ı̂− αı̂, f

(2`)
2 =

√
4π

k
ᾱı̂ψ

ı̂
(2`)+ (5.11)

where ᾱı̂ = (ᾱ1̂, ᾱ2̂), αı̂ = (ᾱı̂)
∗, |α|2 = ᾱı̂α

ı̂ = 1, and preserved supercharges

ᾱı̂θ
îı
+, αı̂θ̄îı−, ᾱı̂ϑ

îı
+, αı̂ϑ̄îı− (5.12)

Furthermore, we can obtain the 1/2 BPS Wilson loop W̃ with parameters ᾱi, α
i and

preserved supercharges

ᾱiθ
îı
−, αiθ̄îı+, ᾱiϑ

îı
−, αiϑ̄îı+ (5.13)

as well the 1/2 BPS Wilson loop W̃∧ with parameters ᾱı̂, α
ı̂ and preserved supercharges

ᾱı̂θ
îı
−, αı̂θ̄îı+, ᾱı̂ϑ

îı
−, αı̂ϑ̄îı+ (5.14)

The corresponding connections can be easily figured out, and we will not bother writing

them out.

It is interesting to note that if we apply the orbifold projection directly to the general

1/2 BPS WLs in ABJM theory corresponding to connections (4.11) and (4.13), we obtain

new fermionic 1/4 BPS operators. We will report the results, as well as their M2-/anti-

M2-brane duals, elsewhere [40].

5.2 Wilson loops from Higgsing

The easiest way to obtain the previous WLs via the Higgsing procedure is to perform the

orbifold projection of the construction done for the ABJM theory. In fact, orbifolding the

Higgsing reduction of U(rN + r)k × U(rN + r)−k ABJM theory to U(rN)k × U(rM)−k
ABJM theory, is equivalent to directly Higgsing a [U(N+1)k×U(N+1)−k]

r N = 4 orbifold

ABJM theory to a [U(N)k ×U(N)−k]
r N = 4 orbifold ABJM theory. Since the procedure

is similar for all the WLs, we will show it explicitly only for the W1 operator.

We consider the low energy non-relativistic particle modes of the ABJM theory given

in eqs. (4.24) and (4.26) and write them in terms of fields in N = 4 orbifold ABJM theory

Ψ1 =

(
w ω1

σ1 z

)
, Ψ2 =

(
r2 −ω2

−σ2 s2

)
, Ψı̂ =

(
rı̂ −ωı̂

−σı̂ sı̂

)
(5.15)

where we have defined

w = diag(w(1), w(3), · · · , w(2r−1)), z = diag(z(0), z(2), · · · , z(2r−2))

r2 = diag(r
(0)
2 , r

(2)
2 , · · · , r(2r−2)

2 ), s2 = diag(s2
(0), s

2
(2), · · · , s

2
(2r−2))

ωı̂ = diag(ωı̂(0), ω
ı̂
(2), · · · , ω

ı̂
(2r−2)), σı̂ = diag(σ

(0)
ı̂ , σ

(2)
ı̂ , · · · , σ(2r−2)

ı̂ )
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rı̂ =



0 r
(1)
ı̂

0 r
(3)
ı̂

. . .
. . .

0 r
(2r−3)
ı̂

r
(2r−1)
ı̂ 0


, sı̂ =



0 sı̂(2r−1)

sı̂(1) 0

sı̂(3)

. . .

. . . 0

sı̂(2r−3) 0


(5.16)

ωi =



0 ωi(1)

0 ωi(3)

. . .
. . .

0 ωi(2r−3)

ωi(2r−1) 0


, σi =



0 σ
(2r−1)
i

σ
(1)
i 0

σ
(3)
i

. . .

. . . 0

σ
(2r−3)
i 0


The non-relativistic lagrangian then becomes

L = iTrΨ̄iD0Ψi + iTrΨ̄ı̂D0Ψı̂ (5.17)

with

D0Ψi = ∂0Ψi + iL1Ψi , D0Ψı̂ = ∂0Ψı̂ + iL1Ψı̂ (5.18)

and L1 being the connection in eq. (5.4).

It is convenient to re-organize the L1 connection as in (5.6) and modes (5.15) as

Ψi = diag(Ψ
(1)
i ,Ψ

(2)
i , · · · ,Ψ(r)

i )

Ψ
(`)
1 =

(
w(2`−1) ω1

(2`−1)

σ
(2`−1)
1 z(2`)

)
, Ψ

(`)
2 =

 r
(2`−2)
2 −ω2

(2`−1)

−σ(2`−1)
2 s2

(2`)

 (5.19)

and

Ψı̂ = diag(Ψ
(1)
ı̂ ,Ψ

(2)
ı̂ , · · · ,Ψ(r)

ı̂ ), Ψ
(`)
ı̂ =

 r
(2`−1)
ı̂ −ωı̂(2`−2)

−σ(2`)
ı̂ sı̂(2`−1)

 (5.20)

so that we can write

TrΨ̄iL1Ψi =
r∑
`=1

TrΨ̄i
(`)L

(`)
1 Ψ

(`)
i , TrΨ̄ı̂L1Ψı̂ =

r∑
`=1

TrΨ̄ı̂
(`)L

(`)
1 Ψ

(`)
ı̂ (5.21)

Therefore, using these new definitions we can rewrite lagrangian (5.17) as

L = i
r∑
`=1

Tr
(

Ψ̄i
(`)D0Ψ

(`)
i + Ψ̄ı̂

(`)D0Ψ
(`)
ı̂

)
(5.22)

where the covariant derivatives are given by

D0Ψ
(`)
i = ∂0Ψ

(`)
i + iL

(`)
1 Ψ

(`)
i , D0Ψ

(`)
ı̂ = ∂0Ψ

(`)
ı̂ + iL

(`)
1 Ψ

(`)
ı̂ (5.23)
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We have then obtained the generalized connections L1, L
(`)
1 that need to be used to define

the 1/2 BPS Wilson loops W1, W
(`)
1 .

Replacing particle excitations with antiparticle ones in eqs. (4.28), (4.30) and per-

forming the orbifold quotient we obtain a non-relativistic lagrangian with derivatives co-

variantized by generalized connections L̃1, L̃
(`)
1 , which enter the definitions of W̃1, W̃

(`)
1

operators.

The Higgsing procedure breaks half of the supersymmetries. It is then interesting to

analyze how the non-relativistic modes organize themselves in N = 2 SUSY multiplets.

Exploiting the fact that in three-dimensions a N = 3 massive vector multiplet can be

written as a N = 2 massive vector multiplet plus a N = 2 massive fermion multiplet, in

N = 4 orbifold ABJM theory the non-relativistic modes of the original ABJM theory can

be re-organized in N = 2 massive super multiplets as follows

spin 1 1/2 0 −1/2

degeneracy 1 2 1

mode w(2`−1) ω1̂,2̂
(2`−2) r

(2`−2)
2

degeneracy 1 2 1

mode ω2
(2`−1) r

(2`−1)

1̂,2̂
ω1

(2`−1)

spin −1 −1/2 0 1/2

degeneracy 1 2 1

mode z(2`) σ
(2`)

1̂,2̂
s2

(2`)

degeneracy 1 2 1

mode σ
(2`−1)
2 s1̂,2̂

(2`−1) σ
(2`−1)
1

Therefore, 1/2 BPS WLs in N = 4 orbifold ABJM theory emerge from the low energy

dynamics of N = 2 massive supermultiplets.

5.3 M2-branes in AdS4×S7/(Zrk×Zr) spacetime

The N = 4 orbifold ABJM theory is dual to M-theory in AdS4 × S7/(Zrk × Zr) space-

time [39, 41, 42]. We use the AdS4 metric in (4.33) and parametrize the S7 unit sphere with

the zi complex coordinates given in (4.34). The quotient Zrk×Zr is obtained by identifying

(z1, z2, z3, z4) ∼ e
2πi
rk (z1, z2, z3, z4)

(z1, z2, z3, z4) ∼ (e
2πi
r z1, e

2πi
r z2, z3, z4) (5.24)

or equivalently, in terms of the angular coordinates

ζ ∼ ζ − 8π

rk
, χ ∼ χ− 4π

r
, ζ ∼ ζ − 4π

r
(5.25)

Note that this quotient convention is consistent with conventions on the R-symmetry in-

dices decomposition (5.1). Acting with the orbifold projection on the AdS4 × S7 Killing
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brane position preserved supercharges

M
(1)
2 |z1| = 1 β = θ1 = 0

s1 = + (+−+−), (+−−+)

M̄
(1)
2 s1 = − (−+ +−), (−+−+)

M
(2)
2 |z2| = 1 β = 0, θ1 = π

s2 = + (−+ +−), (−+−+)

M̄
(2)
2 s2 = − (+−+−), (+−−+)

M
(3)
2 |z3| = 1 β = π, θ2 = 0

s3 = + (+−+−), (−+ +−)

M̄
(3)
2 s3 = − (+−−+), (−+−+)

M
(4)
2 |z4| = 1 β = θ2 = π

s4 = + (+−−+), (−+−+)

M̄
(4)
2 s4 = − (+−+−), (−+ +−)

Table 5. The 1/2 BPS M2- and anti-M2-branes in AdS4 × S7/(Zrk × Zr) spacetime, their positions

and the preserved supercharges.

spinors (D.8) we obtain the following constraints

(γ3\ + γ58)ε1 = 0, (γ47 + γ69)ε1 = 0

(γ3\ + γ58)ε2 = 0, (γ47 + γ69)ε2 = 0 (5.26)

Using decomposition (D.10), we get

s1 + s2 = 0, s3 + s4 = 0 (5.27)

Therefore, only four of the eight states (D.12) survive

(s1, s2, s3, s4) = (+−+−), (−+ +−), (+−−+), (−+−+) (5.28)

The Killing spinors in AdS4 × S7/(Zrk × Zr) spacetime have 16 real degrees of freedom, and

this is consistent with the fact the N = 4 orbifold ABJM theory has eight real Poincaré

supercharges plus eight real superconformal charges.

Following what has been done in section 4.3 for the ABJM theory, we construct 1/2

BPS M2- and anti-M2-brane solutions preserving eight real supersymmetries. These con-

figurations wrap the M-theory circle and are embedded in AdS4 as in (4.40). Different

positions in the internal space lead to different M2-brane configurations that preserve dif-

ferent sets of supercharges.

A set of independent solutions is listed in table 5. For M
(I)
2 , I = 1, · · · , 4 solutions

localized at |zI | = 1, constraints in (4.41) give respectively sI = +. For the anti-M2-branes

M̄
(I)
2 , localized at |zI | = 1, the constraints give respectively sI = −.

As it turns out from this table, there is non-trivial overlapping among the sets of

preserved supercharges. In particular, there are four pairs of M2-branes and M2-anti-

branes localized at different positions, which preserve exactly the same supercharges. This

is shown in figure 4b where red solid lines connect elements of the same pair.

It is important to note that figure 4a showing the overlapping scheme of supercharges

preserved by the 1/2 BPS WLs in table 4 is exactly the same as figure 4b representing
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the overlapping scheme of supercharges preserved by M2- and anti-M2-branes in table 5.

Precisely, to each pair (W1, W̃2), (W2, W̃1), (W2̂, W̃1̂) and (W1̂, W̃2̂) of BPS WLs preserving

the same set of supercharges correspond pairs (M
(1)
2 , M̄

(2)
2 ), (M

(2)
2 , M̄

(1)
2 ), (M

(3)
2 , M̄

(4)
2 )

and (M
(4)
2 , M̄

(3)
2 ) of M2-/anti-M2-branes that preserve the same supercharges. In each pair

of WLs, one operator is dual to an M2-brane configuration, while the other one is dual to

an anti-M2-brane at a different position.

