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1 Introduction

Some of the salient characteristics of string theory are the presence of higher-derivative α′

corrections, massive modes of higher spin, and duality invariance, such as T-duality. In this

paper we aim to illuminate the interplay between these aspects by analyzing the quadratic

approximation to the α′-deformed double field theory (DFT) constructed by Siegel and two

of the authors in [1] (generalizing [2–6] and further investigated in [7–15]). This theory,

henceforth called HSZ theory, contains higher-derivative corrections and is exactly duality1

and gauge invariant and hence well-suited for this purpose.

HSZ theory is written in terms of a duality-invariant dilaton φ and an unconstrained

‘double metric’ MMN , with O(D,D) indices M,N = 1, . . . , 2D, which in turn can be

decomposed into a generalized metric HMN , taking values in O(D,D) and encoding the

spacetime metric and two-form field, plus additional fields. Specifically, expanding around

1In the following we refer to the global O(d, d,R) invariance emerging upon dimensional reduction on a

torus, which is made manifest in DFT, for brevity simply as ‘duality invariance’.
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flat space and reducing to D-dimensional indices i, j, . . ., the metric and two-form fluctua-

tions are encoded in a general second-rank tensor eij , while the additional fields are given

by two symmetric tensors aij and āij .

As was outlined in [1] and shown in more detail in [10], these extra fields can be

treated as auxiliary fields in that they can be eliminated algebraically by iteratively solving

their field equations in terms of the massless fields. This leads to an infinite number of

higher-derivative α′ corrections for the massless fields. To be more specific, consider the

Lagrangian, which to lowest order in derivatives contains the potential terms

L =
1

2α′
eφ
(
aija

ij−āij āij+āijekiekj−aijeikejk+
1

3
aijai

kajk−
1

3
āij āi

kājk

)
+· · · , (1.1)

where the dots represent terms that contain from two to six derivatives. The field equations

for a and ā, to lowest order in α′ and to lowest order in the number of massless fields, imply

aij = 1
2eikej

k and āij = 1
2ekie

k
j , so that they may be eliminated in terms of the massless

fields. In principle, this procedure can be extended to any order in α′ and any number of

(massless) fields.

It is not yet known how the complete HSZ theory looks in terms of conventional gravity

fields and after eliminating the extra fields, but it was shown that to first order in α′ it

encodes the gravitational Chern-Simons modification implied by the Green-Schwarz mech-

anism [7, 8] and to second order in α′ it contains a cube of the Riemann tensor [13]. As

such, the theory encodes elements both of heterotic string theory (the Green-Schwarz de-

formation) and of bosonic string theory (the Riemann-cube term), while lacking structures

present in both (like a Riemann-squared term). Therefore, this theory does not correspond

to any conventional string theory, in line with the non-standard chiral CFT on which it

was based. We expect, however, that a more general class of gauge and duality invariant

theories exists for which the conventional string theories would arise as particular combi-

nations, as shown to first-order in α′ at the cubic level in [8] and more recently to all orders

in fields in [9].

The goal of the present paper is to analyze the dynamical content (the particle spec-

trum) of HSZ theory, including higher derivatives but restricting to the quadratic approx-

imation around flat space. It was recently pointed out in [14] that keeping the extra

fields aij and āij , rather than integrating them out, indicates the presence of two massive

spin-2 modes in the spectrum. Indeed, one reads off quadratic mass terms from the La-

grangian (1.1), while the ‘higher-derivative’ terms starting with two derivatives naturally

yield the kinetic terms. Qualitatively, this seems to match the spectrum of the ‘chiral string

theory’ investigated in [14], whose spectrum also contains two massive spin-2 modes. In

this paper we will compute the spectrum of the exact quadratic theory, which includes up

to six derivatives, and confirm the presence of massive spin-2 states. However, the detailed

spectrum differs from that of the chiral string theory given in [14].

Our analysis is simplified by introducing further fields that allow us to reduce the

number of derivatives to two. In order to elucidate the structure of these theories, we find it

convenient to compare them with a massive deformation of the original (massless) linearized
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DFT. This theory, which seems interesting in its own right, is given by the Lagrangian

LmDFT =
1

2
eijRij(e, φ) +

1

2
φR(e, φ)− 1

4
M2(eijeij − 4φ2) , (1.2)

whereRij andR are the linearized Ricci tensor and scalar curvature of DFT, whose explicit

forms are given in (2.10). We will show that this model propagates precisely a massive

spin-2 mode, a massive two-form field, and a massive scalar, without any undesired or

ghost-like modes. This result hinges on the structure of both the mass terms and the

kinetic terms, which are such that in the massless limit M2 → 0 the theory is invariant

under the DFT gauge symmetry,

δeij = Diλ̄j + D̄jλi , δφ =
1

2
(Diλ

i + D̄iλ̄
i) . (1.3)

Intriguingly, this model seems new as it is not field-redefinition equivalent to the Fierz-

Pauli-theory of (linearized) massive gravity augmented by a massive two-form and a massive

scalar. Indeed, while the kinetic terms in (1.2) can be diagonalized (returning to Einstein

frame) in order to write the model as a sum of linearized gravity, massless two-form and

massless scalar, one cannot simultaneously diagonalize the above mass terms. Nevertheless,

the above model is ghost-free, and this may shed a new light on the old problem of finding

a consistent non-linear theory of massive gravity (see [16] for a recent review).

Remarkably, the six-derivative HSZ quadratic Lagrangian can be rewritten as a two-

derivative Lagrangian by introducing two auxiliary scalars ϕ and ϕ̄, which pair up with

aij and āij , to play a role largely analogous to that which the dilaton φ plays for eij .

In particular, thanks to these new fields, the kinetic terms are ‘improved’ relative to the

original two-derivative terms and the number of degrees of freedom does not increase. The

massive spin-2 modes are ghost-like, as can be seen from the overall sign of the kinetic

terms. The presence of ghost-like massive spin-2 modes is in qualitative agreement with

the chiral string theory [14] but, again, the detailed spectrum differs.

The improved structure of the kinetic terms is reflected by an enhanced gauge invari-

ance in the massless limit, as for the massive DFT theory above. This symmetry reads

δζaij = Diζj +Djζi , δζϕ = −Diζ
i ,

δζ̄ āij = D̄iζ̄j + D̄j ζ̄i , δζ̄ϕ̄ = D̄iζ̄
i ,

(1.4)

and thus takes the form of two additional diffeomorphism-like symmetries with parameter

ζi and ζ̄i. Note that the massless limit corresponds to the tensionless limit α′ → ∞ and

hence this model confirms the general expectation that string theory exhibits an enlarged

gauge symmetry in this limit [17].

We close this introduction with some general remarks. Given the presence of ghost-like

modes in the spectrum, it follows that this theory is problematic — at least around flat

space and to the extent that the quadratic theory provides a reliable approximation. It

should be recalled, however, that the inclusion of more than two derivatives generically

leads to additional propagating degrees of freedom, which are typically ghost-like and

massive. For instance, the addition of curvature-squared terms to the Einstein-Hilbert

– 3 –
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action generally leads to a massive spin-2 ghost and a massive scalar, thereby violating

unitarity. Can the spin-2 ghosts in HSZ theory be interpreted similarly? We will show

in section 6 that in the quadratic theory the massive fields can be integrated out exactly.

Due to the presence of two massive spin-2 fields this leads to an infinite number of higher-

derivative corrections.

In the usual string field theories one can always choose a field basis for which the

propagator is not modified, making manifest that there is no conflict with unitarity. To

first order in α′, one employs the Gauss-Bonnet combination [18], which is a total deriva-

tive at the quadratic level.2 In contrast, there is evidence that any theory that is not a

complete string theory (like generic higher-derivative gravity) is problematic at some level,

see e.g. [21]. Our findings here seem to confirm this.

It would be instructive to investigate the physical content around other, curved back-

grounds. It may well be that some form of ‘ghost condensation’ takes place, so that the

flat-space ghosts disappear on other backgrounds [22]. A simple version of such a phe-

nomenon is already visible for the flat space theories analyzed here: the potential (1.1)

allows for two different flat space solutions, corresponding to sending the background gen-

eralized metric H̄ to −H̄ (see section 2.2). Intriguingly, ghosts in one vacuum become

healthy in the other and vice versa.

2 Full quadratic theory and non-derivative terms

In this section we compute the full quadratic Lagrangian and the potential of HSZ the-

ory [1]. From the quadratic Lagrangian we will see that the theory has both ‘ghost-like’

and ‘healthy’ degrees of freedom. By analyzing the potential, we show that the theory

admits two vacua with constant backgrounds. Both of these vacua have the same number

of degrees of freedom; ‘ghost-like’ fields of one vacuum, however, correspond to ‘healthy’

fields of the other vacuum and vice versa.

