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1 Introduction

Three dimensional field models attract much attention due to their comparatively simple
structure and remarkable properties of three-dimensional flat and curved spaces. One of the
achievements in this area is a construction of three-dimensional higher spin field theories
(see the pioneer works [1-3], for modern development see e.g. the recent papers [4, 5] and
references therein).

The aim of this work is to construct the massive higher spin supermultiplets in the
three-dimensional anti-de Sitter space AdSs. As is well known [6], the AdS3 space possesses
the special properties since all the AdSs3 superalgebras (as well as conventional AdSs3 algebra
itself) factorize into “left” and “right” parts. For the case of simplest (1,0) superalgebra
(the one we are working here with) such factorization has the form:

OSp(1,2) ® Sp(2)

so that we have supersymmetry in the “left” sector only. It means that the minimal
massive supermultiplet must contain just one bosonic and one fermionic degrees of freedom.



Recently we constructed such supermultiplets using the unfolded formalism [7]. In this
paper we develop the Lagrangian formulation for these supermultiplets. It generalizes the
Lagrangian formulation for massive supermultiplets in three dimensional Minkowski space
given in [8]. Note here that the off-shell superfield description for the supermultiplets
containing topologically massive higher spin fields was constructed recently in [9].!

We develop the component approach? to Lagrangian construction for supersymmetric
massive higher spin fields in AdSs on the base of gauge invariant formulation of massive
higher spin fields. It was shown long enough [12, 13] that massive bosonic (fermionic)
spin-s field can be treated as system of massless fields with spins s,s — 1,5 —2,...0(1/2)
coupled by the Stueckelberg symmetries. Later, a frame-like formulation of massive higher
spin fields has been developed in the framework of the same approach [14]. It allows us to
reformulate the massive higher spin theory in terms of gauge invariant objects (curvatures).
In massless four-dimensional higher spin theory such curvatures are very convenient objects
and allow, e.g, to built the cubic higher spin interactions [15-18]. However the construction
of curvatures proposed in [15-18] is essentially adapted only for theories in four and higher
dimensions. Nevertheless the formalism of gauge invariant objects can be successfully
applied to massive higher spin fields in three dimensions as well. It was shown that in
three dimensions the gauge invariant Lagrangians for massive higher spin fields [19, 20]
can be rewritten in explicitly gauge invariant form [21]. In this work we elaborate this
formalism for Lagrangian construction of massive higher spin supermultiplets with minimal
(1,0) supersymmetry where the algebra of the supercharges has the form

A
{chQﬁ} ~ Pa,B + 5 aff
Here P,y and M, are the generators of AdS3 algebra with the following commuta-
tion relations (the conventions and notations for the indices are specified in the end of
introduction)

[Ma(2)7 M5(2)] ~ 5046Mo¢,37 [Pa(Q)a PB(Q)} ~ AQ&aﬁMaﬁ
[Ma(Z)’ PB(2)] ~ EaBPaﬁ

Note that as in all three-dimensional AdS supergravities [6] (see also [22] for higher di-
mensions) in our frame-like formalism we consider supertransformations just as the part
of local superalgebra acting in the fiber only. As a result the commutators of our super-
transformations close off-shell without any need of some auxiliary fields (see section 6).
In the massive supermultiplets case the price we have to pay is that the Lagrangians are
invariant under the supertransformations up to the terms proportional to the spin-1 and
spin-0 auxiliary fields equations only.

!The off-shell 3D,/ = 2 massless higher spin superfields and their massive deformations has been
elaborated in [10]. The conditions defying the N' = 1 massive superfield representations in AdSs; were
formulated in [11].

2List of references on component and superfield formulations of higher spin supersymmetric theories is
given in our paper [7].



A general scheme for Lagrangian formulation of massive higher spin supermultiplets
looks as follows. Let Q4 ®4 is a set of fields and R?, F4 is a set of curvatures corre-
sponding to frame-like gauge invariant formulation of massive bosonic and fermionic fields
respectively. The curvatures have the following structure

RA=DOA + (e)?,  FA=Do% 4 (ed)”

where e = euo‘ﬁ is a non-dynamical background AdSs frame. Lagrangian both for bosonic
and for fermionic massive higher spins are presented as the quadratic forms in curvatures

ﬁBZERARA, ﬁ]:IZFAFA (1.1)

where Lp is a bosonic field Lagrangian and Lg is a fermionic one. Note that for massless

expression [21]

higher spin fields in three dimensions such form of the Lagrangians is impossible. Then,
in order to realize supersymmetry between the bosonic and fermionic massive fields we
deform the curvatures by gravitino field ¥, with parameter of supertransformations ¢*.
In the case of global supersymmetry we consider gravitino field as a non-dynamical back-
ground and parameter of supertransformations as global (i.e. covariantly constant). Such a
construction can be interpreted as a supersymmetric theory in terms of background fields
of supergravity. Schematically the curvature deformations are written as

AR = (wo)4,  AFA =(vQ)4
and supertransformations have the form
60t~ (80)4, 5% ~ (Q0)*

The restrictions on the form of deformations and supertransformations are imposed by
requirement of covariant transformations for deformed curvatures R4 = R4 + ARA

SR~ (FOY,  6F ~ (ROA

Finally the supersymmetric Lagrangian for given supermultiplets is the sum of La-
grangians (1.1) where initial curvatures are replaced by deformed ones R, F' — R, F. Pos-
sible arbitrariness is fixed by the condition that the Lagrangian must be invariant under
the supertransformations:

0L =Y [RYRA + FA4F =Y RYFO* =0

Aim of the current paper is to demonstrate how such a general scheme can actually be
realized for supermultiplets in AdSs.

The paper is organized as follows. First of all we fix the notations and conventions. In
section 2, following the above scheme we consider as an example, the detailed Lagrangian
construction of massive supermultiplet (2, %) Such an example illustrates all the key points
of the construction. The next sections are devoted to generalizations of these results for
arbitrary massive supermultiplets. In section 3 we consider the gauge invariant formulation



of massive fields with spin s and spin s + % which will be used for supersymmetric con-
structions. In particular, we write out all field variables and gauge-invariant curvatures and
consider the Lagrangian in terms of these curvatures. Further, following the above general
scheme, we study two massive higher spin supermultiplets. Supermultiplets (s, s + %) is
studied in section 4 and (s, s+ %) is studied in section 5. At last, in section 6 we show how
the AdSs superalgebra is realized on our supermultiplets. In conclusion we summaries and
discuss the results obtained. For completeness, we include in the paper two appendices de-
voted to frame-like description of massless fields in three dimensions. Appendix A contains
the bosonic fields, appendix B contains the fermionic ones.