In particular, it follows that if W1, the ψ1-loop in [24, 25], is made dual to the M
(1)
2

brane localized at |z1| = 1, then W̃2, the ψ2-loop in [25], is dual to the M̄
(2)
2 anti-brane at

position |z2| = 1. The ψ1- and ψ2-loops are different operators that happen to preserve the

same supercharges. Correspondingly, they have a dual description in terms of two different

M2- and anti-M2-brane configurations located at different positions.

Therefore, the WL degeneracy found in [25] for the ψ1- and ψ2-loops is also present in

their dual description and no contradiction with the AdS/CFT correspondence emerges.

In particular, our construction of dual M2-, anti-M2-brane pairs seems to indicate that no

degeneracy uplifting should occur at quantum level and points towards the possibility for

both ψ1- and ψ2-loops to be separately BPS operators. However, as already mentioned in

the introduction, this may have problematic consequences, in particular when compared

with the localization result that seems to be unique. We will come back to this point in

the conclusions.

Using decomposition (D.22) we can identify the supercharges in M-theory and field

theory. For η in (D.16), (D.17), the orbifold constraints (5.26) lead to

t1 + t2 = t3 + t4 = 0 (5.29)

so that only η3, η4, η5, η6 survive. In (D.22) we redefine

η3 = η12̂ = −η̄21̂, η4 = η22̂ = η̄11̂, η5 = η11̂ = η̄22̂, η6 = −η21̂ = η̄12̂

θ3 = θ12̂ = −θ̄21̂, θ4 = θ22̂ = θ̄11̂, θ5 = θ11̂ = θ̄22̂, θ6 = −θ21̂ = θ̄12̂ (5.30)

and rewrite the Killing spinor decompositions as

ε1 =
∑
i=3,4

(θi ⊗ ηi + θ̄i ⊗ η̄i) = θîı ⊗ ηîı = θ̄îı ⊗ η̄îı

ε2 =
∑
i=3,4

(ϑi ⊗ ηi + ϑ̄i ⊗ η̄i) = ϑîı ⊗ ηîı = ϑ̄îı ⊗ η̄îı (5.31)

Since θîı, θ̄îı, ϑ
îı, ϑ̄îı satisfy (5.2), we can identify them with the Poincaré and conformal

supercharges of the N = 4 orbifold ABJM theory.

In fact, the analysis in section 4.3 of the spectrum of conserved supercharges for a

generic M2- or anti-M2-brane configuration can be easily applied to the present case, simply

setting

θ12 = θ34 = θ̄12 = θ̄34 = ϑ12 = ϑ34 = ϑ̄12 = ϑ̄34 = 0 (5.32)

and using the redefinition of compact space indices as in (5.1).
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We first consider a M2-brane solution. Using complex coordinates (z1, z2, z1̂, z2̂) for

the C2×C2 internal space, parametrized as in (4.34), we choose a M2-brane configuration

determined by the constant vectors in S7/(Zrk × Zr)

αi=

(
cos

β

2
cos

θ1

2
eiξ1 ,cos

β

2
sin

θ1

2
eiξ2

)
, αı̂=

(
sin

β

2
sin

θ2

2
eiξ4 ,sin

β

2
cos

θ2

2
eiξ3

)
(5.33)

ᾱi=

(
cos

β

2
cos

θ1

2
e−iξ1 ,cos

β

2
sin

θ1

2
e−iξ2

)
, ᾱı̂=

(
sin

β

2
sin

θ2

2
e−iξ4 ,sin

β

2
cos

θ2

2
e−iξ3

)
satisfying ᾱiα

i + ᾱı̂α
ı̂ = 1. From (4.60), the corresponding preserved supercharges are

given by

γ0ᾱiθ
îı = −iᾱiθ

îı, γ0α
iθ̄îı = iαiθ̄îı, γ0ᾱı̂θ

îı = −iᾱı̂θ
îı, γ0α

ı̂θ̄îı = iαı̂θ̄îı

γ0ᾱiϑ
îı = −iᾱiϑ

îı, γ0α
iϑ̄îı = iαiϑ̄îı, γ0ᾱı̂ϑ

îı = −iᾱı̂ϑ
îı, γ0α

ı̂ϑ̄îı = iαı̂ϑ̄îı (5.34)

We discuss three different configurations.

1) When β = 0, we have ᾱı̂ = 0 and the M2-brane wraps only the first C2. The preserved

supercharges are

γ0ᾱiθ
îı = −iᾱiθ

îı, γ0α
iθ̄îı = iαiθ̄îı, γ0ᾱiϑ

îı = −iᾱiϑ
îı, γ0α

iϑ̄îı = iαiϑ̄îı (5.35)

These are exactly supercharges (5.10) preserved by the W operator with supercon-

nection (5.9).

2) When β = π, we have ᾱi = 0 and the M2-brane wraps only the second C2. The

preserved supercharges are

γ0ᾱı̂θ
îı = −iᾱı̂θ

îı, γ0α
ı̂θ̄îı = iαı̂θ̄îı, γ0ᾱı̂ϑ

îı = −iᾱı̂ϑ
îı, γ0α

ı̂ϑ̄îı = iαı̂ϑ̄îı (5.36)

These are exactly supercharges (5.12) preserved by the W∧ operator with supercon-

nection (5.11).

3) When β 6= 0 and β 6= π, we have ᾱiα
i 6= 0 and ᾱı̂α

ı̂ 6= 0. Such M2-branes are 1/4

BPS, and they are dual to the new 1/4 BPS WLs [40].

For an anti-M2-brane, the analysis is similar. When β = 0, it preserves the same super-

charges (5.13) as the W̃ operator. When β = π, it preserves the same supercharges (5.14)

as the W̃∧ operator. For generic β, it is 1/4 BPS and it is dual to a 1/4 BPS WL [40].

6 General N = 4 SCSM theories with alternating levels

Finally, we study 1/2 BPS WL operators in more general N = 4 SCSM theories with

gauge group and levels
∏r
`=1[U(N2`−1)k×U(N2`)−k], where the N1, N2, · · ·N2r integers are

generically different from each other [22, 23]. The quiver diagram is the same as the one for

the N = 4 orbifold ABJM theory in figure 3 with the boundary identification N2r+1 = N1

and N2r = N0.11

11N = 4 SCSM theories with vanishing Chern-Simons levels have been introduced in [43] and the BPS

WLs were studied in [25]. They turn out to be very different from the ones considered in this paper.
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In order to apply the Higgsing procedure to construct 1/2 BPS WLs we can follow two

different strategies.

The first strategy is based on the initial observation that a general N = 4 SCSM

theory with gauge group
∏r
`=1[U(N2`−1)k × U(N2`)−k] can be obtained by a quotient of

the U(N)k × U(M)−k ABJ theory where we decompose N = N1 + N3 + · · · + N2r−1 and

M = N2 + N4 + · · · + N2r. As a consequence, WL operators can be easily obtained from

the ones for the ABJ theory (see section 5.2) by performing the orbifold projection on the

excited non-relativistic modes. This is exactly the procedure we have used in the previous

section to obtain WLs in the N = 4 orbifold ABJM theory from the ones of the ABJM

theory. Therefore, we will not repeat it here.

The second strategy consists instead in applying the Higgsing procedure directly on the

lagrangian of the N = 4 SCSM theory along the lines of what we have done in section 4.2

for the ABJ(M) theory. The calculation is straightforward but tedious, and we report it in

appendix E only for W1, W
(`)
1 , W̃1, W̃

(`)
1 operators.

As for the N = 4 orbifold ABJM theory, we can define double-node operators W
(`)
i=1,2,

W
(`)

ı̂=1̂,2̂
, and the corresponding global WLs

Wi=1,2 =

r∑
`=1

W
(`)
i=1,2 , Wı̂=1̂,2̂ =

r∑
`=1

W
(`)

ı̂=1̂,2̂
(6.1)

They are given by the holonomy of superconnections in eqs. (E.13), (E.14), (E.16), (E.17),

and the superconnections that can be got from by R-symmetry rotations, and these su-

perconnections contain gauge fields corresponding to the nodes of the quiver diagram plus

scalar and fermion matter fields that coupled to them. The spectrum of the preserved

supercharges is still given in table 4. As for the orbifold case there is a pairwise degeneracy

of WL operators that preserve exactly the same set of supercharges. Since we do not know

the M-theory dual of general N = 4 SCSM theories with alternating levels, we cannot

identify the gravity duals of these WLs and discuss this degeneracy at strong coupling. We

will be back to this point briefly in section 7.

7 Conclusions and discussion

For superconformal gauge theories in three and four dimensions we have investigated 1/2

BPS Wilson loops and their string theory or M-theory duals. Using the Higgsing procedure,

for each theory we have constructed two sets of WLs, W and W̃ , that can be obtained by

exciting particle and antiparticle modes, respectively. Correspondingly, each WL in the W

set has a string or M2-brane dual, whereas each WL in the W̃ set has a dual description

in terms of an anti-string or anti-M2-brane.

In general, different WLs may share some preserved supercharges. We have studied

the configuration of overlappings of preserved supercharges both for the operators and for

the corresponding dual objects. In all cases there is a perfect matching between the two

configurations. In particular, we have found confirmation that in N = 4 SYM theory in

four dimensions and three-dimensional ABJM theory different WLs have only a partial
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overlapping of preserved supercharges, so that for a given set of supercharges there is at

most one single operator that is invariant under their action. For three-dimensional N = 4

orbifold ABJM theory we have solved the degeneracy problem raised in [25] concerning

the existence of two different WLs, ψ1- and ψ2-loops, preserving exactly the same set

of supercharges, apparently in contrast with the expectation that there should be only

one 1/2 BPS M2-brane dual solution. In fact, we have found that the two operators are

respectively dual to a M2-brane and an anti-M2-brane localized at different positions in

AdS4 × S7/(Zrk × Zr) but preserving exactly the same set of supercharges.

This WL degeneracy may have problematic consequences when compared with local-

ization predictions. We then devote a careful discussion to this point, focusing on ABJM

theory first and then on its orbifold projection.

ABJM theory can be localized to a matrix model [19], and using this approach one

can compute the expectation values of bosonic BPS WLs exactly [12, 19–21]. In particu-

lar, since classically 1/2 BPS WLs differ from bosonic 1/6 BPS WLs by a Q-exact term

where Q is the supercharge used to localize the model [12], localization predicts the same

vacuum expectation value for all 1/2 BPS and 1/6 BPS operators (note that we have to con-

sider circular BPS WLs in euclidean space to have non-trivial expectation values). At weak

coupling, expanding the exact result one obtains total agreement with the perturbative cal-

culations, both for the 1/6 BPS WLs [13–15] and 1/2 BPS WLs [16–18], once the framing

factor is appropriately subtracted.12 Regarding the two sets of WL operators that we have

constructed in ABJM, 1/2 BPS Wilson loops WI=1,2,3,4 are expected to have the same ex-

pectation value, being related by R-symmetry rotations. In the same way, 1/2 BPS Wilson

loops W̃I=1,2,3,4 should have the same expectation value. Using results in [16–18], one can

easily see that WI and W̃I have the same expectation value up to two loops. More generally,

from the results in [26, 27], we may infer that 〈WI〉 and 〈W̃I〉 should be the same at any even

order in perturbation theory, while they should be opposite at any odd order. Therefore,

consistency with the matrix model result implies that odd order terms should be identically

vanishing. Unfortunately, this has not been directly checked in perturbation theory yet. At

strong coupling, WI and W̃I operators are dual, respectively, to a M2-brane and an anti-M2-

brane localized at the same position. The corresponding classical actions in euclidean space

have the same Dirac-Born-Infeld (DBI) term and the opposite Chern-Simons (CS) terms

IM2 ∼
∫

Σ
d3σ
√
g + i

∫
Σ
H , IM2 ∼

∫
Σ
d3σ
√
g − i

∫
Σ
H (7.1)

where H is the three-form field in M-theory. Classically the CS term is vanishing, but it

may be no longer true when including quantum corrections. This may be related to the

possibility that WI and W̃I operators have opposite expectation values at odd orders.