The full action for the HSZ theory can be written as [1]

S =

∫
eφL , L =

1

2
tr (T )− 1

6
〈T |T ? T 〉 , (2.1)

where T is a tensor operator which encodes the double metric M. The Lagrangian L

has terms with up to six derivatives, given in equation (3.16) and (3.17) of [13]. This

Lagrangian can be expanded around a constant background 〈M〉 that can be identified

with a constant generalized metric [8]:

MMN = H̄MN +mMN = H̄MN +mMN̄ +mNM̄ + aM̄N̄ + aMN . (2.2)

Here H̄ is the constant background generalized metric, and mMN encodes the double

metric fluctuations around this background. These fluctuations have been decomposed

2Other higher-derivative theories that do not propagate ghosts are Einstein-Hilbert plus the square of

the pure Ricci scalar, which is equivalent to a massive scalar coupled to gravity and currently a favored

model for inflation (Starobinsky model) [19], and new massive gravity in 2 + 1 dimensions, which augments

a ‘wrong-sign’ Einstein-Hilbert term with a particular curvature-squared term [20].
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using projected O(D,D) indices defined as

VM = PM
NVN , VM̄ = P̄M

NVN , (2.3)

and analogously for higher tensors, with the projectors

PM
N =

1

2

(
η − H̄

)
M

N , P̄M
N =

1

2

(
η + H̄

)
M

N . (2.4)

Fluctuations of the double metric can be related to conventional fields with spacetime

indices as explained in detail in section 5.3 of [8]. Based on equation (5.57) of [8], we

introduce the ‘conventional’ counterparts for fields aMN and aM̄N̄ as follows:

aab =
1

2
EaMEbNaMN , āāb̄ =

1

2
EāMEb̄NaM̄N̄ . (2.5)

Here EAM =
(
EaM , EāM

)
is the background vielbein and (a, ā) are flat frame indices. The

particular choice of the background vielbein made in equation (5.42) of [8] allows one to

identify the flat and curved indices. The rules for translating an expression written in terms

of projected indices to an expression written in terms of conventional spacetime indices can

be summarized as follows:

• Replace mMN̄ by emn, aMN by amn and aM̄N̄ by āmn.

• Replace under-barred derivatives by D and barred derivatives by D̄ defined as in [8],

Di = ∂i − Eik∂̃k , D̄i = ∂i + Eki∂̃
k , (2.6)

where Eij = Gij+Bij is given in terms of the constant background metric and b-field.

The strong constraint takes the form DiDi = D̄iD̄i, acting on arbitrary fields and all

their products.

• Multiply by a coefficient, which is the product of a factor of 2 for each m, a, or ā field,

a factor of +1
2 for each barred contraction and a factor of −1

2 for each under-barred

contraction.

2.1 Full quadratic Lagrangian

The zero- and two-derivative parts of the HSZ quadratic action have been computed pre-

viously in [8] (see eq. (5.7)) and in [13] (see eqs. (4.7) and (4.10)). In terms of conventional

fields, they are

L(2,0) =
1

2
aijaij −

1

2
āij āij ,

L(2,2) =
1

4
eij�eij +

1

4

(
Die

ij
)2

+
1

4

(
D̄je

ij
)2

+ eijDiD̄jφ− φ�φ

− 1

8
aij �aij −

1

4

(
Dia

ij
)2 − 1

8
āij �āij −

1

4

(
D̄j ā

ij
)2
,

(2.7)

where � ≡ DiD
i = D̄iD̄

i. From the two-derivative Lagrangian, we note that the kinetic

terms for aij and āij appear with the ‘wrong’ sign and hence describe ghost-like degrees

of freedom.
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The four- and six-derivative parts of the quadratic Lagrangian can be computed ex-

plicitly starting from equation (3.17) of [13]. The computation can be simplified by noting

that any term which involves derivatives acting on more than two fields will not contribute

to the quadratic Lagrangian. Further, terms of the form
(
M2

)
MN

∂M (· · ·) ∂N (· · ·) can

also be ignored, because upon expanding around the background generalized metric, such

a term would vanish at quadratic level due to the strong constraint. After excluding such

terms, one gets the following expressions for the four- and six-derivative terms that can

contribute to the quadratic Lagrangian:

L(·,4) =
1

12
MMN

[
∂MMPQ∂KPQMNK + 2∂PMQ

M∂
K
NQMPK − ∂MMPQ∂KNPMQK

+ ∂MNMPQ∂KPMQK − ∂PMMQK∂NQMPK − ∂PMM
Q
P ∂

K
NMQK

+MPQ
(
∂MMK

P ∂NQKφ− 2∂KMMPK∂NQφ+ 3∂MNMK
P ∂QKφ

+ 3∂NMK
M∂PQKφ+ 3∂KMMK∂NPQφ

)]
+ · · · ,

L(·,6) =
1

48
MMN (∂PQM M

KL∂NKLMPQ+6∂PMMQK∂LNQKMPL−2∂PQMKL∂MNKLMPQ)

+
1

8
MMNMPQ

(
∂MPMKL∂NQKLφ−∂MKLMKL∂NPQφ−2MKL∂MNPφ∂QKLφ

)
+ · · · , (2.8)

where ‘· · ·’ denotes terms which do not contribute to the quadratic Lagrangian and

∂M1M2···Mk
≡ ∂M1∂M2 · · · ∂Mk

. In computing this Lagrangian from (3.17) in [13], no inte-

grations by part have been performed. After expanding around the background generalized

metric and keeping only terms quadratic in fields, we get:

L(2,4) = −1

4
aM̄N̄∂M̄N̄P̄ Q̄a

P̄ Q̄ +
1

4
aMN∂MNPQa

PQ +
1

4
R ∂P̄ Q̄a

P̄ Q̄ − 1

4
R ∂PQa

PQ ,

L(2,6) =
1

16

(
∂M̄N̄a

M̄N̄ + ∂MNa
MN −R

)
�
(
∂M̄N̄a

M̄N̄ + ∂MNa
MN −R

)
.

(2.9)

Here R is the linearized scalar curvature, which can be written in terms of the double

metric fluctuation mMN̄ or eij as follows:

R ≡ −2∂MN̄m
MN̄ − 2�φ = DiD̄je

ij − 2�φ ,

Rij ≡
1

2
�eij −

1

2
DiD

kekj −
1

2
D̄jD̄

keik +DiD̄jφ ,
(2.10)

where we included the definition of the linearized Ricci tensor for future use. These tensors

are invariant under (1.3). The above four- and six-derivative Lagrangians can be written

in terms of the conventional fields and spacetime indices following the rules stated after

equation (2.5).

L(2,4) = − 1

16

(
D̄iD̄j ā

ij
)2

+
1

16

(
DiDja

ij
)2

+
1

8
R D̄iD̄j ā

ij − 1

8
RDiDja

ij ,

L(2,6) =
1

64

(
D̄iD̄j ā

ij +DiDja
ij − 2R

)
�
(
D̄iD̄j ā

ij +DiDja
ij − 2R

)
.

(2.11)
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2.2 Full non-derivative Lagrangian and vacua

The full non-derivative part L(0) of the HSZ Lagrangian is given by

L(0) = eφ
(

1

2
MM

M − 1

6
MMNMNPMP

M

)
. (2.12)

After expanding around the generalized metric, it can be written as:

L(0) =
1

2
eφ
(
aMNaMN − aMNmMP̄mNP̄ −

1

3
aMNaM

PaNP

− aM̄N̄aM̄N̄ − aM̄N̄mP M̄mPN̄ −
1

3
aM̄N̄aN̄

P̄aN̄P̄

)
.

(2.13)

Translating to conventional variables we get:

L(0) =
1

2
eφ
(
aija

ij − aijeikejk +
1

3
aijai

kajk − āij āij + āijekie
k
j −

1

3
āij āi

kājk

)
. (2.14)

Let us now analyze the critical points of this potential. Specifically, we look at the

critical points with 〈eij〉 = 0, where 〈A〉 denote the value of A at the critical point. The

dilaton independent part of the potential has four critical points:

〈aij〉 = 0 , 〈āij〉 = 0 ,

〈aij〉 = −2ηij , 〈āij〉 = −2ηij ,

〈aij〉 = 0 , 〈āij〉 = −2ηij ,

〈aij〉 = −2ηij , 〈āij〉 = 0 .

(2.15)

It is easy to see that the potential vanishes at the first two of these critical points

and is non-vanishing at the other two. Moreover, extremizing the potential with respect

to the dilaton requires the potential to be zero at the critical point. Hence, only the first

two critical points correspond to true vacua. The first of these critical points leads to the

quadratic Lagrangian discussed in the previous subsection.

We claim that the second critical point corresponds to expanding the double metric

around a background generalized metric with the overall sign reversed, 〈M〉 = −H̄. A short

calculation, using equation (2.5), shows that 〈aab〉 = −2Gab corresponds to 〈aMN 〉 = 2PMN

and 〈āāb̄〉 = −2Gāb̄ corresponds to 〈aM̄N̄ 〉 = −2P̄MN . Here Gab is the background metric

in ‘flattened’ indices, which corresponds to ηij in curved indices. We write fields aMN and

aM̄N̄ as

aMN = 2PMN + a′MN , aM̄N̄ = −2P̄MN + a′M̄N̄ . (2.16)

Using this in the double metric expansion (2.2) and dropping the primes, we get:

MMN = −H̄MN +mMN̄ +mNM̄ + aM̄N̄ + aMN , (2.17)

proving the claim that the second critical point in equation (2.15) corresponds to expanding

the double metric around −H̄.
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The physical consequence of expanding around this critical point is to swap the ghost-

like and healthy degrees of freedom. To see this note that changing the sign of the back-

ground generalized metric corresponds to changing the sign of the background metric while

leaving the background two-form field unchanged. Hence, the Lagrangian around this

background can simply be obtained by changing the sign of the background metric used in

contracting different indices, i.e.,

eij�eij = eij∂k∂lemn η
imηjnηkl → −eij∂k∂lemn ηimηjnηkl = −eij�eij . (2.18)

Thus, the two derivative quadratic Lagrangian around this critical point takes the follo-

wing form:

L(2,2)
∣∣∣
〈a〉=〈ā〉=−2η

= −1

4
eij�eij −

1

4

(
Die

ij
)2 − 1

4

(
D̄je

ij
)2

+ eijDiD̄jφ (2.19)

+ φ�φ +
1

8
āij �āij +

1

8
aij �aij +

1

4

(
Dia

ij
)2

+
1

4

(
D̄j ā

ij
)2
.

