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parallel space spanned by the legs of the diagrams. When the number n of external legs is

n ≤ 4, the corresponding representation of multiloop integrals exposes a subset of integra-

tion variables which can be easily integrated away by means of Gegenbauer polynomials

orthogonality condition. By decomposing the integration momenta along parallel and or-

thogonal directions, the polynomial division algorithm is drastically simplified. Moreover,

the orthogonality conditions of Gegenbauer polynomials can be suitably applied to inte-

grate the decomposed integrand, yielding the systematic annihilation of spurious terms.

Consequently, multiloop amplitudes are expressed in terms of integrals corresponding to

irreducible scalar products of loop momenta and external ones. We revisit the one-loop

decomposition, which turns out to be controlled by the maximum-cut theorem in differ-

ent dimensions, and we discuss the integrand reduction of two-loop planar and non-planar

integrals up to n = 8 legs, for arbitrary external and internal kinematics. The proposed

algorithm extends to all orders in perturbation theory.

Keywords: Perturbative QCD, Scattering Amplitudes

ArXiv ePrint: 1605.03157

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2016)164

mailto:pierpaolo.mastrolia@cern.ch
mailto:tiziano.peraro@ed.ac.uk
mailto:amedeo.primo@pd.infn.it
http://arxiv.org/abs/1605.03157
http://dx.doi.org/10.1007/JHEP08(2016)164


J
H
E
P
0
8
(
2
0
1
6
)
1
6
4

Contents

1 Introduction 2

2 Parallel and orthogonal space for multiloop Feynman integrals 6

2.1 Feynman integrals in d = 4− 2ε 7

2.2 Feynman integrals in d = d‖ + d⊥ 8

2.3 Angular integration over the transverse space 11

2.4 Four-point examples 13

2.5 Factorized integrals and ladder topologies 16

2.5.1 Factorized integrals 17

2.5.2 Ladder integrals 18

2.6 Simplified integrand form 18

2.6.1 Example: the four-point integrand for A2−loop(g+
1 , g

−
2 , g

+
3 , g

−
4 ) 19

3 Adaptive integrand decomposition 21

3.1 Integrand recurrence relation 21

3.2 Divide, integrate and divide 22

3.3 Integrate and divide 24

3.4 One-loop adaptive integrand decomposition 24

3.5 Two-loop adaptive integrand decomposition 28

3.5.1 Example: the four-point residue for A2−loop(g+
1 , g

−
2 , g

+
3 , g

−
4 ) 31

4 Conclusions 38

A Spherical coordinates for multiloop integrals 40

B One-loop integrals 47

C Two-loop integrals 51

D Gegenbauer polynomials 56

E Four-dimensional basis 57

E.1 d = 4− 2ε basis 58

E.2 d = d‖ + d⊥ basis 58

– 1 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
4

1 Introduction

The decomposition of multiloop scattering amplitudes in terms of independent functions,

together with the subsequent determination of the latter, is a viable alternative - often the

only accessible one - to the direct integration, which, for non-trivial processes, may require

the calculation of a prohibitively large number of complicated Feynman integrals.

Understanding the properties of Feynman integrands has led to the development of

novel algorithms aiming to the automated determination of partonic cross sections for high-

multiplicity processes which have been successfully applied, in the last decade, to one-loop

amplitudes. More generally, the use of unitarity-based methods and integrand decomposi-

tion algorithms has shown that exploiting the algebraic properties of the integrands may

lead to the discovery of novel properties of the amplitudes, hidden beneath the superficial

look of Feynman integrals’ representation, which, if properly engineered, may turn into

drastic simplifications for their evaluation.

In this paper, we elaborate on a representation of dimensionally regulated Feynman

integrals where, for any given diagram, the number of space-time dimensions d (= 4−2ε) is

split into parallel (or longitudinal) and orthogonal (or transverse) dimensions, as d = d‖ +

d⊥ [1–6]. Accordingly, the parallel space is spanned by the independent four-dimensional

external momenta of the diagram, namely d‖ = n − 1, where n is the number of legs,

whereas the transverse space is spanned by the complementary orthogonal directions. For

diagrams with a number of legs n ≥ 5, the orthogonal space embeds the −2ε regulating

dimensions, d⊥ = −2ε, while, for diagrams with n ≤ 4, the orthogonal space is larger

and it embeds, beside the regulating dimensions, also the four-dimensional complement of

the parallel space, namely d⊥ = (5 − n) − 2ε. For this reason, the decomposition of the

space-time dimensions in parallel and orthogonal directions can be considered as adaptive,

since it depends on the number of legs of the individual diagram.

Decomposing the loop momenta qαi in terms of parallel and orthogonal vectors, qαi =

qα‖ i + λαi , has the immediate advantage of exposing a subset of integration variables which

can be trivially integrated away, hence they can be eliminated from the calculation before

applying any reduction algorithm. In fact, multidimensional polar coordinates can be

suitably introduced in order to parametrize the integral over the orthogonal space in terms

of integrations over radial variables λii(= λi ·λi) and a generalised solid angle. This change

of coordinates makes manifest that numerators and denominators of Feynman integrands

do not depend on the same set of integration variables. Indeed, the quadratic Feynman

denominators depend only on the parallel directions, on the radial variables λii and the

relative orientations λij , i < j, of the transverse vectors, but they do not depend on

their individual components, which can be mapped into a set of angular variables Θ⊥.

Conversely, the numerators may depend on all variables. In the case of diagrams with

n ≤ 4, the dependence of the integrand on transverse angles, say θi, is polynomial in sin θi
and cos θi, therefore, the integration over Θ⊥ can be trivially performed. In this article,

we show how it can be carried out by means of the orthogonality relation for Gegenbauer

polynomials, as an alternative to the Passarino-Veltman tensor reduction used in ref. [2].

After integrating over the transverse angles Θ⊥, the integrand will solely depend on

q‖ i and on the λij variables appearing in the denominators. These variables correspond to

(reducible and irreducible) scalar products between loop momenta and external momenta.
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The integration over orthogonal and parallel space has been used to evaluate multi-scale

Feynman integrals, up to two- and three-point functions [2–6]. The goal of this communica-

tion is instead discussing how the decomposition of space-time into parallel and orthogonal

subspaces simplifies the multiloop integrand reduction algorithm [7–11]. Namely, our ob-

jective is not the evaluation of Feynamn integrals, rather their decomposition in terms of

independent integrals. We show that this procedure can be applied to arbitrarily compli-

cated diagrams. In particular, we consider the decomposition up to two-loop eight-point

planar and non-planar integrals and we discuss how the same procedure can be extended to

higher orders. Previous studies of higher-loop integrands in four-dimensions can be found

in [12–14].

Feynman integrals are multivariate integrals of rational integrands and they can be

decomposed in terms of a set of irreducible integrals (IRIs) by multivariate polynomial

division [9, 10]. In fact, the partial fractioning of Feynman integrands amounts to iterative

divisions (modulo Gröbner bases) between the numerator and the denominators, once they

are written as polynomials in the components of the integration momenta in a given basis.

The resulting integrand decomposition is a sum of integrands whose denominators are given

by all the possible partitions of the initial set of denominators, and whose numerators cor-

respond to the remainders of the division w.r.t. the set of denominators they sit on. The re-

mainders of the division contain, by definition, terms which cannot be expressed in terms of

denominators. In fact, since each component of a given integration momentum corresponds

to a scalar product of that momentum with an element of the momentum basis, the remain-

der should contain only irreducible scalar products (ISPs). On the contrary, reducible scalar

products (RSPs) can be decomposed in terms of denominators and external invariants.

The integrand decomposition is effectively a unitarity-based decomposition of the in-

tegrand, since each remainder can be considered as the residue of the cut identified by the

simultaneous vanishing of the corresponding denominators. It should be observed that the

integrand reduction can be applied as well to the case of integrals whose denominators are

raised to powers higher than one [15]. Integrating the decomposed integrand over the loop

momenta corresponds to the decomposition of the original integral in terms of IRIs. In fact,

upon integration, some of the ISPs in the residues may generate vanishing integrals: these

terms are called spurious, because although present in the integrand decomposition, they do

not contribute to the amplitude. Instead, the non-spurious ISPs correspond to the (numer-

ators of) IRIs appearing in the amplitude decomposition. Therefore, within the integrand

decomposition algorithm, the reduction of any scattering amplitude in terms of IRIs turns

into the algebraic problem of determining the coefficients of the monomials of the residues.

The basic elements of the integrand decomposition algorithm are: i) the space-time

dimensions, namely the number of integration variables; ii) the momentum basis used

for the decomposition of the loop momenta; iii) the structure of the numerators and the

variables they depend on; iv) the form of the denominators and the variables they depend

on; v) the structure of the residues; vi) the solutions of the cut equations. The integrand

reduction algorithm was originally proposed for one-loop integrals in four dimensions [16,

17] and later extended to d = 4−2ε dimensions [18–21], to deal with dimensionally regulated

amplitudes (see [22] for a review). In the one-loop case, the residues were built by using
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two driving principles: on the one side, the knowledge of the set of IRIs which could appear

in the decomposition of generic one-loop integrals [23]; and, on the other side, the Lorentz

covariance of spurious terms which could additionally appear in the numerators.

The integrand reduction algorithm for one-loop integrals has been implemented in

several public libraries, like Cutools [24], Samurai [25] and Ninja [26, 27], which played

an important role in the development of codes for the automatic evaluation of scattering

amplitudes for generic scattering processes at NLO accuracy, as recently reviewed in [28].

In particular, Ninja implements an ameliorated integrand decomposition algorithm [26],

which introduced the idea of the (univariate) polynomial division for the calculation of the

residues.

In order to extend the integrand decomposition at higher orders [7, 8], the same driving

principles could not be applied. The first reason for this is that the basis of independent

integrals is not known. Moreover, the interplay of more integration momenta makes the

classification of the spurious terms less obvious. One additional difference w.r.t. the one-

loop case, which was indeed to be expected, is the contribution of integrals corresponding to

non-spurious ISPs [7]. Nevertheless, the systematic determination of the residues at higher

order was systematized by means of algebraic geometry methods [9, 10], namely the polyno-

mial division modulo Gröbner basis. An implementation of such method is provided by the

public package BasisDet [9]. Integrand decomposition beyond one-loop has been success-

fully applied to a first case of non trivial two-loop five-point helicity amplitude in [29, 30].

One of the main outcomes of the multivariate polynomial division algorithm is the so

called maximum-cut theorem [10], which can be applied whenever the on-shell conditions

are sufficient in order to constrain all integration variables. In this case, the system of equa-

tions is zero-dimensional and the remainder of the division (of a numerator that depends

on all variables constrained by the cut-conditions) can be cast as a univariate polynomial

of degree ns − 1, being ns the number of solutions of the system. This theorem extends

to all loops and to all dimensions the beauty of the four-dimensional quadruple-cut [31],

which is known to have two solutions and whose residue is parametrized in terms of two

monomials [16]. The number of integration variables depends on the dimensions of the

loop momenta, hence, in order to freeze all of them, the number of denominators to be

put on-shell depends on the space-time dimensions as well. In other words, maximum-cuts

are realized by cutting diagrams with different number of external legs, according to the

dimensionality of the integration momenta.

The use of the d = d‖ + d⊥ representation of Feynman integrals within the integrand

reduction technique has several interesting consequences. To explore them, we propose a

three-step algorithm, which we will refer to it as divide-integrate-divide.

Divide. First, by separating the physical directions from the (−2ε)-dimensional yields

simpler on-shell cut conditions, hence the division procedure becomes significantly simpler.

In fact, the Gröbner basis trivialize, as they are linear in the variables to be reduced and

quadratic in the irreducible variables which will appear in the residues (up to the choice of

monomial order). In this case, the Gröbner bases are built from differences of denominators

(basic S-polynomials). Moreover, the form of the cut conditions and of the Gröbner bases
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are further simplified in the d = d‖ + d⊥ representation, due to the dependence of the

denominators on a reduced set of variables, hence the determination of the cut-residues

becomes computationally less expensive. We can properly talk of adaptive cutting, since

the dimensions of the parallel space, i.e. the number of variables constrained by the on-shell

conditions, depend on the number of legs.

Integrate. Second, after the integrand reduction, the integration over the orthogonal

solid angle of the decomposed integrand allows the automatic detection and annihilation of

the spurious integrals, which vanish because of the orthogonality condition enforced by the

Gegenbauer polynomial integration. Within the proposed parametrization, the spherical

symmetry of the transverse angular integrations offers an explicit geometric interpretation

of the spurious integrals as being related to monomials which are odd under rotation group

transformations, as observed in [32]. Alternatively, if the integration over Θ⊥ is performed

before the reduction, the corresponding residue will not contain any spurious term, therefore

the number of non-vanishing coefficients to be determined through the reduction algorithm

will be significantly smaller.

Divide. Finally, we notice that the integration of the residues over the transverse angles

Θ⊥ reintroduces, in general, a dependence on the variables λij . The denominators depend

on these variables and, therefore, the integrated residues may be subject to a second poly-

nomial division, which further simplifies them. In some cases, namely when the variables

λij form a Gram determinant, this additional division can be shown to be equivalent to

applying dimensional shifting recurrence relations [33, 34] at the integrand level (the di-

mensions of any Feynman integral are controlled by the power of the Gram determinant,

characteristic of each loop).

We now observe that after the integrand decomposition outlined above, the integrand

will depend on a subset of the parallel space variables and on the transverse variables

λij , which correspond just to irreducible scalar products (ISPs) between loop momenta

and external momenta. Therefore, any scattering amplitude, at any loop order and with

arbitrary kinematics, admits an algebraic decomposition in terms of a set of irreducible

integrals (IRIs), corresponding to these ISPs.

It is important to stress that, although independent under polynomial division, the

IRIs are not a minimal set. Indeed, they can be related through identities which belong to

the general class of integration-by-parts relations (IBPs), hence their number can be further

reduced. The amplitude, in this case, would be finally expressed in terms of a minimal set of

Master Integrals (MIs). IBPs relation for IRIs can be suitably built by algebraic geometry

methods through sygyzy equations [32, 35, 36]. In particular, the outcome of the proposed

integrand reduction algorithm is suitable for an IBP-reduction in the parallel space along

the lines of [36, 37]. Progress on the improvement of system solving strategies for IBP

equations are under intense development [38, 39]. Moreover, should the reduction to MIs

not be available for the process under consideration, the representation of the amplitudes

in terms of IRIs can be employed together with the numerical integration of the latter.

Promising advances on the numerical integration of Feynman integrals have recently been

applied to a non-trivial two-loop case [40].
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The paper is organized as follows. In section 2, we discuss the d = d‖ + d⊥ represen-

tation of multiloop Feynman integrals and the integration over the transverse directions

by means of the orthogonality relation for Gegenbauer polynomials. Besides analysing the

properties of the transverse space for general topologies with n ≤ 4 external legs, we discuss

further simplifications that can be obtained for factorized and ladder topologies. In fact,

we show that the integration of Gegenbauer polynomials can be used in all cases where the

numerator depends on more variables than the denominators. As an example of the con-

siderably simplified form of Feynman integrands achieved by integrating out the transverse

directions before applying any reduction algorithm, we discuss a four-point contribution to

the helicity amplitude A(g+
1 , g

−
2 , g

+
3 , g

−
4 ) at two loops. In section 3, we present the adaptive

integrand decomposition algorithm for multiloop scattering amplitudes. We revisit the well-

know results for the one-loop integrand decomposition, by showing that, in d = d‖+d⊥, all

unitarity cuts are reduced to zero-dimensional systems, and by providing an alternative rep-

resentation of the residues, whiche read as complete polynomials in the transverse variables,

due to the maximum-cut theorem. The novel parametrization of the residues emerging in

d = d‖ + d⊥ yields a different, yet equivalent, decomposition of one-loop amplitudes w.r.t.

to the known decomposition in d = 4 − 2ε. At two loops, we provide a classification of

the residues appearing in the integrand decomposition formula for planar and non-planar

topologies with arbitrary kinematics, by considering the top-down reduction from the eight-

point maximum-cut topologies, down to the product of two one-point topologies, namely

two tadpoles. As a concrete example of the application of the adaptive division algorithm,

we provide the explicit expression of the coefficients of the residue of the double-box con-

tribution to A(g+
1 , g

−
2 , g

+
3 , g

−
4 ). In section 4, we give our summary and conclusions.

We have collected in the appendices the detailed discussion of most of the calculations

leading to the results presented in this work. In appendix A, we propose a new derivation

of the parametric expression of Feynman integrals in terms of parallel- and transverse-

space variables and we discuss the change of coordinates to be performed in the transverse

space in order to map, at any loop order, all integrations over the four-dimensional trans-

verse directions into simple angular integrals. In appendices B–C, we collect some useful

formulae for one- and two- loop integrals respectively, including a list of tensor integrals

which can be reduced by integrating over the transverse angles. In appendix D we recall

the main properties of Gegenbauer polynomials and, finally, in appendix E, we provide

a representation in terms of spinor variables of the momentum-basis to which we refer

throughout the text. The calculations presented in this paper have been performed with

the help of Singular [41] and S@M [42].

2 Parallel and orthogonal space for multiloop Feynman integrals

In this section, we consider generic `-loop Feynman integrals with n external legs in a

d-dimensional Euclidean space,

Id (`)
n [N ] =

∫ (∏̀
i=1

ddqi

πd/2

)
N (qi)∏
j Dj(qi)

, (2.1)
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where N (qi) is an arbitrary tensorial numerator and the denominators Dj(qi) are defined as

Dj = l2j +m2
j , with lαj =

∑
i

αijq
α
i +

∑
i

βijp
α
i , (2.2)

being {p1, . . . , pn−1} the set of independent external momenta and α and β incidence ma-

trices taking values in {0,±1}. We first recall the usual parametrization of I
d (`)
n obtained

by formally splitting the d-dimensional space into the four-dimensional physical one, where

external momenta and polarizations lie, and the corresponding orthogonal subspace, whose

dimension is conventionally set to d − 4 = −2ε. Later, we show that, when a Feynman

integral has n ≤ 4 external legs which do not span the full physical space, I
d (`)
n is more con-

veniently expressed in terms of vectors living in the d‖ = n−1 dimensional space described

by the external kinematics and a set of transverse variables belonging to its orthogonal

complement with dimension d⊥ = d − n − 1. This alternative parametric representation

of Feynman integrals remarkably simplifies, at any loop order, the integration over the

transverse components of the loop momenta.

2.1 Feynman integrals in d = 4− 2ε

When dealing with a regularization scheme where the external kinematics is kept in four

dimensions, it is customary to split the d-dimensional loop momenta into a four-dimensional

part and a (−2ε)-dimensional one,

qαi = qα[4] i + µαi , (2.3)

so that, by defining µij = µi · µj , we have

qi · qj = q[4] i · q[4] j + µij . (2.4)

The vectors µαi lie in a subspace which is completely orthogonal to the four-dimensional

one, µi · pj = 0, hence we can rewrite the denominators (2.2) as

Dj = l2j[4] +
∑
i,k

αijαkj µik +m2
j , with lαj[4] =

∑
i

αijq
α
i[4] +

∑
i

βijp
α
i . (2.5)

For the same reason, the numerator appearing in (2.1) can depend on qαi[4] and µij only.