For the N = 4 orbifold ABJM theory the situation is even more unclear, given the ap-

pearance of WL degeneracy. In fact, both ψ1- and ψ2-loops are cohomologically equivalent

to a 1/4 BPS bosonic WL [24, 25] for which we know the matrix model result [26, 27, 45–

47]. Therefore, we should expect 〈Wψ1〉 = 〈Wψ2〉 at any perturbative order. However, even

in this case, using the results in [26, 27] we conclude that this identity certainly breaks

12In fact, even for the bosonic 1/6 BPS WLs the framing factor is non-trivial at high orders [44].
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down at odd orders where the two expectation values should have opposite sign, unless they

vanish. In [12] it was proposed that the failure for the two operators to separately match

the matrix model result could be an indication that the actual quantum BPS operator

should be given by a suitable linear combination of the two, matching the matrix model

result. However, our present result about the existence of different M2-brane configura-

tions dual to the two operators gives strong indication that the two WLs are different BPS

operators also at quantum level and no degeneracy lifting should be expected from quan-

tum corrections. If this is true, the only possibility for being consistent with the matrix

model prediction is that the two expectation values vanish at any odd order. An explicit

calculation to check this prediction at three loops would be desirable. If this were not the

case, then the interesting question about the validity of the cohomological equivalence of

the two operators at quantum level should be addressed.

There are several interesting generalizations of our results both in field theory and grav-

ity sides. In field theory the generalizations are straightforward. From the U(N)k×U(N)−k
ABJM theory we can easily obtain results for the U(N)k × U(M)−k ABJ theory with

N 6= M [11, 34]. Similarly, results for N = 4 orbifold ABJ theory, as well as for a general

N = 4 SCSM theory with alternating levels are obtained using techniques close to the ones

used for N = 4 orbifold ABJM theory, as we have discussed in section 6 and appendix E.

The gravity generalizations are instead less trivial. The ABJ theory is dual to M-theory

in AdS4 × S7/Zk background with additional torsion flux [11], and so it is possible that the

N = 4 orbifold ABJ theory is dual to M-theory in AdS4 × S7/(Zrk × Zr) background with

some possibly more complex torsion flux. We do not know the M-theory dual of a general

N = 4 SCSM theory with alternating levels. It is supposed to be dual to M-theory in AdS4×
X7 spacetime, with X7 being some non-trivial deformation of S7, and with some nontrivial

flux turned on. It would be very interesting to investigate the supercharges preserved by

M2-brane BPS configurations in these backgrounds. In particular, it would be interesting

to construct the gravity duals of 1/2 BPS WLs Wi=1,2, Wî=1̂,2̂, W̃i=1,2 and W̃î=1̂,2̂ that we

have discussed in N = 4 orbifold ABJ theory and more general N = 4 SCSM theories with

alternating levels. Since the pairwise degeneracy problem of WLs is present also in these

theories, it would be crucial to establish whether a similar pattern is also present in the

dual description. At the moment, comparison between the matrix model result and the

perturbative calculation [26, 27] shows that at quantum level there should exist only one

1/2 BPS WL given by the linear combination 1
2(W1 + W̃1). This should be reflected by the

appearance at strong coupling of one single 1/2 BPS M2-brane configuration. If this were

not the case, it would mean that the cohomological equivalence may be broken quantum

mechanically. We hope to come back to this interesting problem in the future.

In N = 6 SCSM theories fermionic 1/6 BPS WLs have been also constructed [37, 38],

which depend on continuous parameters and interpolate between the bosonic 1/6 BPS WL

and the fermionic 1/2 BPS operator. Similarly, in N = 4 SCSM theories there are also

fermionic 1/4 BPS WLs [37, 38]. In both cases, it would be nice to investigate whether

these less supersymmetric fermionic WLs can be obtained using the Higgsing procedure

and whether their string theory or M-theory duals can be identified. This is a project we

are currently working on [48].
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A Spinor conventions in three-dimensional spacetime

In three-dimensional Minkowski spacetime we use (−+ +) signature and gamma matrices

γµα
β = (iσ2, σ1, σ3) (A.1)

with σ1,2,3 being the usual Pauli matrices. Throughout the paper we use boldface font to

indicate gamma matrices in three dimensions. They satisfy

γµγν = ηµν + εµνργρ (A.2)

with ε012 = −ε012 = 1. We have a two-component spinor and its complex conjugate

θα =

(
θ1

θ2

)
, θ∗α =

(
θ∗1

θ∗2

)
(A.3)

The spinor indices are raised and lowered as

θα = εαβθβ , θα = εαβθ
β (A.4)

where ε12 = −ε12 = 1. We use the following shortening notation

θψ = θαψα, θγµψ = θαγµα
βψβ (A.5)

We define the hermitian conjugate

θ†α = (θα)∗ = θ∗α (A.6)

and the Dirac conjugate

θ̄ = −θ†γ0 (A.7)

These definitions lead to

θ̄ = θ∗ (A.8)

The Dirac conjugate is the same as the complex conjugate in our convention.
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We define the bosonic spinors

u±α =
1√
2

(
1

∓i

)
, uα± =

1√
2

(∓i,−1) (A.9)

They satisfy useful identities

u∗± = u∓, γ0u± = ±iu±, u±γ0 = ∓iu±

u+u− = −i, u−u+ = i, u+u+ = u−u− = 0 (A.10)

Introducing

γ± =
1

2
(γ1 ± iγ2) (A.11)

we have

γ+u−=iu+, u−γ
+ =−iu+, γ−u+ =−iu−, u+γ

−=iu−, u−γ
+u−=u+γ

−u+ =−1

γ+u+ =u+γ
+ =γ−u−=u−γ

−=0, u+γ
+u−=u−γ

+u+ =u+γ
−u−=u−γ

−u+ =0 (A.12)

A generic spinor can be written as

θ = u+θ− + u−θ+ (A.13)

with θ± being one-component Grassmann numbers. A similar decomposition holds for its

conjugate

θ̄ = u+θ̄− + u−θ̄+ (A.14)

Since u∗± = u∓, we have the following conjugation rule

θ̄± = (θ∓)∗ (A.15)

Useful identities are

u+θ = −iθ+, u−θ = iθ−, θu+ = iθ+, θu− = −iθ− (A.16)

Moreover, the spinor product becomes

θψ = i(θ+ψ− − θ−ψ+) (A.17)

B Infinite mass limit in free field theories

As in [28], we summarize the infinite mass limit in various free field theories. Similar

infinite mass limit has also been discussed in [49, 50]. Note that the fields are not totally

free in the sense that they are coupled to an external gauge field.
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B.1 Scalar field

For a complex massive scalar d-dimensional spacetime we have the lagrangian

L = −DµΦ̄DµΦ−m2Φ̄Φ (B.1)

with covariant derivatives

DµΦ = ∂µΦ + iAµΦ (B.2)

In the m→∞ limit we can set

Φ =
1√
2m

φe−imt (B.3)

and get the non-relativistic action

L = iφ̄D0φ (B.4)

Alternatively, we can set

Φ =
1√
2m

φeimt (B.5)

and get

L = −iφ̄D0φ = iφD0φ̄ (B.6)

In the second equality we have omitted a total derivative term, as we do in other parts of

the paper.

B.2 Vector field in Maxwell theory

For a complex vector field in d-dimensional Maxwell theory we have the lagrangian

L = −1

2
W̄µνW

µν −m2W̄µW
µ (B.7)

with

Wµν = DµWν −DνWµ, DµWν = ∂µWν + iAµWν (B.8)

This describes the propagation of d− 1 complex degrees of freedom. We can then set

Wµ =
1√
2m

(0, w1, · · · , wd−1)e−imt (B.9)

and we obtain

L = iw̄aD0wa (B.10)

where the sum over a is understood. Alternatively, we can set

Wµ =
1√
2m

(0, w1, · · · , wd−1)eimt (B.11)

and obtain

L = −iw̄aD0wa = iwaD0w̄a (B.12)
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B.3 Vector field in Chern-Simons theory

For a complex vector field in three dimensions there is the possibility to write the Chern-

Simons lagrangian

L =
k

2π
εµνρW̄µDνWρ − v2W̄µW

µ (B.13)

where we choose k > 0. The vector field has mass

m =
2πv2

k
(B.14)

This describes the propagation of one complex degree of freedom. We have then two options

for the choice of massive modes in the lagrangian. One is

Wµ =

√
π

k
(0, 1,−i)w e−imt leading to L = iw̄D0w (B.15)

whereas the other is

Wµ =

√
π

k
(0, 1, i)w eimt leading to L = −iw̄D0w = iwD0w̄ (B.16)

Similarly, for the lagrangian

L = − k

2π
εµνρW̄µDνWρ − v2W̄µW

µ, k > 0 (B.17)

we can choose

Wµ =

√
π

k
(0, 1, i)we−imt leading to L = iw̄D0w (B.18)

or

Wµ =

√
π

k
(0, 1,−i)weimt leading to L = −iw̄D0w = iwD0w̄ (B.19)

B.4 Three-dimensional Dirac field

Finally, the lagrangian for a three-dimensional Dirac field is

L = iΨ̄γµDµΨ− imΨ̄Ψ (B.20)

We can choose the massive modes as

Ψ = u−ψe−imt leading to L = iψ̄D0ψ (B.21)

or

Ψ = u+ψeimt leading to L = iψ̄D0ψ = iψD0ψ̄ (B.22)

Similarly, for the lagrangian

L = iΨ̄γµDµΨ + imΨ̄Ψ (B.23)

we can choose

Ψ = u+ψe−imt leading to L = iψ̄D0ψ (B.24)

or

Ψ = u−ψeimt leading to L = iψ̄D0ψ = iψD0ψ̄ (B.25)
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C Killing spinors in AdS5×S5 spacetime

Killing spinors in AdS5 × S5, AdS4×S7, and AdS7 × S4 spacetimes have been determined in,

for example, [13, 31, 51–53]. However, since we use different sets of coordinates, we rederive

them. In this appendix we focus on the AdS5 × S5 case, whereas we devote appendix D to

the calculation for AdS4 × S7 and appendix F to AdS7 × S4.

In AdS5 × S5 we assign curved coordinates xM = (xµ̃, xı̃), where xµ̃ and xı̃ belong to

AdS5 and S5, respectively.13 In tangent space we use flat coordinates xA = (xã, xp̃) with

ã = 0, 1, 2, 3, 4 and p̃ = 5, 6, 7, 8, 9.