We see that the field eij has kinetic terms with the ‘wrong’ sign while those for aij
and āij come with the ‘right’ sign. This is analogous to the phenomenon of ‘ghost-

condensation’ [22], where kinetic terms for fields have different signs in different vacua.

3 Spectrum of the quadratic theory

In this section we give a complete analysis of the degrees of freedom in HSZ theory as

determined by the full quadratic Lagrangian around flat space. We begin with the two-

derivative quadratic theory and determine its spectrum. Then we turn to the full six-

derivative quadratic theory and reconsider the spectrum. The calculations are significantly

simplified by the observation that the six derivative theory can be rewritten as a two-

derivative theory with additional scalar fields. The analysis of the spectrum reveals that,

in this case, higher derivatives do not alter the number of degrees of freedom. The masses

of some fields, however, are changed.

3.1 Spectrum of the two-derivative quadratic theory

The two-derivative quadratic theory is defined by the Lagrangian in (2.7), where we com-

bine all quadratic terms with two or less derivatives:

L(2,≤2) =
1

4
eij�eij +

1

4

(
Die

ij
)2

+
1

4

(
D̄je

ij
)2

+ eijDiD̄jφ− φ�φ

− 1

8
aij �aij −

1

4

(
Dia

ij
)2

+
1

2α′
aijaij

− 1

8
āij �āij −

1

4

(
D̄j ā

ij
)2 − 1

2α′
āij āij .

(3.1)

The first line in this Lagrangian contains the familiar massless degrees of freedom. There

is a massless graviton, a massless two-form field and a massless scalar dilaton.

On the second and third lines we have two symmetric tensors aij and āij with mass

terms. This quadratic two-derivative action does not match the Fierz-Pauli Lagrangian by

– 8 –
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a long shot. In that theory the non-derivative terms are those of a massless spin two field,

and we do not have those terms. Moreover, the two-derivative terms have the wrong sign,

as can be seen comparing with those for eij . The Fierz-Pauli mass terms are not present

either. In such an unfamiliar setting a straightforward method to ascertain the degrees of

freedom involves coupling to sources [23]. As shown in in appendix A.1 the field aij in the

two-derivative approximation propagates:

1. Ghost spin-two with m2 = 4/α′.

2. Ghost scalar with m2 = 4/α′.

3. Scalar tachyon with m2 = −4/α′.

The field āij in the two-derivative approximation propagates exactly the same degrees of

freedom but with opposite value of mass-squared.

3.2 Spectrum of the full six-derivative quadratic theory

We now extend the above analysis to the full quadratic action including the higher deriva-

tive terms. Consider the four-derivative terms calculated before in (2.11). The signs in

this expression are such that we can rewrite it as a difference of squares:

L(2,4) =
1

16
(DiDja

ij −R)2 − 1

16
(D̄iD̄j ā

ij −R)2 . (3.2)

Note now that the six-derivative terms in (2.11) are also of a similar form

L(2,6) =
1

64

(
D̄iD̄j ā

ij +DiDja
ij − 2R

)
�
(
D̄iD̄j ā

ij +DiDja
ij − 2R

)
. (3.3)

To see the structural form of the terms more clearly, define

x ≡ 1

4
(DiDja

ij −R) , x̄ ≡ 1

4
(D̄iD̄ja

ij −R) , (3.4)

so that the full higher derivative Lagrangian can be written as

L(2,4) + L(2,6) = x2 − x̄2 +
1

4
(x+ x̄)�(x+ x̄) . (3.5)

It is clear that the first two terms could be rewritten as a two-derivative Lagrangian with

the help of two auxiliary scalar fields ϕ and ϕ̄:

x2 − x̄2 → 2xϕ− ϕ2 − 2x̄ ϕ̄+ ϕ̄2 ≡ G(ϕ, ϕ̄) . (3.6)

One quickly sees that elimination of the auxiliary scalars leads to ϕ = x and ϕ̄ = x̄, giving

back the terms to the left of the arrow. This means that

G(ϕ = x, ϕ̄ = x̄) = x2 − x̄2 . (3.7)

We also note the additional invariance property

G(ϕ = x+ η, ϕ̄ = x̄− η) = x2 − x̄2 . (3.8)
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It is also clear that with the auxiliary field the Lagrangian just has two derivatives. What

is less obvious is that we can use the same idea for the full higher-derivative Lagrangian

in (3.5). We claim that

L(2,4) + L(2,6) = 2xϕ− ϕ2 − 2x̄ ϕ̄+ ϕ̄2 +
1

4
(ϕ+ ϕ̄)�(ϕ+ ϕ̄) (3.9)

is on-shell fully equivalent to (3.5). This is easily demonstrated. The equations of motion

for ϕ and ϕ̄ give

ϕ =x+
1

4
�(ϕ+ ϕ̄) ,

ϕ̄ =x− 1

4
�(ϕ+ ϕ̄) .

(3.10)

It follows that ϕ+ ϕ̄ = x+ x̄, which can be used for the last term in (3.9). Moreover, the

above solution has the structure ϕ = x + η and ϕ̄ = x̄ − η so that the first two groups

of terms in (3.9), which equal G(ϕ, ϕ̄), still reproduce the first two terms in (3.5) upon

eliminating ϕ and ϕ̄.

This demonstrates that (3.9) provides a two derivative Lagrangian that is equivalent

to the original six-derivative one. A little more explicitly, the Lagrangian can be written as

L =− ϕ2 − 1

2
Dia

ijDjϕ−
1

2
ϕR

+ ϕ̄2 +
1

2
D̄iā

ijD̄jϕ̄+
1

2
ϕ̄R

+
1

4
(ϕ+ ϕ̄)�(ϕ+ ϕ̄) .

(3.11)

Including the original two-derivative terms, we have the full quadratic action

L =
1

4
eij�eij +

1

4

(
Die

ij
)2

+
1

4

(
D̄je

ij
)2

+ eijDiD̄jφ− φ�φ

− 1

8
aij � aij −

1

4

(
Dia

ij
)2 − 1

2
Dia

ijDjϕ+
1

4
ϕ�ϕ+

1

2
aijaij − ϕ2

− 1

8
āij � āij −

1

4

(
D̄iā

ij
)2

+
1

2
D̄iā

ijD̄jϕ̄+
1

4
ϕ̄�ϕ̄− 1

2
āij āij + ϕ̄2

+
1

2
ϕ̄�ϕ− 1

2
ϕR+

1

2
ϕ̄R .

(3.12)

Now the terms in the second and third lines are improved compared to the two-derivative

Lagrangian (3.1). They have the derivative terms needed for a proper kinetic term and

also mass terms for the new ‘dilatons’ ϕ and ϕ̄.

The above action is not diagonal: it has a ϕ̄�ϕ term and ϕ−ϕ̄ is coupled to the original

DFT fields via R. It turns out, however, that the action can be completely diagonalized

by an exact field redefinition of the dilaton. We let

φ → φ′ ≡ φ− 1

2
(ϕ− ϕ̄) , (3.13)
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leaving all other fields unchanged. Note that this redefinition is local and exactly invertible;

hence there is no danger of inducing infinitely many terms. Denoting the standard quadratic

DFT Lagrangian in the first line of (3.12) by LDFT we compute

LDFT[eij , φ] = LDFT[eij , φ
′] +

1

2
(ϕ− ϕ̄)R(e, φ′)− 1

4
(ϕ− ϕ̄)�(ϕ− ϕ̄) , (3.14)

which is an exact relation. The only other appearance of φ in (3.12) is in the third line,

inside R, for which one computes with (2.10)

R(e, φ) = R(e, φ′)−�(ϕ− ϕ̄) , (3.15)

which is also exact. Using these two relations in the full action (3.12) one obtains (sup-

pressing all arguments different from φ)

L[φ] = L[φ′] +
1

2
(ϕ− ϕ̄)R(e, φ′)− 1

4
(ϕ− ϕ̄)�(ϕ− ϕ̄) +

1

2
(ϕ− ϕ̄)�(ϕ− ϕ̄)

= L[φ′] +
1

2
(ϕ− ϕ̄)R(e, φ′) +

1

4
ϕ�ϕ+

1

4
ϕ̄�ϕ̄− 1

2
ϕ̄�ϕ .

