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1 Introduction

String theory admits a rich set of supersymmetric compactifications, giving rise to a vast

space of lower dimensional field theories. Most of the study of these compactifications fo-

cuses on regimes where the background can be understood geometrically by considering a

classical supergravity reduction on the geometry, supplemented with knowledge of the dy-

namics on brane stacks. This is far from being the only possibility, but it is very convenient

and very amenable to concrete analysis. Nevertheless, it would be interesting to go away

from this geometric class of backgrounds, both to learn more about the non-classical and

non-geometrical properties of string theory, and to gain some insight about the broader set

of possible string vacua.

In this paper we focus on a class of compactifications of the E8 × E8 heterotic string

which are very non-classical, involving compactifications on “spaces” that cannot be glob-

ally described as geometries, while remaining accessible thanks to duality with F-theory.

We can, in this way, probe many of the properties of the heterotic string away from the

classical regime where it is conventionally studied.

More concretely, we will focus on cases where the compactification space for the het-

erotic string is at a generic point locally geometric, and described by a T 2 fibration. The

non-classical nature of the background arises from the patching between local descriptions,

which we choose to involve non-trivial elements of the T-duality group acting on the T 2 [1].

The resulting total space is usually referred to as a non-geometric T-fold [2]. In the context

of the heterotic string one should note that there is additional gauge bundle data (denoted

by ET 2 in the following) which mixes with the geometric data of the T 2 under generic ele-

ments of the T-duality group of the T 2. The patching will send (τ, ρ, ET 2)→ (τ ′, ρ′, E′T 2),

with τ the complex structure of the torus, ρ =
∫
T 2 B+ iJ its complexified Kähler modulus,

and ET 2 the Wilson line data along the two cycles of the torus. The primed values arise

from the action of the O(2, 18,Z) T-duality on the T 2.

Such fibrations will in general have defects, i.e. subloci of the compactification space

where a local description in terms of the heterotic string on a smooth T 2 × Rn with a

smooth bundle is no longer possible. For concreteness, we consider the compactification of

the heterotic string to six dimensions. In this case, we have locally a T 2 fibration over a

complex one-dimensional base. At certain points of the base we have defects, which will

induce a monodromy action on (τ, ρ, ET 2) as we go around them. Our goal in this paper

is to describe, for a particular class of bundles ET 2 , the low energy dynamics living on

the defect itself.

We will do this by dualizing the configuration to F-theory, where the dynamics on

the defect can be characterized by purely geometric means. In order to do so in the most

explicit way possible, we restrict the bundle ET 2 to have SU(2) structure, so it will break

E8×E8 down to E8×E7. The bundle data on the T 2 is then described by a single complex

number, whose real and imaginary parts are given by the Wilson line of the SU(2) Cartan

around the one-cycles of the T 2. We denote this complexified Wilson line by β in the rest

of the paper.
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With a single Wilson line turned on, the T-duality group is O(2, 3,Z) and an order

four subset of this group can be identified with Sp(4,Z), which is the action of the mapping

class group of a genus-two curve on the homology. In this paper we restrict to monodromies

in this Sp(4,Z) subgroup, so we have a formulation in terms of monodromies of genus-two

curves. This correspondence is in fact very deep: as shown recently in [3, 4], there is

a very close connection between the moduli space of genus-two Riemann surfaces1 and

the moduli space of elliptically fibered K3 surfaces having an E8 and an E7 point. By

duality with F-theory, this is precisely the moduli space of the heterotic string on T 2 with

a single Wilson line. Furthermore, the map has been explicitly worked out in [4, 6–8]

(generalizing previous work in the case with unbroken E8 × E8 symmetry [3, 9]): given

a genus-two Riemann surface, parameterizing the moduli of a heterotic compactification

with unbroken E8 × E7, there are explicit expressions — to be reviewed below — for the

moduli of the dual K3.

In fact, the existence of the genus-two description for the heterotic vacua on T 2 with a

single Wilson line gives us a formal, but geometric, description of the very non-geometric

heterotic compactifications of interest in this paper. This viewpoint is particularly fruitful

since there exists a classification of the possible degenerations of genus-two fibers over a

complex one-dimensional base, obtained by Ogg-Namikawa-Ueno [10, 11]. This is analo-

gous to, but more involved than, the Kodaira classification of degenerations of genus one

fibrations, which are extensively used in F-theory. The heterotic/F-theory duality map was

previously applied to the study of non-geometric heterotic compactifications in [3, 4, 8].

We can now summarize the main results of this paper. For each of the possibilities

allowed by the classification of genus-two degenerations — or equivalently, for every defect

preserving E8×E7 and with monodromy in Sp(4,Z) — we will apply the heterotic/F-theory

duality map to express the heterotic backgrounds in terms of F-theory compactifications.

Generically, the F-theory background dual to a given 5-brane defect on the heterotic side

will be highly singular. In some cases (the exact criterion is stated in section 6) we can

resolve the singularity by performing a finite number of blow-ups in the base of the fibra-

tion. For all the cases where this resolution is possible we construct the resulting smooth

geometry. The blow-ups correspond to giving vevs to tensor multiplets of the 6d (1,0)

theory on the defect, such that it flows to a Lagrangian description in the IR. In this

way, from the knowledge of the smooth geometry one can understand some aspects (such

as anomaly polynomials [12, 13]) of the strongly coupled CFT living at the origin of the

tensor branch in terms of more ordinary quantum field theories. Let us note that as one

might have expected, for the cases that we can resolve we obtain theories that fall into the

recent classification of [14–16].

In order to test our approach we will first consider local genus-two models that corre-

spond to geometric ADE singularities of a K3 surface, together with a monodromy ρ→ ρ+n

for the complexified Kähler modulus. As expected, from the resolution of the dual F-theory

models we find a non-perturbative enhancement of the gauge algebra which agrees with

1The connection between the heterotic moduli space with one Wilson line and the associated Siegel

modular forms of genus-two Riemann surfaces was first noted in [5].
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the theory of pointlike instantons hitting the orbifold singularity determined in [17], with

n related to the number of instantons at the singular point (n = 0 corresponds to local

cancellation of the modified Bianchi identity, and thus to having as many small instantons

as the degree of the ADE singularity). We also determine the matter content from the dual

F-theory geometry, and verify explicitly that it agrees with the expectation from anomaly

cancellation [18].

We then move on to non-geometric models that involve monodromies in the Kähler

modulus ρ with a non-trivial action on the torus volume. We find a form of duality, in

that distinct defects can give rise to the same SCFTs. For instance, we often encounter the

same SCFTs as those describing pointlike instantons on ADE singularities, even for defects

arising from non-geometric configurations. Understanding the origin of these dualities is

an important open problem. We stress that we also find non-geometric degenerations

which are not dual to pointlike instantons on ADE singularities, and give SCFTs which

are genuinely new in the heterotic context.

This paper is organized as follows. In section 2 we review the formulation of

heterotic/F-theory duality in terms of a map between genus-two curves and K3 surfaces,

and we discuss how it can be used to study non-geometric heterotic backgrounds in terms

of K3 fibered Calabi-Yau three-folds. In section 3 we apply our formalism to study local

heterotic degenerations which admit a geometric description in some duality frame. In

section 4 we discuss truly non-geometric models and we show how to construct a global

model with such degenerations. We also explicitly describe various dualities between dif-

ferent non-geometric and geometric defects. In section 5 we list the resolutions of the

remaining non-geometric models, considering in particular a class of models that do not

admit a limit with vanishing Wilson line. Finally in section 6 we provide the details of

the classification of all possible local heterotic models, both geometric and non-geometric,

admitting F-theory duals that can be resolved into smooth Calabi-Yau three-folds. We con-

clude with a discussion in section 7. We relegate to appendix A the resolutions of geometric

models that correspond to pointlike instantons on ADE singularities. In appendix B we

discuss the heterotic/F-theory duality for the case of vanishing Wilson line. In appendix C

we show the expressions of the Igusa-Clebsch invariants in terms of coefficients of a sextic

that describe a given genus-two curve. In appendix D we reproduce the Namikawa-Ueno

classification of singular genus-two fibers, and for each entry we compute the order of van-

ishing of the Igusa-Clebsch invariants. Finally, in appendix E we explain how to extract

the matter content from the F-theory resolutions for an explicit example.

2 Non-geometric heterotic vacua

In this section we review the formulation of F-theory/heterotic duality recently discussed

in [4, 8]. We first discuss the duality in eight dimensions and then we show how to fiber it

over a common base to study non-geometric heterotic compactifications to six-dimensions

in terms of F-theory on Calabi-Yau three-folds.

– 3 –
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2.1 Heterotic/F-theory duality in 8 dimensions

It is well known that the E8 × E8 heterotic string compactified on T2 is dual to F-theory

compactified on an elliptically fibered K3 surface [19]. For the heterotic compactification

with a Wilson line that breaks the gauge group to E7×E8 the corresponding K3 is described

by a Weierstraß model of the form

y2 = x3 + (a u4v4 + c u3v5)xw4 + (b u6v6 + d u5v7 + u7v5)w6 = 0 , (2.1)

where [u : v] ∈ P1 and [y : x : w] ∈ P3,2,1 are the homogeneous coordinates of the base and

the Weierstraß equation, respectively. For generic values of the coefficients the fiber has a

Kodaira singularity of type III∗ (E7) at u = 0 and a singularity of type II∗ (E8) at v = 0.

By virtue of the F-theory/heterotic duality, there must be a map relating the heterotic

moduli2 ρ, τ and β to the K3 coefficients a, b, c and d.

To obtain an understanding for this map, we study certain limits thereof. Consider

first the special case c = 0. One can immediately see from (2.1) that this implies that both

singularities are of type II∗ (E8). Thus, c = 0 corresponds to vanishing Wilson line, i.e. to

β = 0. In this limit, the coefficients a, b and d are related to the heterotic moduli τ and ρ

in the following way

j(τ)j(ρ) = −17282 a
3

27d
, (2.2)

(j(τ)− 1728)(j(ρ)− 1728) = 17282 b
2

4d
,

where j is the SL(2,Z) modular invariant function. The map for this specific configuration

was originally obtained in [9]. Note that we can interpret the moduli τ and ρ as complex

structures of two elliptic curves (one of which is the physical heterotic torus) which are

glued together at one point, i.e. a degenerated genus-two curve. The map thus can be read

as a relation between SL(2,Z) modular forms and the K3 coefficients, cf. appendix B. As

we will now discuss, we can extend this relation to encompass a non-vanishing Wilson line.

In the general setup, with c 6= 0, the map has been recently established in [4], using

previous findings about K3 surfaces related to curves of genus two [7, 20, 21]. The three

heterotic complex parameters ρ, τ , β live on the Narain moduli space

Mhet = D2,3/O(2, 3,Z) with D2,3 :=
O(2, 3,R)

O(2,R)×O(3,R)
, (2.3)

where we used the notation of [4]. We will consider a subset O+(L2,3) of the Narain

U-duality group O(2, 3,Z) which preserves orientations, because we will be ultimately in-

terested in fibering the duality group holomorphically over a base.

2Recall that the compactification of the E8 × E8 heterotic string on T 2 comprises eighteen complex

moduli: the sixteen Wilson line moduli βi with i = 1, . . . , 16, the complex structure τ of the torus and

the complexified Kähler modulus ρ of the torus. Since throughout this article we are only interested in

compactifications with an unbroken E7 × E8 non-abelian subgroup, we will drop the superscript of β.

– 4 –
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A crucial observation is that there is an isomorphism D2,3
∼= H2 between the symmetric

space and the genus-two Siegel upper half-plane [22]:

H2 =

{
Ω =

(
τ β

β ρ

)∣∣∣∣ τ, ρ, β ∈ C, det Im (Ω) > 0, Im (ρ) > 0

}
. (2.4)

Since on the same grounds a (two-to-one) relation between O+(L2,3) and Sp(4,Z) can be

established, there is a correspondence between the moduli space of the heterotic compact-

ification and the quotient of H2 by the genus-two modular group Sp(4,Z). The action of

M ∈ Sp(4,Z) on Ω is given by

M(Ω) = (AΩ +B)(CΩ +D)−1 , M =

(
A B

C D

)
(2.5)

where A, B, C and D are 2× 2 matrices such that M ∈ Sp(4,Z). More details about this

quotient and the relation to Mhet can be found in [4] and [22].

A genus-two curve has four linearly independent cycles that can be chosen to span a

canonical basis such that the intersection form has a symplectic structure (see e.g. [23]).

We indicate the symplectic basis as (a1, a2, b1, b2) in figure 1. The matrix Ω introduced in

eq. (2.4) can be determined from integrals of the two holomorphic one-forms over the ai,

bi cycles [11]. The transformations in Sp(4,Z) are induced by changes of homology basis

that preserve the intersection form.

Coming back to the dual F-theory description (2.1), it has been found that the duality

map can be expressed in terms of genus-two Siegel modular forms as [4, 7, 20, 21]

a = − 1

48
ψ4(Ω) , b = − 1

864
ψ6(Ω) , c = −4χ10(Ω) , d = χ12(Ω) . (2.6)

The definition and properties of the relevant Siegel modular forms can be found in [4],

see also [8].

We also note that in eight dimensions the heterotic/F-theory map we use naturally

geometrizes the extra massless string states appearing at self-dual points on the moduli

space in terms of degenerations of the dual K3 surface [9, 24]. A recent discussion on this

from the double field theory point of view appeared in [25].

Genus-two curves. As we have discussed above, the heterotic moduli can be put in

correspondence with the moduli of a hyperelliptic genus-two curve. In turn such curve,

denoted Σ, can be represented by a sextic:

y2 = f(x) =
6∑
i=0

ci x
i = c6

6∏
i=1

(x− θi) . (2.7)

In order to connect the ci coefficients with the a, b, c, d in the dual K3 fibration (2.1), we

need to determine the Siegel modular forms appearing in the map (2.6) in terms of the ci’s.

This can be done in a convenient way by first computing the Igusa-Clebsch invariants of

the sextic (2.7) and then relating them to the Siegel modular forms of the corresponding

– 5 –
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genus-two curve. The Igusa-Clebsch invariants are defined in terms of the six roots θi
of (2.7) as:

I2 = c2
6

∑
15

(12)2(23)2(45)2 ,

I4 = c4
6

∑
10

(12)2(23)2(31)2(45)2(56)2(64)2 ,

I6 = c6
6

∑
60

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2 ,

I10 = c10
6

∏
i<j

(ij)2 ,

(2.8)

where (ij) := (θi − θj) and the sums are over permutations [26]. By using a computer

algebra program, we find the general expressions for I2, I4, I6, I10 as functions of the

coefficients ci of the sextic (2.7). These are somewhat involved and are therefore relegated

to appendix C.

In the case of a genus-one curve, the discriminant, as well as the coefficients, of the

Weierstraß cubic, are related to SL(2,Z) modular forms with argument the modular pa-

rameter τ of the genus-one curve. For a curve of genus-two the Igusa-Clebsch invariants

are similarly given by Siegel modular forms as follows [26]:

I2(ci) =
χ12(Ω)

χ10(Ω)
, I4(ci) = 2−4 · 3−2ψ4(Ω) ,

I6(ci) = 2−6 · 3−4ψ6(Ω) + 2−4 · 3−3ψ4(Ω)χ12(Ω)

χ10(Ω)
, I10(ci) = 2−1 · 3−5χ10(Ω) ,

(2.9)

with Ω specified by the three complex moduli of the genus-two curve. From (2.6) we can

write the dual K3 coefficients in terms of the Igusa-Clebsch invariants and thus in terms

of polynomials of the coefficients ci:

a = −3I4 , b = 2(I4I2 − 3I6) , c = −2335I10 , d = 2 35I2I10 . (2.10)

This form of the map will be very important for the purpose of studying non-geometric

heterotic vacua in lower dimensions.

2.2 From 8 to 6 dimensions: local models and exotic defects

In the previous section we reviewed the close relation between the moduli space of the

heterotic string on T 2 with one complex Wilson line and the moduli spaces of genus-two

curves and elliptically fibered K3 surfaces developing E7×E8 degenerations. This led to a

formulation of F-theory/heterotic duality which is very useful once we consider compacti-

fications to lower dimensions, obtained by allowing the moduli to vary along a (compact)

base variety B. We are interested in the case were B is complex one-dimensional, locally

parametrized by a complex coordinate t ∈ C. The structure of such a compactification

is that of a fibration, with fiber a point in the Narain space or equivalently a genus-two

curve which encodes this point and the base given by B. Such fibrations allow for a vary-

ing Ω(t) with Sp(4,Z) identifications at chart transitions, or to be more precise along

– 6 –
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non-contractible loops. Since every consistent genus-two fibration will give us a consistent

fibration of Ω(t), we will restrict our attention in the following to the first one. This has

the advantage that we obtain again a geometry with which we can more easily deal.3

To preserve supersymmetry this fibration has to be holomorphic. In the case of a

non-trivial fibration this implies that the genus-two curve Σ(t) has to degenerate at co-

dimension one loci on the base. Moreover, following Ω(Σ(t)) of the genus-two curve around

such a degeneration locus it will experience a monodromy transformation. Since along a

loop we end up with the same fiber that we started with, the monodromy must belong to

Sp(4,Z). Hence, the moduli fields of the heterotic T 2 compactification equal only modulo

a duality transformation when we go around such a non-trivial loop. Since the duality

group includes transformations of the type ρ→ −1/ρ, thereby exchanging small and large

volume, the spaces around such singularities are in general non-geometric T-folds. Note

that the non-geometric structure is here of global kind, i.e. as long as we are probing only

the local neighborhood of a regular point we do not experience any duality transformations.

In order to get some intuition regarding ρ degenerations, let us consider the monodromy

ρ→ ρ+1. This arises around a point t0 ∈ B at which the cycle a2 of Σ shrinks, cf. figure 1.

The monodromy corresponds to a Dehn twist around this vanishing cycle. In this case

the singularity can be identified with a NS5-brane [27]. In fact, the corresponding solution

ρ(t) = 1/(2πi) log(t − t0) coincides with the solution for a NS5-brane on C × T 2 if one

neglects its position on the T 2. By pinching a different cycle, i.e. p a2 + q b2, one gets a

more general (p, q) monodromy in ρ, with solution (for q 6= 0):

ρ(t) = − 2πi

q2 log (t− t0)
− p

q
. (2.11)

As an example, we can consider the monodromy ρ → ρ/(1 − ρ), corresponding to a (0, 1)

degeneration. The volume of the fiber does not come back to itself after encircling the

defect, and hence the solution is non-geometric. It coincides with an exotic 52
2-brane (or

Q-brane) [28–30].

More general, as in F-theory, one can have ρ degenerations described by monodromies

in different conjugacy classes of the duality group. The typical genus-two degeneration will

induce also monodromies for the moduli τ and β. As in [31], we refer to such degenerations

as T-duality defects, or T-fects. The aim of this paper is to uncover the six-dimensional

theories that live on such T-fects.

An advantage of mapping the non-geometric fibrations to geometric genus-two fibra-

tions is the existence of a classification of all possible local degenerations of genus-two

fibers due to Ogg and Namikawa-Ueno (NU) [10, 11]. This is analogous to the Kodaira

classification of genus-one curves [32–34] which we reproduce in table 1. Furthermore,

NU give explicit local descriptions of the possible degenerations in terms of hyperelliptic

curves. Our strategy will be then to compute the Igusa-Clebsch invariants for each local

genus-two model that realizes a given Sp(4,Z) monodromy, and use the F-theory/heterotic

map (2.10) to obtain the corresponding K3 degeneration in the dual F-theory model.

3This genus-two fibration is however not, at least directly, related to the physical compactification space

of the heterotic string.
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(a)

(b)

Figure 1. (a) The Humphries generators for a genus-two surface Σ: any element of the mapping

class group M(Σ) can be written as a product of Dehn twists along the cycles (a1, b1, γ, a2, b2).

Note that γ = a−1
1 a2. (b) Switching off the Wilson line parameter β corresponds to splitting Σ into

two genus-one components. This geometrizes the SL(2,Z)τ × SL(2,Z)ρ subgroup of the T-duality

group O(2, 2,Z).

In the following we briefly describe the structure of the NU list for genus-two degener-

ations. For the reader’s convenience, we reproduce this list in appendix D (and adopt their

notation). For each model we list the order of vanishing of the Igusa-Clebsch invariants

that we compute from the expressions (C.1)–(C.4).