Given the AdS5 and S5 metrics (3.19), (3.21), we can easily read the vierbeins

e0 = udt, e1 = udx1, e2 = udx2, e3 = udx3, e4 =
du

u
(C.1)

e5 = dθ1, e6 = cos θ1dξ1, e7 = sin θ1dθ2, e8 = sin θ1 cos θ2dξ2, e9 = sin θ1 sin θ2dξ3

The AdS5 × S5 vierbein components are then given by

Eãµ̃ = Reãµ̃, E p̃
ı̃ = Rep̃ı̃ (C.2)

From the constraint dE + ω ∧ E = 0, we obtain the nonvanishing components of the spin

connection

ω04
t = ω14

x1 = ω24
x2 = ω34

x3 = u

ω56
ξ1 = sin θ1, ω57

θ2 = − cos θ1, ω58
ξ2 = − cos θ1 cos θ2

ω78
ξ2 = sin θ2, ω59

ξ3 = − cos θ1 sin θ2, ω79
ξ3 = − cos θ2 (C.3)

From the SUSY variation of the gravitino in type IIB supergravity we obtain the Killing

spinor equation

DM ε+
i

1920
FNPQRSΓNPQRSΓM ε = 0 (C.4)

with ε being a Weyl spinor with positive chirality and DM ε = ∂M ε+ 1
4ω

AB
M γABε. Note that

we have gamma matrices

ΓM = EAMγA, γµ̃ = eãµ̃γã, γı̃ = ep̃ı̃ γp̃ (C.5)

and Γµ̃ = Rγµ̃, Γı̃ = Rγı̃. We write the Killing spinor equations (C.4) as

Dµ̃ε = − i

2
γ̂γµ̃ε, Dı̃ε = − i

2
γ̂γı̃ε (C.6)

13In this paper we use xµ = (t, x1, x2, x3) to denote the worldvolume coordinates of the stack of D3-branes

before taking the near horizon limit, i.e. coordinates of the four-dimensional N = 4 SYM theory. Moreover,

we use xi = (x4, x5, x6, x7, x8, x9) to denote the directions perpendicular to the D3-branes. The i index

corresponds to the SO(6) R-symmetry index I in SYM theory.
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with γ̂ = γ01234. Defining γ̃ = γ0123, they can be rewritten as

∂µε = −u
2
γµ4(1 + iγ̃)ε, ∂uε = − i

2u
γ̃ε

∂θ1ε = − i

2
γ̂γ5ε, ∂θ2ε =

1

2
γ57eiθ1γ̂γ5ε, ∂ξ1ε = − i

2
γ̂γ6eiθ1γ̂γ5ε

∂ξ2ε =
1

2
(γ58eiθ1γ̂γ5 cos θ2 − γ78 sin θ2)ε

∂ξ3ε =
1

2
(γ79 cos θ2 + γ59eiθ1γ̂γ5 sin θ2)ε (C.7)

The solution to these equations has been found in [31]. In our conventions it reads

ε = u
1
2h(ε1 + xµγµε2)− u−

1
2 γ4hε2 (C.8)

where

h = e
θ1
2
γ45e

θ2
2
γ57e

ξ1
2
γ46e

ξ2
2
γ58e

ξ3
2
γ79 (C.9)

and ε1, ε2 are constant spinors subject to the constraints

γ̃ε1 = iε1, γ̃ε2 = −iε2 (C.10)

Since ε is a positive chirality spinor, i.e. γε = ε with γ = γ01···9, it follows that γε1 = ε1
and γε2 = −ε2. From constraints (C.10) it follows that the two Weyl spinors ε1, ε2 can be

further written in terms of two Majorana-Weyl spinors θ, ϑ, with respectively positive and

negative chiralities

ε1 = (1− iγ̃)θ, θ =
1

2
(ε1 + εc1)

ε2 = (1 + iγ̃)ϑ, ϑ =
1

2
(ε2 + εc2) (C.11)

As described in the main text, θ and ϑ can be identified respectively with the Poincaré

supercharges θ and superconformal charges ϑ of the four-dimensional SYM theory [5].

D Killing spinors in AdS4×S7 spacetime

Killing spinors in AdS4 × S7 spacetime has been obtained in, for example, [13, 51, 53]. In

this appendix we review the derivation in the background

ds2 = R2

(
1

4
ds2

AdS4
+ ds2

S7

)
Fµ̃ν̃ρ̃σ̃ =

6

R
εµ̃ν̃ρ̃σ̃ (D.1)

with metrics (4.33) and (4.35). Since we use the same S7 coordinates as the ones used

in [13], the results therein will be useful to us.
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We denote the AdS4×S7 coordinates as xM = (xµ̃, xı̃), with xµ̃ and xı̃ being coordinates

of AdS4 and S7, respectively, and tangent space coordinates as xA = (xã, xp̃) with ã =

0, 1, 2, 3 and p̃ = 4, 5, 6, 7, 8, 9, \.14 For the AdS4 metric (4.33) we use the vierbeins

e0 = udt, e1 = udx1, e2 = udx2, e3 =
du

u
(D.2)

whereas the vierbeins ep̃ı̃ for S7 metric (4.35) can be found in [13] and we avoid rewriting

them here. The vierbeins of the AdS4 × S7 background (D.1) are then given by

Eãm̃ =
R

2
eãµ̃, E p̃

ı̃ = Rep̃ı̃ (D.3)

The non-vanishing components of the spin connection for AdS4 are

ω03
t = ω13

x1 = ω23
x2 = u (D.4)

and those for S7 can be found in [13].

The Killing spinor equations now read

DM ε =
1

288
FNPQR(ΓMNPQR − 8GMNΓPQR)ε (D.5)

with ε being a Majorana spinor. Note that Γµ̃ = R
2 γµ̃, Γı̃ = Rγı̃. We rewrite (D.5) as

Dµ̃ε =
1

2
γ̂γµ̃ε, Dı̃ε =

1

2
γ̂γı̃ε (D.6)

with γ̂ = γ0123. Defining γ̃ = γ012, these equations in the AdS4 directions become

∂µε = −u
2
γµ3(1− γ̃)ε, ∂uε =

1

2u
γ̃ε (D.7)

whereas the ones in the S7 directions can be found in [13].

In our conventions the general solution reads

ε = u
1
2h(ε1 + xµγµε2)− u−

1
2 γ3hε2 (D.8)

with constant Majorana spinors ε1, ε2 satisfying γ̃ε1 = ε1, γ̃ε2 = ε2, and

h = e
β
4

(γ34−γ7\)e
θ1
4

(γ35−γ8\)e
θ2
4

(γ46+γ79)e
ξ1
2
γ3\e

ξ2
2
γ58e

ξ3
2
γ47e

ξ4
2
γ69 (D.9)

We have in total 32 real degrees of freedom, 16 from ε1 and 16 from ε2.

For our purposes it is convenient to decompose ε1, ε2 in two different ways.

First, we decompose them in terms of eigenstates of γ03\, γ058, γ047, γ069. We write15

γ03\εi = s1εi, γ058εi = s2εi, γ047εi = s3εi, γ069εi = s4εi, i = 1, 2 (D.10)

14Before taking the near horizon limit, for the stack of M2-branes we use worldvolume coordinates xµ =

(t, x1, x2) and tangent space coordinates xa with a = 0, 1, 2. For the orthogonal directions we use xi =

(x3, x4, · · · , x9, x\) and tangent coordinates xp with p = 3, 4, · · · , 9, \.
15We note that these equations are compatible with the Majorana nature of εi [54].
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with sI = ±1, I = 1, 2, 3, 4. From the constraint γ̃εi = εi and the identity γ0123456789\ = 1,

it follows that

s1s2s3s4 = 1 (D.11)

Therefore, both ε1 and ε2 are decomposed into eight possible states

(s1, s2, s3, s4) = (+ + ++), (+ +−−), (+−+−), (+−−+),

(−+ +−), (−+−+), (−−++), (−−−−) (D.12)

and each state has two real degrees of freedom.

Alternatively, we can decompose ε1, ε2 as direct product of Grassmann odd spinors θ

and ϑ in R1,2 and Grassmann even spinors η in C4 ∼= R8. Schematically we write

ε1 ∼ θ ⊗ η ε2 ∼ ϑ⊗ η (D.13)

To this end we decompose the eleven-dimensional gamma matrices as

γa = −γa ⊗ Γ, a = 0, 1, 2

γp = 1⊗ Γp, p = 3, 4, 5, 6, 7, 8, 9, \ (D.14)

where γa are given in (A.1) (therefore γ̃ = γ012 = −1⊗ Γ) and

Γ = Γ3456789\ = −Γ3\Γ58Γ47Γ69 (D.15)

The η spinor can be decomposed in terms of eigenstates

Γ3\η = it1η, Γ58η = it2η, Γ47η = it3η, Γ69η = it4η (D.16)

with tI = ± for I = 1, 2, 3, 4. The constraint γ̃ε1 = ε1 is equivalent to Γη = −η, and this

leads to t1t2t3t4 = 1. The η spinor is then decomposed into eight states

(t1, t2, t3, t4) = (+ + ++), (+ +−−), (+−+−), (+−−+),

(−+ +−), (−+−+), (−−++), (−−−−) (D.17)

and we name them in the present order as ηi, i = 1, 2, · · · , 8. Taking the charge conjugate

of (D.16), we obtain (η̄ ≡ ηc, η̄i ≡ ηci in R8)

Γ3\η̄ = −it1η̄, Γ58η̄ = −it2η̄, Γ47η̄ = −it3η̄, Γ69η̄ = −it4η̄ (D.18)

We normalize ηi in such a way that

η̄1 = η8, η̄2 = η7, η̄3 = η6, η̄4 = η5 (D.19)

Then we write ε1, ε2 as

ε1 =

8∑
i=1

θi ⊗ ηi , ε2 =

8∑
i=1

ϑi ⊗ ηi (D.20)
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Since they are Majorana spinors, we can define θ̄i = θic = (θi)∗ with the assignment

θ̄1 = θ8, θ̄2 = θ7, θ̄3 = θ6, θ̄4 = θ5 (D.21)

Finally we can write

ε1 =
4∑
i=1

(θi ⊗ ηi + θ̄i ⊗ η̄i) , ε2 =
4∑
i=1

(ϑi ⊗ ηi + ϑ̄i ⊗ η̄i) (D.22)

where the eleven dimensional Majorana spinors have been expressed in terms of four inde-

pendent Dirac spinors in three dimensions.

E Higgsing procedure in general N = 4 SCSM theories

In this appendix we give details about the Higgsing procedure for Wilson loops W1, W
(`)
1 ,

W̃1 ,W̃
(`)
1 in a general N = 4 SCSM theory with alternating levels.

As can be inferred from the quiver diagram, figure 3, in a general N = 4 SCSM theory

with alternating levels we have gauge fields A
(2`−1)
µ , B

(2`)
µ and bi-fundamental matter fields

φ
(2`−1)
ı̂ , ψı̂(2`−1), φ̄

ı̂
(2`−1) = (φ

(2`−1)
ı̂ )†, ψ̄

(2`−1)
ı̂ = (ψı̂(2`−1))

†, φ
(2`)
i , ψi(2`), φ̄

i
(2`) = (φ

(2`)
i )†,

ψ̄
(2`)
i = (ψi(2`))

† that couple to them. Here ` = 1, 2, · · · , r with identifications (2r+1) = (1),

(2r) = (0), and i = 1, 2, ı̂ = 1̂, 2̂.