(3.16)

This cancels the coupling between ϕ − ϕ̄ and R as well as the term ϕ̄�ϕ, while changing

the coefficients of the diagonal terms ϕ�ϕ and ϕ̄�ϕ̄ from 1
4 to 1

2 . Thus, dropping finally

the ′ from φ, the theory is fully equivalent to

L =
1

4
eij�eij +

1

4

(
Die

ij
)2

+
1

4

(
D̄je

ij
)2

+ eijDiD̄jφ− φ�φ

− 1

8
aij � aij −

1

4

(
Dia

ij
)2 − 1

2
Dia

ijDjϕ+
1

2
ϕ�ϕ+

1

2
aijaij − ϕ2

− 1

8
āij � āij −

1

4

(
D̄iā

ij
)2

+
1

2
D̄iā

ijD̄jϕ̄+
1

2
ϕ̄�ϕ̄− 1

2
āij āij + ϕ̄2 ,

(3.17)

which is now diagonal, so that we can readily study the physical content. The analysis in

appendix A.2 shows that the fields (aij , ϕ) propagate:

1. Ghost spin-two with m2 = 4/α′.

2. Ghost scalar with m2 = 4/α′.

3. Scalar with m2 = 4/α′.

These are the same degrees of freedom as in the two-derivative approximation, except

that the scalar tachyon turned into a healthy massive scalar. The fields (āij , ϕ̄) propagate

exactly the same degrees of freedom as the un-barred pair but with opposite value of

mass-squared.

We conclude by noting that a further redefinition of ϕ and the trace a of aij allows

us to fully diagonalize into massive spin-2 and a massive scalar in the Lagrangian (3.17).

We let

ϕ = ϕ′ − 1

2
a′ , aij = a′ij − ϕ′ηij . (3.18)

– 11 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
3

Inserting this into the second line of the action above and dropping primes at the end,

one obtains

L =− 1

8
aij � aij −

1

4
(Dia

ij)2 − 1

4
aij DiDja+

1

8
a�a+

1

2

(
aijaij −

1

2
a2

)
− 1

4
(D − 2)

(
1

2
ϕ�ϕ− 2ϕ2

)
.

(3.19)

The second line implies that ϕ is a ghost with mass M2 = 4. The first line has the

right kinetic terms as in the Fierz-Pauli theory, but the mass term has the wrong relative

coefficient.3 Thus, in addition to the (ghostly) massive spin-2 it propagates a scalar mode,

given by the trace a.

4 Massive linearized DFT

The linearized DFT action describes massless gravity, a massless two-form field, and a

massless dilaton. We find here a duality invariant mass term that gives the same mass

to all these three fields, without introducing ghosts or spurious degrees of freedom. For

linearized Einstein gravity a consistent massive deformation requires a judicious choice of

mass terms: the Fierz-Pauli mass term, that involves both the trace hijhij of the square

of the metric fluctuation and the square of the trace h. The latter is required to guarantee

that h is non-propagating, for otherwise it would be a scalar ghost. In DFT, the trace

of the field eij is not available because there is no O(D,D) covariant notion of taking

this trace, but one can give a novel mass term involving the dilaton, which also avoids all

scalar ghosts.

Consider the linearized two-derivative DFT action, given on the first line in (3.1):

LDFT =
1

4
eij�eij +

1

4

(
Die

ij
)2

+
1

4

(
D̄je

ij
)2

+ eijDiD̄jφ− φ�φ

=
1

2
eijRij(e, φ) +

1

2
φR(e, φ) ,

(4.1)

where we rewrote the kinetic terms geometrically, discarding total derivatives, in terms of

the linearized Ricci tensor Rij and the scalar curvature R defined in (2.10).4 We add to

this linearized two-derivative DFT action mass terms in the following way:

LmDFT =
1

2
eijRij(e, φ) +

1

2
φR(e, φ)− 1

4
M2(eijeij − 4φ2) . (4.2)

Note that O(D,D) covariance does not restrict the relative coefficient between the mass

terms of eij and the dilaton φ, but we will show in the following that the specific choice

made here leads to a ghost-free model. One way to see this is to inspect the field equations

for eij and φ,

Rij =
1

2
M2eij , R = −2M2φ . (4.3)

3Curiously, the mass term obtained here coincides with the ‘mass term’ obtained by expanding a cos-

mological constant term proportional to
√
|g| around flat space, cf. [24].

4Note that the total variation takes the form δLDFT = δeij Rij + δφR, discarding total derivatives

as usual.
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The generalized Ricci tensor and scalar curvature satisfy the Bianchi identities

DiRij = −1

2
D̄jR , D̄jRij = −1

2
DiR , (4.4)

so that taking the divergence and derivative of the field equations we obtain

0 = DiRij +
1

2
D̄jR =

1

2
M2(Dieij − 2D̄jφ) ,

0 = D̄jRij +
1

2
D̄iR =

1

2
M2(D̄jeij − 2Diφ) .

(4.5)

Taking another divergence, this implies

DiD̄jeij − 2�φ = 0 ⇒ R = 0 , (4.6)

where we used the explicit expression for the scalar curvature. Thus, thanks to the specific

choice of mass terms, the scalar curvature vanishes on-shell, which in turn removes propa-

gating degrees of freedom that would otherwise be present. Indeed, from this we conclude

with (4.3) that φ = 0 and hence with (4.5) that both barred and unbarred divergences of

eij vanish on-shell:

Dieij = D̄jeij = φ = 0 . (4.7)

This should be compared to on-shell constraints of the Fierz-Pauli theory for massive

(linearized) gravity, which are ∂µhµν = 0 and hµµ = 0, and the on-shell constraint of the

massive two-form field, which is ∂µbµν = 0. We note that (4.7) gives as many constraints

as needed in order to describe a massive graviton, a massive two-form field, and a massive

scalar. Indeed, with the on-shell constraints the field equation becomes (� −M2)eij = 0

and, in a frame where pµ = (M,~0), we see that e0i = ei0 = 0, resulting in (D − 1)2

degrees of freedom describing a graviton, a two-form field and a scalar, all of mass M .

Interestingly, in DFT variables the massive scalar is not encoded in the dilaton density φ,

which vanishes on-shell, but rather in the trace of eij , which can only be accessed after

breaking manifest O(D,D) covariance. It should also be noted that although the kinetic

terms of massive DFT can be diagonalized (after abandoning manifest O(D,D) invariance),

this field redefinition does not diagonalize the mass terms. Therefore, this model is not

simply the Fierz-Pauli theory of massive gravity supplemented by a massive 2-form and a

massive scalar.

It is instructive to make this point a little more explicit. Since the b-field plays no

role in this discussion, we will set it to zero and, having thus abandoned O(D,D) invari-

ance, denote the spacetime indices by µ, ν, . . ., take the derivatives D and D̄ to be partial

derivatives and � = ∂2. The Lagrangian (4.2) then gives:

L =
1

4
hµν�hµν +

1

2
(∂µh

µν)2 + hµν∂µ∂νφ− φ�φ−
1

4
M2

(
hµνhµν − 4φ2

)
. (4.8)

We want to see if this is field redefinition equivalent to the Fierz-Pauli action supplemented

by a massive scalar:

LFP + Ls =
1

4
hµν�hµν +

1

2
(∂µh

µν)2 +
1

2
hµν∂µ∂νh−

1

4
h�h− 1

4
M2

(
hµνhµν − h2

)
+ φ�φ−M2φ2 .

(4.9)

– 13 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
3

The most general field redefinition can be parameterized as follows:

hµν = A1h
′
µν + ηµν

(
A2h

′ +A3φ
′) , φ = A4h

′ +A5φ
′. (4.10)

For this field redefinition to be invertible A1 has to be non-zero. We will now show that

there is no choice of coefficients A1, · · · , A5 that define an invertible redefinition and si-

multaneously diagonalize the kinetic and mass terms of massive DFT. Using (4.10) in the

Lagrangian (4.8) we get:

L = A1 (−A3 +A5)h′
µν
∂µ∂νφ

′ +

(
1

2
A3 (A1 + (D − 2)A2 + 2A4) +A2A5 − 2A4A5

)
h′�φ′

− 1

2
M2 (A1A3 +A2A3D − 4A4A5)h′φ′ + · · · , (4.11)

where ‘· · ·’ indicates diagonal terms. Requiring the off-diagonal terms to vanish, we find

two solutions

A3 = 0 = A5 , or A2 = −A1

D
, A3 = A5, A4 = 0 . (4.12)

In the first solution the field redefinition (4.10) does not involve φ′ and hence is not inver-

tible. With the second solution,

hµν = A1

(
h′µν −

1

D
ηµνh

′
)

+A3ηµνφ
′ , φ = A3φ

′. (4.13)

Only the traceless part of h′µν appears and hence the redefinition is non-invertible. We

conclude that there is no field redefinition which diagonalizes both the kinetic and the mass

term of massive DFT.

Let us now perform a field redefinition which diagonalizes the kinetic term of mas-

sive DFT:

hµν = h′µν + φ′ηµν , φ = φ′ +
1

2
h′ , (4.14)

after which the Lagrangian (4.8), upon dropping primes, reads

L =− 1

2
hµνGµν(h)− 1

4
M2(hµνhµν − h2)

+
1

4
(D − 2)φ�φ − 1

4
(D − 4)M2φ2 − 1

2
M2φh .

(4.15)

Here Gµν(h) is the linearized Einstein tensor,

Gµν(h) = Rµν(h)− 1

2
R(h)ηµν , (4.16)

where the linearized Ricci tensor and scalar curvatures are

Rµν(h) = −1

2
(�hµν − 2∂(µ∂

ρhν)ρ + ∂µ∂νh) , R(h) = −�h+ ∂µ∂νhµν . (4.17)

Under the integral one quickly checks that

− 1

2
hµνGµν(h) =

1

4
hµν�hµν +

1

2
(∂µh

µν)2 +
1

2
hµν∂µ∂νh−

1

4
h�h . (4.18)
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The linearized Einstein tensor is self-adjoint: under an integral, aµνGµν(b) = bµνGµν(a),

for arbitrary symmetric tensors a and b.