This implies that the integrals over the (−2ε)-dimensional subspace can be expressed into

spherical coordinates, and that we can integrate out all directions orthogonal to the relative

orientations of the vectors µαi , obtaining

Id (`)
n [N ] = Ω

(l)
d

∫ ∏̀
i=1

d4q[4] i

∫ ∏
1≤i≤j≤`

dµij [G(µij)]
d−5−`

2
N (q[4] i, µij)∏
mDm(q[4] i, µij)

, (2.6)

where G(µij) = det[(µi · µj)] is a Gram determinant, and

Ω
(`)
d =

∏̀
i=1

Ωd−4−i

2π
d
2

, Ωn =
2π

n+1
2

Γ
(
n+1

2

) . (2.7)
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As it is explicitly shown in (2.5), because of this parametrization, the set of denominators

which characterizes each integral depends, in general, on the same `(`+ 9)/2 variables as

the numerator, corresponding to the 4` four-dimensional components of the loop momenta,

which are decomposed into some basis of four-dimensional vectors {eαi },

qα[4] i =
4∑
j=1

xjie
α
j , (2.8)

and the `(`+ 1)/2 scalar products µij . It should be noticed that, the denominators of

particular classes of multi=loop Feynman integrals, such as ladder topologies and factor-

ized integrals, might depend on a reduced number of variables µij , due to the absence of

propagators involving both loop momenta qαi and qαj .

In the following, we first derive an integral parametrization alternative to (2.6), valid for

Feynman integrals with n ≤ 4 external legs, by assuming that the denominators depend on

the maximal number of loop variables, and then we show how a simplified parametrization

for ladder and factorized integrals as well.

2.2 Feynman integrals in d = d‖ + d⊥

For a number of external legs n ≤ 4, it is possible to reparametrize the integral (2.1)

in such a way that the number of variables appearing in the denominators is reduced to

`(`+ 2d‖ + 1)/2. Since the numerator is a polynomial in the remaining `(4−d‖) variables,

their integration can be performed straightforwardly, by decomposing the numerator in

terms of orthogonal polynomials. In fact, the choice of the four-dimensional basis {eαi } is

completely arbitrary and, if d‖ ≤ 3, one can choose 4− d‖ vectors of such basis to lie into

the subspace orthogonal to the external kinematics, i.e.

ei · pj = 0, i > d‖, ∀j, (2.9a)

ei · ej = δij , i, j > d‖. (2.9b)

In this way, we can rewrite the d-dimensional loop momenta as

qαi = qα‖ i + λαi , (2.10)

where qα‖ i is a vector of the d‖-dimensional space spanned by the external momenta,

qα‖ i =

d‖∑
j=1

xjie
α
j , (2.11)

and

λαi =

4∑
j=d‖+1

xjie
α
j + µαi , λij =

4∑
l=d‖+1

xlixlj + µij , (2.12)

belong to the d⊥-dimensional orthogonal subspace. In this parametrization, all denomina-

tors become independent of the transverse components of the loop momenta,

Dj = l2‖ j +
∑
i,l

αijαlj λil +m2
j , with lα‖ j =

∑
i

αijq
α
‖ i +

∑
i

βijp
α
i , (2.13)
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and they depend on a reduced set of `(`+ 2d‖ + 1)/2 variables, corresponding to the `d‖
components of qα‖ i plus the `(`+ 1)/2 scalar products λij . Once the decomposition (2.10)

has been introduced, it can be shown that all transverse components xji (j > d‖) as well

as the relative orientations of the vectors λαi can be mapped into angular variables, defined

through a suitable orthonormalization procedure described in appendix A. In particular,

by introducing the angles

ΘΛ = {θij}, 1 ≤ i < j ≤ `,
Θ⊥ = {θij}, j ≤ i ≤ j + 3− d‖, 1 ≤ j ≤ `, (2.14)

we can define a polynomial transformation of the type{
λij → P [λkk, sin[ΘΛ], cos[ΘΛ]] , i 6= j,

xji → P [λkk, sin[Θ⊥,Λ], cos[Θ⊥,Λ]] , j > d‖, k = 1, . . . `
(2.15)

so that the integral (2.1) can be rewritten as

Id (`)
n [N ] = Ω

(`)
d

∫ ∏̀
i=1

dn−1q‖ i

∫
d
`(`+1)

2 Λ

∫
d(4−d‖)`Θ⊥

N (qi ‖,Λ,Θ⊥)∏
j Dj(q‖ i,Λ)

, (2.16)

where ∫
d
`(`+1)

2 Λ =

∫ ∏
1≤i≤j

dλij [G(λij)]
(d⊥−1−`)/2 (2.17a)

=

∫ ∞
0

∏̀
i=1

dλii(λii)
(d⊥−2)/2

∫
d
`(`−1)

2 ΘΛ, (2.17b)

with ∫
d
`(`−1)

2 ΘΛ =

∫ 1

−1

∏
1≤i<j≤`

dcos θij(sin θij)
d⊥−2−i , (2.18)

and

∫
d(4−d‖)`Θ⊥ =

∫ 1

−1

4−d‖∏
i=1

∏̀
j=1

dcos θ(i+j−1) j(sin θ(i+j−1) j)
d⊥−i−j−1 . (2.19)

Eqs. (2.17a), (2.18) define the integral over the variables Λ = {λii,ΘΛ}, corresponding to

the norms of the transverse vectors λαi and to their relative orientations, while eq. (2.19)

parametrizes the integral over the components of λαi lying in the four-dimensional space.

It should be remarked that the integrals defined by eqs. (2.18)–(2.19) are dimensionally

regulated through their dependence on d⊥ = d− d‖.
The choice of the four-dimensional basis {eαi } and the consequent definition of the

transverse space variables Λ and Θ⊥ are determined by the external kinematics and do

not depend on the specific set of denominators which characterizes the integral, therefore,

the parametrization (2.16) can be used for both planar and non-planar topologies. More-

over, it should be observed that, in the case of two-point integrals with vanishing external
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momentum p2 = 0, the r.h.s. of (2.16) holds for d‖ = 2, since we can define only two

directions orthogonal to a massless vector.

The decomposition in eq. (2.10) allows us to express a subset of components of qα‖i and

λij as combinations of denominators by solving linear equations. In fact, one can always

build differences of denominators which are linear in the loop momenta and independent

of λij , while the relation between λij and the denominators is always linear by definition,

as can be deduced from eq. (2.13).

More explicitly, at one-loop, all the denominators can be taken to have the form

Dj =

(
q1 +

∑
i

βijpi

)2

+m2
j , j = 1, . . . , r (2.20)

where r is the total number of denominators in the loop integrand. Hence one can choose

any denominator D̄ and consider r− 1 differences of the form Dj −D̄. These differences

have no quadratic terms in the loop momenta and can thus be used to express r − 1 of

the variables {xji, j ≤ d‖} as linear combinations of denominators. By applying one more

independent equation, given by the definition of any of the denominators, the variable

λ11 is written as a linear combination of the variables {xji, j ≤ d‖}, as one can see from

eq. (2.13).

At higher loops, one can split the r loop denominators into partitions identified by the

subset of loop momenta each denominator depends on, and similarly consider differences

of denominators belonging to the same partition which will again generate a set of linear

relations between physical loop components and denominators. By solving these relations,

one can express a subset of the variables {xji, j ≤ d‖} as linear combinations of denomi-

nators. Finally one can, again, consider eq. (2.13) for a representative of each partition of

denominators, completing the set of linear relations which can thus be solved for a subset of

the variables λij . It is straightforward to see that the complete set of relations is equivalent

to the definition of the loop denominators themselves.

For instance, at two loops, one can have at most three partitions P1, P2, P3, which

respectively correspond to denominators having the following forms

Dj =

(
q1 +

∑
i

βijpi

)2

+m2
j , j ∈ P1,

Dj =

(
q2 +

∑
i

βijpi

)2

+m2
j , j ∈ P2,

Dj =

(
q1 + q2 +

∑
i

βijpi

)2

+m2
j , j ∈ P3. (2.21)

where P1 is the set of denominators depending on q1 only, P2, the set of denominators

depending on q2 only, and P3, the set of denominators depending both on q1 and q2.

Therefore one can choose a representative for each partition, say D̄i ∈ Pi for i = 1, 2, 3,

and observe that for any j ∈ Pi the difference Dj−D̄i is linear in the loop momenta. This

allows us to write r − 3 linear equations which can be solved for a subset of the variables
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{xji, j ≤ d‖} in terms of the other physical directions and denominators. One can thus

complete this set of relations with 3 more equations (or possibly less, if any of the partitions

is empty) which are defined by eq. (2.13) applied to one denominator for each partition

Pi. In the case when none of the partitions is empty, these three equations can be solved

for the variables λ11, λ12, λ22 which are thus written as a combination of denominators

and irreducible components of qα‖i by solving linear relations. If the denominators are

independent of λ12, this variable cannot obviously be written in terms of denominators but

it can be integrated out by means of the techniques presented later on in this paper. As

we shall see in section 2.5, this is true at any number of loops, whenever the denominators

are independent of one of these variables.

The observations made in this paragraph imply that by solving the d-dimensional

cut constraints for the integrand decomposition is as complex as solving a linear system

of equations. Indeedn, a similar procedure can also be applied to the decomposition of

eq. (2.3), the main difference being that the resulting relations for µij will not only depend

on the components of the loop momenta along the physical directions, but also on the

orthogonal directions.

2.3 Angular integration over the transverse space

As we have explicitly indicated in (2.16), the denominators of Feynman integrals, are com-

pletely independent of the transverse components of the four-dimensional loop momenta,

namely do not depend on any of variables Θ⊥, which are in one-to-one correspondence

with {xji}, j > d‖. In addition, since the numerator is polynomial in the transverse vari-

ables, after the change of variables (2.15), the integrand is mapped into a polynomial in

(sine and cosine of) Θ⊥, with rational coefficients thed depend on Λ and on the physical

directions {xji}, j ≤ d‖. Finally we observe that all the integrals over Θ⊥ are factorized

one-dimensional integrals, each being of the type∫ 1

−1
dcos θij(sin θij)

α (cos θij)
β . (2.22)

The values of the exponents α and β appearing in eq. (2.22) depend both on the angle

θij under consideration and on the specific expression of the numerator. Nevertheless,

these integrals can be computed once and for all, up to the desired rank, and then re-used

in every calculation where they occur. One algorithmic way to perform these integrals

consists first in expanding the numerator in terms of Gegenbauer polynomials C
(α)
n (cos θ),

a particular class of orthogonal polynomials over the interval [−1, 1] (see appendix D), and

then repeatedly make use of the orthogonality relation they obey,∫ 1

−1
dcos θij (sin θij)

2α−1 C(α)
n (cos θij) C

(α)
m (cos θij) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (2.23)

In this way, all integrations over Θ⊥, i.e. over all components of the loop momenta orthog-

onal to the external kinematics, are brought back to a unique integral formula which auto-

matically sets to zero all spurious contributions to the Feynman amplitude. Alternatively,

one can show that this angular integration is equivalent to a tensor decomposition of the
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subspace orthogonal to the external legs of the diagram [2]. Consider a topology with n ≤ 4

external legs. A generic term contributing to a `-loop integral of such topology has the form∫ (∏̀
i=1

ddqi

πd/2

)
N (q‖ i, λij)∏

j Dj(qi)

( 4∏
r=d‖+1

∏̀
t=1

(er · qt)αr,t
)
. (2.24)

In the first factor on the right of the integration measure, we collected the dependence on

the variables λij and on the components of the loop momenta along the directions of the

external momenta, while the second one depends on the transverse components which can

be integrated out. Because of the obvious relation

(qi · ej) = (λi · ej), if j > d‖, (2.25)

the angular integration can also be performed via tensor decomposition, restricted to the

d⊥-dimensional orthogonal subspace. In particular, this decomposition only depends on

the d⊥-dimensional projection of the metric tensor and it is independent of the external

legs of the diagram, which makes it significantly simpler than a full d-dimensional tensor re-

duction. This implies that we can easily perform the transverse integration by considering

the decomposition∫ (∏̀
i=1

ddqi

πd/2

)
N (q‖ i, λij)∏

j Dj(qi)

(
λν111 · · ·λν1α11 · · ·λνl1l · · ·λ

νlαl
l

)
=
∑
σ∈S

aσ g
νσ(11)νσ(12)
[d⊥] · · · g

µσ(l)σ(αl−1)µσ(l)σ(αl)
[d⊥] , (2.26)

where αi =
∑

t αi,t (cfr. with eq. (2.24)) and S is the set of non-equivalent permutations

of the Lorentz indexes νi appearing on the l.h.s.. One can thus solve for the coefficients aσ
in the traditional way, i.e. by contracting both sides of the equation with each term on the

r.h.s. side and using the identities

g[d⊥]
µν λµi λ

ν
j = λij , (gµν[d⊥])

2 = d⊥, (2.27)

which allow us to replace the second factor in the product of (2.24) with a combination of

variables λij . Notice that this combination only depends on the number n of external legs

and on the powers of loop momenta appearing in the product of the transverse component,

while it is completely independent of the expression of the other factors appearing in the

integrand. As well as the explicit angular integration discussed above, this decomposition

can be performed for the occurring rank once and for all, and it is independent of the

internal details of the topology and of the particular process under consideration.

In the following, we use the integral representation (2.16) and apply the integration

procedure described above in the case four-point integrals up to three loops. We refer the

reader to appendix A, for the derivation of eq. (2.16) as well as of the explicit expression

of the change of variables (2.15). General results for one- and two- loop integrals in all

kinematic configurations, including a list of integrals over the transverse directions, are

collected in appendices B–C.
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(a) ` = 1, d‖ = 3. (b) ` = 2, d‖ = 3. (c) ` = 3, d‖ = 3.

Figure 1. Four-point diagrams.

2.4 Four-point examples

As an example, we consider the four-point topologies depicted in figure 1. Due to momen-

tum conservation, the external momenta {p1, p2, p3, p4} span a subspace with dimension

d‖ = 3 and, as a consequence, we can build a four-dimensional basis {eαi } containing one

single transverse direction eα4 ,

pi · e4 = 0 ∀i = 1, 2, 3. (2.28)

Thus, in all the three cases, we can decompose the d-dimensional loop momenta according

to (2.10), where qα‖ i ≡ q
α
[3] i are three-dimensional vectors, defined as

qα[3] i =

3∑
j=1

xjie
α
j , i = 1, . . . , ` , (2.29)

and λαi are vectors in the d⊥ = d− 3 dimensional orthogonal space,

λαi = x4ie
α
4 + µαi , i = 1, . . . , ` . (2.30)

Upon this decomposition, all denominators become independent of the component x4i of

each loop momentum. The d‖+d⊥ parametrization of the integrals can now be read directly

from (2.16) with d‖ = 3, by choosing ` = 1, 2, 3, according to the case. The particular form

of the change of variables (2.15), which is needed in order to reduce the integrals over the

transverse directions to the orthogonality relation (2.23), are derived in appendix A.

(a) For the one loop integral of figure 1a, we define Λ = {λ11} and Θ⊥ = {θ11}, and we

write

I
d (1)
4 [N ] =

1

π2Γ
(
d−4

2

) ∫ d3q[3] 1

∫ ∞
0
dλ11(λ11)

d−5
2

∫ 1

−1
dcos θ11(sin θ11)d−6×

×
N (q[3] 1, λ11, cos θ1)∏3
m=0Dm(q[3] 1, λ11)

. (2.31)

In this case, the set of transformations (2.15) is reduced to

x41 =
√
λ11 cos θ11, (2.32)
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which expresses the transverse component x41 of the loop momentum in terms of the

single angular variable θ11. The numerator of a general Feynman integral corresponding

to the box topology can have at most a polynomial dependence on x41 (and hence on

cos θ11), so that the angular integration can always be reduced to the orthogonality

relation (2.23). In particular, for the case of a scalar integral with trivial numerator,

we obtain

I
d (1)
4 [1] =

1

π3/2Γ
(
d−3

2

) ∫ d3q[3] 1

∫ ∞
0
dλ11(λ11)

d−5
2

1∏3
m=0Dm(q[3] 1, λ11)

. (2.33)

Moreover, as we recall in appendix D, odd powers of x41 can be expressed in terms of

(products of) Gegenbauer polynomials with different indices and vanish by orthogonal-

ity, so that only even powers of the transverse variable produce non-zero contributions.

As an example, useful for later use, let us consider the integrals

I
d (1)
4 [x2

41 ] =
1

π2Γ
(
d−4

2

) ∫ d3q[3] 1

∫ ∞
0
dλ11(λ11)

d−3
2

∫ 1

−1
dcos θ11

(sin θ11)d−6(cos θ11)2∏3
m=0Dm(q[3] 1, λ11)

,

(2.34a)

I
d (1)
4 [x4

41 ] =
1

π2Γ
(
d−4

2

) ∫ d3q[3] 1

∫ ∞
0
dλ11(λ11)

d−1
2

∫ 1

−1
dcos θ11

(sin θ11)d−6(cos θ11)4∏3
m=0Dm(q[3] 1, λ11)

.

(2.34b)

After writing the powers of cos θ11 in terms of Gegenbauer polynomials,

(cos θ11)2 =
1

(d− 5)2

[
C

( d−5
2

)

1 (cos θ11)
]2
, (2.35a)

(cos θ11)4 =
1

(d− 3)2

[
C

( d−5
2

)

0 (cos θ11) +
4

(d− 5)2
C

( d−5
2

)

2 (cos θ11)

]2

, (2.35b)

we can use the orthogonality relations (2.23), and obtain

I
d (1)
4 [x2

41 ] =
1

d− 3
I
d (1)
4 [λ11 ] =

1

2
I
d+2 (1)
4 [1], (2.36a)

I
d (1)
4 [x4

41 ] =
3

(d− 3)(d− 1)
I
d (1)
4 [λ2

11 ] =
3

4
I
d+4 (1)
4 [1]. (2.36b)

In the second equality, we have identified additional powers of λ11 in the numerator,

produced by the integration over the transverse component, with higher-dimensional

scalar integrals, as it can be easily checked from the explicit expression of the d-

dimensional integral (2.33). Results for higher rank numerators can be found in ap-

pendix B.