We write the lagrangian as a sum of four terms

L = LCS + Lk + Lp + LY (E.1)

Explicitly, the Chern-Simons part is given by

LCS=
k

4π

r∑
`=1

εµνρTr

(
A(2`−1)
µ ∂νA

(2`−1)
ρ +

2i

3
A(2`−1)
µ A(2`−1)

ν A(2`−1)
ρ −B(2`)

µ ∂νB
(2`)
ρ −2i

3
B(2`)
µ B(2`)

ν B(2`)
ρ

)
(E.2)

The kinetic part of the scalars and fermions is

Lk=

r∑
`=1

Tr
(
−Dµφ̄

ı̂
(2`−1)D

µφ
(2`−1)
ı̂ +iψ̄

(2`−1)
i γµDµψ

i
(2`−1)−Dµφ̄

i
(2`)D

µφ
(2`)
i +iψ̄

(2`)
ı̂ γµDµψ

ı̂
(2`)

)
(E.3)

with covariant derivatives being

Dµφ
(2`−1)
ı̂ = ∂µφ

(2`−1)
ı̂ + iA(2`−1)

µ φ
(2`−1)
ı̂ − iφ

(2`−1)
ı̂ B(2`)

µ

Dµφ̄
ı̂
(2`−1) = ∂µφ̄

ı̂
(2`−1) + iB(2`)

µ φ̄ı̂(2`−1) − iφ̄ı̂(2`−1)A
(2`−1)
µ

Dµψ
i
(2`−1) = ∂µψ

i
(2`−1) + iA(2`−1)

µ ψi(2`−1) − iψi(2`−1)B
(2`)
µ

Dµφ
(2`)
i = ∂µφ

(2`)
i + iA(2`+1)

µ φ
(2`)
i − iφ

(2`)
i B(2`)

µ

Dµφ̄
i
(2`) = ∂µφ̄

i
(2`) + iB(2`)

µ φ̄i(2`) − iφ̄i(2`)A
(2`+1)
µ

Dµψ
ı̂
(2`) = ∂µψ

ı̂
(2`) + iA(2`+1)

µ ψı̂(2`) − iψı̂(2`)B
(2`)
µ (E.4)

The potential part is

Lp =
4π2

3k2

r∑
`=1

Tr
(
L(2`−1)
p + L(2`)

p

)
(E.5)

– 46 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
0

with

L(2`−1)
p = φ

(2`−1)
ı̂ φ̄ı̂(2`−1)φ

(2`−1)
̂ φ̄̂(2`−1)φ

(2`−1)

k̂
φ̄k̂(2`−1)+φ

(2`−1)
ı̂ φ̄̂(2`−1)φ

(2`−1)
̂ φ̄k̂(2`−1)φ

(2`−1)

k̂
φ̄ı̂(2`−1)

+4φ
(2`−1)
ı̂ φ̄̂(2`−1)φ

(2`−1)

k̂
φ̄ı̂(2`−1)φ

(2`−1)
̂ φ̄k̂(2`−1)−6φ

(2`−1)
ı̂ φ̄̂(2`−1)φ

(2`−1)
̂ φ̄ı̂(2`−1)φ

(2`−1)

k̂
φ̄k̂(2`−1)

+3φ
(2`−1)
ı̂ φ̄ı̂(2`−1)φ

(2`−1)
̂ φ̄̂(2`−1)φ

(2`−2)
k φ̄k(2`−2)+3φ

(2`)
i φ̄̂(2`−1)φ

(2`−1)
̂ φ̄k̂(2`−1)φ

(2`−1)

k̂
φ̄i(2`)

+12φ
(2`)
i φ̄̂(2`−1)φ

(2`−1)

k̂
φ̄i(2`)φ

(2`+1)
̂ φ̄k̂(2`+1)−6φ

(2`−1)
ı̂ φ̄̂(2`−1)φ

(2`−1)
̂ φ̄ı̂(2`−1)φ

(2`−2)
k φ̄k(2`−2)

−6φ
(2`)
i φ̄̂(2`−1)φ

(2`−1)
̂ φ̄i(2`)φ

(2`+1)

k̂
φ̄k̂(2`+1)−6φ

(2`−1)
ı̂ φ̄j(2`)φ

(2`)
j φ̄ı̂(2`−1)φ

(2`−1)

k̂
φ̄k̂(2`−1) (E.6)

and

L(2`)
p = φ

(2`)
i φ̄i(2`)φ

(2`)
j φ̄j(2`)φ

(2`)
k φ̄k(2`) + φ

(2`)
i φ̄j(2`)φ

(2`)
j φ̄k(2`)φ

(2`)
k φ̄i(2`)

+4φ
(2`)
i φ̄j(2`)φ

(2`)
k φ̄i(2`)φ

(2`)
j φ̄k(2`) − 6φ

(2`)
i φ̄j(2`)φ

(2`)
j φ̄i(2`)φ

(2`)
k φ̄k(2`)

+3φ
(2`)
i φ̄i(2`)φ

(2`)
j φ̄j(2`2)φ

(2`+1)

k̂
φ̄k̂(2`+1) + 3φ

(2`−1)
ı̂ φ̄j(2`)φ

(2`)
j φ̄k(2`)φ

(2`)
k φ̄ı̂(2`−1)

+12φ
(2`)
i φ̄j(2`)φ

(2`+1)

k̂
φ̄i(2`+2)φ

(2`+2)
j φ̄k̂(2`+1) − 6φ

(2`)
i φ̄j(2`)φ

(2`)
j φ̄i(2`)φ

(2`+1)

k̂
φ̄k̂(2`+1)

−6φ
(2`+1)
ı̂ φ̄j(2`+2)φ

(2`+2)
j φ̄ı̂(2`+1)φ

(2`)
k φ̄k(2`) − 6φ

(2`)
i φ̄̂(2`−1)φ

(2`−1)
̂ φ̄i(2`)φ

(2`)
k φ̄k(2`) (E.7)

The part containing Yukawa couplings is

LY =
2πi

k

r∑
`=1

Tr
(
φ

(2`)
i φ̄i(2`)ψ

j
(2`+1)ψ̄

(2`+1)
j + φ

(2`+1)
ı̂ φ̄ı̂(2`+1)ψ

j
(2`+1)ψ̄

(2`+1)
j

+φ
(2`)
i φ̄i(2`)ψ

̂
(2`)ψ̄

(2`)
̂ + φ

(2`+1)
ı̂ φ̄ı̂(2`+1)ψ

̂
(2`)ψ̄

(2`)
̂

−2φ
(2`)
i φ̄j(2`)ψ

i
(2`+1)ψ̄

(2`+1)
j − 2φ

(2`−1)
ı̂ φ̄j(2`)ψ

ı̂
(2`)ψ̄

(2`−1)
j

−2φ
(2`)
i φ̄̂(2`−1)ψ

i
(2`−1)ψ̄

(2`)
̂ − 2φ

(2`+1)
ı̂ φ̄̂(2`+1)ψ

ı̂
(2`)ψ̄

(2`)
̂

−φ̄i(2`)φ
(2`)
i ψ̄

(2`+1)
j ψj(2`+1) − φ̄

ı̂
(2`+1)φ

(2`+1)
ı̂ ψ̄

(2`+1)
j ψj(2`+1)

−φ̄i(2`)φ
(2`)
i ψ̄

(2`)
̂ ψ̂(2`) − φ̄

ı̂
(2`+1)φ

(2`+1)
ı̂ ψ̄

(2`)
̂ ψ̂(2`)

+2φ̄i(2`)φ
(2`)
j ψ̄

(2`+1)
i ψj(2`+1) + 2φ̄i(2`)φ

(2`−1)
̂ ψ̄

(2`−1)
i ψ̂(2`)

+2φ̄ı̂(2`−1)φ
(2`)
j ψ̄

(2`)
ı̂ ψj(2`−1) + 2φ̄ı̂(2`+1)φ

(2`+1)
̂ ψ̄

(2`)
ı̂ ψ̂(2`)

+2εijεk̂l̂φ
(2`)
i ψ̄

(2`−1)
j φ

(2`−1)

k̂
ψ̄

(2`)

l̂
− εijεk̂l̂φ(2`)

i ψ̄
(2`)

k̂
φ

(2`)
j ψ̄

(2`)

l̂

+2εı̂̂εklφ
(2`+1)
ı̂ ψ̄

(2`+1)
k φ

(2`)
l ψ̄

(2`)
̂ − εı̂̂εklφ(2`+1)

ı̂ ψ̄
(2`+1)
k φ

(2`+1)
̂ ψ̄

(2`+1)
l

−2εijεk̂l̂φ̄
i
(2`)ψ

j
(2`+1)φ̄

k̂
(2`+1)ψ

l̂
(2`) + εijεk̂l̂φ̄

i
(2`)ψ

k̂
(2`)φ̄

j
(2`)ψ

l̂
(2`)

−2εı̂̂εklφ̄
ı̂
(2`−1)ψ

k
(2`−1)φ̄

l
(2`)ψ

̂
(2`) + εı̂̂εklφ̄

ı̂
(2`−1)ψ

k
(2`−1)φ̄

̂
(2`−1)ψ

l
(2`−1)

)
(E.8)

with εij , εı̂̂, ε
ij , εı̂̂ being antisymmetric and ε12 = ε12 = ε1̂2̂ = ε1̂2̂ = 1.

The lagrangian (E.1) is invariant under the following SUSY transformations:

– Gauge vectors.

δA(2`−1)
µ = −2π

k

[(
φ
(2`−2)
i ψ̄

(2`−2)
ı̂ −φ(2`−1)

ı̂ ψ̄
(2`−1)
i

)
γµε

iı̂+ε̄iı̂γµ

(
ψı̂(2`−2)φ̄

i
(2`−2)−ψ

i
(2`−1)φ̄

ı̂
(2`−1)

)]
δB(2`)

µ = −2π

k

[(
ψ̄
(2`−1)
i φ

(2`−1)
ı̂ −ψ̄(2`)

ı̂ φ
(2`)
i

)
γµε

iı̂+ε̄iı̂γµ

(
φ̄i(2`)ψ

ı̂
(2`)−φ̄

ı̂
(2`−1)ψ

i
(2`−1)

)]
(E.9)
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– Scalar fields.

δφ
(2`−1)
ı̂ =−iε̄îıψ

i
(2`−1), δφ̄ı̂(2`−1) =−iψ̄

(2`−1)
i εîı, δφ

(2`)
i =iε̄îıψ

ı̂
(2`), δφ̄i(2`) =iψ̄

(2`)
ı̂ εîı (E.10)

– Fermion fields.

δψi(2`−1) = γµεîıDµφ
(2`−1)
ı̂ +ϑîıφ

(2`−1)
ı̂ − 4π

k
εj̂
(
φ

(2`−1)
̂ φ̄i(2`)φ

(2`)
j −φ(2`−2)

j φ̄i(2`−2)φ
(2`−1)
̂

)
+

2π

k
εîı
(
φ

(2`−1)
ı̂ φ̄̂(2`−1)φ

(2`−1)
̂ +φ

(2`−1)
ı̂ φ̄j(2`)φ

(2`)
j

−φ(2`−1)
̂ φ̄̂(2`−1)φ

(2`−1)
ı̂ −φ(2`−2)

j φ̄j(2`−2)φ
(2`−1)
ı̂

)
δψ̄

(2`−1)
i = −ε̄îıγµDµφ̄

ı̂
(2`−1)+ϑ̄îıφ̄

ı̂
(2`−1)+

4π

k
ε̄j̂

(
φ̄̂(2`−1)φ

(2`−2)
i φ̄j(2`−2)−φ̄

j
(2`)φ

(2`)
i φ̄̂(2`−1)

)
−2π

k
ε̄îı

(
φ̄ı̂(2`−1)φ

(2`−1)
̂ φ̄̂(2`−1)+φ̄ı̂(2`−1)φ

(2`−2)
j φ̄j(2`−2)

−φ̄̂(2`−1)φ
(2`−1)
̂ φ̄ı̂(2`−1)−φ̄

j
(2`)φ

(2`)
j φ̄ı̂(2`−1)

)
δψı̂(2`) = −γµεîıDµφ

(2`)
i −ϑîıφ(2`)

i − 4π

k
εj̂
(
φ

(2`+1)
̂ φ̄ı̂(2`+1)φ

(2`)
j −φ(2`)

j φ̄ı̂(2`−1)φ
(2`−1)
̂

)
−2π

k
εîı
(
φ

(2`)
i φ̄̂(2`−1)φ

(2`−1)
̂ +φ

(2`)
i φ̄j(2`)φ

(2`)
j

−φ(2`+1)
̂ φ̄̂(2`+1)φ

(2`)
i −φ(2`)

j φ̄j(2`)φ
(2`)
i

)
δψ̄

(2`)
ı̂ = ε̄îıγ

µDµφ̄
i
(2`)−ϑ̄îıφ̄

i
(2`)+

4π

k
ε̄j̂

(
φ̄̂(2`−1)φ

(2`−1)
ı̂ φ̄j(2`)−φ̄

j
(2`)φ

(2`+1)
ı̂ φ̄̂(2`+1)

)
+

2π

k
ε̄îı

(
φ̄i(2`)φ

(2`+1)
̂ φ̄̂(2`+1)+φ̄i(2`)φ

(2`)
j φ̄j(2`)