The geometric picture is especially useful to understand the different classes of degen-

erations and to obtain a decomposition of the monodromies in terms of a set of generators,

in analogy with the ABC factorization of F-theory [35, 36]. It follows from a theorem of

Humphries (see for instance [37]) that the mapping class group of Σ is generated by Dehn

twists along the set of five cycles (a1, b1, γ, a2, b2), shown in figure 1. If we pick the base

B = (a1, a2, b1, b2) for H1(Σ,Z), their symplectic representation is:

A1 =


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 , B1 =


1 0 0 0

0 1 0 0

−1 0 1 0

0 0 0 1

 , Γ =


1 0 1 −1

0 1 −1 1

0 0 1 0

0 0 0 1

 ,

A2 =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 , B2 =


1 0 0 0

0 1 0 0

0 0 1 0

0 −1 0 1

 .

(2.12)
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The action of these Sp(4,Z) elements on the period matrix defined by (2.5) gives the

following monodromies for the moduli:

A1 : τ → τ + 1 , ρ→ ρ , β → β ,

B1 : τ → τ

1− τ
, ρ→ ρ+

β2

1− τ
, β → β

1− τ
,

Γ : τ → τ + 1 , ρ→ ρ+ 1 , β → β − 1 ,

A2 : τ → τ , ρ→ ρ+ 1 , β → β ,

B2 : τ → τ +
β2

1− ρ
, ρ→ ρ

1− ρ
, β → β

1− ρ
.

(2.13)

Note that when β = 0, Σ splits into the two genus-one components whose mapping class

groups are identified with the subgroups SL(2,Z)τ and SL(2,Z)ρ of the T-duality group

O(2, 2,Z), cf. see figure 1. Indeed, in this limit (A1, B1) and (A2 , B2) have the expected

monodromies that generate the genus-one modular group. A large set of entries in the NU

list has monodromies in M(Σ) that involve only the generators A1, B1, A2, B2. Thus in

the limit β → 0, these models can be thought of as collisions of Kodaira monodromies for τ

and ρ, associated to the two genus-one components of Σ. In this case it is simpler to use a

different basis B̃ = (a1, b1, a2, b2) for H1(Σ,Z), in which the symplectic representations for

the A and B twists are block diagonal and each block coincides with the factorizations listed

in table 1. In the following we will study several NU examples of this kind, corresponding to

the models [K1 −K2 − 0] ≡ [K1 −K2], where Ki is one of the Kodaira type degenerations.

The monodromy of these models is thus of the form

M[K1−K2] = MBB̃

(
K1 0

0 K2

)
M−1

BB̃
, (2.14)

with

MBB̃ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (2.15)

We will also discuss a class of models (for example the elliptic type 1 in the NU notation)

whose monodromies contain the twist Γ and mix the (τ, ρ, β) moduli among themselves.

2.3 From 8 to 6 dimensions: global models.

In the case of a compact base manifold B we cannot decouple gravity consistently anymore.

This leads to further data defining the genus-two fibration. To obtain these constrains, we

change to the F-theory frame. On the F-theory side we have, as discussed already above, an

elliptically fibered K3 surface given by (2.1) instead of the Kähler, complex structure, and

Wilson line moduli of the T 2. This K3 is then, similar to the heterotic side, fibered over the

same (compact) base — in the following a P1. Since we want to preserve supersymmetry in

six dimensions, the total F-theory compactification space must be a Calabi-Yau three-fold.

To this end, we promote the coefficients a, b, c and d in (2.1) to sections of appropriate line
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µ(f) µ(g) µ(∆) Type Singularity Monodromy

≥ 0 ≥ 0 0 I0 − ( 1 0
0 1 )

0 0 n In An−1 An = ( 1 n
0 1 )

≥ 1 1 2 II cusp BA =
(

1 1
−1 0

)
1 ≥ 2 3 III A1 BAB =

(
0 1
−1 0

)
≥ 2 2 4 IV A2 (BA)2 =

(
0 1
−1 −1

)
≥ 2 ≥ 3 6 I∗0 D4 (BA)3 =

(−1 0
0 −1

)
2 3 n+ 6 I∗n D4+n (BA)3An =

(−1 −n
0 −1

)
≥ 3 4 8 IV∗ E6 (BA)4 =

(−1 −1
1 0

)
3 ≥ 5 9 III∗ E7 (BA)4B =

(
0 −1
1 0

)
≥ 4 5 10 II∗ E8 (BA)5 =

(
0 −1
1 1

)
Table 1. Kodaira classification of degenerations of elliptic fibers. We show the factorization of the

monodromy in terms of Dehn twists A, B around the two cycles of the torus, denoted as (a1, b1)

in figure 1. Note that A corresponds to the monodromy of a (1, 0) 7-brane (the D7 brane) in type

IIB, while B to the monodromy of a (0, 1) 7-brane.

bundles over the base P1. Since the monomials y2, x3 and u7v5 come without prefactors,

they are all sections of the same line bundle with respect to the base. This and the Calabi-

Yau condition fixes the class of the fibration uniquely as can be seen from,

[y2] = [x3] = [u7] = [Ln] ,

[y] + [x] + [u] + [K̄P1 ] = [y2] ,
(2.16)

where the second line is the condition for a vanishing first Chern class of the tangent bundle.

If we chose for n the LCM of 2, 3 and 7, we obtain L = K̄P1 . Furthermore, the coefficients

in (2.1) are sections of the following line bundles:

[a] = 4 K̄P1 , [b] = 6 K̄P1 , [c] = 10 K̄P1 , [d] = 12 K̄P1 . (2.17)

In particular that means that a, b, c, and d are polynomials of degree 8, 12, 20 and 24,

respectively, in the homogeneous coordinates [t1 : t2] ∈ P1 of the base.

The resulting Calabi-Yau threefold (CY3) can be seen as an elliptic fibration over the

Hirzebruch surface F12 [4]. We recall that F-theory compactified on a CY3 realized as an

elliptic fibration over Fn is dual to a compactification of the E8 × E8 heterotic string on

K3 with instanton numbers (12 + n, 12 − n) on the E8 factors [38, 39]. For n = 12 there

are 24 instantons embedded in the first E8. Taking the standard embedding [40, 41] E8 is

broken to E7 with 20 half-hypermultiplets in the 56.

We now go back to the fibration of the hyperelliptic curve, given by the sextic (2.7),

applying the results of the K3 fibration. Since all the terms in equation (2.7) have to be

sections of the same line bundle, we obtain that

[ci]− [ci−1] = [x] ⇒ [ci] = [P−i ⊗M] (2.18)
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with [x] = [P] and [M] = 2 [y] with respect to the base classes. For the scaling of the

Igusa-Clebsch invariants we find then

[Ik] = k [P−3 ⊗M] with k = 2, 4, 6, 10 , (2.19)

where we have used the explicit formulas for the invariants given in (C.1)–(C.4). Comparing

this with (2.17), we see that c3 is a sections of K̄P1 . Demanding that the ci’s do not vanish

identically, gives the following inequality

6 [P] ≤ [M] ⇒ 3 [P] ≤ K̄P1 . (2.20)

Hence, for P1 this leads to a trivial bundle for P because the inequality can only be fulfilled

by a fractional line bundle. All the coefficients ci are, therefore, sections of the anti-

canonical bundle of P1, i.e. quadratic polynomials in the homogeneous coordinates of P1.

The upshot of the preceding discussion is that a global non-geometric heterotic com-

pactification can be described by a fibration of the hyperelliptic curve defined by (2.7) over

P1, such that the coefficients ci are given by

ci(t1, t2) =
2∑
j=0

γijt
j
1t

2−j
2 , (2.21)

where the γij are constant parameters. A natural question is how the hyperelliptic fiber

degenerates as we move along the base. In this respect, notice that the discriminant of (2.7)

is a polynomial of degree 20, i.e. generically the fiber becomes singular over 20 points on

the base. These points indicate the position of branes. The further study and classification

of the possible local degenerations will be the subject of the next sections. Note that

the derivation presented above assumes that the genus-two fiber does not split everywhere

into two genus-one components, or equivalently that I10 does not vanish identically. The

analysis for the case with I10 ≡ 0 can be found in [3].

It is interesting to point out that the moduli space of genus-two surfaces also arises

in the so-called G-vacua of [42–45]. In these solutions the starting point is a type IIB

supersymmetric compactification on T4 with the metric, dilaton, B-field and R-R potentials

taking values in C. In fact, in [42] it was already proposed to construct global models by

fibering a hyperelliptic curve over P1. The techniques that we develop in this paper should

also be useful to understand this class of U-folds.

3 Geometric models: five-branes on ADE singularities

In this section we begin our study of the brane catalog obtained from the genus-two de-

generations in the Ogg-Namikawa-Ueno classification. We will first consider a subset of

heterotic models that have a trivial monodromy in ρ. These are geometric solutions for

which we have a direct understanding on the heterotic side, and thus are a useful starting

point to put the F-theory/heterotic map at work. More concretely, the models we consider

first are of type [I0 −K], where K is an ADE singularity in τ . Note that by fiberwise mir-

ror symmetry, they also describe a non-geometric model with constant τ and non-trivial
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monodromy in ρ. Having a singularity in τ induces a monodromy in the B-field due to the

Bianchi identity:

dH =
α′

4

[
Tr(F ∧ F )− Tr(R ∧R)

]
. (3.1)

Having a component of type I0, meaning trivial monodromy in ρ, and leaving the gauge

group unbroken, forces us to have some small instantons on top of the ADE singularity,

with the number of instantons related to the order of the singularity. We then add further

small instantons, described by the [K − In] models with a monodromy ρ→ ρ+ n. Finally

we consider the [In−p−q] models, in which the three moduli (τ, ρ, β) shift by an integer.

3.1 [I0 − II∗] model and E8 singularity

To start, we consider a geometric E8 singularity on the heterotic side, described by the

model [I0 − II∗]. We discuss this example in detail in order to illustrate the main points,

while for the remaining models we summarize the results in appendix A. From the NU list

we read off the Sp(4,Z) monodromy:

M[II∗−I0] =


0 0 −1 0

0 1 0 0

1 0 1 0

0 0 0 1

 . (3.2)

This is indeed the action of the product of twists (B1A1)5 along the homology basis of one

of the genus-one handles. Recall that Ai and Bi are twists around the ai and bi cycles

shown in figure 1. The action on the heterotic (τ, ρ, β) moduli can be found from the

Sp(4,Z) action on Ω given in (2.5):

τ → − 1

1 + τ
, ρ→ ρ− β2

1 + τ
, β → β

1 + τ
. (3.3)

Note that when the Wilson line value β is turned off, this is precisely the monodromy of a

II∗ type fiber of the τ fibration.

The genus-two model with this monodromy is given by the following curve:

y2 =
(
t5 + x3

) (
x2 + αx+ 1

)
, (3.4)

where the local coordinate t ∈ B was chosen such that the degeneration is at the origin,

and (x, y) are coordinates on the fiber. By computing the Igusa-Clebsch invariants from

equations (C.1)–(C.4), and plugging the result in the heterotic/F-theory map (2.10), (2.1),

we get the dual K3 fibration:

y3 = x3 + f(u, v, t)x+ g(u, v, t) , (3.5)
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III∗

I0

II

IV

I∗0

II

IV∗

II

I∗0

IV

II

I0

II∗
. . .

Figure 2. Resolution of the dual [II∗ − I0] model.

where:

f= 108(α− 2)(α+ 2)t5u3v4
[
486t25v − 972α3t20v + 2916αt20v + 486α6t15v − 2916α4t15v

+ 4374α2t15v + 972t15v − 972α3t10v + 2916αt10v + 2t5u+ 486t5v − αu
]
,

g= u5v5
[
− 314928α3t35v2 + 1259712αt35v2 + 629856α6t30v2 − 4408992α4t30v2

+ 7479540α2t30v2+314928t30v2−314928α9t25v2+3149280α7t25v2−10235160α5t25v2

+ 9605304α3t25v2 + 4408992αt25v2 + 216t20uv − 78732α8t20v2 + 1417176α6t20v2

− 7007148α4t20v2 + 10235160α2t20v2 + 629856t20v2 − 1944α3t15uv + 7452αt15uv

+ 157464α5t15v2 − 1417176α3t15v2 + 3149280αt15v2 + 216α6t10uv − 1620α4t10uv

+ 6156α2t10uv−11880t10uv−78732α2t10v2+314928t10v2+216α3t5uv−972αt5uv+u2
]
.

We see that at u = 0 and v = 0 there are fibers of type III∗ and II∗ respectively, coming

from the perturbative E7 × E8 gauge group of the heterotic string. Moreover, close to

u = t = 0 there are additional enhancements, schematically described by the following

leading terms (up to for now unimportant coefficients):

y2 = x3 +
[
t10u3 + t5u4

]
x+ t10u5 + t5u6 + u7 . (3.6)

Clearly, the vanishing orders of f , g and ∆ at u = t = 0 are non-minimal. To resolve the

singularity we need to perform a series of blowups in the base [17] as we now explain.

The blowups can be implemented by replacing:

x→
(
e1e

2
2 · · · e10

10

)2
x′ , y →

(
e1e

2
2 · · · e10

10

)3
y′ ,

t→ e1e2 · · · e10t
′ , u→ e1e

2
2 · · · e10

10u
′ .

(3.7)

At this stage it is convenient to use the notation of [15] to identify each divisor ei by an

integer equal to minus its self-intersection number. In this notation the above resolution

gives a chain of the form 1 2 2 2 2 2 2 2 2 2. While this reduces the order of vanishing of f , g

and ∆ along each ei to be of Kodaira type, at the intersections e3∩e4, e4∩e5, e5∩e6, e6∩e7

the orders of vanishing are still too high and further blowups are required. We iterate this

process until we reach a smooth model, arriving at the resolution shown in figure 2.

We schematically represent the resolution as:

[III∗]−�− I0 − II∗ −� , (3.8)

where the leftmost factor is the perturbative E7 singularity at u = 0 and we defined the

chain � to be:

� = I0 − II− IV − I∗0 − II− IV∗ − II− I∗0 − IV − II . (3.9)
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Type Monodromy cover Algebra

I0, I1 − −
I2 − su(2)

In, n > 2 ψ2 + (9g/2f)|ei=0 red : su(n) , irred : sp([n/2])

II − −
III − su(2)

IV ψ2 −
(
g/e2

i

)∣∣
ei=0

red : su(3) , irred : sp(1)

I∗0 ψ3 + ψ
(
f/e2

i

)∣∣
ei=0

+
(
g/e3

i

)∣∣
ei=0

3 comp : so(8) , 2 comp : so(7) , irred : g2

I∗2n−5, n > 2 ψ2 + 1
4

(
∆/e2n+1

i

)
(2eif/9g)3

∣∣∣
ei=0

red : so(4n− 2) , irred : so(4n− 3)

I∗2n−4, n > 2 ψ2 +
(
∆/e2n+2

i

)
(2eif/9g)2

∣∣∣
ei=0

red : so(4n) , irred : so(4n− 1)

IV∗ ψ2 −
(
g/e4

i

)∣∣
ei=0

red : e6 , irred : f4

III∗ − e7

II∗ − e8

Table 2. Equations for the monodromy covers of the Kodaira singular fibers and the corresponding

gauge algebras, adapted from [47]. For degree 2 covers, we get a bigger algebra when the cover is

reducible, namely its discriminant has a square root. For the type I∗0 the cover has degree 3 and

the gauge algebra depends on the number of components.

Dropping the e7 factor, the chain in (3.8) has the self-intersection pattern 1 2 2 3 1 5 1 3 2 2 1

10 1 2 2 3 1 5 1 3 2 2.

The next step is to figure out the gauge algebras supported on each curve. This

amounts to checking for the presence of monodromies which may reduce the simply laced

gauge algebras, näıvely expected from the Kodaira classification, to non-simply laced sub-

algebras thereof [46]. A detailed description of how this works in terms of the Weierstraß

model was given in [47]. We briefly recall the procedure for the singularities appearing

in our example. Type II singularities give no gauge group, while for type IV, I∗0, IV∗

on a divisor ei one has to consider the appropriate monodromy covers, as displayed in

table 2. After performing this analysis on the chain (3.8) we finally obtain a smooth model

represented as:

sp(1) g2 f4 g2 sp(1) e8 sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 5 1 3 2 2 1 10 1 2 2 3 1 5 1 3 2 2

(3.10)

The resulting non-perturbative enhancement precisely matches the one given by As-

pinwall and Morrison in [17] for the theory of ten pointlike instantons on an E8 singularity.

This confirms our intuition from the monodromy of the genus-two model and the heterotic

Bianchi identity. The only difference is that we now have a perturbative algebra e7 coming

from the broken gauge group of the heterotic string. Similar chains have been discussed re-

cently in [16]. The matter content can be determined from a closer look at the monodromy
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covers or by anomaly cancellation. This was in fact already done in [18] and we will not

repeat the analysis here.

We can now replicate the previous computation for all the models that have an I0

component for ρ and an arbitrary elliptic Kodaira type for τ , for which we obtain the

theories of point-like instantons on ADE singularities derived in [17]. Details of this analysis

are relegated to appendix A.

3.1.1 Adding five-branes

We can consider the situation in which more pointlike instantons sit at the E8 singularity.

From the heterotic perspective this is done by allowing a monodromy in the B-field, in order

to satisfy the Bianchi identity (3.1). This corresponds to a parabolic monodromy in ρ, and

we thus need to consider the Namikawa-Ueno model [II∗− In]. The local degeneration can

be modeled by the following curve:

y2 = (t5 + x3)
[
(x− 1)2 + tn

]
. (3.11)

The resolution of the dual F-theory model proceeds in a similar way as discussed in the

previous section. However after performing 10 + n blowups there is now a chain of (n+ 1)

intersecting II∗ fibers. The resolution of these additional intersections are again similar to

the ones in the previous section. We arrive at:

[III∗]−�− (I0 − II∗ −�)(1) − · · · − (I0 − II∗ −�)(n+1) , (3.12)

where the chain � is defined in (3.9). The non-perturbative gauge algebra is then:

Gnp = sp(1)⊕ g2 ⊕ f4 ⊕ g2 ⊕ sp(1)⊕ [e8 ⊕ sp(1)⊕ g2 ⊕ f4 ⊕ g2 ⊕ sp(1)]⊕(n+1) . (3.13)

This result can again be matched with the theory of (10 + n) pointlike instantons on the
E8 singularity given in [17]. The pattern of curves and self-intersection numbers is more
efficiently determined using the toric geometry techniques reviewed, and exemplified for
this [II∗ − In] model, in section 6. In this way we find:

sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 5 1 3 2 2

e8 sp(1) g2 f4 g2 sp(1)

1 11 1 2 2 3 1 5 1 3 2 2
×

e8 sp(1) g2 f4 g2 sp(1)

1 12 1 2 2 3 1 5 1 3 2 2

⊕(n−1)

× (3.14)

× e8 sp(1) g2 f4 g2 sp(1)

1 11 1 2 2 3 1 5 1 3 2 2
.

We have verified that the matter representations consist only of 1
2(2,1)⊕ 1

2(2,7) for each

sp(1)⊕ g2, as expected from anomaly cancellation [15, 18].

3.2 Five-branes on C2/Zk

In the previous section and in appendix A we discuss the duals of degenerations of elliptic

type, which are geometric in some T-duality frame. In order to exhaust all the models

that admit a clear geometric interpretation, we analyze now parabolic models that are

associated with A-type singularities.
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3.2.1 [In−p−0] model

We consider a model with a simple parabolic monodromy for the moduli, the type [In−p]

in the NU list. In a geometric frame the monodromy action is just a shift:

τ → τ + p , ρ→ ρ+ n , β → β . (3.15)

From the Bianchi identity (3.1) we expect this model to describe (n+p) pointlike instantons

on a C2/Zp singularity. We can verify this explicitly by resolving the dual F-theory model,

as in the previous sections. We start from the local genus-two fibration given by:

y2 = (x2 + tn)(x− 1)
[
(x− α)2 + tp

]
. (3.16)

At t = 0 one homology cycle for each of the two genus-one components shrinks, giving

rise to the monodromy (3.15). The structure of the dual K3 fibration near the intersection

u = t = 0 is described by the following model:

y2 = x3 +
[
tn+pu3 − 3u4

]
x+ tn+pu5 + (2 + tp)u6 + u7 , (3.17)

with discriminant

∆ = −u9
(
54u3tn+p + 216u2tn+p+54u2tn+2p−9ut2n+2p+4t3n+3p

+ 27u3t2p + 54u4tp + 108u3tp + 27u5 + 108u4
)
.