Notations and conventions. We use a frame-like multispinor formalism where all the
objects (3,2,1,0-forms) have totally symmetric local spinor indices. To simplify the expres-
sions we will use the condensed notations for the spinor indices such that e.g.

0a(2k) _ olaroz..az)

Also we will always assume that spinor indices denoted by the same letters and placed on
the same level are symmetrized, e.g.

Qa(2kz)ca — lor..oz Cazk+1)

AdS3 space will be described by the background frame (one-form) e*() and the covariant
derivative D normalized so that

D ADC* = =N E%g(¢P

Basis elements of 1,2, 3-form spaces are respectively e*?), E*?)  E where the last two are

defined as double and triple wedge product of e®(2):

e A ePB = 50‘BE0‘6, EO A PP = coBab R,
Also we write some useful relations for these basis elements
E“y A e = 38, e’y A e = 4F°8.

Further on the sign of wedge product A will be omitted.

2 Massive supermultiplet (2, %) example

In this section we consider in details the Lagrangian realization for massive supermultiplet
(2,3/2) example using the method mentioned above in the introduction. We start with the
gauge-invariant formulations of free massive fields with spin 2 and spin 3/2 separately. Us-
ing such formulations, we present the full set of gauge-invariant curvatures for them. Then
we consider the deformations of these curvatures by background gravitino field ¥* and find
suitable supertransformations. As a result we construct the supersymmetric Lagrangian.



2.1 Free fields

Spin 2. In gauge invariant form the massive spin-2 field is described by system of massless
fields with spins 2,1,0. In frame-like approach the corresponding set of fields consists of
Q@) @) (B2 A) and (%), ) (see appendix A for details). Lagrangian for free
massive field in AdS3 have the form [19]

L = Qe Q7 + Q) D@ + EB*P B, 5
—6a(2)Ba(2)DA - Eﬂ'a(z)ﬂ'a(g) + Ea(Q)ﬂ'a(g)DQD
+2mea(2)ﬂo‘(2)A + mfaﬁEﬁ,yB‘W + 4771Ea(2)770‘(2)A

M2 N 3
+Tfocﬁeﬁvfm — minE ) f*P o+ §m2EW (2.1)

It is invariant under the following gauge transformations

M2
5002 = ppa@ 4 Teaﬂfaﬂ 5@ = pea@ 4 P — Ime®@¢
5B = _ompe( §A = D¢ — %ea@)ga(?)
57 = —mmee® dp = —4mé (2.2)

where m is the mass parameter and
m2:M27 M2:m2—|—)\2

The curvatures invariant under gauge transformations (2.2) have the form

R*®) = D@ 4 ]\feaﬂ £ —m?E*3 B — mmE*®)
T?) = D@ 4 250 — 2me@ A
B?) = pp? _ @ 4 ]\feamaﬁ
A=DA- %ea(g) Fo@ 4 2mE, 5B
10®) = pro@ _ po@ 4 o pos . M a@),

2M
® = Do+ 4mA + mMea(g)ﬂ'a(Q) (2.3)

Here we have changed a normalization for the two zero forms
BO® L _opmpe®  pa@) Ly _ppppe® (2.4)

It is interesting to point out that, unlike massless theory in three dimensions, the La-
grangian for massive spin 2 (2.1) can be presented in manifestly gauge invariant form

m
—€
4m @

1
L= _§Ra(2)ﬂa(2) — 5 TaB*® — (B8P (2.5)

N | =



Spin—%. In gauge invariant formulation, the massive spin-3/2 field is described by system
of massless fields with the spins 3/2,1/2. In frame-like approach the corresponding set of
fields consists of @, ¢*. (see appendix B for details). The free Lagrangian for mass m;
field in AdS3 has the following form

1

i
L=—3,DP* + igﬁan‘ngzﬁﬁ —

2
M 3M
—if@aeaﬂqﬁ — i2m1 D B p¢” — i : L B d® (2.6)
It is invariant under gauge transformations
6B = DE™ + Mye®pe?  §¢% = —2m&° (2.7)
where
)\2
M12 = m12 + Z

One can construct the gauge invariant curvatures with respect (2.7). After change of
normalization ¢ — —2m1¢® they look like
Fo = DO 4+ Mye®3®° — 4mi*E5¢°
CY = D¢* — O + Mye®5¢° (2.8)
As in the previous spin-2 case, one notes that Lagrangian (2.6) can be rewritten in terms
of curvatures (2.8)
L= %faca (2.9)

The above results on spin-2 and spin—% fields are building blocks for supersymmetriza-

tion. Full set of gauge invariant curvatures contains (2.3) and (2.8) respectively. Corre-
sponding expressions for Lagrangians in terms of curvatures are (2.5) and (2.9).

2.2 Supersymmetric system

Before we turn to Lagrangian formulation for massive supermultiplet (2, 3/2) let us consider
this supermultiplet in massless flat limit. That is we consider the sum of Lagrangians (2.3)
and (2.6) in the limit m, m1, A — 0. It has the form

L = Qape’ 0 + Qo)D) + EB,3B*® — Boge™? DA
; 1
—Emapm®® 4 mosE** Dy — %%Dqﬂ + 56aE*3D’ (2.10)

Such a Lagrangian describes the system of free massless fields with spins 2,3/2,1,1/2,0.
One can show there exist global supertransformations that leave the Lagrangian (2.10)
invariant. These supertransformations with the redefinition (2.4) have form

3@ = i dce
§A = iag®*Co — i2mi Boeasd®C?
5o = im10pd7¢,
09 = 2610% (s — 2mage ) B¢
4mBoy mMé,

5¢* = —— B+

of 2.11
o o " € (2.11)




The parameters 31, 89, g, 0y are arbitrary but, as it will be seen later, they are fixed in
massive case. The choice of such notations for them will be clear from in next section for ar-
bitrary higher spin supermultiplets. To prove the invariance we need to use the Lagrangian
equations of motion for auxiliary fields 7%, B*2) corresponding to spins 0 and 1

1
E*3DBP = E"3DBP*,  E*.dn’T = §eaﬁE,y(;D7ﬂ5 (2.12)

Thus, we see that in the massless flat limit the Lagrangian formulation of pure massive

3
]
provide us the unique possibility for construction of the correct supersymmetric massive

supermultiplets (2, 5) we must get the supertransformations (2.11). This requirement will

theory.