−φ̄̂(2`−1)φ
(2`−1)
̂ φ̄i(2`)−φ̄

j
(2`)φ

(2`)
j φ̄i(2`)

)
(E.11)

Here we have the SUSY parameters εîı = θîı+xµγµϑ
îı, ε̄îı = θ̄îı− ϑ̄îıxµγµ. The parameters

θîı, θ̄îı are Poincaré supercharges, and ϑîı, ϑ̄îı are superconformal charges, and they are

Dirac spinors subject to the following constraints

(θîı)∗ = θ̄îı , θ̄îı = εijεı̂̂θ
j̂

(ϑîı)∗ = ϑ̄îı , ϑ̄îı = εijεı̂̂ϑ
j̂ (E.12)

In analogy with what has been done for the orbifold ABJM theory (see section 5), we

consider the 1/2 BPS Wilson loop W1 defined as the holonomy of the superconnection

L1 = diag(L
(1)
1 , L

(2)
1 , · · · , L(r)

1 ) (E.13)

with

L
(`)
1 =

(
A(2`−1) f

(2`−1)
1

f
(2`−1)
2 B(2`)

)
, f

(2`−1)
1 =

√
4π

k
ψ1

(2`−1)+, f
(2`−1)
2 =

√
4π

k
ψ̄

(2`−1)
1−

A(2`−1) = A
(2`−1)
0 +

2π

k

(
−φ(2`−2)

1 φ̄1
(2`−2) + φ

(2`−2)
2 φ̄2

(2`−2) + φ
(2`−1)
ı̂ φ̄ı̂(2`−1)

)
B(2`) = B

(2`)
0 +

2π

k

(
−φ̄1

(2`)φ
(2`)
1 + φ̄2

(2`)φ
(2`)
2 + φ̄ı̂(2`−1)φ

(2`−1)
ı̂

)
(E.14)
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Given the diagonal nature of superconnection (E.13), we can write W1 =
∑

`W
(`)
1 where

W
(`)
1 operators are nothing but WLs associated to L

(`)
1 superconnections. W1 and W

(`)
1

operators all preserve half of the supercharges

θ1ı̂
+ , θ2ı̂

− , θ̄1ı̂−, θ̄2ı̂+ (E.15)

Wilson loops W2, W
(`)
2 , W1̂, W

(`)

1̂
, W2̂, W

(`)

2̂
and their preserved supercharges can be

obtained by acting with R-symmetry rotations on W1, W
(`)
1 and the corresponding super-

charges.

We can also introduce the 1/2 BPS Wilson loop W̃1 defined in terms of the supercon-

nection

L̃1 = diag(L̃
(1)
1 , L̃

(2)
1 , · · · , L̃(r)

1 ) (E.16)

where we have defined

L̃
(`)
1 =

(
Ã(2`−1) f̃

(2`−1)
1

f̃
(2`−1)
2 B̃(2`)

)
, f̃

(2`−1)
1 =

√
4π

k
ψ1

(2`−1)−, f̃
(2`−1)
2 = −

√
4π

k
ψ̄

(2`−1)
1+

Ã(2`−1) = A
(2`−1)
0 +

2π

k

(
φ

(2`−2)
1 φ̄1

(2`−2) − φ
(2`−2)
2 φ̄2

(2`−2) + φ
(2`−1)
ı̂ φ̄ı̂(2`−1)

)
B̃(2`) = B

(2`)
0 +

2π

k

(
φ̄1

(2`)φ
(2`)
1 − φ̄2

(2`)φ
(2`)
2 + φ̄ı̂(2`−1)φ

(2`−1)
ı̂

)
(E.17)

Again, we can write W̃1 =
∑

` W̃
(`)
1 where W̃

(`)
1 is the WL associated to the L̃

(`)
1 supercon-

nection. All these WLs preserve half of the supercharges

θ1ı̂
− , θ2ı̂

+ , θ̄1ı̂+, θ̄2ı̂− (E.18)

Wilson loops W̃2, W̃
(`)
2 , W̃1̂, W̃

(`)

1̂
, W̃2̂, W̃

(`)

2̂
and their preserved supercharges can be

obtained by applying R-symmetry rotations.

We break the gauge group
∏r
`=1[U(N2`−1+1)×U(N2`+1)] to

∏r
`=1[U(N2`−1)×U(N2`)]

by Higgsing with the ansatz

A(2`−1)
µ =

(
A

(2`−1)
µ W

(2`−1)
µ

W̄
(2`−1)
µ 0

)
B(2`)
µ =

(
B

(2`)
µ Z

(2`)
µ

Z̄
(2`)
µ 0

)

φ
(2`)
i =

(
φ

(2`)
i R

(2`)
i

S̄
(2`)
i vi

)
φ̄i(2`) =

 φ̄i(2`) S
i
(2`)

R̄i(2`) v̄i


φ

(2`−1)
ı̂ =

(
φ

(2`−1)
ı̂ R

(2`−1)
ı̂

S̄
(2`−1)
ı̂ 0

)
φ̄ı̂(2`−1) =

 φ̄ı̂(2`−1) S
ı̂
(2`−1)

R̄ı̂(2`−1) 0


ψi(2`−1) =

 ψi(2`−1) Ωi
(2`−1)

Σ̄i
(2`−1) 0

 ψ̄
(2`−1)
i =

(
ψ̄

(2`−1)
i Σ

(2`−1)
i

Ω̄
(2`−1)
i 0

)

ψı̂(2`) =

 ψı̂(2`) Ωı̂
(2`)

Σ̄ı̂
(2`) 0

 ψ̄
(2`)
ı̂ =

(
ψ̄

(2`)
ı̂ Σ

(2`)
ı̂

Ω̄
(2`)
ı̂ 0

)
(E.19)
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where vi = vδ1
i , v > 0, and v → ∞. We work in the unitary gauge where R

(2`)
1 = R̄1

(2`) =

S1
(2`) = S̄

(2`)
1 = 0. Inserting ansatz (E.19) into the lagrangian (E.1) we can read the terms

that are relevant for the dynamics of massive particles in the v →∞ limit. Explicitly, for

the vector part we have

Lv =
r∑
`=1

[
k

2π
εµνρ

(
W̄ (2`−1)
µ DνW

(2`−1)
ρ − Z̄(2`−2)

µ DνZ
(2`−2)
ρ

)
−W̄ (2`−1)

µ

(
v2 + φ

(2`−2)
i φ̄i(2`−2) + φ

(2`−1)
ı̂ φ̄ı̂(2`−1)

)
W (2`−1)
ρ

−Z̄(2`−2)
µ

(
v2 + φ̄i(2`−2)φ

(2`−2)
i + φ̄ı̂(2`−3)φ

(2`−3)
ı̂

)
Z(2`−2)
ρ

+2vW̄ (2`−1)
µ φ

(2`−2)
1 Zµ(2`−2) + 2vZ̄(2`−2)

µ φ̄1
(2`−2)W

µ
(2`−1)

]
(E.20)

while for the scalar part

Ls =

r∑
`=1

{
−DµR̄

2
(2`)D

µR
(2`)
2 −DµR̄

ı̂
(2`−1)D

µR
(2`−1)
ı̂ −DµS̄

(2`)
2 DµS2

(2`)−DµS̄
(2`+1)
ı̂ DµS ı̂(2`+1)

−4πv4

k2

(
R̄2

(2`)R
(2`)
2 +R̄ı̂(2`−1)R

(2`−1)
ı̂ +S̄

(2`)
2 S2

(2`)+S̄
(2`+1)
ı̂ S ı̂(2`+1)

)
−4πv2

k2

[
2R̄2

(2`)

(
−φ(2`)1 φ̄1(2`)+φ

(2`)
2 φ̄2(2`)+φ

(2`+1)
ı̂ φ̄ı̂(2`+1)

)
R

(2`)
2 −R̄2

(2`)φ
(2`)
2 φ̄2(2`)R

(2`)
2

+2R̄ı̂(2`−1)

(
−φ(2`−2)

1 φ̄1(2`−2)+φ
(2`−2)
2 φ̄2(2`−2)+φ

(2`−1)
̂ φ̄̂(2`−1)

)
R

(2`−1)
ı̂

−R̄ı̂(2`−1)φ
(2`−1)
ı̂ φ̄̂(2`−1)R

(2`−1)
̂ −R̄2

(2`)φ
(2`)
2 φ̄ı̂(2`−1)R

(2`−1)
ı̂ −R̄ı̂(2`−1)φ

(2`−1)
ı̂ φ̄2(2`)R

(2`)
2

]
−4πv2

k2

[
2S̄

(2`)
2

(
−φ̄1(2`)φ

(2`)
1 +φ̄2(2`)φ

(2`)
2 +φ̄ı̂(2`−1)φ

(2`−1)
ı̂

)
S2
(2`)−S̄

(2`)
2 φ̄2(2`)φ

(2`)
2 S2

(2`)

+2S̄
(2`+1)
ı̂

(
−φ̄1(2`+2)φ

(2`+2)
1 +φ̄2(2`+2)φ

(2`+2)
2 +φ̄̂(2`+1)φ

(2`+1)
̂

)
S ı̂(2`+1) (E.21)

−S̄(2`+1)
ı̂ φ̄ı̂(2`+1)φ

(2`+1)
̂ S ̂(2`+1)−S̄

(2`)
2 φ̄2(2`)φ

(2`+1)
ı̂ S ı̂(2`+1)−S̄

(2`+1)
ı̂ φ̄ı̂(2`+1)φ

(2`)
2 S2

(2`)

]}
The fermion part is further split into a sum of three parts, Lf = Lf1 + Lf2 + Lf3 with

Lf1 =

r∑
`=1

[
iΩ̄

(2`−1)
1 γµDµΩ1

(2`−1)+
2πiv2

k
Ω̄

(2`−1)
1 Ω1

(2`−1)+iΣ̄1
(2`+1)γ

µDµΣ
(2`+1)
1 − 2πiv2

k
Σ̄1

(2`+1)Σ
(2`+1)
1

+
2πi

k
Ω̄

(2`−1)
1

(
−φ(2`)

1 φ̄1
(2`)+φ

(2`)
2 φ̄2

(2`)+φ
(2`−1)
ı̂ φ̄ı̂(2`−1)

)
Ω1

(2`−1)

+Ω̄
(2`−1)
i γµψi(2`−1)Z

(2`)
µ +Ω̄

(2`)
ı̂ γµψı̂(2`)Z

(2`)
µ +Z̄(2`)

µ ψ̄
(2`−1)
i γµΩi(2`−1)+Z̄

(2`)
µ ψ̄

(2`)
ı̂ γµΩı̂(2`)

−2πi

k
Σ̄1

(2`+1)

(
−φ̄1

(2`+2)φ
(2`+2)
1 +φ̄2

(2`+2)φ
(2`+2)
2 +φ̄ı̂(2`+1)φ

(2`+1)
ı̂

)
Σ

(2`+1)
1 (E.22)

+Σ̄i(2`+1)γ
µψ̄

(2`+1)
i W (2`+1)

µ +Σ̄ı̂(2`)γ
µψ̄

(2`)
ı̂ W (2`)

µ +W̄ (2`+1)
µ ψi(2`+1)γ

µΣ
(2`+1)
i +W̄ (2`)

µ ψı̂(2`)γ
µΣ

(2`)
ı̂

]
Lf2 =

r∑
`=1

{
iΩ̄

(2`−1)
2 γµDµΩ2

(2`−1)+iΩ̄
(2`)
ı̂ γµDµΩı̂(2`)−

2πiv2

k

(
Ω̄

(2`−1)
2 Ω2

(2`−1)+Ω̄
(2`)
ı̂ Ωı̂(2`)

)
+

2πi

k

[
Ω̄

(2`−1)
2

(
φ
(2`)
i φ̄i(2`)+φ

(2`−1)
ı̂ φ̄ı̂(2`−1)