(3.18)

The resolution requires n+ p blowups to arrive at a smooth model, and produces a chain

of (n+p−1) curves with self-intersection (−2) supporting singularities of Kodaira type Ik,

and a (−1) curve at the end where the chain intersects the E7 singularity. Looking at the

monodromy cover we see that special unitary gauge algebras are realized and we arrive at

the following gauge theory:

su(2) su(k − 1) ŝu(k)1 su(k)2 su(k)m−1 ŝu(k)m su(k − 1) su(2)

1 2 2 · · · 2 2 2 · · · 2 2 2 · · · 2 2

where we defined

k =
|n+ p|

2
− |n− p|

2
, m = |n− p|+ 1 . (3.19)

The hat over su(k)1 and su(k)m indicates that these gauge factors do not only have states

in the bifundamentals with their nearest neighbors but also fundamentals coming from the

intersection with the residual discriminant, in accord with anomaly cancellation. Setting

for instance n > p we see that we obtain the theory on n + p pointlike instantons on a

C2/Zp singularity [17].

It is interesting to note that the same configuration can be understood from the IIA

viewpoint [48], by dualizing along the circle degenerating on the seven-brane intersections.

We now find a brane system with NS5(12345), D6(123456) and D8(12345789), shown in

figure 3. The length of the segments wrapped by the D6 branes in the IIA description is

determined by the vevs of the scalars in the tensor multiplets. These in turn are given

by the volumes of the base blow-up P1’s on the F-theory side. The D8-branes sit at the
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3 2 121 3 3

Figure 3. The NS5-D6-D8 configuration corresponding to the [I5−3] model: circles with a cross

represent NS5 branes, the horizontal lines are the D6’s and the vertical line are D8 branes.

boundaries of the “plateau” of su(2) factors. The global symmetry from the boundary (not

shown in the figure) can be understood from a non-perturbative enhancement coming from

massless D0 branes (see [49] for a review). Due to the effect found in [50], the brane model

is useful to understand the origin of the “staircase” behavior of the F-theory chain. Indeed,

on the left of the leftmost D8 brane, and on the right of the rightmost D8 branes we have a

unit of Romans mass and thus we must have one net unit of D6 charge ending on each NS5.

The near horizon geometry of such brane systems has been discussed recently in [16, 51].

3.2.2 [In−p−q] model

We now discuss a generalization of the previous model that includes a perturbative mon-

odromy for the Wilson line β. This is the [In−p−q] model in the NU list and it is described

by the following fibration:

y2 = (x2 + tn)
[
(x− 1)2 + tm

] [
(x− 2)2 + tq

]
, (3.20)

which has the monodromy:

τ → τ +m+ q , ρ→ ρ+ n+ q , β → β − q . (3.21)

By proceeding as in the previous section, we obtain the following theory from the resolution

of the u = t = 0 intersection:

su(2) su(4) ŝu(2q) su(2q + 1) ŝu(k) su(k)⊕m ŝu(k) su(k − 1) su(2)

1 2 2 2 · · · 2 2 · · · 2 (2)×m 2 2 · · · 2 2

where we defined

k = p+ q , m = n− p− 1 , (3.22)

and we assumed for simplicity that n > p > q. In fact, one can check that the result is

completely symmetric under permutations of (n, p, q). The hat indicates intersection with

the residual discriminant and corresponds to an extra fundamental hypermultiplet. Note

that there are a total of (n+ p+ q) nodes in the quiver.

This type of quiver also appears in IIA brane models with intersecting NS5, D6 and

D8 branes, as we discussed above, and this is again useful to understand the jumps in the

rank of the gauge groups from the presence of D8 branes. We show in figure 4 the brane

model giving the non-perturbative algebra of the model with n = 8, p = 6 , q = 4.
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Figure 4. The NS5-D6-D8 configuration corresponding to the [I8−6−4] model. We now have an

additional D8 on the left hand side, which causes additional jumps in the rank of gauge groups.

We refer to [16], section 5.1, for a more detailed discussion on the relation between

the IIA models and the F-theory geometry. In particular, it is interesting to note that in a

IIA model with multiple D8 branes along a “staircase”, one can bring all the D8 branes on

one side by Hanany-Witten moves, and there are different number of D6 branes ending on

them. After backreaction this gives “fuzzy funnels” (related to the shells of polarized D8

branes in the solutions of [51–53]) which were related in [16] to T-branes in the IIB frame.

It would be interesting to understand more directly the relation of this T-brane data with

the β-monodromies present in the heterotic context.

4 Non-geometric models and duality web

We have seen that the explicit formulation of heterotic/F-theory duality in terms of the

map between genus-two and K3 fibrations reproduces the expectation from the moduli

monodromies in a number of situations where the heterotic side had a clear geometric

interpretation, at least in some duality frame.

In this section we investigate heterotic models with monodromies which are non-

geometric in all T-duality frames. This is the most interesting situation, since a priori

it is not clear if such degenerations are allowed, and even basic quantities such as the

charge of the corresponding “exotic” branes are not obviously available since we cannot go

to a geometric frame, measure the charge, and dualize back.

One class of non-geometric models is obtained by combining Dehn twists of the two

genus-one components of the genus-two fiber in order to have monodromies for τ and ρ

that remain non-geometric even after the exchange of τ and ρ. A simple example in the

absence of Wilson lines is a double elliptic T-fold with monodromy τ → −1/τ , ρ→ −1/ρ.

We will find that all these models admit a dual smooth resolution, and moreover the

resulting low energy physics is the same as the one describing the geometric models studied

in the previous section. We believe that this result can be used as a non-trivial test

of any direct description of non-geometric solutions, for example by using a T-duality

covariant formalism such as double field theory [54–56]. We will shortly analyze in details

the [III− III] model which is an interesting example of this class.

In section 5 we will consider models whose monodromies involve Dehn twists along

the cycle γ that links the cycles of the homology basis (see figure 1), thus including a

non-geometric mixing of the τ and ρ moduli. As we will explain in detail, only few of these

models admit a dual Calabi-Yau resolution, and for them we again derive the low energy

description from the F-theory side.
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4.1 Double elliptic T-fold: [III − III] model

As an example of a non-geometric degeneration we take the Namikawa-Ueno [III − III]

singularity. This model has monodromy:

τ → ρ

β2 − ρτ
, ρ→ τ

β2 − ρτ
, β → − β

β2 − ρτ
. (4.1)

We see that when β = 0 we obtain a “double elliptic” fibration on an S1 that encircles the

heterotic degeneration, with monodromy τ → −1/τ , ρ → −1/ρ. Models with such twists

have been discussed in the past from different points of view (see for example [31, 57–59]).

The equation for the hyperelliptic curve for such a singularity is:

y2 = x(x− 1)(x2 + t)
[
(x− 1)2 + t

]
. (4.2)

Like for the resolutions in the previous section, we calculate the Siegel modular forms for

this hyperelliptic fiber by using the map (2.9) and the explicit expressions for the Igusa-

Clebsch invariants, and we plug them into equation (2.1). We find that f and g for this

Weierstraß equation, look as follows:

f = −12t2u3v4
(
41472t10v + 186624t9v + 334368t8v + 300672t7v + 139968t6v

+ 31104t5v + 16t4u+ 2592t4v + 36t3u+ 57t2u+ 30tu+ 9u
)
, (4.3)

g = u5v5
(
− 3981312t15v2−8957952t14v2+11197440t13v2+57542400t12v2+78941952t11v2

+ 54914112t10v2 − 1024t9uv + 21959424t9v2 − 3456t8uv + 5318784t8v2 − 288t7uv

+ 746496t7v2 + 9648t6uv + 46656t6v2 + 8640t5uv + 2160t4uv + u2
)
. (4.4)

We are again interested in the enhancements from the intersection of the residual discrim-

inant with the E7 curve at t = 0. The terms relevant for this analysis are

y2 = x3 +
[
t6u3 + t2u4

]
x+ t4u6 + t6u5 + u7 , (4.5)

with a discriminant

∆ = −u9
(
4t18 + 12t14u+ 27t12u+ 66t10u2 + 58t6u3 + 27t8u3 + 54t4u4 + 27u5

)
(4.6)

We see that at u = t = 0 vanishing orders of f , g and ∆ increase to (6, 7, 14). To resolve

this singularity we proceed as in (3.7), introducing now six divisors ei.

As a next step, we want to analyze the singularities that arise at the new exceptional

curves to see what kind of gauge groups and matter we obtain. From the vanishing orders

of f , g and ∆ along this curves we get the chain of 1 2 2 2 2 2 curves:

[III∗]− I0 − II− IV − I∗0 − IV − II . (4.7)

In order to identify the gauge groups, we look at the conditions in table 2. The analysis of

the monodromy covers proceeds much as in the previous cases. We see that the I∗0 cover

does not factorize, as we expect in the case that the curve is intersected by a curve with

type IV singularity [60]. Hence we obtain a g2 gauge algebra. For the type IV fibers we find
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e7

I0

II

sp(1) 2×
7

g2

sp(1)

II
t =

0

1
2(1,2)

1
2(2,7)

1
2(7,2)

1
2(2,1)

Figure 5. Pictorial summary of the gauge algebra and matter content that arise from the resolution

of the dual model of a [III− III] singularity.

sp(1) because both curves have adjacent I∗0 and type II singularities [15]. The remaining

divisors do not lead to a contribution to the gauge algebra and we thus find the following

non-perturbative enhancement:

sp(1) g2 sp(1)

1 2 2 2 2 2
. (4.8)

The matter spectrum for the gauge symmetries can now be deduced from anomaly cancel-

lation or by studying the monodromy covers in more detail. From anomaly cancellation one

obtains for (−2)-curves that we need four fundamentals for an su(2) and four 7’s for a g2.

These states are partitioned into localized and non-local matter. Localized matter arises

at the intersections of the curves whereas non-local matter, besides the adjoint, appears in

the case of monodromies on the Kodaira fiber. Therefore, we obtain

e1∩e2 :
1

2
(1,2), e2∩e3 :

1

2
(2,7), e3 : 2×7 (non-loc.), e3∩e4 :

1

2
(7,2), e4∩e5 :

1

2
(2,1).

(4.9)

As a check of the amount of non-local matter, we calculate the genus of the monodromy

cover over e3 (for e2 and e4 checks can be done in a similar fashion), which is given by:

ψ3 + 2233e2
2 e

2
4 (2433 e2

2 + e2
4 − ψ) = 0 , (4.10)

where e2 and e4 are the homogeneous coordinates of the rational line e3 = 0. From (4.10)

we see that the cover is singular at ψ = e2 = 0 and ψ = e4 = 0. Resolving these two

singularities, we find that the genus of the cover is two which agrees with the two non-local

7-states that we needed for anomaly cancellation. We summarise this resolution in figure 5.

At this point, we can check that what we obtained is precisely the same resolution as

the one obtained from the NU model [I∗0 − I0] in (A.14), giving the theory of six pointlike

instantons on a D4 singularity. At first sight, this seems very surprising, since we started

from two different elements of the NU list, whose monodromies are not conjugate to each

other and there seems to be no duality that brings a degeneration of type [III − III] to a

geometric frame. However, this is in line with the fact that no new F-theory models are

needed to understand the class of non-geometric heterotic models where τ and ρ degener-

ations do not collide [3]. In the following we will generalize this observation to obtain a
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list of all the models described by the same six-dimensional low energy theory. However,

before we detour to describe a global embedding of the local [III − III] model.

4.2 A global model

In this section we address the question of global hyperelliptic fibrations. The idea is to first

start with the generic situation and continue by tuning the coefficients ci in (2.7) to obtain

different kinds of singularities. In practice we have to choose the parameters γij in (2.21).

We will consider an example that features a [III − III] singularity, discussed in section 4.1,

at the origin.

The concrete hyperelliptic curve can be obtained by taking the local equation (4.2) and

extending the prefactors of xi to sections of the anti-canonical bundle of P1, cf. section 2.3,

which reduce near t = 0 to the ones from (4.2),

y2 = x6
(
δ62t

2 + δ61t+ 1
)

+ x5
(
δ52t

2 + δ51t− 3
)

+ x4
(
δ4t

2 + 2t+ 3
)

+

+ x3
(
δ3t

2 − 4t− 1
)

+
(
t2 + 3t

)
x2 +

(
−t2 − t

)
x .

(4.11)

Here t is the affine coordinate on the P1 base. When we calculate from this sextic the

vanishing orders of the Siegel modular forms at t = 0, we find

µ(ψ4) = 2 , µ(ψ6) = 3 , µ(χ10) = 5 , µ(χ12) = 5 . (4.12)

However, these are the vanishing orders of the [II − III] singularity as one can see from

table 5.4 Therefore, we have to look at the coefficients of the t3, t5, t5 terms in ψ6, χ10,

χ12, respectively. All of them are proportional to δ61 + δ51. Hence, we set δ51 ≡ −δ61

in (4.11) to obtain indeed a [III− III] at t = 0.

The discriminant of this sextic is found to be

I10 =
1

2 · 35
χ10 = t6(t+ 1)2P12(t) , (4.13)

where P12(t) is a polynomial of degree 12 with simple roots, say r`, ` = 1, . . . , 12. Thus,

the fiber degenerates at t = 0, t = −1, and the twelve roots r`. There is no singularity

at ∞. To analyze the type of singularities — besides the one at t = 0 which we know

already — we compute the vanishing orders of the Siegel modular forms at the remaining

singularities:

t = −1 : µ(ψ4) = 0 , µ(ψ6) = 0 , µ(χ10) = 2 , µ(χ12) = 2 ,

t = r` : µ(ψ4) = 0 , µ(ψ6) = 0 , µ(χ10) = 1 , µ(χ12) = 1 .
(4.14)

From the tables of section 6.2, we find that the singularity at t = −1 is of type [I2−0−0]

and the singularities at t = r` are of type [I1−0−0].

Let us now examine the global model from the F-theory perspective. To analyze

the singularities on the F-theory side we first determine the discriminant of the elliptic

fibration (2.1)

∆ = u9
[
4(au+ c)3 + 27u(u2 + bu+ d)2

]
= u9P5,60(u, t) , (4.15)

4Note, the vanishing orders of a, b, c, d almost uniquely characterize the singularities of the hyperelliptic

curve, at least for the ones for which we have an F-theory resolution, cf. section 6.1.
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where P5,60(u, t) is the polynomial of degree 5 and 60 in the affine coordinate u and t of

F12, respectively, read off from the equality. The discriminant clearly exhibits the E7 and

E8 singular fibers at u = 0 and u = ∞, respectively, i.e. along the two sections of the

Hirzebruch surface. But now we are more interested in locating additional singular loci.

Looking at P5,60(u, t) we find that it does not factorize any further, i.e. P5,60(u, t) = 0

defines an I1 locus. This I1 curve intersects the section u = 0. At the intersection points

of I1 and III∗ where also c and d vanish, we obtain singularities of non-minimal type (or

non-Kodaira type). Note that these are exactly the loci where also the genus-two curve

degenerates. The resolution of these singularities (on the F-theory side) were already

analyzed in section 3.2.1 and 4.1. Besides these points there are no other co-dimension

two singularities which render the Calabi-Yau threefold singular, although there might be

other points where the K3, or the elliptic fiber, degenerates. In particular, we find that

the points associated with the enhancement to SU(2) of the heterotic at self-dual points,

giving SU(2) singularities on the K3 fiber, do not lead to singularities in the total space of

the K3 fibration.

4.3 Dualities

We have seen that the resolution of the dual [III − III] model gives the same six-dimensional

theory as [I0 − I∗0], namely the theory of six pointlike instantons on a D4 singularity. In

fact, this is not an isolated coincidence, as we argue below.

We first note that the above mentioned duality might be understood from the mon-

odromy factorization of the two models as we now explain. From table 1, and our discussion

in section 2.2, it follows that the monodromy of the [III − III] model can be written in terms

of products of Dehn twists as B1A1B1B2A2B2. Recall that Ai and Bi are respectively twists

around the ai and bi cycles shown in figure 1. We can get to the monodromy of the [I0 − I∗0]

model by applying the following moves:

[III− III] = B1A1B1B2A2B2

= B1A1B1B1A1B1 (ρ→ τ)

= B1A1B1A1B1A1 (braid)

= (B1A1)3 = [I0 − I∗0] .

(4.16)

The last move follows from braid relations that define the generators of the mapping class

group (see for example [31]), and it is the analogous of a collision of two Kodaira fibers of

type III in F-theory. The first move replaces locally the ρ fibration with a fibration in τ .

We can check that this move is allowed in the case of the elliptic models from the direct

inspection of the duality map for the E8 ×E8 case, which is considerably simpler and it is

shown in appendix B.

This simple argument also predicts that the [I0 − I∗0] model is equivalent to the [IV − II]

model, described by the fibration:

y2 = (t+ x3)
[
t2 + (x− 1)3

]
, (4.17)

and corresponding to a monodromy B1A1B1A1B2A2. By constructing the dual F-theory

model and resolving it, we indeed find the same six-dimensional theory.
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µ(I10) dual models

2 [I0 − II]0112

3 [I0 − III]0113

4 [I0 − IV]0224 , [II− II]0224

5 [IV − I1]0325 , [II− III]0225

6 [I0 − I∗0]0226 , [III− III]0226 , [IV − II]0336

7 [I∗0 − I1]0227 , [IV − III]0337

8 [I0 − IV∗]0448 , [IV − IV]0448 , [I∗0 − II]0338

9 [I0 − III∗]0339 , [I∗0 − III]0339

10 [I0 − II∗]0 5 5 10 , [IV∗ − II]0 5 5 10 , [I∗0 − IV]0 4 4 10

11 [II− III∗]0 4 4 11 , [IV∗ − III]0 5 5 11

Table 3. Dual models: the NU degenerations in the same row give rise to the same SCFTs after

resolution of the dual F-theory model. We indicate as a subscript the vanishing orders of the

Igusa-Clebsch invariants I2 , I4 , I6 , I10.

As a rule, we can find dual models if the sum of the orders of the discriminant for their

two Kodaira components, or equivalently the order of the Igusa-Clebsch invariant I10, is

the same. In table 3 we display all the models of this type that have the same order. We

indicate as a subscript the order of vanishing of all the Igusa-Clebsch invariants, listed in

appendix D. In section 6 we show that models with higher µ(I10) do not admit dual smooth

Calabi-Yau resolutions. For all the models in table 3 we explicitly performed the F-theory

resolution and verified that for all the degenerations in a row the same theory arises.

We thus see that almost all non-geometric models of type 2 in the NU list are described

by the theory of pointlike instantons on ADE singularities. It would be interesting to

understand better this fact directly from the heterotic side, beyond the simple argument

given above. The precise set of dualities that we are finding should also be an interesting

test of T-duality covariant formalisms, such as double field theory [54–56], in which one

might hope to describe non-geometric backgrounds. Presumably, these dualities can be

clarified by understanding the non-geometric analog of the Bianchi identity 3.1.

We also stress that our findings imply the existence of local degenerations with mon-

odromies which are non-geometric in all T-duality frames, thus enlarging the examples of

“exotic” branes recently studied for example in [29, 30], and provide a dual description of

the T-fects constructed in [31].

5 Other models

In the previous sections we explored parabolic models in the NU classifications that had a

clear geometric interpretation, and elliptic models of type [K1 −K2], both geometric and

non-geometric, whose dual resolutions can be understood in terms of the theory of pointlike

instantons on ADE singularities. In this section we consider examples from the remaining
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NU models, in particular we explore models whose monodromies involve a twist along the

cycle γ in figure 1. As we will show in the next section, the duals of many models of this

kind cannot be resolved, so we restrict ourselves to the examples that admit a smooth dual

Calabi-Yau model.

5.1 Non-geometric degenerations with moduli mixing

A list of genus-two degenerations with monodromy that mixes the moduli is provided

by the elliptic type 1 models in the NU classification (see appendix D). Despite the fact

that the corresponding heterotic models lack a geometric interpretation, the dual F-theory

resolutions are similar to the ones encountered in the previous sections. For each example

we again determine the non-perturbative gauge algebras. We refer to section 6 for a detailed

analysis of all the type 1 models, which shows that the models listed here are the only ones

admitting a smooth dual.