Deformation of curvatures. Now we are ready to realize the massive supermultiplets.
We do it deforming curvatures by background gravitino field ¥* with global transformation
in AdSs

ST = DC* + %eaﬁgﬁ (2.13)

The main idea is to deform the curvatures so that they transform covariantly through
themselves. It means that for all the deformed curvatures R4 = R4 + AR the following
relations should take place

SRY = 5: R + oAR? = (RO)4 (2.14)

where d¢ is the transformation (2.13) and d¢ is the linear supertransformation.

Let us consider the following ansatz for deformation of spin-2 curvatures

ARQ(Q) = ,L-p1<1>a\1,a - Z'pAOBOC(Q)CZ)’y\IIA/ ATa(2) = Z'qu)a\pa
ABQ(Z) _ —iﬁ1¢a\1’a AA = ’L'Ozo(I)’y\I’fy — i2mlﬂoea5¢a\1’ﬁ
ATT?) = —iB) "0 AD = imy 6o, D7 (2.15)

Also one introduces the corresponding supertransformations

00 = ip ¢ — ifoe®@ p, (7 01 = i1 @¢"
5B@) — ip oco §A = iag®¢, — i2m1 foeasd® (P
57@ = i3 gce S = —imyd¢C” (2.16)

The form of the supertransformations is completely determined by the form of deformations
for curvatures. Besides (1, 89, ag, 5o parameters which remain arbitrary from the massless
case, we have new arbitrary parameters p1, 1, po, Bl- All the parameters will be fixed by
requirement of covariant homogeneous curvature transformation (2.14). In addition there
are two mass parameters M, M, an we will see that one is related to another.



Let us check the requirement (2.14) for curvatures R, 7%2). One one hand

N M2
5Ra(2) _ ipqu)aCa + ,L-ﬁoea(Q)DqSBCﬂ + 7;751606(2)@5(5
[ M? 1 : 11 .
+1 <251 - 2>\p1> ey +1 <_m2,01 - 5/\,00 + 2mMm150> BT
. 2 L. 1 N o «
+i | —mpy — 5)\p0 — imMmlcSo E*,¢7¢
N 1
573 = B DB + i(—2mag + 2p1)e* PB4 + i <2p1 - 2)\61> e BT
+i(—4mm1,80 - 4ﬁ0)Ea7¢a<7 + i(—4mm1ﬁo + 4/30)Ea7(;5’7<a
and on the other hand
IR = ip1 F¢™ = ipoe™PCP (s = ip1 DO + ipoe™® Do (g
+i(po + 2My1p1)e® P D5 +i(Mypy)e, D¢
—iM1po B ¢*CY +i(=Mijo — 4ma®p1) B ¢7¢°
5T = iBFoC® = iBi DB +i(2M1 1) P DF ¢y
+i( M1 B1)e®, @YY — idmy B B 7 ¢ (2.17)
Comparing the above relations, we obtain the solution

A M MM - (M — )
e —_ - = — = —_—_— e ——
My =M 57 pL= B, Po 5 B, Qg o b1
2ma

do = 40 = —
For curvatures B2 11%2) we have on one hand
0B = ip1 D (" — ip1 &¢°
+i (—ﬁo + ]‘fﬁ}) @7y +i (ﬂf& - iAm) e d*¢7
S = i3 D¢ — iy DC°
i (mg}‘;‘] + 2,31) @by 4 <2ﬁ1 = ;m}) e, ¢%¢

and on the other hand

OB = ip1CoC™ = ipy DPC™ — iy D¢
+i(2M1 1)@ ¢P L + i (M )e® ¢
O = if1Co(" = b1 DG ¢ — ifLB¢"
+i(2M131)e°‘(2)¢5§5 + i(MlﬁAl)@ayﬁbaC’y (2.18)

Comparison of above relations yield

B =B, p1=p1



The transformation laws for curvatures A and @ look like
0A = i FCo +i2m1BoeasCC?, 60 = im100C7¢, (2.19)
Now we consider ansatz for deformation of spin-3/2 curvatures

AF* = 2619aﬁ\115 - 2m0¢067(2)B'Y(2)\I/a + 50fa5\11ﬁ + ’)/OA\I/a - ’Nygeaﬁ(p\lfﬁ

ace — —Ambo pasy M0 g
mi 2m1

Ug — pop ¥
One introduces the corresponding supertransformations

50 = 28195 — 2mage, ) BTHCY + 80 f*P (s + 10 AL — Foe*Ppls

4 MG,
mﬁOBQBCB—i— mMdo

af a 2.2
o o ¢g + powC (2.20)

5¢* =

Let us require the conditions (2.14). The we have on one hand

O0F* = 26D s + 2magesa) DBPPC + 60D f*0¢s + 40 DA™ + GoDpe ¢
+H(=ABL = 2M1B1)ey ) Q%7 + (2M1 1) ey VD"

1 1
- (—2)\50 — M150) ey f*7CT + (Mido)ey ) f 1P ¢ + (Ml’vo - 2)\’Yo> e“ AT

—|—(—4mM1a0 — 16mm1 8y + kaao)EavBVﬁéﬁ + (4mM1ag — Zm)\ao)Ev(g)BOWCA/
—2mMmyboE®,n"P (s + (4MyA0 — 4mi2po + 2050) B, (Y

o = 0 ppesg, 4 T % Doy 4 po DpC™ — 33,9 Cy — b0 fPCs — 0 AC
N <_2mﬁ0)\ B 4mM1ﬁo> €0 BYICT + <2ma0 n Mlﬁo) e B¢
my my mi
" (_ nj\nf% - mﬂgﬁi{l%) ey77¢
+ (m]\;ﬁ{lgo) ey P + <—% + Mipo — ;Apo> ey pC?

and on the other hand

SF* = 28R (5 + 2mapesy B2 D¢ + 56T (5 + 1A + FoPe® 5¢”
= 281 D05 + 2magesn) DB + 60D f*P (5 + 70D AC™ + Ao Dpe® g¢P
—25067(2)90‘7(}[ + (—2ma0 + 50)67(2)97(2)Ca - M2,816,y(2)fa7<7