As claimed, the kinetic terms in (4.15) are now diagonal, but the mass terms contain

the non-removable term φh. Nevertheless, it is straightforward to see that this model prop-

agates the right number of degrees of freedom by analyzing the field equations, which read

Gµν(h) = −1

2
M2(hµν − hηµν + φηµν) ,

1

2
(D − 2)�φ =

1

2
(D − 4)M2φ+

1

2
M2h .

(4.19)

Taking the divergence of the first equation and using the Bianchi identity ∂µGµν =0 implies

∂µhµν − ∂νh = −∂νφ , (4.20)

which after taking another divergence and using the explicit expression for the Ricci scalar

R(h) implies

R(h) = −�φ . (4.21)

Taking the trace of the first equation in (4.19) we thus obtain

− 1

2
(D − 2)R(h) =

1

2
(D − 2)�φ =

1

2
M2(D − 1)h− 1

2
M2Dφ . (4.22)

Together with the second equation in (4.19) this implies

0 =
1

2
M2(D − 2)(h− 2φ) ⇒ h = 2φ , (4.23)

assuming D > 2. Using h = 2φ in the second equation in (4.19) finally yields

(�−M2)φ = 0 , (4.24)

proving that φ propagates non-tachyonically with mass M . Note that this physical mass

differs from the naive mass read off from the non-diagonal Lagrangian (4.15). Using

now (4.24), (4.21) and h = 2φ in the first equation in (4.19) one obtains Rµν(h) =

−1
2M

2hµν . Using the constraint (4.20) together with h = 2φ in the explicit expression

for Rµν(h), one finally obtains

(�−M2)hµν = 0 , (4.25)

proving that hµν propagates as a massive spin-2 mode of mass M . Since both hµν and

φ have the right-sign kinetic terms in (4.15) the model propagates precisely the expected

(healthy) massive modes.

As a further check appendix A.3 gives a source analysis of the model. The results

confirm that massive DFT describes a massive graviton, massive dilaton, and massive 2-

form field and does not propagate any undesired (ghost-like) modes. We also show that

the particular combination eijeij − 4φ2 of mass terms is strictly necessary: for any other

combination one finds an additional ghost scalar.
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5 Tensionless limit and degrees of freedom

We revisit the HSZ quadratic theory in a form for which one can take the tensionless limit

and see the appearance of an enhanced gauge symmetry. The addition of higher-derivative

terms generally increases the number of propagating degrees of freedom, typically leading

to ghost modes, but in HSZ theory the number of modes is unchanged. We give here an

alternative model where the addition of higher-derivative terms to a two-derivative action

reduces the number of degrees of freedom. Such reduction hinges on a set of Bianchi

identities that govern the derivative structure of the theory and that are a consequence of

the enhanced gauge invariance in the tensionless limit α′ →∞.

5.1 Tensionless limit, enhanced gauge symmetry, and Bianchi identities

Recall the full quadratic Lagrangian (3.17) for HSZ theory:

L =
1

4
eij�eij +

1

4

(
Die

ij
)2

+
1

4

(
D̄je

ij
)2

+ eijDiD̄jφ− φ�φ

− 1

8
aij � aij −

1

4

(
Dia

ij
)2 − 1

2
Dia

ijDjϕ+
1

2
ϕ�ϕ+

1

α′

(
1

2
aijaij − ϕ2

)
− 1

8
āij � āij −

1

4

(
D̄iā

ij
)2

+
1

2
D̄iā

ijD̄jϕ̄+
1

2
ϕ̄�ϕ̄− 1

α′

(
1

2
āij āij − ϕ̄2

)
,

(5.1)

where we restored the α′ dependence, which is fixed by dimensional analysis. In this form,

the limit α′ → ∞ can be taken smoothly, which simply sets the mass terms to zero. For

this limiting Lagrangian we define the variations w.r.t. a, ā, ϕ, and ϕ̄, respectively,

δLα′→∞ = δaijAij + δāijĀij + δϕS + δϕ̄ S̄ . (5.2)

The variations, viewed as occurring under an integral, give

Aij = −1

4
�aij +

1

2
D(iD

kaj)k +
1

2
DiDjϕ , S = �ϕ+

1

2
DiDjaij ,

Āij = −1

4
�āij +

1

2
D̄(iD̄

kāj)k −
1

2
D̄iD̄jϕ̄ , S̄ = �ϕ̄− 1

2
D̄iD̄j āij .

(5.3)

These tensors are the analogues of the Ricci tensor and curvature scalar of the usual

DFT, with the difference that Aij carries unbarred/unbarred indices and Āij carries

barred/barred indices. It is easy to verify that they satisfy the Bianchi identities

DiAij −
1

2
DjS = 0 ,

D̄iĀij +
1

2
D̄jS̄ = 0 .

(5.4)

It then immediately follows with (5.2) that the Lagrangian in the ‘tensionless limit’ α′ →∞
exhibits the enhanced gauge symmetry

δζaij = Diζj +Djζi , δζϕ = −Diζ
i ,

δζ̄ āij = D̄iζ̄j + D̄j ζ̄i , δζ̄ϕ̄ = D̄iζ̄
i ,

(5.5)
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with independent gauge parameters ζi and ζ̄i, where the massless DFT fields eij and φ stay

invariant.5 It is amusing to compare this with the gauge symmetry of the original DFT,

which has gauge parameters λi and λ̄i of the same form. These encode (linear combinations

of) linearized diffeomorphisms and the gauge symmetry of the two-form field, but the gauge

invariance discovered here does not seem to have an interpretation in terms of conventional

(spacetime) symmetries.

5.2 Higher derivatives that reduce the number of degrees of freedom

We now demonstrate that adding higher-derivative terms to an action can reduce the

number of propagating degrees of freedom. As we have seen in section 3, the quadratic ap-

proximation to HSZ theory is already quite special in that the addition of higher-derivative

terms does not increase the number of degrees of freedom. The reason for this can be

traced to the rewriting of higher-derivative contributions as two-derivative terms by means

of extra fields, leading to an improved structure of the kinetic terms, as made clear by

the emergence of a gauge invariance in the massless limit. With this improvement there

is actually one choice for the mass terms that would have reduced the number of degrees

of freedom. Although this is not HSZ theory, it is interesting in its own right. To our

knowledge, this phenomenon was not known before in the literature.

Specifically, let us consider adding to the same two-derivative Lagrangian (3.1) the

alternative four- and six-derivative terms

L
(4,2)
alternative =

1

32

(
DiDja

ij −R
)2 − 1

32

(
D̄iD̄j ā

ij −R
)2
,

L
(6,2)
alternative =

1

4 · 64

(
DiDja

ij + D̄iD̄j ā
ij − 2R

)
�
(
DiDja

ij + D̄iD̄j ā
ij − 2R

)
.

(5.6)

Comparing with (3.2) and (3.3) we see that these have precisely the same structure as in

HSZ theory, but with relative coefficients of 1
2 for the four-derivative terms and 1

4 for the

six-derivative terms. As before, we can now pass to a formulation that is second-order in

derivatives by introducing auxiliary fields ϕ and ϕ̄, so that we obtain for the full Lagrangian

Lalternative = L(2,≤2) − 2ϕ2 +
1

2
ϕ(DiDja

ij −R) + 2ϕ̄2 − 1

2
ϕ̄(D̄iD̄j ā

ij −R)

+
1

4
(ϕ+ ϕ̄)�(ϕ+ ϕ̄) ,

(5.7)

where L(2,≤2) denotes the complete quadratic DFT Lagrangian in (3.1). Integrating out ϕ

and ϕ̄ one recovers the higher-derivative terms in (5.6). This alternative Lagrangian is the

same Lagrangian as in (3.12) except for the mass terms for ϕ and ϕ̄. Next, we perform the

same field redefinition φ→ φ′ ≡ φ− 1
2(ϕ− ϕ̄) of the dilaton used earlier to obtain (3.17).

5Note, however, that since the dilaton entering here is really the redefinition φ′ = φ − 1
2
(ϕ − ϕ̄) of the

original dilaton φ, it follows that the latter transforms as δφ = − 1
2
(Diζ

i + D̄iζ̄
i) under the new symmetry.
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This time we get:

Lalternative =
1

4
eij�eij +

1

4

(
Die

ij
)2

+
1

4

(
D̄je

ij
)2

+ eijDiD̄jφ− φ�φ (5.8)

− 1

8
aij � aij −

1

4

(
Dia

ij
)2 − 1

2
Dia

ijDjϕ+
1

2
ϕ�ϕ+

1

α′

(
1

2
aijaij − 2ϕ2

)
− 1

8
āij � āij −

1

4

(
D̄iā

ij
)2

+
1

2
D̄iā

ijD̄jϕ̄+
1

2
ϕ̄�ϕ̄− 1

α′

(
1

2
āij āij − 2ϕ̄2

)
.

This only differs from (3.17) in the coefficients of the mass terms for ϕ and ϕ̄.

