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1 Introduction

Black holes have an entropy that fits neatly in a thermodynamics framework as originally

established in the works of Bekenstein and Hawking in the early 1970’s. The microscopic

origin, that is, the nature of the degrees of freedom that this entropy counts, has been an

outstanding challenge for many decades. Any candidate to a theory of quantum gravity

must provide an answer to this fundamental question. String theory, in the works of

Strominger and Vafa, has successfully passed this test for a particular type of black holes [1].

In the context of the AdS/CFT correspondence, the original work of Strominger and Vafa

can be interpreted as an instance of AdS3/CFT2. A natural question pertains higher

dimensional versions of the AdS/CFT correspondence. Recent work by Benini, Hristov

and Zaffaroni addresses the microscopic counting of the entropy of certain black holes from

the point of view of AdS4/CFT3 [2].

In this manuscript we explore the topologically twisted index, originally introduced by

Benini and Zaffaroni in the framework of N = 2 supersymmetric three-dimensional field

theories in S2 × S1 [3] (see also [4–7]), for the case of supersymmetric theories in H2 × S1,

where H2 is the hyperbolic plane. Although we provide the ingredients for arbitrary N = 2

supersymmetric theories, we will particularize our results for a specific deformation of

ABJM theory. The holographic dual of such deformation is thought to be a hyperbolic

black hole. In this work, our main motivation comes from the prospect of understanding

the D = 3 SCFT representation of the appropriate AdS4 black hole microstates. With this

aim we are driven to explore four dimensional N = 2 gauged supergravity and find black

hole solutions with H2 horizon. Hyperbolic black holes have been discussed in the context

of AdS/CFT in, for example, [8].

Asymptotically AdS4 black holes in N = 2 gauged supergravity, which are sourced

by magnetic fluxes, have been widely studied [9–13]. Roughly speaking, from the bulk

perspective, the presence of fluxes allows to define the black hole as interpolating from the

UV AdS4 to the near horizon AdS2 × S2. As a result of our study we are able to identify

the role of such fluxes from the dual SCFT perspective. These flavor fluxes, together with

a continuous of color fluxes, generate a one-parameter hierarchy of Landau levels on H2,

that determines the value of the ABJM index. What we are set to explore in this paper,

is whether the leading behavior in the large N limit of the topologically twisted index of a

specific deformation of ABJM , evaluated on the Hilbert space composed by the aforemen-

tioned Landau levels, coincides with the Bekenstein-Hawking expression for the semiclas-

sical entropy of the black holes in question. We will find that indeed both results coincide.

– 1 –



J
H
E
P
0
8
(
2
0
1
7
)
0
2
3

Another important motivation for our work, is the intrinsically interesting field the-

ory problem of localization of supersymmetric field theories in non-compact spaces. This

problem naturally appears in the context of localization of supergravity theories, for an

understanding of exact black hole entropy counting [14, 15]. The same problem appears

in holographic approaches to Wilson loops where the world volume of the classical con-

figuration contains an AdS2 factor. For example, the excitations on a D3 brane which is

dual to a Wilson loop in the totally symmetric rank k representation [16] were identified

to correspond, to an N = 4 vector multiplet in H2 × S2 [17]. Localization in non-compact

spaces has recently been addressed in [18] and [19], our work constitutes an extension to

the topologically twisted case.

The manuscript is organized as follows. In section 2 we discuss the preliminary ingredi-

ents we need, for example, our guidance principle on the field theory side: supersymmetric

localization [20], the background metric, spin connection, and supersymmetric structure

of the actions needed to compute BPS observables in a generic three-dimensional N = 2

Chern-Simons-Matter theory on H2 × S1. To complete section 2, we discuss the boundary

conditions to be used in the manuscript. In section 3 we present the space of square and

delta-normalizable functions that will be used to integrate upon, and their respective dis-

crete and continuous spectrum. In section 4 we compute the one loop super-determinants.

In section 5 we assemble our results to write down the ABJM index on H2 × S1, and

then move on to compute its leading contribution in the large N expansion, by following

the procedure pioneered in [2]. In section 6 we find what we believe to be the dual AdS4

black holes and compare its Bekenstein-Hawking entropy to the leading contribution in the

large N expansion of the ABJM index on H2 × S1. In section 7 we conclude with a short

summary of our results and comment on interesting open and related problems. In a series

of appendices we discuss more technical aspects such as, for instance, the construction of

square integrable modes in appendix A.

2 Towards the index on H2 × S1

In this section we summarize the building blocks that will be needed in order to compute

the topologically twisted index of a generic N = 2 Chern-Simons-Matter theory on H2×S1.

The zero locus will be parametrized by a continuous of color fluxes and holonomies. On H2,

these flux BPS configurations are non-normalizable but they are part of the zero locus: the

localizing term QεV , which is constructed to be semi-positive definite, will vanish at them.

First, we review the SUSY localization method to compute the partition function of

3d Chern-Simons-Matter defined over a Euclidean space M with off-shell supersymmetry

charge Q. The space M is usually taken to be compact. The localization principle is

well known and has been elegantly summarized and interpreted in various reviews, for

example, [21, 22]. However, given some of the intricacies we face, for the case we discuss,

we review it here, with the goal of setting up our guiding principle, notation and to highlight

some of the points on which we will make a particular emphasis.

To close this section we elaborate on the specific set of boundary conditions that we

shall use for background and fluctuations.

– 2 –
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2.1 SUSY localization principle

The SUSY localization method is summarized in the following steps

• Select a “middle dimensional” section Γ in the space of complex fields, such as a 3d

vector multiplet {Aµ, σ,D, λ, λ̄} of your theory. The path integral defining the SUSY

partition function of a classical action Scl, Z[Γ] is to be performed over Γ. The path

Γ must be a consistent path of integration of Scl.

• The contour Γ intersects a set of Qε-BPS configurations that will be denoted as

BPS[Γ] and that is better known as: the localization locus.

• For each Γ there should exist a QεV local functional of fields whose bosonic part is

semi-positive definite at Γ and vanishes at BPS[Γ].

• Given the previous conditions, the strict limit τ → ∞ can be taken in such a way

that the final result for the partition function is guaranteed to be

Z[Γ] =
∑

X(0)∈BPS[Γ]

e−Scl[X
(0)]ZX(0) [Γ],

ZX(0) [Γ] :=

∫
Γ
e−δ

(2)(QεV, X(0)), (2.1)

where δ(2)
(
QεV,X

(0)
)

is the quadratic expansion of QεV about X(0). We have omitted the

integration over the space M to ease the reading, but remember it is there. Let us review

the semiclassical reduction (2.1).

The starting point, is to notice that the partition function Z[Γ] does not change if the

initial classical action Scl is deformed by an arbitrary Qε-exact deformation τQεV

∂τ

(
Z[Γ] :=

∫
Γ
e−Scl[X]−τQεV

)
= −

∫
Γ
Qε

(
V e−Scl[X]−τQεV

)
= 0, (2.2)

provided the measure of integration in field configuration space is Qε invariant and that

there are not contributions from the boundary of the latter.

Under the aforementioned conditions, we can choose a deformation term QεV with

semi-positive definite bosonic part and thereafter perform a field redefinition

X → X(0) +
1√
τ
X(1). (2.3)

As Z[Γ] is independent of τ we are free to take the limit τ →∞ and proceed as follows∫
X
e−Scl[X

(0)]−τQV = e−Scl[X
(0)]

∫
X(1)

e−τQV

→ e−Scl[X
(0)]−τQV [X(0)]

∫
X(1)

e−δ
(2)(QεV,X(0)). (2.4)

Because of the suppression factor e−τQV [X(0)] and semi-positive definiteness of the

bosonic part of QεV only classical configurations X(0) ∈ Γ, namely X(0) ∈ BPS[Γ], solu-

tions of the zero locus of QεV (QεVbos = 0) contribute in this limit and (2.1) is recovered.

– 3 –
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2.2 Background geometry and supersymmetry

In this subsection we introduce the basic elements needed for the evaluation of the localiza-

tion formula for the topologically twisted index of a generic N = 2 Chern-Simons-Matter

theory. Specifically, we are interested in U(N)k × U(N)−k Chern-Simons theory coupled

to matter in the bi-fundamental representation: ABJM [23], living in the non-compact

space M = H2 × S1 whose metric we will represent as

ds2 = −dt2 + ds2
2d,

ds2
2d := −dθ2 − sinh2 (θ) dϕ2, (2.5)

ϕ ∼ ϕ+ 2π, t ∼ t+ 1. (2.6)

We shall use in this paper the following signature (−,−,−) on the 3d boundary theory.

The flat space metric is η = diag(−1,−1,−1).

In the conventions used in this section, the non trivial spin connection component is

ω21
ϕ = − cosh θ. (2.7)

The 2d space H2 has infinite volume. When dealing with extensive quantities on H2 we

will use a cut-off at large θ and drop out the dependence on such cut-off in the very end.

More precisely, this recipe has been used in the context of black hole entropy in [14, 24]

and, in the context of holographic computations for Wilson loops it was discussed in [25];

it amounts to defining the volume of H2 as:

volH2 = −2π. (2.8)

As general principle, we will consider background configurations that grow asymptotically

as the volume element, or slower. As for extensive quantities constructed out of such non

normalizable backgrounds, we shall apply the previous regularization recipe.1

The results of these sections allow to compute the topologically twisted index of any

N = 2 Chern-Simons theory coupled to matter. As mentioned before we are interested in

the particular case of ABJM . The ABJM theory is composed by two vector multiplets

and four matter multiplets in the bi-fundamental of the gauge group. Specifically

Chern-Simons ± k :
{
Aµ, σ,D, λq=1, λ̄q=1

}
±k ,

matter :
{
φaq , φ̄

a
q , ψ

a
q−1, ψ̄

a
q−1, F

a, F̄ a
}
, a = 1, 2, 3, 4,

where2 q is the charge of the corresponding field under the R−symmetry flux (2.14).

1 For example, to work with boundary objects - like the boundary action (2.52)- with finite limit in the

cut-off θ0 → ∞, we follow [26]. The idea is to use coordinates
(
θ̃ := θ0 − θ, ϕ̃ = 1

2
eθ0ϕ

)
, in such a way

the metric

dθ2 + sinh θ2dϕ2,

transforms to

dθ̃2 + (e−θ̃ − e−2θ0+θ̃)2dϕ̃2,

where ϕ̃ is a periodic coordinate with period β̃ = πeθ0 and 0 < θ̃ < θ0.
2The supersymmetry transformation rules are defined over the complex conjugated of (φ̄, ψ̄, F̄ ), which

are denoted as (φ̄†, ψ̄†, F̄ †).

– 4 –
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We can represent ABJM theories by the following standard quiver diagram:

N
k

N−k

Φ1,Φ2

Φ3,Φ4

ABJM theories have N = 8 superconformal symmetry for level k = 1, 2 and N = 6 for

level k ≥ 3, the global symmetry that is manifest in the N = 2 notation is SU(2)1,2 ×
SU(2)3,4×U(1)T ×U(1)R, where each SU(2) acts upon the doublet whose components are

denoted by the corresponding labels [23]. The usual charge assignment is

U(1)L(R) U(1)1,2 U(1)3,4 U(1)R

Φ1 +(−)1 1 0 1
2

Φ2 +(−)1 −1 0 1
2

Φ3 −(+)1 0 1 1
2

Φ4 −(+)1 0 −1 1
2

(2.9)

where U(1)L(R) is the ideal of U(N)L(R), U(1)1,2/3,4 are the Cartans of SU(2)1,2/3,4 and

U(1)R is our selection of R-symmetry.

We will turn on fluxes ña and fugacities ∆̃a for the latter global symmetry generators:

Ja. The action of the flux
∑4

b=1 ñbJ
b — appearing in covariant derivatives — upon the

Φa’s, will be written — for convenience — as(
4∑
b=1

ñbJ
b

)
· Φa =

na
2

Φa, (2.10)

— there is not summation over the index a in the r.h.s. — where

n1

2
= ñ1 + ñ2 +

ñ4

2
,

n2

2
= ñ1 − ñ2 +

ñ4

2
,

n3

2
= −ñ1 + ñ3 +

ñ4

2
,

n4

2
= −ñ1 − ñ3 +

ñ4

2
. (2.11)

The action of the holonomy operator ei
∑4
b=1 ∆̃bJ

b
upon the Φa’s can be written as follows(

ei
∑4
b=1 ∆̃bJ

b
)
· Φa = ei∆aΦa, (2.12)

where

∆1 = ∆̃1 + ∆̃2 +
∆̃4

2
+ 2πZ, ∆2 = ∆̃1 − ∆̃2 +

∆̃4

2
+ 2πZ,

∆3 = −∆̃1 + ∆̃3 +
∆̃4

2
+ 2πZ, ∆4 = −∆̃1 − ∆̃3 +

∆̃4

2
+ 2πZ. (2.13)

We are interested in a specific deformation of ABJM . Part of such deformation is a

classical background for the R-symmetry potential

Vµdx
µ = ñ4 cosh θdϕ, ñ4 =

1

2
, ∆̃4 = 2πZ. (2.14)

– 5 –
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The background (2.14) is non normalizable. However, V goes like the volume element of

H2 for large θ. The deformation (2.14) has non trivial consequences in the final result of

the localization procedure.

From (2.11), (2.13) and (2.14) the following relations come out

4∑
a=1

na = 2, (2.15)

4∑
a=1

∆a = 2πZ. (2.16)

The R−symmetry background allows for the presence of a Killing spinor ε with R-

charge q = 1. The Killing spinor equation (KSE) being(
∂µ +

1

4
ωabµσab − iVµ

)
ε = 0, (2.17)

with σab := [σa,σb]
2 and σa, σb being Pauli matrices. As we are using negative signature it

is important to keep in mind that

σa = −σa. (2.18)

In fact, the algebrae and actions that will be defined later on, are obtained out of the

results in [7] by the appropriate change of signature, and (2.18).

The most general normalized solution to the KSE (2.17), is proportional to

ε =

(
1

0

)
. (2.19)

Out of ε we can construct an off-shell supercharge Qε. Before dealing with the construction

of Qε, it is convenient to perform the following field redefinition

Â3 := A3 + iσ. (2.20)

In terms of the new variables, the offshell algebra takes the following form for the vector

QεÂθ,ϕ = − i
2

(
−λ̄†σθ,ϕε

)
, QεÂt = 0,

Qεσ =
1

2

(
−λ̄†ε

)
, Qελ = −1

2
σµνεF̂µν +Dε+ iσ3εD̂3σ,

Qελ̄
† = 0, QεD = +

i

2
(D̂µλ̄)†σµε, (2.21)

and matter multiplet3

Qεφ = 0, Qεφ̄
† = −ψ̄†ε,

Qεψ = +iσµεD̂µφ, Qεψ̄
† = F̄ †εc†,

QεF = +i(εc)†σµD̂µψ + i(εc)†λφ, QεF̄
† = 0. (2.22)

3Where εC := Cε∗ and C = −iσ2. Notice, that the C conjugation matrix is real.

– 6 –
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The action of the gauge covariant derivative being

D̂µ :=


(
∂µ + 1

4σabω
ab
µ − iÂµ − iqspVµ

)
on spinors,(

∂µ − iÂµ − iqscVµ

)
on scalars.