[V] model. From the NU list we take the local model:

y2 = x6 + t , (5.1)

whose Sp(4,Z) monodromy is

M[V] =


0 0 1 0

0 0 1 1

−1 1 0 0

0 −1 0 0

 , (5.2)

which acts on the moduli matrix (2.4) as

τ → ρ

β2 − ρτ
, ρ→ ρ+ τ − 2β

β2 − ρτ
, β → ρ− β

β2 − ρτ
. (5.3)

This is an elliptic monodromy of order six, and up to global conjugation it can be decom-

posed into the following product of the Sp(4,Z) generators given in (2.12):

M[V] = A1B1ΓB2A2 . (5.4)

By computing the Igusa-Clebsch invariants we find the following dual K3 fibration:

y2 = x3 + 972t2u3v4(−5u+ 2736t3v)x+ u5v5(u2 − 24365t3uv + 2113125t6v2) , (5.5)

with discriminant:

∆ = −27u9v10
(
2536t3v + u

)3 (
2736t3v − u

)2
. (5.6)

By resolving the intersection u = t = 0 we get a chain:

[III∗]− I0 − III− I∗0 − IV − II . (5.7)
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The vanishing orders of f and g at each divisor indicate the following gauge algebras:

su(2) g2 sp(1)

1 2 2 2 2
. (5.8)

The matter content is 1
2(2,1,1)⊕ 1

2(2,7,1)⊕2(1,7,1)⊕ 1
2(1,7,2)⊕ 1

2(1,1,2), in agreement

with anomaly cancellation [15, 18].

We find the same result for another model that admits a dual smooth fibration, the

[VII] model described by y2 = x(x4 + t) and monodromy

M[VII] =


0 1 1 0

1 −1 0 1

−1 1 1 0

0 −1 0 0

 . (5.9)

[VIII − 1] model. This example is defined by:

y2 = x5 + t , (5.10)

with monodromy matrix

M[VIII−I] =


0 1 1 0

1 0 0 1

−1 1 1 0

0 −1 0 0

 . (5.11)

The action on the moduli is found to be

τ → ρ

β2 + ρ− ρτ
, ρ→ τ(ρ+ 1)− (β + 1)2

β2 + ρ− ρτ
, β → ρτ − β(β + 1)

β2 + ρ− ρτ
. (5.12)

In this model only the Igusa-Clebsch invariant I10 does not vanish identically. The dual

F-theory elliptic fibration is then:

y2 = x3 − 233555t4u3v5x+ u7v5 , ∆ = −27u9v10
(
u5 − 211312515t12v5

)
, (5.13)

leading to a simple chain

[III∗]− I0 − III− IV − II (5.14)

with gauge algebras:

su(2) sp(1)

1 2 2 2
. (5.15)

The matter comprises a bifundamental plus one additional 2 for each factor.

[IX − 1] model. As a last example we consider the NU model:

y2 = x5 + t2 , (5.16)
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with monodromy matrix

M[IX−1] =


0 1 1 1

0 0 1 0

0 0 0 1

−1 0 0 −1

 , (5.17)

acting on the moduli as:

τ → 1 + ρ− (1 + β)2

τ
, ρ→ −1

τ
, β → −β + 1

τ
. (5.18)

In this case it also happens that a = b = d = 0 and the dual elliptic fibration is

y2 = x3 − 233555t8u3v5x+ u7v5 , ∆ = −27u9v10
(
u5 − 211312515t24v5

)
. (5.19)

Resolving u = t = 0 now requires a total of 16 blowups and gives the chain:

[III∗]− I0 − III− I∗0 − III− I0 − III∗ − I0 − II− IV − I∗0 − II− IV∗ − II− I∗0 − IV − II .

(5.20)

The study of monodromy covers, cf. table 2 leads to the following non-perturbative gauge

algebras:

su(2) so(7) su(2) e7 sp(1) g2 f4 g2 sp(1)

1 2 3 2 1 8 1 2 2 3 1 5 1 3 2 2
. (5.21)

The only matter representations are 1
2(2,8,1)⊕ 1

2(1,8,2), for su(2)⊕ so(7)⊕ su(2).

As we already mentioned, in the type 1 NU elliptic models there are no other heterotic

degenerations that admit a dual Calabi-Yau resolution.

5.2 Parabolic models of type 3

In the parabolic type 3 class of the NU list we find additional models that admit smooth

F-theory duals. Below we present the resolution of several examples.

[IIn−0] model. The model [IIn−0] is described by the local equation:

y2 = (x4 + αtx2 + t2)
[
(x− 1)2 + tn−1

]
, (5.22)

and has monodromy

τ → τ , ρ→ ρ+ τ − 2β + n . β → τ − β . (5.23)

The intersection of {t = 0} with the E7 curve in the dual F-theory model is described by

y2 = x3 +
[
t5+nu3 + t2u4

]
x+ t6+nu5 + t3u6 + u7 , (5.24)

∆ = −u9
(
54u3tn+6 + 66u2tn+9 + 39ut2n+12 + 4t3n+15 + 31t6u3 + 54t3u4 + 27u5

)
.

The resolution produces a plateau of I∗0 Kodaira fibers, which after further resolution gives

the chain:

su(2) so(7) so(8)1 so(8)n−1 g2 sp(1)

1 2 3 1 4 1 · · · 4 1 3 2 2
(5.25)
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Chains of type 1 4 · · · 1 4, with so(8) singularities, are described in detail in [60]. The

resolution is similar to that in the [I∗0 − In] model (see appendix A), but in this case the

plateau 14 · · · 41 is connected with the E7 in a different way. There is a chain 123 instead

of 1223, and there is a su(2)×so(7) with matter 1
2(2,8)⊕ (1,8), as expected from anomaly

cancellation. It would be interesting to understand better the heterotic interpretation

of this model.

[IV − I∗n] model. The defining local equation is given by:

y2 = (t+ x)(x2 + tn+2)
[
(x− 1)3 + t2

]
. (5.26)

The monodromy action turns out to be:

τ → − 1

1 + τ
, ρ→ ρ+ n− β2

1 + τ
, β → β

1 + τ
. (5.27)

Here, and in the remaining examples of this section, we will skip presenting the data of

the dual K3 on the F-theory side. To resolve we proceed as explained before. We obtain a

resolution precisely equal to that of [II∗−In], corresponding to (10+n) pointlike instantons

on an E8 singularity, discussed in sections 3.1 and 3.1.1. We find that other examples of

type [K− I∗n] do match models, analyzed in appendix A, associated to pointlike instantons

on E7, E6 and D4 singularities. Indeed, the resolutions of [III− I∗n] and [III∗− In], [II− I∗n]

and [IV∗ − In], as well as [I0 − I∗n] and [In − I∗0], do coincide.

[IV∗ − IIn] model. According to the NU list the local singularity is described by:

y2 = x(x3 + t2)
[
(x− 1)2 + tn−1

]
, (5.28)

for n ≥ 1. The monodromy action translates into:

τ → −1 + τ

τ
, ρ→ ρ+ n− β2

τ
, β → −1 +

β

τ
. (5.29)

The resolution has the structure:

su(2) so(7) su(2)

1 2 3 2 1

e6 su(3)

6 1 3 1

⊗n
f4 g2 sp(1)

5 1 3 2 2
. (5.30)

The second and third block in the above pattern appear in the resolution of the [In+1−IV∗]

model, cf. (A.13), associated to k = n+ 9 pointlike instantons on a E6 singularity. It can

also be checked that the resolution of [II − II∗n] gives the same result (5.30).

[III − II∗n] model. From the NU list we read the singularity type:

y2 = (x4 + t)(x2 + tn+1) . (5.31)

The characteristic monodromy is given by:

τ → −1

τ
, ρ→ ρ+ n− β2

τ
, β → 1 +

β

τ
. (5.32)
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Resolving yields:

su(2) so(7) su(2)

1 2 3 2 1

e7 su(2) so7 su(2)

7 1 2 3 2 1
× (5.33)

× e7 su(2) so7 su(2)

8 1 2 3 2 1

⊕(n−1)

× e7 su(2) g2 f4 g2 sp(1)

8 1 2 3 1 5 1 3 2 2
.

Except for the first block, this result resembles the resolution of the [In+1 − III∗] model,

cf. (A.7), corresponding to k = n+10 pointlike instantons on an E7 singularity. Matter in-

cludes representations 1
2(2,8,1)⊕ 1

2(1,8,2) for each su(2)⊕so(7)⊕su(2) block. In addition,

we have verified that there is an extra half-fundamental for the e7 with self-intersection −7,

as required by anomaly cancellation. The same resolution (5.33) is obtained for [III∗− IIn].

[III − IIn] and [IV − IIn] models. For these models we will only give the resolution

for completeness. For [III− IIn] we find

su(2)1 su(2)2 su(2)n+1

1 2 2 · · · 2 2
. (5.34)

Notice the similarity to the resolution of [III− In+1] displayed in (A.26). For [IV− IIn] we

obtain
su(2) su(3)1 su(3)n sp(1)

1 2 2 · · · 2 2 2
. (5.35)

This result is analogous to the resolution of [IV−In+1] shown in (A.25). The matter consists

of bifundamentals plus additional fundamentals for the leftmost and rightmost factors.

5.3 Parabolic models of type 4

In this class we find 3 models that admit a resolution, the [In−p−0], already discussed in

section 3.2.1, as well as [IIn−p] and [In − I∗p], which are addressed below.

[IIn−p] model. In the NU list we find two models that generalize [IIn−0], namely the

[IIn−p] degenerations. Here we consider the one classified as type 4, with the following

sextic:

y2 = (x2 + t)(x2 + tp+1)
[
(x− 1)2 + tn−1

]
, (5.36)

and monodromy:

τ → τ + p , ρ→ ρ+ n , β → −β − 1 . (5.37)

The intersection u = t = 0 in the dual F-theory model is given by the Weierstraß model:

y2 = x3 +
[
12(10368t5+n+p + · · · )u3 − 12(t2 + · · · )u4

]
x (5.38)

+ 497664(t6+n+p + · · · )u5 + 16(t3 + · · · )u6 + u7 .

Here we have written numerical factors in the leading terms in order to stress that in this

case there will be non-generic cancellations in the discriminant ∆. Computing ∆ explicitly

we can extract the data needed to perform the resolution. Proceeding as explained before,
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we find a chain 1231(414 · · · 14)1322 supporting singularities I0 − III− I∗0 − I1 − (I∗1 − · · · −
I∗1)− I1 − I∗0 − IV− II. In the central block the −1 curves support sp algebras whereas the

−4 curves support so ones. For example, for n = p, the full resolution takes the form:

su(2) so(7) so(9) sp(1) so(11) sp(2) · · · so(2p+ 5) sp(p− 1) so(2p+ 7)

1 2 3 1 4 1 4 1 · · · 4 1 4
×

× sp(p− 1) so(2p+ 5) · · · sp(1) so(9) g2 sp(1)

1 4 · · · 1 4 1 3 2 2
. (5.39)

The matter for sp−so, and viceversa, is 1
2(fund, fund). For so(2p+7) there is an additional

fundamental. In this way all gauge anomalies are canceled. The pattern is analogous to

that obtained for k = 2p + 6 instantons on a Dp+4 singularity [18]. When n > p the

resolution is instead:

su(2) so(7) so(9) · · · sp(p−1) so(2p+7) sp(p)

1 2 3 1 4 · · · 1 4 1

so(2p+8) sp(p)

4 1

⊕(n−p−1)

×

× so(2p+ 7) sp(p− 1) so(2p+ 5) · · · sp(1) so(9) g2 sp(1)

4 1 4 · · · 1 4 1 3 2 2
. (5.40)

This result is similar to the resolution of k > 2p+ 6 instantons on a Dp+4 singularity [18].

It can be checked that the matter content guarantees anomaly cancellation. For instance,

for n = 4, p = 3, besides 1
2(fund, fund) for adjacent sp − so and so − sp, there is an

additional 1
2(1, fund) for so(13)− sp(3), cf. appendix E. For n < p the resolution is given

exchanging p with n in (5.40).

As we already mentioned, NU list another [IIn−p] model in their parabolic type 5 class.

This model has a different monodromy, whose action on the moduli is given by τ → τ + p,

ρ → ρ + τ + 2β + n + p and β → −β − τ − p. The resolutions of the F-theory duals

are similar to (5.39) and (5.40), but there is a difference in the “ascending” ramps. For

concreteness, we show the particular example n = p = 6. The resolution chain is the same

as the one in (5.39) with the same values of n and p. However, the gauge groups on the

starting 1 2 3 1 chain are:

su(2) so(7) su(2)

1 2 3 1 · · ·
(5.41)

while the 41 · · · 4 chain next to it supports the following gauge algebras:

so(12)− sp(3)− so(16)− sp(5)− [so(20)− sp(6)]⊕3 − so(19) . (5.42)

This is glued to the same descending ramp 14 · · · as in (5.39). It is interesting that we now

get additional jumps in the rank of the gauge groups, similar to what we found for the type

5 [In−p−q] in section 3.2.2. It is likely that this corresponds to IIA brane models which

involve O6± planes, along the lines of [61]. It would be interesting to explore this further.
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[In − I∗p] model. The local equation reads:

y2 = (t+ x)(tn + (x− 1)2)(tp+2 + x2) . (5.43)

The monodromy action on the moduli is:

τ → τ + p , ρ→ ρ+ n , β → −β . (5.44)

The data of the F-theory dual K3 can be found as in preceding examples.

We expect this model to describe k = n+ p+ 6 small instantons on a Dp+4 singular-

ity. Performing the resolution we indeed find patterns matching known results for such a

configuration [17, 18]. When n = p and n > p the resolutions are respectively of the form

in eqs. (5.39) and (5.40), except for the replacement of the starting 123 · · · by

sp(1) g2

1 2 2 3 · · ·
(5.45)

When n < p the resolution follows exchanging p with n in the result explained above.

6 A classification of T-fects and 6D SCFTs

In the previous sections we provided several examples of heterotic geometric and non-

geometric degenerations whose dual F-theory realization admits a smooth resolution. The

purpose of this section is to determine all models from the NU list for which such a desin-

gularization is possible. We will show that the examples discussed so far essentially cover

all the possible situations. In this way we obtain a catalog of six-dimensional theories that

characterize geometric and non-geometric “exotic” defects for the E7 × E8 gauge group.

6.1 Criteria for the resolutions

We want to discuss a more systematic approach to the resolutions or base blow-ups, re-

spectively. The way we will proceed is strongly influenced by toric geometry of which we

will make use of in the following. For the details on toric geometry we refer the reader to

the literature, e.g. [62, 63].

In the preceding sections, we applied sequences of base blow-ups to get rid of the non-

Kodaira singularities at u = t = 0. At every step of this blow-up process, the map was of

the following kind

ξ1, ξ2 7→ e ξ̃1, e ξ̃2 ,

where by ξ1 and ξ2 we denote the respective affine base coordinates at some step in the

process. For the elliptic fibration to remain Calabi-Yau the blow-up had to involve the

fiber coordinates x and y too:

ξ1, ξ2, x, y 7→ e ξ̃1, e ξ̃2, e
2 x̃, e3 ỹ . (6.1)

We can summarize such a blow-up in the following weight table:

ξ1 ξ2 x y e
∑

E 1 1 2 3 −1 6
. (6.2)
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Note that here and in the following, we omit tildes over the new coordinates. The hyper-

surface stays Calabi-Yau because after factoring e6 off, to obtain the proper transform of

the Weierstraß equation, its class changes by 6E.

We will now generalize this procedure. For this we introduce toric (blow-up) divisors

in general directions:5

ξ1 ξ2 x y e
∑

E n1 n2 o p −1 o+ p+ n1 + n2 − 1
,

with ni, o, p ∈ N>0 and n1, n2 coprime. To have the same powers of e in front of y2 and

x3, we have to set o = 2k and p = 3k. Because, the proper transform of the Weierstraß

equation should again be of Weierstraß form. Furthermore, the hypersurface should stay

Calabi-Yau which is true for

6 k = 5 k + n1 + n2 − 1 ⇒ k = n1 + n2 − 1 . (6.3)

Hence, the toric divisors we are interested in are of the form

ξ1 ξ2 x y e
∑

E n1 n2 2(n1 + n2 − 1) 3(n1 + n2 − 1) −1 6(n1 + n2 − 1)
. (6.4)

For e6(n1+n2−1) to factor off the Weierstraß equation, it is necessary that after the blow-

up f and g have a prefactor e to the power 4(n1 + n2 − 1) and 6(n1 + n2 − 1) or more,

respectively. Since f and g are polynomials in ξ1 and ξ2, i.e.

f =
∑
i

fi ξ
m1

i
1 ξ

m2
i

2 , g =
∑
i

gi ξ
l1i
1 ξ

l2i
2 , (6.5)

this amounts to the constraint

(m1
i − 4)n1 + (m2

i − 4)n2 =: m̃i ·n ≥ −4 and (l1i − 6)n1 + (l2i − 6)n2 =: l̃i ·n ≥ −6 (6.6)

for all m̃i and l̃i.

Given f and g, equation (6.6) tells us which blow-ups nj we have to introduce such

that all the fibers over the base are of Kodaira type. The set {nj} is given by all the

vectors which fulfill (6.6) and have coprime entries. However, there can be cases in which

the vanishing orders of f and g are too high to obtain a well-defined Weierstraß fibration.

This happens when there is an infinite number of allowed nj ’s. Put differently, there exists

an n such that

m̃i · n ≥ 0 and l̃i · n ≥ 0 (6.7)

for all m̃i and l̃i. Therefore also any multiple of n would solve (6.6). The existence of

such an n would also imply that f and g vanish to order four and six or more along the

corresponding blow-up curve, i.e. we would have a whole curve of fibers which are beyond

5A single toric divisor introduced that way might render the base singular, e.g. n1 = 2 = 2n2 would

generate a Z2-singularity in the base at e = ξ2 = 0. But in the collection with all the divisors we will

introduce, the final base will be smooth.
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the Kodaira types. In this work, we are only interested in elliptic fibrations of a very

restricted kind, cf. equation (2.1). Therefore, we can give a very simple criterion on a, b,

c and d or to be more precise on their vanishing orders µ(a), µ(b), µ(c) and µ(d). The

criterion reads:

The solution set to (6.6) is finite iff µ(a)<4 or µ(b)<6 or µ(c)<10 or µ(d)<12.

By virtue of (2.10) the relevant data can be related to the vanishing orders of the Igusa-

Clebsch invariants with a little subtlety for µ(b).

Having the set of necessary blow-ups {nj} it is also simple to read off the vanishing

orders of f and g along the exceptional curves {ej}. The vanishing order of f along ej = 0

is given by

min
i

(
{m̃i · nj + 4}

)
(6.8)

and for g by

min
i

(
{̃li · nj + 6}

)
(6.9)

The vanishing orders of the discriminant can be obtained in a similar fashion. We collect

the powers of the polynomial in the discriminant given by

∆ =
∑
i

∆i ξ
p1i
1 ξ

p2i
2 . (6.10)

From the vectors in the set {pi} we subtract (12, 12)T to obtain {p̃i}. The vanishing order

of the discriminant along the divisor ej = 0 is then:

min
i

(
{p̃i · nj + 12}

)
. (6.11)

6.1.1 Two examples

To illustrate the above procedure, we will work out two examples in detail. We start with

the [II∗− In] singularity on the heterotic side, already considered in section 3.1.1. Mapping

it to F-theory we get

f = u3 t10+n(. . .) + u4 t5+n(. . .) (6.12)

and

g = u5 t10+n(. . .) + u6 t5(. . .) + u7 . (6.13)

We only gave the relevant terms because any term with a higher power in t gives a weaker

constraint in (6.6) than the ones shown. The inequalities from f are

(6 + n,−1) · n ≥ −4 , (1 + n, 0) · n ≥ −4 , (6.14)

and those from g are

(4 + n,−1) · n ≥ −6 , (−1, 0) · n ≥ −6 , (−6, 1) · n ≥ −6 . (6.15)

Together with the positivity constrain for n1 and n2, the solution set is given by a lattice

polytope with the following vertices:

{(0, 0), (1, 0), (6, 30), (6, 30 + 6n), (1, 10 + n), (0, 4)} , (6.16)
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Figure 6. Blow-up divisors for the resolution of the dual of the [II∗ − I1] model. The blue solid

lines join the vertices given in (6.16) for n = 1. The red dots are the points that satisfy the

coprime conditions and are thus the blow-up divisors. We show the vectors corresponding to the

points (1, 3), (1, 4) and to the divisor (2, 7) between them, with self-intersection −1.