)
Ω2

(2`−1)+Ω̄
(2`)
ı̂

(
φ
(2`)
j φ̄j(2`)+φ

(2`+1)
̂ φ̄̂(2`+1)

)
Ωı̂(2`)

−2Ω̄
(2`−1)
2 φ

(2`)
2 φ̄2

(2`)Ω
2
(2`−1)−2Ω̄

(2`−1)
2 φ

(2`−1)
ı̂ φ̄2

(2`)Ω
ı̂
(2`)−2Ω̄

(2`)
ı̂ φ

(2`)
2 φ̄ı̂(2`−1)Ω

2
(2`−1)

−2Ω̄
(2`)
ı̂ φ

(2`+1)
̂ φ̄ı̂(2`+1)Ω

̂
(2`)+2vΩ̄

(2`−1)
2 ψ1

(2`−1)S
2
(2`)+2vΩ̄

(2`)
ı̂ ψ1

(2`+1)S
ı̂
(2`+1)
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+2vS̄
(2`)
2 ψ̄

(2`−1)
1 Ω2

(2`−1)+2vS̄
(2`+1)
ı̂ ψ̄

(2`+1)
1 Ωı̂(2`)

]
+iΣ̄2

(2`+1)γ
µDµΣ

(2`+1)
2 +iΣ̄ı̂(2`)γ

µDµΣ
(2`)
ı̂ +

2πiv2

k

(
Σ̄2

(2`+1)Σ
(2`+1)
2 +Σ̄ı̂(2`)Σ

(2`)
ı̂

)
−2πi

k

[
Σ̄2

(2`+1)

(
φ̄i(2`+2)φ

(2`+2)
i +φ̄ı̂(2`+1)φ

(2`+1)
ı̂

)
Σ

(2`+1)
2 +Σ̄ı̂(2`)

(
φ̄j(2`)φ

(2`)
j +φ̄̂(2`−1)φ

(2`−1)
̂

)
Σ

(2`)
i

−2Σ̄2
(2`+1)φ̄

2
(2`+2)φ

(2`+2)
2 Σ

(2`+1)
2 −2Σ̄2

(2`+1)φ̄
ı̂
(2`+1)φ

(2`)
2 Σ

(2`)
ı̂ −2Σ̄ı̂(2`)φ̄

2
(2`)φ

(2`+1)
ı̂ Σ

(2`+1)
2

−2Σ̄ı̂(2`)φ̄
̂
(2`−1)φ

(2`−1)
ı̂ Σ

(2`)
̂ +2vΣ̄2

(2`+1)ψ̄
(2`+1)
1 R

(2`)
2 +2vΣ̄ı̂(2`)ψ̄

(2`−1)
1 R

(2`−1)
ı̂

+2vR̄2
(2`)ψ

1
(2`+1)Σ

(2`+1)
2 +2vR̄ı̂(2`−1)ψ

1
(2`−1)Σ

(2`)
ı̂

]
+

4πiv

k

[
εı̂̂
(

Ω̄
(2`−1)
2 φ

(2`−1)
ı̂ Σ

(2`)
̂ −Ω̄

(2`)
ı̂ φ

(2`)
2 Σ

(2`)
̂ +Ω̄

(2`)
ı̂ φ

(2`+1)
̂ Σ

(2`+1)
2

)
−εı̂̂

(
Σ̄2

(2`+1)φ̄
ı̂
(2`+1)Ω

̂
(2`)−Σ̄ı̂(2`)φ̄

2
(2`)Ω

̂
(2`)+Σ̄ı̂(2`)φ̄

̂
(2`−1)Ω

2
(2`−1)

)]}
(E.23)

Lf3 = −4πi

k

r∑
`=1

(
Ω̄

(2`−1)
1 φ

(2`)
2 φ̄1

(2`)Ω
2
(2`−1)+Ω̄

(2`−1)
1 φ

(2`−1)
ı̂ φ̄1

(2`)Ω
ı̂
(2`)+Ω̄

(2`−1)
2 φ

(2`)
1 φ̄2

(2`)Ω
1
(2`−1)

+Ω̄
(2`)
ı̂ φ

(2`)
1 φ̄ı̂(2`−1)Ω

1
(2`−1)−Σ̄1

(2`+1)φ̄
2
(2`+2)φ

(2`+2)
1 Σ

(2`+1)
2 −Σ̄1

(2`+1)φ̄
ı̂
(2`+1)φ

(2`)
1 Σ

(2`)
ı̂

−Σ̄2
(2+1`)φ̄

1
(2`+2)φ

(2`+2)
2 Σ

(2`+1)
1 −Σ̄ı̂(2`)φ̄

1
(2`)φ

(2`+1)
ı̂ Σ

(2`+1)
1

)
(E.24)

It is convenient to redefine the bosonic fields as

W (2`−1)
µ →

(
1 +

φ
(2`−2)
1 φ̄1

(2`−2)

2v2

)
W (2`−1)
µ +

φ
(2`−2)
1

v
Z(2`−2)
µ

Z(2`)
µ →

(
1 +

φ̄1
(2`)φ

(2`)
1

2v2

)
Z(2`)
µ +

φ̄1
(2`)

v
W (2`+1)
µ

R
(2`)
2 → R

(2`)
2 +

φ
(2`)
2 φ̄2

(2`)

2v2
R

(2`)
2 +

φ
(2`)
2 φ̄ı̂(2`−1)

2v2
R

(2`−1)
ı̂

R
(2`−1)
ı̂ → R

(2`−1)
ı̂ +

φ
(2`−1)
ı̂ φ̄̂(2`−1)

2v2
R

(2`−1)
̂ +

φ
(2`−1)
ı̂ φ̄2

(2`)

2v2
R

(2`)
2

S2
(2`) → S2

(2`) +
φ̄2

(2`)φ
(2`)
2

2v2
S2

(2`) +
φ̄2

(2`)φ
(2`+1)
ı̂

2v2
S ı̂(2`+1) (E.25)

S ı̂(2`−1) → S ı̂(2`−1) +
φ̄ı̂(2`−1)φ

(2`−1)
̂

2v2
S ̂(2`−1) +

φ̄ı̂(2`−1)φ
(2`−2)
2

2v2
S2

(2`−2)

and the fermion fields as

Ω1
(2`−1) → Ω1

(2`−1), Σ
(2`+1)
1 →Σ

(2`+1)
1

Ω2
(2`−1) → Ω2

(2`−1)+
1

v
εı̂̂φ

(2`−1)
ı̂ Σ

(2`)
̂ +

1

2v2
φ
(2`−1)
ı̂

(
φ̄2(2`)Ω

ı̂
(2`)−φ̄

ı̂
(2`−1)Ω

2
(2`)

)
Ωı̂(2`) → Ωı̂(2`)+

1

v
εı̂̂
(
φ
(2`+1)
̂ Σ

(2`+1)
2 −φ(2`)2 Σ

(2`)
̂

)
+

1

2v2

[
φ
(2`+1)
̂

(
φ̄ı̂(2`+1)Ω

̂
(2`)−φ̄

̂
(2`+1)Ω

ı̂
(2`)

)
+φ

(2`)
2

(
φ̄ı̂(2`−1)Ω

2
(2`−1)−φ̄

2
(2`)Ω

ı̂
(2`−1)

)]
Σ

(2`−1)
2 → Σ

(2`−1)
2 +

1

v
εı̂̂φ̄

ı̂
(2`−1)Ω

̂
(2`−2)+

1

2v2
φ̄ı̂(2`−1)

(
φ
(2`−2)
2 Σ

(2`−2)
ı̂ −φ(2`−1)

ı̂ Σ
(2`−1)
2

)
Σ

(2`)
ı̂ → Σ

(2`)
ı̂ +

1

v
εı̂̂

(
φ̄̂(2`−1)Ω

2
(2`−1)−φ̄

2
(2`)Ω

̂
(2`)

)
(E.26)

+
1

2v2

[
φ̄̂(2`−1)

(
φ
(2`−1)
ı̂ Σ

(2`)
̂ −φ(2`−1)

̂ Σ
(2`)
ı̂

)
+φ̄2(2`)

(
φ
(2`+1)
ı̂ Σ

(2`+1)
2 −φ(2`)2 Σ

(2`)
ı̂

)]
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If we now choose the particle modes

W (2`−1)
µ =

√
k

π
(0, 1,−i)w(2`−1)e−imt, Z(2`)

µ =

√
k

π
(0, 1, i) z(2`)e−imt

Ω2
(2`−1) = u−ω

2
(2`−1)e

−imt, Σ
(2`−1)
2 = u+σ

(2`−1)
2 e−imt

Ωı̂
(2`) = u−ω

ı̂
(2`)e

−imt, Σ
(2`)
ı̂ = u+σ

(2`)
ı̂ e−imt

R
(2`)
2 =

√
k

4π

1

v
r

(2`)
2 e−imt, R

(2`−1)
ı̂ =

√
k

4π

1

v
r

(2`−1)
ı̂ e−imt

S2
(2`) =

√
k

4π

1

v
s2

(2`)e
−imt, S ı̂(2`−1) =

√
k

4π

1

v
sı̂(2`−1)e

−imt

Ω1
(2`−1) = u+ω

1
(2`−1)e

−imt, Σ
(2`−1)
1 = u−σ

(2`−1)
1 e−imt (E.27)

combine them into the following supermatrices

Ψ
(`)
1 =

(
w(2`−1) ω1

(2`−1)

σ
(2`−1)
1 z(2`)

)
, Ψ

(`)
2 =

 r
(2`−2)
2 −ω2

(2`−1)

−σ(2`−1)
2 s2

(2`)

 , Ψ
(`)
ı̂ =

 r
(2`−1)
ı̂ −ωı̂(2`−2)

−σ(2`)
ı̂ sı̂(2`−1)


(E.28)

and define

Ψi = diag(Ψ
(1)
i ,Ψ

(2)
i , · · · ,Ψ(r)

i ), Ψı̂ = diag(Ψ
(1)
ı̂ ,Ψ

(2)
ı̂ , · · · ,Ψ(r)

ı̂ ) (E.29)

the non-relativistic lagrangian can be put in the following form

L = i

r∑
`=1

(
TrΨ̄i

(`)D0Ψ
(`)
i + TrΨ̄ı̂

(`)D0Ψ
(`)
ı̂

)
= i
(

TrΨ̄iD0Ψi + TrΨ̄ı̂D0Ψı̂

)
(E.30)

Here covariant derivatives are defined as

D0Ψ
(`)
i = ∂0Ψ

(`)
i + iL

(`)
1 Ψ

(`)
i , D0Ψ

(`)
ı̂ = ∂0Ψ

(`)
ı̂ + iL

(`)
1 Ψ

(`)
ı̂

D0Ψi = ∂0Ψi + iL1Ψi , D0Ψı̂ = ∂0Ψı̂ + iL1Ψı̂ (E.31)

where L
(`)
1 are exactly the connections in (E.14) that define Wilson loops W

(`)
1 , and L1 is

connection (E.13) that defines the W1 operator.