(2.23)

It can be shown, that the Chern-Simons theory

LCS = − ik
4π

(
εµνβ

(
Âµ∂νÂβ −

2i

3
ÂµÂνÂβ

)
− λ̄† 1− σ3

2
λ

)
, (2.24)

is annihilated by (2.21), up to a total derivative

− i k
4π
D̂µ
(
εµνβ

(
QεÂν

)
Âβ

)
. (2.25)

There can also be a mixed CS term whenever we have several Abelian factors:

LmCS = − ikij
4π

(
εµνβÂ(i)

µ ∂νÂ
(j)
β + λ̄(i)†(

1− σ3

2
)λ(j)

)
. (2.26)

Where kij is symmetric and i 6= j, in this case one similarly gets boundary pieces

QLmCS =
−ikij

4π

(
D̂µ(εµνβ(QεÂ

(i)
ν )Â

(j)
β )
)
. (2.27)

The discussion of the topological current in [3] is valid for any Chern-Simons theory. In

the case of ABJM , the topological U(1)T global symmetry is generated by the conserved

current JµT = tr(∗F̂ − ∗ ˆ̃F )µ. One can couple background U(1)T gauge potentials ÂTµ , to

the current JµT . The supersymmetry completion of such term, is a particularization of the

action (2.26). Such particularization, is given by picking kij = kji = 1 and regarding just a

couple of indices (i = 1, 2). The index “1” labels a background Qε-spurion vector multiplet,

and the index “2” labels a U(1) dynamical vector multiplet. In such a way, we obtain the

corresponding mixed supersymmetric Chern-Simons action, out of (2.26). For instance, in

the case of gauge group U(N), there is a unique dynamical U(1), and the bosonic term of

the latter action is

LBos
T = − i

4π
εµνβ

(
ÂTµ∂νtr[Âβ ] + tr[Âµ]∂νÂ

T
β

)
. (2.28)

In the very end, we will fix the v.e.v of the spurion vector supermultiplet to specific

Qε-BPS values.4

At this point, we must select a “middle dimensional” contour of integration in field

space. Let us introduce a contour Γ consistent with the one of [3]

Γvector : Bosonic F ields = (Bosonic F ields)∗, e. g. D = −(D)∗. (2.29)

The contour Γvector will cross a specific family of Qε-BPS configurations.

BPS[Γvector] :


F12 = −m

2 , D = −im2 , fermions = 0.

Â3 = u = u∗ ∈ [0, 2π),

(2.30)

4Which is the family ÂT3 = uT , DT = iFT12, σ
T = 0.

– 7 –
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where m and u are Cartan valued arbitrary constants. The u are the Coulomb moduli

and parametrize the Coulomb branch of the theory. Expression (2.30) is the most general

solution — single valued at the S1 factor and without fermionic zero modes — to the

BPS equation

Qελ = −1

2
σµνεF̂µν +Dε+ iσ3εD̂3σ = 0, (2.31)

along the contour (2.29).

As for the matter multiplet we define

Γmatter : φ̄ = φ, F̄ = F. (2.32)

In our case, the zero locus of matter is

BPS[Γmatter] : φ̄ = φ = F̄ = F = fermions = 0. (2.33)

Finally, we define Qε exact terms. The Qε exact terms must be semi-positive definite

along Γ, as already stressed. In the case of the vector multiplet and the choice of Γ (2.29),

such a term is

QεV
vector := −Qε

((
•

Qελ

)
λ

)
, (2.34)(

•
Qελ

)
:= (Qελ)∗

∣∣∣∣
Â∗→Â, σ∗→σ, D∗→−D

.

The bosonic and fermionic part of (2.34) are

QεV
vector
B :=

(
F12 + D̂3σ + iD

)2
+
(
F̂13

)2
+
(
F̂23

)2
, (2.35)

QεV
vector
F := −i λ̄†2

←−
D̂ t λ2, (2.36)

where λ2 is the lower component of the gaugino λ =

(
λ1

λ2

)
.

For the matter multiplet, and given the choice of Γ in (2.29) and (2.32), such a term is

QεV
matter := −Qε

(
− iεσµψD̂µφ̄† + Fψ̄†εc + iφ̄†ελφ

)
. (2.37)

The bosonic and fermionic part of (2.37) are

−QεV matter
B = (D̂µφ̄)† D̂µφ+ φ̄†

(
D̂3σ + iD − εµνβv

β (qVµν +Wµν)
)
φ

+ F̄ †F + D̂µ
(
i εµνβv

βφ̄†D̂νφ
)
, (2.38)

−QεV matter
F = −i ψ̄†σµD̂µψ − i ψ̄†λφ− i φ̄† λ̄†P−ψ + iD̂µ

(
ψ̄†P+σµψ

)
, (2.39)

where P∓ := 1∓σ3
2 and Vµν , Wµν are the field strengths of R and flavor symmetry back-

grounds, respectively.

– 8 –
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The term QεV
matter
B is semi-positive definite when expanded around BPS[Γvector] and

over Γmatter. As shall be shown in due time, this last statement is implied by the require-

ment of square integrability over H2. Square integrability over H2, imposes bounds on the

spectrum of eigenvalues of the relevant magnetic Laplacian. The aforementioned bounds

imply the convergence of the Gaussian path integral
∫
X(1) e

−δ(2)(QεV,X(0)) in (2.4).

Chern-Simons, being a gauge theory, requires gauge fixing, which we choose to be the

axial condition

Â3 = const. (2.40)

In contradistinction to 3d pure Yang-Mills theory, in 3d Chern-Simons coupled to Yang-

Mills and/or matter, the constraint (2.40), fixes the gauge degeneracy completely. In

the latter theory there are 3 − 1 = 2 physical off-shell vector degrees of freedom (DoF)

meanwhile in 3d pure Yang-Mills there is 3− 2 = 1 massless vector offshell DoF. For a nice

review on the canonical quantization of 3d Chern-Simons theory, see for instance [27].

To implement the gauge fixing, we use BRST method [20, 28] and enlarge the vector

multiplet, by adding the ghost fields (c, c̄, b̄). We enlarge the algebra (2.21), by the following

transformation rules

Qεc = 0, Qεc̄ = 0, Qεb̄ = 0. (2.41)

Any gauge invariant functional of the physical fields is BRST invariant. The BRST

transformations QB are

QBÂµ = D̂µc, QB c̄ = b̄, QBc =
i

2
{c, c}, QBλ = i{c, λ},

QBλ̄
† = i{c, λ̄†}, QBσ = i[c, σ], QBD = i{c, σ},

QBφ = i[c, σ], QBφ̄
† = i[c, φ̄†], QBψ = i{c, σ}, QBψ̄

† = i{c, ψ̄†},
QBF = i[c, F ], QBF̄

† = i[c, F̄ †], (2.42)

from (2.21), (2.22) and (2.42) it can be shown that

(Qε +QB)2 = {Qε, QB} = 0. (2.43)

As the V ’s in the QεV ’s localizing terms, (2.34) and (2.37), are gauge invariant objects, then

from the corresponding algebra (2.42) is easy to check that the V ’s in (2.34) and (2.37),

are QB invariant and consequently (2.34) and (2.37) are (Qε +QB)-exact.

On top of the localizing actions (2.34) and (2.37), a gauge fixing term must be added.

To our purposes the most convenient choice is the following (Qε +QB)-exact term

QBTr
(
c̄
(
Ât − const

))
= c̄D̂tc+ b̄

(
Ât − const

)
. (2.44)

From (2.41) and QεÂ3 = 0, it follows that (2.44) is (Qε +QB)-exact. In (2.44) we wrote

the gauge index trace Tr only on the l.h.s. , but the reader should keep in mind that by

default we are working with gauge invariant density Lagrangians.

Our BRST construction is conceptually that of Pestun [20] and it has been previously

presented in the 3d case by Kapustin, Willet and Yaakov [28].
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Before moving on, let us comment on the potential addition of Super Yang-Mills (SYM)

action to the analysis. This issue was treated in details in [7] — see section 2.3 —, so we do

not repeat the analysis there given, but just comment upon the conclusions there reached.

First, we need to construct a SYM action, supersymmetric with respect to the localiz-

ing supercharge. In fact, such a SYM action is a Q-exact term by itself. Consequently,

applicability of localization method — with the supercharge Qε — implies independence

on gYM .5

2.3 Boundary conditions

In non-compact manifolds like H2×S1 or manifolds with boundary, appropriate boundary

conditions must be imposed in order to have a well defined variational — Lagrangian —

problem. Once a proper classical theory has been defined, quantization is in order. Let

X(0) = {A(0)
µ , σ(0), D0, . . .} ∈ BPS[Γ] (2.45)

and

X(1) =
{
δAµ, δσ, δD, δλ, δλ̄, δc, δc̄, δb̄, δφ, δφ̄, δψ, δψ̄, δF, δF̄

}
, (2.46)

be the non trivial zero locus background fields and offshell fluctuations respectively. As for

the X(0) we define the following boundary condition

eµaA
(0)
µ , D(0), σ(0) ∼

θ→∞
O(1). (2.47)

As for offshell fluctuations X(1), we define Dirichlet boundary conditions

eµaδAµ, δσ, δD, δλ, δλ̄, δc, δc̄, δb̄, δφ, δφ̄, δψ, δψ̄, δF, δF̄ ∼
θ→∞

O(e−κθ), (2.48)

eµaδAµ, δσ, δD, δλ, δλ̄, δc, δc̄, δb̄, δφ, δφ̄, δψ, δψ̄, δF, δF̄ ∼
θ→0

O(1), (2.49)

with κ ≥ 1
2 . The value of κ defines important features of the spectrum of the associated S1

quantum mechanics, if a sort of dimensional reduction is possible to perform in this case.

The following table sketches the relation between the boundary conditions (2.48) and

the results reported in the next section:

κ Spectrum Norm
1
2 Continuous: λ ∈ [0,∞) Delta-Square Integrable

> 1
2 Discrete: j = |s| − 1, |s| − 2, . . . > −1

2 . Square Integrable

The total derivative part of the offshell variation of the Chern-Simons La-

grangian (2.24), multiplied by the volume element
√
−g is

− i k
4π
D̂µ
(√
−gεµνβ

(
δÂν

)
Âβ

)
, with εθϕt :=

1√
−g

. (2.50)

5The SYM Q-exact term defined out of eq. (2.82) of [7]: (QεV )N — the negative signature analog —,

is not the same as (2.35)+(2.36). The difference between them is another Q-exact term [7]. We thank an

anonymous referee for drawing our attention to the importance of arguing independence on SYM coupling.
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Next, we constraint δÂ3 to go to zero faster enough — as θ goes to infinity and zero —, in

such a way the total derivative (2.50) becomes a boundary term6

− i k
4π

∫ 2π

ϕ=0
dϕ

∫ 1

t=0
dt
(
δÂϕ

)
Ât

∣∣∣∣θ=∞
θ=0

. (2.51)

For κ = 1
2 — the continuous spectrum —, the boundary conditions (2.48) upon offshell

fluctuations, do not imply the vanishing of (2.51) at θ = ∞, due to the non-compactness

of H2 — specifically because eϕ2 →
θ→∞

0 —. The contribution from θ = 0 vanishes.

To have a well-defined variational principle, we redefine the classical action from Chern-

Simons to∫ √
−gLcl =

∫ √
−gLCS + Sbdy, Sbdy = +i

k

4π

∫ 2π

ϕ=0
dϕ

∫ 1

t=0
dt Tr

(
ÂϕÂt

)
at θ =∞.

(2.52)

As already stated, provided δÂ3 is constrained to go to zero faster enough — as θ goes

to infinity and zero —, the boundary term Sbdy will compensate the off shell — and

particularly the gauge — variation of SCS on H2 × S1. Upon the latter conditions, the

action (2.52) has no boundary gauge anomaly and hence we do not need to — and shall

not — consider other boundary contributions — that are frequently used as anomaly

compensators —, such as WZW terms.

It is immediate to check that the supersymmetric transformation of Lcl is trivial by

construction: the supersymmetry variation of Sbdy cancels the integration of the total

derivative term (2.25), as it should.

The classical action evaluated on the zero locus is∫ √
−gLcl[BPS[Γ]] = −ik

2
u ·m (2.53)

Where u · m := uimi = 1
2Tr(u m). In our conventions hi and hj are Cartan generators in

the Chevalley basis, and consequently Tr[hihj ] = 2δij .

The contributions proportional to cosh θMax cancel out, θMax being the large cut off

in θ. The divergent terms coming from the integral over H2 and the boundary term (2.52)

cancel each other. Whenever we have contributions which diverge like the volume, we

regulate them as we regulate the volume in (2.8), and boundary terms are regulated as

explained in footnote in page 4.

It is convenient to write down the exponential of −(2.53)

x
kmi

2
i , (2.54)

with xi = eiui . Expression (2.54), is the contribution to the index of a Chern-Simons term

with level k.

6This constraint on δA3 is a preamble of — and compatible to — our definitive gauge fixing condition

δA3 = 0 - see (2.44)- and it is consistent with supersymmetry.

– 11 –



J
H
E
P
0
8
(
2
0
1
7
)
0
2
3

The total derivative part of the variation with respect to φ̄† of the bosonic localizing

action of matter is

+

∫
M
D̂µ
(√
−g
(
δφ̄
† D̂µφ+ i εµνβv

βδφ̄†D̂νφ
))

(2.55)

Under off-shell boundary conditions (2.48) and (2.49), the integration of (2.55) gives

+ i

∫ 2π

0
dt

∫ 2π

0
dϕ
[(
δφ̄†D̂ϕφ

)]
θ=0

. (2.56)

The term (2.56) vanishes, when evaluated in the functional space we are going to

integrate over. The explanation of the latter fact, shall be given in the beginning of

subsection 4.1.

Notice, that the ghosts vanish at the boundary, due to (2.48). Consequently, BRST

gauge transformations do not affect the boundary.

Having established the localization locus, the next step is to compute one loop determi-

nant contributions ZX(0) . In order to do that, we need to define an appropriate functional

space to integrate upon. That, will be the scope of the next section. Thereafter, we can

compute ZX(0) and use equation (2.1) to evaluate our final result for the topologically

twisted index.

3 The spectrum on H2 with flux

The spectrum of the Laplace operator on H2 has a long history ([29] and references therein).

Even though this section might seem just a technical remark, the result of its analysis is

very relevant in reaching our conclusions. We therefore choose to include it in the main

body of the text and provide more details in an appendix.

The eigenvalue problem solved in appendix A, is related to the propagation of a scalar

particle in the presence of a flux on H2. The hierarchy of modes to be reported in this

section, can be interpreted as a series of Landau levels on H2, that emerge due to the

presence of a flux s [30–32]. These alternative viewpoints deserve further attention and we

are keen to pay them so in forthcoming works.

In this section, we will present the outcome of the analysis that shall be reported in

appendix A. We encourage the reader looking for a detailed understanding, to go through

that appendix.

The Laplacian in the presence of a flux s, coming from a potential

A = s cosh θdϕ, (3.1)

is given by

�s := −∂2
θ − coth2 θ∂θ +

1

sinh2 θ
(j3 − s cosh θ)2, (3.2)

with j3 = −i∂ϕ.

The equation that defines the functional space upon which we will compute determi-

nants is

(�s + ∆) f∆,j3 = 0. (3.3)
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The boundary conditions that will define our functional space are

(2.48) and (2.49) with κ >
1

2
. (3.4)

3.1 The discrete spectrum

First, we parametrize the eigenvalue as:

∆ = j(j + 1)− s2. (3.5)

The quantization conditions

j3 − s, j − |s| ∈ Z, (3.6)

together with equation (3.3), define a finite (resp. infinite) dimensional space of square

integrable functions on H2, that we denote as

Ξ
(1)
j (s) :=

{
f

(1)
∆,j3

}
j3
, (3.7)

respectively

Ξ
(2)
j (s) :=

{
f

(2)
∆,j3

}
j3
. (3.8)

The explicit form of the eigenfunctions f
(1)
∆,j3

and f
(2)
∆,j3

, is defined in appendix A.1 and A.2,

respectively, for the case s > 1
2 . The case s < −1

2 can be worked out analogously.

The range of j3 is given by the relations

s ≥ j3 ≥ max(|j|, |j + 1|) if s > +1
2 ,

−j3 ≥ −s ≥ max(|j|, |j + 1|) if s < −1
2 ,

(3.9)

respectively
j3 ≥ s ≥ max(|j|, |j + 1|) if s > +1

2 ,

−s ≥ −j3 ≥ max(|j|, |j + 1|) if s < −1
2 .

(3.10)

There are additional constraints to the value of j. Indeed, the eigenfunctions f
(1,2)
∆,j3

and

henceforth the spectrum ∆ = j(j + 1)− s2, are invariant under the transformation

j → − (j + 1) .