However, not all lattice points in this polytope become blow-up divisors. First of all the

directions (1, 0) and (0, 1) correspond to t and u, respectively. Furthermore, because of

the coprime condition, we only take the first point as a generator if we have a ray which

goes through several points. As an example consider the vertices (6, 30) and (6, 30 + 6n).

In both cases we find six points lying on the ray going through them, but only the first

points give rise to blow-up divisors. Notice also that the points (1, j), j = 1, . . . , 10 + n

with coprime components, are contained in the polytope and actually correspond to the

ej divisors used in section 3.1.1. Clearly there are additional points associated to further

blow-up divisors. The example corresponding to n = 1 is illustrated in figure 6.

With the basic toric description at hand, we can show how the repeating blocks in

the resolution in eq. (3.12) do arise and why there is a symmetry in the pattern of the

self-intersections of the curves. We will consider n ≥ 1 in what follows. To begin, we find

that the (n + 1) divisors corresponding to (1, 5 + j), j = 0, . . . , n, support type II∗ fibers

with self intersection number (−11) for j = 0, n, and (−12) for other j. Next we should

remember that toric information is invariant under SL(d,Z) transformations with d the

dimension of the toric variety which is 2 in our case. In particular, with(
1 0

−k 1

)
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we can map all the ‘wedges’ spanned by (1, 6 + k) and (1, 5 + k) to (1, 6) and (1, 5) which

shows why we obtain the same self-intersection numbers between the (−12)- or (−11)-

curves. Furthermore, with (
−4− n 1

−6n− 25 6

)
we can map the wedge spanned by (0, 1) and (1, 5 + n) to (1, 6) and (1, 5).6 There is one

further transformation, (
6 −1

31 −5

)
,

mapping (0,−1), (1, 5) to (1, 5), (1, 6) which explains why most of the first self-intersections

agree with those between the (−12)-curves.

To conclude with this example we give now the vectors corresponding to the (toric)

blow-up divisors and their self-intersections between (1, 5) and (1, 6):

{(6, 31) : − 1, (5, 26) : −2, (4, 21) : −2, (3, 16) : −3, (5, 27) : −1, (2, 11) : −5,

(5, 28) : −1, (3, 17) : −3, (4, 23) : −2, (5, 29) : −2, (6, 35) : −1} .
(6.17)

Recall that in two dimensions the self-intersection number −aj of a toric divisor associated

to nj satisfies ajn
j = nj+1 + nj−1.

As a second example we want to consider the [III] singularity on the heterotic side,

with the monodromy τ → ρ, ρ → τ + ρ − 2β, β → ρ − β. After mapping it to F-theory

we obtain

f = u3 t10(. . .) + u4 t4(. . .) (6.18)

and

g = u5 t12(. . .) + u6 t6(. . .) + u7 . (6.19)

In addition to the positivity constraint, we get only two inequalities from f and g,

(6,−1) · n ≥ −4 , (−6, 1) · n ≥ −6 . (6.20)

These constraints are not enough to give a bounded solution set. Therefore, we will always

end up with a curve of fibers which are beyond Kodaira type if we try to blow up the

base to resolve the singularity at u = t = 0. Furthermore, in this example the vanishing

orders are µ(a) = 4, µ(b) = 6, µ(c) = 10 and µ(d) = 12, so that according to the criterion

established before this model indeed was not expected to have a resolution.

6.2 A catalog of T-fects

We now briefly summarize the Namikawa-Ueno models for which we were able to construct

the dual CY resolution. The full list of NU models is reproduced in appendix D. A simple

way to determine whether a model admits a resolution is to apply the criterion stated in

6Although the two parts of the polytope are not fully identical after applying this linear map to the first

one, we are only interested in the first points of all the rays generated by the points in the polytope. These

points lie also in the truncated piece.
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NU model µ(a) µ(b) µ(c) µ(d)

[I0−0−0] 0 0 0 0

[V] 2 3 5 6

[VII] 2 3 5 6

[VIII− 1] ∞ ∞ 4 ∞
[IX− 1] ∞ ∞ 8 ∞

Table 4. Elliptic type 1 models.

section 6.1, based on the vanishing orders of the coefficients a, b, c and d that enter in

the elliptic fibration defined in equation (2.1). The model has a resolution iff µ(a) < 4 or

µ(b) < 6 or µ(c) < 10 or µ(d) < 12.

6.2.1 Elliptic type 1

The elliptic type 1 models of NU are characterized by monodromies that are of finite order

in the mapping class group of the genus-two surface and contain twists around the γ cycle

(see figure 1). Therefore, the corresponding action of Sp(4,Z) elements on the Siegel upper

half plane results in mixing of the (τ, ρ, β) moduli and the models are thus non-geometric.

Disregarding the trivial monodromies, from a total of 18 types we find only 4 models

whose F-theory duals admit a smooth CY resolution. We list them in table 4 together

with the vanishing orders of the coefficients of the dual elliptic fibration, from which we

can easily verify that the criterion discussed in the previous section is satisfied. The explicit

resolutions of these models were presented in section 5.1.

6.2.2 Elliptic type 2

The NU list of type 2 models is given by all degenerations of type [K1 − K2 − m], with

m ≥ 0, where K1 and K2 are one of the Kodaira type singularities for the two genus-one

components of Σ, plus additional sporadic models denoted as [2K−m] and [K1−K2−α].

None of the latter, nor any of the models with m 6= 0, give rise to smooth models. Using

again the notation [K1 − K2 − 0] ≡ [K1 − K2], we find a total of 20 models that satisfy

our criterion, listed in table 5. As we discussed in the previous sections, the models of

type [I0 −K2] correspond to a configuration of k = µ(d) pointlike instantons on the K2

singularity and the resolutions are explicitly worked out in section 3.1 and in appendix A.

The remaining models are non-geometric since their monodromy involves a non-trivial

action on the torus volume. However, as we discussed in section 4.1 and 4.3, many of these

models lead to the same resolutions as the geometric ones.

6.2.3 Parabolic type 3

In this class we found additional models in which the monodromy factorizes as the product

of two monodromies of Kodaira type for the two tori of Σ, one of which is either In or I∗n
(the only parabolic elements in the Kodaira list) and the other is of elliptic type. There
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NU model µ(a) µ(b) µ(c) µ(d) NU model µ(a) µ(b) µ(c) µ(d)

[I0 − I0] 0 0 0 0 [II− IV] 3 3 6 6

[I0 − II] 1 1 2 2 [I∗0 − II] 3 4 8 8

[I0 − III] 1 2 3 3 [II− IV∗] 5 5 10 10

[I0 − IV] 2 2 4 4 [II− III∗] 4 7 11 11

[I0 − I∗0] 2 3 6 6 [III− III] 2 4 6 6

[I0 − IV∗] 4 4 8 8 [IV − III] 3 4 7 7

[I0 − III∗] 3 6 9 9 [I∗0 − III] 3 5 9 9

[I0 − II∗] 5 5 10 10 [IV∗ − III] 5 6 11 11

[II− II] 2 2 4 4 [IV − IV] 4 4 8 8

[II− III] 2 3 5 5 [I∗0 − IV] 4 5 10 10

Table 5. Elliptic type 2 models.

NU model µ(a) µ(b) µ(c) µ(d) NU model µ(a) µ(b) µ(c) µ(d)

[In−0−0] 0 0 n n [II− In] 1 + n 1 2 + n 2 + n

[III− In] 1 2 + n 3 + n 3 + n [III− IIn] 1 2 + n 3 + n 4 + n

[IV − In] 2 + n 2 4 + n 4 + n [IV − IIn] 2 + n 2 4 + n 5 + n

[IIn−0] 2 3 5 + n 6 + n

[In − I∗0] 2 3 6 + n 6 + n [I0 − I∗n] 2 3 6 + n 6 + n

[IV∗ − In] 4 + n 4 8 + n 8 + n [II− I∗n] 3 4 8 + n 8 + n

[III∗ − In] 3 6 + n 9 + n 9 + n [III− I∗n] 3 5 9 + n 9 + n

[II∗ − In] 5 + n 5 10 + n 10 + n [IV − I∗n] 4 5 10 + n 10 + n

[IV∗ − IIn] 3 + n 4 7 + n 9 + n [II− II∗n] 3 + n 4 7 + n 9 + 3n

[III∗ − IIn] 3 5 + n 8 + n 11 + n [III− II∗n] 3 5 + n 8 + n 10 + 2n

Table 6. Parabolic type 3 models.

are also models labeled [K1 − IIn] or [K1 − II∗n] that mix all moduli but have a Kodaira

type K1 monodromy for τ .

Altogether the 19 models that can be resolved are listed in table 6. These models admit

a resolution for all n. The models of type [In−K2] or [K1−In] again correspond to k = µ(d)

pointlike instantons on the Ki singularity and their resolution is shown in appendix A. The

resolution for [IIn−0] and other non-trivial examples are given in section 5.2. In this class

we also discover dual models. Concretely, starting with the fifth row in table 6, the models

in the same row have the same resolution.
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NU model µ(a) µ(b) µ(c) µ(d)

[In−p−0] 0 0 n+ p n+ p

[In − I∗p] 2 3 6 + n+ p 6 + n+ p

[IIn−p] 2 3 5 + n+ p 6 + n+ p

Table 7. Parabolic type 4 models.

NU model µ(a) µ(b) µ(c) µ(d)

[In−p−q] 0 0 n+ p+ q n+ p+ q

[IIn−p] p = 2k + l, l = 0, 1 2 3 5 + l + 2k + n 6 + l + 2k + n

Table 8. Parabolic type 5 models.

6.2.4 Parabolic type 4

This class includes degenerations associated to parabolic Kodaira singularities for both

the genus-one components of Σ, of type [K1 −K2 −m] with K1,2 = In, I
∗
n, plus additional

degenerations of type [2K1 −m], [IIn−p] and [IIIn]. We find only 3 models that admit a

dual smooth resolution, listed in table 7. The explicit resolution of the [In−p−0] model is

given in section 3.2.1, while the [IIn−p] and [In − I∗p] models are discussed in section 5.3.

6.2.5 Parabolic type 5

The final class in the NU list is that of parabolic type 5 models, which includes just 6

degenerations. Only 2 of them admit a smooth resolution, and they are listed in table 8.

The resolution of the first (geometric) model is presented in section 3.2.2. Notice that the

parabolic type 5 [IIn−p] is different from the one listed in table 7. The differences between

the two models are discussed in section 5.3.

This concludes the list of all genus-two degenerations in the NU list that correspond to

geometric and non-geometric heterotic local models, whose F-theory duals admit a smooth

resolution. Out of the 120 entries in the NU list, we find a total of 49 models.

7 Final comments

In this paper we have studied compactifications to six dimensions of the E8×E8 heterotic

string leaving an E8 × E7 subgroup unbroken. We have focused on configurations which

are (up to degeneration points) locally described by a T 2 fibration over a complex one-

dimensional base with a smooth SU(2) structure bundle, patched together using arbitrary

elements of SO+(2, 3,Z) (an order four subgroup of the T-duality group O(2, 3,Z)). This

gives rise generically to backgrounds without a global classical geometric interpretation.

At certain points in the base, the fibration (or bundle data on it) will degenerate, and will

no longer have — in any T-duality frame — an interpretation in terms of the heterotic

string on a smooth T 2 with a smooth vector bundle on top. Our goal in this paper has

been to characterize the physics arising from such singular points.
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We have made use of the fact that for backgrounds preserving E8 ×E7 symmetry, the

geometric data of the heterotic string on T 2 can be encoded in the geometry of a genus-

two (sextic) Riemann surface. One can then define a six dimensional theory by fibering

this genus-two Riemann surface over a complex one-dimensional base. For monodromies in

SO+(2, 3,Z), or equivalently Sp(4,Z), one can classify the ways in which such fibration can

degenerate [10, 11]. Using heterotic/F-theory duality to reinterpret these degenerations of

the sextic as degenerations of the dual F-theory K3, fibered over the same base, we can

read off the low energy physics at the degeneration point.

We have encountered two noteworthy surprises in performing the systematic analysis

of the full set of degenerations of sextics. First, we have found that many, sometimes

very exotic looking, non-geometric degenerations are described by the same low energy

physics. Often these are given by the long-understood configurations of pointlike instantons

sitting on ADE singularities. It would be very interesting to understand the origin of this

phenomenon in heterotic language.

A second remarkable point is that not all of the possible degenerations of sextics admit

a F-theory dual that can be smoothed out by a finite number of blow-ups. As explained

in section 6.1, this follows from the fact that in these cases the F-theory background is

associated with non-minimal Weierstraß models in complex codimension one. In these

cases we cannot determine the low energy physics using F-theory techniques, since the

physics of F-theory on such backgrounds is unknown. Assuming consistency, it would be

very interesting to find out which kind of theories arise from these backgrounds in the

IR. They may correspond to free or trivial theories, or alternatively to interacting SCFTs

without a tensor branch (or at least no geometrically manifest tensor branch). Clearly

understanding the non-minimal models is of utmost importance, and we hope to come

back to this problem in the near future.

In addition to clarifying the two points just mentioned, there are various directions

for further study, of which we now highlight a few. The most obvious one is probably to

examine the case of non-geometric compactifications of the heterotic string down to four di-

mensions. Heterotic/F-theory duality will likely be an invaluable tool in this situation too.

We note that non-geometric string backgrounds have been studied in the past by a va-

riety of approaches, and it is compelling to figure out possible implications of our concrete

and explicit results for these different lines of investigation. In particular, our geometriza-

tion of the duality group contrasts with the viewpoint advocated in doubled formalisms

such as double field theory [64, 65],7 where by extending the spacetime coordinates one

finds extra degrees of freedom that need to be projected out. A potentially related question

is the role of the genus-two surface in the heterotic formulation, which in a sense simul-

taneously encodes the physical heterotic T 2 and its T-dual. Can this genus-two curve be

given a direct interpretation in the heterotic string, instead of being an auxiliary construct

parameterizing the moduli space? If so, one may expect that there is some analog of the

genus-two construction for heterotic compactifications breaking the symmetry further than

E7 × E8. It is important to find this generalization if it exists.

7See for example [55, 56] for reviews and a list of references.
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Along related lines, some of our non-geometric models involve elliptic finite-order mon-

odromies for the moduli that should admit a description in terms of asymmetric orbifolds

at some point in moduli space [59, 66] and such “double elliptic” T-folds have been used

in the context of generalized Scherk-Schwarz reductions [58, 67, 68].

The description of non-geometric degenerations in terms of dual F-theory models could

be complemented with the explicit solutions for our T-fects. The simplest example is

that of the exotic brane discussed for example in [29, 30], but it would be interesting to

obtain local solutions with arbitrary Sp(4,Z) monodromy, along the lines of [31]. Another

question is how to understand in the non-geometric heterotic context the fact that 6d (1,0)

superconformal field theories do not possess any marginal deformations [69, 70].

Finally, we have focused on the E8 × E8 heterotic string. Performing a similar anal-

ysis for the SO(32) heterotic string is feasible, and could potentially shed some light on

some of the open problems just mentioned. More ambitiously, let us mention that the

same genus-two technology that has played a key role in our analysis also appears in

the study of non-perturbative IIB solutions with monodromies in a subset of the U-duality

group [42–44]. Understanding the physics of U-duality defects in the type II context should

be very interesting. As a simple example of the potential interest of the construction, no-

tice that by T-dualizing once along the elliptic fiber of an appropriate Weierstraß model in

IIB, one constructs the E-type (0, 2) SCFTs in IIA string theory as non-geometric T-folds.
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A Other ADE singularities

In this appendix we further study the local heterotic models that represent pointlike in-

stantons on ADE singularities, together with the resolutions of the dual F-theory models,

from which we read the corresponding non-perturbative enhancements. This procedure

was illustrated in section 3.1 for the genus-two [I0 − II∗] model, representing ten pointlike

instantons on a E8 type singularity. In sections 3.2.1 and 5.3 we also discussed the [In−p−0]
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and [In − I∗p] models, associated respectively to pointlike instantons on A and D type sin-

gularities. Here we list the remaining cases, and compare with the results of Aspinwall and

Morrison for the E8 × E8 heterotic string [17].

[III∗ − In] model. For n = 0, the local genus-two model is:

y2 = x(x2 + t3)
(
x2 + αx+ 1

)
, (A.1)

with a monodromy action given by:

τ → −1

τ
, ρ→ ρ− β2

τ
, β → β

τ
. (A.2)

The geometry of the F-theory dual model, close to u = t = 0 is:

fK3 = t9u3 + t3u4 , gK3 = t9u5 + t6u6 + u7 , (A.3)

∆K3 = −u9
(
4t27+12t21u+27t18u+66t15u2+27t12u3+58t9u3+54t6u4+27u5

)
. (A.4)

The resolution now requires a total of 14 blowups in the base and gives the following chain

of Kodaira curves:

[III∗]− I0 − II− IV − I∗0 − II− IV∗ − II− I∗0 − II− IV∗ − II− I∗0 − IV − II . (A.5)

From the study of monodromy covers we then find the algebras:

sp(1) g2 f4 g2 f4 g2 sp(1)

1 2 2 3 1 5 1 3 1 5 1 3 2 2
. (A.6)

This pattern slightly differs from the result for k = 9 pointlike instantons on a E7 singu-

larity given in [17]. We actually find that the −3 curve at the middle supports g2 with a

fundamental 7. Each block sp(1)⊕ g2 has matter content 1
2(2,1)⊕ 1

2(2,7).

To obtain the case of k = 9 + n, as explained in section 3.1, we need to consider the

model [III∗ − In]. This introduces in the resolution a chain of n III∗ fibers which needs

additional resolutions. This can be done by a total of 14 + 6n blowups and we find:

sp(1) g2 f4 g2 su(2)

1 2 2 3 1 5 1 3 2 1

e7 su(2) so(7) su(2)

8 1 2 3 2 1

⊕(n−1)

×

× e7 su(2) g2 f4 g2 sp(1)

8 1 2 3 1 5 1 3 2 2
. (A.7)

The gauge algebra is now in agreement with [17]. There is matter only for the sp(1) ⊕
g2 and su(2) ⊕ so(7) ⊕ su(2) clusters. Concretely, 1

2(2,1) ⊕ 1
2(2,7) for the former and

1
2(2,8,1)⊕ 1

2(1,8,2) for the latter.
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[IV∗ − In] model. The local [I0 − IV∗] NU model is:

y2 = (x3 + t4)(x2 + αx+ 1) , (A.8)

with monodromy

τ → −1 + τ

τ
, ρ→ ρ− β2

τ
, β → β

τ
. (A.9)

The geometry of the F-theory dual model, close to u = t = 0 is schematically:

fK3 = t8u3 + t4u4 , gK3 = t8u5 + t4u6 + u7 , (A.10)

∆K3 = −u9
(
4t24+12t20u+12t16u2+27t16u+4t12u3+54t12u2+81t8u3+54t4u4+27u5

)
.

We now get the following chain:

[III∗]− I0 − II− IV − I∗0 − II− IV∗ − II− I∗0 − IV − II , (A.11)

from which we determine the gauge algebra:

sp(1) g2 f4 g2 sp(1)

1 2 2 3 1 4 1 3 2 2
, (A.12)

giving the theory of 8 pointlike instantons on the E6 singularity. As before, matter for

sp(1) ⊕ g2 consists of 1
2(2,1) ⊕ 1

2(2,7). We find an extra fundamental for the f4 with

self-intersection −4.

The model [IV∗− In], n ≥ 1, introduces a chain of IV∗ fibers, whose resolution requires

a total of 10 + 4n blowups:

sp(1) g2 f4 su(3)

1 2 2 3 1 5 1 3 1

e6 su(3)

6 1 3 1

⊗(n−1)
f4 g2 sp(1)

5 1 3 2 2 .

(A.13)

This gives the theory of k = 8 + n pointlike instantons, as originally found in [17]. The

only matter is 1
2(2,1)⊕ 1

2(2,7) for each sp(1)⊕ g2 block.

[I∗0 − In] model. The local model for n = 0 is:

y2 = (x3 + βt2x+ t3)(x3 + αx+ 1) . (A.14)

The monodromy action on the moduli leaves τ and ρ invariant, while it acts on the Wilson

line as β → −β. The geometry of the F-theory dual model, close to u = t = 0 is:

fK3 = t6u3 + t2u4 , gK3 = t6u5 + t3u6 + u7 , (A.15)

∆K3 = −u9
(
4t18+12t14u+27t12u+12t10u2+54t9u2+85t6u3+54t3u4+27u5

)
. (A.16)

We get the following resolution:

[III∗]− I0 − II− IV − I∗0 − IV − II , (A.17)
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and we find the algebra

sp(1) g2 sp(1)

1 2 2 2 2 2
, (A.18)

which gives the non-perturbative enhancement for k = 6 pointlike instantons on a D4

singularity. The gauge factors and the matter representations are the same as in the

III− III model presented in section 4.1.