1 M? L
- (‘””“ - 51) e /7P + (2mdy — AMAo)e®, ACT

4
+(—=2m2B1 + 2my0) E* B (g + (2m>B1 + 2mo) Ey(2) B¢
+(—2mMAy + 4mM ao)Eo‘wﬂBCB + 2mMAy + 4mM ) B2y 77
+2mM B E o (2.21)



. 4 M
50 = m/BOBaﬂC + m OHQBC,B + PO‘I)Ca
miq mq
4 mMd, M6
= 2B ppasg, + o DTG+ po D — B gosg, ™ L
mi mi
M6 M5 2 M2
FAM po AC® — m 067(2)Ba7C'y + mioo, (2)37(2)<a _ Me T
mq 27711 micCo
mMQﬁ() 2]\450
M 7(2) por e® 2l 2.22
+ (m po + o > ey(2)m (Y — T Vi v¢€ (2.22)
Comparison of the above relations gives us at My, = M — %
- 2M (M — X M —\
= Mp, 702—2702—7( )/31, ,0027( )51
m 2m

Thus imposing the condition of the covariant curvature transformations (2.14) we fix
the supersymmetric deformations up to common parameter 7 and relation between mass
My =M — % The law of supersymmetry transformations is given by (2.16), (2.20). The
obtained result is in agreement with our recent work [7] where we studied the analogous
supermultiplets (2,3/2) in unfolded formulation.

Invariant Lagrangian. Now we turn to construction of supersymmetric Lagrangian
corresponding to supermultiplets (2, %) Actually in terms of curvatures it presents a sum
of Lagrangians for spin 2 (2.5) and spin 3/2 (2.9), where the initial curvatures are replaced
by deformed ones R — R

Using the knowing supertransformations for curvatures (2.17), (2.18), (2.19), (2.21), (2.22)
it is not very difficult to check the invariance of the Lagrangian. Indeed

4m1
) 2m oo . 1 aro
—i (51 — 50) FEC By — i <p1 — 50) Ta2)C*¢C
mq 2
L /mma o« S0 i /m ~ ~ a9y Yo’
—i (50 + mao ) eas)B <2>c”<7 — 5 (51 +70) ea ¢
Z'YO ACOC, + ZPOJ:- OC + 2“)06 a2 )CBH (Q)C,B

~ i M ~ a o A o
oL = —i <p1 - m%) FA( g2y — i(B1 — B1)Ra(2)C¢

Taking into account the equations of equation for fields B2, 7%2) which are equivalent
to the following relations

=0, A=0 = e,pI"@=D0—4MA=0

we see that the variation d£ vanishes.

,10,



3 Free massive higher spin fields

For completeness in this section we discuss the gauge invariant formulation of free massive
bosonic and fermionic higher spin fields in AdSs [19, 20]. Besides, we present the gauge
invariant curvatures, the Lagrangians in explicit component form and the Lagrangians in

terms of curvatures for bosonic spin s and fermionic spin s + 1/2 fields.

3.1 Bosonic spin-s field

In gauge invariant form the massive spin s field is described by system of massless fields

with spins s, (s — 1),...,0. In frame-like approach the corresponding set of fields consists

of (A)
(QER) poBRy 1<k < (s—1), (B*®4), (=°®) )

Free Lagrangian for the fields with mass m in AdS3 have the form

s—1
L= Z(_l)k+1[kQa(Qkfl)BeﬁWQa@kilh + Qa(Qk)Dfa(2k)]
k=1

+EBasB* — Boge®® DA — Emosn® + 105 B’ Dy

2 (k+2)
+ Z(—l)kﬂak [— Qo252 €™ PP + Q op e5(2) fHEHPR)
k=1

k

+2aoQa(2)ea(2)A — ag fap BB + 2sMm,s E*P A

3a02

Fo?
5 ¥

s—1
+ > (1) b foono1yp€ 1 FUEETIT 4 by fon) EYP o +
=1

where
9 kE(s+k+1)(s—k—1)

% = S D ek~ kDN

1 —1
a02 — (8 + )3(8 ) [M2 o )\2]
s> M? sMay
b — b = 2: 2 -1 212
FS e T g Mo=miA s

It is invariant under the following gauge transformations
5QECR) Z Do) 4 (k + 2)ay, COLC)
k

k=1 o2), ak—2) |, Ok o ca(2k—1)8
Trek—n° T et

5fa(2k) _ D&a@k) +€a5na(2k_1)6+ak€5(2)§a(2k)ﬁ(2)

(k +1ag— ¢a(2) ga(2k=2)
ke — 1)(2k — 1)

50°® = D@ + 3a1e509)n PP 4 bre
5f04(2) — Dfa(Q) + ea»YT]OW + aleﬁ(Z)Ea@)ﬁQ) + 2a0€0‘(2)£

— 11 —

(3.1)

(3.2)



5B@) = 2007 SA = D§+ “eo(2)EC

M
o = saoga@) 0p = —2Ms€

One can construct the curvatures invariant under these gauge transformation. After change
of normalization

BO® 9005 pal2) _y poral®) (3.4)
the curvatures look like

RoCR) _ poalk) | (k +k2)ak 522 EDI)

U=l a(2)qa(2k-2) | Pk o sa(26-1)8
k= D°¢ et

Ta(Qk) _ Dfa(2k) + eaBQa(Qk—l)B + akEB(Q)fa(Qk)B(2)

(k+ 1)ag—1 ¢(2) pa(2k-2)
Rk — 1)(2k — 1)

RO = DR 4 3ay0405)0°@8Q) 4 pye fcw — ag?E3B*? + byE*Pp  (3.5)
T2 = D@ 4™ Q% + ayega) f*@PP 4 20?4
B2 = pB*®?) — ) 4 p e BT B + 3a165(2)BO‘(2)5( )

A= DA+ %ea@)fa@) _ QQOEW(Q)B’Y(Q)

) = pro® _ @ 4 o pas 10 0@, g o0 ra2)50)