Thenceforth we must restrict j to be either

j > −1
2 or j < −1

2
. (3.11)

In order to have square integrable functions

j 6= −1

2
. (3.12)

For the choice j > −1
2 , restrictions (3.9) and (3.10), imply an upper bound for j

j = |s| − 1, |s| − 2, . . . > −1

2
. (3.13)
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Interestingly, for

0 ≤ |s| ≤ 1

2
, (3.14)

there are no square integrable modes. A particular conclusion of this last statement, is the

known fact that in H2 there are no square integrable scalar modes. In the presence of flux

s : |s| > 1
2 , square integrable modes emerge.

In appendix A.7, it is proven that in the case |s| = 1, our square integrable eigenmodes

match those well known discrete modes, of the vector Laplace-Beltrami operator in H2, with

helicity s = ±1. This last statement, suggests to explore the possibility that our spectrum

encodes the full tower of higher spin square integrable eigenmodes of the Laplace-Beltrami

operator on H2. We hope to come back to this point in the future.

The relevant scalar product is

< f , g >:=

∫ ∞
0

dθ

∫ 2π

0
dϕ sinh (θ) f ∗(θ, ϕ)g(θ, ϕ). (3.15)

As already mentioned, and proven in appendix A, square integrability of f
(1)
∆,j3

(resp.

f
(2)
∆,j3

) is interrelated to the specific bounds on j3 and j that were previously written.

Different states f
(1,2)
∆,j3

eij3ϕ in Ξ
(1,2)
j (s) are orthogonal with respect to the scalar prod-

uct (3.15). Spaces Ξ
(1,2)
j (s) with different label j > −1

2 ( or j < −1
2) are orthogonal. This

is because �s is Hermitian in Ξj(s) and spaces with different label j > −1
2 (or j < −1

2),

have different eigenvalues ∆ under �s.

Summarizing, the space of square integrable modes for a given s is

Ξ(s) =

|s|−1⊕
j>− 1

2

(
Ξ

(1)
j (s)⊕ Ξ

(2)
j (s)

)
. (3.16)

In the next section, we will refer to the following spaces

Ξj(s) :=
(

Ξ
(1)
j (s) ⊕ Ξ

(2)
j (s)

)
. (3.17)

The spaces (3.17) are subspaces of (3.16).

3.2 The continuous spectrum

The continuous spectrum is a direct generalization of the spectrum reported by Higuchi

and Camporesi [29] to the case where there is a constant flux on H2. The corresponding

eigenmodes solve the defining equation(
�s + ∆(λ,s)

)
f∆(λ,s),j3 = 0, (3.18)

with

∆(λ,s) := −λ2 − s2 − 1

4
, λ ∈ R, λ ≥ 0,
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and boundary conditions

f∆(λ,s),j3(x) ∼
x→−∞

c1(λ,j3,s)
x+iλ

x
1
2

+ c2(λ,j3,s)
x−iλ

x
1
2

, (3.19)

f∆(λ,s),j3(x) ∼
x→0

O(1). (3.20)

Conditions (3.19) and (3.20) are given in coordinates x, but they are equivalent to the

particularization κ = 1
2 of (2.48).

The final solution to the boundary problem just presented, is obtained by impos-

ing (3.20) on the most general solution (A.3). The result is

f
(1)
∆(λ,s)

(x) if j3 ≥ s, (3.21)

f
(2)
∆(λ,s)

(x) if j3 < s. (3.22)

The norm of f∆λj3 under the scalar product (3.15) is infinite. By choosing appropriately

the remaining integration constant one can set

〈f∆(λ,s),j3 , f∆(λ′,s),j
′
3
〉 = δ(λ− λ′)δj3j′3 . (3.23)

Comments. Our thermal cycle is not the S1 inside the H2, but the trivially fibered one.

The latter fact, is related to an important conceptual difference between the physical frame-

work of our approach and the one of, for instance, [33]. In physical terms, our H2 modes

are not probing the near horizon limit of a black hole in the presence of electric flux [34–40],

but the boundary dynamics of a magnetically charged hyperbolic AdS4 black hole.

That said, if we interpret our ϕ-cycle as the thermal one, our hierarchy of square

integrable modes is certainly probing Euclidean AdS2, in the presence of an electric flux

deformation. That is closely related to the problem addressed in [33]. To have a self-

consistent approach, coming from supersymmetric localization, to the problem studied

in [33], one should try to localize an appropriate off-shell supercharge on the quantum

gravity side. In that spirit, in [41], AdS2×S2 was shown to be the unique ungauged BPS

localizing solution, to 4d N = 2 Super-Conformal gravity in a convenient gauge fixing. It

is plausible, that other electric or magnetic AdS2×Σ localizing solutions can be found, by

relaxing some of the conditions used in [41], as suggested by the results in [13]. If that is

the case, it would be quite interesting to explore what can supersymmetric localization say

about the problems addressed in [33].

4 One-loop determinants

Having clarified the structure of the spectrum for the flux Laplacian on H2 (see appendix A),

we have all the ingredients to address the computation of one-loop determinants.

4.1 Bosonic localizing operator

For square integrable modes, the total derivatives of the quadratic expansion in the lo-

calizing terms, integrate to zero. In the case of the matter multiplet, the total derivative
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term is

+

∫
M
D̂µ
(√
−g
(
φ̄† D̂µφ+ i εµνβv

βφ̄†D̂νφ
))

= +i

∫
dtdϕ

[
φ̄†D̂ϕφ

]
At θ=0

, (4.1)

where the result in the second line follows from the asymptotic behavior (2.48) and (2.49).

This boundary term vanishes because, as proven in appendix A, the only modes of φ that

do not vanish at the contractible cycle θ = 0, have the following angular dependence

ei s ϕ, with s := −ρ(m)− qR
2

, (4.2)

and they are annihilated by

D̂ϕ := ∂ϕ − is. (4.3)

Due to a careful choice of boundary conditions, total derivatives are irrelevant for the

current discussion, as they do not contribute to the 1-loop determinant.

After integration by parts, the quadratic expansion of the bosonic part of the La-

grangian density of the matter localizing term (2.38), takes the form

φ̄†OBφ := φ̄†
(

(ρ(u) + i∂t)
2 +

(
�s − s

))
φ. (4.4)

Notice that the operator OB is positive definite on “representations” Ξj(s) labeled by

j running at step 1 down from |s| − 1 but larger than −1
2 . For “representations” labeled

by j : −1
2 < j ≤ |s| − 1 (or −|s| ≤ j < −1

2), the operator (�s − s) has eigenvalues that

obey the following inequality −j(j + 1) + s(s− 1) ≥ 0 and hence is semi-positive definite.

Consequently, OB is positive definite if (ρ(u)+ i∂t)
2 > 0. This last condition is guaranteed,

provided we avoid points in the Coulomb branch such that ρ(u) ∈ Z.

Having in mind the particular case

j, j3, s ∈ Z,

at some stages, we will denote the aforementioned set of j′s as follows

j : 0 ≤ j ≤ |s| − 1.

The union of the aforementioned Ξj(s), is the maximal space of square integrable

modes (3.16).

For later convenience, let us define

�±s := �s ± s. (4.5)

Should we select φ in the vector space spanned by Ξj(s), thence for s > 1
2

det
Ξ

(1)
j (s)

(OB) =

s∏
j3=j+1

∏
k

(
(ρ(u) + k)2 − j(j + 1) + s(s− 1)

)
, (4.6)

det
Ξ

(2)
j (s)

(OB) =
∞∏

j3=s+1

∏
k

(
(ρ(u) + k)2 − j(j + 1) + s(s− 1)

)
, (4.7)
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where k = i∂t. The result for s < −1
2 is obtained analogously.

As φ is a complex scalar, the functional integration

∫
[Dφ†Dφ] Exp

− ∫
H2×S1

φ† · (OB) · φ

 ,
is proportional to 1

det(OB) , where

det
Ξ(s)

(OB) =



s−1∏
j=0

∞∏
j3=j+1

∏
ρ∗,k

(
(ρ(u) + k)2 − j(j + 1) + s(s− 1)

)
if s > 1

2

−s−1∏
j=0

−j−1∏
j3=−∞

∏
ρ∗,k

(
(ρ(u) + k)2 − j(j + 1) + s(s− 1)

)
if s < −1

2

.

4.2 Fermionic localizing operator

To compute the fermionic determinant, we used the square of the kinetic operator that

appears in the quadratic expansion of the fermionic part (2.39) of the localizing term, we

also specify the space of functions on which each component acts(
OB 0

0 (u+ i∂t)
2 + �+

s−1

)(
ψ+ ∈ Span(Ξ(s))

ψ− ∈ Span(Ξ(s− 1))

)
.

While reproducing the computations that will be reported in section 4.5, it will be

convenient to use the following identity

�+
s−1 f

(1,2)
∆(s−1), j3

= (−j(j + 1) + s(s− 1)) f
(1,2)
∆(s−1), j3

.

4.3 ζ-function regularization: s > 1
2

We use ζ-function regularization to compute the determinants of OB upon the func-

tional space

Ξj(s) := Ξ
(1)
j (s) ⊕ Ξ

(2)
j (s), j = s− 1 (or − s).

which is the space of zero modes of

�−s

(the space of eigenstates of OB with eigenvalue (ρ(u)+k)2). We stress that in the case s > 1
2

and after cohomological cancellations, these zero modes are the only ones that contribute

to the one loop super-determinant.

In order to compute the heat kernel K(0, 0) associated to the eigenspaces in question,

we need to analyze the relevant case j3 = s. In the latter case and after particularizing to

j = s− 1 or −s, the square integrable modes f (1) and f (2) drastically simplify to

f
(1,2)
∆(s),j3=s = χ (x− 1)−s .

The constant χ is determined from the normalization condition

|χ|22πvolS1

∫ 0

−∞
dx(2) |x− 1|−2s =

|χ|22πvolS1

s− 1
2

= 1. (4.8)
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The 2 in the l.h.s. of (4.8) is the line element in coordinates x. From the value of |χ|2, we

obtain the heat kernel at origin

K(t; 0, 0) =
1

2πvolS1

(s− 1

2
)e−t (ρ(u)+k)2

. (4.9)

From (4.9) we obtain the zeta function

ζ(z) =
volH2volS1

2πvolS1

(s− 1
2)(

(ρ(u) + k)2
)z = −

(s− 1
2)(

(ρ(u) + k)2
)z , (4.10)

with

volH2 = −2π, volS1 = 1. (4.11)

After using ζ-function method, we obtain the desired determinant

det
Ξj=−s(s)

(OB) = det
Ξj=s−1(s)

(OB) = e−ζ
′(0) =

(
(ρ(u) + k)2

)−s+1/2
(4.12)

= |(ρ(u) + k)|−2s+1. (4.13)

In appendix B.1 we obtain the same result, by using an alternative procedure. Notice that

in (4.13) we could have also written

=

(
− |(ρ(u) + k)|

)−2s+1

. (4.14)

It is possible that such a change in the election of sign, changes the value of the partition

function. From now on, we will ignore this second choice, except for specific steps where

having it in mind will be useful.

4.4 ζ-function regularization: s < 1
2

In the case s < 1
2 , the contribution to the super-determinant is coming from the following

set of eigenfunctions

Ξj(s− 1) := Ξ
(1)
j (s− 1)⊕ Ξ

(2)
j (s− 1), j = −s (or s− 1), (4.15)

which is the space of zero modes of

�+
s−1. (4.16)

In the case s < 1
2 , and after cohomological cancellations, these zero modes are the only

modes that contribute to the one loop super-determinant.

Following the very same steps described in the previous section, we focus on the so-

lutions obtained for j3 = s − 1 and j = −s (or s − 1). In this case, the zero mode

solutions reduce to

f
(1,2)
∆(s−1), j3=s−1 = χ (x− 1)s−1 ,

from where it is straigthforward to compute the ζ-function.
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The constant χ is determined from the normalization condition

|χ|22πvolS1

∫ 0

−∞
dx (2)|x− 1|2(s−1) =

|χ|22πvolS1

−s+ 1
2

= 1. (4.17)

From the value of |χ|2, we obtain the heat kernel at origin

K(t; 0, 0) =
1

2πvolS1

(
−s+

1

2

)
e−t (ρ(u)+k)2

. (4.18)

From (4.18), we obtain the zeta function

ζ(z) =
volH2volS1

2πvolS1

(−s+ 1
2)(

(ρ(u) + k)2
)z = −

(−s+ 1
2)(

(ρ(u) + k)2
)z . (4.19)

Finally, we obtain the desired determinant

det
Ξj=−s(s−1)

(
(u+ i∂t)

2 + �+
s−1

)
= det

Ξj=s−1(s−1)

(
(u+ i∂t)

2 + �+
s−1

)
(4.20)

= e−ζ
′(0) =

(
(ρ(u) + k)2

)s−1/2
(4.21)

= | (ρ(u) + k) |2s−1. (4.22)

4.5 Super-determinant

In the computation presented in this section, we will assume j, j3, s ∈ Z, the other cases

can be worked out in complete analogy. The super-determinant in the case s > 1
2 is√

det
Ξ(s)

(OB) det
Ξ(s−1)

((ρ(u) + k)2 + �+
s−1)

det
Ξ(s)

(OB)
=

√√√√√ det
Ξ(s−1)

((ρ(u) + k)2 + �+
s−1)

det
Ξ(s)

(OB)

=

√√√√√√√√√√
s−2∏
j=0

∞∏
j3=j+1

((ρ(u) + k)2 − j(j + 1) + s(s− 1))

s−2∏
j=0

∞∏
j3=j+1

((ρ(u) + k)2 − j(j + 1) + s(s− 1))

×
√√√√ 1

det
Ξj=s−1(s)

(OB)
,

=

√√√√ 1

det
Ξj=s−1(s)

(OB)
= |(ρ(u) + k)|s−

1
2 .

Notice that in the r.h.s. of the second line, we have a quotient of two identical infinite

products. This cancellation, occurs due to the supersymmetric pairing of eigenmodes:

cohomological cancellations.

Let us comment about the particular case s = 1. In that case, there are not cohomo-

logical cancellations. The reason is, that when s = 1, only the space of zero modes j = s−1
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(or j = −s), for the scalar φ, and the “chiral” spinor ψ+ exist. In the case s = 1, there is

not “anti-chiral” square integrable mode ψ− on H2, because for such spinors the effective

flux is s− 1 = 0.

Next, let us compute the super-determinant in the case s < 1
2√

det
Ξ(s)

(OB) det
Ξ(s−1)

((ρ(u)+k)2+�+
s−1)

det
Ξ(s)

(OB)
=

√√√√√ det
Ξ(s−1)

((ρ(u)+k)2+�+
s−1)

det
Ξ(s)

(OB)

=

√√√√√√√√√√
−s−1∏
j=0

−j−1∏
j3=−∞

((ρ(u)+k)2−j(j+1)+s(s−1))

−s−1∏
j=0

−j−1∏
j3=−∞

((ρ(u)+k)2−j(j+1)+s(s−1))

×
√

det
Ξj=−s(s−1)

(
(u+i∂t)2+�+

s−1

)
,

=
√

det
Ξj=−s(s−1)

(
(u+i∂t)2+�+

s−1

)
= |(ρ(u)+k)|s−

1
2 .

(4.23)

The final expression coincides with the one of the case s > 1
2 . However, in the case of

s < 1
2 the unpaired modes are the “anti-chiral” square integrable modes ψ−, labeled by a

radial number j = −s, and perceiving a flux s− 1 on H2.

Let us treat separately the case s = 0. In that case, there are not square integrable

“chiral” modes ψ+, neither scalar ones φ. However, there exist “anti-chiral” square inte-

grable modes ψ−, perceiving an effective magnetic flux of −1 and labeled by radial number

j = 0. In this case the regularized super-determinant is given by√√√√ 0∏
j=0

det
Ξ(−1)

((ρ(u) + k)2 + �+
−1) = |(ρ(u) + k)|−

1
2 .

Collecting partial results, not only for the case j, j3, s ∈ Z, but for the most general

spectrum j, j3 and s = −ρ(m)−qR
2 obeying “discreteness” conditions (3.6), is straigthforward

to obtain the final result for the one loop super-determinant part of the index on H2

Zmatter
1−loop(H2,m, qR) =

∏
ρ: s 6= 1

2

[
|Creg sin

(
ρ(u)

2

)
|
]−ρ(m)+qR−1

2

,

where Creg = −2i.

The restriction to s 6= 1
2 , is a necessary condition to have square integrable modes.