Adding n more instantons, thus considering the [I∗0 − In] model, results in a chain of

additional n I∗0 singularities, whose resolution gives:

sp(1) g2

1 2 2 3 1

so(8)

4 1

⊕(n−1)
g2 sp(1)

3 2 2
, (A.19)

for a total of 6 + 2n blowups. Matter is just 1
2(2,1)⊕ 1

2(2,7) for each sp(1)⊕ g2 cluster.

[IV − In] model. The local model for [I0 − IV] is:

y2 = (x3 + t2)(x3 + αx+ 1) , (A.20)

with monodromy action

τ → − 1

1 + τ
, ρ→ ρ− β2

1 + τ
, β → − β

1 + τ
. (A.21)

The geometry of the F-theory dual model, close to u = t = 0 is:

fK3 = t4u3 + t2u4 , gK3 = t4u5 + t2u6 + u7 , (A.22)

∆K3 = −u9
(
4t12 + 12t10u+ 12t8u2 + 27t8u+ 4t6u3 + 54t6u2 + 81t4u3 + 54t2u4 + 27u5

)
.

From the resolution we get the following chain:

[III∗]− I0 − II− IV − II , (A.23)

and gauge algebra:

sp(1)

1 2 2 2
. (A.24)

From the [IV − In] model we get n additional IV fibers and we recover the theory for

k = 4 + n pointlike instantons:

sp(1) su(3)1 su(3)n−1 sp(1)

1 2 2 2 · · · 2 2 2
, (A.25)

which again agrees with [17]. Matter consists of bifundamentals for adjacent su(3)’s, to-

gether with (2,1)⊕ (2 + 1,3) for the sp(1)⊕ su(3)’s at the corners.

[III−In] model. For this final example we skip the details. The resolution is found to be:

su(2)1 su(2)2 su(2)n
1 2 2 2 · · · 2 2

, (A.26)

Matter is given by bifundamentals for neighboring factors, plus two additional fundamentals

for the left- and right-most su(2)’s.
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B Map for vanishing Wilson line

In this section we consider the duality map (2.6) in the limit β → 0. This corresponds to

the splitting of the genus-two curve into two tori, whose mapping class groups geometrize

the SL(2,Z)τ × SL(2,Z)ρ subgroup of the O(2, 2,Z) T-duality group in the absence of

Wilson lines (see figure 1).

From [4], we have that, setting β = 0:

a = −E4(τ)E4(ρ)

48
, b = −E6(τ)E6(ρ)

864
, c = 0 , d = η(τ)24η(ρ)24 . (B.1)

Here E4 and E6 are the modular forms of weights four and six for the two SL(2,Z) groups

and η is the Dedekind η-function. In fact, this form of the duality map agrees with

the formulation in [3], based on the construction of a Shioda-Inose structure for the K3

surface [6]. The data about the τ and ρ moduli can be encoded in two Weierstraß equations

that describe the two genus-one components of the split genus-two curve:

y2 = x3 + fτxw
4 + gτw

6 , ỹ2 = x̃3 + fρx̃ w̃
4 + gρw̃

6 , (B.2)

by the identifications

f = −1

3
E4 , g = − 2

27
E6 , η24 = −27

4

∆

1728
, (B.3)

where ∆ = 4f3 + 27g2 is the discriminant of the Weierstraß equation. We thus get that

the dual K3 is described by

y2 = x3 − 3

16
fτfρxu

4w4 +
∆τ∆ρ

164
u5w6 − 27

128
gτgρu

6w6 + u7w6 . (B.4)

It is easy to show that this indeed satisfies the relations (2.2), originally obtained in [9].

After a rescaling (u,w)→ (2−6u, 27w) we find

y2 = x3 − 3fτfρxu
4w4 +

∆τ∆ρ

16
u5w6 − 27

2
gτgρu

6w6 + u7w6 , (B.5)

which is a particular case of the expression given in [3]. More generally, one can allow the

coefficient of the u7 term to transform as a section of a nontrivial line bundle, corresponding

to a different distribution of the point-like instantons between the two E8 factors. The

map (B.5) is modified as follows:

y2 = x3 − 3fτfρxu
4w4 + dτdρu

5w6 − 27

2
gτgρu

6w6 + eτeρu
7w6 , (B.6)

where ∆τ = 4dτeτ and ∆ρ = 4dρeρ.

As a check, one can obtain the resolution for the dual of the NU model [In− II∗] in the

β → 0 limit by using (B.6). For this we can take for example fτ = t4, gτ = t5, fρ = −3,

gρ = 2 + tn, and set dτ = t5, eτ = t5(27 + 4t2), dρ = 27tn, eρ = 4 + tn. With this choice we

engineer II∗ and In singularities in τ and ρ, respectively. We then find that at t = 0 there

is a “vertical” II∗ fiber intersecting the two “horizontal” II∗ fibers at u = 0 and v = 0,

with additional n instantons coalesced at the u = t = 0 intersection [17]. Resolving both

intersections at u = t = 0 and v = t = 0 gives precisely the chain derived in section 3.1,

corresponding to 10 + n pointlike instantons on top of the E8 singularity.
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C Igusa-Clebsch invariants

We collect here the expressions of the Igusa-Clebsch invariants for an hyperelliptic curve in

terms of the coefficients of the general sextic (2.7). Similar formulas have appeared in [71].

I2 = 6c23 − 16c2c4 + 40c1c5 − 240c0c6 , (C.1)
I4 = 48c6c

3
2 + 4c24c

2
2 − 12c3c5c

2
2 + 300c0c

2
5c2 + 4c1c4c5c2 − 180c1c3c6c2 − 504c0c4c6c2 + 48c0c

3
4 − 12c1c3c

2
4 − 80c21c

2
5

+ 1620c20c
2
6 + 36c1c

2
3c5 − 180c0c3c4c5 + 324c0c

2
3c6 + 300c21c4c6 − 540c0c1c5c6 , (C.2)

I6 = −36c25c
4
2 − 160c4c6c

4
2 − 24c34c

3
2 − 96c0c

2
6c

3
2 + 76c3c4c5c

3
2 + 60c23c6c

3
2 + 616c1c5c6c

3
2 + 8c23c

2
4c

2
2 + 26c1c3c

2
5c

2
2

− 640c0c4c
2
5c

2
2 − 900c21c

2
6c

2
2 − 24c33c5c

2
2 + 28c1c

2
4c5c

2
2 + 424c0c

2
4c6c

2
2 + 492c1c3c4c6c

2
2 − 876c0c3c5c6c

2
2

− 160c0c
4
4c2 + 76c1c3c

3
4c2 + 1600c0c1c

3
5c2 + 330c0c

2
3c

2
5c2 + 64c21c4c

2
5c2 + 3060c0c1c3c

2
6c2 + 20664c20c4c

2
6c2

+ 492c0c3c
2
4c5c2 − 238c1c

2
3c4c5c2 − 198c1c

3
3c6c2 − 640c21c

2
4c6c2 − 18600c20c

2
5c6c2 − 468c0c

2
3c4c6c2 − 1860c21c3c5c6c2

+ 3472c0c1c4c5c6c2 − 36c21c
4
4 + 60c0c

2
3c

3
4 − 320c31c

3
5 + 2250c20c3c

3
5 − 119880c30c

3
6 − 24c1c

3
3c

2
4 + 176c21c

2
3c

2
5 − 900c20c

2
4c

2
5

− 1860c0c1c3c4c
2
5 − 10044c20c

2
3c

2
6 + 2250c31c3c

2
6 − 18600c0c

2
1c4c

2
6 + 59940c20c1c5c

2
6 + 72c1c

4
3c5 + 616c0c1c

3
4c5

+ 26c21c3c
2
4c5 − 198c0c

3
3c4c5 + 162c0c

4
3c6 − 96c20c

3
4c6 − 876c0c1c3c

2
4c6 − 2240c0c

2
1c

2
5c6 + 330c21c

2
3c4c6

+ 1818c0c1c
2
3c5c6 + 1600c31c4c5c6 + 3060c20c3c4c5c6 , (C.3)

I10 = 3125c46c
6
1 + 256c55c

5
1 − 3750c3c4c

3
6c

5
1 − 2500c2c5c

3
6c

5
1 + 2000c3c

2
5c

2
6c

5
1 + 2250c24c5c

2
6c

5
1 − 1600c4c

3
5c6c

5
1 − 128c23c

4
5c

4
1

− 192c2c4c
4
5c

4
1 − 22500c0c2c

4
6c

4
1 + 144c3c

2
4c

3
5c

4
1 + 2250c2c

2
3c

3
6c

4
1 + 1500c0c

2
4c

3
6c

4
1 + 2000c22c4c

3
6c

4
1 + 2250c0c3c5c

3
6c

4
1

− 27c44c
2
5c

4
1 − 900c2c

3
4c

2
6c

4
1 + 825c23c

2
4c

2
6c

4
1 − 50c22c

2
5c

2
6c

4
1 − 1700c0c4c

2
5c

2
6c

4
1 − 900c33c5c

2
6c

4
1 − 2050c2c3c4c5c

2
6c

4
1

+ 108c54c6c
4
1 + 320c0c

4
5c6c

4
1 + 160c2c3c

3
5c6c

4
1 + 1020c2c

2
4c

2
5c6c

4
1 + 560c23c4c

2
5c6c

4
1 − 630c3c

3
4c5c6c

4
1 − 1600c0c2c

5
5c

3
1

+ 144c22c3c
4
5c

3
1 + 160c0c3c4c

4
5c

3
1 + 27000c20c3c

4
6c

3
1 + 16c43c

3
5c

3
1 − 36c0c

3
4c

3
5c

3
1 − 6c22c

2
4c

3
5c

3
1 − 80c2c

2
3c4c

3
5c

3
1 − 1350c0c

3
3c

3
6c

3
1

− 1600c32c3c
3
6c

3
1 + 19800c0c2c3c4c

3
6c

3
1 + 15600c0c

2
2c5c

3
6c

3
1 − 1800c20c4c5c

3
6c

3
1 + 18c2c3c

3
4c

2
5c

3
1 − 4c33c

2
4c

2
5c

3
1 + 108c53c

2
6c

3
1

− 120c0c3c
3
4c

2
6c

3
1 + 410c20c

3
5c

2
6c

3
1 + 560c22c3c

2
4c

2
6c

3
1 − 12330c0c2c3c

2
5c

2
6c

3
1 − 630c2c

3
3c4c

2
6c

3
1 + 1020c22c

2
3c5c

2
6c

3
1

− 13040c0c2c
2
4c5c

2
6c

3
1 + 160c32c4c5c

2
6c

3
1 + 1980c0c

2
3c4c5c

2
6c

3
1 − 72c2c3c

4
4c6c

3
1 + 16c33c

3
4c6c

3
1 − 36c32c

3
5c6c

3
1 − 208c0c

2
3c

3
5c6c

3
1

+ 9768c0c2c4c
3
5c6c

3
1 + 24c2c

3
3c

2
5c6c

3
1 − 682c0c3c

2
4c

2
5c6c

3
1 − 746c22c3c4c

2
5c6c

3
1 + 144c0c

4
4c5c6c

3
1 + 24c22c

3
4c5c6c

3
1

+ 356c2c
2
3c

2
4c5c6c

3
1 − 72c43c4c5c6c

3
1 + 2000c20c3c

5
5c

2
1 − 27c42c

4
5c

2
1 + 560c0c2c

2
3c

4
5c

2
1 − 50c20c

2
4c

4
5c

2
1 + 1020c0c

2
2c4c

4
5c

2
1

+ 43200c20c
2
2c

4
6c

2
1 − 32400c30c4c

4
6c

2
1 − 4c22c

3
3c

3
5c

2
1 − 746c0c2c3c

2
4c

3
5c

2
1 + 24c0c

3
3c4c

3
5c

2
1 + 18c32c3c4c

3
5c

2
1 + 256c52c

3
6c

2
1

− 9720c0c
2
2c

2
3c

3
6c

2
1 − 6480c20c2c

2
4c

3
6c

2
1 + 540c30c

2
5c

3
6c

2
1 − 10560c0c

3
2c4c

3
6c

2
1 − 27540c20c

2
3c4c

3
6c

2
1 − 31320c20c2c3c5c

3
6c

2
1

+ 144c0c2c
4
4c

2
5c

2
1 − 4c32c

3
4c

2
5c

2
1 − 6c0c

2
3c

3
4c

2
5c

2
1 + c22c

2
3c

2
4c

2
5c

2
1 − 27c22c

4
3c

2
6c

2
1 − 192c20c

4
4c

2
6c

2
1 + 4816c0c

2
2c

3
4c

2
6c

2
1

− 128c42c
2
4c

2
6c

2
1 − 4536c0c2c

2
3c

2
4c

2
6c

2
1 + 248c0c

3
2c

2
5c

2
6c

2
1 + 15417c20c

2
3c

2
5c

2
6c

2
1 + 8748c20c2c4c

2
5c

2
6c

2
1 + 162c0c

4
3c4c

2
6c

2
1

+ 144c32c
2
3c4c

2
6c

2
1 + 3942c0c2c

3
3c5c

2
6c

2
1 + 16632c20c3c

2
4c5c

2
6c

2
1 − 192c42c3c5c

2
6c

2
1 + 10152c0c

2
2c3c4c5c

2
6c

2
1 − 576c0c2c

5
4c6c

2
1

+ 16c32c
4
4c6c

2
1 + 24c0c

2
3c

4
4c6c

2
1 − 1700c20c2c

4
5c6c

2
1 − 4c22c

2
3c

3
4c6c

2
1 − 682c0c

2
2c3c

3
5c6c

2
1 − 12330c20c3c4c

3
5c6c

2
1

+ 248c20c
3
4c

2
5c6c

2
1 − 6c32c

2
3c

2
5c6c

2
1 − 5428c0c

2
2c

2
4c

2
5c6c

2
1 + 144c42c4c

2
5c6c

2
1 − 2412c0c2c

2
3c4c

2
5c6c

2
1 + 3272c0c2c3c

3
4c5c6c

2
1

− 108c0c
3
3c

2
4c5c6c

2
1 − 80c32c3c

2
4c5c6c

2
1 + 18c22c

3
3c4c5c6c

2
1 + 2250c20c

2
2c

5
5c1 − 2500c30c4c

5
5c1 − 900c20c

3
3c

4
5c1 − 630c0c

3
2c3c

4
5c1

− 2050c20c2c3c4c
4
5c1 − 77760c30c2c3c

4
6c1 + 38880c40c5c

4
6c1 − 72c0c2c

4
3c

3
5c1 + 160c20c2c

3
4c

3
5c1 + 24c0c

3
2c

2
4c

3
5c1

+ 1020c20c
2
3c

2
4c

3
5c1 + 356c0c

2
2c

2
3c4c

3
5c1 + 21384c20c2c

3
3c

3
6c1 + 46656c30c3c

2
4c

3
6c1 + 6912c0c

4
2c3c

3
6c1 − 3456c20c

2
2c3c4c

3
6c1

− 21888c20c
3
2c5c

3
6c1 + 15552c30c

2
3c5c

3
6c1 + 31968c30c2c4c5c

3
6c1 − 192c20c3c

4
4c

2
5c1 − 80c0c

2
2c3c

3
4c

2
5c1 + 18c0c2c

3
3c

2
4c

2
5c1

− 486c0c2c
5
3c

2
6c1 − 5760c20c2c3c

3
4c

2
6c1 − 1800c30c2c

3
5c

2
6c1 + 5832c20c

3
3c

2
4c

2
6c1 − 2496c0c

3
2c3c

2
4c

2
6c1 + 16632c20c

2
2c3c

2
5c

2
6c1

− 31320c30c3c4c
2
5c

2
6c1 + 2808c0c

2
2c

3
3c4c

2
6c1 − 6318c20c

4
3c5c

2
6c1 − 21888c30c

3
4c5c

2
6c1 − 4464c0c

3
2c

2
3c5c

2
6c1

+ 15264c20c
2
2c

2
4c5c

2
6c1 − 640c0c

4
2c4c5c

2
6c1 − 22896c20c2c

2
3c4c5c

2
6c1 + 768c20c3c

5
4c6c1 + 320c0c

2
2c3c

4
4c6c1 + 2250c30c3c

4
5c6c1

− 72c0c2c
3
3c

3
4c6c1 + 144c0c

4
2c

3
5c6c1 + 1980c20c2c

2
3c

3
5c6c1 + 15600c30c

2
4c

3
5c6c1 − 13040c20c

2
2c4c

3
5c6c1 − 108c0c

2
2c

3
3c

2
5c6c1

+ 10152c20c2c3c
2
4c

2
5c6c1 + 3942c20c

3
3c4c

2
5c6c1 + 3272c0c

3
2c3c4c

2
5c6c1 − 640c20c2c

4
4c5c6c1 − 96c0c

3
2c

3
4c5c6c1

− 4464c20c
2
3c

3
4c5c6c1 − 1584c0c

2
2c

2
3c

2
4c5c6c1 + 324c0c2c

4
3c4c5c6c1 + 3125c40c

6
5 − 3750c30c2c3c

5
5 − 46656c50c

5
6 + 108c0c

5
2c

4
5

+ 825c20c
2
2c

2
3c

4
5 + 2000c30c2c

2
4c

4
5 − 900c20c

3
2c4c

4
5 + 2250c30c

2
3c4c

4
5 − 13824c30c

3
2c

4
6 + 34992c40c

2
3c

4
6 + 62208c40c2c4c

4
6

+ 108c20c
5
3c

3
5 + 16c0c

3
2c

3
3c

3
5 − 1600c30c3c

3
4c

3
5 + 560c20c

2
2c3c

2
4c

3
5 − 630c20c2c

3
3c4c

3
5 − 72c0c

4
2c3c4c

3
5 − 1024c0c

6
2c

3
6

− 8748c30c
4
3c

3
6 − 13824c40c

3
4c

3
6 − 8640c20c

3
2c

2
3c

3
6 − 17280c30c

2
2c

2
4c

3
6 − 32400c40c2c

2
5c

3
6 + 9216c20c

4
2c4c

3
6 + 3888c30c2c

2
3c4c

3
6

+ 46656c30c
2
2c3c5c

3
6 − 77760c40c3c4c5c

3
6 + 256c30c

5
4c

2
5 − 128c20c

2
2c

4
4c

2
5 + 16c0c

4
2c

3
4c

2
5 + 144c20c2c

2
3c

3
4c

2
5 − 27c20c

4
3c

2
4c

2
5

− 4c0c
3
2c

2
3c

2
4c

2
5 + 729c20c

6
3c

2
6 + 108c0c

3
2c

4
3c

2
6 + 9216c30c2c

4
4c

2
6 − 4352c20c

3
2c

3
4c

2
6 − 8640c30c

2
3c

3
4c

2
6 + 27000c40c3c

3
5c

2
6
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+ 512c0c
5
2c

2
4c

2
6 + 8208c20c

2
2c

2
3c

2
4c

2
6 − 192c20c

4
2c

2
5c

2
6 − 27540c30c2c

2
3c

2
5c

2
6 + 43200c40c

2
4c

2
5c

2
6 − 6480c30c

2
2c4c

2
5c

2
6

− 4860c20c2c
4
3c4c

2
6 − 576c0c

4
2c

2
3c4c

2
6 + 5832c20c

2
2c

3
3c5c

2
6 − 3456c30c2c3c

2
4c5c

2
6 + 768c0c

5
2c3c5c

2
6 + 21384c30c

3
3c4c5c

2
6

− 5760c20c
3
2c3c4c5c

2
6 − 1024c30c

6
4c6 + 512c20c

2
2c

5
4c6 − 64c0c

4
2c

4
4c6 − 576c20c2c

2
3c

4
4c6 + 1500c30c

2
2c

4
5c6 − 22500c40c4c

4
5c6

+ 108c20c
4
3c

3
4c6 + 16c0c

3
2c

2
3c

3
4c6 − 1350c30c

3
3c

3
5c6 − 120c20c

3
2c3c

3
5c6 + 19800c30c2c3c4c

3
5c6 + 162c20c2c

4
3c

2
5c6

− 10560c30c2c
3
4c

2
5c6 + 24c0c

4
2c

2
3c

2
5c6 + 4816c20c

3
2c

2
4c

2
5c6 − 9720c30c

2
3c

2
4c

2
5c6 − 576c0c

5
2c4c

2
5c6 − 4536c20c

2
2c

2
3c4c

2
5c6

+ 6912c30c3c
4
4c5c6 − 2496c20c

2
2c3c

3
4c5c6 + 2808c20c2c

3
3c

2
4c5c6 + 320c0c

4
2c3c

2
4c5c6 − 486c20c

5
3c4c5c6 − 72c0c

3
2c

3
3c4c5c6 .