20
sM
® = Dp+2MsA — boea@)ﬂ'a@)

b a
Ba(?k) — DRBo2k) _ o(2k) Yk o __a(2k-1)3 k—1 a(2) gpo(2k-2)
+k€ BT +k(2k—1)€

k+2)

k

_ kE+1)ag—1 _
Ha(2k) - D a(2k) _ ra(2k) @ Ba(2k 1B ( a(2), _a(2k—2)

i f +e%p +k(kz—1)(2/~c—1)e ™

+ak65(2)ﬂa(2k)5(2) (36)

a5y BOERO)

In comparison with massive spin 2 case, the construction of curvatures for higher spins
has some peculiarities. Namely, in order to achieve gauge invariance for all curvatures we
should introduce the so called extra fields Ba(%),wa(%), 2 < k < s—1 with the following
gauge transformations

5Ba(2k) _ na(Qk:) 67Ta(2k) _ 5&(2]{2)

As we already pointed out above, in three dimensions it is possible to write Lagrangian
in terms of the curvatures only. In case of arbitrary integer spin field, the corresponding
Lagrangian (3.1) can be rewritten in the form
1 s—1
L==2 (DR o) TR 4 T 01 BACH)] +

2
k=1

QSM a2 B°? 0 (3.7)
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3.2 Fermionic spin-(s + %) field

In gauge invariant form the massive spin (s + 1/2) field is described by system of massless
fields with spins (s +1/2), (s —1/2),...,1/2. In frame-like approach the corresponding set
of fields consists of (B)

P(2k+1) 0<k< (S _ 1)7 o

Free Lagrangian for fields with mass my in AdS3 looks like

- 1 1
;,C _ Z(_l)k—i-l |:2q)a(2k+1)D(I)a(2k+l) + §¢aEaﬂD¢5
k=0

|
—

S

) (=)Mo 1)) e? PO 4 o0 B 56

[V~
Il
— =

dy, o
+ (—1)’“"'1?@&(%)5657@ (2k)y

_ 3do

S Ead” (35)

=
Il
=)

where

Ck2 _ (S+k+1)(5_k;) |:M12_(2k+1)2)\2:|

20k + 1)(2k + 1) 4
2
co? = 2s(s+1) [M12 — Z] (3.9)
_ (2s+1) 2_ .2 1 22
dp = 7(2]6‘—!—3)]\41, Mi“=m1“+ | s 9 A

The Lagrangian is invariant under the gauge transformations

d
$aE+1) _ pea(2k+l) k a ca(2k)B
g ¢ HCTES T

Ck a(2) pa(2k—1)
PO

00" = co&”

+ + Cy1ep() TR (3.10)

Let us construct gauge invariant curvatures with respect (3.10). After change of normal-
ization ¢ — co@® the curvatures have form

d
a(2k+1) _ D(I)a(2k+1) k o (I)a(2k)ﬁ
d Ty’

Ck 04(2)(1)04(219—1)
ek )”

F4 = DO* + don‘g(I)B + 6166(2)(1)@8(2) — 002Ea5<;55
c* = D(ﬁa — P« + doeafg(ﬁ’g + 0165(2)¢a’5(2)

d
a(2k+1) _ D o(2k+1) (I)a(2k+1) k a 1a(2k)B
¢ ¢ MEC T

L Ok a()gak-D)

a(2k+1)B(2) 11
k(2k + 1) )9 (3.11)

+ Cr+1€5(2

,13,



As in the case of integer spins in order to achieve gauge invariance for all curvatures we
should introduce the set of extra fields ¢*2*+1) 1 < k < (s — 1) with the following gauge

transformation
5¢o¢(2k’+1) _ ga(?k-{—l)

Finally the Lagrangian (3.8) can be rewritten in terms of curvatures only as follows
(= 1) Faapgy COFHY (3.12)

In section 5 we will need the description of massive spin-(s —1/2) field. It can be obtained
from the above description by replacement s — (s — 1).

So we have considered the free massive fields with spins s and spins s + % Also,
we have formulated the gauge invariant curvatures (3.5), (3.6), (3.11) and gauge invariant
Lagrangians (3.7), (3.12). In the next sections we will study a supersymmetrization of

these results and construct the Lagrangian description of the supermultiplets (s, s + %)

(s,8—3).

4 Massive supermultiplet (s, s + %)

In this section we consider the massive higher spin supermultiplets when the highest spin
is fermion. For these supermultiplets we construct the deformation of the curvatures, find
the supertransformations and present the supersymmetric Lagrangian.

Massless flat limit. Before we turn to realization of given massive supermultiplets let
us consider their structure at massless flat limit m, my, A — 0. In this case the Lagrangian
will be described by the system of massless fields with spins (s + %), Synns %, 0 in three
dimensional flat space

s—1
L= (D) [kQaar-1)5" QDT 4 Qo DFAY)
k=1

+EBosB*” — Bage®® DA — Erosn® + 105 B’ Dy
1
1
(=1 @ a1y DRV - =90 B D’ (4.1)
0

»
|

+

N | .
Eond
Il

One can show that this Lagrangian is supersymmetric. Indeed, if the equations of mo-
tion (2.12) are fulfilled, the Lagrangian is invariant under the following supertransforma-

tions

5f0¢(2k‘) _ iﬁkq)a(Qk—l)Ca + Z-akq)a(Qk)ﬂCB

5% = B¢ + i Py
) o ) o ico0
6A = i0g®Ca +icofoeapd™’,  dp= 027G,
Pok+l) — Yk a@2k) a4 9 1 Qa(2k+1)8

— 14 —



50 = 28195 + 2apapesoy BH P ¢

8 bod
5% — aofo BBy + 2000 pas
Co Co

Here we take into account the normalization (3.4). Thus, requiring that massive theory
has a correct massless flat limit we partially fix an arbitrariness in the choice of the super-
transformations. Parameters ay, B, Bo, ag, 0g at this step are still arbitrary.