However, |(ρ(u) + k)|s−
1
2 = 1 and consequently s 6= 1

2 can very well be ignored and the

result for Zmatter
1−loop(H2,m, qR) will be the same.

Interestingly, under GNO conditions

s ∈ Z or s ∈ Z +
1

2
,
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the one loop result for the index on H2 × S1

Zmatter
1−loop(H2,m, qR) =

∏
ρ

[
|Creg sin

(
ρ(u)

2

)
|
]−ρ(m)+qR−1

2

,

coincides with the square root of the analog result on S2 × S1, under the identification of

sH2 with sS2 , for each mode (ρ, k).

Namely, under GNO quantization conditions

Zmatter
1−loop(H2,m, qR) =

∏
ρ

[
|Creg sin

(
ρ(u)

2

)
|
]−ρ(m)+qR−1

2

=
√
Zmatter

1−loop(S2,m, qR). (4.24)

Let us remark that we are not forced to impose GNO conditions on H2. Consequently, we

shall not impose GNO quantization conditions

The one loop determinant of a matter multiplet in the adjoint representation of the

gauge group, with R-charge qR = 2 (which coincides with the vector multiplet super-

determinant, see appendix B.2) in the presence of flux is

Zvector
1−loop(H2,m) =

∏
α

[
|Creg sin

(
α(u)

2

)
|
]−α(m)+1

2

∼

[∏
α>0

sin

(
α(u)

2

)2
]1/2

(4.25)

=
√
Zvector

1−loop(S2,m). (4.26)

Notice that the result for the vector multiplet (4.25) — which is independent on m —,

matches — up to a constant that can be absorbed in the regularization procedure — with

the result of [18] in their flat space limit L → ∞ and under the transformation u → iu.

Notice that their transformation of Aµ under ε, δεAµ matches with ours, if only if Aµ is

substituted by iAµ.

We tried to obtain the cohomological cancellations from ζ-regularisation of the non zero

modes. However, the heat kernel method for spinors of [29], definitely, does not respect

supersymmetry (in the case of the discrete spectrum when the absolute value of the total

flux felt by the mode must be larger than 1
2) and breaks the cancellations between fermions

and bosons, unless the normalization associated to the heat kernel of antichiral modes ψ−

is modified in a non elegant way.

4.6 What about the continuous spectrum?

So far, we have focused on the contribution of the discrete spectrum to the index. It is

time to find out what is the contribution of the continuous spectrum. The eigenvalues of

the relevant differential operators when acting upon the eigenfunctions of the continuous
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spectrum are

OBf∆(λ,s),j3 =

(
(ρ(u) + k)2 + λ2 +

1

4
+ s(s− 1)

)
f∆(λ,s),j3(

(ρ(u) + k)2 + �+
s−1

)
f∆(λ,s−1),j3 =

(
(ρ(u) + k)2 + λ2 +

1

4
+ s(s− 1)

)
f∆(λ,s−1),j3 .

(4.27)

The super-determinant to compute is√
det(OB) det((ρ(u) + k)2 + �+

s−1)

det(OB)
. (4.28)

The determinants in (4.28) are computed by the method of Heat Kernel. Once the

f∆(λ,s),j3 are normalized as in (3.23) the Heat Kernel of an operator O with eigenvalues

E[λ, s] when acting upon f∆(λ,s),j3 is defined as

K(k,α)[p, p′, τ ] =

∫ ∞
0

dλ
∑
j3∈Z

f∗∆(λ,s),j3
(p)f∆(λ,s),j3(p′)e−E[λ,s]τ , (4.29)

where p = {θ, ϕ, t} and p′ labels the set of coordinates of a given point.

We do not need the full heat kernel, since for the ζ-function all we need is its value

at the origin p = p′ = 0. As in the case of square integrable modes, all the eigenmodes

f∆(λ,s),j3 vanish at the origin, except for those with j3 = s. After some work, the spectral

function µ(s)(λ) is found to be

1

volH2volS1

µ(s)(λ) :=
∑
j3∈Z

f∗∆(λ,s),j3
(0)f∆(λ,s),j3(0) = f∗∆(λ,s),s

(0)f∆(λ,s),s(0)

=
1

(2π)2

λ sinh(2πλ)

cosh(2πλ) + cos(2πs)
. (4.30)

Having the spectral function in (4.30) we are ready to compute the ζ-functions by using

the following definition

ζO(z; s) =

∫ ∞
0

dλ
µ(s)(λ)

(EO[λ, s])z
. (4.31)

From the definition of ζ-function (4.31) we compute the relevant determinants

detO = e−∂zζ(0,s). (4.32)

Notice that, the spectral function obeys the following property

µ(s) = µ(s−1), , (4.33)

and the eigenvalues of the operators OB and ((ρ(u) + k)2 + �+
s−1) upon the respective

eigenfunctions f∆(λ,s),j3 and f∆(λ,s−1),j3 are the same, see equations (4.27). From the latter

facts and after the definitions (4.31) and (4.32) it follows the triviality of (4.28)√
det(OB) det((ρ(u) + k)2 + �+

s−1)

det(OB)
= 1. (4.34)

In conclusion, the continuous spectrum provides a trivial contribution to the topologically

twisted index.
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4.7 GNO condition?

The gauge potential representative (3.1) is singular at the contractible cycle θ = 0. There

are ways to solve this issue. One of them is to impose the holonomy of the gauge potential

θ = 0 to be in the centre of the group, we shall not resort to this way. A second way is to

simply perform a non trivial gauge transformation with parameter

Λ(ϕ) = −sϕ. (4.35)

The new potential

A = s (cosh θ − 1) dϕ, (4.36)

is regular at θ = 0 and has the same behavior at the boundary θ → ∞ as (3.1). In

fact (4.36) is the analytic continuation of the section on the north chart of the magnetic

monopole bundle on S2 to the single chart that covers H2.

To appreciate the consequence of the non triviality of (3.1) at θ = 0, let us comment

on its effect on matter. Out of the hierarchy of eigenmodes, the only modes that do not

vanish at the contractible cycle, are those with j3 = s, see equation (4.2). When cycling

around the contractible cycle, these modes exhibit an Aharonov-Bohm phase of

2πs, (4.37)

due to the non triviality of (3.1) at θ = 0. Should we impose the scalars to be periodic at

θ = 0, the phase (4.37) must be an integer multiplet of 2π. In consequence, periodicity of

scalars is not implying GNO quantization conditions. The GNO conditions [42] are

α (m) ∈ Z, (4.38)

where α is any element of the root lattice of the gauge group G. Condition (4.38) states

that m is in the co-root lattice of G.

If we particularize (4.2) to ρ = α and qR = 0 then (4.38) implies

s ∈ Z or Z +
1

2
. (4.39)

As already explained, (4.39) is consistent with square integrability. However, if s ∈ Z + 1
2 ,

the Aharonov-Bohm phase is an odd multiple of π and the scalar modes are multivalued at

θ = 0. Notice that with the smooth representative (4.36) such issue is no longer present. In

this representation the only modes that do not vanish at θ = 0 are those with j3 = 0. This

is because by performing a gauge transformation to a regular gauge potential the j3 gets

substituted by j3− s. In fact, in this smooth representation, the Aharonov-Bohm phase at

any ϕ-cycle becomes an integer multiple of 2π in virtue of our quantization conditions (3.6).

Conditions (3.6) are less restrictive than GNO conditions as they include not

just (4.39), but a continuous family of flux configurations. Consequently, we must not

restrict our zero locus BPS[Γ] by the GNO quantization conditions.

Notice that in the case of S2, the monopole bundle consists of two charts. In that

case, the GNO condition comes from imposing single-valuedness of the structure group
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transformation that relates the sections at north and south [43]. In the case of H2, there

is not such a feature.

We must say, however, that in our case, relaxing GNO conditions has consequences

on global gauge invariance — see for instance section 2.1 of [44], to appreciate a related

discussion —. Let us analyze the case of ABJM . In that case, indeed, under a large

gauge transformation ui → ui + 2π and ũi → ũi + 2π, the Chern-Simons terms x
ikmi/2
i

and x̃
−ikm̃i/2
i , change by a phase of eπikmi and e−πikm̃i , respectively. Those phases can be

absorbed by a couple of topological U(1)T holonomies7 of the form

N∏
i=1

ξp(mi/2) := eπi p
∑N
i=1 mi , (4.40)

N∏
i=1

ξ̃p̃(m̃i/2) := e−πi p̃
∑N
i=1 m̃i , (4.41)

after the change of labels

p→ p− k,
p̃→ p̃− k. (4.42)

Transformation (4.42), is a symmetry of the measure
∑

p,p̃∈Z, if k ∈ Z, and consequently,

symmetry under large gauge transformations is restored, if we perform an average over

p and p̃. The one loop contributions do not spoil the previous procedure, because the

determinants in the case of ABJM are invariant under ui → ui + 2π.

Comment In this section, it was shown that if we discard the discrete modes, and

consider only the continuous spectrum, the index is trivial. In contradistinction, the index

becomes non trivial when evaluated on square integrable eigenfunctions. The index is

somehow encoding information about the tower of normalizable modes. Indeed, its one

loop contribution is determined by the zeta regularized number of zero modes [2] of the

operators �−s — if s > 1
2 — and �+

s−1 — if s < −1
2 —.

5 The ABJM index on H2 × S1

It is time to analyze the ABJM index on H2×S1. In this section, we borrow notation and

strategy from section 2.1 of [2]. The final scope is to obtain the leading large-N behavior

of the index, in terms of flavor fluxes and holonomies. In order to do that, we will show

that the corresponding large-N Bethe Ansatz equations (BAE), are equivalent to the ones

defined in [2]. In fact, the leading large-N solution presented in [2] will be a solution to our

BAE, and consequently, can be used to evaluate the leading large-N result for the ABJM

index on H2 × S1.

7These terms arise from a couple of mixed Chern-Simons terms of the form (2.28). Specifically, from the

coupling of the U(1)L,R dynamical vector multiplets and Qε-spurion vector multiplets: U(1)L − spurionL,

U(1)R − spurionR. To obtain (4.41) we have considered the following non trivial v.e.v’s ÂTL3 = πp and

ÂTR3 = −πp̃ for the L and R spurion multiplets. Allover our discussion, we will fix the spurion fluxes to

zero tL = t̃R = 0.
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Let us start by writing down the localization formula for the ABJM index. The

Chern-Simons plus boundary term contribution is

N∏
i=1

x
1
2
kmi

i x̃
− 1

2
km̃i

i .

After collecting classical and 1-loop contributions, we can write down the expression

of the ABJM index on H2 × S1

ZH2×S1 := c
∑
p,p̃∈Z

(
1

N !

)2 ∫
|x|=|x̃|=1

N∏
i=1

dxi
2πixi

dx̃i
2πix̃i

M+∫
−M−

M̃+∫
−M̃−

N∏
i=1

dmidm̃i

×
N∏
i=1

x
kmi/2
i x̃

−km̃i/2
i ξp(mi/2)ξ̃p̃(m̃i/2)

N∏
i 6=j

√(
1− xi

xj

)(
1− x̃i

x̃j

)

×
N∏

i,j=1

∏
a=1,2

±
∣∣∣∣∣∣
√

xi
x̃j
ya

1− xi
x̃j
ya

∣∣∣∣∣∣


mi−m̃j−na+1

2 ∏
b=3,4

±
∣∣∣∣∣∣
√

x̃j
xi
yb

1− x̃j
xi
yb

∣∣∣∣∣∣


m̃j−mi−nb+1

2

, (5.1)

where c := 1∑
p,p̃∈Z 1 , na are flavor fluxes and ya = ei∆a flavor holonomies. It is useful to

remember that na and ∆a obey the relations (2.15) and (2.16), respectively. Notice that

we have written back the sign degeneracy, mentioned below equation (4.13). If we suppose

N ∈ 2N, (5.2)

the former signs and the absolute values between parenthesis, become spurious in the

contour of integration to be defined below, and consequently we drop them from now on.

As we are interested in the large-N limit, (5.2) is enough to our purposes.

The integration over fluxes and eigenvalues is dictated by the localization principle:

they are the zero locus BPS[Γ] associated to our contour of field-integration Γ and their

values are not fixed by boundary conditions. The color holonomies xi = eiui , x̃j = eiũj

are integrated along S1 as follows from our reality conditions on Γ: Im[ui] = 0 and

2π−periodicity of the integrand dependence on u and ũ.

The general idea is to pick up certain residues in the large-N limit. In order to find

out the position of the relevant simple poles, we will need to compute the large-N solution

to the very same Bethe ansatz equation of [2]. In [2] it was suggested that in the large-N

limit, the set of Bethe ansatz eigenvalues, which is the set of simple poles enclosed by our

contour, condense to a support included in the region8

X(∆a) :=

{
(ũj − ui) ∈ C :

{
0¡−Re[ũj − ui] + ∆a < 2π if a = 1, 2

0 < Re[ũj − ui] + ∆a < 2π if a = 3, 4

}}
.

(5.3)

8Even though the evidence presented in [2] is quite convincing, it would be nice to have a proof of the

absence of extra eigenvalues outside the region X(∆a). We believe this is a point that deserves further

understanding, but we will leave that analysis for future work.
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The region X(∆a) is the union of the regions covered by angles of the (i, j)-complex planes

with coordinate x̃ji := ei(ũj−ui). Each (i, j)-angle is defined as

max (−∆3,−∆4,max (∆1,∆2)− 2π) < arg (x̃ji) < min (∆1,∆2, 2π −max (∆3,∆4)) .

(5.4)

To compute our residues we have two possibilities. Either we deform the (ij)-S1: |x̃ji| = 1,

to the perimeter of the inner region of the (i, j)-angle including the origin, or we deform it to

the perimeter of the outer region, and close the contour at infinity x̃ji =∞.9 Both choices

are equivalent, provided we include the respective “boundary contribution” at x̃ji = 0 or

x̃ji = ∞, depending on the case. The “inner” choice corresponds to selecting poles with

Im(ũj − ui) > 0. The “outer” choice corresponds to poles with Im(ũj − ui) < 0. Notice

that for the large N solution of our interest, an outer (i, j)-pole implies the presence of an

inner (j, i)-pole and vice versa (see equation (2.39) of [2]). In fact in the limit N →∞ all

of such poles will condense either at 0 or ∞, except for the case i = j. In the particular

case i = j, the poles condense to an arc of (i, i)-S1. For each (i, j), we will choose to deform

the (i, j)-S1 contour in the way that encloses the poles at the “bulk” (these, are the poles

whose positions are the eigenvalues in equation (2.39) of [2]).

The projection of the domain X(∆a) upon our integration contour, which is obtained

by demanding Im[u] = Im[ũ] = 0 on the former, is a parametrization of the maximally

connected region without Coulomb branch singularities.10 Actually, the intersection of the

boundary of the complex region X(∆a), ∂X(∆a) with our contour of integration S1, is a

parametrization of the domain of such singularities. By a singularity of the Coulomb branch

we mean a point (ui, ũj) such that the quantity that defines the one loop contributions

∏
a=1,2


√

xi
x̃j
ya

1− xi
x̃j
ya

−1 ∏
b=3,4


√

x̃j
xi
yb

1− x̃j
xi
yb

 =
sin

(−ũj+ui+∆1)
2 sin

(−ũj+ui+∆2)
2

sin
(ũj−ui+∆3)

2 sin
(ũj−ui+∆4)

2

, (5.5)

becomes 0 or ∞.