(C.4)

D Ogg-Namikawa-Ueno classification

We list all the Ogg-Namikawa-Ueno types of degenerations of the genus-two fibers [10, 11],

in the notation of [11]. For each model we list the order of vanishing of the Igusa-Clebsch

invariants and the homological monodromy.

Type 1 (elliptic).

Type Local model µ(I2) µ(I4) µ(I6) µ(I10) Monodromy

[I0−0−0] y2 = x5 + αx3 + βx2 + γx+ 1 0 0 0 0


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



[I∗0−0−0] y2 = t5+γt4x+βt3x2+αt2x3+x5 4 8 12 20


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



[II] y2 = t3 + βt2x2 + αtx4 + x6 3 6 9 15


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



[III] y2 = t2 + αtx3 + x6 2 4 6 10


0 −1 0 0

1 −1 0 0

0 0 −1 −1

0 0 1 0



[IV ] y2 = t
(
t2 + αtx3 + x6

)
4 8 12 20


0 1 0 0

−1 1 0 0

0 0 1 1

0 0 −1 0



[V ] y2 = x6 + t 1 2 3 5


0 0 1 0

0 0 1 1

−1 1 0 0

0 −1 0 0



[V ∗] y2 = x6 + t5 5 10 15 25


0 0 −1 0

0 0 −1 −1

1 −1 0 0

0 1 0 0



[V I] y2 = x
(
t2 + αtx2 + x4

)
2 4 6 10


0 −1 1 0

1 0 0 −1

0 0 0 −1

0 0 1 0



[V II] y2 = x
(
t+ x4

)
1 2 3 5


0 1 1 0

1 −1 0 1

−1 1 1 0

0 −1 0 0



[V II∗] y2 = x
(
t5 + x4

)
5 10 15 25


0 −1 −1 0

−1 1 0 −1

1 −1 −1 0

0 1 0 0


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[V III − k]
k = 1, 2

y2 = x5 + t2k−1 ∞ ∞ ∞ 8k − 4


0 1 1 0

1 0 0 1

−1 1 1 0

0 −1 0 0


2k−1

[V III − k]
k = 3, 4

y2 = x5 + t2k+1 ∞ ∞ ∞ 8k + 4


0 1 1 0

1 0 0 1

−1 1 1 0

0 −1 0 0


2k+1

[IX − k]
k=1, 2, 3, 4

y2 = x5 + t2k ∞ ∞ ∞ 8k


0 1 1 1

0 0 1 0

0 0 0 1

−1 0 0 −1


k

Type 2 (elliptic).

Type Local model µ(I2) µ(I4) µ(I6) µ(I10) Monodromy

[I0 − I0 −m]8

(m > 0)

(
x3 + αx+ 1

) (
βxt4m + t6m + x3

)
0 4m 4m 12m


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



[I∗0 − I∗0 −m]

(
t3 + αt2(x− 1) + (x− 1)3

)
×(

βxt4m+2 + t6m+3 + x3
) 0 4 + 4m 4 + 4m 12 + 12m


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



[I0 − I∗0 −m]
(
x3+αx+1

) (
βxt4m+2+t6m+3+x3

)
0 2 + 4m 2 + 4m 6 + 12m


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1



[2I0 −m] αt2m+4
(
x2−t

)
+t3m+6 +

(
x2 − t

)3 3 10+4m 13+4m 27 + 12m


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



[2I∗0 −m] αt2m+3
(
x2−t

)
+xt3m+4+

(
x2−t

)3 3 8 + 4m 11+4m 21 + 12m


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



[I0 − II −m]
(
x2 + αx+ 1

) (
t6m+1 + x3

)
0 1 + 6m 1 + 6m 2 + 12m


1 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1



[I0 − II∗ −m]
(
x2 + αx+ 1

) (
t6m+5 + x3

)
0 5 + 6m 5 + 6m 10 + 12m


0 0 −1 0

0 1 0 0

1 0 1 0

0 0 0 1



[I0 − IV −m]
(
x2 + αx+ 1

) (
t6m+2 + x3

)
0 2 + 6m 2 + 6m 4 + 12m


0 0 1 0

0 1 0 0

−1 0 −1 0

0 0 0 1



[I0 − IV ∗ −m]
(
x2 + αx+ 1

) (
t6m+4 + x3

)
0 4 + 6m 4 + 6m 8 + 12m


−1 0 −1 0

0 1 0 0

1 0 0 0

0 0 0 1



[I∗0 − II −m]
t
(
x2 + αx+ 1

) (
t6m+4 + x3

)
2 8 + 6m 10+6m 18 + 12m


1 0 1 0

0 −1 0 0

−1 0 0 0

0 0 0 −1

(
t6m+1 + (x− 1)3

) (
t3 + αt2x+ x3

)
0 3 + 6m 3 + 6m 8 + 12m

[I∗0 − II∗ −m]
t
(
x2 + αx+ 1

) (
t6m+8 + x3

)
2 12+6m 14+6m 26 + 12m


0 0 −1 0

0 −1 0 0

1 0 1 0

0 0 0 −1

(
t6m+5 + (x− 1)3

) (
t3 + αt2x+ x3

)
0 7 + 6m 7 + 6m 16 + 12m

8Following http://www.math.u-bordeaux1.fr/∼qliu/articles/errata-NU.pdf, we corrected a typo in the

local equation in the NU list.
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[I∗0 − II∗ − α] t
(
t2 + x3

) (
x2 + αx+ 1

)
2 6 8 14


0 0 −1 0

0 −1 0 0

1 0 1 0

0 0 0 −1



[I∗0 − IV −m]
t
(
x2 + αx+ 1

) (
t6m+5 + x3

)
2 9 + 6m 11+6m 20 + 12m


0 0 1 0

0 −1 0 0

−1 0 −1 0

0 0 0 −1

(
t6m+2 + (x− 1)3

) (
t3 + αt2x+ x3

)
0 4 + 6m 4 + 6m 10 + 12m

[I∗0 − IV ∗ −m]
t
(
x2 + αx+ 1

) (
t6m+7 + x3

)
2 11+6m 13+6m 24 + 12m


−1 0 −1 0

0 −1 0 0

1 0 0 0

0 0 0 −1

(
t6m+4 + (x− 1)3

) (
t3 + αt2x+ x3

)
0 6 + 6m 6 + 6m 14 + 12m

[I∗0 − IV ∗ − α] t
(
t+ x3

) (
x2 + αx+ 1

)
2 5 7 12


−1 0 −1 0

0 −1 0 0

1 0 0 0

0 0 0 −1



[I0 − III −m] x
(
x2 + αx+ 1

) (
t4m+1 + x2

)
0 1 + 4m 1 + 4m 3 + 12m


0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1



[I0 − III∗ −m] x
(
x2 + αx+ 1

) (
t4m+3 + x2

)
0 3 + 4m 3 + 4m 9 + 12m


0 0 −1 0

0 1 0 0

1 0 0 0

0 0 0 1



[I∗0 − III−m]
tx

(
x2 + αx+ 1

) (
t4m+3 + x2

)
2 7 + 4m 9 + 4m 19 + 12m


0 0 1 0

0 −1 0 0

−1 0 0 0

0 0 0 −1


(x−1)

(
t4m+1+(x−1)2

)(
t3+αt2x+x3

)
0 3 + 4m 3 + 4m 9 + 12m

[I∗0 − III∗−m]
tx

(
x2 + αx+ 1

) (
t4m+5 + x2

)
2 9 + 4m 11+4m 25 + 12m


0 0 −1 0

0 −1 0 0

1 0 0 0

0 0 0 −1


(x−1)

(
t4m+3+(x−1)2

)(
t3+αt2x+x3

)
0 5 + 4m 5 + 4m 15 + 12m

[I∗0 − III∗ − α] tx
(
t+ x2

) (
x2 + αx+ 1

)
2 5 7 13


0 0 −1 0

0 −1 0 0

1 0 0 0

0 0 0 −1



[2II −m] xt3m+3 +
(
x2 − t

)3 3 7 + 6m 10+6m 17 + 12m


0 1 0 1

1 0 0 0

0 −1 0 0

0 0 1 0



[2II∗ −m] xt3m+5 +
(
x2 − t

)3 3 11+6m 14+6m 25 + 12m


0 0 0 −1

1 0 0 0

0 1 0 1

0 0 1 0



[II − II −m]
(
t+ (x− 1)3

) (
t6m+1 + x3

)
0 2 + 6m 2 + 6m 4 + 12m


1 0 1 0

0 1 0 1

−1 0 0 0

0 −1 0 0



[II − II∗ −m]
(
t5 + (x− 1)3

) (
t6m+1 + x3

)
0 6 + 6m 6 + 6m 12 + 12m


1 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 1



[II∗− II∗−m]

(
t5 + (x− 1)3

) (
t6m+5 + x3

)
0 10+6m 10+6m 20 + 12m


0 0 −1 0

0 0 0 −1

1 0 1 0

0 1 0 1


t
(
t2 + (x− 1)3

) (
t6m+8 + x3

)
2 14+6m 16+6m 30 + 12m

[II∗ − II∗ − α] t
(
t2 + x3

) (
t2 + (x− 1)3

)
2 8 10 18


0 0 −1 0

0 0 0 −1

1 0 1 0

0 1 0 1



[II − IV −m]
(
t2 + (x− 1)3

) (
t6m+1 + x3

)
0 3 + 6m 3 + 6m 6 + 12m


0 0 1 0

0 1 0 1

−1 0 −1 0

0 −1 0 0



[II − IV ∗ −m]
(
t4 + (x− 1)3

) (
t6m+1 + x3

)
0 5 + 6m 5 + 6m 10 + 12m


1 0 1 0

0 −1 0 −1

−1 0 0 0

0 1 0 0


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[II∗ − IV −m]
(
t2 + (x− 1)3

) (
t6m+5 + x3

)
0 7 + 6m 7 + 6m 14 + 12m


0 0 −1 0

0 0 0 1

1 0 1 0

0 −1 0 −1



[II∗ − IV − α]
(
t+ x3

) (
t2 + x3

)
2 5 7 12


0 0 −1 0

0 0 0 1

1 0 1 0

0 −1 0 −1



[II∗−IV ∗−m]

(
t4 + (x− 1)3

) (
t6m+5 + x3

)
0 9 + 6m 9 + 6m 18 + 12m


0 0 −1 0

0 −1 0 −1

1 0 1 0

0 1 0 0


t
(
t2 + (x− 1)3

) (
t6m+7 + x3

)
2 13+6m 15+6m 28 + 12m

[II∗− IV ∗−α] t
(
t+ x3

) (
t2 + (x− 1)3

)
2 7 9 16


0 0 −1 0

0 −1 0 −1

1 0 1 0

0 1 0 0



[2IV −m] t3m+4 +
(
x2 − t

)3 3 8 + 6m 11+6m 19 + 12m


0 0 0 1

1 0 0 0

0 −1 0 −1

0 0 1 0



[2IV ∗ −m] t3m+5 +
(
x2 − t

)3 3 10+6m 13+6m 23 + 12m


0 −1 0 −1

1 0 0 0

0 1 0 0

0 0 1 0



[IV − IV −m]
(
t2 + (x− 1)3

) (
x3 + t6m+2

)
0 4 + 6m 4 + 6m 8 + 12m


0 0 1 0

0 0 0 1

−1 0 −1 0

0 −1 0 −1



[IV − IV ∗−m]
(
t4 + (x− 1)3

) (
x3 + t6m+2

)
0 6 + 6m 6 + 6m 12 + 12m


0 0 1 0

0 −1 0 −1

−1 0 −1 0

0 1 0 0



[IV ∗−IV ∗−m]
t
(
t+ (x− 1)3

) (
x3 + t6m+7

)
2 12+6m 14+6m 26 + 12m


−1 0 −1 0

0 −1 0 −1

1 0 0 0

0 1 0 0

(
t4 + (x− 1)3

) (
t6m+4 + x3

)
0 8 + 6m 8 + 6m 16 + 12m

[IV ∗−IV ∗−α] t
(
t+ x3

) (
t+ (x− 1)3

)
2 6 8 14


−1 0 −1 0

0 −1 0 −1

1 0 0 0

0 1 0 0



[II − III −m] x
(
t+ (x− 1)3

) (
t4m+1 + x2

)
0 2 + 4m 2 + 4m 5 + 12m


1 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0



[II − III∗−m] x
(
t+ (x− 1)3

) (
t4m+3 + x2

)
0 4 + 4m 4 + 4m 11 + 12m


1 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



[II∗− III −m] x
(
t5 + (x− 1)3

) (
t4m+1 + x2

)
0 6 + 4m 6 + 4m 13 + 12m


0 0 −1 0

0 0 0 1

1 0 1 0

0 −1 0 0



[II∗ − III − α]
(
t+ x2

) (
t2 + x3

)
2 5 7 11


0 0 −1 0

0 0 0 1

1 0 1 0

0 −1 0 0



[II∗−III∗−m]
x
(
t5 + (x− 1)3

) (
t4m+3 + x2

)
0 8 + 4m 8 + 4m 19 + 12m


0 0 −1 0

0 0 0 −1

1 0 1 0

0 1 0 0


tx

(
t2 + (x− 1)3

) (
t4m+5 + x2

)
2 11+4m 13+4m 29 + 12m

[II∗−III∗−α] tx
(
t+ x2

) (
t2 + (x− 1)3

)
2 7 9 17


0 0 −1 0

0 0 0 −1

1 0 1 0

0 1 0 0



[IV − III −m] x
(
t2 + (x− 1)3

) (
t4m+1 + x2

)
0 3 + 4m 3 + 4m 7 + 12m


0 0 1 0

0 0 0 1

−1 0 −1 0

0 −1 0 0


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[IV −III∗−m] x
(
t2 + (x− 1)3

) (
t4m+3 + x2

)
0 5 + 4m 5 + 4m 13 + 12m


0 0 1 0

0 0 0 −1

−1 0 −1 0

0 1 0 0



[IV − III∗−α] x
(
t+ x2

) (
t+ x3

)
2 5 7 11


0 0 1 0

0 0 0 −1

−1 0 −1 0

0 1 0 0



[IV ∗−III−m] x
(
t4 + (x− 1)3

) (
t4m+1 + x2

)
0 5 + 4m 5 + 4m 11 + 12m


−1 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0



[IV ∗−III∗−m]
x
(
t4 + (x− 1)3

) (
t4m+3 + x2

)
0 7 + 4m 7 + 4m 17 + 12m


−1 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


tx

(
t+ (x− 1)3

) (
t4m+5 + x2

)
2 10+4m 12+4m 27 + 12m

[IV ∗−III∗−α] tx
(
t+ x2

) (
t+ (x− 1)3

)
2 6 8 15


−1 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



[2III −m]
(
x2 − t

) (
xt2m+2 +

(
x2 − t

)2)
3 7 + 4m 10+4m 18 + 12m


0 0 0 1

1 0 0 0

0 −1 0 0

0 0 1 0



[2III∗ −m]
(
x2 − t

) (
xt2m+3 +

(
x2 − t

)2)
3 9 + 4m 12+4m 24 + 12m


0 0 0 −1

1 0 0 0

0 1 0 0

0 0 1 0



[III − III −m] x(x− 1)
(
t+ (x− 1)2

) (
t4m+1 + x2

)
0 2 + 4m 2 + 4m 6 + 12m


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0



[III−III∗−m] x(x− 1)
(
t3 + (x− 1)2

) (
t4m+1 + x2

)
0 4 + 4m 4 + 4m 12 + 12m


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



[III∗−III∗−m]
x(x− 1)

(
t3 + (x− 1)2

) (
t4m+3 + x2

)
0 6 + 4m 6 + 4m 18 + 12m


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


tx(x− 1)

(
t+ (x− 1)2

) (
t4m+5 + x2

)
2 10+4m 12+4m 28 + 12m

[III∗−III∗−α] tx(x− 1)
(
t+ x2

) (
t+ (x− 1)2

)
2 6 8 16


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



Type 3 (parabolic).

Type Local model µ(I2) µ(I4) µ(I6) µ(I10) Monodromy

[In−0−0]

(n > 0)

(
x3 + αx+ 1

) (
tn + (x− β)2

)
0 0 0 n


1 0 0 0

0 1 0 n

0 0 1 0

0 0 0 1



[In − I0 −m]

(n,m > 0)

(
tn + (x− 1)2

) (
αxt4m + t6m + x3

)
0 4m 4m n+ 12m


1 0 0 0

0 1 0 n

0 0 1 0

0 0 0 1



[I0 − I∗n −m]
(t+ x)

(
tn+2 + x2

)
×(

α(x− 1)t4m + t6m + (x− 1)3
) 0 2 + 4m 2 + 4m

6 + n+

12m


1 0 0 0

0 −1 0 −n

0 0 1 0

0 0 0 −1



[In − I∗0 −m]
(
tn+(x−1)2

)(
αxt4m+2+t6m+3+x3

)
0 2 + 4m 2 + 4m

6 + n+

12m


−1 0 0 0

0 1 0 n

0 0 −1 0

0 0 0 1


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[I∗n−0−0]

(n > 0)
t
(
x3 + αx+ 1

) (
tn + (x− β)2

)
2 4 6 10 + n


−1 0 0 0

0 −1 0 −n

0 0 −1 0

0 0 0 −1



[I∗0 − I∗n −m]
(t+ x)

(
tn+2 + x2

)
×(

α(x− 1)t4m+2 + t6m+3 + (x− 1)3
) 0 4 + 4m 4 + 4m

12 + n+

12m


−1 0 0 0

0 −1 0 −n

0 0 −1 0

0 0 0 −1



[IIn−0]
(
tn−1 + (x− 1)2

) (
t2 + αtx2 + x4

)
1 2 3 5 + n


−1 0 0 0

−1 1 0 n

0 0 −1 −1

0 0 0 1



[II∗n−0] t
(
tn−1 + (x− 1)2

) (
t2 + αtx2 + x4

)
3 6 9 15 + n


1 0 0 0

1 −1 0 −n

0 0 1 1

0 0 0 −1



[II − In −m]
(
t6m+1 + x3

) (
tn + (x− 1)2

)
0

1 + n+

6m
1 + 6m

2 + n+

12m


1 0 1 0

0 1 0 n

−1 0 0 0

0 0 0 1



[II∗ − In −m]
(
t6m+5 + x3

) (
tn + (x− 1)2

)
0

5 + n+

6m
5 + 6m

10 + n+

12m


0 0 −1 0

0 1 0 n

1 0 1 0

0 0 0 1



[IV − In −m]
(
t6m+2 + x3

) (
tn + (x− 1)2

)
0

2 + n+

6m
2 + 6m

4 + n+

12m


0 0 1 0

0 1 0 n

−1 0 −1 0

0 0 0 1



[IV ∗−In−m]
(
t6m+4 + x3

) (
tn + (x− 1)2

)
0

4 + n+

6m
4 + 6m

8 + n+

12m


−1 0 −1 0

0 1 0 n

1 0 0 0

0 0 0 1



[II − I∗n −m]
(t+

x)
(
t6m+1 + (x− 1)3

) (
tn+2 + x2

) 0 3 + 6m 3 + 6m
8 + n+

12m


1 0 1 0

0 −1 0 −n

−1 0 0 0

0 0 0 −1



[II∗ − I∗n −m]
(t+

x)
(
t6m+5 + (x− 1)3

) (
tn+2 + x2

) 0 7 + 6m 7 + 6m
16 + n+

12m


0 0 −1 0

0 −1 0 −n

1 0 1 0

0 0 0 −1



[II∗ − I∗n − α] t
(
t2 + x3

) (
tn + (x− 1)2

)
2 6 + n 8 14 + n


0 0 −1 0

0 −1 0 −n

1 0 1 0

0 0 0 −1



[IV − I∗n −m]
(t+

x)
(
t6m+2 + (x− 1)3

) (
tn+2 + x2

) 0 4 + 6m 4 + 6m
10 + n+

12m


0 0 1 0

0 −1 0 −n

−1 0 −1 0

0 0 0 −1



[IV ∗−I∗n−m]
(t+

x)
(
t6m+4 + (x− 1)3

) (
tn+2 + x2

) 0 6 + 6m 6 + 6m
14 + n+

12m


−1 0 −1 0

0 −1 0 −n

1 0 0 0

0 0 0 −1



[IV ∗ − I∗n −α] t
(
t+ x3

) (
tn + (x− 1)2

)
2 5 + n 7 12 + n


−1 0 −1 0

0 −1 0 −n

1 0 0 0

0 0 0 −1



[IV − IIn] x
(
t+ x3

) (
tn + (x− 1)2

)
1 2 + n 2 4 + n


0 0 1 0

0 1 −1 n + 1

−1 0 −1 1

0 0 0 1



[IV ∗ − IIn]
n = 0 :