Deformation of curvatures. Again we will realize supersymmetry deforming the cur-
vatures by the background gravitino field ¥*. We start with the construction of the
deformations for bosonic fields

ARYH) = ip @R DT 4 iy, GNP

AT = i3, @R Dy o, Ry

ARY®) = jp &4V 4 i1 d*2BW 5 4 e PP U,
AT = i3V 1 ja, &Py

Z'Co(SO

AA = iag®* T, + icoBoen (3™ V7, AD 5 P,
AB&(?k) _ —iﬁk¢a(2k_1)q/a _ ,La_k¢oc(2k)ﬁ\1jﬂ
AHa(?k) _ _,L-qusa@kfl)lpa - i&k¢a(2k)6\ljﬁ
Corresponding ansatz for supertransformations has the form
5904(2]6) _ Z*pkcba(Zkfl)Coc + Zo,k(I)a(Qk)BCB
5fa(2k) _ iﬁkq)a(Qk—l)ga + iakq)a(Qk)ﬁ(ﬁ
3Q®) = p ¢ + i1 D“DP5 4 ipoe™ P ¢
522 = i1 B¢ + i, d*PF¢, (4.2)
. o ) o icod,
0A = i00®Ca +icofocadC’, o= =207,

5Ba(2k) _ iﬁk¢a(2k_1)ca + Zf}k(ba(%)BCﬂ
67Ta(2k) _ Z'Bk(;soz(Qkfl)Ca + de¢a(2k),8CB

All parameters will be fixed from requirement of covariant transformations of the curva-
tures (2.14). First of all we consider

57%(1(2]6) _ Z',Okfa@kil)ca + ’io‘kfa(Qk)’BCB
57k — Zﬂk}'a(?k—l)ca + iak}'a(%)ﬁgﬁ (4.3)
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It leads to relation My = M + % between mass parameters M; and M and defines the

parameters
2= k(s+k+1)[M + (k+ 1)\ a?
2 (k+1)(s — k) 52
= M —_
P k(2k + 1) [M = kB
9 (s+k+1) 9
=~ — M
o AUESIE M + (k+1))\]o
2 (s —k) 2
= M — kX 4.4
P )2k 1) % (44)
where
p=0 p=Ma o soMs o ot
2 PTanRt T "~ 25(s — 1)[M + s

From the requirement that

630{(2]6) — iﬁkca(Zkfl)Ca +Z&kca(2k)ﬁ<ﬂ
STIOCR) — g, co@k—1 a +idkca(2k)ﬁcﬁ (4.5)

one gets
Pk =Pk, Ok =0k,  Br=7P0k =0y
Requirement of covariant transformations for the other curvatures
SR = ip  FoCY 4o FUPDPCy — ipoe@ Py
0T = iy FoC* +ian F*@P g

7:0050

0A = iagFCo — icofoeasCiC?, 60 = — 5 G (4.6)
gives the solution
o= —=co?B1, o =dfp = 2 “
= — —( = = — (8] =
£0 3 0 P1, 0 0 a0 1, 0 AsMag 1
Now let us consider the deformation of curvatures for fermion. We choose ansatz in
the form
Af-a(2k’+1) QOc(Qk:)\Ila + 2(]€ + 1)6[6 190&(2k+1)6\I}6

(2k: + 1)
+’kaa(2k)\l’a + 5k;fa(2k+1)ﬂ\1’ﬁ
AF® = 281000 + 2agapesy BPE U + 5 fP U5 + 9 AT + Fope® 3 U7
~ 8apbo

bod
ACY = o Baﬁ\If zoo W“B\I’f; — pop¥®

Acoc(Qk-i-l) — _BkBoc(Qk‘-i-l)ﬁ \I/ﬁ akBa(Qk) 6 7Ta(2k+1)6 \Ijﬁ ;ykﬂ_a(Qk) \Ijoc
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and ansatz for supertransformations in the form

«
e = . I 200+ 1) G

AR 3y DI
3 = 2610 (s + 2a000e(2) BH(Y + 60 f*7 (s + 10 A" + Fope” 5¢°
g = 200 peigy 4 D005, e
5¢a(2k+1) _ BkBa(QkJrl)BCB + dkBa(Qk)Ca + gkﬂa(2k+1)[3cﬂ +,~Yk7ra(2k)<a

From the requirement that

~ « o
SEOCK) = - RIIC 4 20k + DB R

+,Yk7~a(2k) ga + 6kTa(2k+1)'B€B

we have the same relation between masses M| = M + % Besides, it leads to

9 (s+k+1) 5
= M+ (E+1)A
= e Rk e T DA
—k-1) -
52 = (s M — (k + 1))]5?
F (k:+1)(k:+2)(2k+3)[ (k+ 1A
where
R sM 5 sM
_= 70{, = —Q
7= NG
Requirement
5@&(2k+1) _ BkBa(QkJrl)'BCB + dkBa(2k)Ca + Skﬂa(QkJrl)BCB _’_;ykl—[a(Zk)Ca
gives us
- = - Qg ~
Ve =Yk, Ok =0k, Qg k1) Br = 2(k +1)B11

At last, requirement for the other curvatures

§F* =281 R (5 — 2“00606,3(2)3’8(2)<a + 80T P¢s + Y0 ACY + FoPe®5¢P

R 8 bod
5Ca _ aOﬁOBaﬁgﬂ‘i‘ 0 OHaﬁgﬂ_’_pO(bca
Co Co
yields solution
2 2
- Co Co
— 95, = O _
o 0= 5500 P = T I ™

Now, all the arbitrary parameters are fixed.
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Supersymmetric Lagrangian is the sum of free Lagrangians where the initial curvatures
are replacement by deformed ones

»
I
—_

L= —% kl(—l)kﬂ[ﬁa(%)ﬂa(%) + Ta@rn B*H] + QZLM%@)BQ@)&’
i s—1 . .
5 (=) P CHPFHY (4.11)
k=0
The Lagrangian is invariant under the supertransforma-

tions (4.3), (4.5), (4.6), (4.8), (4.9), (4.10) up to equations of motion for the fields
Be?) ra(2)

=0, A=0 = e,?=D>-2sMA=0 (4.12)

The Lagrangian (4.11) is a final solution for the massive supermultiplet (s, s + %)

5 Massive supermultiplet (s,s — %

In this section we consider another massive higher spin supermultiplet when the highest
spin is boson. The massive spin-s field was described in section 3.1 in terms of massless
fields. The massive spin-(s — 1/2) field can be obtained for the results in section 3.2 if one
makes the replacement s — (s — 1). So the set of massless fields for the massive field with
spin s —1/2 is Pk 0 < k < s —2 and ¢®. The gauge invariant curvatures and the
Lagrangian have the forms (3.10) and (3.12) where the parameters are

(st k)(s—k—1) A2
ek’ = 30k + 1) 2k + 1) [M12—(2k+1)24]