Notice that, as we are not imposing the GNO conditions, we have to integrate over

the values of fluxes mi and m̃i along the Cartan directions. As we have already stated,

the fluxes m and m̃ are non-normalizable modes, even though they are in BPS[Γ]. In

that respect, our approach is reminiscent of the one advocated in [45]. In [45], integration

over non-normalizable modes belonging to the zero locus of the relevant supercharge, was

suggested for the localization on H2 × S1. Although the localization performed there, was

on the branched sphere, the integration over the Coulomb branch parameter completes the

nice picture suggested by (4.15) of [45].11

9By inner (resp. outer) region we mean the region of the (i, j)-angle that is in (resp. out) of the (i, j)-S1.
10In fact in integrating xi over S1 we should avoid colliding with such singularities, either by slightly

deforming the contour, or by turning on an infinitesimal mass regulator in the matter one loop determinant.
11A second possibility we will not explore in this work, is to fix the values of non normalizable modes

in Qε[Γ] to specific values. However, in order to match the final result to the supergravity dual, an

extremization procedure should be engineered for those values. In some sense, integration over these non

normalizable color - not flavor- modes is such sort of extremization. In this second, more open, line of

thought, perhaps one could relax our reality condition on ui and simply define the latter extremization as
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We use a couple of very large cut-offs M±, M̃± > 0, because the volume of the moduli

space of fluxes (m, m̃) is infinite. After computing the integral over the holonomies for fixed

values of M± and M̃±, we are free to send one and only one, of either M+(resp. M̃+) or

M−(resp. M̃−), to infinity. The other one, remains as a regulator that we will redefine as

M (resp. M̃). Thereafter, we pick up the residues of the analytical continuation of the

regulated integrand, the final result will be independent on M and M̃ , and we are free to

take M, M̃ →∞ on such residues.12

Next, we shall show independence of the regulated expression on the cutoffs M and

M̃ . For clarity, it is convenient to re-organize the r.h.s. of (5.1) as follows

c
∑
p,p̃∈Z

(
1

N !

)∫ N∏
i=1

dxi
2πixi

dx̃i
2πix̃i

M+∫
−M−

M̃+∫
−M̃−

N∏
i=1

dmidm̃i

 N∏
i 6=j

√(
1− xi

xj

)(
1− x̃i

x̃j

)
A


×

(
N∏
i=1

exp[Υi(x, x̃)mi]

) N∏
j=1

exp[Υ̃j(x, x̃)m̃j ]

 , (5.6)

where

Υi(x, x̃) = log

xki e2πip
N∏
j=1

√
xi
x̃j
y1

xi
x̃j
y2(

1− xi
x̃j
y1

)(
1− xi

x̃j
y2

)
(

1− x̃j
xi
y3

)(
1− x̃j

xi
y4

)
√

x̃j
xi
y3

x̃j
xi
y4

1/2

= log

xki e2πip
N∏
j=1

(
1− y3

x̃j
xi

)(
1− y4

x̃j
xi

)
(

1− y−1
1

x̃j
xi

)(
1− y−1

2
x̃j
xi

)
1/2

:=
1

2
log
(
eiBi

)
(5.7)

and

Υ̃j(x, x̃) =
1

2
log
(
eiB̃j

)
,

with

eiB̃j := x̃kj e
2πip̃

N∏
i=1

(
1− y3

x̃j
xi

)(
1− y4

x̃j
xi

)
(

1− y−1
1

x̃j
xi

)(
1− y−1

2
x̃j
xi

) , (5.8)

A :=
N∏

i,j=1

 ∏
a=1,2


√

xi
x̃j
ya

1− xi
x̃j
ya


−na+1

2 ∏
b=3,4


√

x̃j
xi
yb

1− x̃j
xi
yb


−nb+1

2

 . (5.9)

Definitions (5.7), (5.8) and (5.9) are the ones in equations (2.21) and (2.20) of [3].

integration over the complex and more abstract Jeffrey-Kirwan (JK) contour. It would be quite remarkable

if with such an alternative approach, one obtains the same result for the index. In that case, the approach

followed in this manuscript, would provide a less abstract viewpoint of the JK contour. We suspect this is

indeed the case, but as it is not the final goal of our study, we shall not check so in this manuscript.
12The consequences of using this regularization procedure are somehow reminiscent of the consequences

of applying the Jeffrey-Kirwan recipe in [2].
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After evaluating the integral over fluxes, we obtain

ZH2×S1(n, y,M) = c
∑
p,p̃∈Z

(
1

N !

)2 ∫
|x|=|x̃|=1

N∏
i=1

dxi
2πixi

dx̃i
2πix̃i

 N∏
i 6=j

√(
1− xi

xj

)(
1− x̃i

x̃j

)
A



×
N∏
i=1

sΥi exp

[
sΥiΥi(x, x̃)M

]
1
2 log (eiBi)

×
N∏
j=1

sΥ̃j
exp

[
sΥ̃j

Υ̃j(x, x̃)M̃

]
1
2 log

(
eiB̃j

) , (5.10)

where

sΥi := sign ReΥi(x, x̃), sΥ̃j
:= sign ReΥ̃j(x, x̃).

In (5.10) we have already taken M− or + →∞ and M̃− or + →∞.

The next step is to evaluate the residues of the analytical continuation of the regulated

integrand in (5.10), at the simple poles enclosed by our contour. Such poles are located at

positions x∗ and x̃∗, defined by the eigenvalues of the BAE

eiBi(x∗,x̃∗) = 1, eiB̃i(x∗,x̃∗) = 1. (5.11)

Solutions of (5.11) are not onto our integration contour,13 but are enclosed by it. In this

way we solve the remaining integrals in (5.10). Notice that we are naively focusing on

the contribution coming from simple poles generated by the BAE (5.11). Next, we shall

see how the solution to (5.11) is independent on the topological holonomies p and p̃. The

integrand of (5.10) is also independent on p and p̃. Consequently, the average over p and

p̃ will be trivial.

The final result for the index is

ZH2×S1(n,y) =

4∏
a=1

y
−N

2na
4

a

∑
I∈BAE

22N

detB


N∏
i=1
xN∗i x̃

N
∗i
N∏
i 6=j

(
1− x∗i

x∗j

)(
1− x̃∗i

x̃∗j

)
N∏
i,j

2∏
a=1

(x̃∗j−yax∗i)1−na
4∏

a=3
(x∗i−yax̃∗j)1−na


1/2

,

(5.12)

where

detB :=
∂
(
eiBj , eiB̃j

)
∂ (log xl, log x̃l)

=

xl ∂eiBj∂xl
x̃l
∂eiBj

∂x̃l

xl
∂eiB̃j

∂xl
x̃l
∂eiB̃j

∂x̃l


2N×2N

. (5.13)

Notice that the cut-off dependence disappeared in (5.12) due to imposition of the BAE.

We are interested in the large-N limit of ZH2×S1 . In that limit, there is a unique BAE

solution, thence the summation over the label I becomes spurious.

It is convenient to define

D(z) :=
(1− zy3) (1− zy4)(

1− zy−1
1

) (
1− zy−1

2

) . (5.14)

13This is because the imaginary part of both eigenvalues u and ũ is different from 0 (see equation (2.39)

of [2]).
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In terms of D(z), the l.h.s. of the BAE are

eiBi(x∗,x̃∗) = xki e
2πp

N∏
j=1

D

(
x̃j
xi

)
, eiB̃j(x∗,x̃∗) = x̃kj e

2πp̃
N∏
i=1

D

(
x̃j
xi

)
.

In terms of the quantity

Gij :=
∂ logD

∂ log z

∣∣∣∣
z=x̃j/xi

,

the matrix B takes the form

B|BAE =

δjl[k −
N∑
m=1

Gjm] Gjl

−Glj δjl[k +
N∑
m=1

Gmj ]

 . (5.15)

The next step is to write down the BAE in “angular” coordinates ui, ũi, and ∆a, which

are defined from

xi = eiui , x̃j = eiũj , ya = ei∆a .

In these coordinates, the constraint
∏
a
ya = 1 looks like

∑
a

∆a = 0 (mod 2π).

In “angular” coordinates, the BAE (5.11) are

0 = kui+i

N∑
j=1

∑
a=3,4

Li1

(
ei(ũj−ui+∆a)

)
−
∑
a=1,2

Li1

(
ei(ũj−ui−∆a)

)−2π (ni−p) ,

0 = kũj+i
N∑
j=1

∑
a=3,4

Li1

(
ei(ũj−ui+∆a)

)
−
∑
a=1,2

Li1

(
ei(ũj−ui−∆a)

)−2π (ñj−p̃) , (5.16)

with ni, ñj ∈ Z. Equations (5.16) are the same BAE given in (2.32) of [2].

To fix the values of ni and ñj , we use the identity

Li1
(
eiu
)
− Li1

(
e−iu

)
= −iu+ iπ

together with the assumption of absence of “long range interaction” [2]. The latter condi-

tion, implies

2πni = 2πp+

(∑
a

∆a − 4π

)∑
j

Θ(Im (ui − ũj)), (5.17)

2πñi = 2πp̃+

(∑
a

∆a − 4π

)∑
i

Θ(Im (ui − ũj)). (5.18)

We can solve the constraints (5.17) and (5.18), for ni and ñj , with the choice∑
a

∆a = 2π. (5.19)
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It is key to observe that (5.17) and (5.18), imply that solutions to the BAE are independent

of the topological holonomies p, p̃. Additionally, (5.15) is also independent of p and p̃ and

we conclude that the average on p and p̃ can be substituted by one.

The solution of (5.11), obeying (5.19), is precisely the one used in [2], to obtain their

quite nice result, (2.89), in the large-N limit. In the next section, for completeness, we

evaluate the aforementioned solution. We have tried other choices, such as
∑

a ∆a = 0.

However, as pointed out in [2], there are always some issues with the potential solutions.

5.1 Large-N behavior of the index

From now on, we take the limit N →∞, assume the Chern-Simons level k = 1, introduce

the density ρ(t) := 1
N
di
dt and the quantity δv(t), as precisely done in section 2.3 of [2]. In

this continuous limit, the BAE arise from the variations of the auxiliary Lagrangian

V
iN

3
2

=

∫
dt

tρ(t)δv(t)+ρ(t)2

∑
a=3,4

g+(δv(t)+∆a)−
∑
a=1,2

g−(δv(t)−∆a)

 (5.20)

−µ
[∫

dtρ(t)−1

]
− i

N1/2

∫
dtρ(t)

∑
a=3,4

Li2

(
ei(δv(t)+∆a)

)
−
∑
a=1,2

Li2

(
ei(δv(t)−∆a)

),
where

g±(u) :=
u3

6
∓ π

2
u2 +

π2

3
u. (5.21)

It is easy to follow the steps in [2]. Indeed for
∑

a ∆a = 2π and under the assumptions

µ > 0, ∃t̃ : δv(t̃) = 0, ∆1 < ∆2 < ∆3 < ∆4, (5.22)

together with (5.3)

0 < −δv(t) + ∆a < 2π if a = 1, 2,

0 < δv(t) + ∆a < 2π if a = 3, 4, (5.23)

the large-N relevant part of the solution to the continuous limit of the BAE, coming from

Lagrangian (5.20) is

ρ(t) :=


− µ+∆3t

(∆1+∆3)(∆2+∆3)(∆3−∆4) if t0 < t < t1
2πµ+t(∆3∆4−∆1∆2)

(∆1+∆3)(∆1+∆4)(∆2+∆3)(∆2+∆4) if t1 < t < t2
∆1t−µ

(∆1−∆2)(∆1+∆3)(∆1+∆4) if t2 < t < t3

.

δv(t) :=


−∆3 + e−N

1/2Y3(t) if t0 < t < t1
µ(∆1∆2−∆3∆4)+t(∆1∆2∆3+∆1∆2∆4+∆1∆3∆4+∆2∆3∆4)

2πµ+∆1∆2(−t)+∆3∆4 t
if t1 < t < t2

∆1 − e−N
1/2Y1(t) if t2 < t < t3

.

Y1(t) =


(∆1+∆4)(µ+∆3t)
(∆2+∆3)(∆3−∆4) + t if t0 < t < t1

0 if t1 < t < t2
µ−∆2t
∆1−∆2

if t2 < t < t3
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Y2(t) =


(∆2+∆4)(µ+∆3t)
(∆1+∆3)(∆3−∆4) + t if t0 < t < t1

0 if t1 < t < t2

t− (∆2+∆3)(∆2+∆4)(∆1t−µ)
(∆1−∆2)(∆1+∆3)(∆1+∆4) if t2 < t < t3

Y3(t) =


µ+∆4t
∆3−∆4

if t0 < t < t1

0 if t1 < t < t2

− (∆2+∆3)(∆1t−µ)
(∆1−∆2)(∆1+∆4) − t if t2 < t < t3

Y4(t) =


(∆1+∆4)(∆2+∆4)(µ+∆3t)
(∆1+∆3)(∆2+∆3)(∆3−∆4) − t if t0 < t < t1

0 if t1 < t < t2

− (∆2+∆4)(∆1t−µ)
(∆1−∆2)(∆1+∆3) − t if t2 < t < t3

, (5.24)

with

t0 = − µ

∆3
, t1 = − µ

∆4
, t2 =

µ

∆2
, t3 =

µ

∆1
.

From (5.22) it follows the ordering of transition times

t0 < t1 < t2 < t3, ρ > 0.

From the normalization condition
t3∫
t0

dtρ(t) = 1 it follows that

µ =
√

2∆1∆2∆3∆4.

To obtain the leading free energy in the limit N → ∞, one evaluates (5.12) at the

BAE solution (5.24). The final result can be easily inferred, given the fact that our BAE

solution is the same one found in [2], for the case k = 1,
∑

a ∆a = 2π. In the latter case,

and from the fact that the summand in (5.12) is the square root of the one in eq. (2.24)

of [2], it results that

Re log ZH2×S1

∣∣
Large N BAE solution

=
1

2
Re log ZS2×S1 | Large N BAE solution + sub. terms

Finally, one can arrive to the result

Re logZk=1
H2×S1 = −F k=1

H2×S1(n,∆)

= −
(

1

2

)
× N

3
2

3

√
2∆1∆2∆3∆4

4∑
a=1

na
∆a

+ sub. terms. (5.25)∑
a

∆a = 2π. (5.26)

After extremizing with respect to ∆1, ∆2 and ∆3, we obtain the following relation

between fluxes and holonomies

n1 =
∆1(∆1 − π)

∆1
2 + ∆1(∆2 + ∆3)− 2π(∆1 + ∆2 + ∆3) + ∆2

2 + ∆2∆3 + ∆3
2 + π2

,

n2 =
∆2(∆2 − π)

∆1
2 + ∆1(∆2 + ∆3)− 2π(∆1 + ∆2 + ∆3) + ∆2

2 + ∆2∆3 + ∆3
2 + π2

,

n3 =
∆3(∆3 − π)

∆1
2 + ∆1(∆2 + ∆3)− 2π(∆1 + ∆2 + ∆3) + ∆2

2 + ∆2∆3 + ∆3
2 + π2

, (5.27)
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that will prove to be useful later on, when comparing with the conjectured AdS/CFT

dual quantity.

5.2 Comments on the index

The index computed in this work, which follows closely [3], has the canonical interpretation

of a Witten index counting ground states according to Z(na,∆a) = Tr(−1)F e−βHeiJa∆a .

From the 3d perspective, we are simply counting operators with the corresponding relation

among quantum numbers. Now, assuming that the deformed ABJM theory flows to an

effective quantum mechanics in the IR, then the index computes the degeneracy of ground

states in the quantum mechanics. Since the index is an invariant of the flow, we connect

directly the 3d and 1d perspective.

On the gravity side, we have, similarly, the possibility of viewing the counting from

the 4d or 2d perspectives. The better formulated one, at the moment, turns out to be the

2d perspective, which Sen has developed in the framework of AdS2/CFT1 [14, 26]. In this

context, the ground state degeneracy in the quantum mechanics is computed by an AdS2

partition function with specific boundary conditions, which leads precisely to the quantum

black hole entropy. There are, of course, some open issues with the application of Sen’s

proposal, in the context of asymptotically AdS black holes, but it certainly provides a solid

starting point.

6 The hyperbolic AdS4 black hole

In this section we construct what we believe are the holographic dual to the ABJM con-

figuration discussed thus far. Namely, we construct magnetically charged, asymptotically

AdS4 black holes with non-compact H2 horizon that are embedded in M-theory. Our

construction follows similar spherical solutions in N = 2 gauged supergravity, see, for ex-

ample, [9–13]. We will comment on some similarities and differences with the solutions

with spherical horizon in subsection 6.3. We shall focus on the case of nV = 3 vector

multiplets. In this way the nV + 1 vector fields — counting also the one in the graviphoton

vector multiplet — are set to be identified as dual to the global charges of ABJM .