(b) At two loops, the transverse space of the topology shown in figure 1b is described by
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the variables Λ = {λ11, λ22, θ12} and Θ⊥ = {θ11, θ22} and we have

I
d (2)
4 [N ] =

2d−6

π5Γ(d− 5)

∫
d3q[3] 1d

3q[3] 2

∫ ∞
0
dλ11dλ22(λ11)

d−5
2 (λ22)

d−5
2 ×

×
∫ 1

−1
dcos θ12dcos θ22dcos θ11 (sin θ12)d−6 (sin θ11)d−6(sin θ22)d−7×

×
N (q[3] i, λii, cos θij , sin θij)∏7
m=0Dm(q[3] i, λii, cos θ12)

. (2.37)

In this case, (2.15) reads


λ12 =

√
λ11λ22 cos θ12

x41 =
√
λ11 cos θ11

x42 =
√
λ22

(
cos θ11 cos θ12 + sin θ11 sin θ12 cos θ22

)
,

(2.38)

so that, after the change of variables, any term in the numerator depending on x41

and x42 is mapped into a polynomial in (sine and cosine of) Θ⊥, with coefficients

depending on Λ, which can be easily integrated through the expansion in terms of

Gegenbauer polynomials. In this way we find, for the scalar integral,

I
d (2)
4 [ 1 ] =

2d−5

π4Γ(d− 4)

∫
d3q[3] 1d

3q[3] 2

∫ ∞
0
dλ11dλ22(λ11)

d−5
2 (λ22)

d−5
2 ×

×
∫ 1

−1
dcos θ12 (sin θ12)d−6 1∏6

m=0Dm(q[3] i, λii, cos θ12)
, (2.39)

whereas the first non-spurious monomial in x41 and x42 amounts to

I
d (1)
4 [x4ix4j ] =

1

d− 3
I
d (1)
4 [λij ]. (2.40)

Results for higher rank numerators can be found in appendix C.

(c) The transverse space of the three-loop topology shown in figure 1c is parametrized in

terms of Λ = {λ11, λ22, λ33, θ12, θ13, θ23} and Θ⊥ = {θ11, θ22, θ33},

I
d (3)
4 [N ] =

2d−7

π8Γ(d− 6)Γ
(
d−4

2

) ∫ 3∏
i=1

d3q[3] i

∫ ∞
0

3∏
i=1

dλii(λii)
d−5
2 × (2.41)

×
∫ 1

−1

∏
1≤i≤j≤3

dcos θij(sin θij)
d−5−i N (q[3] i, λii, cos θij , sin θij)∏9

m=0Dm(q[3],i, λii, cos θ12, cos θ13, cos θ23)
.
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(a) ` = 2 d‖ = 3 bowtie. (b) ` = 3 d‖ = 3 ladder.

Figure 2. Bow-tie topology 2a and three-loop ladder 2b.

The change of variables

λ12 =
√
λ11λ22 cos θ12

λ23 =
√
λ22λ33 cos θ13

λ13 =
√
λ11λ33(cos θ12 cos θ13 + sin θ12 sin θ13 cos θ23)

x41 =
√
λ11 cos θ11

x42 =
√
λ22(cos θ11 cos θ12 + sin θ11 sin θ12 cos θ22)

x43 =
√
λ33(cos θ11 cos θ12 cos θ13 + sin θ11 sin θ12 cos θ22 cos θ13

− sin θ11 sin θ13 cos θ12 cos θ22 cos θ23 + sin θ12 sin θ13 cos θ11 cos θ23

+ sin θ11 sin θ13 sin θ22 sin θ23 cos θ33)

(2.42)

allows us to express the transverse components x4i in terms of the angular variables

and then integrate over Θ⊥ with the help of (2.23). For the scalar integral, we have

I
d (3)
4 [ 1 ] =

2d−5

π13/2Γ(d− 4)Γ
(
d−5

2

) ∫ 3∏
i=1

d3q[3] i

∫ ∞
0

3∏
i=1

dλii(λii)
d−5
2 × (2.43)

×
∫ 1

−1

∏
1≤i<j≤3

dcos θij(sin θij)
d−5−i 1∏9

m=0Dm(q[3] i, λii, cos θ12, cos θ13, cos θ23)
,

and, similarly to the previous case, it can be verified that

I
d (3)
4 [x4ix4j ] =

1

d− 3
I
d (3)
4 [λij ], ∀i, j = 1, 2, 3. (2.44)

2.5 Factorized integrals and ladder topologies

The d = d‖ + d⊥ parametrization (2.16) applies to all Feynman integrals with n ≤ 4,

nevetheless, there are special classes of multiloop integrals, associated to factorized and

ladder topologies, which allow further simplifications. These integrals are characterized by

a set of denominators which are independent of a certain number of transverse orientations

λij , i.e. on a subset of the angular variables ΘΛ. This implies that, as it can be immedi-

ately understood from the properties of the change of variables (2.15) and the integration

measure (2.17b), the integration via expansion in Gegenbauer polynomials can be applied,

besides to all Θ⊥ angles, also the angles ΘΛ which do not appear in the denominators. In

the following, we discuss the d = d‖ + d⊥ parametrization in two explicit cases.

– 16 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
4

2.5.1 Factorized integrals

When the loop corresponding to qαi is factorized, no denominator depends on qi · qj , with

j 6= i. In general, whether a factorized integral originates as a Feynman diagrams or from

the algebraic semplification of denominators, the integrand is not necessarily factorized,

since the numerator can still depend on the (d−4)-dimensional part of qi ·qj , corresponding

to µij . Nevertheless, it can be shown that, after integrating over µij , by means of the

orthogonality relation (2.23), the d = d‖ + d⊥ parametrization of a factorized integral is

given by the product of the d = d‖ + d⊥ parametrizations of the integrals corresponding

to the subtopologies. Remarkably, the transverse space of the factorized graphs can have

a different dimension, since, for each of them, it depends on the number of the legs.

As an example, let us consider a bow tie integral of the type shown in figure 2a, which,

according to the d = 4− 2ε parametrization (2.6), reads

I
d (2)
4,fact[N ] =

2d−6

π5Γ(d− 5)

∫
d4q[4] 1d

4q[4] 2

∫ ∞
0
dµ11

∫ ∞
0
dµ22× (2.45)

×
∫ √µ11µ22
−√µ11µ22

dµ12(µ11µ22 − µ2
12)

d−7
2

N∏2
i=0Di(q[4] 1, µ11)

∏5
j=3Dj(q[4] 2, µ22)

.

Any tensor numerator admits the generic decomposition,

N (q[4] 1, q[4] 2, µij) = (µ12)αN1(q[4] 1, µ11)N2(q[4] 2, µ22), α ∈ N. (2.46)

so that, if we introduce the change of variable cos φ ≡ µ12/
√
µ11µ22, the integral over µ12

can be reduced to an integral of the type (2.22), which can be evaluated by means of the

by-now usual orthogonality relation (2.23),

∫ 1

−1
dcosφ(sinφ)d−7(cosφ)α =

0 for α = 2n+ 1
Γ(α+1

2 )Γ( d−5
2 )

Γ( d+α−4
2 )

for α = 2n.
(2.47)

After inserting this result in (2.46), the integral over each loop momentum is completely

factorized and, by comparison with the d = 4 − 2ε parametrization of one-loop integrals,

we can identify, for the non-trivial case α = 2n,

I
d (2)
4 fact[ (µ12)αN1N2]=

25−d−αB
(

1+α
2 , d−4

2

)
B
(
d−4+α

2 , d−4+α
2

) (∫ ddq1

πd/2
(µ11)

α
2N1∏2

i=0Di(q1)

)(∫
ddq2

πd/2
(µ22)

α
2N2∏5

j=3Dj(q2)

)
.

(2.48)

Each term in the brackets admits a d = d‖+d⊥ parametrization (2.16). The decomposition

can be implemented by working with two different momentum bases, each one containing

two vectors orthogonal to the external legs connected to the corresponding loop. In this

case, the factorized graph is obtained from the product of two identical subtopologies. In

general, if the subtopologies have a different number of extenal legs, then their transverse

space is not identical.
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2.5.2 Ladder integrals

Starting from a number of loops ` ≥ 3, ladder topologies correspond to integrals whose

denominators depend on a limited number variables λij . In these cases, the d = d‖ + d⊥
parametrization (2.16) reads exactly as in the general case (2.16), but the integration in

terms of Gegenbauer polynomials can be extended to the subsets of angles ΘΛ correspond-

ing to the λij which do not appear in the denominators. As an example, we consider the

three-loop ladder box shown in figure 2b, for which we introduce the same set of transverse

variables as for the three-loop diagram of figure 1c,

Λ = {λ11, λ22, λ33, θ12, θ13, θ23},
Θ⊥ = {θ11, θ22, θ33}, (2.49)

and parametrize the integral exactly as in (2.41). This integral has no propagator depending

on both qα1 and qα3 , i.e. the denominators are independent of λ13 and hence of θ23, as it can

be seen from (2.42). Therefore, the integral over θ23 is reduced to the form (2.22), and it

can be evaluated in the usual way, as

∫ 1

−1
dcos θ23 (sin θ23)d−7−β (cos θ23)α =

0 for α = 2n+ 1
Γ(α+1

2 )Γ( d−5+β
2 )

Γ( d+α+β−4
2 )

for α = 2n.
(2.50)

In (2.50) the indices α and β are determined by the specific form of the numerator. In the

scalar case (α = β = 0), this additional integration returns

I
d (3)
4 ladder[ 1 ] =

2d−5

π6Γ(d− 4)Γ
(
d−4

2

) ∫ 3∏
i=1

d3q[3] i

∫ ∞
0

3∏
i=1

dλii(λii)
d−5
2 × (2.51)

×
∫ 1

−1
dcos θ12 dcos θ13 (sin θ12)d−6 (sin θ13)d−6 1∏9

m=0Dm(q[3] i, λii, cos θ12, cos θ13)
.

2.6 Simplified integrand form

The d = d‖ + d⊥ parametrization of Feynman integrals and the angular integration over

transverse directions can be used in order to decompose scattering amplitudes in terms of

a reduced number of scalar integrals without explicitly performing any tensor reduction.

In fact, transverse integration can be used ab initio in order to obtain a simplified form of

the integrand, free of spurious contributions, which can be more easily reduced to a combi-

nation of a minimal set of master integrals, by means of relations like integration-by-parts

identities. In particular, as we show in the following example, this procedure is suited for

application to helicity amplitudes which, in general, may enjoy better properties than the

form factors defined in the usual tensor decomposition. Alternatively, transverse integra-

tion can be applied in tandem with algebraic methods, such as integrand decomposition, in

order to achieve a step-by-step simplification of the reduction algorithm. The interplay of

transverse integration and integrand decomposition will be the object of the next section.
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(a) (b)

(c) (d)

Figure 3. Double-box contributions to A2−loop(g+1 , g
−
2 , g

+
3 , g

−
4 ).

2.6.1 Example: the four-point integrand for A2−loop(g+1 , g
−
2 , g

+
3 , g

−
4 )

As an example, we consider the double-box contribution to a four-gluon color-ordered

helicity amplitude. For this case, we show that the integration over the transverse variables

can lead to a simplified representation of the integrand, before considering the application

of any reduction algorithm. The topology, in d = 4−2 ε dimensions, is defined by the seven

denominators

D1 = (q1 + p1)2, D2 = q2
1,

D3 = (q1 − p2)2, D4 = (q2 − p3)2,

D5 = q2
2, D6 = (q2 + p4)2,

D7 = (q1 + q2 + p1 + p4)2 , (2.52)

and the four irreducible scalar products

(q1 · p4) , (q2 · p1) , (q1 · v⊥) , (q2 · v⊥) , (2.53)

where v⊥ is orthogonal to the external momenta and it can be chosen as

vµ⊥ = −4 i εµνρσp
ν
1 p

ρ
2 p

σ
3 = tr5(µ p1 p2 p3). (2.54)

Notice that, conversely to the transverse vector e4 introduced in the general discussion

of section 2.4, with this definition v⊥ is not normalized since, when dealing with realistic

processes, it is convenient to use a representation which can be easily expressed in terms

of spinor variables without introducing spurious square roots. It is worth observing that,

while the first two scalar products in eq. (2.53) live in the physical space defined by the

external momenta, the last two lie along the orthogonal direction and will be integrated

out using the technique previously discussed. Finally, as it is implied by the definition of

the denominators (2.52), all the external momenta pi are taken as outgoing.
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We consider the helicity amplitude A2−loop(p+
1 , p

−
2 , p

+
3 , p

−
4 ). The double-box contribu-

tion to the amplitude is given, in a pure Yang-Mills theory, by the sum of the four diagrams

shown in figures 3a–3d, namely a diagram involving only gluons and three diagrams with

ghosts circulating in the loop. The calculation can be easily carried out e.g. in Feynman

gauge and with an explicit choice of polarization vectors in terms of spinor variables such as

ε+µ
1 =

〈2|γµ|1 ]√
2|〈2|1〉

, ε−µ2 =
〈2|γµ|1 ]√

2[2 1]
, ε+µ

3 =
〈2|γµ|3 ]√

2 〈2 3〉
, ε−µ4 =

〈4|γµ|1 ]√
2[4 1]

. (2.55)

We remark, however, that the final result for the on-shell residue, which we will discuss in

section 3.5.1, is gauge invariant and thus independent of the previous choices.

After inserting the Feynman rules for each diagram, and decomposing the loop mo-

menta as

qα1 = x11 p
α
1 + x21 p

α
2 + x31 p

α
4 + x41 v

α
⊥ + µαi ,

qα2 = x12 p
α
1 + x22 p

α
2 + x32 p

α
4 + x42 v

α
⊥ + µαi , (2.56)

the numerator becomes a function of the coordinates xij appearing in eq. (2.56) and of the

(−2ε)-dimensional scalar products µij . According to eq. (2.30), the transverse vectors λi
can be identified with

λα1 = x41 v
α
⊥ + µαi ,

λα2 = x42 v
α
⊥ + µαi . (2.57)

The d = d‖ + d⊥ parametrization of the integrand is simply obtained through the change

of variables

µij = λij − x4i x4j v
2
⊥, (2.58)

which, as we have already observed, makes the denominators independent of the transverse

components x41 and x42, where x41 = (v⊥ · q1)/v2
⊥ and x42 = (v⊥ · q2)/v2

⊥.

Unpon the change of variables, the numerator is given by a sum of 2025 distinct terms

in the integration variables

z = {x11, x21, x31, x41, x12, x22, x32, x42, λ11, λ22, λ12}. (2.59)

The terms proportional to the transverse variables x4i can be integrated out using the

results listed in appendix C. Nevertheless, we want to remark that, when using a non-

trivial normalization of v⊥, the right hand sides of the formulas for I
d (2)
4 [(q · v⊥)α (q · v⊥)β ]

must be multiplied by a factor (v2
⊥)(α+β)/2. After integrating out the transverse directions,

the numerator is reduced to a sum of 773 terms in the variables

τ = {x11, x21, x31, x12, x22, x32, λ11, λ22, λ12}, (2.60)

which, as we will explain in more detailed in the next sections, can be easily expressed in

terms of denominators and physical scalar products.
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3 Adaptive integrand decomposition

3.1 Integrand recurrence relation

In the framework of the integrand reduction method [7–9, 15, 16, 18], the decomposition

of dimensionally regulated `-loop integrals

I
d (`)
i1...ir

=

∫ ∏̀
j=1

ddqj

πd/2
Ni1...ir

Di1 · · ·Dir

(3.1)

is rephrased as partial fractioning of the integrand, which is finally written as a sum of

residues, i.e. irreducible numerators which cannot be expressed in terms of denominators

Dik , sitting over all possible subsets of denominators,

Ii1...ir ≡
Ni1...ir

Di1 · · ·Dir

=
r∑

k=1

∑
{j1···jk}⊆{i1···ir}

∆j1···jk
Dj1 · · ·Djk

. (3.2)

For an integral with an arbitrary number n of external legs, the integrand decomposition

formula (3.2) can be obtained by observing that both numerator and denominators are

polynomials in the components of the loop momenta with respect to some basis, which we

collectively label as z = {z1, . . . , z `(`+9)
2

}. Thus, we can choose a monomial ordering, and

build a Gröebner basis Gi1···ir(z) of the ideal Ji1···ir generated by the set of denominators,

Ji1···ir ≡
{ r∑
k=1

hk(z)Dik(z) : hk(z) ∈ P [z]

}
, (3.3)

being P [z] the ring of polynomials in z. By performing the polynomial division of Ni1···ir(z)

modulo Gi1···ir(z),

Ni1···ir(z) =

r∑
k=1

Ni1···ik−1ik+1···ir(z)Dik(z) + ∆i1···ir(z) (3.4)

we obtain the recurrence relation

Ii1···ir =
r∑

k=1

Ii1···ik−1ik+1···ir +
∆i1···ir(z)

Di1(z) · · ·Din(z)
, (3.5)

whose iterative application to the integrands corresponding to subtopologies with fewer

loop propagators yields to the complete decomposition (3.2).

The properties of the ideal Ji1···ir [43–46] allow us to derive an important result con-

cerning the parametric form of the residues corresponding to maximum-cuts. We define

maximum-cut a zero-dimensional system of equations

Di1(z) = · · · = Dir(z) = 0 , (3.6)

which completely constraints the loop variables z. If a maximum-cut admits a finite number

of solutions ns, each with multiplicity one, it satisfies the following [15].
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Theorem 1 (Maximum cut) The residue of a maximum-cut is a polynomial

parametrized by ns coefficients, which admits an univariate representation of degree (ns−1).

Depending on the choice of variables z and of the the monomial order, the picture pre-

sented in this section can significantly simplify. A particular convenient choice of variables

turns out to be the one presented in section 2.2. Indeed, as we observed at the end of that

section, we can always express a subset of the components of qα‖i and λij as a combination

of denominators by solving linear relations. This set of relations is in turn equivalent to the

definition of the denominators themselves. This implies that if we choose the lexicographic

monomial order with λij ≺ xkl for k ≤ d‖, the polynomials in the Gröbner bases are lin-

ear in the λij and in the reducible components of qα‖i. Thus, the polynomial division can

be equivalently performed by applying the aforementioned set of linear relations without

explicitly computing the corresponding Gröbner basis.

3.2 Divide, integrate and divide

As we have seen in section 2, when dealing with an integral with n ≤ 4 external legs,

we can introduce the d = d‖ + d⊥ parametrization which removes the dependence of the

denominators on the transverse components of the loop momenta. Therefore, if we indicate

with z the full set of `(`+ 9)/2 variables

z = {x‖ i,x⊥ i, λij}, i, j = 1, . . . `, (3.7)

where

x‖ i = {xji}, j ≤ d‖, (3.8)

are the components of the loop momenta parallel to the external kinematics, and

x⊥ i = {xji}, j > d‖, (3.9)

the four-dimensional orthogonal ones, the denominators are reduced to polynomials in the

subset of variables

τ = {x‖, λij}, τ ⊂ z, (3.10)

so that the general r denominators integrand has the form

Ii1...ir(τ ,x⊥) ≡ Ni1...ir(τ ,x⊥)

Di1(τ ) · · ·Dir(τ )
. (3.11)

For convenience, we make explicit the dependence of the integrand on the component

of the loop momenta τ ,x⊥, and highlight that the denominators do not depend on x⊥.