We will now show that, thanks to the precise coefficients of the mass terms, the number

of degrees of freedom is reduced compared to the original two-derivative theory. This

analysis is largely analogous to that of the massive DFT model in section 4. We first

consider the field equations for a, ϕ and ā, ϕ̄,

Aij +
1

α′
aij = 0 , S − 4

α′
ϕ = 0 ,

Āij −
1

α′
āij = 0 , S̄ +

4

α′
ϕ̄ = 0 ,

(5.9)

where the tensors are defined in (5.3). Taking divergence and derivative of these equations,

we infer with the Bianchi identities in (5.4)

0 = DiAij −
1

2
DjS ⇒ Diaij + 2Djϕ = 0 ,

0 = D̄iĀij +
1

2
D̄jS̄ ⇒ D̄iāij − 2D̄jϕ̄ = 0 .

(5.10)

Taking another divergence we obtain

DiDjaij + 2�ϕ = 0 ⇒ S = 0 ,

D̄iD̄j āij − 2�ϕ̄ = 0 ⇒ S̄ = 0 ,
(5.11)

where we used the explicit forms of S and S̄ in (5.3). Back in (5.9) this implies ϕ = ϕ̄ = 0

and so with (5.10)

Diaij = D̄iāij = 0 , ϕ = ϕ̄ = 0 . (5.12)

Thus, we obtained as many constraints as needed in order to describe precisely two massive

spin-2 fields and two massive scalars. Indeed, using these constraints in the equations of

motion (see (5.9)), the dynamical equations become(
�− 4

α′

)
aij = 0 ,

(
� +

4

α′

)
āij = 0 , (5.13)

which propagate the spin-2 and spin-0 parts of aij with mass m2 = 4
α′ , while the spin-2 and

spin-0 parts of āij are propagated tachyonically but with the same mass-squared. Moreover,

the source analysis for massive DFT applies immediately to the present model, the only

difference being that here we have two massive spin-2 fields and no massive two-form fields.

Summarizing, the total content of massive states is two massive spin-2 and two massive

scalars. Hence, compared to the original two-derivative model, we lost two scalar modes

upon adding higher-derivative terms.
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6 Eliminating the massive fields

We have seen that the quadratic theory propagates the familiar massless degrees of freedom

as well as massive and ghost-like spin-2 and spin-0 degrees of freedom. In this section we

will show that by a simple redefinition the massive fields can be rendered truly auxiliary.

The redefinition sacrifices manifest T-duality, but allows us to eliminate these fields alge-

braically, leading to an infinite series of higher-derivative corrections for the massless fields.

To any finite order in α′ these higher-derivative terms can be removed by a local field redef-

inition, but removing them to all orders in α′ would require an illegal non-local redefinition.

Our goal is to eliminate the massive fields from the quadratic Lagrangian (3.17). The

method used in this section requires giving up manifest O(D,D) covariance, and accord-

ingly we write spacetime indices as µ, ν, . . . and take the derivatives D and D̄ to be partial

derivatives and � = ∂2:

L =
1

4
eµν�eµν +

1

4
(∂µe

µν)2 +
1

4
(∂νe

µν)2 + eµν∂µ∂νφ− φ�φ

− 1

8
aµν � aµν −

1

4
(∂µa

µν)2 − 1

2
∂µa

µν∂νϕ+
1

2
ϕ�ϕ+

1

2
aµνaµν − ϕ2

− 1

8
āµν � āµν −

1

4
(∂µā

µν)2 +
1

2
∂µā

µν∂νϕ̄+
1

2
ϕ̄�ϕ̄− 1

2
āµν āµν + ϕ̄2 .

(6.1)

We start by performing a local redefinition to new (primed) fields, implicitly defined

as follows

hµν = h′µν + φ′ηµν , φ = φ′ +
1

2
h′ ,

aµν = a′µν − ϕ′ηµν , ϕ = ϕ′ − 1

2
a′ ,

āµν = ā′µν + ϕ̄′ηµν , ϕ̄ = ϕ̄′ +
1

2
ā′ ,

(6.2)

where hµν is the symmetric (graviton) part of the DFT fluctuation, while fields without

indices denote the trace parts. The redefinition in the first line brings the theory into

Einstein frame. Moreover, the redefinition is such that the scalars become gauge singlets.

(More precisely, for ϕ, ϕ̄ this is only a meaningful statement in the tensionless limit, in

which they are inert under (5.5).)

Inserting the above field redefinition into the Lagrangian (6.1) and dropping the primes

at the end, we arrive at

L =− 1

2
hµνGµν (h)− 1

12
HµνρHµνρ

+
1

4
aµνGµν (a) +

1

2α′

(
aµνaµν −

1

2
a2

)
+

1

4
āµνGµν (ā)− 1

2α′

(
āµν āµν −

1

2
ā2

)
+

1

4
(D − 2)

[
φ�φ− 1

2
ϕ�ϕ− 1

2
ϕ̄�ϕ̄+

2

α′
ϕ2 − 2

α′
ϕ̄2

]
.

(6.3)

The first line encodes the kinetic terms for the graviton and the two-form field, with the

field strength Hµνρ = 3∂[µbνρ] and the linearized Einstein tensor Gµν(h) defined in (4.16).
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We will now show how the massive fields can be integrated out. To illustrate the

procedure, let us first recall the simpler case of having the massless graviton and a single

massive spin-2 field,

L′ = −1

2
hµνGµν(h) +

1

4
aµνGµν(a) +

1

2
(aµνaµν − a2) , (6.4)

where we picked the Fierz-Pauli form of the mass term. This is equivalent to a curvature-

squared addition for hµν , as can be seen as follows: performing the field redefinition h̄µν =

hµν + 1√
2
aµν , the Lagrangian becomes

L′ = −1

2
h̄µνGµν(h̄) +

1√
2
aµνGµν(h̄) +

1

2
(aµνaµν − a2) , (6.5)

showing that aµν is now auxiliary. Integrating it out, we obtain a curvature-squared term.6

Returning to the full theory, we will apply the same strategy, but since we have two

massive (ghost-like) fields of each type this will lead to an infinite series of higher-derivative

corrections. Since the spin-2 and spin-0 sectors are decoupled, they can be treated sepa-

rately. Focusing first on the scalar part in the last line of the Lagrangian, we perform the

following redefinition of the dilaton

φ → φ̄ = φ+
1√
2

(ϕ+ ϕ̄) , (6.6)

which, after dropping the bar, leads to

Lscalar =
1

4
(D − 2)

[
φ�φ− 1√

2
ϕ�φ− 1√

2
ϕ̄�φ+ ϕ�ϕ̄+

2

α′
ϕ2 − 2

α′
ϕ̄2

]
. (6.7)

We observe that the kinetic terms for ϕ, ϕ̄ have cancelled. Although there is an off-diagonal

term ϕ�ϕ̄, we will show in the following that these fields are auxiliary in that they can be

eliminated algebraically. To this end it is convenient to perform one more change of field

basis, introducing

ϕ± = ϕ ± ϕ̄ , (6.8)

for which the Lagrangian reads

Lscalar =
1

4
(D − 2)

[
φ�φ− 1√

2
ϕ+�φ+

1

4
ϕ+�ϕ+ − 1

4
ϕ−�ϕ− +

2

α′
ϕ+ϕ−

]
. (6.9)

The field equations for ϕ+ and ϕ−, respectively, can be written as

ϕ− = −α
′

4
�ϕ+ +

α′

2
√

2
�φ ,

ϕ+ =
α′

4
�ϕ− .

(6.10)

6The specific form of the curvature-squared term is dimension-dependent. For D = 4 it is equivalent to

the square of the Weyl tensor, while for D = 3 (with reversed overall sign) it corresponds to ‘new massive

gravity’, see section 2 of [25].
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Assuming a series expansion of ϕ± in positive powers of α′, these equations can be solved

algebraically as follows. We observe from the first equation that ϕ− starts at order α′,

expressed in terms of the dilaton as ϕ− = α′

2
√

2
�φ+O(α′2), which with the second equation

implies that ϕ+ vanishes to first order in α′. More generally, it is easy to see that ϕ+ has

only contributions for even powers of α′, while ϕ− has only contributions for odd powers

in α′. It is then straightforward to give the exact solution for ϕ± in terms of the dilaton,

ϕ+ =
∞∑
n=1

(α′)2n(−1)n+1 1√
2 24n−1

�2nφ =
√

2
1

�2 +m4
�2φ ,

ϕ− =

∞∑
n=1

(α′)2n−1(−1)n+1 1√
2 24n−3

�2n−1φ =
√

2m2 1

�2 +m4
�φ ,

(6.11)

where m2 = 4
α′ . We can now back-substitute into the Lagrangian (6.9), which is legal

because we have solved algebraic equations. This computation is simplified by noting that

since (6.11) satisfy (6.10) we can rewrite the last term in (6.9):

1

α′
(ϕ+ϕ− + ϕ+ϕ−) =

1

4
ϕ−�ϕ− − 1

4
ϕ+�ϕ+ +

1

2
√

2
ϕ+�φ , (6.12)

where we eliminated in each of the two terms ϕ+ϕ− on the left-hand side one of the fields

according to (6.10). This relation simplifies the Lagrangian by cancelling the ‘kinetic’

terms, while changing the coefficient of the term ϕ+�φ, leading to7

Lscalar =
1

4
(D − 2)

[
φ�φ+

∞∑
n=1

(α′)2n(−1)n
1

24n+1
φ�2n+1φ

]
. (6.13)

The infinite series can be rewritten in a closed form as follows

Lscalar =
1

4
(D − 2)

[
φ�φ− 1

2
φ

1

�2 +m4
�3φ

]
. (6.14)

Thus, the original theory (6.7) describing the massless dilaton plus two massive (ghost-

like) scalars is equivalent to a theory for only the dilaton, but with an infinite number of

higher-derivative corrections.