(
t3 + x2

) (
t4 + x3

)
6 11 16 27


−1 0 −1 −1

−1 1 0 n

1 0 0 0

0 0 0 1


n > 0 : x

(
t2 + x3

) (
tn−1 + (x− 1)2

)
2 3 + n 4 7 + n

[II − II∗n]

(n ≥ 0)

(
t+ x3

) (
tn+1 + x2

)
2 + 2n 3 + n 4 7 + n


1 0 1 1

1 −1 0 −n

−1 0 0 0

0 0 0 −1


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[II∗ − II∗n]

(n ≥ 0)
tx

(
t+ x3

) (
tn + (x− 1)2

)
3 6 + n 8 14 + n


0 0 −1 0

0 −1 1 −n

1 0 1 −1

0 0 0 −1



[III − In −m] x
(
t4m+1 + x2

) (
tn + (x− 1)2

)
0 1 + 4m 1 + 4m

3 + n+

12m


0 0 1 0

0 1 0 n

−1 0 0 0

0 0 0 1



[III∗−In−m] x
(
t4m+3 + x2

) (
tn + (x− 1)2

)
0 3 + 4m 3 + 4m

9 + n+

12m


0 0 −1 0

0 1 0 n

1 0 0 0

0 0 0 1



[III − I∗n −m]
(x− 1)(t+ x)

(
t4m+1 + (x− 1)2

)
×(

tn+2 + x2
) 0 3 + 4m 3 + 4m

9 + n+

12m


0 0 1 0

0 −1 0 −n

−1 0 0 0

0 0 0 −1



[III∗−I∗n−m]
(x− 1)(t+ x)×(

t4m+3 + (x− 1)2
) (
tn+2 + x2

) 0 5 + 4m 5 + 4m
15 + n+

12m


0 0 −1 0

0 −1 0 −n

1 0 0 0

0 0 0 −1



[III∗− I∗n−α] tx
(
t+ x2

) (
tn + (x− 1)2

)
2 5 7 13 + n


0 0 −1 0

0 −1 0 −n

1 0 0 0

0 0 0 −1



[III − IIn]

(n ≥ 0)

(
t+ x4

) (
tn + (x− 1)2

)
1 1 2 3 + n


0 0 1 0

0 1 1 n + 1

−1 0 0 −1

0 0 0 1



[III∗ − IIn]

(n ≥ 0)

n = 0 : t
(
t+ x2

) (
t+ x4

)
4 7 11 18


0 0 −1 1

1 1 0 n

1 0 0 0

0 0 0 1


n > 0 :

(
t3 + x4

) (
tn−1 + (x− 1)2

)
3 3 6 8 + n

[III − II∗n]

(n ≥ 0)

(
t+ x4

) (
tn+1 + x2

)
2 + n 3 5 + n 8 + n


0 0 1 −1

−1 −1 0 −n

−1 0 0 0

0 0 0 −1



[III∗ − II∗n]

(n ≥ 0)

t
(
t+ x4

) (
tn + (x− 1)2

)
3 5 8 13 + n


0 0 −1 0

0 −1 −1 −n − 1

1 0 0 1

0 0 0 −1

(
t3 + x4

) (
tn+2 + x2

)
5 + n 9 14 + n 23 + n

Type 4 (parabolic).

Type Local model µ(I2) µ(I4) µ(I6) µ(I10) Monodromy

[In−p−0] (x− 1)
(
tn + x2

) (
tp + (x− α)2

)
0 0 0 n+ p


1 0 p 0

0 1 0 n

0 0 1 0

0 0 0 1



[In−Ip−m]

(m > 0)

(
t2m+x

)(
tp+(x−1)2

)(
t4m+n+x2

)
0 4m 4m

n+ p+

12m


1 0 p 0

0 1 0 n

0 0 1 0

0 0 0 1



[I∗n−p−0] t(x− 1)
(
tn + x2

) (
tp + (x− α)2

)
2 4 6 10+n+p


−1 0 −p 0

0 −1 0 −n

0 0 −1 0

0 0 0 −1



[I∗n−I∗p−m]
(t+ (x− 1))

(
t2m+1 + x

)
×(

tp+2 + (x− 1)2
) (
t4m+n+2 + x2

) 0 4 + 4m 4 + 4m
12 + n+

p+ 12m


−1 0 −p 0

0 −1 0 −n

0 0 −1 0

0 0 0 −1



[In−I∗p−m]

(
t2m+1 + x

) (
tn + (x− 1)2

)
×(

t4m+p+2 + x2
) 0 2 + 4m 2 + 4m

6 + n+

p+ 12m


−1 0 −p 0

0 1 0 n

0 0 −1 0

0 0 0 1


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[2In −m]

n = 2k + l

l = 0, 1

(
tm+1 +

(
x2 − t

))
×(

xltk+2m+2 +
(
x2 − t

)2) 3
min(3 + k +

2m, 6 + 4m)

min(3 + k +

2m, 9 + 4m)
6+k+2m


0 1 0 n

1 0 0 0

0 0 0 1

0 0 1 0


m = 0 :(

αt+ x2
) (
tk+2xl +

(
x2 − t

)2) 3 min(6, 3+k) min(9, 3+k) 6 + k

[2I∗n −m]

n = 2k + l

l = 0, 1

(
xtm+1 +

(
x2 − t

))
×(

xltk+2m+3 +
(
x2 − t

)2) 3 8 + 4m 11 + 4m
21 + l +

2k+ 12m


0 −1 0 −n

1 0 0 0

0 0 0 −1

0 0 1 0



[IIn−p]
(
t+x2

) (
tn−1+(x−1)2

)(
tp+1+x2

)
1 2 3 5 + n+ p


−1 0 −p −1

0 1 1 n

0 0 −1 0

0 0 0 1


[IIIn]

n = 2k + l

l = 0, 1

x
(
xltk−l+6 +

(
x2 − t3

)2)
6 12 18 30+l+2k


0 −1 1 0

1 0 n −1

0 0 0 −1

0 0 1 0



Type 5 (parabolic).

Type Local model µ(I2) µ(I4) µ(I6) µ(I10) Monodromy

[In−p−q ]
(
tn+x2

)(
tp+(x−1)2

) (
tq+(x−2)2

)
0 0 0 n+ p+ q


1 0 p + q −q

0 1 −q n + q

0 0 1 0

0 0 0 1



[I∗n−p−q ]
t
(
tn + x2

) (
tp + (x− 1)2

)
×(

tq + (x− 2)2
) 2 4 6

10 + n+

p+ q


−1 0 −p − q q

0 −1 q −n − q

0 0 −1 0

0 0 0 −1


[IIn−p]

p = 2k+ l

l = 0, 1

(
tn−1+(x−1)2

)(
tk+2xl+

(
x2−t

)2)
1 2 3

5 + l +

n+ 2k


−1 0 −p 0

1 1 p n

0 0 −1 1

0 0 0 1


[II∗n−p]

p = 2k+ l

l = 0, 1

t
(
tn−1 + (x− 1)2

)
×(

tk+2xl +
(
x2 − t

)2) 3 6 9
15 + l +

n+ 2k


1 0 −p 0

−1 −1 p −n

0 0 1 −1

0 0 0 −1


[IIIn]

n = 3k+ l

l = 0, 1, 2

tk+2xl +
(
x3 − t

)2 2 4 6 10+l+3k


0 1 −n n

−1 −1 0 0

0 0 −1 1

0 0 −1 0


[III∗n]

n = 3k+ l

l = 0, 1, 2

t
(
xtk+2 +

(
x3 − t

)2)
4 8 12 21 + 3k


0 −1 n −n

1 1 0 0

0 0 1 −1

0 0 1 0



E Matter representation analysis

In this appendix we have a closer look at the matter representations for the gauge groups

in our resolutions. We proceed here along the lines of [47, 60] and work out two cases which

are of particular interest to us. Concretely, we will determine the matter representations

for the chains of gauge algebras su(2)−so(7) [60] and sp(2)−so(13)−sp(3), both examples

appearing in the resolution of the [II4−3] model, cf. section 5.3.
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For I∗0 singularities we have to analyze the monodromy cover given by the following

equation:

ψ3 +
f

z2

∣∣∣∣
z=0

ψ +
g

z3

∣∣∣
z=0

= 0 , (E.1)

as already given in table 2, but now denoting by z = 0 the (local) defining equation of the

curve along which the I∗0 singularity appears. In our case this translates to

(ψ + 4e2)(ψ2 − 4e2ψ + 124416e4e2 + 4e2
2) = 0 , (E.2)

where e2 = 0 and e4 = 0 are the defining equations for the curves of the III and I1

singularity, respectively, intersecting the e3 = 0 locus along which we have the I∗0 singularity.

Since (E.2) factorizes into two irreducible parts, we obtain an so(7) along the (−3)-curve

e3 = 0. The discriminant of the cubic (E.2) is given by

δe3 = −
(
21135e2e4

)
(36e2(3456e4 + e2))2 =: αβ2 , (E.3)

where α is the discriminant of the quadratic factor of (E.2). From δe3 we can read off the

matter representations of so(7) because the vanishing loci of β are related to the spinor

representation and the genus of the cover, i.e. deg(α)/2 − 1, gives the number of vector

representations of so(7). Therefore, we obtain two spinor representations and no vector

representation. One is located at the intersection with the III singularity and one at the

point 3456e4 + e2 = 0. Including the su(2) along e2 = 0 in this picture, we have the

representations 1
2(2,8s) and (1,8s) under su(2) ⊕ so(7), with the half-bifundamental at

the intersection point of III and I∗0. The states are precisely those needed for anomaly

cancellation of an su(2) along a (−2)-curve and an so(7) along a (−3)-curve.

We now discuss the second example, i.e. the sp(2) − so(13) − sp(3)-cluster of [II4−3],

which to our knowledge has not been worked out in detail in the literature. To figure out

its matter content we follow the strategy outlined in [47]. We will start by calculating

the Tate cycle [47] for our example and compare it to what we obtain from the Katz-Vafa

procedure [72] to check whether all the anomalies are canceled. Then we will add the

‘delocalized’ matter and determine the representations actually appearing.

The monodromy covers for In and I∗m with n > 2 and m > 0, respectively, are given by9

ψ2 − β = 0 . (E.4)

For the In case β is

β := − 9

2

g

f

∣∣∣∣
z=0

(E.5)

and for an I∗m singularity

β :=

{
δ/γ3 for m odd

−δ/γ2 for m even
(E.6)

9For I∗m with m odd there has to be an additional factor − 1
4

in front of β.
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with δ = ∆/zm+6
∣∣
z=0

the reduced discriminant where z is again the (local) defining equa-

tion of the divisor along which the singularity appears. For I∗m the divisor γ is defined to be

γ := − 9

2

g

z f

∣∣∣∣
z=0

(E.7)

and for In

γ :=
δ

β2
(E.8)

with the reduced discriminant δ = ∆/zn|z=0. For the three singularities I5, I∗3, I6 at e8 = 0,

e9 = 0, e10 = 0, respectively, we obtain the following expressions for β, γ and δ:

βe8 = 6e9e7 , γe8 = −21337e7
9e

6
7 , δe8 = −21539e9

9e
8
7 ,

βe9 = 2733e6
10e

5
8(e8−25e10) , γe9 = 6 , δe9 = 21036e6

10e
5
8(e8−25e10),

βe10 = 6e9e11 , γe10 = 2834e7
9e

7
11 , δe10 = 21036e9

9e
9
11 .

(E.9)

In none of the above cases β is a perfect square. Therefore, we find that the gauge algebras

are, indeed, sp(2), so(13) and sp(3) along the three curves, as anticipated already above.

The Tate cycle for a curve Σ was defined in [47] as

ZTate,Σ :=
1

2
(KB + Σ)|Σ ⊗ ρα +

1

2
div(βΣ)⊗ ρ√β + div(γΣ)⊗ ργ (E.10)

with KB denoting the canonical bundle of the base. The representations ρα, ρ√β , ργ for

our gauge algebras are

sp(2) : ρα = adj+Λ2
irr+2 · fund , ρ√β = Λ2

irr+fund , ργ = fund ,

so(13) : ρα = adj + vect , ρ√β = vect , ργ =
1

4
· spin+vect ,

sp(3) : ρα = adj + Λ2
irr , ρ√β = Λ2

irr , ργ = fund .

(E.11)

To check anomaly cancellation only the ‘local’ part

Z loc
Tate,Σ :=

1

2
div(βΣ)⊗ ρ√β + div(γΣ)⊗ ργ (E.12)

of the Tate cycle is needed [47]. The explicit expressions for the three cycles Z loc
Tate,ei

are:

Z loc
Tate,e8 =

1

2
(e7,8 + e8,9)⊗ Λ2

irr +
1

2
(13 e7,8 + 15 e8,9)⊗ fund ,

Z loc
Tate,e9 =

1

2
(5 e8,9 + 6 e9,10 + e9,ζ)⊗ vect ,

Z loc
Tate,e10 =

1

2
(e9,10 + e10,11)⊗ Λ2

irr + (7 e9,10 + 7 e10,11)⊗ fund ,

(E.13)

where ei,j is a short hand for the point (or divisor on the respective curve) ei = ej = 0.

Note that on the projective line all points are rationally equivalent.
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To determine the (virtual) local matter representations we use Katz-Vafa [72]. The

prescription they give to obtain the local matter is: decompose the adjoint representation

of the gauge group, associated to the enhanced singular point, under the covering algebra

related to the curves intersecting at the enhancement point; collect all the irreducible

representations besides the adjoints and singlets and reduce them further to representations

of the actual algebras. Furthermore, for these quaternionic representations there is an

additional overall pre-factor related to the monodromy cover, i.e. 1
k with k the degree of

the cover. Along the three curves there are five such enhancement points as we see from

the reduced discriminants. These points are e7,8, e8,9, e9,ζ , e9,10, e10,11 with enhancements

to I∗7, I∗8, I∗4, I∗9, I∗9 singularities which translates to the Lie algebras so(22), so(24), so(16),

so(26), so(26), respectively. The decompositions of the respective adjoint representations

under the covering algebras are as follows:

SO(22) ⊃ SU(5)

231→ 1⊕67 ⊕ 10⊕ 1̄0⊕ 24⊕ 5⊕12 ⊕ 5̄⊕12 ,

SO(24) ⊃ SU(5)× SO(14)

276→ 1⊗ 1⊕ 10⊗ 1⊕ 1̄0⊗ 1⊕ 24⊗ 1⊕ 1⊗ 91⊕ 5⊗ 14⊕ 5̄⊗ 1̄4 ,

SO(16) ⊃ S0(14)

120→ 1⊕ 14⊕ 1̄4⊕ 91 ,

SO(26) ⊃ SU(6)× SO(14)

325→ 1⊗ 1⊕ 15⊗ 1⊕ 1̄5⊗ 1⊕ 35⊗ 1⊕ 1⊗ 91⊕ 6⊗ 14⊕ 6̄⊗ 1̄4 .

(E.14)

From this we can now read off the ‘local part’ of the virtual matter cycle which collects all

the data10

Z loc
virtual = e7,8 ·

1

2

(
fund⊕13 ⊕ Λ2

irr

)
+e8,9 ·

1

2

(
(fund⊗ 1)⊕2⊕Λ2

irr⊗1⊕(fund⊕ 1)⊗ vect
)

+

+ e9,ζ ·
1

2
vect + e9,10 ·

1

2

(
Λ2

irr ⊗ 1⊕ fund⊗ (1⊕ vect)
)

+

+ e10,11 ·
1

2

(
Λ2

irr ⊕ fund⊕14
)
.

(E.15)

Here we should note that the one-half in front of the representations is due to the fact that

all gauge algebras involved have a di-cover. Furthermore, from (E.14) to (E.15) we got

rid of the singlets and adjoints, reduced the representations to their actual algebras and

rearranged them into quaternionic representations, e.g. 6⊕ 6̄ is fund of sp(3).

Restricting Z loc
virtual to the algebras sp(2), so(13), sp(3), we must have

Z loc
virtual

∣∣∣
sp(2)

∼ Z loc
Tate,e8 , Z loc

virtual

∣∣∣
so(13)

∼ Z loc
Tate,e9 , Z loc

virtual

∣∣∣
sp(3)

∼ Z loc
Tate,e10 , (E.16)

10We omit any indices on the representations indicating to which algebras they belong. However, the

zero-cycles in front of the representations and the fact that we always used the order sp(n) ⊕ so(m) when

two irreducible algebras are involved allow for a unique identification.
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for anomaly cancellation. Here, the restriction has to be understood as taking only the

representations which are charged under the gauge algebra to which we restrict, i.e.

Z loc
virtual

∣∣∣
sp(2)

= e7,8 ·
1

2

(
fund⊕13 ⊕ Λ2

irr

)
+ e8,9 ·

1

2

(
fund⊕15 ⊕ Λ2

irr

)
,

Z loc
virtual

∣∣∣
so(13)

= e8,9 ·
1

2
vect⊕5 + e9,ζ ·

1

2
vect + e9,10 ·

1

2
vect⊕6 ,

Z loc
virtual

∣∣∣
sp(3)

= e9,10 ·
1

2

(
Λ2

irr ⊕ fund⊕14
)

+ e10,11 ·
1

2

(
Λ2

irr ⊕ fund⊕14
)
.

(E.17)

Since in (E.16) the expressions have only be (rational and) Casimir equivalent in degree

2 and 4, (E.16) is indeed fulfilled. The second condition, besides (E.16), which has to be

satisfied for anomaly cancellation is

µZvirtual
(g(ei), g(ej)) = ei · ej , (E.18)

where the right hand side is the intersection number of the two curves ei and ej , g(ei) de-

notes the gauge algebras along these curves and µ is the representation multiplicity [47]. In

our case this is trivially met because we have one bi-fundamental for each intersection point.

After checking the anomalies, we can finally give the full matter content for our setup.

To do so we only have to add the ‘delocalized matter’ part

1

2

∑
i

(KB + ei)|ei ⊗ ρα (E.19)

to Z loc
virtual and add to the degree of the so obtained cycle the adjoint representations

such that

ρmatter = adj(g)⊕ deg(Zvirtuel) . (E.20)

Here g is the full algebra, i.e. in our case sp(2)⊕ so(13)⊕ sp(3). For Zvirtuel we find

Zvirtual = e7,8 ·
1

2

(
fund⊕11 ⊕ adj

)
+ e8,9 ·

1

2
(adj⊗ 1⊕ fund⊗ vect⊕ 1⊗ adj) +

+ e9,10 ·
1

2
(adj⊗ 1⊕ fund⊗ (1⊕ vect)⊕ 1⊗ adj) + e10,11 ·

1

2

(
adj⊕ fund⊕14

)
.

(E.21)

where we used that (KB + ei)|ei = −ei−1,i − ei,i+1 and that all points on P1 are rationally

equivalent. Hence, we obtain

ρmatter =
1

2
(4⊗1⊗1)⊕11 ⊕ 1

2
(4⊗13⊗1)⊕ 1

2
(1⊗(13⊕ 1)⊗6)⊕ 1

2
(1⊗1⊗6)⊕14 (E.22)

for the matter content. Note that the 11 and 13 out of the 14 flavor degrees of 1
2(4⊗1⊗1)

and 1
2(1⊗1⊗6), respectively, would become charged if we would take the full [II4−3] model

into account.
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[56] O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review,

Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].

[57] A. Flournoy and B. Williams, Nongeometry, duality twists and the worldsheet, JHEP 01

(2006) 166 [hep-th/0511126] [INSPIRE].
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