This observation suggests an adaptive version of the integrand decomposition algorithm,

where the polynomial division is simplified because it involves a reduced set of variables

τ , and where the expansion of the residues in terms of Gegenbauer polynomials allows the

systematic identification of spurious terms. The novel algorithm is organized in three steps:
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1) Divide: we adopt the lexicographic order λij ≺ x‖ for the τ variables, and we divide

the numerator Ni1...ir(τ ,x⊥) modulo the Gröebner basis Gi1···ir(τ ) of the ideal Ji1···ir(τ )

generated by the denominators,

Ni1...ir(τ ,x⊥) =

r∑
k=1

Ni1...ik−1ik+1...ir(τ ,x⊥)Dik(τ ) + ∆i1...ir(x‖,x⊥). (3.12)

As a consequence of the specific monomial order, the residue ∆i1...ir depend on the

transverse components x⊥ i, which are left untouched by the polynomial division, as

well as on x‖ i, but not on the λij that are expressed in terms of denominators and

irreducible physical scalar products. The quotient, instead, depends on the full set of

loop variables. As mentioned at the end of section 3.1, the Gröbner bases do not need to

be explicitly computed, since, with the choice of variables and of the ordering described

here, the result of the division can be simply obtained by merely applying the set of

linear relations described at the end of section 2.2.

2) Integrate: we write the contribution of the residue ∆i1...ir to the integral in the d =

d‖ + d⊥ parametrization which, according to (2.15), maps the transverse components

x⊥i to polynomials in τ , sin[Θ⊥], and cos[Θ⊥],

x⊥i → P [τ , sin[Θ⊥], cos[Θ⊥]]. (3.13)

In this way, we can integrate over the transverse directions through the expansion of

∆i1...ir in terms of Gegenbauer polynomials, which sets to zero spurious terms and

reduce all non-vanishing contributions to monomials in λij ,∫ ∏̀
1=j

ddqj

πd/2
∆i1...ir(x‖,x⊥)

Di1(τ ) . . . Dir(τ )
= Ω

(`)
d

∫ ∏̀
i=1

dn−1q‖ i

∫
d
`(`+1)

2 Λ

∫
d(4−d‖)`Θ⊥

∆i1...ir(τ ,Θ⊥)

Di1(τ ) . . . Dir(τ )

= Ω
(`)
d

∫ ∏̀
i=1

dn−1q‖ i

∫
d
`(`+1)

2 Λ
∆int
i1...in

(τ )

Di1(τ ) . . . Dir(τ )
.

It should be noted that, due to the angular prefactors produced by the integration of

the transverse directions, the integrated residue

∆int
i1...ir(τ ) =

∫
d(4−d‖)`Θ⊥∆i1...ir(τ ,Θ⊥) (3.14)

is, in general, a polynomial in τ whose coefficients depend explicitly on the space-time

dimension d. The full set of ∆int
i1...ir

(τ ), obtained by iterating the polynomial division

and the integration over the transverse space on the numerator of each subdiagram,

provides a representation of the integrals of (3.2) free of spurious terms.

3) Divide: however, since ∆int
i1...ir

(τ ) depends on the same variables as the denominators

Dik(τ ), we can perform a further division modulo the Gröebner basis Gi1···ir(τ ), and get

∆int
i1...ir(τ ) =

r∑
k=1

N int
i1...ik−1ik+1...ir

(τ )Dik(τ ) + ∆
′
i1...ir(x‖), (3.15)
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where, due to the choice of lexicographic ordering, the new residue ∆
′
i1...ir

(x‖) can only

depend on x‖. Therefore, this additional polynomial division allows us to obtain an

integrand decomposition formula (3.2), where all irreducible numerators are function

of the components of the loop momenta parallel to the external kinematics. As in the

previous case, the division modulo Gröbner can equivalently be implemented via a set

of linear relations.

The interpretation of the monomials appearing in the residues ∆
′
i1···ir(x‖) in terms of a

basis of tensor integrals can be additionally simplified by making use of the Gram determi-

nant G[λij ] (or G[µij ] for cases with more than four external legs, where x‖ ≡ x). In fact,

as it can be easily understood from (2.6) and (2.17a), G[µij ] and G[λij ] can be interpreted

as operators that, when acting on an arbitrary numerator of a d-dimensional integral, pro-

duce a dimensional shift d→ d+ 2. Therefore, Gram determinants can be used in order to

trade some of the d-dimensional tensor integrals originating from the residues with lower

rank integrals in higher dimensions.

3.3 Integrate and divide

In the three-step algorithm divide-integrate-divide, outlined in the previous section, the in-

tegration over the transverse angles is performed after the integrand reduction, namely after

determining the residues. This first option follows the standard integrand reduction pro-

cedure, where the spurious monomials are present in the decomposed integrand, although

they do not contribute to the integrated amplitude. Alternatively, if the dependence of

the numerators on the loop momenta is known, then the integration over the orthogonal

angles can be carried out before the reduction. Within this second option, which we can

refer to as integrate-divide, after eliminating the orthogonal angles from the integrands,

the residues resulting from the polynomial divisions contain only non-spurious monomials.

In order to integrate before the reduction, the dependence of the numerator on the loop

momenta should be either known analytically or reconstructed semi-analytically [47, 48].

Such situation may indeed occur when the integrands to be reduced are built by automatic

generators or they emerge as quotients of the subsequent divisions.

3.4 One-loop adaptive integrand decomposition

We hereby apply the adaptive integrand decomposition algorithm in order to determine an

alternative parametrization of one-loop residues. As an exceptional property of one-loop

integrands, we find that by working with τ variables, all unitarity cuts are reduced to

zero-dimensional systems. Moreover, we show that the last step of the algorithm, i.e. the

further polynomial division after angular integration over the transverse space, provides an

implementation of the dimensional recurrence relations at the integrand level.

One-loop residues in d = 4− 2ε. A general one-loop integral with n external legs is

characterized by a set of n denominators,

I
d (1)
i1···in =

∫
ddq

πd/2
Ni1···in

Di1 . . . Din

. (3.16)

– 24 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
4

The integrand depends on five variables which, in the standard d = 4−2ε parametrization,

are identified with

z = {z1, z2, z3, z4, z5} ≡ {x1, x2, x3, x4, µ
2}, (3.17)

where xi are the components of the four-dimensional part of the loop momentum with

respect to a basis {eαi } of massless vectors [16, 25, 27, 49] (one particular definition of such

basis can be found in appendix E.1). The denominators Dik(z) are quadratic in z, whereas,

for any renormalizable theory, the most general numerator is a polynomial of the type

Ni1···in(z) =
∑

~∈J5(n)

α~ z
j1
1 z

j2
2 z

j3
3 z

j4
4 z

j5
5 , (3.18)

with

J5(n) = {~ = (j1, . . . , j5) : j1 + j2 + j3 + j4 + 2j5 ≤ n}. (3.19)

Higher rank numerators, such as the one appearing in effective theories can be treated

in a similar way, along the lines of [15]. The polynomial division of the numerators

Ni1···in(z) modulo the Gröbner bases Gi1...in(z) = {g1(z), g2(z), . . . gn(z)} returns the uni-

versal parametrization of the residues [10, 16, 18],

∆ijklm = c0µ
2,

∆ijkl = c0 + c1x4 + c2µ
2 + c3x4µ

2 + c4µ
4,

∆ijk = c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x3 + c5x

2
3 + c6x

3
3 + c7µ

2 + c8x4µ
2 + c9x3µ

2,

∆ij = c0 + c1x1 + c2x
2
1 + c3x4 + c4x

2
4 + c5x3 + c6x

2
3 + c7x1x4 + c8x1x3 + c9µ

2,

∆i = c0 + c1x1 + c2x2 + c3x3 + c4x4. (3.20)

Many of the terms appearing in (3.20) are spurious, i.e. they vanish upon integration.

Therefore, we can write the decomposition of an arbitrary one-loop amplitude with n

external legs as a linear combinations of master integrals (IRIs), corresponding to the

non-spurious terms of the integrand,

A(1)
n =

n∑
i�l

[
c

(ijlm)
0 I

d (1)
ijlm [1] + c

(ijlm)
2 I

d (1)
ijlm [µ2] + c

(ijlm)
4 I

d (1)
ijlm [µ4]

]
+

n∑
i�l

[
c

(ijl)
0 I

d (1)
ijl [1] + c

(ijl)
7 I

d (1)
ijl [µ2]

]
+

n∑
i�j

[
c

(ij)
0 I

d (1)
ij [1] + c

(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

+ c
(ij)
9 Iij [µ

2]

]
+

k∑
i

c
(i)
0 I

d (1)
i [1] (3.21a)

– 25 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
4

=
n∑
i�l

[
c

(ijlm)
0 I

d (1)
ijlm [1] + c

(ijlm)
2 (−ε)Id+2 (1)

ijlm [1] + c
(ijlm)
4 (−ε)(1− ε)Id+4 (1)

ijlm [1]
]

+
n∑
i�l

[
c

(ijl)
0 I

d (1)
ijl [1] + c

(ijl)
7 (−ε)Id (1)

ijl [1]
]

+

n∑
i�j

[
c

(ij)
0 I

d (1)
ij [1] + c

(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]+

+ c
(ij)
9 (−ε)Iij [1]

]
+

k∑
i

c
(i)
0 I

d (1)
i [1], (3.21b)

where, in the second equality, we have identified µ2 numerators with higher-dimensional

integrals [50].

The particular simple form of the five-point residue appearing eq. (3.20) is due to the

fact that the quintuple cut Di(z) = · · · = Dm(z) = 0 is a maximum-cut which admits a

unique solution (ns = 1). Hence, ∆ijklm is parametrized by a single coefficient, which is

conventionally chosen as the one corresponding to the µ2 numerator.

One-loop residues in d = d‖ + d⊥. In d = 4 − 2ε dimensions the maximum-cut

theorem can only fix the parametric form of the residue of the quintuple cut, since the cut

conditions for all lower-point integrands form an underdetermined system for the variables

z. However, all these integrands have n ≤ 4 external legs and we can introduce the

d = d‖ + d⊥ parametrization in terms of the variables

z = {x‖,x⊥, λ2}, (3.22)

where x‖ and x⊥ are defined according to the four-dimensional basis given in appendix E.2.

In this way, the n denominators depend on the subset of variables

τ = {x‖, λ2} (3.23)

containing exactly n elements. Since, as explained at the end of section 2.2, these variables

can be written as combinations of denominators via linear relations, and because the cut

Di1(τ ) = · · · = Din(τ ) = 0 with n ≤ 4 is a maximum-cut, the corresponding set of cut

equations is equivalent to a determined linear system and therefore has a single solution

(ns = 1), which constrains all τ variables. This means that we are in the Shape Lemma

position and, as implied by the discussion at the end of section 3.1, a Gröbener basis

Gi1...in(τ ) = {g1(τ ), g2(τ ), . . . gn(τ )} of Ji1...in is found in the linear form

gi(τ ) = αi + τi, i = 1, . . . , n. (3.24)

Hence, according to the maximum-cut theorem, the residues of all cuts with n ≤ 4 are

constant in τ .

Although it is independent of τ , ∆i1···in can still depend on the 4−d‖ four-dimensional

transverse variables, which are left unconstrained by the cut conditions. However, the
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parametrization of the residue is terms of x⊥ is completely fixed by the renormalizability

condition,

∆i1···in(x⊥) =
∑

~ ∈ J4−d‖
(n)

α~ x
j1
⊥ 1x

j2
⊥ 2 . . . x

j4−d‖
⊥ 4−d‖ , n ≤ 4, (3.25)

with J4−d‖(n) = {~ = (j1, . . . , j4−d‖) : j1 + j2 + · · · + j4−d‖ ≤ n}. Accordingly, from

the polynomial division of the numerators modulo Gi1...in(τ ), with lexicographic ordering

λ2 ≺ x⊥, we find a parametric expression of the residues alternative to (3.20),

∆ijklm = c0µ
2,

∆ijkl = c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x

4
4,

∆ijk = c0 + c1x3 + c2x4 + c3x
2
3 + c4x3x4 + c5x

2
4 + c6x

3
3 + c7x

2
3x4 + c8x3x

2
4 + c9x

3
4,

∆ij = c0 + c1x2 + c2x3 + c3x4 + c4x
2
2 + c5x2x3 + c6x2x4 + c7x

2
3 + c8x3x4 + c9x

2
4,

∆ij |p2=0 = c0 + c1x1 + c2x3 + c3x4 + c4x
2
1 + c5x1x3 + c6x1x4 + c7x

2
3 + c8x3x4 + c9x

2
4,

∆i = c0 + c1x1 + c2x2 + c3x3 + c4x4. (3.26)

We observe that the two-point integrand with massless external momentum p2 = 0, whose

residue is indicated as ∆ij |p2=0, is the only exception to (3.25), since the residue depends

on the components x1 parallel to p. In fact, due to the reduced dimension of the trans-

verse space, the denominators depend on three variables τ = {x1, x2, λ
2} so that, in this

degenerate kinematic configuration, the double cut is not maximum any more.

The residues (3.26) can now be integrated over the transverse directions by means

of the orthogonality relation (2.23) for Gegenbauer polynomials, which removes spurious

terms and reduce non-vanishing contributions to powers of λ2. Hence, by making use of

the results collected in appendix B, we obtain the decomposition of a generic one-loop

amplitude in terms of IRIs,

A(1)
n =

n∑
i�l

[
c

(ijlm)
0 I

d (1)
ijlm [1] + c

(ijlm)
2

1

1− 2ε
I
d (1)
ijlm [λ2] + c

(ijlm)
4

3

(1− 2ε)(3− 2ε)
I
d (1)
ijlm [λ4]

]

+

n∑
i�l

[
c

(ijl)
0 I

d (1)
ijl [1] + c

(ijl)
7

1

2− 2ε
I
d (1)
ijl [λ2]

]

+

n∑
i�j

[
c

(ij)
0 I

d (1)
ij [1] + c

(ij)
1 I

d (1)
ij [((q + pi) · e2)] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]+

+ c
(ij)
9

1

3− 2ε
I
d (1)
ij [λ2]

]
+

k∑
i

c
(i)
0 I

d (1)
i [1] (3.27a)

– 27 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
4

=
n∑
i�l

[
c

(ijlm)
0 I

d (1)
ijlm [1] + c

(ijlm)
2

1

2
I
d+2 (1)
ijlm [1] + c

(ijlm)
4

3

4
I
d+4 (1)
ijlm [1]

]

+
n∑
i�l

[
c

(ijl)
0 I

d (1)
ijl [1] + c

(ijl)
7

1

2
I
d+2 (1)
ijl [1]

]

+

n∑
i�j

[
c

(ij)
0 I

d (1)
ij [1] + c

(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

+ c
(ij)
9

1

2
I
d+2 (1)
ij [1]

]
+

k∑
i

c
(i)
0 I

d (1)
i [1], (3.27b)

where, in the second equality, we have identified monomials in λ2 in the numerator with

higher-dimensional integrals.

The number of IRIs in which the amplitude is decomposed can be further reduced by

observing that, due to the choice of lexicographic ordering (which allows us to express λ2

as a function of x‖ i), λ
2 is reducible, i.e. it can be rewritten, modulo a constant remainder,

in terms of denominators. Therefore, all higher-dimensional integrals appearing in (3.27b)

are reduced to a combination of the corresponding scalar integral in d-dimensions and

integrals with fewer denominators. As a consequence, this additional polynomial division

can be interpreted an implementation of dimensional recurrence relations at the integrand

level. The final decomposition of the amplitude in terms of the minimal set IRIs reads

A(1)
n =

n∑
i�l

c
(ijlm)
0 (ε)I

d (1)
ijlm [1] +

n∑
i�l

c
(ijl)
0 (ε)I

d (1)
ijl [1]

+

n∑
i�j

[
c

(ij)
0 (ε)I

d (1)
ij [1] + c

(ij)
1 I

d (1)
ij [(q + pi) · e2] + c

(ij)
2 I

d (1)
ij [((q + pi) · e2)2]

]
+

n∑
i

c
(i)
0 I

d (1)
i [1]. (3.28)

It should be remarked that, although we have used similar a labelling, the coefficients the

master integrals appearing (3.28) are different from the ones in (3.27a). Moreover, in (3.28),

these coefficients can present an explicit dependence on the space-time dimension, due to

the angular prefactors produced by the integration over the transverse variables. We give a

summary of the results obtained from the application of the adaptive integrand reduction

algorithm at one loop in table 1.

3.5 Two-loop adaptive integrand decomposition

In this section, we use the adaptive integrand decomposition algorithm in order to deter-

mine the universal parametrization of the residues appearing in the integrand representa-

tion (3.2) of the three eight-point topologies shown in figure 4a–4c. The results hereby

presented are valid for arbitrary (internal and external) kinematic configuration.

At two-loops, we generally deal with r denominators Feynman integrals of the type

I
d (2)
i1···ir =

∫
ddq1d

dq2

πd
Ni1···ir(q1, q2)

Di1 . . . Dir

, (3.29)
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Ii1 ··· in τ ∆i1 ··· in ∆int
i1 ··· in ∆

′
i1 ··· in

Ii1i2i3i4i5
1 − −

{x1, x2, x3, x4, µ
2} {1} − −

Ii1i2i3i4
5 3 1

{x1, x2, x3, λ
2} {1, x4, x

2
4, x

3
4, x

4
4} {1, λ2, λ4} {1}

Ii1i2i3
10 2 1

{x1, x2, λ
2} {1, x3, x4, x

2
3, x3x4, x

2
4, x

3
3, x

2
3x4, x3x

2
4, x

3
4} {1, λ2} {1}

Ii1i2
10 2 1

{x1, λ
2} {1, x2, x3, x4, x

2
2, x2x3, x2x4, x

2
3, x3x4, x

2
4} {1, λ2} {1}

Ii1i2
10 4 3

{x1, x2, λ
2} {1, x1, x3, x4, x

2
1, x1x3, x1x4, x

2
3, x3x4, x

2
4} {1, x1, x

2
1, λ

2} {1, x1, x
2
1}

Ii1
5 1 −

{λ2} {1, x1, x2, x3, x4} {1} −

Table 1. Residue parametrization for irreducible one-loop topologies. In the first column, τ labels

the variables the denominators depend on. ∆i1 ··· in indicates the residue obtained after the polyno-

mial division of an arbitrary n-rank numerator and ∆int
i1 ··· in the result of its integral over transverse

directions. ∆
′

i1 ··· in corresponds to the minimal residue obtained from a further division of ∆int
i1 ··· in .

In the figures, wavy lines indicate massless particles, whereas solid ones stands for arbitrary masses.

(a) IP12345678910 11. (b) INP1
12345678910 11.

(c) INP2
12345678910 11.