)\2
002 = 28(8 — 1) |:M12 - 4:| (51)
(25 — 1) 2 2 3\? 2
k (2% +3) 1 1 mi~+ | s 5

Following our procedure we should construct the supersymmetric deformations for
curvatures. Actually the structure of deformed curvatures and supertransformations have
the same form as in previous section for supermultiplets (s, s + 1/2). There is a difference
only in parameters (5.1). Therefore we present here only the supertransformations for
curvatures. Requirement (2.14) for bosonic fields

SRR = jp Fok=ca o FaRBc,

§TR) = i FOCEDC 4 iy, FHERIP ¢

SRAZ) = ipy FOCO 4o FOPBCs — ipoe*@ Py
573 = i FoC +ion FDBy

icogo
2

SA = iagF¥y —icofoeapCiC?, 60 = — C¢,

53&(2]6) _ ,l-ﬁkca(Qkfl)Ca +i5’kca(2k)6<5
5ﬁo¢(2k) _ inCa(Qk—l)Ca —l—’LOAékCa(Zk)’ng
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gives us the relation M; = M — % between masses M; and M. Besides, it leads to

or? = W[M — (k+ 1)\]6?
5 (s+k)

[M + k)] p?

P = 18k + 1)(2k + 1)
a2 = k(s —k—1)[M — (k+ 1)\a?

9  (k+1)(s+k) ~9
=M+ kA 5.2
Pk = Pks Ok = O, Br = B, Q= ag
. 1 5 = o co?
Po g0 1, 0o =4bo o B, 20 = T Mag B
where
B Q R sM R sM .9 g_o>
=—, = —=q, 6= —a, R
NN 2 (s = 2)[M — (s = A
From requirement of covariant supertransformations for fermionic curvatures
5ﬁa(2k+l) _ Roc(Qk) @49k 4] R (2k+1)8
7(% 1) " +2(k+1)Br41 s

+’7kTa Qk)Ca + 6kTa(2k+1)BCB
SF* =281 R (5 — 2(10&065(2)55(2)(“ + 80T+ 10ALC* + FoPe5¢P

8aoBo
co

5@&(21@—&-1) _ ﬁkBa (2k+1) BCB + Oék;Ba 2/€)ch + 5kHa(2k+1)ﬂCﬁ + ’?kHa(Qk)Ca

) bodo
6C* = 22 B, 4 Haﬁc + po®C*

one gets
2 (S_k_l) )
_ M — (k+ 1)\
Tk k(k+1)2(2k+1)2[ (k+ DAY
+k+1) )
5,2 = (s M + (k + 1)\]62
F (k:+1)(k:+2)(2k+3)[ (k+ DA
e = 5y =6 ap=—2k B —2k+1)8
Ye = Vk» k — Ok, k_(2k+1)7 k — k+1
2 2
_ _CL ___ ¢
Y% = —2% BL Po 45Ma061
h
where A_ﬂé[ 5 SMa
V=4 7

Supersymmetric Lagrangian have form (4.11) and it is invariant under the supertransfor-
mations up to equations of motion for auxiliary fields B*?), 722 (4.12).
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6 Realization of AdS; (super)algebra

In this section we analyze the commutators of (super)transformations and show how the
(super)algebra is realized in our construction. All considerations are valid both for (s, s +
1/2) supermultiplets and for (s,s — 1/2) one.

6.1 AdS-transformations

Before we turn to supersymmetric theory let us discuss the conventional AdSs algebra. In

the frame formalism, AdS space is described by background Lorentz connection fields w®(?)

and background frame field e®(2)

. First of them enters implicitly through the covariant
derivative D, second one enters explicitly. Let n*?) and £€*) be the parameters of Lorentz
transformations and pseudo-translation respectively. The theory of massive spin-s field has

the following laws under these transformations

5779()!(2]6) _ naﬁQa(Zk—l),B 577fa(2k) _ na fa(Zk—l)ﬁ (61)
(k+2)ag

a b
- gﬁ(Q)Qa(zk)ﬁ@)_i_ k—1 50{(2)9(1 (2k— 2)+ kga fa (2k—1)

a(2k) _
oS! k(2k — 1)
(k+ 1)ag—

a(2) po(2k~2)
Rk =12k —1)° DpE(62)

5£fa(2k) _ 5045904(2]671)6 + aké-ﬁ@)fa(Qk)ﬁ(Z)

here aj and by are defined by (3.2). For massive spin-(s & 1/2) field the transformation
laws look like

577(I>a(2k+1) _ 77015(1)04(216),8

q)a(Zk—i—l) _ oz a(2k)B o (I)Oc(Qk‘ 1)
% (2k—|— @

+Ck+155(2)q)a(2k+1)6(2) (6.3)

here ¢; and dj, are defined by (3.9) for spin-(s + 1/2) and (5.1) for spin-(s — 1/2). To
consider a structure of the AdSs algebra Sp(2) ® Sp(2) only in left sector we introduce the
new variables for bosonic fields

sM
2k(k+1)

sM

Qa(?k) _ Q&(Qk)
2%(k+ 1)

fFo2h) fal2k) — a(2h) _ fo(2k) (6.4)

Y

so that the variables Q(2F) correspond to left sector. In terms of this variables the trans-
formations (6.1), (6.2) have form
517(204(216) _ naﬁ@a(Qk’—l)B

Aa(ek) _ (K +2)ax A a(2k)3(2) k=1 ra(2) Ha(2k—2)
559 B — 5/3(2)9 + 7]6(2]4: — 1)§ Q
sM

ey Qa(Zk’fl),B )
TR+ (65)
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Now let us consider the commutators of these transformations. The direct calculations

lead to the following results

B 0 ]2 = (1 g Py — @ ) Q=D
A A2 . B
[5£1v652]9a(2k) = Z(&awglfyﬁ - fla»yﬁzwfg)ﬁa(% 1)5,

Aa(2k (k + 2)ay A2k k=1 a0 avBoa(2k—2
[8,), 0¢]Q2 (2k) _ 24]{: fﬁ(z)”ﬁwﬁ (2K)By Fh = 1)5 RURLY) ( )
sM N
a B o ¢y Qoz(Zk’—l)

Comparison with (6.5) shows that we have the AdS-algebra

[Ma2), Ma(2)] ~ eapMag, [Pa2), Pa)] ~ NeasMag
[My2), P2yl ~ €apPap

An analogous results have place for the commutators in the fermionic sector.