6.1 A brief summary of 4d N = 2 gauged SUGRA with nV = 3

For completeness, let us briefly introduce the concepts that we shall use. The central object

is the pre-potential

F = F(X∆), (6.1)

which is a holomorphic function of the holomorphic sections X∆(zi), ∆ = 1, 2, 3 and 4.

The symplectic sections are functions of the physical scalars zi with i = 1, 2, 3.

Another important object is the Kähler potential

K = − log i
(
X̄ΛFΛ −XΛF̄Λ

)
, FΛ :=

∂F
∂XΛ

. (6.2)

We will also need to use the period matrix

NΛΣ := FΛΣ + 2i
Im (FΛΓ)XΓIm (FΣ∆)X∆

XΓIm (FΓ∆)X∆
, FΓ∆ :=

∂FΓ

∂X∆
,
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and the following auxiliary variables(
LΛ,MΛ

)
:= eK/2

(
XΛ,FΛ

)
,
(
fΛ
i , hΛ,i

)
:= eK/2

(
DiX

Λ, DiFΛ

)
,

where the covariant derivative Di is defined as Di := ∂zi +Ki.

In our case we will be interested in real holomorphic sections

X̄∆ = X∆, z̄i = zi. (6.3)

To construct black holes, we shall set the fermions, and fermionic variations, to zero.

The supersymmetry variation of the gravitino is

δψµA := ∇µεA + 2iF−Λ
µν IΛΣL

ΛγνεABε
B − g

2
σ3
ABξΛL

Λγµε
B, (6.4)

where the covariant derivative of the Killing spinor εA is

∇µεA =

(
∂µ −

1

4
ωabµ γab

)
εA +

1

4

(
Ki∂z

i −Ki∂z
i
)
εA +

i

2
gξΛA

Λ
µσ

3 B
A εB.

The supersymmetry variation of the gaugino

δλiA = i∂µz
iγµεA − gi jfΛ

j IΛΣF
Σ −
µν γµνεABεB + iggijf

Λ
j ξΛσ

3,ABεB, (6.5)

will be used too. In equations (6.4) and (6.5) we are discarding higher order terms in

fermions. These terms are not relevant to our discussion.

To reproduce our results it will be useful to have the following definitions [46]

F−Λ :=
1

2
(FΛ − i ∗ FΛ) ,

∗FΛµν :=
1

2
εµναβF

αβ ,

1 + γ5

2
εA =

1− γ5

2
εA = 0.

6.2 Hyperbolic black holes

To avoid confusion, the index Λ = {1, 2, 3, 4} is equivalent to the index a = {1, 2, 3, 4} that

will be introduced in the next subsection.

We are interested in the STU model. Thence, we fix the Fayet-Iliopoulus parameters

in an isotropic manner

ξ0 = ξ1 = ξ2 = ξ3 = ξV . (6.6)

The relevant pre-potential will be

F(X) = −2i
√
X1X2X3X4.

We consider real sections, with the following parametrization

XΛ = X̄Λ =

{
− z1

z1+z2+z3+1
,− z2

z1+z2+z3+1
,− z3

z1+z2+z3+1
,− 1

z1+z2+z3+1

}
, (6.7)
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and propose the following static, spherically symmetric ansatz, for the metric and sections

ds2 = −U−2(r)dr2 − h2(r)dθ2 − h2(r) sinh2 θ dϕ2 + U2(r)dt2, (6.8)

XΛ = α+
βΛ

r
. (6.9)

The non trivial components of the spin connection are14

ω14
t = −U(r)U ′(r), ω12

θ = −U(r)h′(r),

ω13
ϕ = −U(r)h′(r) sinh θ, ω23

ϕ = − cosh θ.

In this section

ε4123 = 1,

ηab = (−1,−1,−1, 1),

γ5 = iγ4γ1γ2γ3.

We use the following Ansätze for the functions U(r) and h(r)

U(r) := eK/2(g r − c

2g r
), (6.10)

h(r) := d e−K/2r, (6.11)

where g, c and d are constants.

The corresponding black holes, are sourced by magnetic fluxes pΛ:

AΛϕ = −pΛ cosh θ, FΛθϕ = −pΛ

2
sinh θ. (6.12)

The non trivial components of the anti-selfdual field strength are

F−Λθϕ = −F−Λθϕ = −pΛ

4
sinh θ, F−Λrt = −F−Λtr = i

pΛ

4h2(r)
· (6.13)

The chiral and anti-chiral Killing spinors εA and εB, have to obey the following rela-

tion - these conditions are obtained from the vanishing of the gravitino supersymmetric

transformation-

εA = εABγ
4εB, εA = ±σ3

ABγ
1εB. (6.14)

The most general solution to (6.14) is

εA =


±κ(r) ∓i κ(r)

±i κ(r) ±κ(r)

−i κ(r) κ(r)

−κ(r) −i κ(r)

 , εB =


κ(r) iκ(r)

−iκ(r) κ(r)

±iκ(r) ±κ(r)

∓κ(r) ±iκ(r)

 . (6.15)

14In this section we used different conventions than in section 2. We have used standard conventions

on four-dimensional N = 2 gauged supergravity, which are the ones given in [46] (see also [11]). For

instance, the definition of spin connection is minus the one used in section 2. Consequently, in the covariant

derivatives there is a relative minus sign in front of the term proportional to the spin-connection between

this section and section 2.
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Solving the BPS conditions, leads to relations

α = ∓ 1

4ξV
, (6.16)

c =
1 + 8 d2g2ξ2

V

(
β2

4 + β2
1 + β2

2 + β2
3

)
d2

, (6.17)

0 = β4 + β1 + β2 + β3, (6.18)

1 = ±gξV (p4 + p1 + p2 + p3) . (6.19)

Notice that the constant c is positive. The relation between fluxes and the parameters βa
is also obtained from the BPS conditions

p1 =
±1 + 16d2g2ξ2

V

(
−β2

1 + β2
2 + β2

3 + β1β2 + β2β3 + β1β3

)
4gξV

,

p2 =
±1 + 16d2g2ξ2

V

(
+β2

1 − β2
2 + β2

3 + β1β2 + β2β3 + β1β3

)
4gξV

,

p3 =
±1 + 16d2g2ξ2

V

(
+β2

1 + β2
2 − β2

3 + β1β2 + β2β3 + β1β3

)
4gξV

. (6.20)

The warping of the Killing spinor is also fixed by the BPS conditions

κ = κ0

√
U(r), κ = κ0

√
U(r).

We have, finally, completely solved the BPS conditions and constructed our hyperbolic

AdS4 black holes.

6.3 Spherical black holes

A prevalent intuition in the context of supergravity states that changing the horizon from

spherical to hyperbolic, leads from black holes to naked singularities and vice versa [47, 48].

In this section we explore the details of this intuition in the context of the magnetically

charged black holes.

Let us first solve the BPS equations for the spherical black hole ansatz

ds2 = −U−2(r)dr2 − h2(r)dθ2 − h2(r) sin2 θ dϕ2 + U2(r)dt2, (6.21)

XΛ = α+
βΛ

r
, (6.22)

with U(r) and h(r) defined in (6.10) and (6.11).

The non vanishing components of the spin connection are

ω14
t = −U(r)U ′(r), ω12

θ = −U(r)h′(r),

ω13
ϕ = −U(r)h′(r) sin θ, ω23

ϕ = − cos θ.

For technical convenience, let us parametrize the gauge potential as follows15

AΛϕ = −pΛ cos θ, FΛθϕ =
pΛ

2
sin θ. (6.23)

15The definition of field strength used in this section differs from the one used in section 2.
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The non trivial components of the antiselfdual potential are

F−Λθϕ = −F−Λθϕ =
pΛ

4
sin θ, F−Λrt = −F−Λtr = i

pΛ

4h2(r)
. (6.24)

After solving the BPS equations, we arrive to

α = ∓ 1

4ξV
, (6.25)

c =
−1 + 8 d2g2ξ2

V

(
β2

4 + β2
1 + β2

2 + β2
3

)
d2

, (6.26)

0 = β4 + β1 + β2 + β3, (6.27)

−1 = ±gξV (p4 + p1 + p2 + p3) , (6.28)

and

p1 =
∓1 + 16d2g2ξ2

V

(
−β2

1 + β2
2 + β2

3 + β1β2 + β2β3 + β1β3

)
4gξV

,

p2 =
∓1 + 16d2g2ξ2

V

(
+β2

1 − β2
2 + β2

3 + β1β2 + β2β3 + β1β3

)
4gξV

,

p3 =
∓1 + 16d2g2ξ2

V

(
+β2

1 + β2
2 − β2

3 + β1β2 + β2β3 + β1β3

)
4gξV

. (6.29)

The warping of Killing spinor is also fixed by the BPS conditions

κ = κ0

√
U(r), κ = κ0

√
U(r).

In contradistinction to the hyperbolic solution, in the spherical case, c can be negative, see

equation (6.26).

The position of the curvature singularity is

rs =


− 1
α max {β1, β2, β3, β4} > 0 if α < 0

− 1
α min {β1, β2, β3, β4} > 0 if α > 0

.

If βa = 0, the position of the curvature singularity is rs = 0. In the case βa = 0, one

encounters a hyperbolic black hole since c > 0 and there is a horizon. However for the

spherical solutions, c < 0, and we encounter a naked singularity. It is straightforward to

check that, when βa = 0, the change

(r, θ, t, pa, c)→ (ir, iθ, it, − pa, − c) (6.30)

transforms the hyperbolic black hole BPS solutions of the previous subsection, into the

spherical BPS solution of this subsection, particularized to βa = 0. The latter has a naked

singularity. Actually, the exchange pa → −pa can be cancelled by an exchange of Killing

spinor — only because βa = 0 —. By an exchange of Killing spinor, we mean to change

the choice of sign in the constraint (6.14). Such a change, has physical meaning, as it leads

to a configuration that is BPS with respect to a different supercharge.

We emphasize that the intuition emanating from [47, 48], is restricted to the case of

βa = 0, that is, the case of constant sections; it is, therefore, relaxed in the case βa 6= 0.
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6.4 The Bekenstein-Hawking entropy: H2 vs S2

In this subsection, we compare the entropy of hyperbolic and spherical black holes. We

first consider the case of isotropic fluxes. In the end, we will find that the entropy density

of the hyperbolic solution coincides with the entropy density of the spherical one which

were discussed in [2].

From now on, we particularize our hyperbolic solutions to the following case

α = −1

4
, ξV = 1, g =

1√
2
. (6.31)

A sufficient — not necessary — condition for the existence of hyperbolic AdS4 black

holes is

β1, β2, β3 > 0, rh =
√
c > rs = 4 max (β1, β2, β3), (6.32)

where the domain of the radial coordinate r is r > rs. The constant rs is the radial position

of the singularity, which is covered by the horizon at rh =
√
c.

A particular solution to these conditions is

β1 = β2 = β3 = β > 0.

In that case, the fluxes are

p1 = p2 = p3 = p =
1 + 32d2 β2

2
√

2
> 0.

The regularized area density of the horizon is

AH2(β)

volH2

=
1

2

√
1 + 512d3β3(−6dβ +

√
1 + 48d2β2) (6.33)

=

√
−3
(
1− 2

√
2p
)2

+ 2
(
2
√

2p− 1
)3/2√

6
√

2p− 1 + 1

2
(6.34)

AH2(p)

volH2

∼
p→+∞

√(
4
√

3− 6
)
p, p > 0. (6.35)

Next, we compare the entropy density (6.34) to the one of spherical black holes used

in [2]. The isotropic solution presented in section 4.1 of [2] is

n1 = n2 = n3 =
√

2p′, n4 = 2− 3
√

2p′, p′ < 0.

From the following quantities [2]

F2(p) := −
(

12p′ 2 − 6
√

2p′ + 1
)
,

Θ(p) := 192p′ 4 − 160
√

2p′ 3 + 96p′ 2 − 12
√

2p′ + 1, (6.36)
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one arrives to the following expression for the area density, of the spherical horizon in terms

of the flux p′

AS2(p′)

volS2

:=

√
F2+
√

Θ√
2

(6.37)

=

√√
4p′
(
8p′
(
6p′2−5

√
2p′+3

)
−3
√

2
)
+1+6

(√
2−2p′

)
p′−1

√
2

(6.38)

AS2(p′)

volS2

∼
p′→−∞

−
√(

4
√

3−6
)
p′, p′< 0. (6.39)

We can do the comparison with the result obtained from scratch, with our spherical

solutions, however, in order to match our results with the ones in [2], we report the com-

parison by using theirs. Notice that the large flux limits (6.36) and (6.39), do coincide. In

fact, it can be checked that for any value of u the entropy density as a function of flux p

and p′ coincide, as
AH2(|u|)
volH2

=
AS2(|u|)
volS2

. (6.40)

Equation (6.40) can be checked by comparing (6.34) and (6.38), order by order in Taylor

expansions in u about 0 and ∞, or by simply working out the expressions.

6.5 Matching results

In this final section, we compare the AdS/CFT dual results. On one side, we have the

result for the ABJM index on H2 × S1 (5.25). On the other side, we have the entropy

of the hyperbolic magnetic AdS4 black holes (6.8). The first thing to do, is to compute

the Bekenstein-Hawking entropy of (6.8). Thereafter, we check the relation between the

classical entropy and the value of the holomorphic sections Xa — or as were denoted in

the previous subsection XΛ — at the horizon rh. The aforementioned relation is identical,

up to a relabelling of variables, to the relation between the logarithm of the ABJM index

and the holonomies ∆a (5.25). Finally, we prove that under the appropriate relabeling of

variables and extremization of the logarithm of the ABJM index (5.25) with respect to

the holonomies ∆a, the bulk and SCFT results coincide, as was the case in [2].

For generic p1, p2 and p3, we have checked that the classical entropy

SBH =
AH2

4G4d

= − π

4G4D

√
(Ψ− 4dβ1)(Ψ− 4dβ2)(Ψ− 4dβ3)(4d(β1 + β2 + β3) + Ψ), (6.41)

where

Ψ(β1, β2, β3) :=
√

8d2
(
β1

2 + β1β2 + β1β3 + β2β3 + β2
2 + β3

2
)

+ 1, (6.42)

coincides with the expression

+
2π

4G4d

√
X1(rh)X2(rh)X3(rh)X4(rh)

4∑
a=1

√
2pa

Xa(rh)
, (6.43)
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where

Xa(rh) =
d βa√

4 d2
(
β1

2 + β2
2 + β3

2 + β4
2
)

+ 1
− 1

4
. (6.44)

The value of β4 is determined by (6.18). The pa’s as function of βa’s have been given in

equation (6.20) which follows from the BPS equations.

We will prove next, that equation (6.43) — that comes from the analysis in the bulk —

is equal to the extremal value of the SCFT topologically twisted index (5.25), under the

specific dictionary

√
2pa ↔ na, (6.45)

−2πXa(rh)↔ ∆̄a, a = 1, 2, 3, 4, (6.46)

where the ∆̄a are the solutions to the variables ∆a that come out of the inversion of

equation (5.27).

There are many ways to prove that (6.43) is equivalent to the extreme value of (5.25),

the simplest one is to evaluate (5.27) on

∆a = ∆a(β1, β2, β3) = −2πXa(rh), (6.47)

to obtain

n1 =
1

2
+ 4d2

(
−β1

2 + β2
2 + β3

2 + β1β2 + β1β3 + β2β3

)
,

n2 =
1

2
+ 4d2

(
+β1

2 − β2
2 + β3

2 + β1β2 + β1β3 + β2β3

)
,

n3 =
1

2
+ 4d2

(
+β1

2 + β2
2 − β3

2 + β1β2 + β1β3 + β2β3

)
. (6.48)

Notice that

Equation (6.48) =
√

2 Equation (6.20), (6.49)

under (6.31) and identification (6.45).

The relation (6.49) implies that the positions ∆̄a of the saddle points of (5.25) coincide

with the values of the sections Xa at the horizon (6.44), under identification (6.45). As the

logarithm of the ABJM index (5.25) and the Bekenstein-Hawking entropy (6.43) are the

same under identification (6.45) and

1

G4d
=

2
√

2

3
N3/2, (6.50)

we have thence proven that under the aforementioned identifications, boundary “dege-

neracy of states” and bulk black hole entropy coincide.