Figure 4. Maximum-cut topologies.
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with r1 denominators depending on qα1 only, r2 denominators depending on qα2 only and

r12 = r − r1 − r2 depending on both loop momenta. The general numerator of a non-

factorized integrand (r12 6= 0) of a renormalizable theory is given by a polynomial of the

type

Ni1···ir(z) =
∑

~∈J11(s1,s2,stot)

α~ z
j1
1 z

j2
2 . . . zj1111 , (3.30)

where z = {z1, . . . , z11} labels the full set of loop variables (which will be later specified

according to the number of external legs) and J11(s1, s2, stot) denotes the vectors of integers

~ = (j1, . . . , j11) satisfying the renormalizability constraints

4∑
i=1

ji + 2j9 + j11 ≤ s1, with s1 = r1 + r12 (3.31a)

8∑
i=5

ji + 2j10 + j11 ≤ s2, with s2 = r2 + r12 (3.31b)

8∑
i=1

ji + 2(j9 + j10 + j11) ≤ s12, with stot = r1 + r2 + r12 − 1. (3.31c)

As we have already observed in the one-loop case, the present discussion can be easily

extended to the case of higher rank numerators. Depending on the number of external

legs, we determine the residue parametrization in two different ways:

• For the parent topologies IP
1···11, INP1

1···11 and INP2
1···11, as well as for all subtopologies with

n > 4 four external legs, we use the d = 4 − 2ε parametrization. Accordingly, we

define z as

z = {x11, . . . x41, x12, . . . , x42, µ11, µ22, µ12}, (3.32)

where {x1 i, . . . , x4 i} are the components of the four-dimensional vector qα[4] i with

respect to the basis defined in appendix E.1. In these cases, the denominators depend

on the full set of variables z and the parametric form of the residues is determined

through a single polynomial division of Ni1···ir(z) modulo a Gröebner basis Gi1...ir(z)

of the ideal generated by the denominators. The results obtained for the eight-

seven- six- and five-point integrands are summarized in tables 2–3. We observe that,

according to the maximum-cut theorem, the residues of the master topologies IP
1···11,

INP1
1···11 and INP2

1···11 contain one single coefficient, since the zero-dimensional systems

D1(z) = · · · = D11(z) = 0 admit only one solution.

• For any subdiagram with n ≤ 4 external legs, we introduce the d = d‖ + d⊥
parametrization and define z as

z = {x‖ 1,x⊥ 1,x‖ 2,x⊥ 2, λ11, λ22, λ12}, (3.33)

where x‖ i = {x1 i, . . . , xd‖ i} are the components of the vector qα‖ i lying in the

space spanned by the external momenta, and x⊥ i = {xd‖+1 i, . . . , x4 i} are the four-

dimensional components of the transverse vector λαi (see appendix E.2 for the explicit
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definition of the basis). In these cases, the denominators depend on the reduced set

of variables

τ = {x‖ 1,x‖ 2, λ11, λ22, λ12}, τ ⊂ z, (3.34)

and we can go through the full adaptive integrand decomposition algorithm described

in section 3.2. We refer the reader to the appendix C for the most relevant formulae

regarding the d = d‖ + d⊥ parametrization of two-loop integrals and the integration

over transverse variables. It should be noted that, differentlt from the one-loop

case, the n-ple cut Di1(τ ) = · · · = Dir(τ ) = 0 is, generally, non-maximum, since

it does not constrain all variables τ . However, the choice of lexicographic ordering

λij ≺ x⊥ i guarantees that the final residues ∆
′
i1···ir(x‖ i) appearing in the integrand

decomposition formula (3.2) depend on the components of loop momenta parallel to

the external kinematics only. All results are summarized in tables 4–7.

Finally, in the case of an integrand factorized into two one-loop diagrams, respectively with

n1 and n2 independent external legs, we can assume, as discussed in section 2.5.1, the most

general numerator to have the form

N fact
i1···ir(z1, z2) =

∑
~1 ∈ J5(n1)
~2 ∈ J5(n2)

α~1,~2z
j11
11 . . . zj5151 z

j12
12 . . . zj5252 , (3.35)

where zi = {z1i, . . . , z5i} labels the set of variables parametrizing qi and J5(ni) is defined

by (3.19). In this way, we can introduce the d = d‖ + d⊥ parametrization independently

in any of the two loops, and then proceed with the adaptive integrand decomposition

algorithm. As expected, the resulting residues, which are shown in table 8, are simply

given by the product of the corresponding one-loop residues collected in table 1.

We would like to mention that the residues ∆i1···ir(x‖) of non planar topologies, which

are written in terms of a minimal set of physical components, produce an apparent vio-

lation of one of the renormalizability conditions (3.31a)–(3.31b) satisfied by the original

numerators. This effect is due to the fact that, when the cut conditions are imposed, the

presence of a number r12 > 1 of denominators depending both on q1 and q2 implies the

existence of linear relations between the physical components of the two loop momenta.

This means that, up to subdiagrams contributions, the residues can always be rewritten

in terms of a larger number of variables, in such a way to satisfy all renormalizabilty

constraints (3.31a)–(3.31c).

3.5.1 Example: the four-point residue for A2−loop(g+1 , g
−
2 , g

+
3 , g

−
4 )

As an explicit application of the adaptive integrand decomposition, we go back to the

helicity amplitude A2−loop(p+
1 , p

−
2 , p

+
3 , p

−
4 ) discussed in section 2.6.1 and we compute the

residue of the double-box topology. We start from the full numerator, which contains 2025

terms up to rank four with respect to each loop momentum and rank six in total and we

determine the residue three steps:

1) Divide: an easy way to perform the first division step of the procedure consists in

observing that, since denominators are independent of x4j , all coordinates xij with i ≤ 3
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Ii1···in ∆i1···ir

IP
12345678910 11

1

{1}

INP1
12345678910 11

1

{1}

INP2
12345678910 11

1

{1}

IP
2345678910 11

6

{1, x41}

INP1
2345678910 11

10

{1, x42}

INP2
1234578910 11

6

{1, x42}

INP2
1234678910 11

10

{1, x42}

IP
234678910 11

15

{1, x31, x41}

IP
234578910 11

33

{1, x41, x42}

INP1
234578910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
234678910 11

45

{1, x41, x42}

Ii1···ir ∆i1···ir

IP
1245678910 11

6

{1, x41}

INP1
1245678910 11

10

{1, x42}

INP1
1234568910 11

6

{1, x42}

INP2
1245678910 11

10

{1, x42}

IP
245678910 11

15

{1, x31, x41}

IP
123478910 11

33

{1, x41, x42}

INP1
124568910 11

39

{1, x41, x42}

INP1
123456810 11

15

{1, x32, x42}

INP2
124678910 11

45

{1, x41, x42}

INP1
2478910 11

20

{1, x21, x31, x41}

INP1
23478910 11

76

{1, x31, x41, x42}

INP1
24578910 11

116

{1, x41, x32, x42}

INP1
12457810 11

80

{1, x31, x41, x42}

Table 2. Residue parametrization for irreducible eight- and seven-point two-loop topologies.

Denominators depend on the variables z = {x11, x21, x31, x41, x12, x22, x32, x42, µ11, µ22, µ12}. In

the second column we list the number of monomials of each residue and the set of variables

appearing in it.
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Ii1···ir ∆i1···ir

IP
135678910 11

15

{1, x31, x41}

IP
124567910 11

62

{1, x41, x42}

INP1
23568910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
135678910 11

45

{1, x41, x42}

IP
25678910 11

20

{1, x21, x31, x41}

IP
23568910 11

76

{1, x31, x41, x42}

INP1
25678910 11

80

{1, x31, x41, x42}

INP1
24568910 11

116

{1, x41, x32, x42}

IP
3678910 11

15

{1, x11, x21, x31, x41}

IP
2578910 11

94

{1, x21, x31, x41, x42}

IP
2357910 11

160

{1, x31, x41, x32, x42}

INP1
2457910 11

185

{1, x31, x41, x32, x42}

Ii1···ir ∆i1···ir

IP
15678910 11

20

{1, x21, x31, x41}

IP
13567910 11

76

{1, x31, x41, x42}

INP1
15678910 11

80

{1, x31, x41, x42}

IP
1678910 11

15

{1, x11, x21, x31, x41}

INP1
13568910 11

116

{1, x31, x32, x42}

IP
1467910 11

94

{1, x21, x31, x41, x42}

IP
1678911

66

{1, x11, x21, x31, x41, x42}

IP
1256910 11

160

{1, x31, x41, y32, x42}

INP1
1357910 11

185

{1, x31, x41, x32, x42}

IP
1256911

180

{1, x11, x31, x41, x32, x42}

INP1
246910 11

246

{1, x31, x41, x22, x32, x42}

Table 3. Residue parametrization for irreducible six- and five-point two-loop topologies. Denomi-

nators depend on the variables z = {x11, x21, x31, x41, x12, x22, x32, x42, µ11, µ22, µ12}. In the second

column we list the number of monomials of each residue and the set of variables appearing in it.

can be written in terms of differences of denominators and irreducible scalar products

by solving a linear system of equation. Moreover, the variables λij can also be easily

written as combinations of denominators and scalar products by solving simple linear

relations. After this manipulations, the numerator on the cut (i.e. imposing Di = 0) is

given by a sum of 70 vanishing terms in the components of the four dimensional loop

momenta x = {x‖,x⊥}. The expression of the integrand on the cut found agreement

with the results of [8].

2) Integrate: after integration over the transverse directions, the numerator acquires

again a dependence on λij and it is expressed a sum of 39 non-vanishing terms in the

variables x={x‖, λij}, whose coefficient now also depend on the dimensional regulator d.
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Ii1···ir ∆i1···ir ∆int
i1···ir ∆′i1···ir

IP
1567910 11

94 53 10

{1, x21, x31, x41, x42} {1, x21, x31, λ11, λ22, λ12} {1, x21, x31}

IP
12256910 11

160 93 22

{1, x31, x41, x32, x42} {1, x31, x32, λ11, λ22, λ12} {1, x31, x32}

INP1
1356910 11

184 105 25

{1, x31, x42, x32, x42} {1, x31, x32, λ11, λ22, λ12} {1, x31, x32}

IP
1356811

180 101 39

{1, x31, x41, x22, x32, x42} {1, x31, x22, x32, λ11, λ22, λ12} {1, x31, x22, x32}

IP
168910 11

66 35 10

{1, x11, x21, x31, x41, x42} {1, x11, x21, x31, λ11, λ22, λ12} {1, x11, x21, x31}

INP1
246910 11

245 137 55

{1, x31, x41, x21, x32, x42} {1, x31, x22, x32, λ11, λ22, λ12} {1, x31, x22, x32}

IP
36810 11

115 66 35

{1, x31, x41, x12, x22, x32, x42} {1, x31, x12, x22, x32, λ11, λ22, λ12} {1, x31, x12, x22, x32}

IP
136811

180 103 60

{1, x11, x31, x41, x22, x32, x42} {1, x11, x31, x22, x32, λ11, λ22, λ12} {1, x11, x31, x22, x32}

Table 4. Residue parametrization for irreducible four-point two-loop topologies. Denominators de-

pend on the variables τ = {x11, x21, x31, x12, x22, x32, λ11, λ22, λ12}. For every step of the reduction

algorithm, we list the number of monomials of each residues and the set of variables appearing in it.

Ii1···ir ∆i1···ir ∆int
i1···ir ∆′i1···ir

IP
1356911

180 22 4

{1, x31, x41, x22, x32, x42} {1, x22, λ11, λ22, λ12} {1, x22}

INP1
156910 11

240 30 6

{1, x31, x41, x22, x32, x42} {1, x22, λ11, λ22, λ12} {1, x22}

IP
15710 11

180 33 13

{1, x21, x31, x41, x12, x32, x42} {1, x21, x12, λ11, λ22, λ12} {1, x21, x12}

IP
16910 11

115 20 6

{1, x31, x41, x12, x22, x32, x42} {1, x11, x22λ11, λ22, λ12} {1, x12, x22}

IP
3610 11

100 26 16

{1, x11, x21, x31, x41, x22, x32, x42} {1, x11, x21, x22, λ11, λ22, λ12} {x11, x21, x22}

Table 5. Residue parametrization for irreducible three-point two-loop topologies. Denominators

depend on the variables τ = {x11, x21, x12, x22, λ11, λ22, λ12}. For every step of the reduction

algorithm, we list the number of monomials of each residues and the set of variables appearing in it.
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Ii1···ir ∆i1···ir ∆int
i1···ir ∆′i1···ir

IP
15610 11

180 8 1

{1, x21, x31, x41, x22, x32, x42} {1, λ11, λ22, λ12} {1}

IP
1610 11

100 8 3

{1, x11, x21, x31, x4, x22, y3, x42} {1, x11, λ11, λ22, λ12} {1, x11}

IP
1310 11

100 26 16

{1, x11, x21, x31, x41, x12, x32, x42} {1, x11, x21, x12, λ11, λ22, λ12} {1, x11, x21, x12}

IP
210 11

45 9 6

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x12, λ11, λ22, λ12} {1, x11, x12}

IP
210 11

45 18 15

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x21, x12, x22, λ11, λ22, λ12} {1, x11, x22, x21, x22}

Table 6. Residue parametrization for irreducible two-point two-loop topologies. Denominators

depend on the variables τ = {x11, x12, λ11, λ22, λ12} in the case of massive external momenta and

on τ = {x11, x21, x12, x22, λ11, λ22, λ12} in the case of massless one. For every step of the reduction

algorithm, we list the number of monomials of each residues and the set of variables appearing in it.

In the figures, wavy lines indicate massless particles, whereas solid ones stands for arbitrary masses.

Ii1···ir ∆i1···ir ∆int
i1···ir ∆′i1···ir

IP
110 11

45 4 1

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, λ11, λ22, λ12} {1}

Table 7. Residue parametrization for the irreducible one-point two-loop topology. Denominators

depend on the variables τ = {λ11, λ22, λ12}. For every step of the reduction algorithm, we list the

number of monomials of the residue and the set of variables appearing in it.

3) Divide: using the same relations as in the first step, the λij can be expressed in terms

of denominators, completing the final division step, after which the numerator of the

integrand on the cut is expressed as linear combination of 15 terms depending on the

physical directions x‖ left unconstrained by the cut conditions, i.e. on the two irreducible

scalar products (q1 · p4) and (q2 · p1).

Putting everything together, after factoring out a contribution proportional to the tree-

level result by means of some spinor algebra, the gauge invariant decomposition of this cut

(i.e. ignoring contributions proportional to denominators) can be written as

A2−loop(p+
1 , p

−
2 , p

+
3 , p

−
4 )
∣∣∣
cut

= i
〈2 4〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉

(∑
α,β

cα,β I
d (2)
4 [(q1 · p4)α (q2 · p1)β ]

)
,

(3.36)

where the non-vanishing coefficients cα,β only depend on the invariants s12 and s14, as well

as on the dimension d of the loop integration. By putting s12 = 1 and s14 = t for brevity
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Ii1···ir ∆i1···ir ∆int
i1···ir ∆′i1···ir

IP
12345678910

1 − −
{1} − −

IP
1245678910

5 3 1

{1, x41} {1, λ11} {1}

IP
125678910

10 2 1

{1, x31, x41} {1, λ11} {1}

IP
15678910

10 2 1

{1, x21, x31, x41} {1, λ11} {1}

IP
12678910

10 4 3

{1, x11, x31, x41} {1, x11, λ11} {1, x11}

IP
1678910

5 1 −
{1, x11, x21, x31, x41} {1} −

IP
23456789

25 9 1

{1, x41, x42} {1, λ11, λ22} {1}

IP
2356789

50 6 1

{1, x31, x41, x42} {1, λ11, λ22} {1}

IP
256789

50 6 1

{1, x21, x31, x41, x42} {1, λ11, λ22} {1}

IP
236789

50 12 3

{1, x11, x31, x41, x42} {1, x11, λ11, λ22} {1, x11}

IP
26789

25 3 1

{1, x11, x21, x31, x41, x42} {1, λ22} {1}

IP
245689

100 4 1

{1, x31, x42, x32, x42} {1, λ11, λ22} {1}

IP
24689

100 4 1

{1, x21, x31, x41, x32, x42} {1, λ11, λ22} {1}

IP
45689

100 8 3

{1, x11, x31, x41, x32, x42} {1, x11, λ11, λ22} {1, x11}

IP
2689

50 2 1

{1, x11, x21, x31, x41, x32, x42} {1, λ22} {1}

IP
2569

100 4 1

{1, x11, x31, x41, x22, x32, x42} {1, λ11, λ22} {1}

IP
4569

100 8 3

{1, x11, x31, x41, x12, x32, x42} {1, x11, λ11, λ22} {1, x11}

IP
4568

100 16 9

{1, x11, x21, x31, x41, x32, x42} {1, x11, x12, λ11, λ22} {1, x11, x12}

IP
269

50 2 1

{1, x11, x21, x31, x41, x22, x32, x42} {1, λ22} {1}

IP
268

50 4 3

{1, x11, x21, x31, x41, x12, x32, x42} {1, x12, λ22} {x12}

IP
29

25 1 −
{1, x11, x21, x31, x41, x12, x22, x32, x42} {1} −

Table 8. Residue parametrization for factorized two-loop topologies. For every step of the

reduction algorithm, we list the number of monomials of each residues and the set of variables

appearing in it. In the figures, wavy lines indicate massless particles, whereas solid ones stands for

arbitrary masses.
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(the dependence on s12 is unambiguously determined by dimensional analysis) they read

c4,0 = −(ds − 2)(2t+ 1)2

2t(t+ 1)4
−

(ds − 2)
(
2t2 − 2t− 1

)
(d− 3)t(t+ 1)4

− 3(ds − 2)

2(d− 1)(d− 3)t(t+ 1)4
,

c3,1 = − 3(ds − 2)(2t+ 1)

(d− 1)(d− 3)t(t+ 1)4
− (ds − 2)(2t+ 1)

t(t+ 1)4
+

2(ds − 2)
(
4t2 + 2t+ 1

)
(d− 3)t(t+ 1)4

,

c3,0 = −(2t+ 1)(ds − 2)

(t+ 1)3
+

2(ds − 2)

(d− 3)(t+ 1)2
− 3(ds − 2)

(d− 1)(d− 3)(t+ 1)3
,

c2,2 = −
3(ds − 2)

(
8t2 + 8t+ 3

)
2(d− 1)(d− 3)t(t+ 1)4

− 32t2 + 32t+ 3(ds − 2)

2t(t+ 1)4

+
32t3 + 16t2 + 12(ds − 2)t− 16t+ 3(ds − 2)

(d− 3)t(t+ 1)4
,

c2,1 = − 3(ds − 2)(4t+ 3)

(d− 1)(d− 3)(t+ 1)3
− (ds − 2) + 8t+ 4

(t+ 1)3

+
4
(
8t2 + 2(ds − 2)t+ 2t+ 2(ds − 2)− 3

)
(d− 3)(t+ 1)3

,

c2,0 = − 3(ds − 2)t(2t+ 3)