We now turn to the problem of integrating out the massive spin-2 fields, which follows

precisely the same procedure. We start with the spin-2 part of the Lagrangian,

Lspin−2 =− 1

2
hµνGµν(h) +

1

4
aµνGµν(a) +

1

2α′

(
aµνaµν −

1

2
a2

)
+

1

4
āµνGµν (ā)− 1

2α′

(
āµν āµν −

1

2
ā2

)
,

(6.15)

and perform the field redefinition

h̄µν = hµν +
1√
2

(aµν + āµν) . (6.16)

7It is important to emphasize that the resulting Lagrangian is only correct when ϕ± are expressed in

terms of the dilaton according to (6.11). Viewed as independent fields such manipulations at the level of

the action would be illegal.
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This field redefinition breaks O(D,D) covariance because the fields entering here carry

different index projections. As for the scalar case, this cancels the kinetic terms for a and

ā, and we arrive at

Lspin−2 =− 1

2
hµνGµν(h) +

1√
2
aµνGµν(h) +

1√
2
āµνGµν(h)− 1

2
aµνGµν(ā)

+
1

2α′

(
aµνaµν −

1

2
a2

)
− 1

2α′

(
āµν āµν −

1

2
ā2

)
,

(6.17)

where we dropped the bar on h. Next, we introduce the field basis,

a±µν = aµν ± āµν , (6.18)

in terms of which the Lagrangian reads

Lspin−2 =− 1

2
hµνGµν(h) +

1√
2
a+µνGµν(h)− 1

8
a+µνGµν(a+) +

1

8
a−µνGµν(a−)

+
1

2α′

(
aµν+a−µν −

1

2
a+a−

)
.

(6.19)

The field equations for a+ and a−, respectively, then read

a−µν −
1

2
a−ηµν =

α′

2
Gµν

(
a+
)
− α′
√

2Gµν(h) ,

a+
µν −

1

2
a+ηµν = −α

′

2
Gµν(a−) .

(6.20)

Taking the trace of this equation, we may eliminate the traces a± to obtain

a−µν =
α′

2
Rµν(a+)− α′

√
2Rµν(h) ,

a+
µν = −α

′

2
Rµν(a−) .

(6.21)

As for the scalar case, it is now straightforward to solve these equations iteratively for a+

and a− in powers of α′. To first order in α′ the above equations are solved by

a+
µν = 0 , a−µν = −α′

√
2Rµν(h) , (6.22)

while the higher order solutions follow successively by re-inserting into (6.21). To this end,

one has to note with (4.17) that the Ricci tensor of the Ricci tensor takes the form

Rµν(R(h)) = −1

2
�Rµν(h) , (6.23)

where we used the Bianchi identity ∂µRµν = 1
2∂νR. It is straightforward to prove by

induction that the solution of (6.21) is

a+
µν =

∞∑
n=1

(α′)2n(−1)n
√

2

24n−2
�2n−1Rµν(h) ,

a−µν =
∞∑
n=1

(α′)2n−1(−1)n
√

2

24n−4
�2n−2Rµν(h) .

(6.24)
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Again, since these expressions have been obtained by solving algebraic equations, we can

re-insert them into the action (6.19) to obtain

Lspin−2 = −1

2
hµνGµν (h) +

∞∑
n=1

(
α′
)2n

(−1)n
1

24n−1

(
Rµν �2n−1Rµν −

1

2
R�2n−1R

)
.

(6.25)

As for the scalar sector, we observe that one obtains only corrections of even powers in α′.

We also note that this action can be rewritten as

Lspin−2 = −1

2

(
hµν + 4

1

�2 +m4
�Rµν

)
Gµν , (6.26)

where m2 = 4
α′ . Expanding the geometric series, it is straightforward to verify the equiva-

lence with the higher-derivative terms in (6.25).

In total, we have shown that the theory with quadratic Lagrangian (6.3) is equivalent

to the theory for the massless graviton, Kalb-Ramond field and dilaton, but with an infinite

number of higher-derivative corrections:

L =− 1

2

(
hµν + 4

1

�2 +m4
�Rµν

)
Gµν −

1

12
HµνρHµνρ

+
1

4
(D − 2)

[
φ�φ− 1

2
φ

1

�2 +m4
�3φ

]
.

(6.27)

As the higher-derivative terms are proportional to the Einstein tensor Gµν(h) or to �φ,

it is clear that to any finite order in α′ we may remove these corrections by a local field

redefinition of the metric and the dilaton. In order to remove the complete infinite series

would require a nonlocal redefinition. Such redefinitions are illegal when it comes to proving

the equivalence of two theories, and therefore our result is not in conflict with the presence

of extra physical and massive modes in the quadratic theory. One can also integrate out

the massive fields without sacrificing manifest T-duality [26], finding a Lagrangian that is

physically equivalent to the one in equation (6.27).
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A Degrees of freedom

The purpose of this appendix is to determine the physical degrees of freedom propagated by

the HSZ theory and the massive deformation of DFT. We will abandon manifest O (D,D)

invariance by taking the derivatives D and D̄ to be partial derivatives, using indices as

µ, ν, . . ., and � = ∂2. We start by determining the spectrum of the two-derivative part of

the HSZ theory. Then we compare it with the spectrum of the full HSZ theory and show
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that no extra degrees of freedom appear upon adding higher derivative terms. Finally, we

consider the spectrum for the massive deformation of DFT given in section 4 and show

that it does not propagate any ghost-like degree of freedom.

A.1 Degrees of freedom of two-derivative HSZ theory

Consider the two derivative quadratic Lagrangian given in equation (2.7). The part of

the Lagrangian involving eij and φ is trivial to analyze and it describes massless graviton,

dilaton and two-form field. We thus focus on the part of the Lagrangian involving the

a-field. After putting in explicit factors of α′, we have:

L = −1

8
aµν � aµν −

1

4
(∂µa

µν)2 +
1

2α′
aµνaµν . (A.1)

We rescale the field as a→ 2a to get the canonical normalization for the kinetic term and

also define m2 = 4
α′ . After coupling to a source Jµν the Lagrangian becomes:

L = −1

2
aµν (�−m2) aµν + aµν∂µ∂

ρaρν + aµνJµν . (A.2)

The equations of motion in momentum space take the following form

(p2 +m2) aµν − pµ(p · a)ν − pν(p · a)µ = −Jµν . (A.3)

Using the equations of motion in the Lagrangian it takes the following form in the momen-

tum space:

L =
1

2
Jµν (−p) aµν (p) . (A.4)

Let us introduce the notation (pap) ≡ pµaµνpν and (p · a)µ = pνaνµ. Contracting the above

equation with pµpν and solving for (pap), we get:

(pap) =
(pJp)

p2 −m2
. (A.5)

Contracting equation (A.3) with pν and using the expression for (pap), we can solve

for (pa)µ:

(p · a)µ =
1

m2

( pµ
p2 −m2

(pJp)− (p · J)µ

)
. (A.6)

Using these expressions for (pap) and (pa)µ in (A.3) we can solve for aµν and obtain:

aµν = − 1

p2 +m2

(
Jµν +

1

m2

(
pµ(p ·J)ν + pν(p ·J)µ

))
+

2 pµpν
m2

(pJp)

(p2 −m2)(p2 +m2)
. (A.7)

Decomposing the last term into partial fractions, we get

aµν = − 1

p2 +m2
J̃µν +

1

(p2 −m2)

pµpν(pJp)

m4
, (A.8)

where

J̃µν ≡ Jµν +
1

m2
(pµ(p · J)ν + pν(p · J)µ) +

pµpν(pJp)

m4
. (A.9)
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Back in (A.4) the Lagrangian becomes

L = −1

2
Jµν (−p) 1

p2 +m2
J̃µν (p) +

1

2m4
(pJp)(−p) 1

p2 −m2
(pJp) (p) . (A.10)

The nature of the degrees of freedom is determined by the residues at the poles. At the

pole p2 + m2 = 0, it is easy to see that J̃µν is transverse, i.e., pµJ̃
µν = 0. Using this, we

can write the Lagrangian as follows:

L = −1

2
J̃µν (−p) 1

p2 +m2
J̃µν (p) +

1

2m4
(pJp)(−p) 1

p2 −m2
(pJp) (p) . (A.11)

The first term implies that we are propagating a ghostly (overall minus sign) massive spin

two mode (the traceless part of J̃µν) and a ghostly, massive scalar (the trace of J̃µν), both

with mass squared equal to m2. The second term shows a proper tachyonic scalar with

mass squared given by −m2.

The analysis of the sector involving āµν can be done similarly. Note that the kinetic

terms for āµν and aµν have the same sign but their mass terms have opposite signs. Hence,

the āµν sector describes a ghostly tachyonic spin-2, a ghostly tachyonic scalar and a healthy

massive scalar.