As a final comment, we notice that the identifications (6.45) are not directly obtained

from the AdS/CFT dictionary. The AdS/CFT dictionary is naturally formulated in the

UV, the UV value of the holomorphic sections Xa is −1
4 . To obtain agreement, the use of

extremization principle of the result of the SCFT side is crucial [2]. We believe there is a

proper way to clarify some of these ad hoc issues but we leave the discussion for future work.
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7 Conclusions

In this manuscript we have first studied topologically twisted localization of N = 2 super-

symmetric field theories in H2 × S1. Our work differs in various important points from

recent work on localization on this space by [18]. In particular, we have crucially consid-

ered topologically twisted theories and extended the type of theories under consideration

beyond vector multiplets, to include, for example, matter multiplets.

At a technical level, we have also discussed explicitly subtle aspects of the eigenvalue

problem corresponding to the Laplacian in the presence of a background magnetic field

and we expect that such results could have wide application in the general context of

localization. Quite interestingly, we have found a hierarchy of normalizable modes and its

corresponding discrete spectrum. A particular sub-family of the aforementioned hierarchy,

corresponds to the vector zero modes of the Laplace-Beltrami operator on H2, that were

introduced in [29] and figure prominently in, for example, [49] and more recently in [18].

The full hierarchy of normalizable modes exists due to the presence of magnetic fluxes s over

a specific threshold: |s| > 1
2 . We strongly suspect, that the discrete spectrum is encoding

the full hierarchy of higher spin normalizable modes of the Laplace-Beltrami operator on

H2. If this is indeed the case, it would be very interesting to pursue a study of the potential

traces of 2d higher spin symmetry, on the set of black holes microstates [50]. As a first step

toward formulating such a problem, it would be useful to start by identifying the square

integrable modes in the language of [50].

We have also studied N = 2 gauged supergravity and found magnetically charged

supersymmetric solutions with hyperbolic horizon. We have shown that under assump-

tions similar to those advanced in [2] the entropy of these solutions coincides with the

real part of the logarithm of the topologically twisted index of the dual field theory. In

conclusion, we have provided evidence in favor of identifying the set of square integrable

modes in the presence of a constant flux on H2

(
×S1

)
, precisely speaking a very restricted

set of zero modes out of the maximal set, as the boundary microstates responsible for the

Bekenstein-Hawking entropy of the AdS4 hyperbolic black holes presented in section 6. One

important further test for this identification, would be to compute quantum corrections to

the Bekenstein-Hawking entropy, on both sides of the duality.

On the 3d SCFT side we have made crucial use of the extremization approach ad-

vocated in [2]. The result of this approach is consistent with the constraints from the

BPS equations on the gravity side and has been argued to be equivalent to the attractor

mechanism. Under these conditions we have found precise agreement between the leading

large-N results on the two sides. However, it would be important to elucidate the role of

extremization intrinsically in the field theory but also from the gravity perspective. This

is particularly important because in some cases the attractor mechanism has been shown

to apply away from the strictly supersymmetric context.

Another natural generalization of this work, following [51], is to extend the analysis

to dyonic black holes. More generally, it would be interesting to consider mapping the full

space of deformations on both sides of the correspondence and, in particular, its modifica-

tions on the free energy and the entropy. Another interesting direction concerns potential
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factorizations of the index on S2 × S1, introduced in [3], in terms of blocks given by the

partition functions in H2×S1. A similar factorization principle has been uncovered in vari-

ous theories and in different dimensions, see, for example, [7, 52–55]. In this manuscript we

have found a particular relation but it should be pointed out that we have set all fermionic

zero modes to zero and have integrated over a particular set of modes. Clearly, to achieve a

bona fide factorization formula we will need to consider more general boundary conditions

and contemplate retracing some of the steps suggested in [45]. Indeed, such an approach

with general boundary conditions has been implemented for GLSM’s in [54].

Finally, it would be interesting to discuss the microstate counting of magnetically

charged strings in asymptotically AdS5 spacetimes. Such magnetically charged solutions

have a long history in supergravity dating back to explorations in [47]. It is logical to

expect that the microscopic explanation should be found within 4d topologically twisted

field theories on S2 × T 2 or possibly H2 × T 2. Indeed, as a natural starting point along

these lines, the topologically twisted index introduced by Benini and Zaffaroni in [3] for

supersymmetric field theories on S2×S1, was briefly discussed for 4d theories in S2×T 2 in

their original work, and was also addressed in [56]. It has recently been shown that, in the

high temperature limit, the index produces a central charge that matches the supergravity

answer [57] therefore providing a strong argument in favor of the identification. We hope

to report on some of these interesting directions soon.
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A Comments on the discrete spectrum

In this appendix we report details on the construction of the square integrable modes

defined in section 3.

The general solution to the defining equation (3.3) is

f = χ1

(
(cosh θ − 1)s

sinhj3+s θ
2F1

(
a1, b1, c1;− sinh2 θ

2

))
+ χ2

(
(cosh θ − 1)j3

sinhj3+s θ
2F1

(
a2, b2, c2;− sinh2 θ

2

))
, (A.1)
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where χ1,2 are arbitrary integration constants. It is very useful to work in the following

coordinates

x := − sinh2 θ

2
, −∞ < x ≤ 0. (A.2)

In x coordinate, (A.1) takes the form

f = χ1

(
xs (x (x− 1))−

j3+s
2 2F1(a1, b1, c1;x)

)
+ χ2

(
xj3 (x (x− 1))−

j3+s
2 2F1(a2, b2, c2;x)

)
, (A.3)

where the parameters a1,2, b1,2 and c1,2 are

a1 =
1

2
− j3 −

√
1

4
+ ∆ + s2, b1 =

1

2
− j3 +

√
1

4
+ ∆ + s2,

c1 = 1− j3 + s,

a2 =
1

2
− s−

√
1

4
+ ∆ + s2, b2 =

1

2
− s+

√
1

4
+ ∆ + s2,

c2 = 1− s+ j3. (A.4)

Let us particularize ∆ to

∆ = j (j + 1)− s2, with j ∈ R. (A.5)

The choice (A.5) completes perfect square inside the square roots in (A.4).

The asymptotic behavior of the solutions proportional to χ1 and χ2 — from now on

f1 and f2 —, is

f1 (x) ∼
x→−∞

χ−1 x−1−j
(

1 +O

(
1

x

))
+ χ+

1 xj
(

1 +O

(
1

x

))
, (A.6)

f1 (x) ∼
x→0

x
s−j3

2 (O(0)) , (A.7)

and

f2 (x) ∼
x→−∞

χ−2 x−1−j
(

1 +O

(
1

x

))
+ χ+

2 xj
(

1 +O

(
1

x

))
, (A.8)

f2 (x) ∼
x→0

x
j3−s

2 (O(0)) . (A.9)

Regularity at the contractible cycle x = 0, conditions to pick up

f1 if j3 ≤ s, (A.10)

f2 if j3 > s. (A.11)

We demand C∞-differentiability at the contractible cycle x = 0. In the vicinity of

x = 0, f1 and f2 go like x
s−j3

2 and x
j3−s

2 , respectively. Thus C∞-differentiability at the

contractible cycle x = 0 implies

j3 − s ∈ Z, (A.12)
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and the appropriate choice among (A.10) and (A.11). Notice that from (A.12), it follows

that: j3 ∈ Z implies s ∈ Z.. However, we are not forced to impose integrality of j3, j or s.

For the time being, let us assume s ≥ 0. In due time, we extend the analysis to the

case of generic s.

It is important to stress that square integrability condition is equivalent to impose the

conditions

χ+
1 = 0 if j3 ≤ s and j > −1

2

χ−1 = 0 if j3 ≤ s and j < −1

2

χ+
2 = 0 if j3 > s and j > −1

2

χ−2 = 0 if j3 ≤ s and j < −1

2
. (A.13)

A.1 The quantization conditions: f1

Let us find out the quantization conditions that guarantee (A.13). Our starting point in

this subsection is

j3 ≤ s and s ≥ 0. (A.14)

For pedagogical reasons, let us assume for the time being

j, j3, s ∈ Z or Z +
1

2
. (A.15)

We shall see in due time that assumption (A.15) is not necessary. As for j, let us not

assume nothing else at this point. On the track, we will comment on the restrictions that

arise for j.

Condition (A.14) selects the solution f1

f
(1)
∆(s), j3

:= χ1

(
xs (x (x− 1))−

j3+s
2 2F1(−j3 − j, 1− j3 + j, 1− j3 + s;x)

)
. (A.16)

Notice that this solution is invariant under the transformation

j → − (j + 1)

and in consequence we have to restrict j to be either

j > −1

2
or j < −1

2
, (A.17)

as preferred.

Notice that j = −1
2 is left invariant by the transformation above. For j = −1

2 both

independent solutions have the same asymptotic behavior xj and x−j−1, and they are not

square integrable.

In order to have square integrability it is necessary to have

j 6= −1

2
.

We exclude the particular case j = −1
2 .
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Before writing down the quantization conditions, let us comment on the strategy. It

turns out that the quantization conditions are the conditions for which the hypergeometric

factor in (A.16) truncates to a specific polynomial. The sum of the degree of such polyno-

mial with the degree of the leading power of the prefactor in (A.16) in the limit x→ −∞
must equate to

−1− j if j > −1

2
, (A.18)

j if j < −1

2
. (A.19)

The conditions to obtain the previously mentioned goal are

1− j3 + j ≤ 0 if j > −1

2
, (A.20)

−j3 − j ≤ 0 if j < −1

2
. (A.21)

Together with (A.14) these conditions are compactly written in the following one

max(|j|, |j + 1|) ≤ j3 ≤ s. (A.22)

It is straightforward to check that, if we assume (A.15) together with (A.22) the desired

truncation holds:

2F1(−j3 − j, 1− j3 + j, 1− j3 + s;x) =

= 1 +

∞∑
n=0

(a)n(b)n
(c)n

xn+1

(n+ 1)!

= 1 +


0 if d(1) = 0
d(1)−1∑
n=0

(a)n+1(b)n+1

(c)n+1

xn+1

(n+1)! if d(1) > 0
,

(a)n+1 :=
n∏
i=0

(a+ i).

The degree of the polynomial d(1) being

d(1) :=

{
j3 − j − 1 if −1

2 < j < j3
j3 + j if −j3 ≤ j < −1

2

.

At this point is easy to check that indeed the aforementioned asymptotic behavior of (A.16)

about x = 0 and x = −∞ holds.

A.2 The quantization conditions: f2

In this subsection we analyze the case

j3 > s and s ≥ 0. (A.23)
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We assume again (A.15). Condition (A.23) selects the solution f2

f
(2)
∆(s), j3

:= χ2

(
xj3 (x (x− 1))−

j3+s
2 2F1(−s− j, 1− s+ j, 1− s+ j3;x)

)
(A.24)

As the previous case, this solution is invariant under the transformation

j → − (j + 1)

and in consequence at some stage we shall be forced to assume (A.17). Let us, however,

not assume the latter restriction on j yet. Let us just assume (A.15).

The quantization conditions are

1− s+ j ≤ 0 if j > −1

2
, (A.25)

−s− j ≤ 0 if j < −1

2
. (A.26)

Together with (A.14), these conditions are compacted in the following one

max(|j|, |j + 1|) ≤ s < j3. (A.27)

It is straightforward to check that, if we assume (A.15) together with (A.27) the desired

truncation holds:

2F1(−s− j, 1− s+ j, 1− s+ j3;x) =

= 1 +


0 if d(2) = 0
d(2)−1∑
n=0

(a)n+1(b)n+1

(c)n+1

xn+1

(n+1)! if d(2) > 0
.

The degree of the polynomial d(2) being

d(2) :=

{
s− j − 1 if −1

2 ≤ j < s

s+ j if −s ≤ j < −1
2

,

and f
(2)
∆(s), j3

is square integrable. Notice that, there are not square integrable modes for

s = 0, as well known.

A.3 The case of negative flux s < 0

So far, we have focused on the case of positive magnetic flux s > 0, or being more specific

on the case s > 1
2 . However, there are square integrable modes when s < 0 too — as parity

preservation dictates —. To find those, it is convenient to use the identity

2F1(a, b, c;x) = (1− x)c−a−b2F1(c− a, c− b, c;x)

upon the previously written solutions f
(1)
∆(s), j3

and f
(2)
∆(s), j3

, to obtain

f
(1)
∆(s), j3

= χ1

(
x−j3 (x (x− 1))

j3+s
2 2F1(s− j, 1 + s+ j, 1 + s− j3;x)

)
.

f
(2)
∆(s), j3

= χ2

(
x−s (x (x− 1))

j3+s
2 2F1(j3 − j, 1 + j3 + j, 1 + j3 − s;x)

)
.
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Again, these eigenfunctions are invariant under the change (A.17) and in consequence

j > −1

2
or j < −1

2
. (A.28)

The hypergeometric factors written above, truncate to polynomials — and in con-

sequence f
(1)
∆(s), j3

and f
(2)
∆(s), j3

square integrable — provided the following quantization

conditions hold

max(|j|, |j + 1|) ≤ −s ≤ −j3,
max(|j|, |j + 1|) ≤ −j3 ≤ −s,

— and for the time being (A.15) —, for f
(1)
∆(s), j3

and f
(2)
∆(s), j3

, respectively. The explicit

form of these square integrable modes can be obtained by repeating the analysis done for

the case s > 1
2 , and they exist if and only if

s < −1

2
. (A.29)

A.4 Generalized conditions

So far we have been assuming

j3, j, s ∈ Z or Z +
1

2
. (A.30)

However, the aforementioned GNO conditions — see subsection 4.7 — can be relaxed.

As already stated, to achieve regularity at the contractible cycle x = 0, the following

necessary condition

j3 − s ∈ Z,

must hold. To have discrete spectrum there are necessary conditions too:

f (2) → −s+ j ∈ Z, f (1) → −j3 + j ∈ Z if s > +
1

2
,

f (1) → s+ j ∈ Z, f (2) → j3 + j ∈ Z if s < −1

2
.

Notice that the conditions in the right (resp. left) side, follow from a linear combination of

the condition of regularity at the contractible cycle, and the respective conditions in the left

(resp. right) side. Hence, we can write down the more compact and equivalent statement

j3 − s ∈ Z and j − |s| ∈ Z. (A.31)

In the table below, we write down the explicit form of the spectrum. For simplicity of

presentation but without lack of generality, let us take j > −1
2 . In that case, the relevant

spectrum is

∀s such that s > 1
2 s < −1

2

j3 j + 1, j + 2, . . . , j + k, . . . ,∞ −∞, . . . ,−k − j, . . . ,−2− j,−1− j
j s− 1, s− 2, . . . , s− k, . . . > −1

2 −s− 1,−s− 2, . . . ,−s− k, . . . > −1
2

.
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A particular case is when j, j3, s ∈ Z + 1
2 . In that case, the table above reduces to

∀s such that s > 1
2 s < −1

2

j3 j + 1, j + 2, . . . , j + k, . . . ,∞ −∞, . . . ,−k − j, . . . ,−2− j,−1− j
j s− 1, s− 2, . . . , s− k, . . . , 1

2 . −s− 1,−s− 2, . . . ,−s− k, . . . , 1
2 .

.

The corresponding eigenfunctions can be recovered from the summary that shall be pre-

sented next, and the results in previous sections.

A.5 Collecting the eigenfunctions

The maximal functional space of square integrable modes is

Ξ(s) :=
⊕

− 1
2
<j<|s|

(
Ξ

(1)
j (s)⊕Ξ

(2)
j (s)

)
, (A.32)

where the subspace Ξ
(1)
j (s) is defined as

Ξ
(1)
j (s) :=

{
f

(1)
∆(s),j3

}
j3

, with ∆ := j(j + 1)− s2,

together with conditions (A.31) and

max(|j|, |j + 1|) ≤ j3 ≤ s, if s > 1
2 ,

max(|j|, |j + 1|) ≤ −s ≤ −j3 if s < −1
2 .