2(d− 1)(d− 3)(t+ 1)3
− (ds − 2)t+ 8t+ 4

2(t+ 1)2

+
16t3 + 7(ds − 2)t2 + 16t2 + 4(ds − 2)t+ 4t+ 4

2(d− 3)(t+ 1)3
,

c1,3 = − 3(ds − 2)(2t+ 1)

(d− 1)(d− 3)t(t+ 1)4
− (ds − 2)(2t+ 1)

t(t+ 1)4
+

2(ds − 2)
(
4t2 + 2t+ 1

)
(d− 3)t(t+ 1)4

,

c1,2 = − 3(ds − 2)(4t+ 3)

(d− 1)(d− 3)(t+ 1)3
− (ds − 2) + 8t+ 4

(t+ 1)3

+
4
(
8t2 + 2(ds − 2)t+ 2t+ 2(ds − 2)− 3

)
(d− 3)(t+ 1)3

,

c1,1 = −2(2t+ 1)

(t+ 1)2
− 3(ds − 2)t(4t+ 3)

(d− 1)(d− 3)(t+ 1)3
,

+
32t3 + 4(ds − 2)t2 + 32t2 + 7(ds − 2)t+ 2t+ 2

(d− 3)(t+ 1)3
,

c1,0 = − 3(ds − 2)t2

(d− 1)(d− 3)(t+ 1)2
+

(
8t2 + (ds − 2)t+ 6t+ 2

)
t

(d− 3)(t+ 1)2
− 2t

t+ 1
,

c0,4 = −(ds − 2)(2t+ 1)2

2t(t+ 1)4
−

(ds − 2)
(
2t2 − 2t− 1

)
(d− 3)t(t+ 1)4

− 3(ds − 2)

2(d− 1)(d− 3)t(t+ 1)4
,

c0,3 = −(2t+ 1)(ds − 2)

(t+ 1)3
+

2(ds − 2)

(d− 3)(t+ 1)2
− 3(ds − 2)

(d− 1)(d− 3)(t+ 1)3
,

c0,2 = − 3(ds − 2)t(2t+ 3)

2(d− 1)(d− 3)(t+ 1)3
− (ds − 2)t+ 8t+ 4

2(t+ 1)2

+
16t3 + 7(ds − 2)t2 + 16t2 + 4(ds − 2)t+ 4t+ 4

2(d− 3)(t+ 1)3
,

c0,1 = − 3(ds − 2)t2

(d− 1)(d− 3)(t+ 1)2
+

(
8t2 + (ds − 2)t+ 6t+ 2

)
t

(d− 3)(t+ 1)2
− 2t

t+ 1
,
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c0,0 = − 3(ds − 2)t3

4(d− 1)(d− 3)(t+ 1)2
+

(2t+ 1)t2

(d− 3)(t+ 1)
− t

2
, (3.37)

where ds is the number of dimensions of the internal gluons, i.e. ds = d in the ’t Hooft-

Veltman scheme and ds = 4 in the four-dimensional helicity scheme. The integrals appear-

ing on the r.h.s. of eq. (3.36), which only depend on the momenta defined by the external

kinematic, can then be reduced to a minimal set of master integrals by means of traditional

methods such as integration by parts. It is worth noticing that, while the original integrand

had terms up to total rank six in the loop momenta, after the reduction the maximum rank

is reduced down to four.

4 Conclusions

We presented the integrand reduction of dimensionally regulated integrals in the parallel

and orthogonal space, where the number of space-time dimensions d = 4−2ε is decomposed

as d = d‖ + d⊥. According to the external topology of each diagram, characterized by the

number n of legs, the parallel space is spanned by the external momenta, d‖ = n− 1, while

the orthogonal space is spanned by the complementary directions. For diagrams with a

number of legs n > 4, the orthogonal space is generated by the regulating directions,

d⊥ = −2ε, while for n ≤ 4, it embeds also the four-dimensional complement to the parallel

space, namely d⊥ = 5− n− 2ε.

Owing to the representation of Feynman integrals in parallel and orthogonal space,

numerators and denominators of integrands with n ≤ 4 appear to depend on different

sets of variables, since the former can depend on transverse angles which are absent from

the latter. Therefore, the integration over the subset of transverse variables which do not

appear in the denominators can be carried out, before any reduction, simply by employing

the orthogonality relation of Gegenbauer polynomials.

Because of the reduced number of variables appearing in the denominators of the

diagrams with n ≤ 4 legs, the integrand reduction algorithm, which is based on the mul-

tivariate polynomial division, is simplified. In particular, the Gröbner bases generated by

the denominators are linear in the variables reduced by the division algorithm, and the

multivariate division is reduced to a mere substitution of the solutions of a set of linear

equations, which is a consequence of the separation of the physical directions from the

extra-dimensional ones. Moreover, the residues, namely the remainders of the polynomial

divisions, present a novel, simpler structure. If the integration over the orthogonal di-

rections is performed before the reduction, then the residues contain only monomials that

correspond to non-vanishing integrals. On the contrary, if the polynomial division is applied

to the complete numerator, the residues will contain also spurious monomials. In the latter

case, the integration of the decomposed integrand over the transverse directions by means

of Gegenbauer polynomials automatically detects and annihilates the spurious terms.

The outcome of the proposed algorithm is the decomposition of multiloop amplitudes

in terms of a set of integrals which, beside the scalar ones, contains tensor structures

corresponding to irreducible scalar products between loop momenta and external momenta.

These integrals depend on the parallel directions and on the lengths of the transverse
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vectors only. We have shown that the integration over the transverse angles, which can be

systematically implemented by using Gegenbauer polynomials, plays an important role in

eliminating the superfluous degrees of freedom of multiloop integrals any time that a certain

subset of integration variables do not appear in the denominators. We have discussed how,

in the case of factorized diagrams and ladder topologies, such integration can be applied,

besides to the transverse angles, to a larger number of variables. In addition, we have shown

that the integration over the transverse directions leads to integrals which can be subject

to additional polynomial divisions, which in some cases correspond to dimension-shifting

recurrence relations implemented at the integrand level.

We have revisited the one-loop integrand decomposition and we have shown that it

is completely determined by the maximum-cut theorem in different dimensions. We have

also considered the complete reduction of two-loop planar and non-planar integrals for arbi-

trary kinematics, classifying the corresponding residues and identifying the set of integrals

contributing to the amplitude. We have discussed how the whole algorithm can be simply

extended to higher loops, by giving explicit examples of four-point integrals at three loops.

The dependence of the denominators, hence of the cut-conditions, on a subset of vari-

ables determined by the number of legs suggested us to introduce the concept of adaptive

cuts. We believe that the idea presented in this article of cutting diagrams in different

space-time dimensions, according to the topology under consideration, can be applied, in

general, to any unitarity-based algorithm.

It is known that the number of integrals emerging from the integrand reduction is not

minimal. In fact, because of the properties of dimensional regularization, the number of

integrals appearing in the amplitude decomposition can be further reduced by applying

integration-by-parts identities and ensuing relations. We believe that novel reduction al-

gorithms, explicitly built for decomposing integrals that depend on parallel directions and

on the lengths of the transverse vectors, may lead to simplified integration-by-parts solving

strategies.

As it stands, the proposed variant of a simplified integrand reduction algorithm can

be used in tandem, on the one side, with automatic diagram generators and, on the other

side, with codes dedicated to the automatic integrals evaluation by means of numerical or

semi-analytical routines.
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A Spherical coordinates for multiloop integrals

In this appendix we give a derivation the d = d‖ + d⊥ representation (2.16) of multiloop

Feynman integrals,

Id (`)
n [N ] =

∫ (∏̀
1=1

ddqi

πd/2

)
N (qi)∏
j Dj(qi)

, n ≤ 4, (A.1)

presented in section 2. We provide explicit formulae up to three loops and we show how

these results can be extended to higher orders. We start by studying the properties of a set

of auxiliary integrals that we will later identify with the integrals over the transverse space.

• For one-loop calculations, it is useful to consider integrals of the type

I1 =

∫
dmλ1 I1(λ1), (A.2)

where λ1 is a vector of an Euclidean space, whose dimension m is first assumed to

be an integer and the analytically continued to complex values. We suppose λ1 to

be decomposed with respect to an orthonormal basis {vi} as

λ1 =
m∑
i=1

ai1vi. (A.3)

Regardless of the symmetries of the integrand, we can reparametrize I1 in terms of

spherical coordinates in m dimensions which, being {vi} orthonormal, are defined by

the well-known change of variables

a11 =
√
λ11 cos θ11,

· · ·
ak1 =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

· · ·
am1 =

√
λ11
∏m−1
i=1 sin θi1,

(A.4)

where
√
λ11 ∈ [0,∞) and all angles range over the interval [0, π], except for θm−1 1 ∈

[0, 2π]. Hence, by introducing the differential solid angle in M dimensions

dΩM−1 = (sin θ1)M−3dcos θ1(sin θ2)M−4dcos θ2 . . . dθM−1, (A.5)

such that

ΩM−1 =

∫
dΩM−1 =

2π
M
2

Γ
(
M
2

) , (A.6)

we can write (A.2) as

I1 =
1

2

∫ ∞
0

dλ11(λ11)
m−2

2

∫
dΩm−1I1(λ11, cos θi1, sin θi1). (A.7)
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If the integrand is rotational invariant, i.e. it depends on λ11 = λ1 · λ1 only, we can

integrate over all angular variables in such a way to obtain, by specifying (A.6) for

M = m

I1 =
π
m
2

Γ
(
n
2

) ∫ ∞
0

dλ11(λ11)
m−2

2 I1(λ11). (A.8)

However, in general one-loop applications, the integrand can show an explicit depen-

dence on a subset of κ < m − 1 components of λ1 which, with a suitable definition

of the reference frame, can always be chosen to correspond to {a11, . . . , aκ1}. In

this way, according to (A.4), the integrand will depend only on Λ = {λ11} and

Θ⊥ = {θ11, . . . , θκ1} while all angles θi1 with i > κ can be still integrated out by

using (A.6) with M = m− κ,

Iκ1 = Ω(m−κ−1)

∫
dΛ

∫
dκΘ⊥I1(Λ,Θ⊥), (A.9)

with∫
dΛ =

∫ ∞
0

dλ11(λ11)
m−2

2 ,

∫
dκΘ⊥ =

κ∏
i=1

∫ 1

−1
d cos θi1(sin θi1)m−i−2. (A.10)

• In two-loop computations, we encounter multiple integrals of type

I2 =

∫
dmλ1d

mλ2I(λ1,λ2), (A.11)

where we suppose the two vectors λi to be decomposed in terms of the same or-

thonormal basis {vi},

λ1 =
m∑
i=1

ai1vi, (A.12a)

λ2 =

m∑
i=1

ai2vi. (A.12b)

Analogously to the one-loop case, we would like to map all integrals associated to

a subset of κ components of each vectors λi into angular integrals. For I1, due

to the choice of an orthonormal basis, this mapping was immediately achieved by

parametrizing the integral in terms of spherical coordinates. In this case, there is an

additional direction, corresponding to λ12 = λ1 · λ2, we need to trace back after the

change of coordinates is performed, since the integrand will generally depend on it.

The simultaneous factorization of the integral over the relative orientation λ12 and

over all relevant components of the two vectors can be obtained by expressing λ2 into

a new orthonormal basis {ei}, containing the vector e1 ∝ λ1. From (A.12a) we see

that, indeed, the set of vectors

{v′i} = {λ1,v1, . . . ,vm−1} (A.13)
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is a basis, although it is not an orthogonal one. Nevertheless, we can apply the Gram-

Schimdt algorithm to pass from the arbitrary basis {v′i} to an orthonormal one {ei},
given by

e1 =
u1

|u1|
, u1 = v′1,

ek =
uk
|uk|

, uk = v′k −
k−1∑
j=1

(v′k · ej)ej , k 6= 1. (A.14)

By construction, the first vector of the new basis exactly corresponds to the direction

of λ1. Applying the change of basis to (A.12b), we get

λ2 =
m∑
i=1

bi2ei, (A.15)

where the coefficients {bi2} are related to the components of both λ1 and λ2 with

respect to {vi} by

b12 = λ12√
λ11

b22 = a12λ11−a11λ12√
λ11
√
λ11−a211

· · ·

bk2 =
ak−1 2

(
λ11−

∑k−2
i=1 a

2
i1

)
−ak−1 1

(
λ12−

∑k−2
i=1 ai1bi2

)√
λ11−

∑k−2
i=1 a

2
i1

√
λ11−

∑k−1
i=1 a

2
i1

· · ·
bm2 = am1am−1 2−am−1 1am 2√

a2m1+a2m−1 1

.

(A.16)

Since both λ1 and λ2 are now decomposed in two different but still orthonormal

basis, we can introduce the change of variables

a11 =
√
λ11 cos θ11

· · ·
ak1 =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

· · ·
am1 =

√
λ11
∏m−1
i=1 sin θi1



b12 =
√
λ22 cos θ12

· · ·
bk2 =

√
λ22 cos θk2

∏k−1
i=1 sin θi2

· · ·
bm2 =

√
λ22
∏m−1
i=1 sin θi2

(A.17)

and express the integral I2 into spherical coordinates as

I2 =
1

4

∫ ∞
0

dλ11dλ22(λ11)
m−2

2 (λ22)
m−2

2

∫
dΩ(m−1)dΩ(m−1)I2(λij , cos θij , sin θij).

(A.18)

By combining (A.16) with the transformation (A.17), we immediately see that, as

expected,

λ12 =
√
λ11λ22 cos θ12. (A.19)
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In addition, with some more algebra, we can express back the components of λ2 with

respect to {vi} in terms of the angular variables,
a12 =

√
λ22

(
cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12

)
ai2 =

√
λ22

[
cos θ12 cos θi1

∏i−1
j=1 sin θj1 + cos θi+1 2 sin θi1

∏i
j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1
j=1 sin θj2

(
δik + (1− δik)

∏i−k
l=1 sin θk+l−1 1

)]
, i 6= 1.

(A.20)

In this way, the integral over each component ai1 /∈ {am−1 1, am 1} of λ1 is mapped into

the integral over the angular variable θi1 whereas each component ai2 /∈ {am−1 2, am 2}
of λ2 can be expressed in terms of the angles θj1 with j ≤ i and θj2 with j ≤ i + 1.

Therefore, if we are dealing with and integrand depending on κ < m− 1 components

of both vectors, which we can always choose to correspond to {a11, · · · , aκ1} and

{a12, · · · , aκ2}, we can integrate out all angular variables θi1, j > κ and θi2, j > κ+1.

Hence, if we define

ΘΛ = {θ12},
Θ⊥ = {θ11, . . . , θκ1, θ22, . . . , θκ+1 2}, (A.21)

we can rewrite I2 as

Iκ2 = Ω(m−κ−1)Ω(m−κ−2)

∫
d3Λ

∫
d2κΘ⊥I2(Λ,Θ⊥), (A.22)

with ∫
d3Λ =

∫ ∞
0

dλ11dλ22(λ11)
m−2

2 (λ22)
m−2

2

∫
dΘΛ,∫

dΘΛ =

∫ 1

−1
d cos θ12(sin θ12)m−3,∫

d2κΘ⊥ =

∫ 1

−1

κ∏
i=1

dcos θi1dcos θi+1 2(sin θi1)m−i−2(sin θi+1 2)m−i−3. (A.23)

• For three-loop applications, we consider integrals of the type

I3 =

∫
dmλ1d

mλ2d
mλ3I3(λ1,λ2,λ3) (A.24)

and, as usual, we assume the vectors λi to be initially decomposed in terms of the

same orthonormal basis {vi},

λ1 =
m∑
i=1

ai1vi, λ2 =
m∑
i=1

ai2vi, λ3 =
m∑
i=1

ai3vi. (A.25)

When moving to spherical coordinates, we want to keep trace of the three relative

orientations

λ12 = λ1 · λ2, λ23 = λ2 · λ3, λ31 = λ3 · λ1, (A.26)

together with the usual subset of κ components of each λi. The proper change of

variables can be reach in two steps:
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1) First we express the vectors λ2 and λ3 in terms of the basis {ei} defined by

eq. (A.14), which contains the vector e1 ∝ λ1,

λ2 =

m∑
i=1

bi2ei, (A.27a)

λ3 =

m∑
i=1

bi3ei, (A.27b)

where, similarly to (A.16), {bi2} and {bi3} are defined in terms of the components

with respect to the basis {vi} as



b12 = λ12√
λ11

b22 = a12λ11−a11λ12√
λ11
√
λ11−a211

· · ·

bk2 =
ak−1 2

(
λ11−

∑k−2
i=1 a

2
i1

)
−ak−1 1

(
λ12−

∑k−2
i=1 ai1bi2

)√
λ11−

∑k−2
i=1 a

2
i1

√
λ11−

∑k−1
i=1 a

2
i1

· · ·
bm2 = am1am−1 2−am−1 1am2√

a2m1+a2m−1 1

,



b13 = λ13√
λ11

b23 = a13λ11−a11λ13√
λ11
√
λ11−a211

· · ·

bk3 =
ak−1 3

(
λ11−

∑k−2
i=1 a

2
i1

)
−ak−1 1

(
λ13−

∑k−2
i=1 ai1ai3

)√
λ11−

∑k−2
i=1 a

2
i1

√
λ11−

∑k−1
i=1 a

2
i1

· · ·
bm3 = am1am−1 3−am−1 1am3√

a2m1+a2m−1 1

.

(A.28)

2) Then we use the fact that the vectors

e′i = {λ2, e1, . . . , em−1} (A.29)

form a (non-orthogonal) basis which can be orthogonalized by applying the

Gram-Schmidt algorithm in such a way to obtain an orthonormal basis {fi},

f1 =
w1

|w1|
, w1 = e′1,

fk =
wk

|wk|
, wk = e′k −

k−1∑
j=1

(e′k · fj)fj , k 6= 1, (A.30)

whose first element is f1 ∝ λ2, and decompose λ3 as

λ3 =
m∑
i=1

ci3fi, (A.31)

with 

c13 = λ23√
λ22

c23 = b13λ22−b12λ23√
λ22
√
λ22−b212

· · ·

ck3 =
bk−1 3

(
λ22−

∑k−2
i=1 b

2
i2

)
−bk−1 2

(
λ23−

∑k−2
i=1 bi2bi3

)√
λ22−

∑k−2
i=1 b

2
i2

√
λ22−

∑k−1
i=1 b

2
i2

· · ·
cm3 = bm2bm−1 3−bm−1 2bm 3√

b2m2+b2m−1 2

.