Alternatively, we choose the antiparticle modes

W (2`−1)
µ =

√
k

π
(0, 1, i)w(2`−1)eimt, Z(2`)

µ =

√
k

π
(0, 1,−i) z(2`)eimt

Ω2
(2`−1) = u+ω

2
(2`−1)e

imt, Σ
(2`−1)
2 = u−σ

(2`−1)
2 eimt

Ωı̂
(2`) = u+ω

ı̂
(2`)e

imt, Σ
(2`)
ı̂ = u−σ

(2`)
ı̂ eimt

R
(2`)
2 =

√
k

4π

1

v
r

(2`)
2 eimt, R

(2`−1)
ı̂ =

√
k

4π

1

v
r

(2`−1)
ı̂ eimt

S2
(2`) =

√
k

4π

1

v
s2

(2`)e
imt, S ı̂(2`−1) =

√
k

4π

1

v
sı̂(2`−1)e

imt

Ω1
(2`−1) = u−ω

1
(2`−1)e

imt, Σ
(2`−1)
1 = u+σ

(2`−1)
1 eimt (E.32)
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combined into the supermatrices

Ψ
(`)
1 =

(
w(2`−1) −ω1

(2`−1)

σ
(2`−1)
1 z(2`)

)
, Ψ

(`)
2 =

 r
(2`−2)
2 −ω2

(2`−1)

σ
(2`−1)
2 s2

(2`)

 , Ψ
(`)
ı̂ =

 r
(2`−1)
ı̂ −ωı̂(2`−2)

σ
(2`)
ı̂ sı̂(2`−1)


(E.33)

With the further definition

Ψi = diag(Ψ
(1)
i ,Ψ

(2)
i , · · · ,Ψ(r)

i ), Ψı̂ = diag(Ψ
(1)
ı̂ ,Ψ

(2)
ı̂ , · · · ,Ψ(r)

ı̂ ) (E.34)

the non-relativistic lagrangian becomes

L = i
r∑
`=1

(
TrΨ

(`)
i D0Ψ̄i

(`) + TrΨ
(`)
ı̂ D0Ψ̄ı̂

(`)

)
= i
(

TrΨiD0Ψ̄i + TrΨı̂D0Ψ̄ı̂
)

(E.35)

with covariant derivatives

D0Ψ̄i
(`) = ∂0Ψ̄i

(`) − iΨ̄i
(`)L̃

(`)
1 , D0Ψ̄ı̂

(`) = ∂0Ψ̄ı̂
(`) − iΨ̄ı̂

(`)L̃
(`)
1

D0Ψ̄i = ∂0Ψ̄i − iΨ̄iL̃1 , D0Ψ̄ı̂ = ∂0Ψ̄ı̂ − iΨ̄ı̂L̃1 (E.36)

Here L̃
(`)
1 are connections (E.17) that define Wilson loops W̃

(`)
1 , and L̃1 is connection (E.16)

that defines W̃1.

The other 6(r+1) 1/2 BPS Wilson loops W2, W
(`)
2 , W1̂, W

(`)

1̂
, W2̂, W

(`)

2̂
, W̃2, W̃

(`)
2 , W̃1̂,

W̃
(`)

1̂
, W̃2̂, W̃

(`)

2̂
can be obtained with an identical procedure that we will not repeat here.

F M2-branes in AdS7×S4 spacetime

The six-dimensional (2,0) superconformal field theory is supposed to be dual to M-theory

in AdS7×S4 spacetime with a four-form flux turned on in S4 [55]

ds2 = R2

(
ds2

AdS7
+

1

4
ds2

S4

)
Fı̃̃k̃l̃ =

6

R
εı̃̃k̃l̃ (F.1)

where εı̃̃k̃l̃ is the volume form of S4.

Although in the (2,0) theory a 1/2 BPS Wilson surface could be defined in terms of

the two-form field and possibly other bosonic and fermionic fields [1], in the absence of an

explicit lagrangian and SUSY transformations we cannot construct it explicitly. Still we

can investigate their possible gravity duals, and the corresponding preserved supercharges.

We look for the 1/2 BPS M2-brane configurations in AdS7×S4 spacetime, and also discuss

briefly M5-brane solutions at the end of this appendix.16

For AdS7 we use the metric

ds2
AdS7

= u2(−dt2 + dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5) +

du2

u2
(F.2)

16Wilson surfaces in six-dimensional (2,0) superconformal field theory and their gravity duals have been

also discussed in, for examples, [56–61].
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We embed S4 in R5 ∼= R× C2 by parametrizing

z0 = cos θ1 = x6

z1 = sin θ1 cos θ2 eiξ1 = x7 + ix9

z2 = sin θ1 sin θ2 eiξ2 = x8 + ix\ (F.3)

with θ1 ∈ [0, π], θ2 ∈ [0, π/2], ξ1,2 ∈ [0, 2π]. This leads to the S4 metric

ds2
S4 = dθ2

1 + sin2 θ1(dθ2
2 + cos2 θ2 dξ

2
1 + sin2 θ2 dξ

2
2) (F.4)

We begin by deriving Killing spinors in AdS7 × S4. Given coordinates xM = (xµ̃, xı̃),

with xµ̃, and xı̃ being coordinates of AdS7 and S4 respectively, and tangent space coordi-

nates xA = (xã, xp̃) with ã = 0, 1, 2, 3, 4, 5, 6 and p̃ = 7, 8, 9, \, for the AdS7 metric (F.2) we

use the vierbeins

e0 = udt, e1 = udx1, e2 = udx2, e3 = udx3, e4 = udx4, e5 = udx5, e6 =
du

u
(F.5)

whereas for S4 metric (F.4) we use

e7 = dθ1, e8 = sin θ1dθ2, e9 = sin θ1 cos θ2dξ1, e\ = sin θ1 sin θ2dξ2 (F.6)

The vierbeins of AdS7 × S4 (F.1) are then given by

Eãµ̃ = Reãµ̃, E p̃
ı̃ =

R

2
ep̃ı̃ (F.7)

The non-vanishing components of the spin connection are

ω06
t = ω16

x1 = ω26
x2 = ω36

x3 = ω46
x4 = ω56

x5 = u

ω78
θ2 = − cos θ1, ω79

ξ1 = − cos θ1 cos θ2, ω89
ξ1 = sin θ2

ω7\
ξ2

= − cos θ1 sin θ2, ω8\
ξ2

= − cos θ2 (F.8)

The Killing spinor equations read

DM ε =
1

288
FNPQR(ΓMNPQR − 8GMNΓPQR)ε (F.9)

with ε being a Majorana spinor. Note that Γµ̃ = Rγµ̃, Γı̃ = R
2 γı̃. We rewrite them as

Dµ̃ε =
1

2
γ̂γµ̃ε, Dı̃ε =

1

2
γ̂γı̃ε (F.10)

with γ̂ = γ789\. We define γ̃ = γ6789\, and the explicit Killing spinor equations are

∂µε = −u
2
γµ6(1− γ̃)ε, ∂uε =

1

2u
γ̃ε

∂θ1ε =
1

2
γ̂γ7ε, ∂θ2ε =

1

2
γ78e−θ1γ̂γ7ε

∂ξ1ε =
1

2
(γ79e−θ1γ̂γ7 cos θ2 − γ89 sin θ2)ε

∂ξ2ε =
1

2
(γ8\ cos θ2 + γ7\e

−θ1γ̂γ7 sin θ2)ε (F.11)

– 54 –



J
H
E
P
0
8
(
2
0
1
7
)
0
3
0

The general solution reads

ε = u
1
2h(ε1 + xµγµε2)− u−

1
2 γ6hε2 (F.12)

where

h = e
θ1
2
γ̃γ67e

θ2
2
γ78e

ξ1
2
γ79e

ξ2
2
γ8\ (F.13)

and constant Majorana spinors ε1, ε2 satisfying γ̃ε1 = ε1, γ̃ε2 = −ε2.

Now we consider a M2-brane described by worldvolume coordinates σ0,1,2, embedded

in AdS7 × S4 as

t = σ0, x1 = σ1, x2 = x3 = x4 = x5 = 0, u = σ2 (F.14)

The brane is localized on the compact space S4 that is specified by coordinates (α, β, ξ1, ξ2).

The supercharges preserved by the M2-brane are given by the condition

γ016ε = ε (F.15)

which is equivalent to

h−1γ016hε1 = ε1, h−1γ016hε2 = ε2 (F.16)

It turns out that

h−1γ016h = γ01In
I I = 6, 7, 8, 9, \ (F.17)

where nI is the unit vector in R5

nI = (cos θ1, sin θ1 cos θ2 cos ξ1, sin θ1 sin θ2 cos ξ2, sin θ1 cos θ2 sin ξ1, sin θ1 sin θ2 sin ξ2)

(F.18)

The supercharges preserved by the M2-brane are then

γ01In
Iε1 = ε1, γ01In

Iε2 = ε2 (F.19)

In order to discuss possible overlapping of the spectrum of preserved supercharges, we

consider ten different M2-brane configurations M
(i)
2 , i = 1, · · · , 10, localized at different

positions in the compact S4 space. They are listed in table 6, together with their positions

and the corresponding supercharges. Since the five matrices γ016, γ017, γ019, γ018, γ01\ do

not commute with each other, there is no supercharge overlapping among the M2-branes.

We expect them to be dual to non-degenerate Wilson surfaces in the six-dimensional (2,0)

superconformal field theory.

Similarly, we can consider ten anti-M2-brane configurations M̄
(i)
2 , localized at the

points listed in table 6. The corresponding preserved supercharges can be determined by

γ01In
Iε1 = −ε1, γ01In

Iε2 = −ε2 (F.20)

An anti-M2-brane preserves a set of supercharges that is complementary to the one of the

corresponding M2-brane localized at the same position.
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brane position preserved supercharges

M
(1)
2 z0 = 1 θ1 = 0 γ016ε1 = ε1, γ016ε2 = ε2

M
(2)
2 z0 = −1 θ1 = π γ016ε1 = −ε1, γ016ε2 = −ε2

M
(3)
2 z1 = 1 θ1 = π/2, θ2 = ξ1 = 0 γ017ε1 = ε1, γ017ε2 = ε2

M
(4)
2 z1 = i θ1 = π/2, θ2 = 0, ξ1 = π/2 γ019ε1 = ε1, γ019ε2 = ε2

M
(5)
2 z1 = −1 θ1 = π/2, θ2 = 0, ξ1 = π γ017ε1 = −ε1, γ017ε2 = −ε2

M
(6)
2 z1 = −i θ1 = π/2, θ2 = 0, ξ1 = 3π/2 γ019ε1 = −ε1, γ019ε2 = −ε2

M
(7)
2 z2 = 1 θ1 = θ2 = π/2, ξ2 = 0 γ018ε1 = ε1, γ018ε2 = ε2

M
(8)
2 z2 = i θ1 = θ2 = π/2, ξ2 = π/2 γ01\ε1 = ε1, γ01\ε2 = ε2

M
(9)
2 z2 = −1 θ1 = θ2 = π/2, ξ2 = π γ018ε1 = −ε1, γ018ε2 = −ε2

M
(10)
2 z2 = −i θ1 = θ2 = π/2, ξ2 = 3π/2 γ01\ε1 = −ε1, γ01\ε2 = −ε2

Table 6. Ten different M2-branes placed at different positions, and their preserved supercharges.

However, it is easy to realize that there are ten pairs of brane and anti-brane located

at opposite points of S4 that preserve the same set of supercharges. These are for instance

(M
(1)
2 , M̄

(2)
2 ), (M

(2)
2 , M̄

(1)
2 ), (M

(3)
2 , M̄

(5)
2 ), (M

(4)
2 , M̄

(6)
2 ), (M

(5)
2 , M̄

(3)
2 ), (M

(6)
2 , M̄

(4)
2 ), etc. It

is then natural to expect that a similar degeneracy occurs also in the spectrum of Wilson

surfaces in SCFT. At this stage it is impossible to establish whether this degeneracy is

trivial as in the four-dimensional N = 4 SYM case, or it actually signals the existence of

two different Wilson surfaces preserving the same supercharges as in the three-dimensional

N = 4 SCSM theories. However, given that the dual picture mostly resembles the case of

four-dimensional N = 4 SYM, we are tempted to believe that M2-brane pairs describe the

same operator.

A possible M5-brane configuration dual to a 1/2 BPS Wilson surface needs necessarily

to wrap along three directions in the compact space S4. However, since there are no non-

contractible three-cycles in S4, this configuration could not be stable or BPS, unless we

consider some quotient of S4 and/or turn on some flux in the M5-brane worldvolume. The

reader can find more details in [60, 61]. We do not further investigate this problem here.
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