(A.33)

The subspace Ξ
(2)
j (s) is defined as

Ξ
(2)
j (s) :=

{
f

(2)
∆(s),j3

}
j3

, with ∆ := j(j + 1)− s2,

together with conditions (A.31) and

max(|j|, |j + 1|) ≤ s ≤ j3 if s > 1
2 ,

max(|j|, |j + 1|) ≤ −j3 ≤ −s if s < −1
2 .

Of special interest will be the following limiting spaces

Ξ
(1,2)
s−1 (or −s)(s) := {f (1,2)

∆,j3
}, with j := s− 1 (or − s) and ∆ = −s.

These spaces are the ones that contribute to the super-determinant that concerns us,

when s > 1
2 and cohomological cancellations are performed.

It will be useful to keep in mind that for every j, in the direct sum space Ξj(s) :=

Ξ
(1)
j (s)⊕Ξ

(2)
j (s) the angular number j3 will range at step 1, departing from the lower (resp.

upper) bound given below

max(|j|, |j + 1|) < j3 <∞ if s > 1
2 ,

−∞ < j3 < −max(|j|, |j + 1|) if s < −1
2 .
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Comment. Notice that upon square integrable “representations” Ξj(s), which are la-

beled by j running at step 1 down from |s| − 1 and greater than −1
2 , namely

j : −1

2
< j ≤ |s| − 1,

the bosonic operator OB (4.4), is positive definite if (ρ(u) + k)2 > 0. Indeed, that operator

needs to be positive definite in order to have convergence of the functional integral of the

exponential of the quadratic expansion of the bosonic localizing term.

A.6 Normalizable modes from asymptotics

One can also find the discrete spectrum by looking at the asymptotic expansion of the

general solutions (A.16) (one can repeat the procedure for the other solution). We choose

to focus on f1 and for values s > 1
2 , from regularity and smoothness at x = 0 it follows

that j3 ≤ s and the difference s− j3 ∈ Z+.

As before, we define ∆ := j(j + 1)− s2.

At x = −∞ f1 is

f1 ∼ χ−1 x−1−j
(

1 +O

(
1

x

))
+ χ+

1 xj
(

1 +O

(
1

x

))
. (A.34)

The coefficients above are:

χ−1 ∼
Γ[1 + s− j3]Γ[−1− 2j]

Γ[−j3 − j]Γ[s− j]
,

χ+
1 ∼

Γ[1 + s− j3]Γ[1 + 2j]

Γ[1− j3 + j]Γ[s+ j]
.

Suppose j > −1
2 , to cancel out the xj behavior of f1 while preserving the x−1−j , we need

to have that χ+
1 vanishes, this is achieved when either of the arguments of the Γ’s in the

denominator is 0 or a negative integer. Then

1− j3 + j = −n or s+ j = −n with n ∈ Z+, (A.35)

the second choice is out of order given our assumptions (s > 1
2 , j > −

1
2) therefore 1−j3+j =

−n when replacing this value in χ−1 one has to be careful, since the arguments of Γ’s in

the denominator might be also a negative integer,

χ−1 ∼
Γ[1 + s− j3]Γ[1 + 2n− 2j3]

Γ[−2j3 + n+ 1]Γ[s− j]
∼ Γ[1 + 2n− 2j3]

Γ[−2j3 + n+ 1]
. (A.36)

We have not replaced the value of j in terms of n and j3. The Γ functions in the denomina-

tor, given our assumptions, will be a number different from zero and finite and will not play

a role. Looking at the denominator in the last expression one naively conclude that there

are values of j3 and n for which the argument is negative integer (since j3 > n + 1), and

therefore χ−1 is also zero, but it is not the case since, for each of this values, the argument
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of Γ in the numerator is also a negative integer, and the divergences cancel. One can recast

the ratio above as

Γ[1 + 2n− 2j3]

Γ[−2j3 + n+ 1]
=

Γ[−m+ n]

Γ[−m]
where m > n, (A.37)

using

Γ[ε−m] =
(−1)m−1Γ[−ε]Γ[ε+ 1]

Γ[m− ε+ 1]
where ε is very small. (A.38)

Applying this relation on both numerator an denominator and taking ε→ 0

Γ[ε−m+ n]

Γ[ε−m]
→ (−1)n

Γ[m+ 1]

Γ[m− n+ 1]
, (A.39)

therefore for j > −1
2 we conclude

χ−1 = O(1),

χ+
1 = 0.

We can then proceed analogously for j < −1
2 to get

χ−1 = 0,

χ+
1 = O(1).

We then have:

for s >
1

2

{
j < j3 ≤ s if j > −1

2

−s ≤ −j3 ≤ j if j < −1
2

.

A.7 The relation between spin-1 discrete modes and ours

Let ∇µ be the covariant derivative of diffeomorphisms. The Laplace-Beltrami operator is

defined as ∇µ∇µ and acting upon a covariant vector field
−→
X of components (Xθ, Xϕ) has

the explicit form

∇µ∇µ
−→
X :=

(
�s=0 + coth2(θ) 2 coth(θ)

sinh2(θ)
∂ϕ

−2 coth(θ)∂ϕ �s=0 − 2 coth(θ)∂θ + 1

)(
Xθ

Xϕ

)
,

where �s=0 is the scalar Laplacian. We have added the subscript s = 0 to remind that

it can be obtained from the magnetic Laplacian previously defined, by particularising to

s = 0. The eigenvector

−→
X 0 = ∇Φ, with Φ :=

(
sinh(θ)

1 + cosh(θ)

)|j3|
ei j3ϕ, j3 = ±1,±2, . . . .

One can check that indeed

�s=0Φ = 0,

and second that

∇µ∇µ
−→
X 0 =

−→
X 0.
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In words,
−→
X 0 is an eigen-tensor of rank one of the Laplace-Beltrami operator ∇µ∇µ with

eigenvalue 1.

More important to our purpose, we have checked that(
−∂2

θ − coth2 θ∂θ +
1

sinh2 θ
(|j3| − cosh θ)2

)
X0θ = X0θ.

Notice that the operator in the l.h.s. equation above coincides with our �s=1 if and only if

j3 > 0.

In fact, the equation above for X0θ implies that X0θ obeys our defining equation

(�s + ∆)X0θ = 0,

if and only if

0 = j (or − 1 = j) < s = 1 ≤ j3 ∈ Z.

It is then consequence that

{X0θ}j3∈N =

{
(cosh θ − 1)j3

sinhj3+1 θ
ei j3ϕ =

1

sinh θ

(
tanh

θ

2

)j3
ei j3ϕ

}
j3∈N

,

= Ξ
(2)
j=0(s = 1). (A.40)

The remaining θ-components of the vector discrete modes, {X0θ}j3∈−N, do solve our defin-

ing equation (�s + ∆)X0θ = 0 if and only if

j3 ≤ −1 = s < j = 0 ∈ Z.

We have thence proven that {X0θ}j3 6=0∈Z are included in our set of square integrable modes

{X0θ}j3∈−N =

{
(cosh θ − 1)−j3

sinh−j3+1 θ
ei j3ϕ =

1

sinh θ

(
tanh

θ

2

)−j3
ei j3ϕ

}
j3∈−N

,

= Ξ
(1)
j=0(s = −1), (A.41)

and correspond to the two possible unit flux (spin one) “helicities” s = ±1.

B On 1 loop determinants

B.1 Alternative regularization

In this appendix we report a second approach to regularize the determinant of OB in the

subspace Ξj=s−1(s) — We present the case s > 1
2 , the s < −1

2 is analogous —:

det
Ξj=s−1(s)

OB =
∏
k∈Z

∞∏
j3=s

(ρ(u) + k)2,

=
∏
k∈Z

(
(ρ(u) + k)2

)∑
j3=s 1

=
∏
k∈Z

(
(ρ(u) + k)2

)∑∞
j3=1 1−

∑s−1
j3=1 1

,

=
∏
k∈Z

(
(ρ(u) + k)2

)ζ(0)−(s−1)
=
∏
k∈Z
|(ρ(u) + k)|−2s+1 . (B.1)
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Where we use the basic definition of Riemann ζ function ζ(t) =
∑∞

n=1
1
nt and the value

ζ(0) = −1
2 .

B.2 Vector multiplet

In this appendix, we prove that the index of a vector multiplet coincides with the index of

matter multiplet with R-charge qR = 2.

The quadratic actions coming out of the localizing terms (2.35) and (2.36), along the

complex path (2.29) and after imposing gauge fixing condition (2.40), are

LBquadratic := (i δD̃)2 + (DtδA1)2 + (DtδA2)2, (B.2)

LFquadratic := i δλ̄†2
←−
D̂ t δλ2, (B.3)

where

i δD̃ := i δD + δF12 + δD̂3σ. (B.4)

The δD̃ integrates trivially. The functional spaces to integrate over the vector and ghost

degrees of freedom are

(δA1, δA2, δσ, δc̄, δc)→ (Ξ(s−1), Ξ(s−1), Ξ(s), Ξ(s), Ξ(s)). (B.5)

The integration of δA1 and δA2 is

∏
k

|s−1|−1∏
j=0

∞∏
j3=j+1

|(ρ(u) + k)| ×
∏
k

|s−1|−1∏
j=0

∞∏
j3=j+1

|(ρ(u) + k)|. (B.6)

In obtaining (B.6) we have used
√

(ρ(u) + k)2 = |(ρ(u) +k)|. In our contour of integration

(ρ(u) + k) is real. The functional space to integrate the gaugini degres of freedom is(
δλ2, δλ̄

†
2

)
→ (Ξ(s−1), Ξ(s−1)). (B.7)

The integration of δλ2 and δλ̄†2, multiplied by the integration of δc̄† and δc, following

from the BRST action (2.44), gives

∏
n

|s−1|−1∏
j=0

∞∏
j3=j+1

|(ρ(u) + k)| ×
∏
n

|s|−1∏
j=0

∞∏
j3=j+1

|(ρ(u) + k)|. (B.8)

As already mentioned, we will not integrate over the zero modes δλ1 and δλ̄1 in order not

to obtain vanishing results.

The super-determinant to compute is

(B.8)

(B.6)
. (B.9)

The result (B.9) is a divergent quantity. To regularize these objects we use the zeta-

regularization procedure but only after co-homological cancellations are performed.
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If s > 1
2 the only contribution to the quotient (B.9), comes from the integration of the

ghosts degrees of freedom (c̄, c) with quantum number j = s−1. The divergent contribution

from this functional space is

s−1∏
j=s−1

∞∏
j3=j+1

|(ρ(u) + k)|. (B.10)

Those degrees of freedom live in Ξj=s−1(s) and are coupled to s units of flux. As a formal

object (B.10) is equal to √
det

Ξj=s−1(s)
(OB), (B.11)

as can be straightforwardly checked from taking the product between equations (4.6)

and (4.7) and particularizing the result to j = s− 1.

We have already computed the zeta regularized determinant of the operator OB on

Ξj=s−1(s). In this space and for a given S1 KK mode k, OB has a unique eigenvalue:

(ρ(u) + k)2 and the square root of its zeta-regularized determinant is√
det

Ξj=s−1(s)
(OB) = |(ρ(u) + k)|−s+

1
2 . (B.12)

The value of the parameter s is

s =
−ρ(m)

2
, (B.13)

because the ghosts have qR = 0. For s < 1
2 the same result is obtained, by following

analog steps.

From (B.12), after taking the products over roots and KK modes and after regulariza-

tion we obtain

Zvector
1−loop(H2,m) =

∏
ρ∗

[
|Creg sin

(
ρ(u)

2

)
|
] ρ(m)+1

2

, (B.14)

=
∏
ρ∗

[
|Creg sin

(
ρ(u)

2

)
|
]−ρ(m)+1

2

, (B.15)

where

Creg = −2i. (B.16)

Equality (B.15) proves the statement made below equation (4.24), that is, independence

of the GNO conditions. In the second equality in (B.15), we have performed the inversion

of roots ρ→ −ρ.

C Conventions: 4d N = 2 gauged supergravity

In this appendix we summarize our conventions for 4d N = 2 gauged supergravity. The

construction of black holes reported in section 6.2, was implemented in a Mathematica file.
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If the reader is interested in the file, please write an email to us. If there is interest, we are

more than happy to share it.

The 4d gamma matrices

γ1 =


i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i

 , γ2 =


0 0 0 i

0 0 −i 0

0 −i 0 0

i 0 0 0

 , γ3 =


0 −i 0 0

−i 0 0 0

0 0 0 −i
0 0 −i 0

 ,

γ4 =


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 . (C.1)

γab =
1

2
[γa, γb], γ5 = iγ4γ1γ2γ3. (C.2)

The SU(2)R R-symmetry invariant tensors

εAB = εAB =

(
0 1

−1 0

)
. (C.3)

The SU(2)R generators

σ1
AB =

(
1 0

0 −1

)
, σ2

AB =

(
−i 0

0 −i

)
, σ3

AB =

(
0 −1

−1 0

)
, (C.4)

σ1AB =

(
−1 0

0 1

)
, σ2AB =

(
−i 0

0 −i

)
, σ3AB =

(
0 1

1 0

)
. (C.5)

The σI BA with I = 1, 2, 3 are the Pauli matrices.

The ordering of coordinates is

(1, 2, 3, 4) ↔ (r, θ, ϕ, t) . (C.6)

For hyperbolic solutions:

FΛ
µν =


0 0 0 0

0 0 1
2 sinh(θ)pΛ 0

0 −1
2 sinh(θ)pΛ 0 0

0 0 0 0

 , (C.7)

F−Λ
µ,ν =


0 0 0 ipΛ

4h(r)2

0 0 1
4 sinh(θ)pΛ 0

0 −1
4 sinh(θ)pΛ 0 0

− ipΛ

4h(r)2 0 0 0

 . (C.8)
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C.1 Parametrization in terms of scalar

In this subsection we post a series of useful objects in terms of physical scalars z1, z2, z3.

The results reported in this subsection, are consistent with the BPS equations obtained

for the choice + in equation (6.14).

K=− log

(
8
√
z1z2z3

(z1+z2+z3+1)2

)
, (C.9)

F =
(
F̄
)∗

=−2i

√
z1z2z3

(z1+z2+z3+1)4
, (C.10)

FΛ =

 i
√
z1z2z3

z1+z2+z3+1
,

i
√

z2z3

z1

z1+z2+z3+1
,

i
√

z1z3

z2

z1+z2+z3+1
,

i
√

z1z2

z3

z1+z2+z3+1

 , (C.11)

FΛΣ =
(
F̄ΛΣ

)∗
=



1
2 i
√
z1z2z3 −1

2 i
√

z2z3

z1 −1
2 i
√

z1z3

z2 −1
2 i
√

z1z2

z3

−1
2 i
√

z2z3

z1
1
2 i
√

z2z3

z13 − iz3

2
√
z1z2z3

− iz2

2
√
z1z2z3

−1
2 i
√

z1z3

z2 − iz3

2
√
z1z2z3

1
2 i
√

z1z3

z23 − iz1

2
√
z1z2z3

−1
2 i
√

z1z2

z3 − iz2

2
√
z1z2z3

− iz1

2
√
z1z2z3

1
2 i
√

z1z2

z33

 , (C.12)

f̄Λ
j =


1

8
√

2
4
√
z15z2z3

− 3

8
√

2
4√
z1z2z3

z2

8
√

2
4
√
z15z2z3

z3

8
√

2
4
√
z15z2z3

1

8
√

2
4
√
z1z25z3

z1

8
√

2
4
√
z1z25z3

− 3

8
√

2
4√
z1z2z3

z3

8
√

2
4
√
z1z25z3

1

8
√

2
4
√
z1z2z35

z1

8
√

2
4
√
z1z2z35

z2

8
√

2
4
√
z1z2z35

− 3

8
√

2
4√
z1z2z3

 , (C.13)

NΛΣ = i


−
√
z1z2z3 0 0 0

0 −
√

z2z3

z13 0 0

0 0 −
√

z1z3

z23 0

0 0 0 −
√

z1z2

z33

 , (C.14)

gzz̄ =


3
16

1
z12 − 1

16
1

z1z2 − 1
16

1
z1z3

− 1
16

1
z1z2

3
16

1
z22 − 1

16
1

z2z3

− 1
16

1
z1z3 − 1

16
1

z2z3
3
16

1
z32

 . (C.15)
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