(A.32)
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Eqs. (A.25), (A.27a) and (A.31) give us a decomposition of the three vectors λi in

terms of three different but still orthonormal basis. Hence, we can introduce spherical

coordinates

a11 =
√
λ11 cos θ11

· · ·
ak1 =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

· · ·
am1 =

√
λ11
∏m−1
i=1 sin θi1,



b12 =
√
λ22 cos θ12

· · ·
bk2 =

√
λ22 cos θk2

∏k−1
i=1 sin θi2

· · ·
bm2 =

√
λ22
∏m−1
i=1 sin θi2



c13 =
√
λ33 cos θ23

· · ·
ck3 =

√
λ33 cos θk3

∏k−1
i=1 sin θi3

· · ·
cm3 =

√
λ33
∏m−1
i=1 sin θi3

(A.33)

and rewrite I3 as

I3 =
1

8

∫ ∞
0

dλ11(λ11)
m−2

2

∫ ∞
0

dλ22(λ22)
m−2

2

∫ ∞
0

dλ33(λ33)
m−2

2 ×

×
∫
dΩ(m−1)

∫
dΩ(m−1)

∫
dΩ(m−1)I3(λij , cos θij , sin θij). (A.34)

By construction, the relative orientations of between the vectors λi are mapped into

λ12 =
√
λ11λ22 cos θ12,

λ23 =
√
λ22λ33 cos θ13,

λ31 =
√
λ11λ33 (cos θ12 cos θ13 + sin θ12 sin θ13 cos θ23) , (A.35)

and by inverting (A.28) and (A.32) one can obtain the expressions of {ai2} and {ai3}
as polynomials in (sine and cosine of) the angular variables. In particular, one can

verify that, as in all previous cases, each integral over ai1 /∈ {am−1 1, am 1} is mapped

into the integral over the angular variable θi1 and, as we have seen for I2, each

component ai2 /∈ {am−1 2, am 2} can be expressed in terms of the angles θj1 with j ≤ i
and θj2 with j ≤ i+ 1. Moreover, each ai3 /∈ {am−1 3, am 3} turns out to be function

of the angles θj1 with j ≤ i, θj2 with j ≤ i + 1 and θj3 with j ≤ i + 2. Therefore,

if we are dealing with and integrand depending on κ < m − 1 components of all λi,

which can be always chosen to correspond to the first κ ones, we can integrate out

all angular variables θi1, j > κ, θi2, j > κ+ 1 and θi3, j > κ+ 2 and obtain

Iκ3 =

3∏
i=1

Ω(m−κ−i)

∫
d6Λ

∫
d3κΘ⊥I3(Λ,Θ⊥), (A.36)

with ∫
d6Λ =

∫ ∞
0

dλ11dλ22dλ33(λ11)
n−2
2 (λ22)

n−2
2 (λ33)

m−2
2

∫
d3ΘΛ,∫

d3ΘΛ =

∫ 1

−1
dcos θ12dcos θ13dcos θ23(sin θ12)n−3(sin θ12)m−3(sin θ23)n−4,∫

d3κΘ⊥ =

∫ 1

−1

κ∏
i=1

d cos θi1d cos θi+1 2d cos θi+2 3×

× (sin θi1)m−i−2(sin θi+1 2)m−i−3(sin θi+2 3)m−i−4. (A.37)
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• It is now clear how integrals I` involving a number ` of vectors λi,

I` =

∫ ∏̀
i=1

dmλiI`(λj), (A.38)

can be treated in order to define a change of variable which maps a subset of κ com-

ponents of each vector as well as their `(` − 1) relative directions λij into angular

variables. Starting from the decomposition of all vectors in terms of a single orthonor-

mal basis, one can define, by recursively applying the Gram-Schimdt algorithm, `−1

auxiliary orthonormal basis carrying information both on κ ≤ m − 1 directions of

the original basis and on the relative orientations λij . After all vectors have been de-

composed into the proper orthonormal basis, we can introduce m-dimensional polar

coordinates and, by inverting the nested chain of transformations, we can obtain the

expression of the components of all λi with respect to {vi} in terms of the angular

variables. The final transformation has the form{
λij → P [λll, sin[ΘΛ], cos[ΘΛ]] , i 6= j

aji → P [λll, sin[Θ⊥,Λ], cos[Θ⊥,Λ]] , j ≤ κ,
(A.39)

where ΘΛ and Θ⊥ label the sets of angular variables

ΘΛ = {θij}, 1 ≤ i < j ≤ `,
Θ⊥ = {θij}, j ≤ i ≤ `+ κ− 1, 1 ≤ j ≤ `. (A.40)

Therefore, if the integrand I` only depends on κ components of each λi, all angles

θij , i ≥ j + κ can be integrated out, producing

Iκ` =
∏̀
i=1

Ω(m−κ−i)

∫
d
`(`−1)

2 Λ

∫
d`κΘ⊥I`(Λ,Θ⊥), (A.41)

where ∫
d
`(`+1)

2 Λ =

∫ ∞
0

∏̀
i=1

dλii(λii)
m−2

2

∫
d
`(`−1)

2 ΘΛ,

∫
d
`(`−1)

2 ΘΛ =

∫ 1

−1

∏̀
1≤i<j≤`

dcos θij(sin θij)
m−2−i,

∫
d`κΘ⊥ =

∫ 1

−1

κ∏
i=1

∏̀
j=1

dcos θi+j−1 j(sin θi+j−1 j)
m−i−j−1. (A.42)

We can now go back to an arbitrary ` loop integral with n ≤ 4 external legs and, after intro-

ducing the qαi = qα‖ i+λαi parametrization of the loop momenta, we can rewrite eq. (A.1) as

Id (`)
n [N ] =

∫ ∏̀
1=1

dn−1q‖ i

πd/2

∫
dd−n−1λi

N (qα‖ i, λ
α
i )∏

j Dj(qα‖ i, λij)
, (A.43)
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where we have explicitly indicated that the denominators depend on the d‖-dimensional

momenta q‖ i and on the scalar products λij between the transverse vectors living in d⊥
dimensions. We now observe that the numerator can additionally depend only on the

four-dimensional components of each λαi ,

N (qα‖ i, λ
α
i ) ≡ N (qα‖ i, λij , xd‖+1 i, . . . , x4i). (A.44)

Therefore, the integral over the transverse vectors λα corresponds to a d⊥-dimensional

integral of the type Iκ` with κ = 4− d‖ so that, by substituting (A.41) in (A.43), we obtain

Id (`)
n [N ] = Ω

(`)
d

∫ ∏̀
i=1

dn−1q‖ i

∫
d
`(`+1)

2 Λ

∫
d(4−d‖)`Θ⊥

N (qi ‖,Λ,Θ⊥)∏
j Dj(q‖ i,Λ)

,

Ω
(`)
d =

∏̀
i=1

Ω(d−4−i)

2π
d
2

, (A.45)

which reproduces (2.16).

B One-loop integrals

In this appendix we collect some useful formulae for one-loop integrals in d = d‖ + d⊥. In

order to make the notation more intuitive, we hereby indicate as qα[d‖]
the component of

the loop momentum lying in the space spanned by the d‖ independent external momenta

and we denote by λα[d⊥] (λ2 ≡ λ[d⊥] · λ[d⊥]) the transverse vector living in d⊥ dimensions.

The explicit definition of the basis vectors {eαi } can be found in appendix E.2.

• Four-point integrals (` = 1, d‖ = 3)

I
d (1)
4 [N ] =

∫
ddq

πd/2
N (q)

D0D1D2D3
, (B.1)

- Loop momentum decomposition, qα = qα[3] + λα[d−3]:

qα[3] =

3∑
i=1

xie
α
i , λα[d−3] = x4e

α
4 + µα, (B.2)

- Denominators:

D0 = q2
[3] + λ2 +m2

0, D1 = (q2
[3] + p1)2 + λ2 +m2

1,

D2 = (q2
[3] + p1 + p2)2 + λ2 +m2

2, D3 = (q2
[3] + p1 + p2 + p3)2 + λ2 +m2

3, (B.3)

- Transverse variable:

x4 = λ cos θ1, (B.4)

- d = d‖ + d⊥ parametrization

I
d (1)
4 [N ] =

1

π2Γ
(
d−4

2

) ∫ d3q[3]

∫ ∞
0
dλ2(λ2)

d−5
2

∫ 1

−1
dcos θ1(sin θ1)d−6×

×
N (q[3], λ

2, cos θ1)

D0D1D2D3
, (B.5)
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- Transverse tensor integrals:

I
d (1)
4 [x2n4+1

4 ] = 0,

I
d (1)
4 [x2n4

4 ] =
(2n4 − 1)!!∏n4
i=1(d− 5 + 2i)

I
d (1)
4 [λ2n4 ] =

(2n4 − 1)!!

2n4
I
d+2n4 (1)
4 [ 1 ]. (B.6)

• Three-point integrals (` = 1, d‖ = 2)

I
d (1)
3 [N ] =

∫
ddq

πd/2
N (q)

D0D1D2
, (B.7)

- Loop momentum decomposition, qα = qα[2] + λα[d−2]:

qα[2] =

2∑
i=1

xie
α
i , λα[d−2] =

4∑
i=3

xie
α
i + µα, (B.8)

- Denominators:

D0 = q2
[2] + λ2 +m2

0

D1 = (q2
[2] + p1)2 + λ2 +m2

1,

D2 = (q2
[2] + p1 + p2)2 + λ2 +m2

2, (B.9)

- Transverse variables: {
x3 = λ cos θ1

x4 = λ sin θ1 cos θ2,
(B.10)

- d = d‖ + d⊥ parametrization:

I
d (1)
3 [N ] =

1

π2Γ
(
d−4

2

) ∫ d2q[2]

∫ ∞
0

dλ2(λ2)
d−4
2

∫ 1

−1
dcos θ1dcos θ2×

× (sin θ1)d−5(sin θ2)d−6N (q[2], λ
2, {cos θ1, sin θ1, cos θ2})

D0D1D2
, (B.11)

- Transverse tensor integrals:

I
d (1)
3 [xm3

3 xm4
4 ] = 0 if m3 ∨m4 odd,

I
d (1)
3 [x2n3

3 x2n4
4 ] =

∏4
i=3(2ni − 1)!!∏n3+n4

i=1 (d− 4 + 2i)
I
d (1)
3 [λ2(n3+n4) ]

=
4∏
i=3

(2ni − 1)!!

2ni
I
d+2(n3+n4) (1)
3 [ 1 ]. (B.12)

• Two-point integrals with p2 6= 0 (` = 1, d‖ = 1)

I
d (1)
2 [N ] =

∫
ddq

πd/2
N (q)

D0D1
, (B.13)
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- Loop momentum decomposition, qα = qα[1] + λα[d−1]:

qα[1] = x1e
α
1 , λα[d−1] =

4∑
i=2

xie
α
i + µα, (B.14)

- Denominators:

D0 = q2
[1] + λ2 +m2

0, D1 = (q[1] + p)2 + λ2 +m2
1, (B.15)

- Transverse variables: 
x2 = λ cos θ1

x3 = λ sin θ1 cos θ2,

x4 = λ sin θ1 sin θ2 cos θ3,

(B.16)

- d = d‖ + d⊥ parametrization:

I
d (1)
2 [N ] =

1

π2Γ
(
d−4

2

) ∫ dq[1]

∫ ∞
0

dλ2(λ2)
d−3
2

∫ 1

−1
dcos θ1dcos θ2dcos θ3×

× (sin θ1)d−4(sin θ2)d−5(sin θ3)d−6×

×
N (q[1], λ11, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3)

D0D1
, (B.17)

- Transverse tensor integrals:

I
d (1)
2 [xm2

2 xm3
3 xm4

4 ] = 0 if m2 ∨m3 ∨m4 odd,

I
d (1)
2 [x2n2

2 x2n3
3 x2n4

4 ] =

∏4
i=2(2ni − 1)!!∏n2+n3+n4

i=1 (d− 3 + 2i)
I
d (1)
2 [λ2(n2+n3+n4) ]

=

4∏
i=2

(2ni − 1)!!

2ni
I
d+2(n2+n3+n4) (1)
2 [ 1 ]. (B.18)

• Two-point integrals with p2 = 0 (` = 1, d‖ = 2)

I
d (1)
2 [N ]|p2=0 =

∫
ddq

πd/2
N (q)

D0D1
, (B.19)

- Loop momentum decomposition, qα = qα[2] + λα[d−2]:

qα[2] =
2∑
i=1

xie
α
i , λα[d−2] =

4∑
i=3

xie
α
i + µα, (B.20)

- Denominators:

D0 = q2
[2] + λ2 +m2

0, D1 = (q2
[2] + p)2 + λ2 +m2

1, (B.21)

- Transverse variables: {
x3 = λ cos θ1

x4 = λ sin θ1 cos θ2,
(B.22)
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- d = d‖ + d⊥ parametrization:

I
d (1)
2 [N ]|p2=0 =

1

π2Γ
(
d−4

2

) ∫ d2q[2]

∫ ∞
0

dλ2(λ2)
d−4
2

∫ 1

−1
dcos θ1(sin θ1)d−5×

×
∫ 1

−1
dcos θ2(sin θ2)d−6N (q[2], λ

2, {cos θ1, sin θ1, cos θ2})
D0D1D2

, (B.23)

- Transverse tensor integrals:

I
d (1)
2 [xm3

3 xm4
4 ]|p2=0 = 0 if m3 ∨m4 odd,

I
d (1)
2 [x2n3

3 x2n4
4 ]|p2=0 =

(2n3 − 1)!!(2n4 − 1)!!∏n3+n4
i=1 (d− 4 + 2i)

I
d (1)
2 [λ2(n3+n4) ]|p2=0

=

4∏
i=3

(2ni − 1)!!

2ni
I
d+2(n3+n4) (1)
3 [ 1 ]|p2=0. (B.24)

• One-point integrals (` = 1, d‖ = 0)

I
d (1)
1 [N ] =

∫
ddq

πd/2
N (q)

D0
, (B.25)

- Loop momentum decomposition, qα = λα[d]:

qα ≡ λα[d] =

4∑
i=1

xαi e
α
i + µα, (B.26)

- Denominator:

D0 = λ2 +m2
0, (B.27)

- Transverse variables: 
x1 = λ cos θ1,

x2 = λ sin θ1 cos θ2,

x3 = λ sin θ1 sin θ2 cos θ3

x4 = λ sin θ1 sin θ2 sin θ3 cos θ4,

(B.28)

d = d‖ + d⊥ parametrization:

I
d (1)
1 [N ] =

1

π2Γ
(
d−4

2

) ∫ ∞
0

dλ2(λ2)
d−2
2

∫ 1

−1
dcos θ1dcos θ2dcos θ3d cos θ4×

× (sin θ2)d−3(sin θ2)d−4(sin θ3)d−5(sin θ4)d−6×

× N (λ2, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3, sin θ3, cos θ4)

D0
, (B.29)
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- Transverse tensor integrals:

I
d (1)
1 [xm1

1 xm2
2 xm3

3 xm4
4 ] = 0 if m1 ∨m2 ∨m3 ∨m4 odd,

I
d (1)
1 [x2n1

1 x2n2
2 x2n3

3 x2n4
4 ] =

∏4
i=1(2ni − 1)!!∏n1+n2+n3+n4

i=1 (d− 3 + 2i)
I
d (1)
2 [λ2(n1+n2+n3+n4) ]

=

3∏
i=1

(2ni − 1)!!

2ni
I
d+2(n1+n2+n3+n4) (1)
2 [ 1 ]. (B.30)

C Two-loop integrals

In this appendix we collect some useful formulae for two-loop integrals in d = d‖ + d⊥.

As for appendix B, we indicate as qα[d‖] i
the component of the loop momenta lying in the

space spanned by the d‖ independent external momenta and we denote by λα[d⊥] i (λij ≡
λ[d⊥] i ·λ[d⊥] j) the transverse vectors living in d⊥ dimensions. The explicit definition of the

basis vectors {eαi } can be found in appendix E.2. In all cases, the relative orientation of

the transverse vectors is defined as

λ12 =
√
λ11λ22 cos θ12. (C.1)

• Four-point integrals (` = 2, d‖ = 3)

I
d (2)
4 [N ] =

∫
ddq1d

dq2

πd
N (q1, q2)

D1 . . . Dn
, (C.2)

- Loop momenta decomposition, qα = qα[3] i + λα[d−3] i:

qα[3] i =

3∑
j=1

xjie
α
j , λα[d−3] i = x4ie

α
4 + µαi , (C.3)

- Transverse variables:{
x41 =

√
λ11 cos θ11

x42 =
√
λ22

(
cos θ11 cos θ12 + sin θ11 sin θ12 cos θ22

)
,

(C.4)

- d = d‖ + d⊥ parametrization:

I
d (2)
4 [N ] =

2d−6

π5Γ(d− 5)

∫
d3q[3] 1d

3q[3] 2

∫ ∞
0
dλ11dλ22(λ11)

d−5
2 (λ22)

d−5
2 ×

×
∫ 1

−1
dcos θ12dcos θ22dcos θ11 (sin θ12)d−6 (sin θ11)d−6(sin θ22)d−7×

× N (q1, q2)

D1 . . . Dn
, (C.5)
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- Transverse tensor integrals (unless otherwise stated, we assume i 6= j):

I
d (2)
4 [x4ix4j ] =

1

(d− 3)
I
d (2)
4 [λij ] ∀i, j,

I
d (2)
4 [x4

4i ] =
3

(d− 3)(d− 1)
I
d (2)
4 [λ2

ii] ∀i, j,

I
d (2)
4 [x3

4ix4j ] =
3

(d− 3)(d− 1)
I
d (2)
4 [λ12λii],

I
d (2)
4 [x2

41x
2
42 ] =

3

(d− 3)(d− 1)
I
d (2)
4 [ 2λ2

12 + λ11λ22],

I
d (2)
4 [x6

4i ] =
15

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λ3

ii],

I
d (2)
4 [x5

4ix4j ] =
1

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λ12λ

2
ii],

I
d (2)
4 [x4

4ix
2
4j ] =

3

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λii(4λ

2
12 + λ11λ22)],

I
d (2)
4 [x3

42x
3
41 ] =

3

(d− 3)(d− 1)(d+ 1)
I
d (2)
4 [λ12(2λ2

12 + 3λ11λ22)]. (C.6)

Moreover, in general we have

I
d (2)
4 [xα4

41x
β4
42 ] = 0, if α4 + β4 = 2n+ 1. (C.7)

• Three-point integrals (` = 2, d‖ = 2)

I
d (2)
3 [N ] =

∫
ddq1d

dq2

πd
N (q1, q2)

D1 . . . Dn
, (C.8)

- Loop momenta decomposition, qα = qα[2] i + λα[d−2] i:

qα[2] i =

2∑
j=1

xjie
α
j , λα[d−2] i =

4∑
j=3

xjie
α
i + µαi , (C.9)

- Transverse variables:

x31 =
√
λ11 cos θ11

x41 =
√
λ11 sin θ11 cos θ21

x32 =
√
λ22

(
cos θ12 cos θ11 + sin θ12 cos θ22 sin θ11

)
x42 =

√
λ22

[
cos θ12 cos θ21 sin θ11 + sin θ12

(
cos θ32 sin θ21 sin θ22

− cos θ11 cos θ21 cos θ22

)]
,

(C.10)