6.2 Supertransformations

Let us consider the supersymmetric theory. The supertransformations for massive higher
spin supermultiplets have form (4.2), (4.7)

s M isM
Q&(Qk) _ L5 @&(2/6—1) @ (I)a(Qk)B

o 2k + 1) O R D %

5fa(2k) _ iﬁk@a@k—l)ca + iak(I)a(2k)BCB

a(2k+1) _ _ 9k a(2k) ra a(2k+1)8

0P (2k+1)Q C* 4+ 2(k+1)Br+102 Cp
sM sM
a(2k) Fa a(2k+1)8
TG r st Gy %

where the parameters aj, and Sy, are defined by (4.4) for (s, s41/2) supermultiplets and (5.2)
for (s,s —1/2). In terms of new variables (6.4) the supertransformations look like

isM

A s M
5O(2k) L8 pa(2k—1) a po(2k)B
Rk 1) CF D %
5fa(2k) -0
@ Ak o @ o
5P (2k+1) _ WQ (2k)( +2(k’+ 1)/3k:+lQ (2k+1)ﬁCﬁ

One can see that the fo‘(%) fields are inert under the supertransformations. It just means
that we have (1,0) supersymmetry. Let us calculate the commutator of two supertransfor-
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mations. We obtain

A Ca 1 Aa(2k— 2(k + 2)ay, A
022k _ sonra2 Ak—1 O)o2k=1) - apr o ()(2k)vB
[01, 2] e ey Q%™ + - C1C2y
+7SM Qo= o 4 ARG o0, | — (14 2)
k(k+1) 7 7
5 . N c a(2k— Qs a e
[01, 0] P @k+1) — jsMa? [k:(Zk:k—l—l)q) k=1 ¢i0c, + 2¢c,41® (2k+1)76C16C2'Y
2dy, a(2k)y ra a(2k)y ra
+(2k+1)® Cl C2'7+)\¢ Cl CQ'Y (1 <_>2)

Here we use the explicit expressions for aj and £, and conditions

26k2 Oth .2 sM
D) TREkeD@kED [k(k+1) “}
211 o2 _ 2| 2dy
kt2)  kErDE@R+D [(2k+1) +A}

Oékflﬂk = (k + 1)(3(2@]6,1, akﬁk+1 = (k + 2)d2ak, akﬁk = (k + 1)Ck&2

Comparing the commutators of supertransformations with (6.3) we obtain the (1,0) AdSs
superalgebra with the commutation relation

A
{Qa, Qp}t ~ Pap + §Maﬁ (6.6)

As we see, the algebra of the supertransformations is closed. It is worth emphasizing
that we did not apply the equations of motion to obtain the relation (6.6) both in bosonic
and in fermionic sectors. This situation is analogous to one for massless higher-spin fields
in the three-dimensional frame-like formalism. Recall that in the massive supermultiplets
case the invariance of the Lagrangians is achieved up to the terms proportional to the
spin-1 and spin-0 auxiliary fields equations only. Note that in dimensions d > 4 one would
have to use equations for the higher spins auxiliary fields as well (though in odd dimensions
there exist examples of the theories where Lagrangians are invariant without any use of
e.o.m [22]). The difference here comes from the well known fact that all massless higher
spin fields in three dimensions do not have any local degrees of freedom.

7 Summary

Let us summarize the results. In this paper we have constructed the Lagrangian formulation
for massive higher spin supermultiplets in the AdSs space in the case of minimal (1,0)
supersymmetry. For description of the massive higher spin fields we have adapted for
massive fields in three dimensions the frame-like gauge invariant formalism and technique
of gauge invariant curvatures. The supersymmetrization is achieved by deformation of
the curvatures by background gravitino field and hence the supersymmetric Lagrangians
are formulated with help of background fields of three-dimensional supergravity. In AdS3
the space the minimal (1,0) supersymmetry combines the massive fields in supermultiplets
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with one bosonic degree of freedom and one fermionic one. As a result we have derived the
supersymmetric and gauge invariant Lagrangians for massive higher spin (s, s + 1/2) and
(s,s — 1/2) supermultiplets.
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A Massless bosonic fields

In this appendix we consider the frame-like formulation for the massless bosonic fields in
three dimensional flat space. For every spin we present field variables and write out the
corresponding Lagrangian. All massless fields with spin s > 1 are gauge ones so that we
also present the gauge transformations for them.

Spin 0. It is described by physical O-form ¢ and auxiliary 0-form 7*(2). Lagrangian looks
like
L= —Eﬂ'agﬂ'aﬁ + waﬁEaﬁDgp

Spin 1. It is described by physical 1-form A and auxiliary O-form B*?). Lagrangian
looks like
L = EB,sB* — B,ge®’ DA

It is invariant under gauge transformations

§A = D¢

Spin 2. It is described by physical 1-form f*2) and auxiliary 1-form Q*®). Lagrangian
looks like
L = Qape?, Q%7 + Qa1 DF*)

The gauge transformations have the form
5904(2) _ D’I7a(2), 5f0¢(2) _ Dé-oz(2) + eoeﬁ/noc'y

Spin k. It is described by physical 1-form f*2k=2) and auxiliary 1-form Q®(2k=2) Ta-
grangian looks like

L= (_1)k+1 [kQa(Qk—l)ﬁe/B’yQa(Qk_l)’y + Qa(?k)Dfa(2k)]
The gauge transformations have the form

5QOC(QIC) _ D?’]a@k), 5f0c(2k) _ Dfa(Qk) + eaﬁna@k—l)ﬁ
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B Massless fermionic fields

In this appendix we consider the frame-like formulation for the massless fermionic fields in
three dimensional flat space. For every spin we present field variables and write out the
corresponding Lagrangian. All massless fields with spin s > 3/2 are gauge ones so that we
also present gauge transformations for them.

Spin 1/2. 1t is described by master 0-form ¢®. Lagrangian looks like
1
£=56aE" sD¢”

Spin 3/2. It is described by physical 1-form ®“. Lagrangian and gauge transformations
have the form )
L= —%cI)aD@a, 58 = Deo

Spin k+1/2. 1t is described by physical 1-form $(k—1)  Lagrangian and gauge trans-
formations have the form

1
L= (_1)k+1§<I>a(2k+1)D<I>°‘(2’“+1), AR+ — peoa(2h+1)
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