A.2 Degrees of freedom of full quadratic HSZ theory

Here we consider the full quadratic theory as given in the Lagrangian (3.17). We see

that the three sectors, (eµν , φ), (aµν , ϕ) and (āµν , ϕ̄) are completely decoupled. The sector

(eµν , φ) is well known and describes a massless graviton, dilaton, and b-field. Let us just

focus on the (aµν , ϕ) sector of the Lagrangian given by:

L = −1

8
aµν � aµν −

1

4
(∂µa

µν)2 − 1

2
∂µa

µν∂νϕ+
1

2α′
aµνaµν +

1

2α′
ϕ�ϕ− ϕ2 , (A.12)

where we have put explicit factors of α′. We rescale the field aµν → 2aµν to get a canonical

kinetic term and define m2 ≡ 4
α′ . After coupling to sources Jµν and K the Lagrangian

takes the following form

L = −1

2
aµν

(
�−m2

)
aµν +aµν∂µ∂

ρaρν + aµν∂µ∂νϕ+
1

2
ϕ

(
�− 1

2
m2

)
ϕ+aµνJµν +ϕK .

(A.13)

The equations of motion in momentum space are given by:(
p2 +m2

)
aµν − pµ(p · a)ν − pν(p · a)µ − pµpνϕ =− Jµν ,(

p2 +
1

2
m2

)
ϕ+ (pap) = K .

(A.14)

Using the equations of motion in the Lagrangian it takes the following form in the momen-

tum space:

L =
1

2
Jµν (−p) aµν (p) +

1

2
K (−p)ϕ (p) . (A.15)
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Contracting the first equation in (A.14) with pµ we get

m2 (p · a)ν − pν((pap) + p2ϕ) = −(p · J)ν . (A.16)

Contracting this with pµ and solving for (pap) we obtain:

(pap) =
(pJp)

p2 −m2
− p4ϕ

p2 −m2
, (A.17)

where we notice tachyonic poles (that will disappear later). Using this in the equation of

motion for ϕ (second one in (A.14)), we can solve for ϕ and obtain:

ϕ =
2

m2
· (pJp)

p2 +m2
− 2

m2
· p

2 −m2

p2 +m2
K . (A.18)

We now reconsider the first contraction (A.16) to find

(p · a)µ =
1

m2

(
pµ((pap) + p2ϕ)− (p · J)µ

)
. (A.19)

Using this and the expression for ϕ in the equation of motion for aµν we can solve for aµν
in terms of sources and get:

aµν = − 1

p2 +m2
J̃µν +

pµpν
m2 (p2 +m2)

(
(pJp)

m2
+ 2K

)
, (A.20)

where J̃µν is the transverse part of Jµν as defined in equation (A.9). Back in (A.15) the

Lagrangian becomes

L =− 1

2
Jµν (−p) 1

p2 +m2
J̃µν (p)− K (−p) p2 −m2

m2 (p2 +m2)
K (p)

+ (pJp) (−p) 1

m2 (p2 +m2)
K (p) +K(−p) 1

m2 (p2 +m2)
(pJp) (p) .

(A.21)

We now have to look at the pole p2 +m2 = 0. Using the fact that J̃µν is transverse at

the pole, the Lagrangian can be written in the following form at the pole:

L =− 1

2
J̃µν (−p) 1

p2 +m2
J̃µν (p) +

1

2

(
2K +

(pJp)

m2

)
(−p) 1

p2 +m2

(
2K +

(pJp)

m2

)
(p) .

(A.22)

The first term tells us that we are propagating a ghostly (overall minus sign) massive spin-

2 mode (the traceless part of J̃µν) and a ghostly, massive scalar (the trace of J̃µν). The

second term shows a proper massive scalar.

The analysis of the (āµν , ϕ̄) sector can be done similarly. Since the mass terms of the

two sectors have opposite signs and the kinetic terms have the same sign, the (āµν , ϕ̄) sector

propagates a ghostly tachyonic spin-2, a ghostly tachyonic scalar and a proper tachyonic

scalar. If we compare this spectrum with that of the two-derivative theory we see that the

full spectrum remains unchanged.
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A.3 Degrees of freedom of massive DFT

We start with the Lagrangian for the massive DFT as given in equation (4.2). We scale the

fields as eµν →
√

2eµν and φ → 1√
2
φ to get canonical normalization for the kinetic terms.

By using eµν = hµν + bµν , the Lagrangian for the massive DFT can be written as:

LmDFT = Lh,φ + Lb , (A.23)

where

Lh,φ =
1

2
hµν�hµν + (∂µh

µν)2 + hµν∂µ∂νφ−
1

2
φ�φ− 1

2
M2(hµνhµν − φ2) ,

Lb =
1

2
bµν�bµν + (∂µb

µν)2 − 1

2
M2bµνbµν .

(A.24)

The Lagrangian Lb is well known to describe a massive two-form field and will not be

discussed further. In order to make it clear that the mass terms in Lh,φ are special, we

modify one of the coefficients by introducing a parameter γ. We will indeed find that the

value γ = 1 is selected by the condition that we have no ghosts in the spectrum. We thus

take, henceforth,

Lh,φ =
1

2
hµν�hµν + (∂µh

µν)2 + hµν∂µ∂νφ−
1

2
φ�φ− 1

2
M2(hµνhµν − γφ2) . (A.25)

After coupling to sources Jµν and K for hµν and φ, we have:

Lh,φ =
1

2
hµν�hµν + (∂µh

µν)2 + hµν∂µ∂νφ−
1

2
φ�φ− 1

2
M2(hµνhµν − γφ2) + Jµνhµν +Kφ .

(A.26)

In momentum space, the equations of motion take the following form:

Jµν −
(
p2 +M2

)
hµν + 2p(µpρh

ρ
ν) − pµpνφ = 0 ,

K +
(
p2 + γM2

)
φ− pµpνhµν = 0 .

(A.27)

Using these the Lagrangian takes the following form in the momentum space:

Lh,φ =
1

2
Jµν (−p)hµν (p) +

1

2
K (−p)φ (p) . (A.28)

Contracting the top equation of motion with pµpν we get:

(pJp) +
(
p2 −M2

)
(php)− p4φ = 0 . (A.29)

The above equation and the equation of motion for φ can now be used to eliminate φ and

(php) in favor of sources:

φ = −(pJp)

M2A
− p2 −M2

M2A
K

(php) = − p4

M2A
K − p2 + γM2

M2A
(pJp) ,

(A.30)

where A is given by

A = p2 (γ − 1)− γM2 . (A.31)

– 27 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
3

Contracting the equation of motion for hµν with pν we get:

(pJ)µ + pµ
(
php− p2φ

)
= M2 (ph)µ . (A.32)

Using eqs. (A.30) yields

(ph)µ =
1

M2
(pJ)µ −

pµ
M2A

(
p2K + γ (pJp)

)
. (A.33)

Finally, using eqs. (A.33) and (A.30) in the equation of motion for hµν we obtain

hµν = J̃µν
1

p2 +M2
− pµpν
M4A

(
M2K + (γ − 1) (pJp)

)
, (A.34)

where J̃µν is defined by

J̃µν = Jµν +
2

M2
p(µ (ph)ν) +

pµpν
M4

(pJp) . (A.35)

It is easy to see that on the mass-shell p2 = −M2, the tensor J̃µν is transverse,

pµJ̃µν = 0 (p2 = −M2) . (A.36)

This will be useful below. Inserting these expressions back into Lh,φ, we get:

Lh,φ =
1

2
Jµν (−p) 1

p2 +M2
J̃µν (p)− 1

2

(pJp)2 (γ − 1) + 2M2 (pJp)K +M2K2
(
p2 −M2

)
M4 (γ − 1)

(
p2 + γM2

1−γ

) .

(A.37)

For the case of interest, γ = 1, the second term above is completely regular and we need

only focus on the first term. Using the transversality condition (A.36) we can rewrite

Lh,φ as

Lh,φ = J̃µν (−p) 1

p2 +M2
J̃µν (p) + . . . , (A.38)

near p2 = −M2 and where the dots indicate terms that are regular. At the mass-shell

we can choose p = (M,~0) and thus the transversality condition implies that J̃0µ = J̃µ0 =

0. The only non vanishing components of J̃µν are those where both indices represent

spatial directions. We are thus propagating (D− 1)D/2 positive-norm degrees of freedom,

associated with a symmetric (D− 1)× (D− 1) matrix. The trace-less part corresponds to

the massive spin-2 and the trace corresponds to the massive scalar.

For the case γ 6= 1 the above degrees of freedom are still present but we now have

more, due to the pole in the second term of (A.37). This time the mass-shell is p2 = −γM2

1−γ

and we go to a Lorentz frame where p0 =
√

γM2

1−γ . Near the pole we now find

Lh,φ|second pole= −
1

2

(K − γJ00)(−p) (K − γJ00)(p)

(γ − 1)2
(
p2 + γM2

1−γ

) + . . . , (A.39)

making it manifest that for γ 6= 1 we propagate an additional ghostly massive scalar. We

conclude that the model constructed in section 4 describes massive graviton, dilaton and

b-field and does not propagate any extra undesired degrees of freedom.

– 28 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] O. Hohm, W. Siegel and B. Zwiebach, Doubled α′-geometry, JHEP 02 (2014) 065

[arXiv:1306.2970] [INSPIRE].

[2] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

[3] C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664]

[INSPIRE].

[4] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory,

JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

[5] O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory,

JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

[6] O. Hohm and S.K. Kwak, Frame-like Geometry of Double Field Theory, J. Phys. A 44

(2011) 085404 [arXiv:1011.4101] [INSPIRE].

[7] O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α′-deformed Courant brackets,

JHEP 01 (2015) 012 [arXiv:1407.0708] [INSPIRE].

[8] O. Hohm and B. Zwiebach, Double field theory at order α′, JHEP 11 (2014) 075

[arXiv:1407.3803] [INSPIRE].
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