- d = d‖ + d⊥ parametrization:

Id3 [N ] =
2d−6

π5Γ(d− 5)

∫
d2q[2] 1d

2q[2] 2

∫ ∞
0
dλ11dλ22(λ11)

d−4
2 (λ22)

d−4
2 ×

×
∫ 1

−1
dcos θ12dcos θ11dcos θ21dcos θ22dcos θ32 (sin θ12)d−5 (sin θ11)d−5×

× (sin θ21)d−6(sin θ22)d−6(sin θ32)d−7N (q1, q2)

D1 . . . Dn
, (C.11)
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- Transverse tensor integrals (unless otherwise stated, we assume i 6= j):

I
d (2)
3 [x3ix3j ] = I

d (2)
3 [x4ix4j ] =

1

(d− 2)
I
d (2)
3 [λij ] ∀i, j,

I
d (2)
3 [x4

3i ] = I
d (2)
3 [x4

4i ] =
3

(d− 2)d
I
d (2)
3 [λ2

ii],

I
d (2)
3 [x3

3ix3j ] = I
d (2)
3 [x3

4ix4j ] =
3

(d− 2)d
I
d (2)
3 [λiiλij ],

I
d (2)
3 [x2

31x
2
32 ] = I

d (2)
3 [x2

41x
2
42 ] =

1

(d− 2)d
I
d (2)
3 [ 2λ2

12 + λ11λ22],

I
d (2)
3 [x2

3ix
2
4j ] =

1

(d− 3)(d− 2)d
I
d (2)
3 [−2λ2

12 + (d− 1)λ11λ22],

I
d (2)
3 [x2

3ix4ix4j ] = I
d (2)
3 [x2

4ix3ix3j ] =
1

(d− 2)d
I
d (2)
3 [λ12λii],

I
d (2)
3 [x31x41x32x32 ] =

1

(d− 3)(d− 2)d
I
d (2)
3 [ (d− 2)λ2

12 − λ11λ22]. (C.12)

Moreover, in general we have

I
d (2)
3 [xα3

31x
α4
41x

β3
32x

β4
42 ] = 0, if αi + βi = 2n+ 1. (C.13)

• Two-point integrals with p2 6= 0 (` = 2, d‖ = 1)

I
d (2)
2 [N ] =

∫
ddq1d

dq2

πd
N (q1, q2)

D1 . . . Dn
, (C.14)

- Loop momenta decomposition, qα = qα[1] i + λα[d−1] i:

qα[1] i = x1ie
α
1 , λα[d−1] i =

4∑
j=2

xjie
α
i + µαi , (C.15)

- Transverse variables:

x21 =
√
λ11 cos θ11,

x31 =
√
λ11 sin θ11 cos θ21,

x41 =
√
λ11 sin θ11 sin θ21 cos θ31,

x22 =
√
λ22

(
cos θ12 cos θ11 + sin θ12 cos θ22 sin θ11

)
x32 =

√
λ22 [cos θ12 cos θ21 sin θ11 + sin θ12( cos θ32 sin θ21 sin θ22

− cos θ11 cos θ21 cos θ22 )]

x42 =
√
λ22[cos θ12 cos θ31 sin θ11 sin θ21 + sin θ12(cos θ42 sin θ31 sin θ22 sin θ32

− cos θ11 cos θ31 cos θ22 sin θ21 − cos θ21 cos θ31 cos θ32 sin θ22)],

(C.16)
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- d = d‖ + d⊥ parametrization:

Id2 [N ] =
2d−6

π5Γ(d− 5)

∫
dq[1] 1dq[1] 2

∫ ∞
0
dλ11dλ22(λ11)

d−3
2 (λ22)

d−3
2 ×

×
∫ 1

−1
dcos θ12dcos θ11dcos θ21dcos θ31dcos θ22dcos θ32dcos θ42×

× (sin θ12)d−4 (sin θ11)d−4(sin θ21)d−5(sin θ31)d−6(sin θ22)d−5×

× (sin θ32)d−6(sin θ42)d−7N (q1, q2)

D1 . . . Dn
, (C.17)

- Transverse tensor integrals (unless otherwise stated, we assume i 6= j):

I
d (2)
2 [x2ix2j ] = I

d (2)
2 [x3ix3j ] = I

d (2)
2 [x4ix4j ] =

1

(d− 1)
I
d (2)
2 [λij ], ∀i, j,

I
d (2)
2 [x4

2i ] = I
d (2)
2 [x4

3i ] = I
d (2)
2 [x4

3i ] =
3

(d− 1)(d+ 1)
I
d (2)
2 [λ2

ii],

I
d (2)
2 [x3

2ix2j ] = I
d (2)
2 [x3

3ix3j ] = I
d (2)
2 [x3

4ix4j ] =
3

(d− 1)(d+ 1)
I
d (2)
3 [λiiλ12],

I
d (2)
2 [x2

2ix
2
2i ] = I

d (2)
2 [x2

3ix
2
3i ] = I

d (2)
2 [x2

4ix
2
4i ]

=
1

(d− 1)(d+ 1)
I
d (2)
2 [ 2λ2

12 + λ11λ22],

I
d (2)
2 [x2

2ix
2
3i ] = I

d (2)
2 [x2

2ix
2
4i ] = I

d (2)
2 [x2

3ix
2
4i ] =

1

(d− 1)(d+ 1)
I
d (2)
2 [λ2

ii],

I
d (2)
2 [x2

2ix
2
3j ] = I

d (2)
2 [x2

2ix
2
4j ] = I

d (2)
2 [x2

3ix
2
4j ]

=
1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [−2λ2

12 + dλ11λ22],

I
d (2)
2 [x2

2ix3ix3j ] = I
d (2)
2 [x2

2ix4ix4j ] =
1

(d− 1)(d+ 1)
I
d (2)
2 [λ12λii],

I
d (2)
2 [x2

3ix2ix2j ] = I
d (2)
2 [x2

3ix4ix4j ] =
1

(d− 1)(d+ 1)
I
d (2)
2 [λ12λii],

I
d (2)
2 [x2

4ix2ix2j ] = I
d (2)
2 [x2

4ix3ix3j ] =
1

(d− 1)(d+ 1)
I
d (2)
2 [λ12λii],

I
d (2)
2 [x21x31x22x32 ] =

1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [ (d− 1)λ2

12 − λ11λ22],

I
d (2)
2 [x21x41x22x42 ] =

1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [ (d− 1)λ2

12 − λ11λ22],

I
d (2)
2 [x31x41x32x42 ] =

1

(d− 2)(d− 1)(d+ 1)
I
d (2)
2 [ (d− 1)λ2

12 − λ11λ22]. (C.18)

Moreover, in general we have

I
d (2)
2 [xα2

21x
α3
31x

α4
41x

β2
22x

β3
32x

β4
42 ] = 0, if αi + βi = 2n+ 1. (C.19)

• Two-point integrals with p2 = 0 (` = 2, d‖ = 2)

I
d (2)
2 [N ]|p2=0 =

∫
ddq1d

dq2

πd
N (q1, q2)

D1 . . . Dn
, (C.20)
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- Loop momenta decomposition, qα = qα[2] i + λα[d−2] i:

qα[2] i =

2∑
j=1

xjie
α
j , λα[d−2] i =

4∑
j=3

xjie
α
i + µαi , (C.21)

- Transverse variables:

x31 =
√
λ11 cos θ11

x41 =
√
λ11 sin θ11 cos θ21

x32 =
√
λ22

(
cos θ12 cos θ11 + sin θ12 cos θ22 sin θ11

)
x42 =

√
λ22

[
cos θ12 cos θ21 sin θ11+sin θ12

(
cos θ32 sin θ21 sin θ22

− cos θ11 cos θ21 cos θ22

)]
,

(C.22)

- d = d‖ + d⊥ parametrization:

Id3 [N ] =
2d−6

π5Γ(d− 5)

∫
d2q[2] 1d

2q[2] 2

∫ ∞
0
dλ11dλ22(λ11)

d−4
2 (λ22)

d−4
2 ×

×
∫ 1

−1
dcos θ12dcos θ11dcos θ21dcos θ22dcos θ32 (sin θ12)d−5 (sin θ11)d−5×

× (sin θ21)d−6(sin θ22)d−6(sin θ32)d−7N (q1, q2)

D1 . . . Dn
, (C.23)

- Transverse tensor integrals(unless specified we assume i 6= j):

I
d (2)
2 [x3ix3j ]|p2=0 = I

d (2)
2 [x4ix4j ]|p2=0 =

1

(d− 2)
I
d (2)
2 [λij ]|p2=0 ∀i, j,

I
d (2)
2 [x4

3i ]|p2=0 = I
d (2)
2 [x4

4i ]|p2=0 =
3

(d− 2)d
I
d (2)
2 [λ2

ii]|p2=0,

I
d (2)
2 [x3

3ix3j ]|p2=0 = I
d (2)
2 [x3

4ix4j ]|p2=0 =
3

(d− 2)d
I
d (2)
2 [λiiλij ]|p2=0,

I
d (2)
2 [x2

31x
2
32 ]|p2=0 = I

d (2)
2 [x2

41x
2
42 ]|p2=0 =

1

(d− 2)d
I
d (2)
2 [ 2λ2

12 + λ11λ22]|p2=0,

I
d (2)
2 [x2

3ix
2
4j ]|p2=0 =

1

(d− 3)(d− 2)d
I
d (2)
2 [−2λ2

12 + (d− 1)λ11λ22]|p2=0,

I
d (2)
2 [x2

3ix4ix4j ]|p2=0 = I
d (2)
2 [x2

4ix3ix3j ] =
1

(d− 2)d
I
d (2)
2 [λ12λii]|p2=0,

I
d (2)
2 [x31x41x32x32 ]|p2=0 =

1

(d− 3)(d− 2)d
I
d (2)
2 [ (d− 2)λ2

12 − λ11λ22]|p2=0. (C.24)

Moreover, in general we have

I
d (2)
2 [xα3

31x
α4
41x

β3
32x

β4
42 ]|p2=0 = 0, if αi + βi = 2n+ 1. (C.25)

• One-point integrals (` = 2, d‖ = 0)

I
d (2)
1 [N ] =

∫
ddq1d

dq2

πd
N (q1, q2)

D1 . . . Dn
, (C.26)
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- Loop momenta decomposition, qα = λα[d] i:

λα[d] i =

4∑
j=1

xjie
α
i + µαi , (C.27)

- Transverse variables:

x11 =
√
λ11 cos θ11

x21 =
√
λ11 sin θ11 cos θ21

x31 =
√
λ11 sin θ11 sin θ21 cos θ31

x41 =
√
λ11 sin θ11 sin θ21 sin θ31 cos θ41

x12 =
√
λ22

(
cos θ12 cos θ11 + sin θ12 cos θ22 sin θ11

)
x22 =

√
λ22

[
cos θ12 cos θ21 sin θ11 + sin θ12

(
cos θ32 sin θ21 sin θ22

− cos θ11 cos θ21 cos θ22

)]
x32 =

√
λ22[cos θ12 cos θ31 sin θ11 sin θ21 + sin θ12(cos θ42 sin θ31 sin θ22 sin θ32

− cos θ11 cos θ31 cos θ22 sin θ21 − cos θ21 cos θ31 cos θ32 sin θ22)]

x42 =
√
λ22[cos θ12 cos θ41 sin θ11 sin θ21 sin θ31

+ sin θ12(cos θ52 sin θ41 sin θ22 sin θ32 sin θ42

− cos θ11 cos θ41 cos θ22 sin θ21 sin θ31

− cos θ21 cos θ41 cos θ32 sin θ22 sin θ31

− cos θ31 cos θ41 cos θ42 sin θ22 sin θ32)],

- d = d‖ + d⊥ parametrization:

Id1 [N ] =
2d−6

π5Γ(d− 5)

∫ ∞
0
dλ11dλ22(λ11)

d−2
2 (λ11)

d−2
2 ×

×
∫ 1

−1
dcos θ12dcos θ11dcos θ21dcos θ31dcos θ41dcos θ22dcos θ32dcos θ52×

× (sin θ12)d−3 (sin θ11)d−3(sin θ21)d−3(sin θ31)d−5(sin θ41)d−6×

× (sin θ22)d−4(sin θ32)d−5d cos θ42(sin θ42)d−6(sin θ52)d−7N (q1, q2)

D1 . . . Dn
, (C.28)

- Transverse tensor integrals:

I
d (2)
1 [x1ix1j ] = I

d (2)
1 [x2ix2j ] = I

d (2)
1 [x3ix3j ] = I

d (2)
1 [x4ix4j ] =

1

d
I
d (2)
1 [λij ], ∀i, j.

(C.29)

Moreover, in general we have

I
d (2)
1 [xα1

11x
α2
21x

α3
31x

α4
41x

β1
12x

β2
22x

β3
32x

β4
42 ] = 0, if αi + βi = 2n+ 1. (C.30)

D Gegenbauer polynomials

In this appendix we recall the most relevant properties of Gegenbauer polynomials. Gegen-

bauer polynomials C
(α)
n (x) are orthogonal polynomials over the interval [−1, 1] with respect
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to the weight function

ωα(x) = (1− x2)α−
1
2 (D.1)

and they can be defined through the generating function

1

(1− 2xt+ t2)α
=
∞∑
n=0

C(α)
n (x)tn. (D.2)

These polynomials obey the orthogonality relation∫ 1

−1
dx ωα(x)C(α)

n (x)C(α)
m (x) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (D.3)

The explicit expression of the first Gegenbauer polynomials is given by

C
(α)
0 (x) = 1,

C
(α)
1 (x) = 2αx,

C
(α)
2 (x) = −α+ 2α(1 + α)x2,

· · · (D.4)

and it can inverted in order to express arbitrary powers of the variable x in terms of

products of Gegenbauer polynomials,

x =
1

2α
C

(α)
0 (x)C

(α)
1 (x),

x2 =
1

4α2
[C

(α)
1 (x)]2,

x3 =
1

4α2(1 + α)
C

(α)
1 (x)[αC

(α)
0 (x) + C

(α)
2 (x)],

x4 =
1

4α2(1 + α)2
[αC

(α)
0 (x) + C

(α)
2 (x)]2,

· · · (D.5)

These identities can be used in order to evaluate the integral of any polynomial in x,

convoluted with the weight function ωα(x), by means of the orthogonality relation (D.3).

E Four-dimensional basis

In this appendix we provide the explicit definitions of the four-dimensional basis {eαi } used

throughout the text to decompose the four-dimensional part of the loop momenta q[4] i,

qα[4] i = pα0 i + x1ie
α
1 + x2ie

α
2 + x3ie

α
3 + x4ie

α
4 . (E.1)

In the following, for any pair of massless vectors qα1 and qα2 , we denote by εαq1,q2 the spinor

product

εαq1,q2 =
1

2
〈q1γ

αq2]. (E.2)
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E.1 d = 4− 2ε basis

In the d = 4− 2ε parametrization of Feynman integrals we choose, independently from the

number of external legs, a basis of massless vectors {eαi } defined in terms of two adjacent

external momenta p1 and p2 by

eα1 =
1

1− r1r2
(pα1 − r1p

α
2 ), eα2 =

1

1− r1r2
(pα2 − r2p

α
1 ), eα3 = εαe1,e2 , eα4 = εαe2,e1 , (E.3)

where

ri =
p2
i

γ
with γ = (p1 · p2)

(
1 +

√
1− p2

1p
2
2

(p1 · p2)2

)
. (E.4)

In the case of two-point integrals, p1 corresponds to the external momentum and p2 is an

arbitrary massless vector. In the case of one-point integrals, both p1 and p2 are chosen to

be arbitrary massless vectors.

E.2 d = d‖ + d⊥ basis

In the d = d‖ + d⊥ parametrization of Feynman integrals with n ≤ 4 external legs, the

four-dimensional basis {eαi } is chosen in such a way to satisfy the requirements

ei · pj = 0, i > n− 1, ∀j = 1, . . . n− 1, (E.5a)

ei · ej = δij , i, j > n− 1, (E.5b)

where {p1, p2, . . . , pn−1} is the set of independent external momenta.

• Four-point integrals

In case of four-point integrals {eαi } is defined as

eα1 =
1

1− r1r2
(pα1 − r1p

α
2 ),

eα2 =
1

1− r1r2
(pα2 − r2p

α
1 ),

eα3 =
1

i
√
β

[
(εe2,e1 · p3) εαe1,e2 + (εe1,e2 · p3) εαe2,e1

]
,

eα4 =
1√
β

[
(εe2,e1 · p3) εαe1,e2 − (εe1,e2 · p3) εαe2,e1

]
. (E.6)

with r1,2 given by (E.4) and β = 2e1 · e2 (εe1,e2 · p3) (εe1,e2 · p3).

• Three-point integrals

For three-point integrals {eαi } is defined as

eα1 =
1

1− r1r2
(pα1 − r1p

α
2 ), eα2 =

1

1− r1r2
(pα2 − r2p

α
1 ),

eα3 =
1

i
√

2e1 · e2

(
εαe1,e2 + εαe2,e1

)
, eα4 =

1√
2e1 · e2

(
εαe1,e2 − ε

α
e2,e1

)
, (E.7)

with r1,2 given by (E.4).
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• Two-point integrals with p2 6= 0

For a two-point integral with massive external momentum p, we introduce two mass-

less vectors q1 and q2 satisfying

pα = qα1 +
p2

2q1 · q2
qα2 (E.8)

and we define the massive auxiliary momentum q

qα = qα1 −
p2

2q1 · q2
qα2 . (E.9)

The basis {eαi } is therewith defined as

eα1 =
1√
p2
pα, eα2 =

1

i
√
p2
qα,

eα3 =
1

i
√

2q1 · q2
(εαq1,q2 + εαq2,q1), eα4 =

1√
2q1 · q2

(εαq1,q2 − ε
α
q2,q1). (E.10)

• Two-point integrals with p2 = 0

In the case of two-point integrals with massless external momentum p, we introduce

a massless auxiliary vector q1 and we define the basis {eαi } as

eα1 = pα, eα2 = qα1 ,

eα3 =
1

i
√

2p · q1
(εαp,q1 + εαq1,p), eα4 =

1√
2p · q1

(εαp,q1 − ε
α
q1,p). (E.11)

• One-point integrals

For one-point integrals we introduce two arbitrary independent massless vectors q1

and q2 and we build a completely orthonormal basis {eαi },

eα1 =
1√

2q1 · q2
(qα1 + qα2 ), eα2 =

1

i
√

2q1 · q2
(qα1 − qα2 ),

eα3 =
1

i
√

2q1 · q2
(εαq1,q2 + εαq2,q1), eα4 =

1√
2q1 · q2

(εαq1,q2 − ε
α
q2,q1). (E.12)
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